MOL.19971024.0059

U.S GEOLOGICAL SURVEY - YUCCA MOUNTAIN PROJECT BRANCH

1997 MILESTONE REPORT SP24CBM3

Preliminary Saturated-Zone Flow Model

by

John B. Czarnecki

.

9801200256 980112 PDR WASTE WM-11 PDR

1. L

PREFACE

This model is being submitted to the U.S. Department of Energy (DOE) to fulfill Level 3 Milestone SP24CBM3: *Site Saturated-Zone Flow Model*, in Summary Account OG33133FB3, Planning and Scheduling Account (PACS) 1.2.3.3.1.3.3, Site Saturated Zone Flow Model. This milestone consists of an updated 3-Dimensional Site Saturated-Zone Groundwater Flow Model. Included in the deliverable are directions for accessing the electronic media containing the executable code as of 6/10/97 (version number 97-06-10-sun4, qualified status), and model inputs and outputs in the format required by FEHMN, via FTP. The accompanying text includes discussions of the major features of the model, the features of FEHMN that were determined to be important to simulation of the saturated-zone flow system in the absence of repository heat, and a discussion of how closely the model calibration outputs match field observations.

The milestone required extensive coordination among Dr. Czarnecki and personnel at Los Alamos National Laboratory to ensure fulfillment of the milestone criteria described in the PACS Participant Planning Sheet. As a guide for reviewers, Table A has been prepared to indicate which sections of the deliverable meet particular milestone description/completion criteria. The completion criteria determined the overall scope of the deliverable. This package is considered, in terms of the criteria requirements in PACS, to be the final product that meets the definition of the deliverable.

The flow model has received two YMP-USGS technical reviews, by Claudia Faunt of the USGS, and Bill Arnold of Sandia National Laboratory. These reviews have been conducted and documented in accordance with the requirements of Quality Management Procedure YMP-USGS-QMP-3.04, R9. All data used as sources or for comparison during the development of the model are identified in Table B, Source Data/Information Table. The data are identified by the Automated Technical Data Tracking system (ATDT) Data Tracking Numbers (DTN) and/or

ii

Records Information System Record Accession (RA) numbers where applicable. Data sources are clearly labeled as qualified (Q) or non-qualified (non-Q) based on the ATDT system. The data are either in the public domain (existing or non-YMP data) or else have been or are in the process of being released by the YMP-USGS Technical Project Officer in compliance with YMP-USGS-QMP-3.04. Non-qualified data from non-YMP sources that have been published in the public domain outside of the Yucca Mountain Project have been identified as being widely accepted and used throughout the scientific community.

 Table A. Description/completion acceptance criteria and location summary for U.S. Department of Energy Level 3 Milestone SP24CBM3 - Site Saturated-Zone Flow Model

	CRITERIA	TEXT LOCATION -
TEC	HNICAL REQUIREMENTS	
A .	This milestone will consist of an updated 3- Dimensional Saturated-Zone Groundwater Flow Model. It will consist primarily of electronic media with minimal supporting paper documents.	Page 1
В.	Electronic media will consist of an executable version of the model code as of 4/30/97. (LANL is responsible for FEHMN and will do the QA verification and validation of the code.)	Page 23
C.	Electronic media will also contain model inputs in the format required by FEHMN.	Pages 21-23
D.	Those features of FEHMN that [were] determined to be important to simulation of the SZ flow system in the absence of repository heat will be incorporated into this deliverable.	Pages 1-5
E.	Electronic media also will contain model outputs in the format generated by FEHMN. Model output will represent the state of calibration as of April 1997 which is projected to be close to the final calibration with information available through February 1997.	Pages 21-23
F.	Supporting paper documents will identify the version of FEHMN that the executable code represents, the latest version of the User's Manual from LANL, and the QA status of the version of the code.	version: 97-06-10-sun4 User's Documentation: Release 1.0 Q Status: Released, "Q"
G.	The major features of the model that were selected will be identified.	Pages 1-5
H.	An index of the files containing model inputs will b e supplied with the paper documents.	Pages 21-23

TEXT LOCATION

iv

TECH	INICAL REQUIREMENTS	
I.	A short discussion about the status of model calibration as of 4/30/97 will be included. The discussion will indicate how closely the model outputs match field observations. The discussion will also indicate if ir would be productive to continue calibration.	Pages 3-7
J.	The model will be consistent with the three- dimensional site geologic model but will extend beyond the area of the geologic model.	Page 1
К.	The model will incorporate information obtained from testing of WT-series boreholes, the C-hole complex, borehole USW G-2, and other boreholes as appropriate through February 1997.	Page 7
L.	The model will incorporate the most plausible explanation for the large hydraulic gradient based on data available through February 1997 and simulations through April 1997.	Page 3
REGL	JLATORY REOUIREMENTS	
А.	The Q status of data used or cited in the report shall be appropriately noted.	Table B
В.	Stratigraphic nomenclature cited in the deliverable shall be consistent with the Reference Base Section 1.12(a), "Stratigraphy: Geologic/Lithologic Stratigraphy"	Appendix A
C.	Within the reports reference section, references to data used in the report shall include Accession Numbers or Data Tracking Numbers when available.	Table B
D.	Technical Data contained within the deliverable and not already incorporated in GENESIS shall be submitted for incorporation in accordance with YAP-SIII.3Q	Table B, and attached TDB transmittal memoranda
Ē.	The deliverable will be submitted to YMSCO in accordance with YAP-5.1Q.	Transmittal Memorandum

TABLE B: Source Data Table for Milestone SP24CBM3, "Site-Saturated Zone Flow Model"

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
<u>Direct Data Sources:</u>			
Ciesnik, M.S., 1995, Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California: USGS OFR 93-89	GS931008312132.004 MOL.19940908.0078	Non-Q	Submitted 3/25/94
LaCamera, R.J, and Westenberg, C.L., Selected ground-water data for the Yucca Mountain Region, Southern Nevada and Eastern California, through December 1992: USGS OFR 94-54	GS931100121347.007 MOL.19941006.0012 MOL.19960531.0138 MOL.19960531.0611	Non-Q	Submitted 1/23/96
Hale, G.S, and Westenberg, C.L., Selected ground- water data for Yucca Mountain Region, Southern Nevada and Eastern California, Calendar Year 1993: USGS OFR 95-158	GS940900121347.002 MOL.19951003.0426 MOL.19960214.0317 MOL.19960214.03200321	Non-Q	Submitted 5/6/96
Graves, R.P., and Goemaat, R.L., Water levels in the Yucca Mountain area, Nevada, 1995: DRAFT USGS OFR 97-101	GS970208312312.002 report in process	Non-Q	Report in process. Not submitted to the TDB yet. All source data have been submitted.
Graves, R.P, Tucci, P., and O'Brien, G.M., Analysis of water-level data in the Yucca Mountain area, Nevada, 1985-1995: DRAFT USGS WRIR 96-4256	GS960908312312.010 report in process	Non-Q	Report in process. Not submitted to the TDB yet. All source data have been submitted.

DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
GS950408312312.003 MOL.19951219.01320133 MOL.19960531.0044	Non-Q	Submitted 6/23/95
GS951108312312.010 MOL.19960315.0141 MOL.19960327.0366	Non-Q	Submitted 11/20/95
GS970108312312.001 MOL.19970610.0645	Non-Q	Submitted 2/6/97
GS970600121347.001 in process	Non-Q	Data Package in process; to be submitted to the TDB by 7/15/97
	DATA TRACKING NUMBER ACCESSION NUMBER GS950408312312.003 MOL.19951219.01320133 MOL.19960531.0044 GS951108312312.010 MOL.19960315.0141 MOL.19960327.0366 GS970108312312.001 MOL.19970610.0645 GS970600121347.001 in process	DATA TRACKING NUMBER ACCESSION NUMBER Q STATUS GS950408312312.003 MOL.19951219.01320133 MOL.19960531.0044 Non-Q GS951108312312.010 MOL.19960315.0141 MOL.19960327.0366 Non-Q GS970108312312.001 MOL.19970610.0645 Non-Q GS970600121347.001 in process Non-Q

Anderson, L.A., 1981, Rock property analysis of core samples from the Yucca Mountain UE25a-1 borehole, Nevada Test Site, Nevada: USGS OFR 81- 1338.	GS930408314213.006 NNA.19870406.0031	Non-Q	Submitted 1/14/88
Anderson, L.A., 1994, Water permeability and related rock properties measured on core samples from the Yucca Mountain USW GU-3/G-3 and USW G-4 boreholes, Nevada Test Site, Nevada: USGS OFR 92-201.	GS931108314213.010 MOL.19950117.0143	Non-Q	Submitted 9/7/94

