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FIGURE CAPTIONS 

Figure 3.1.1.1.3.1.2-1 Sketch Map of the Walker Lane Belt [INN 3.1.1.1.3.1.2-1] 

Figure 3.1.1.2.3.5-1. Digital Satellite Image Showing the Location of the Potential Yucca Mountain 

site and the Distribution of Quaternary Volcanic Centers in the Yucca Mountain Region. The Yucca 

Mountain region (YMR) is defined as the area of the irregular polygon that encloses the potential 

Yucca Mountain site and the distribution of Pliocene and Quaternary basaltic volcanic centers in the 

region. Yucca Mountain is a linear range located on the southwest edge of the Nevada Test Site, 

about 160 km northwest of Las Vegas, Nevada. The mountain extends from Highway 95 on the south 

to Yucca Wash on the north, a distance of about 25 km. The mountain is bounded on the east by 

Jackass Flat (the western boundary of Jackass Flat is defined by Fortymile Wash), on the west by 

Crater Flat, and on the south by the Amargosa Valley. An approximately 6 km2 area in the center 

part of Yucca Mountain has been identified as the exploratory block (DOE, 1988). It is surrounded by 

the controlled area, about 86 km2. There are seven Quaternary basaltic volcanic centers in the Yucca 

Mountain area (< 1.8 Ma). These centers are noted by the special symbol on Figure 3.1.1.2.3.5-1.  

Figure 3.1.1.2.3.5.2.1-1 Caldera-related Volcanic Activity of the Ring-Fracture Zone of the Timber 
Mountain Caldera Complex 

Figure 3.1.1.2.3.5.1-2 Migration of Volcanism in Southern Nevada and the Amazmatic Gap [INN 
3.1.1.2.3.5.1-1] 

Figure 3.1.1.2.3.5.2.1.2-1 Post-Caldera Basalt of the Yucca Mountain Region. Shaded areas are the 
Older Post-Caldera Basalt (OPB) including: RW: basalt of Rocket Wash, PM: Basalt of Pahute Mesa, 

SC: basalt of Scarp Canyon, NC: basalt of Nye Canyon, FF: buried basalt of Frenchman Flat.  
Stippled areas are the Younger Post-Caldera Basalt (YPB) including: TM: basalt of Thirsty Mesa, AV: 

basalt of Amargosa Valley, PCF: Pliocene basalt of southeast Crater Flat, BB: basalt of Buckboard 
Mesa, QCF: Quatemary basalt of Crater Flat, SB: basalt of Sleeping Butte, LW: basalt of Lathrop 

Wells. Asterisks mark aeromagnetic anomalies identified as potential buried basalt centers or 
intrusions (Kane and Bracken, 1983, Crowe et al. 1986). Dashed line encloses the area of the Crater 
Flat Volcanic Zone (CFVZ). Numbers associated with the symbols for the volcanic units of the OPB 
and YPB are the age of the volcanic centers in million years. Modified from Crowe and Perry (1989).  

Figure 3.1.1.2.3.5.2.2-2 Generalized Geologic Map of the Basalt of Southeast Crater Flat [INN 

3.1.1.2.3.5.2.2-1] 

Figure 3.1.1.2.4.1-1 Map of Regional Seismicity [INN 3.1.1.2.4.1-1] 

Figure 3.1.1.2.4.2.2-1. Location of Seismic Recording Stations of the Southern Great Basin Seismic 

Network. Source: Sheehan et al. (1993) [INN 3.1.1.2.4.2.2-1] 

Figure 3.1.1.2.4.2.2-2. Stations Recording the Little Skull Mountain, Nevada Earthquake of 29 June 

1992 in Southern Nevada. Source: URS/Blume & Assoc. (1992) [INN 3.1.1.2.4.2.2-2] 

Figure 3.1.1.2.4.2.2-3. Attenuation of Peak Acceleration and Peak Velocity of the Little Skull 

Mountain, Nevada Earthquake of 29 June 1992 in Southern Nevada, Compared with the Average of 

the Estimates Derived from Joyner and Boor (1988) and Campbell (1990). Data Source: URS/Blume 
& Assoc. (1992) [INN 3.1.1.2.4.2.2-3]
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Figure 3.1.1.2.4.2.2-5. Locations of the Little Skull Mountain Earthquake, the Rock Valley 

Earthquake, and the Recording Station at Midway Valley. Source: Sheehan et al. (1993) 

Figure 3.1.1.2.4.2.2-7. Velocity Seismograms of the Eureka Valley Aftershock of June 8, 1993 