1

•

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
Craig, R.W., and Robison, J.H., 1984, Geohydrology of rocks penetrated by test well UE25p#1, Yucca Mountain, Nevada: USGS WRIR 84-4248.	GS920408312314.009 NNA.19890905.0209	Non-Q	Submitted 4/27/87
Craig, R.W., and Reed, R.L., 1991, Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada: USGS WRIR 89- 4025.	GS911108312313.009 NNA.19900615.0030	Non-Q	Submitted 5/12/95
Czarnecki, J.B., 1990, Geohydrology and evapotranspiration at Franklin Lake Playa, Inyo County, California: USGS OFR 90-356.	GS950508312134.001 MOL.19960229.0032	Non-Q	Submitted 7/14/95
D'Agnese, F.A, Faunt, C.C., Turner, A.K., and Hill, M.C, 1996, Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California, using Geoscientific Information Systems: USGS WRIR 96- 4300.	GS960808312144.003 MOL.19970206.0203	Non-Q	not data contained "within the deliverable;" to be submitted to the TDB by 7/31/97
Flint, L.E., and Flint, A.L., 1990, Preliminary permeability and water-retention data for nonwelded and bedded tuff samples, Yucca Mountain, area, Nye County, Nevada: USGS OFR 90-569.	GS920108312231.001 NNA.19920417.0018	Non-Q	Submitted 3/8/94
Geldon, A.L., 1993, Preliminary hydrogcologic assessment of boreholes UE-25c#1, UE-25c#2, and UE-25c#3, Yucca Mountain, Nye County, Nevada: unpublished USGS WRIR 92-4016.	GS930308312313.002 NNA.19930112.0130	Non-Q	Submitted via USGS GP- 1001: TDIF DTN GS920108314213.001

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
Lahoud, R.R., Lobmeyer, D.H., and Whitfield, M.S., Jr., 1984, Geohydrology of volcanic tuff penetrated by test well UE-25b#1, Yucca Mountain, Nevada: USGS WRIR 84-4253.	GS920408312314.013 NNA.19890511.0117	Non-Q	Submitted 4/24/87
Lobmeyer, D.H., 1986, Geohydrology of rocks penetrated by USW G-4, Yucca Mountain, Nevada: USGS WRIR 86-4015.	GS930408312132.005 NNA.19890918.0510	Non-Q	Submitted 4/5/88
Luckey and others, 1996, Status of understanding of the saturated-zone ground-water flow system at Yucca Mountain, Nevada as of 1995: USGS WRIR 96-4077	GS950808312331.001 MOL.19970513.0209 MOL.19970513.0213	Non-Q	Applicable sections submitted to the TDB as part of this deliverable
O'Brien, G.M., 1997, Analysis of aquifer tests conducted in boreholes USW WT-10, UE-25 WT #12, and USW SD-7, 1995-96, Yucca Mountain, Nevada: USGS WRIR 96-4293.	GS960708312312.007 Backlog	Q	All source data submitted to the TDB under TDIF DTNs GS951108312312.011, GS960308312312.004, and GS960108312312.002
O'Brien, G.M., in press, Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada: DRAFT USGS WRIR	TDIF not assigned yet	Q	Source data have been submitted to the TDB under TDIF DTNs GS960508312312.006 and GS970208312312.003

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
Robison, J.H., and Craig, R.W., 1991, Geohydrology of rocks penetrated by test well USW H-5, Yucca Mountain, Nye County, Nevada: USGS WRIR 88- 4168.	GS910908312313.007 NNA.19900110.0400	Non-Q	Not a TDB candidate. Data went forward with OFR 83-853
Rush, F.E., Thordarson, W., and Pyles, D.G., 1984, Geohydrology of test well USW H-1, Yucca Mountain, Nevada: USGS WRIR 84-4032.	GS920408312314.011 NNA.19870518.0067	Non-Q	Submitted 8/21/87
Thordarson, W., 1983, Geohydrologic data and test results from well J-13, Nevada Test Site: USGS WRIR 83-4171.	GS930408312132.007 NNA.19870518.0071	Non-Q	Submitted 4/22/87
Thordarson, W., Rush, F.E., and Waddell, S.J., 1985, Geohydrology of test well USW H-3, Yucca Mountain, Nye County, Nevada: USGS WRIR 84- 4272.	GS920408312314.004 NNA.19870407.0318	Non-Q	Submitted 4/7/87
Waddell, R.K, Robison, J.H., and Blankennagel, R.K., 1984, Hydrology of Yucca Mountain and vicinity, Nevada-CaliforniaInvestigative results through mid-1983: USGS WRIR 84-4267.	GS930108312132.001 NNA.19900618.0074	Non-Q	Submitted 6/1/87
Weeks, E.P., and Wilson, W.E., 1984, Preliminary evaluation of hydrologic properties of cores of unsaturated tuff, test well USW H-1, Yucca Mountain, Nevada: USGS WRIR 84-4193.	GS920508312231.015 NNA.19870407.0037	Non-Q	Submitted 4/24/87

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
Whitfield, M.S., Eshom, E.P., Thordarson, W., and Schaefer, D.H., 1985, Geohydrology of rocks penetrated by USW H-4, Yucca Mountain, Nevada: USGS WRIR 85-4030.	GS920408312314.008 NNA.19870407.0328	Non-Q	Submitted 4/24/87
Data Sources Used for Comparison Purposes Only:	Data Packages		
5/2295 280 Gallon Per Minute Pump test at the c- hole complex. Pre-test data also included.	GS960108312313.001 MOL.19960924.0689 - 0690 MOL.19960924.0692 - 0700 MOL.19960924.0705	Q	Submitted 5/20/97 (see attached memorandum)
6/12/95 356 GPM test in UE-25c#3 with c#1 and c#2 packed off. Test conducted at the c-hole complex.	GS960108312313.002 MOL.19960924.0703 MOL.19960924.0807 - 0808 MOL.19960924.0810 - 0812	Q	Submitted 5/29/97 (see attached memorandum)
Data obtained from the analysis of the iodide-tracer- test water samples collected during the 2/13/96 convergent tracer test conducted at the c-well complex. The test was in the Bullfrog-Tram zone with pumping in boreholes UE-25 c#3 and injection in borehole UE-25c#2.	GS960808312315.001 MOL.19961216.0160 MOL.19961216.0162 - 0163 MOL.19961216.0165 - 0167	Q	Submitted 12/10/96
Pumping test data collected at the c-hole complex, September 28, 1995, and January through April, 1996	GS960808312314.002 MOL.199612160174 - 0181	Q	Not TDB-appropriate

TITLE OF SOURCE	DATA TRACKING NUMBER ACCESSION NUMBER	Q STATUS	TDB STATUS
Pumping test data collected at the c-well complex, 5/7/96 - 12/31/96	GS970308312314.001 Backlog	Q	Submitted 3/18/97
Water-level altitude data from four wells in the Continuous Network, May through December, 1996	GS970308312314.002 Backlog	Non-Q	Submitted 3/18/97

...

Introduction

This milestone consists of an updated fully 3D model of ground-water flow within the saturated zone at Yucca Mountain, Nevada. All electronic files pertaining to this deliverable have been transferred via ftp transmission to Steve Bodnar (M&O) and the technical data base. The model was developed using a flow and transport simulator, FEHMN, developed at Los Alamos National Laboratory, and represents a collaborative effort between staff from the U.S. Geological Survey and Los Alamos National Laboratory. The model contained in this deliverable is minimally calibrated and represents work in progress. The flow model developed for this milestone is designed to feed subsequent transport modeling studies at Los Alamos which also use the FEHMN software. In addition, a general-application parameter estimation routine, PEST, was used in conjunction with FEHMN to reduce the difference between observed and simulated values of hydraulic head through the adjustment of model variables. This deliverable in large part consists of the electronic files for Yucca Mountain Site saturated-zone flow model as it existed as of 6/6/97, including the executable version of FEHMN (accession no. MOL 19970610.0204) used to run the code on a Sun Ultrasparc I workstation. It is expected that users of the contents of this deliverable be knowledgeable about the operation of FEHMN.

Model Components

For the current simulation, fully saturated conditions were imposed on the simulation. However, to implement these conditions, the air/water macro (air) within FEHMN was invoked which resulted in faster convergence for this fully saturated configuration. Hydraulic head conditions were imposed using the 'head' macro with FEHMN. To facilitate output readable by PEST, the 'pest' macro was invoked which writes a file after each forward run with results for user specified nodes corresponding to hydraulic head observation points.

Model Domain

The domain of the current model represents a rectangular area that extends from 533,340 W to 563,340 W and 4,046,782 N to 4,091,782 N in the UTM coordinate system. The model embodied in this milestone is consistent with the three-dimensional site geologic model but is larger than the area of the site geologic model developed to support the site unsaturated zone model. The current model domain is delimited by a rectagular box: 45 kilometers long, 30 kilometers wide, and about 1.5 kilometers thick. The domain was selected to be: (1) coincident with grid cells in the regional ground-water flow model; (2) sufficiently large to minimize the effects of flow and pressure boundary conditions on estimating perme ability values at Yucca Mountain; (3) sufficiently large to be able to assess ground- water flow at distances 30 km downgradient from the design repository area; (4) small enough to minimize the number of computational nodes used in the model; (5) thick enough to include the regional Paleozoic carbonate aquifer; and (6) large enough to include well control in the Amargosa Desert at the southern end of the model. Tests done using a model developed by Sandia National Laboratory

of a much smaller area that included Yucca Mountain indicated that specified pressure (constant head) boundary conditions could be applied while still observing changes in model simulated pressures as a result of changes in model permeability values (B.W. Arnold, Sandia National Laboratory, written communication).

Boundary Conditions

Specified hydraulic-head boundary conditions were derived from a conventional representation for the water table with the large hydraulic gradient represented. This surface was used as the top of the model mesh, the top edges of which were used as the `seed' values of for the hydraulic head boundary conditions. To get these boundary conditions to be specified properly, low permeability values (1e-29 m**2) were specified within the interior and the faces were given permeability values of 1e-14 for all components; the top edges were specified with the `head' from the potentiometric surface and the side nodes allowed to equilibrate to the resulting head distribution. (These head distributions are in figures contained in 000*.plt files). Once the faces were at equilibrium, the interior node permeability values were relaxed according to the distributions of the various hydrogeologic units, and the model run in forward mode to get a head solution at all nodes. An .ini file (restart file) corresponding to a time of 0.0 days containing the specified head values on all faces was used in all subsequent simulations. Head observations appear in table 1.

Parameter Estimation

For the current head-based (as opposed to pressure-based) model, 38 different parameter estimation runs were done for various configurations of parameters. These files are of the form h*rec* and generally follow a naming sequence of letter-number-letter-number (out to four places). The results of the PEST simulations include 95% confidence intervals for the adjustable parameters, which may or may not be meaningful depending on many factors in the parameter estimation process. An overall decrease in the objective function (phi) occurred through the sequence of rec files, although not necessarily in the same sequence as the rec files.

Permeability Estimates

There are several zone lists used in the model that define nodes pertaining to hydrogeologic units with specific permeability and porosity values. Zones 2 through 19 correspond to material properties of the units (Table 2). Parameter names for each material-property zone also appear in table 2.

Additional zone lists (see h4o1.dat) are:

- 00061 -- East-West barrier at approximate southern extent of large hydraulic gradient
- 00062 North-South barrier at approximate location of Solitario Canyon fault
- 00071 -- All top nodes of mesh (not used)
- 00072 -- All bottom nodes of mesh (not used)
- 00073 -- All west nodes
- 00074 -- All south nodes
- 00075 -- All east nodes
- 00076 -- All north nodes
- 00077-- All nodes on the bottom of the upper volcanic confining unit
- 00078 -- Nodes along the top of Fortymile Wash
- 00096 -- East-West plane to examine pressures ~1.5 km from north of model
- 00097 -- East-West plane to examine pressures ~3.0 km from north of model

Zone 00061 was required to better represent the large hydraulic gradient located on the north end of Yucca Mountain at which the apparent water-table altitude changes about 300 meters in a distance of less than 2 km. The cause of the large hydraulic gradient remains unknown, but for purposes of this model is considered to be a buried fault of low permeability. Zone 00062 was included to better represent the approximately 50 meter change in hydraulic head across the Solitario Canyon fault system.

File h401.dat has the values last used in pest run h401.pst which are not the optimized values determined using pest, rather the last perturbation of the values. In this particular run, mva, uva, and lkns (Solitario Canyon fault permeability) were specified as parameters with the following outcome:

OPTIMISATION RESULTS

Adjustable parameters ---->

Parameter	Estimated	95% percent con	fidence limits
	value	lower limit	upper limit
mva	2.556685 E -14	2.458739E-14	2.6546328-14

1kns 8.795841E-16	5.419461 E -16	1.217222 B -15
-------------------	-----------------------	-----------------------

Note: confidence limits provide only an indication of parameter uncertainty. They rely on a linearity assumption which may not extend as far in parameter space as the confidence limits themselves - see PEST manual.

Tied parameters ---->

ParameterEstimated valueuva2.556685E-14

Objective function ---->

Sum of squared weighted residuals (ie phi) = 2.2405E+04

The next pest run, h4o2.rec001, produces a similar objective function value (2.2416E+04) but with a markedly different estimate for both mva and uva (1.626692E-14), although in that run the lower carbonate aquifer (tied to qal, alluvium) is added as an adjustable parameter. When lkns is removed as an adjustable parameter, the estimates change still further (h4o2.rec.002) with mva/uva estimated as 5.946981E-15 (a value less than would be expected to representative of tuff aquifers). Note that these two parameters are tied to help insure a PEST estimate (somthing far from guaranteed given the number of head observations). All of this information should be kept in mind when trying to evaluate confidence in parameters. In addition, all *.rec* files report the covariance of the adjustable parameters at the end of the run record.

Permeability estimates which resulted in the lowest sum of squared residuals for hydraulic head are as follows:

Permeability estimate
(meters ²)
3.5E-14
5.5E-12
2.0E-15
5.5E-19
6.7E-13
1.0E-16
5.0E-13
1.9E-16
2.9E-14
1.0E-18
4.5E-14
1.0E-14

tpla	3.0E-16
qal	1.1E-13
kz	2.2E-15
lkew	1.6E-17
lkns	8.8E-16
mva	2.6E-14
uva	2.6E-14

Residuals

The difference between measured and calculated values of hydraulic head are listed below (excerpted from file h4o1.rec):

Observation	Measured	Calculated	Residual	Weight
	value	value		
01	1187.8001	1182.0042	5.79581	1.000
02	1010.0500	1047.1587	-37.1087	1.000
03	1034.5200	1022.2099	12.3101	1.000
04	1019.7900	1026.7325	-6.94255	1.000
05	738.51001	845.04110	-106.531	1.000
06	778.42999	757.84558	20.5844	1.000
07	730.26001	743.72399	-13.4640	1.000
08	754.20001	763.07293	-8.87292	1.000
09	748.28003	755.04432	-6.76429	1.000
010	730.84003	736.07490	-5.23487	1.000
o11	729.15002	732.00070	-2.85068	1.000
012	730.15002	744.20387	-14.0539	1.000
013	730.96997	736.41781	-5.44784	1.000
014	729.97998	732.51180	-2.53182	1.000
015	730.81000	740.77164	-9.96164	1.000
016	730.09003	735.81578	-5.72575	1.000
017	730.19000	732.80422	-2.61422	1.000
018	730.06000	733.46738	-3.40738	1.000
019	729.17999	732.57162	-3.39163	1.000
020	775.96002	790.05615	-14.0961	1.000
021	730.64001	732.22176	-1.58175	1.000
022	730.52002	738.04262	-7.52260	1.000
o23	728.21997	748.42988	-20.2099	1.000
024	775.96997	765.20885	10.7611	1.000
o25	729.40002	728.56301	0.837011	1.000
026	833.16998	854.09337	-20.9234	1.000
027	729.65997	727.71651	1.94346	1.000
028	779.46002	814.46740	-35.0074	1.000
029	729.37000	726.71168	2.65832	1.000
o30	730.67999	728.15616	2.52383	1.000

o31	727.34003	726.74400	0.596035	1.000
o32	727.79999	726.51704	1.28295	1.000
o33	729.81000	714.37224	15.4378	1.000
034	718.40997	717.49911	0.910859	1.000
o35	705.40002	717.21142	-11.8114	1.000
036	704.09003	717.06728	-12.9772	1.000
037	705.60999	717.25011	-11.6401	1.000
038	701.65002	717.11553	-15.4655	1.000
039	705.47998	716.51713	-11.0372	1.000
040	705.44000	713.90694	-8.46694	1.000
041	705.35999	716.27754	-10.9175	1.000
042	724.96002	724.60053	0.359492	1.000
043	706.09998	711.94196	-5.84198	1.000
044	704.39001	709.15891	-4.76890	1.000
045	695.81000	700.17615	-4.36615	1.000
046	694.03003	695.24941	-1.21938	1.000
047	693.76001	696.53729	-2.77728	1.000
048	693.76001	696.83156	-3.07155	1.000
049	722.25000	714.02664	8.22336	1.000
050	696.92999	697,72501	-0.795019	1.000
051	689.97998	692.38452	-2.40454	1.000
052	707.67999	693.64901	14.0310	1.000
053	693.21997	694.02495	-0.804984	1.000
054	690.46002	691.70584	-1.24582	1.000
055	692,20001	696.91664	-4.71663	1.000
056	705.58002	692.32349	13.2565	1.000
057	693.69000	693.13458	0.555421	1.000
058	690,41998	690,53386	-0.113880	1.000
059	692,98999	691.57895	1.41104	1.000
060	592.44000	692.66700	-0.227001	1.000
061	689.15002	686.23348	2.91654	1.000
062	686,38000	694.54378	-8,16378	1.000
063	696.15997	695.33197	0.828004	1.000
064	690,07001	690.71432	-0.644315	1.000
065	709.00000	706.99340	2.00660	1.000
065	692.14001	692,23666	-9.664981E-02	1.000
000	706.56000	692.16586	14.3941	1.000
068	720.32001	711.06986	9.25015	1.000
069	718.40997	713.67572	4.73425	1.000
070	688,29999	695.65825	-7.35826	1.000
071	688.84998	695.29829	-6.44831	1.000
072	691.20001	698.73950	-7.53949	1.000
073	713.98999	709.75534	4.23465	1.000
074	723.63000	712.74595	10.8841	1.000
075	701.34003	695.67466	5.66537	1.000
076	696.46997	691.36917	5.10080	1.000
077	692.40002	692.02870	0.371319	1.000
078	692.73999	692.07524	0.664751	1.000
079	698,51001	702.85468	-4.34467	1.000
080	785,79999	760.05816	25.7418	1.000
081	735.25000	753.97200	-18.7220	1.000
082	730.58002	754.61332	-24.0333	1.000