(magnitude 3.9, depth 5.9 kin). Source: Sheehan et al. (1993) [INN 3.1.1.2.4.2.2-5] 

Figure 3.1.1.2.4.2.2-8. Velocity Seismograms of the Eureka Valley Aftershock of June 8, 1993 
(magnitude 4.0, depth 1.7 kin). Source: Sheehan et al. (1993) [INN 3.1.1.2.4.2.2-6] 

Figure 3.1.1.2.4.2.2-11. Ratios of Measured PSRV at Station W-14 to Average Values for NTS Sites.  
Source: Phillips (1991) [INN 3.1.1.2.4.2.2-8] 

Figure 3.1.1.2.4.2.2-12. Ratios of Measured PSRV at Station W-23 to Average Values for NTS Sites.  

Source: Phillips (1991) [INN 3.1.1.2.4.2.2-9] 

Figure 3.1.1.2.4.2.2-13. Ratios of Measured PSRV at Station W-22 to Average Values for NTS Sites.  
Source: Phillips (1991) [INN 3.1.1.2.4.2.2-10] 

Figure 3.1.1.2.4.2.2-14. Ratios of Measured PSRV at Station W-21 to Average Values for NTS Sites.  
Source: Phillips (1991) [INN 3.1.1.2.4.2.2-11] 

Figure 3.1.1.2.4.2.2-15. Location Map of Strong Motion Stations That Recorded the Pipkin Nuclear 
Explosion at Pahute Mesa. Source: Weetman et al. (1970) [INN 3.1.1.2.4.2.2-12] 

Figure 3.1.1.2.4.2.2-16. Profile of Radial Velocity Time Histories of the Pipkin Nuclear Explosion at 
Pahute Mesa Recorded to the South at Stations Shown in Figure 15. Source: Weetman et al. (1970) 
[INN 3.1.1.2.4.2.2-13] 

Figure 3.1.1.2.4.3.4-1. Seismograms Recorded in a Downhole Array at Jackass Flats (Station 10, Well 
J-1 1) From a Nuclear Explosion at Pahute Mesa. Top row: accelerations; middle row; velocity; 
bottom row; displacement. Left column: surface station on alluvium; middle column: -61 meters 
near the base of alluvium; right column: -356 meters in tuff. Source: Vortman and Long (1982) 
[INN 3.1.1.2.4.3.4-1] 

Figure 3.1.1.2.4.3.4-2. Location Map of Downhole Ground Motion Recordings Stations at Yucca 

Mountain and Regional Topography. Source: Phillips (1991) [INN 3.1.1.2.4.3.4-2] 

Figure 3.1.1.2.7.6.2.1-1. Selection Process for Mechanical Numerical Models [INN 3.1.1.2.7.6.2.1-1] 

Figure 3.1.2.2.7-1 Former High Levels of the Water Table in the South-Central Great Basin during 
trhe Quaternary Period [INN 3.1.2.2.7-1] 

Figure 3.1.2.2.7-2 Variations in Flow-Path Length for the Ash Meadows Area in Response to 
Different Water Table Levels [INN 3.1.2.2.7-2] 

Figure 3.1.2.3.9-1. Decline in the Water Level with Well J-13 in Continuous Service 
[INN 3.1.2.3.9-1]
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Figure 3.1.4.1.1-1 Locations of the Climatological Data Stations in the Yucca Mountain Region [INN 

3.1.4.1.1-1] 

Figure 3.1.4.1.1-2 Locations of Site Specific Monitoring Sites at Yucca Mountain [INN 3.1.4.1.1-1] 

Figure 3.1.4.1.1.1.2-1. Average Position of the Polar Front in January. A dashed line indicates the 

front is not well defined. Air masses are also indicated. (After Gedzelman, 1985) 

[INN 3.1.4.1.1.1.2-1] 

Figure 3.1.4.1.1.1.2-2. Winter Weather Type A. Successive Time-Lapse Positions of the Low

Pressure Cyclone are Shown as the System Develops and Matures (Elliott, 1943).  

[INN 3.1.4.1.1.1.2-2] 

Figure 3.1.4.1.1.1.2-3. Winter Weather Type B. Shown are the Successive Time-Lapse Positions of 

the Low-Pressure System as it Develops. The System Remains Well to the North of the U.S., as High 

Pressure Dominates the Southwest (Elliott, 1943). [INN 3.1.4.1.1.1.2-2] 

Figure 3.1.4.1.1.1.2-4. Winter Weather Type C. Shown is the Belt of High Pressure which is 

Displaced Northwest from its Normal Position. The Low-Pressure Centers Develop in the Gulf of 

Alaska and off the Coast of San Diego. Then they move inland as depicted in this time-lapse 

sequence (Elliott, 1943). [INN 3.1.4.1.1.1.2-2] 

Figure 3.1.4.1.1.1.2-5. Winter Weather Type D. Depicted are Time-Lapse Positions of the Low

Pressure Center as it Tracks Across the Northern U.S. (Elliott, 1943).  
[INN 3.1.4.1.1.1.2-2] 

Figure 3.1.4.1.1.1.2-6. Winter Weather Type E. The Strong Canadian High-Pressure Ridge is 

Depicted. This Ridge forces Developing Low-Pressure Systems Southward into the Great Basin.  

These Pacific Storms cross the Sierra-Nevada, Weaken, then Redevelop on Lee side of the Mountain 

Range (Elliott, 1943). [INN 3.1.4.1.1.1.2-2] 

Figure 3.1.4.1.1.1.2-7. Summer Southwest Monsoon. Shown is a lobe of the Bermuda High over the 

four-corners region. The Resulting Pressure Gradient causes a Gentle Flow of Moisture to begin from 

the Tropical Eastern Pacific Ocean. The Gulf of Mexico Contributes only an Insignificant Amount of 

Moisture to the Southwestern U.S. (Elliott, 1943). [INN 3.1.4.1.1.1.2-3] 

Figure 3.1.4.1.1.1.3-1. Dominant Summer and Winter Moisture Sources for the Southern Nevada Area 

[INN 3.1.4.1.1.1.3-1] 

Figure 3.1.4.1.1.1.3-2. Regression Curves Relating Annual Average Precipitation (mm) with 

Precipitation Gage Elevation (ft). Also included are the data from 42 precipitation stations used to 

obtain the regression curve by Hevesi [INN 3.1.4.1.1.1.3-3] 

Figure 3.1.4.1.1.2.2-1 Precipitation Amounts [INN 3.1.4.1.1.2.2-2] 

Figure 3.1.4.1.1.2.4-1 to -n Wind Rose Plot (1 - n) [INN 3.1.4.1.1.2.4-1] 

Figure 3.1.4.1.1.2.5.1-1. Seasonal and Annual Wind Distribution at 1.524 m Above Mean Sea Level 

(328 m Above Ground Level) for Yucca Flat (1957 to 1964). Note: Scale is not the same for all 

distributions. Based on data from Quiring (1968). [INN 3.1.4.1.1.2.5.1-1]
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Figure 3.1.4.1.1.2.5.1-2. Seasonal and Annual Wind Distributions at 6,000 ft. (1,829 m) Above Mean 
Sea Level (633 m Above Ground Level) for Yucca Flat (1957 to 1964). Note: Scale is not the same 
for all distributions. Based on data from Quiring (1968). [INN 3.1.4.1.1.2.5.1-2] 

Figure 3.1.4.1.1.2.5.1-3 Upper Air Data [INN 3.1.4.1.1.2.5.1-31 

Figure 3.1.4.1.1.2.6-1. Monthly Mean Atmospheric Pressure [INN 3.1.4.1.1.2.6-1] 

Figure 3.1.4.1.1.2.6-2. Hourly Mean Atmospheric Pressure [INN 3.1.4.1.1.2.6-1] 

Figure 3.1.4.1.1.2.8-1 Pattern of Detected Lightening [INN 3.1.4.1.1.2.8-3] 

Figure 3.1.4.1.1.2.8-2 Spatial Relationships Between Lightening-Strike Data and Rainfall-Runoff 
Data [INN 3.1.4.1.1.2.8-5] 

Figure 3.1.4.1.3-1 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-2 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-3 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-4 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-5 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-6 Wind Rose Plots [INN 3.1.4.1.3-1] 

Figure 3.1.4.1.3-7 Wind Rose Plots [INN 3.1.4.1.3-1]
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Figure 3.1.1.1.2-1 Generalized Regional Stratigraphic Column Showing Geologic Formations and 
Hydrogeological Units in the Nevada Test Site Area. Modified from Sinnock (1982) and Carr et a!. (1986)
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Figure 3.1.1.1.2.1-1 Distribution of Lower and Middle Proterozoic Crystalline Rocks and Middle Upper 
Proterozoic Restricted Deposits in the Great Basin. Modified from USGS (1994)
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Figure 3.1.1.1.2.2-1 Latest Precambrian Through Mid-Paleozoic Paleogeography of the Great Basin.  
Modified from USGS (1984)
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Figure 3.1.1.1.2.4-1 Late Devonian and Mississippian Paleogeography of the Great Basin. Modified from 
USGS (1984)
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Figure 3.1.1.1.2.7-1 Calderas of the Southwest Nevada Volcanic Field Near Yucca Mountain. Modified 
from Maldonado and Koether (1983) 
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31113.1-1.114/10-20-93 