083	730.78003	750.04648	-19.2665	1.000
084	775.40997	761.61023	13.7997	1.000
085	775,67999	761.15074	14.5292	1.000
086	730,10999	738.79200	-8.68201	1.000
087	730,56000	737.86532	-7.30532	1.000
088	775.75000	765.73327	10.0167	1.000
089	775.63000	768.80843	6.82157	1.000
090	730.15997	739.47575	-9.31578	1.000
091	730,27002	736.21915	-5.94913	1.000
092	731.03998	741.39835	-10.3584	1.000
092	759, 33002	742.32448	17.0055	1.000
093	752.62000	742.74114	9.87886	1.000

Objective function ---->

Sum of squared weighted residuals (ie phi) = 2.2405E+04

All head and residual values are in meters above sea level. In general, the model fits the observations well in flat gradient areas but less well in larger gradient areas. The observation points (table 1) used in the model are derived in large part from Ciesnik (1995) which includes measurements from the WT holes, C-holes, USW G-2, and 91 other observation points. Hydraulic-test data from these and other holes were used for comparison against model estimates of permeability. This model is minimally calibrated given the number of actual optimization runs that were done (38) and the number of adjustable parameter combinations that were used.

There are several other features that should be included in subsequent models including: 1) areally distributed recharge based on values derived by J. Hevesi (U.S. Geological Survey, written communication, 1997); 2) recharge along Yucca Wash and other tributaries of Fortymile Wash; 3) specification of flux explicitely along the southern and/or northern boundary of the model based on estimates from the USGS regional model of the Death Valley ground-water flow system; 4) characterization of different water table configurations which might offer different explanations for the presence of the large hydraulic gradient north of Yucca Mountain (one of which would be the treatment of the higher water levels as being associated with a perched water body); 5) use of a higher-resolution stratigraphic framework model sampled at 250-m grid centers which captures the distribution of hydrogeologic units better than the current 1500-m grid sampling; 6) use of temperature and C-14 ground-water ages as potential additional constraining data sets against which model calibration and comparisons could be made. Also included is a postscript file to help view the residuals: h401.residuals.pasted.plt. Unfortunately some of the values get stacked on the figure because of crowded residuals, but you can get an idea of some of values. Largest residuals occur at WT-6 and at wells in Crater Flat.

Running the model

To run the model embodied in h401.dat on a Sun Ultra sparc computer, use the following commands after transferring the files via ftp:

chmod 755 xfehm* chmod 755 r* rerp_ultra h401

Other script files are included in the ftp directory for running alternate executable versions of FEHMIN. Verification that the model results produced by using the 4/28/97 version of xfehmn for Sun Solaris systems were identical to those obtained using the 6/10/97 Ultrasparc version was done using the 'diff' unix system command which was used to compare the fin files produced for the h401 dat input data set which was run on separate platforms. The only difference between the two fin files was the version of FEHMIN reported.

Transferring Files Using FTP

The files associated with this deliverable may be transferred through an ftp link using the following commands:

ftp ympbservl.cr.usgs.gov user: anonymous password: <your e-mail address> cd /pub/sz_model prompt mget *

The contents of the directory are listed in Table 3.

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
UE-29a 2	36°56′29″	116°22′26″	1215.39	1024.05	1187.80	0.4909	02/19/84
GEXA 4	36°55′20″	116°37′03″	1198.14	860.25	1010.05	0.44906	03/14/96
GEXA 3	36°54′45″	116°38′39″	1243.86	1111.56	1192.62	0.24301	12/17/96
UE-25 WT-6	36°53'40"	116°26′46″	1314.79	988.57	1034.52	0.13775	12/04/95
USW G-2	36°53′22″	116°27′35″	1553.90	371.53	1019.79	1.9434	12/11/95
UE-25 WT-16	36°52′39″	116°25′34″	1210.91	719.59	738.51	0.056716	12/04/95
USW UZ-14	36°52′08″	116°27′40″	1349.11	724.77	778.43	0.16086	12/16/96
UE-25 WT-18	36°52′07″	116°26′42″	1336.40	721.83	730.26	0.025242	08/30/95
USW G-1	36°52′00″	116°27′29″	1325.91	125.65	754.20	1.8843	03/23/82
UE-25a 3	36°51′47″	116°18′53″	1385.62	681.46	748.28	0.20034	12/19/79
UE-25 WT-4	36°51′40″	116°26′03″	1169.21	711.21	730.84	0.058826	12/05/95
UE-25 WT-15	36°51′16″	116°23′38″	1083.20	698.91	729.15	0.090647	12/10/96
USW G-4	36°51′14″	116°27′04″	1269.49	542.16	730.15	0.56355	01/26/90

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
UE-25a l	36°51′05″	116°26′24″	1199.21	583.94	730.97	0.44079	04/29/85
UE-25 WT-14	36°50′32″	116°24′35″	1076.40	704.61	729.98	0.076041	12/04/95
USW WT-2	36°50′23″	116°27′18″	1301.31	705.16	730.81	0.076873	12/12/95
UE-25c 1	36°49′47″	116°25′43″	1130.59	479.08	730.09	0.75246	04/20/84
UE-25c 3	36°49′47″	116°25′43″	1132.30	474.05	730.19	0.76788	07/13/95
UE-25c 2	36°49′45″	116°25′43″	1132.21	473.65	730.06	0.76869	01/09/95
UE-25 WT-13	36°49′43″	116°23′51″	1032.51	704.06	729.18	0.075297	12/09/96
USW WT-7	36°49′33″	116°28′57″	1196.89	745.78	775.96	0.09046	12/06/95
USW WT-1	36°49'16″	116°26′56″	1201.40	712.27	730.64	0.055062	12/12/95
USW G-3	36°49′05″	116°28′01″	1480.51	339.02	730.52	1.1737	06/27/95
J -13	36°48′28″	116°23′40″	1011.30	338.19	728.22	1.1693	12/16/96
USW WT-10	36°48′25″	116°29′05″	1123.40	748.36	775.97	0.082753	12/06/95
UE-25 WT-17	36°48′22″	116°26′26″	1124.01	717.00	729.40	0.037166	06/28/95
USW VH-2	36°48′21″	116°34′37″	974.45	294.21	833.17	1.6157	03/10/85

Table 1:	Observation	wells used in	the construction of the	Yucca Mountain s	ite saturated	l-zone mode	el
----------	-------------	---------------	-------------------------	------------------	---------------	-------------	----

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
UE-25 WT-3	36°47′57″	116°24′58″	1030.01	708.39	729.66	0.063779	12/12/95
USW VH-1	36°47′32″	116°33′07″	963.50	490.33	779.46	0.86676	12/17/96
J -11	36°47′06″	116°17′06″	1049.37	688.54	732.19	0.13084	12/16/96
UE-25 WT-12	36°46′56″	116°26′16″	1074.69	709.40	729.37	0.059873	12/13/95
USW WT-11	36°46′49″	116°28′02″	1094.11	704.37	730.68	0.078878	12/06/95
	36°46′22″	116°16′43″	1049.43	687.78	731.52	0.13112	09/13/57
U.S. Ecology -	36°46′15″	116°41′24″	848.42	729.39	755.76	0.079038	10/10/90
MW 315	36°45′57″	116°41′18″	844.70	748.62	751.89	0.0098227	05/15/89
J -12	36°45′54″	116°23′24″	953.54	666.86	727.34	0.18133	12/05/83
JF- 3	36°45′28″	116°23′22″	944.36	662.65	727.80	0.19532	12/12/96
ASH-B Deep	36°43′29″	116°40′29″	815.95	583.00	720.08	0.41094	12/18/96
ASH-B Shallow	36°43′29″	116°40′29″	815.95	698.44	720.22	0.065305	12/18/96
NA-6	36°41′30″	116°41′12″	800.98	613.61	718.85	0.31548	12/17/96
Cind-R-Lite	36°41′05″	116°30′26″	830.76	710.18	729.81	0.05884	12/17/96