Figure 3.1.1.1.3.1 -1 This schematic (modified from Stewart, 1980, and Scott, 1990) illustrates some of the 
mechanisms and geometric configurations proposed for extensional faulting in the Basin and Range. The 

geometry of the Horst and Graben and the Tilted Block models allows for fairly limited extension (approxi

mately 15%), while that of the Listric Faults and Detachment Faults models allows for progressively greater 
amounts of extension. Using detachment models, Wcrnikc et al. (1988) has proposed up to 3000 extension 

for parts of the Basin and Range.
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3111311-1.114/10-29-93

Figure 3.1.1.1.3.1.1-1 Sketch map of the western United States showing some major structural features.  
Symbols ( 0 ) at the latitude of Las Vegas give approximate motions toward the NW in mm/yr relative to a 
"stable North America" (data modified [rounded] from Argus and Gordon, 1991). This interpretation 
suggests that 10 mm/yr of NW movement occurs between the Colorado Plateau and the crest of the Sierra 
Nevada Range, 35 mm/yr occurs on the San Andreas Fault, and 5 mm/yr occurs west of the San Andreas 
Fault. This is consistent with paleoseismic data and historic observations of strike slip-faulting in this region.
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Figure 3.1.1.1.3.2.1-1 The Southwestern Nevada Volcanic Field (from Byers et al. 1989). Yucca 
Mountain is upheld by a thick sequence of ignimbrites derived from multiple caldera-forming, eruptive 