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
	36°39′07″	116°23′57″	819.91	697.38	718.41	0.063048	05/20/61
	36°38′42″	116°23′53″	811.38	676.85	705.40	0.085572	09/12/90
	36°38′40″	116°23′50″	813.82	681.99	704.09	0.066246	02/28/55
	36°38′40″	116°23′40″	810.77	697.99	705.61	0.022843	05/03/52
	36°38′38″	116°23′45″	811.38	679.25	701.65	0.06716	03/08/55
NDOT	36°38′35″	116°23′58″	809.79	682.20	705.48	0.069796	12/16/96
	36°38′25″	116°26′32″	795.53	663.61	705.44	0.12537	01/15/87
Airport	36°38′25″	116°24′33″	804.31	640.53	705.36	0.19434	12/16/96
TW- 5	36°38'15″	116°17′59″	931.47	706.30	724.96	0.055962	12/16/96
	36°37′44″	116°26′37″	783.95	669.13	706.10	0.11084	07/12/62
	36°37′01″	116°26′40″	774.19	671.93	704.39	0.097313	10/18/58
	36°35′49″	116°30′50″	742.19	639.29	695.81	0.16942	01/07/87
	36°35′48″	116°35′37″	731.82	674.83	694.03	0.057566	01/05/60
	36°35′47″	116°32′43″	735.18	676.37	693.76	0.052129	01/07/87

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
	36°35′45″	116°32′09″	737.01	664.79	693.76	0.086855	01/08/87
	36°35′40″	116°24'08″	771.14	699.30	722.25	0.068805	03/13/73
	36°35′27″	116°29′25″	744.02	667.13	696.93	0.089318	01/16/87
Davidson	36°35′26″	116°35′29″	730.09	673.46	689.98	0.049529	12/18/96
	36°35′15″	116°33′55″	740.66	. 677.24	707.68	0.091282	07/02/62
	36°35′11″	116°31′42″	733.65	649.12	693.22	0.13219	01/07/87
	36°35′03″	116°35′15″	727.86	684.02	690.46	0.019326	01/07/87
	36°35′03″	116°28′40″	740.66	685.95	692.20	0.018732	01/12/87
	36°34′57″	116°34′23″	740.66	686.24	705.58	0.057977	01/07/87
<u></u>	36°34′57″	116°33′09″	731.52	666.89	693.69	0.080359	01/07/87
DeFir	36°34′56″	116°35′25″	727.07	671.71	690.42	0.05609	03/24/93
	36°34′55″	116°34′59″	726.03	667.91	692.99	0.075201	07/02/62
	36°34′45″	116°32′46″	727.86	661.39	692.44	0.09311	01/07/87
<u> </u>	36°34'42"	116°36′33″	725.73	676.96	689.15	0.03655	04/21/82

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
	36°34′40″	116°28′24″	731.52	664.60	686.38	0.065287	06/29/62
	36°34′34″	116°27′51″	741.88	673.30	696.16	0.06853	07/15/58
	36°34′32″	116°34′42″	723.29	653.80	690.07	0.10873	01/20/84
	36°34′30″	116°24′52″	762.00	667.22	709.00	0.12523	06/29/62
	36°34′29″	116°31′59″	729.08	664.89	692.14	0.081688	01/07/87
	36°34′28″	116°32′15″	740.66	679.72	706.56	0.080455	07/04/62
Cooks West	36°34′28″	116°24′03″	754.26	689.74	720.32	0.091671	04/09/91
Cooks East	36°34′28″	116°23′47″	755.23	695.82	718.41	0.067699	12/18/96
• · · · · · · · · · · · · · · · · · · ·	36°34′22″	116°25′34″	755.90	704.09	713.23	0.027412	07/31/62
	36°34'17"	116°27′30″	740.66	685.53	688.30	0.008315	01/20/84
Amargosa Town C	36°34′11″	116°27′29″	739.14	668.27	688.85	0.061677	11/19/80
	36°34′10″	116°26′11″	743.71	615.35	691.20	0.2274	01/15/87
	36°34′10″	116°24′03″	748.59	700.81	713.99	0.039515	03/16/87
	36°34'10″	116°24′00″	749.81	709.89	723.63	0.041164	03/16/87

1

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring point altitude (meters)	Altitude of midpoint of water column (meters)	Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
Amargosa Valley	36°34′07″	116°27′33″	737.92	673.91	701.34	0.082236	12/10/88
	36°34′05″	116°33′45″	723.90	672.08	696.47	0.073099	08/15/58
	36°34′04″	116°33′12″	724.20	662.28	692.40	0.090305	01/08/87
	36°34′04″	116°32′39″	724.20	685.61	692.74	0.021372	02/26/74
	36°34′04″	116°25′04″	746.76	678.44	698.51	0.06017	06/29/62
	36°33′56″	116°29′45″	726.95	645.26	691.59	0.13889	06/28/62
	36°33′53″	116°30′33″	727.28	670.59	690.09	0.058466	01/08/87
Tracer 3	36°32′13″	116°13′38″	732.22	622.54	719.52	0.29072	12/16/96
USW H-1 Tube1	36°51′57″	116°27′12″	1302.99	-495.50	785.80	3.8411	12/05/95
USW H-1 Tube2	36°51′57″	116°27′12″	1302.99	192.98	735.25	1.6256	12/05/95
USW H-1 Tube3	36°51′57″	116°27′12″	1302.99	562.49	730.58	0.5039	12/05/95
USW H-1 Tube4	36°51′57″	116°27′12″	1302.99	680.39	730.78	0.15108	12/05/95
USW H-5 Upper	36°51′22″	116°27′55″	1478.89	704.15	775.41	0.21362	02/07/95
USW H-5 Lower	36°51′22″	116°27′55″	1478.89	446.39	775.68	0.98713	06/14/95

16

[MPa, megapascals; well names are those contained in the USGS Ground-Water Site Inventory data base; midpoint of water column is midpoint of packed off interval for multiply completed wells]

Well Name	Latitude	Longitude	Measuring pointAltitude of midpointaltitude (meters)of water column (meters)		Hydraulic head (meters)	Pressure of water column at midpoint (MPa)	Date of Measurement
UE-25b 1 Lower	36°51′08″	116°26′23″	1200.70	-8.79	730.11	2.2151	07/18/95
UE-25b 1 Upper	36°51′08″	116°26′23″	1200.70	366.13	730.56	1.0925	12/05/95
USW H-6 Upper	36°50′49″	116°28′55″	1301.71	662.73	775.75	0.33882	12/06/95
USW H-6Lower	36°50′49″	116°28′55″	1301.71	315.71	775.63	1.3788	12/06/95
USW H-4 Upper	36°50'32″	116°26′54″	1248.49	395.33	730.16	1.0038	12/12/95
USW H-4 Lower	36°50'32″	116°26′54″	1248.49	45.00	730.27	2.0543	12/12/95
USW H-3 Upper	36°49'42″	116°28′00″	1483.19	550.12	731.04	0.54235	07/26/95
USW H-3 Lower	36°49'42"	116°28′00″	1483.19	316.70	759.33	1.3269	12/12/95
UE-25p 1 PTH	36°49'38″	116°25′21″	1114.20	-410.29	752.62	3.4862	12/03/96

Table 2.--Hydrogeologic units, equivalent units, and associated lithologies in the vicinity of Yucca Mountain

[--, no units identified; hydrologic-unit names listed in parentheses; Q, Quaternary; T, Tertiary; Pz, Paleozoic; pC, Precambrian]

Hydrogeologic Unit (Age)	Model Unit Number (Parameter Name)	Winograd and Thordarson (1975)	Laczniak and others (1996)	Luckey and others (1996)	Lithology
Valley-Fill Aquifer (Q, T)	19 (qal)	Valley Fill (Valley-fill aquifer)	Alluvial deposits (Valley-fill aquifer)	Alluvium	Alluvial fan, fluvial, fanglomerate, lakebed, colian and mudflow deposits
Valley-Fill Confining Unit (Q, T)	18 (tpla)				Playa deposits
Limestone Aquifer (T)	17 (tlim)	Rocks of Pavits Spring Horse Spring Formation	Rocks of Pavits Spring Horse Spring Formation		Lacustrine limestones, calcareous spring deposits
Lava-Flow Aquifer (Q,T)	16 (b)	Basalt of Kiwi Mesa Basalt of Skull Mountain (Lava-flow aquifer)	Basalt		Basalt flows, dikes and cinder concs,latite dikes
Upper Volcanic Aquifer (T)	15 (uva)	Timber Mountain Tuff Paintbrush Tuff (Weldod-tuff aquifer)	Thirsty Canyon Group Timber Mountain Group Paintbrush Group (Welded-tuff and lava-flow aquifers)	Paintbrush Tuff (Upper Yucca Mt. Volcanic Aquifer)	Variably welded ash-flow tuffs and rhyolite lavas (non-welded tuffs)
Upper Volcanic Confining Unit (T)	14 (uvcu)	Wahmonic Formation Salyer Formation (Lava-flow aquitard - Tuff aquitard)	Volcanics of Arca 20 Wahmonic Formation (Lava-flow aquifers)	Tuffaccous Beds of Calico Hills (Upper Yucca Mt. Confining Unit)	Rhyolite lavas, volcanic breccias, non-welded to welded tuffs, commonly argillaccous or zeolitic

Hydrogeologic Unit (Age)	Model Unit Number (Parameter Name)	Winograd and Thordarson (1975) Laczniak and others (1996)		Luckey and others (1996)	Lithology	
Middle Volcanic Aquifer (T)	13 (mva)	Grouse Canyon Tuff Tuff of Crater Flat (Tuff aquitard)	Crater Flat Group Belted Range Group (Welded-tuff and lava-flow aquifers)	Crater Flat Tuff (Lower Yucca Mt. Volcanic Aquifer)	Variably welded ash-flow tuffs and rhyolite lavas	
Middle Volcanic Confining Unit (T)	12 (mvcu	Local informal units of Indian Trail Formation (Tuff aquitard)	Tunnel Formation (Tuff confining unit)	Flow Breccia Lithic Ridge Tuff (Lower Yucca Mt. Confining Unit)	Non-welded tuff, commonly zeolitized	
Lower Volcanic Aquifer (T)	11 (iva)	Tub Spring Tuff (Tuff aquitard)	Volcanics of Big Dome (Lava-flow and welded-tuff aquifcr)		Variably welded ash-flow tuffs, rhyolite lavas	
Lower Volcanic Confining Unit (T)	10 (lvcu)	? (Tuff aquitard)	Older Volcanics (Tuff confining unit)	Older Tuffs (Lower Yucca Mt. Confining Unit)	Non-welded tuff, commonly zeolitized	
Lower Valley-Fill Confining Unit (T)	9 (lcu)	Rocks of Pavits Spring Horse Spring Formation (Tuff aquitard)	Pavits Spring Formation Horse Spring Formation Paleocolluvium		Tuffaceous sandstone, tuff breccia, siltstone, claystone, conglomerate, lacustrine limestone, commonly argillaceous or calcareous. Sedimentary breccia.	
Upper Carbonate Aquifer (Pz)	8 (uca)	Tippipah Limestone (Upper carbonate aquifer)	Bird Spring Formation (Upper carbonate aquifer)		Limestone	
Upper Clastic Confining Unit (Pz)	6 (ccu)	Elcana Formation (Upper clastic aquitard)	Elcana Formation (Eleana confining unit)		Siliceous siltstone, sandstone, quartzite, conglomerate, limestone	

Hydrogeologic Unit (Age)	Model Unit Number (Parameter Name)	Winograd and Thordarson (1975)	Laczniak and others (1996)	Luckey and others (1996)	Lithology
Lower Carbonate Aquifer (Pz)	3, 5, 7 (lca)	Devils Gate Limestone Nevada Formation Ely Springs Dolomite Eureka Quartzite Pogonip Group Nopah Formation Dunderberg Shale Bonanza King Upper Carrara Formation (Lower carbonate aquifer)	Guilmette Formation Simonson Dolomite Sevy, Laketown, and Lone Mountain Dolomite Roberts Mountain Formation Dolomite of the Spotted Range Ely Springs Dolomite Eureka Quartzite Pogonip Group Nopah Formation Bonanza King Formation Upper Carrara Formation (Lower carbonate aquifer)	Lone Mt. Dolomite Roberts Mt. Dolomite (Carbonate Aquifer)	Dolomite and limestone, locally cherty and silty
Lower Clastic Confining Unit (Pz, pC)	4 (qcu)	Lower Carrara Formation Zabriskie Quartzite Wood Canyon Formation Stirling Quartzite Johnnie Formation (Lower clastic aquitard)	Lower Carrara Formation Zabriskie Quartzite Wood Canyon Formation Stirling Quartzite Johnnie Formation Noonday (?) Dolomite (Quartzite confining unit)		Quartzite, siltstone, shale, dolomite
Granitic Confining Unit (T)	2 (gran)	Granitic Stocks (A minor aquitard)	Granite		Granodiorite and quartz monzonite in stocks, dikes and sills

File Name	Description
README	Guidance document for contents of directory
directory	Files contained in this ftp directory
ff.h4o1	fehmn control file
ff.h4o1_verify	fehmn control file
ff.x1	fehmn control file
h2.rec	PEST parameter estimation record
h4.rec	PEST parameter estimation record
h4a.rec	PEST parameter estimation record
h4b.rec	PEST parameter estimation record
h4b2.tpl	PEST template file
h4c.rec	PEST parameter estimation record
h4d.rec	PEST parameter estimation record
h4f.ini	Initialization file containing specified head boundary condition values
h4g.rec	PEST parameter estimation record
h4h.rec	PEST parameter estimation record
h4j.rec	PEST parameter estimation record
h4k.rec	PEST parameter estimation record
h4k1.rec	PEST parameter estimation record
h4k1.rec.001	PEST parameter estimation record
h4l.rec	PEST parameter estimation record
h4m.rec	PEST parameter estimation record
h4n.rec	PEST parameter estimation record
h4n.rec.001	PEST parameter estimation record
h4n.rec.002	PEST parameter estimation record
h4n.rec.003	PEST parameter estimation record

Table 3: Files contained in ftp directory

21

.

File Name	Description
h4n.rec.004	PEST parameter estimation record
h4o.rec	PEST parameter estimation record
h4o1.chk	FEHMN check file
h4o1.con	FEHMN concentration file (not used)
h4o1.dat	FEHMN input file; contains permeability input based on last iteration from PEST run
h4o1.dp	FEHMN artifact (not used)
h4ol.fin	FEHMN output file containing hydraulic head values for final time step of simulation
h401.his	FEHMN history file containing values of hydraulic head for nodes specified for requested output
h4o1.out	FEHMN primary output file
h4o1.pst	PEST primary input file
h4o1.rec	PEST parameter estimation record
h401.residuals.pasted.plt	Postscript file of residuals for current lowest sum of squared errors between simulated and observed hydraulic head values
h4o1.trc	FEHMN artifact (not used)
h4o1_verify.chk	FEHMN check file for verification run
h401_verify.con	FEHMN concentration file (not used)
h4o1_verify.dat	FEHMN input file
h4o1_verify.dp	FEHMN artifact (not used)
h4o1_verify.fin	FEHMN output file containing hydraulic head values for final time step of simulation
h401_verify.his	FEHMN history file
h4o1_verify.ini	FEHMN file containing initial hydraulic head values
h4o1_verify.out	FEHMN primary output file
h4o1_verify.trc	FEHMN artifact (not used)

Table 3: Files contained in ftp directory

•

File Name	Description
h4o2.dat	FEHMN input file
h4o2.rec.002	PEST parameter estimation record
h4o2.rec001	PEST parameter estimation record
h4p.rec	PEST parameter estimation record
prepest	Unix script file to run PEST
readme2.fm5	Frame 5.0 containing additional information on directory contents
readme2.txt	ASCII file containing additional information on directory contents
гегр	Unix script file to run FEHMN
гегр2	Unix script file to run FEHMN
rerp_solaris	Unix script file to run FEHMN
rerp_ultra	Unix script file to run FEHMN
tet6_addpts.fehmn	3D finite-element mesh data file containing nodal coordinates and element connections
tet6_tr_addpts_material.zone	Zone lists identifying hydrogeologic units
tet6_tr_addpts_vor.stor	3D finite-element volumes
xfehmn-o-970428	FEHMN executable code for Solaris operat- ing system and use on Sun Superspare 20
xfehmn_ultra	FEHMN executable code for Sun Ultrasparc systems