cycles of the Claim Canyon and Timber Mountain-Oasis Valley caldera complexes.
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Figure 3.1.1.1.4.1-2 Map of the Great Basin Province Showing Seismic Source Zones. Patterned areas 
identify regions of coeval Quaternary faulting. Dates refer to historic earthquakes located in the zones.  
SNGBZ: Sierra Nevada-Great Basin Boundary Zone; SNTZ: Southern Nevada Transverse Zone; SG: 
Stillwater seismic gap; WM: White Mountains seismic gap; SOV: southern Owens Valley seismic gap.  
Black square in southern Nevada shows the approximate location of Yucca Mountain. Modified from 
Wallace (1984)
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Figure 3.1.1.1.4.1-3 Seismicity in Southern California. Earthquakes (ML Ž4) recorded by the Southern 
California Seismic Network (CIT) from 1932 to 1987. Earthquakes of ML > 6 are shown by a star and a 
date. Light lines identify Quaternary faults in the region (Jennings, 1975) and the bold line outlines the 
Mojave Block discussed in the text. Dashed lines show the projection of the Mojave Block to the state 
border. The square represents the location of Figure 3.1.1.1.3.2.2-10 showing the events in the 1992 Ms 
7.6 Landers earthquake sequence. Modified from Hutton et al. (1991)
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Figure 3.1.1.1.4.2-1 Map of the Garlock Fault Zone. GFZ outlined by light lines; stars represent 
earthquakes recorded from 1932 to 1981 (Astiz and Allen, 1983). Heavy line identifies the central and 
eastern segments of the fault considered by Astiz and Allen (1983) to be a seismic gap. Numbers in the 
figure correspond to distances in kilometers from Gorman near the intersection with the San Andreas fault.  
Modified from Astiz and Allen (1983)
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Figure 3.1.1.1.4.2.1-1 Magnitude 5 or Greater Earthquakes within 200 Miles of Yucca Mountain.  
Octagons represent epicentral location of earthquakes, scaled in size relative to the magnitude. Light lines 
are Quaternary faults in the region; in California from Jennings (1975). Solid square is approximate 
location of Yucca Mountain. See text for sources of earthquake data.
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Figure 3.1.1.1.4.2.1-2 Time-Dependent Magnitude Completeness Thresholds for Regional Seismic 
Networks Covering the Great Basin. The transition from historic data to modern data is shown for each 
region by the vertical arrows. Horizontal axis represents time in years from 1900. Vertical axis represents 
earthquake magnitude. Abbreviations in each frame identify the seismic network or the region covered by 
several networks: CIT= California Institute of Technology; UNRSL = University of Nevada, Reno 
Seismological Laboratory; SGB = Southern Great Basin network; UU = University of Utah; CDMG 
California Division of Mines and Geology; WUS = Western U.S. region covered by several networks. See 
text for further discussion. Modified from Engdahl and Rinehart (1991)
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Figure 3.1.1.1.4.2.1-3 Focal Depth Distribution for Various Source Regions in the Great Basin. Data 
from aftershock studies are denoted by. A and include studies of seismicity following nuclear tests (Benham 
and Pahute Mesa histograms). Data from microearthquake monitoring are denoted by M. Date refers to 
the year of the mainshock or blast for aftershock studies and monitoring period for microearthquake 
surveys. The number of earthquakes in each region is shown by the bars and the scale on the abscissa.  
For 9 out of 10 data sets, less than I percent of the events are located below 20 km. For the Fairview Peak 
region about 8 percent of the events have focal depths greater than 20 km (Westphal and Lange, 1967; WL 
in the figure). A study by Stauder and Ryall (1967) show a different depth distribution for Fairview Peak 
events (SR in the figure). Modified from Rogers et al. (1991)
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Figure 3.1.1.1.4.2.1-4 Map of a Portion of the Western Great Basin Showing Seismic Gaps Located in the 
SNGBZ, CNSB, and the GFZ. The eastern California seismic belt is coincident with the SNGBZ between 
39* north and the GFZ. Dates and bold lines represent surface ruptures of historic earthquakes larger than 
M 6.8. Major Holocene surface faults shown in the White Mountains seismic gap are: the Hilton Creek 
fault (HC); two segments in the White Mountains fault zone (QV and BS); and the Deep Springs Valley 
fault (DSV). Figure taken from Hill et al. (1985)
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Figure 3.1.1.1.4.2.1-5 Map of Surface Faulting in the Northern CNSB. Surface ruptures of the 1915 
Pleasant Valley, Nevada, Earthquake are from Wallace (1979,1984). Sonoma Range seismic gap 
(Thenhaus and Barnard, 1989) shows Holocene scarps from Wallace (1979). Ruled regions represent 
intersection of the central (left side of figure) and northern (right) extensional accommodation zones where 
they cross the fault zone. Figure taken from Thenhaus and Barnard (1989)
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Figure 3.1. 1. 1A.2.1-6 Map Showing Earthquake Locations and Their Focal Mechanisms Computed by 
Body-Waveform Inversion for Great Basin Earthquakes Having M 2 5.0 for the Time Period 1932 through 
1986. In the case of Mammoth Lakes, the on-double-couple component of the solution is substational 
(Sipkin, 1986). Focal mechanisms I to 14 were computed to Doser (1986, 1987), 15 by Wallace et al.  
(1983), 16 and 17 by Sipkin (1986), 18 by Barker and Wallace (1986), 19 and 20 by Cockerham and 
Corbett (1987). Boundaries of Central Nevada Seismic Belt from Wallace (1984a), and Garlock Fault 
Zone from Astiz and Allen (1983). From Rogers et al. (1991)
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Figure 3.1.1.1.4.2.1-7 Map Showing Earthquake Locations and Their Focal Mechanisms Computed from 
First-Motion P-Wave Arrivals at Local Seismograph Networks in the Great Basin and Galock Fault Zone.  
Focal mechanisms 1 through 6 from Astiz and Allen (1983), 7 through 20 and 37 through 39 from Vetter 
and Ryall (1983) and Vetter (1984), 21 through 24 from Rogers et al. (1987), and 25 through 36 and 40 
from Harmsen and Rogers (1987). From Rogers et ai. (1991)
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Figure 3.1.1.I.42.2-i Map of Historic (Red), Holocene (Shaded Red), and Late Quaternary (Gray) 
Faulting in Nevada and Vicinity. Faulting has been adopted from Nakata et al. (1982) and by Thenhaus 
and Barnard (1989). Symbols are: CM-Cedar Mountain; DV-Dixie Valley; EM-Excelsior Mountain; 
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Figure 3.1.1.1.4.2.2-2 Surface Ruptures from the 1872 Owens Valley Earthquake. Bold lines represent 
ruptures from the 1872 event. Medium weight lines denote other faults. Balls are shown on the 
downthrown side of faults with normal components. Arrows indicate sense of slip on strike slip segments 
of the rupture. Stars represent Quaternary volcanic centers. Letters refer to points discussed in the text.  
Figure taken from dePolo et al. (199 1)
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Figure 3.1.1.1.4.2.2-3 Surface Ruptures and Focal Mechanisms from the 1932 Cedar Mountain 
Earthquake. Vertical patterns are Tertiary sediments. Focal mechanisms are equal-area, lower focal 
sphere projections; white indicates regions of dilation (from Doser, 1988). Mechanisms Cl is for the first 
subevent in the mainshock; C2 is for the subevent occurring 20 sec later. The location for C2 (star) 
follows Doser's hypothesized projection. A, B, and C refer to locations discussed in the text. Modified 
from dePolo et al. (1991)
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Figure 3.1.1.1.4.2.2-4 Focal Mechanisms for Earthquakes in the Excelsior Mountain Region. Top: 1934 
mainshock (Doser, 1988). Middle: composite data from 1969-1971 UNRSL network recordings in the 
region (Ryall and Priestly, 1975). Bottom: three M 5 earthquakes located southwest of Excelsior 
Mountain (Vetter, 1990).
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Figure 3.1.1.1.4.2.2-5 Surface Ruptures and Focal Mechanisms for Earthquakes in the 1954 Rainbow 
Mountain-Stillwater Sequence. The detailed surface ruptures from dePolo etal. (1991) are shown as bold 
lines in the left frame. The hachured lines show the ruptures that occurred in both the July 6 (Rainbow 
Mountain) and August 24 (Stillwater) earthquakes. Brackets show the extent of rupture in each event 
Letters refer to locations discussed in the text. Left frame from dePolo et al. (1991). Right frame isa 
larger scale map showing the focal mechanisms from earthquakes in this sequence. Focal mechanisms 
are based on body-wave inversion by Doser (1986). Events are: 7/6/54 - 1113 UT (a); 7/6/54 - 2207 UT 
(b); 8/24/54 (c); 8/31/54 (d); 9/1/93 (e); 6/23/59 - 1435 UT (i); 6/23/59 - 1504 UT (J). Right frame 
modified from Doser (1986)
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Figure 3.1.1.1.4.2.2-6 Surface Ruptures and Focal Mechanisms for Earthquakes in the Fairview Peak
Dixie Valley Sequence. Surface ruptures from the 1954 Fairview Peak and Dixie Valley earthquakes are 
shown as bold lines (dePolo et al. (1991)). Letters identify fault segments from dePolo et al. (1991) as 
follows: GK = Gold King segment; LM = Louderback Mountain; CAM = Clan Alpine Mountains; WG = 
West Gate segment; CM = Chalk Mountain; MA = Mount Anna. Earthquake epicenters (dark circles) and 
focal mechanisms are from Doser (1986). Base map modified from dePolo et al. (1991)
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Figure 3.1.1.1 A.2.2-8 Geologic Map of the Long Valley Region with Earthquake Focal Mechanisms.  
Map shows the distribution of volcanic rocks related to the Long Valley and Inyo/Mono magmatic systems 