Table 3: Files contained in ftp directory

Appendix A.--Correlation of RIB and ISM2.0 to Hydrogeologic Units

Site Saturated Zone Hydrogeologic Unit		G			/Litholo	gic Strat	ISM2.0	
	(Definition/Buesch (1996)	Group	Formation	Member	Zone	Subzone		
Valley-Fill Aquifer		1	1					
Valley-Fill Confining Unit			1					
Limestone Aquifer			1					
Lava-Flow Aquifer			1					
Upper Volcanic Aguifer	Timber Mountain Group	Tm	1	1.				
Upper Volcanic Aquifer	Rainier Mesa Tuff	1	Tmr				44tmr	
Upper Volcanic Aquifer	Paintbrush Group	Tp	+	,		1		
Upper Volcanic Aquifer	Post tuff unit "x" bedded to	iff		Tpbt6				
Upper Volcanic Aquifer	Tuff unit '"x"			Tpki (in	nformal)	•••••••	44tpk	
Upper Volcanic Aquifer	Pre-tuff unit "x" bedded tu:	E£		Tpbt5	<u> </u>	I	44tpc	
Upper Volcanic Aquifer	Tiva Canyon Tuff	1	Tpc	i				
Upper Volcanic Aquifer	Crystal-Rich Member		1	Tpcr	•		1	
Upper Volcanic Aquifer	Vitric zone	Î.			Tperv			
Upper Volcanic Aquifer	Nonwelded subzone					Tpcrv3		
Upper Volcanic Aquifer	Moderately welded subzone	1	1	[Tpcrv2		
Upper Volcanic Aquifer	Densely welded subzone					Tpcrv1		
Upper Volcanic Aquifer	Nonlithophysal zone	1			Tpern			
Upper Volcanic Aquifer	Subvitrophyre transition sub	zone	1		1	Tpcrn4	· · · · · · · · · · · · · · · · · · ·	
Upper Volcanic Aquifer	Pumice-poor subzone					Tpcrn3		
Upper Volcanic Aquifer	Mixed pumice subzone					Tpern2		
Upper Volcanic Aquifer	Crystal transition subzone (not alway	ys present)		Tpcrn1		
Upper Volcanic Aquifer	Lithophysal zone	1			Tpcrl	1		
Upper Volcanic Aquifer	Crystal transition subzone (i	not alway	ys present)		Tpcrll		
Upper Volcanic Aquifer	Crystal-Poor Member			Трср	1			
Upper Volcanic Aquifer	Upper Iithophysal zone			l	Tpcpu1	!		
Upper Volcanic Aquifer	Spherulite-rich subzone		1			Tpcpul1		
Upper Volcanic Aquifer	Middle nonlithophysal zone				Tpcpmn			
Upper Volcanic Aquifer	Upper subzone		 			Tpcpmn3		
Upper Volcanic Aquifer	Lithophysal subzone					Tpcplnn2		
Upper Volcanic Aquifer	Lower subzone			 		Tpcpmn1	· · · · · · · · · · · · · · · · · · ·	
Upper_Volcanic Aquifer	Lower_lithophysal_zone	_	·		Tpcpll			
Upper Volcanic Aquifer	Hackly-fractured subzone					Tpcpllh		
Upper Volcanic Aquifer	Lower nonlithophysal zone		<u> </u>		Tpcpln		i 	
Upper Volcanic Aquifer	Hackly subzone			l		Tpcplnh		
Upper Volcanic Aquifer	Columnar subzone					Tpcplnc		
Upper Volcanic Aquiter	Vitric zone	_			Tpcpv			
Upper_Volcanic_Aquiter	Densely welded subzone		· · · · · · · · · · · · · · · · · · ·		· · · ·	Tpcpv3	44tpcpv3	
Upper Volcanic Aquifer	Moderately welded subzone		<u> </u>	1		Tpcpv2	44tpcpv12	
Upper Volcanic Aquifer	Nonwelded subzone		i 			Tpcpv1	44tpcpv12	
Upper Volcanic Aquifer	Pre-Tiva Canyon bedded tuff		<u>_</u>	Tpbt4			44tpbt4	
Upper_Volcanic Aquifer	Yucca Mountain Tuff		Тру				44tpy	
Upper Volcanic Aquifer	Pre-Yucca Mountain bedded tu	<u>tt</u>	·	Tpbt3	-		44tpbt3	
Upper Volcanic Aquifer	Pan Canyon Tuff		Трр				44tpp	
Upper Volcanic Aquifer	Pre-Pan Canyon bedded tuff			Tpbt2			44tpbt2	
Upper Volcanic Aquifer	Topopah Spring Tuff		Tpt	•				
Upper Volcanic Aquifer	Crystal-Rich Member	_		Tptr				
Upper Volcanic Aquifer	Vitric zone				Tptrv			
Upper Volcanic Aquifer	Nonwelded subzone	!	1	i		Tptrv3	44tptrv23	

Page 1

}

Appendix A.--Correlation of RIB and ISM2.0 to Hydrogeologic Units

Site Seturated Zone Hydrogeologic Unit	Geologic/Lithologic Strat[SM2.0						
Sire Saturated Tode Uticitate Contra	Definition/Buesch (1996)	Group	Formation	Member	Zone	Subzone	
Unner Volcanic Amifer	Moderately welded subzone		1		+	Tptrv2	44tptrv23
Upper Volcanic Aquifer	Densely welded subzone		1		!	Tptrvl	44tptrv1
Upper Volcanic Amuifer	Nonlithophysal zone				Tptrn		'44tptrn
Upper Volcanic Aquifer	Dense subzone		+		+	Tptrn3	
Upper Volcanic Aquifer	Vapor-phase corroded subzone				,	Tptrn2	
Upper Volcanic Aquifer	Crystal transition subzone (no	t alway	/s present)		Tptrnl	
Upper Volcanic Amifar	Lithophysal zone		·]		Tptrl		
Veren Volcanic Aquiter	Crystal transition subzone (no	t alway	s present)		Tptrl1	44tptr1
Upper Volcanic Aquiter	Crystal-Poor Member			Toto	+		
Upper Volcanic Aquifer	Lithic-rich zone			Totof or	Tptrf	i	44tptf
Upper Volcanic Aquiter	Upper lithophysal zone	<u>.</u>	1		Totoul		44tptpul
Upper Volcanic Aquiter	Middle nonlithophysal zone	<u> </u>		+	Totomn	· · · · · · · · · · · · · · · · · · ·	44tptpmn
Upper Volcanic Aquiter	Nonlithophysal subzone	1	1		1	Totomn3	
Upper Volcanic Aquiler	Lithophysal-bearing subzone		.			Totomn2	,
Upper Volcanic Aquiter	Nonlithophysal subzone			:	;	Totomn1	
Upper volcanic Adulter	Lower lithophysal zone		1		Totol1		44tptp11
Upper Volcanic Aquiler	Lower nonlithonhysal zone		+	1	Totpln		44tptpln
Upper Volcanic Aquiler	Vitric zone	+	1	†	Totov		· · · · · · · · · · · · · · · · · · ·
Upper Volcanic Aquiter	Denselv welded subzone			1	1.	Totov3	44tptpv3
Upper Volcanic Aquiter	Noderately welded subzone			,		Totov2	44tptpv12
Upper Volcanic Aquiter	Nonwelded subzone	<u> </u>	1		+	Totov1	44tptpv12
Upper Volcanic Aquiter	Bre-Topopah Spring bedded tuff	¢	1	Tobt 1	1	+ · · · · · · · · · · · · · · · · · · ·	44tpbt
Upper Volcanic Aquirer	Calico Hills Formation		Ta	· · · · · · · · · · · · · · · · · · ·		<u>+</u>	44tac
Upper Volcanic Confining Unit	Bedded tuff	4	1	Thtbt			44tacbt
Widdle Volcanic Amilfor	Crater Flat Group	TC			1		
Middle Volcanic Aquiter	Prov Pass	+	TCD	!	+		44tcplnw, 44cpunw, 44tcpw
Middle Volcanic Aquiter	Bodded tuff	+	1	Tepbt			44tcpbt
Middle Volcanic Aquiter	Bullfrog Diff	+	Tch		+	1	44tcblnw, 44tcbunw, 44tcbw
Middle Volcanic Aquiter	Bedded tuff		1102	Tcbbt.		<u>.</u>	44tcbbt
Middle Volcanic Aquiter	Tram Tuff	1	Tet			1	44tct
Middle Volcanic Aquiter	Bedded tuff			Tetht			44tctbt
Middle Volcanic Adulter	Lava and flow braccia (inform	a1)		TT11		1	
Middle Volcanic Aquiter	Redded tuff			TIlbr			
Middle Volcanic Aquiter	Lithic Ridge Tuff		-l	+			
Middle Volcanic Aquiter	Bedded tuff			Tirbt			
Widdle Volcanic Aquiter	Lava and flow breccia (inform	al)	-	TI12			
Middle Volcanic Aquiler	Bodded tuff			TT12bt		****	
Middle Volcanic Aquiter	Lava and flow breccia (inform			T113			
Middle Volcanic Aquitor	Bedded tuff	T		T113bt			
Middle Volcanic Aquifer	Older tuffs (informal)	+		Tt			
Middle Volcanic Aduiter	(Init a (informal)			TTA			
Middle Volcanic Adulter	Imit b (informal)	· !		Ttb			
Middle Volcanic Aquiler	inst c (informal)	. <u>.</u>		Tre		+	
Middle Volcanic Aduller	Cadimentary rocks and calcifi	d tuff	(informal)Tca		+	
Middle Volcanic Adulter	'miff of Vugga Plat /informall	eu curi	T	my f			
Middle Volcanic Aquifer	TULL OF TUCCA FIAL (INFORMAL)					+	
Middle Volcanic Confining Unit				<u>+</u>			
Lower Volcanic Aquiter				·		+	
Lower Volcanic Confining Unit		1	!	1	1		

Ì

1

.

Appendix A.--Correlation of RIB and ISM2.0 to Hydrogeologic Units

Site Saturated Zone Hydrogeologic Unit	Geologic/Lithologic Strat ISM2.0								
Color Coloris and a stand of the second stand	Definition/Buesch (1996)	Group	Formation Member	Zone	Subzone	[··			
Lower Valley-Fill Confining Unit					<u>.</u>				
Upper Carbonate Aquifer									
Upper Clastic Confining Unit			i	<u> </u>	-				
Lower Carbonate Aquifer	Lone Mountain Dolomite		Slm		i	paleozoicGrav	(not	used)	
Lower Carbonate Aquifer	Roberts Mountain Formation		Srm			paleozoicGrav	(not	used)	
Lower Clastic Confining Unit			1		1	i 			
Granitic Confining Unit					1	!			