(Hill et al. (1985)). HSF, Hartly Springs fault; HCF, Hilton Creek fault; SLF, Silver Lake fault; WCF.  
Wheeler Crest fault; CD, Casa Diablo hot spring; HC, Hot Creek hot spring. Focal mechanisms are based 
on short period data from Cramer and Toppozada (1980). Numbers to the right of focal mechanisms refer 
to map locations. See Table 3.1.1.1.4.2-1 for magnitudes of the events
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Figure 3.1.1.1.4.22-9 Surface Ruptures and Focal Mechanisms for 1986 Chalfant Valley Earthquake 
Sequence. Surface ruptures shown as bold lines in the Volcanic Tableland and along the White 
Mountains frontal fault zone (lienkaemper et al. 1987). Letters A - F identify fracture zones in the 
Volcanic Tableland. Large star indicates the location of the July 21 mainshock (M, 6.2); small star 
indicates location of the largest aftershock on July 31 (M, 5.5). Focal mechanisms from Cockerham and 
Corbett (1987). Base map from Lienkaemper etal. (1987)
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Figure 3.1.1.1.4.2.2-10 Epicentral Region of the 1992 Landers, California, Earthquake. Stars represent 
significant events in the sequence. Circles are locations of aftershocks. Bold lines denote surface rupture 

in the mainshock. Light lines are other Quaternary faults. Taken from Campillo and Archuleta (1993)
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Figure 3.1.1.1.5.2.1-1 Map Showing Distribution of Paleozoic Rocks in Roberts Mountains Thrust Plate 
After Mississippian Thrusting. Modified from Roberts et al. (1971)
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Figure 3.1.1.1.52.1-2 Map Showing the Distribution of Ore Deposits Dated by Potassium-Argon Dating 
Methods, Lithologies of the Host Rock, and Approximate Production of Gold. Potassium-argon dates are 
mineralization ages and are represented by numbers (million years) next to symbols. Modified from 
Silberman et al. (1976) and Silberman (1985).
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Figure 3.1.1.1.5.2.1-3 Calderas Within the Southwestern Nevada Volcanic Field. Modified from Can" 

(1984) from the SCP
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I I I I t I 

G QUATERNARY BASALT 0 1 2 3 4 5 KILOMETERS 

SPROPOSED AREA OF UNDERGROUND REPOSITORY AT YUCCA MOUNTAIN 

Figure 3.1.1.1.5.2.2-1 Bedrock Map Showing Locations of the Sterling, Daisy, Silicon, Harvey (Tellu
ride), Tip Top, and Thompson Mines Relative to the Proposed Repository Site. Modified from the 
Geologic Map of Cornwall and Kleinhampi (1964) from the SCP
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Figure 3.1.1.1.5.3-1 Hot Springs, Geothermal Wells, and Low-Temperature Thermal Resoure in 
Nevada. The Battle Mountain High and the Eureka Low Heat-Flow Regions are also shown. Modified 
from Garside (1974) from the SCP
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Figure 3.1.1.1.5.3-2 Regional Heat Flow and Distribution of Hydrothermal Systems. Abbreviations are 
BMH for Battle Mountain High, EL for Eureka Low, IB for Idaho Batholith, SRP for Eastern and Central 
Snake River Plain, Y for Yellowstone Thermal Area, RGR for Rio Grande Rift, and SAFZ for San 
Andreas Fault Zone. Modified from Lachenbruch and Sass (1977) from the SCP
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Figure 3.1.1.2.2.3-2 North-South Stratigraphic Cross Section Between Selected Drillholes at Yucca Mountain
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Figure 3.1.1.2.2.3-3 East-West Stratigraphic Cross Section Between Selected Driliholes at Yucca 
Mountain
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----- FAULT OF TERTIARY AGE THAT WAS TRENCHED BUT NO EVIDENCE OF 
OUATERNARY MOVEMENT WAS FOUND. DOTTED WHERE CONCEALED.  

, TRENCH SITE AND NUMBER 

Figure 3.1.1.2.2.5-1 Map of Surficial Sedimentary and Volcanic Deposits in the Yucca Mountain Area.  
Map units are shown on Figure 3.1.1.2.2-5-2. Modified from Swadley et al. (1984)

F-3.1-45



z 

w 

0

4

FLU 
0 
0 

x

wI 
z 
wj 

en

I

a: 2 Ix ~IIi 

Iw r I.- , 1 1 1 
2 I

UNIT 

HOLOCENE DEPOSITS 

01a - FLUVIAL DEPOSITS 
Olb - FLUVIAL DEPOSITS AND DEBRIS FLOWS 
o0.- EOLIAN DUNES AND SAND SHEETS 
01s - FLUVIAL SAND SHEETS 
OIc - COARSE FLUVIAL DEPOSITS

ESTIMATED AGE RANGE 
(IN YEARS) 

PRESENT TO IS0 
IS0 TO 4,000 
PRESENT TO 8.000 
4.000 TO 7.000 
7.000 TO 9.000

MIDDLE AND LATE PLEISTOCENE-PLIOCENE (?) DEPOSITS 

Q~a - LOCAL DEBRIS FLOWS w40.000 
02b - FLUVIAL DEPOSI IS 160.000 TO 250.000 
02S - FLUVIAL SAND SHEETS 270.000 TO 700.000 
Ob - BASALT FLOWS AND CINDERS 100.000 TO 300.000 
02. - EOLIAN DUNES AND SHEETS 700.O0 TO 750,000 
02C - COARSE FLUVIAL DEPOSITS 270,000 TO 800.000

EARLY PLEISTOCENE 1?) DEPOSITS 

OTa - DEBRIS FLOWS. MINOR FLUVIAL DEPOSITS 
Ob - BASALT FLOWS AND CINDERS 

PLIOCENE-PLEISTOCENE DEPOSITS 

Gtld.. LACUSTRINE DEPOSITS

1.1 x lO6TO 2 x 106 
i.i x 104T0 1.3 x 106 

< 2 x 105 1O 4 x 106
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Figure 3.1.1.2.3.2-1 Preliminary Generalized Map of Known and Suspected Quatemarny Faults Within 