United States Department of the Interior

U. S. GEOLOGICAL SURVEY Box 25046 M.S. <u>425</u> Denver Federal Center Denver, Colorado 80225

IN REPLY REFER TO

June 12, 1997

NON-QA WBS:1.2.5.3.5 Page 1 of 1

Phill Jones Acting Technical Data Base Administrator M&O/TRW Yucca Mountain Project Office 1180 Town Center Drive Las Vegas, NV 89134

SUBJECT: Geographic Nodal Information Study and Evaluation System (GENISES) Data Transmittal -Preliminary Site Saturated-Zone Flow Model.

DTN: None WBS 1.2.3.3.1.3.3 Destination: Model Warehouse

The subject model was transfered via FTP from John Czarnecki to Steve Bodnar on 6-11-97.

The attached data have not received confirmation of QA compliance, which includes a complete technical review; therefore, these data are considered to be preliminary. If used, these data must be clearly identified as preliminary in nature and tracked by the using Affected Organization until QA compliance has been confirmed and the data have been reported to the ATDT system.

Please label the subject model you recieved on 6-11-97 as "preliminary" as required by YAP-SIII.3Q.

If you have any questions, please contact me at (303) 236-0516, X271.

Sincerely. atuik W. MIS

Patrick W. McKinley U Data Management Coordinator Yucca Mountain Project Branch U.S. Geological Survey

PWM:crw Enclosures Copy w/o enc. to:

S.J. Bodnar, M&O/TRW, Las Vegas R.W. Craig, USGS, Las Vegas

United States Department of the Interior

U. S. GEOLOGICAL SURVEY Box 25046 M.S. <u>425</u> Denver Federal Center Denver, Colorado 80225

2

IN REPLY REFER TO

May 20, 1997

NON-QA WBS:1.2.5.3.5 Page 1 of 1

Phill Jones Technical Data Base Administrator M&O/TRW Yucca Mountain Project Office 1180 Town Center Drive Las Vegas, NV 89134

SUBJECT: Geographic Nodal Information Study and Evaluation System (GENISES) Data Transmittal - 5/22/95 280 Gallon Per Minute Pump Test at the C-Hole Complex. Pre-Test Data also Included.

DTN:GS960108312313.001 TDIF:305143

The subject Data Transmittal Package is being submitted to the YMP GENISES in accordance with YMP Administrative Procedure (YAP)-SIII.3Q, Revision 1, ICN 0. All data have been technically reviewed as required. The category for the TDIF: Subsurface Hydrology (2.2), Fluid Transmitting Properties (2.2.4). The following items are enclosed:

1. Technical Data Information Form, 2p.

2. Explanation, Supporting Information and Disclaimers and Limitations Pages. 2p.

3. Example of the submitted data annotated with parameters and attributes, 1p.

4. Hard Copy of Subject Data. 36p.

5. YMP-USGS Surrogate Record. 2p.

6. One 1/2" diskette containing the subject data in ASCII format.

Please note that the pre-test data included on the TDIF title is not being submitted.

Please capture the annotated supporting information and the abbreviations page in GENISES. If you have any questions, please contact me at (303) 236-0516, X271, or Craig R. Walker at X278.

Sincore

Patrick W. McKinley Data Management Coordinator Yucca Mountain Project Branch U.S. Geological Survey

PWM:crw Enclosures Copy w/o enc. to: C.M. Newbury, DOE/YMP, Las Vegas S.J. Bodnar, M&O/TRW, Las Vegas R.W. Craig, USGS, Las Vegas M.J. Umari, USGS, Denver J.D. Earle, USGS, Denver Copy w/ enc. to: Records Processing Center, Las Vegas, Items 3 & 5

IN REPLY REFER TO

May 29, 1997

NON-QA WBS:1.2.5.3.5 Page 1 of 1

Phill Jones Technical Data Base Administrator M&O/TRW Yucca Mountain Project Office 1180 Town Center Drive Las Vegas, NV 89134

SUBJECT: Geographic Nodal Information Study and Evaluation System (GENISES) Data Transmittal - 6/12/95 356 GMP Test in UE-25 C#3 with C#1 and C#2 Packed Off. Test Conducted at the C-Hole Complex.

United States Department of the Interior

U. S. GEOLOGICAL SURVEY Box 25046 M.S. 425 Denver Federal Center Denver, Colorado 80225

TDIF:305142 DTN:GS960108312313.002

The subject Data Transmittal Package is being submitted to the YMP GENISES in accordance with YMP Administrative Procedure (YAP)-SIII.3Q, Revision 1, ICN 0. All data have been technically reviewed as required. The category for the TDIF: Subsurface Hydrology (2.2), Fluid Transmitting Properties (2.2.4). The following items are enclosed:

1. Technical Data Information Form. 2p.

2. Explanation. Supporting Information and Disclaimers and Limitations Pages, 2p.

3. Example of the submitted data annotated with parameters and attributes. 2p.

4. Hard copy of subject data, first and last pages only, 2p.

5. YMP-USGS Surrogate Record, 2p.

6. One 1/2" diskette containing the subject data in ASCII format.

Please capture the annotated supporting information in GENISES. If you have any questions, please contact me at (303) 236-0516, X271. or Craig R. Walker at X278.

Sincerely. LU. M

Patrick W. McKinley Data Management Coordinator Yucca Mountain Project Branch U.S. Geological Survey

PWM:crw Enclosures Copy w/o enc. to:

C.M. Newbury, DOE/YMP, Las Vegas S.J. Bodnar, M&O/TRW, Las Vegas R.W. Craig, USGS, Las Vegas M.J. Umari, USGS, Denver M.F. Fahy, USGS, Denver Copy w/ enc. to: Records Processing Center, Las Vegas, Items 3 & 5

DRAFT DISCLAIMER

This contractor document was prepared for the U.S. Department of Energy (DOE), but has not undergone programmatic, policy, or publication review, and is provided for information only. The document provides preliminary information that may change based on new information or analysis, and is not intended for publication or wide distribution; it is a lower level contractor document that may or may not directly contribute to a published DOE report. Although this document has undergone technical reviews at the contractor organization, it has not undergone a DOE policy review. Therefore, the views and opinions of authors expressed do not necessarily state or reflect those of the DOE. However, in the interest of the rapid transfer of information, we are providing this document for your information.

MOL.19971024.0080

TRW Environmental Safety Systems Inc. 1180 Town Center Drive Las Vegas, NV 89134 702.295.5400

WBS: 1.2.5.7 QA: N/A

Contract #: DE-AC01-91RW00134 LV.TE.JLY.06/97-075

June 18, 1997

Stephan J. Brocoum
Assistant Manager, Licensing
U. S. Department of Energy
Yucca Mountain Site Characterization Office
P.O. Box 30307
North Las Vegas, Nevada 89036-0307

Attention: Technical Publications Management Department

Dear Dr. Brocoum:

Subject: Transmittal of Deliverable, I.D. # SLSR500M, TSPA-VA Peer Review Panel First Interim Letter Report

This letter transmits Planning and Control System (PACS) Deliverable No. SLSR500M that was due for delivery to the U.S. Department on Energy on or before June 20, 1997. This first interim letter report from the Total System Performance Assessment - Viability Assessment (TSPA-VA) peer review panel documents their initial impressions of the plans for TSPA-VA and presents their comments, concerns, conclusions, and recommendations associated with Phase 1 of the peer review.

Phase 1 of the TSPA-VA peer review (conducted February to June 1997) was intended to provide the Panel members with an orientation to TSPA. They were introduced to the high-level radioactive waste program, the Yucca Mountain Site Characterization Office (YMSCO), and the performance assessment program. Panel members became familiar with previous iterations of the TSPA (i.e., TSPA-91, -93, and -95) and other related documents in order to consider the overall scope and approach planned for the TSPA-VA. Individual Panel members, by areas of expertise, attended various abstraction workshops and other pertinent PA interactions. They were provided total access to the information necessary for them to effectively perform their review. Phase 1 of the peer review is concluded by the Panel's issuance of the first interim letter report. LV.TE.JLY.06/97-075 June 18, 1997 Page 2

If you have any questions regarding this deliverable, please call Thomas E. Rodgers at 295-4894.

Sincerely,

Jean L. Younker, Manager

Regulatory Operations Management and Operating Contractor

Enclosures:

1. TSPA-VA Peer Review Panel First Interim Letter Report

2. Yucca Mountain Site Characterization Project Deliverable Acceptance Review

3. Participant Planning Sheets

cc w/encls:

E. T. Smistad, DOE/YMSCO, Las Vegas, Nevada

A. E. Van Luik, DOE/YMSCO, Las Vegas, Nevada

M. W. Pendleton, M&O, Las Vegas, Nevada

T. E. Rodgers, M&O, Las Vegas, Nevada

J. T. Sullivan, DOE/YMSCO, Las Vegas, Nevada

cc w/o encls:

S. L. Klapproth, M&O, Las Vegas, Nevada

K. K. Shrivastava, M&O, Las Vegas, Nevada