100 km of Yucca Mountain (modified from Piety et al., 1992). Abbreviations are for the following fault 
names: AH, Ash Hill; BM, Bare Mountain fault zone; BS, Beatty scarp; CHV, Chicago Valley fault; CM, 
Cedar Mountain fault; CR, Clayton Ridge fault; DVFZ, Death Valley fault zone; EN, East Nopah fault 
zone; EPR, Emigrant Peak fault; FCFZ, Furnace Creek fault zone; FLV, Fish Lake Valley fault zone; GF, 
Garlock fault zone; HMF, Hunter Mountain fault; KV, Kawich Valley fault; KW, Keane Wonder fault; 
PAN, Panamint Valley fault zone; PSVFZ, Pahrump-Stewart Valley fault zone; REV, Reveille Valley 
faults; RVFZ, Rock Valley fault zone; SL, State Line fault; SSV, Sand Spring Valley fault-, SWM, Stone
wall Mountain fault; TMF, Tin Mountain fault; WPR, West Pintwater Range fault; WSMF, West Spring 
Mountains fault; and YF Yucca fault.
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Figure 3.1.1.2.3.2-2 Generalized Map of Quaternary Faults and Pliocene/Quatemary Basalts in the Yucca 
Mountain Vicinity. Hachures show the location of the proposed repository. Modified after Ramelli et al.  
(1991)
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Figure 3.1.1.2.3.2-4 Map of the Bare Mountain Fault on the East Side of Bare Mountain. Modified after 
Reheis (1 988). Faults with no bar and ball are down to the south or cast
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Figure 3.1.1.2.3.5-1 Digital Satellite Image Showing the Location of the Potential Yucca Mountain 
Site and the Distribution of Quaternary Volcanic Centers in the YMR
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Figure 3.1.1.2.3.5.2.1-2 Distribution of the Basalt of the Silicic Episode
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Figure 3.1.11..3.5.2.2-3 Generalized Geologic Map of the Little Black Peak Volcanic Center of the Basalt 
of Sleeping Butte
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Figure 3.1.1.2.3.5.2.2-4 Generalized Geologic Map of the Hidden Cone Center of the Basalt of Sleeping 
Butte
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Figure 3.1.1.2.4.2.2-4 Response Spectral Velocity at 5% Damping Recorded at Lathrop Wells (Epicentral Distance 15 km) During the 
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Figure 3.1.1.2.4.2.2-9 Location Map Showing Nevada Test Site, Yucca Mountain Seismic Stations (Open 
Squares), Explosion Locations (Solid Symbols), and Velocity Profiles PMI, PM2, and YFI. Also de
noted are the Timber Mountain Caldera (TMC) and the Silent Canyon Caldera (SCC). Areas 19 and 20 
comprise Pahute Mesa. Source: Walck and Phillips (1990)
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WTSI Strong Motion Recording Stations 
Near Yucca Mountain
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Figure 3.1.1.2.4.2.2-10 Location Map of Strong Motion Recording Stations at Yucca Mountain. Source: 
Phillips (1991)
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3.1.1.2.4.2.2-9. Source: Walck and Phillips (1990)
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Figure 3.1.12.7.1.1-1 Thermomechanical and Geologic Stratigraphy at Hole USW G-4
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Figure 3.1.1.2.7.3.1-1 Representative Axial Stress-Axial Strain Plot for Welded Devitrified Topopah 
Spring Member(Test Sample GU-3 1050.4/3; Test Conditions Ambient Temperature and Pressure, Strain 

Rate 1IO-/s). Modified from Price et al. (1984)
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Figure 3.1.1.2.7.3.1-2 Stress-Strain Curves From Compressive Tests on Oven-Dried Samples of Topopah 
Spring Tuff From Busted Butte at 0 MPa Confining Pressure, 22*C Temperature and 10-5 Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-3 Stress-Strain Curves From Compressive Tests on Oven-Dried Samples of Topopah 
Spring Tuff From Busted Butte at 5 MPa Confining Pressure, 220C Temperature and 10"S Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-4 Stress-Strain Curves From Compressive Tests on Oven-Dried Samples of Topopah 
Spring Tuff From Busted Butte at 10 MPa Confining Pressure, 220C Temperature and 10"5 Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-5 Stress-Strain Curves From Compressive Tests on Saturated Samples of Topopah 

Spring Tuff From Busted Butte at 0 MPa Confining Pressure, 224C Temperature and 10- Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-6 Stress-Strain Curves From Compressive Tests on Saturated Samples of Topopah 
Spring TuffFrom Busted Butte at 5 MPa Confining Pressure, 22*(2 Temperature and 10.' Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-7 Stress-Strain Curves From Compressive Tests on Saturated Samples of Topopah 
Spring Tuff From Busted Butte at 10 MPa Confining Pressure, 22,C Temperature and 10"1 Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-8 Stress-Strain Curves From Compressive Tests on Saturated Samples of Topopah 
Spring Tuff From Busted Butte at 0 MPa Confining Pressure, I 50C Temperature and 105 Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-9 Stress-Strain Curves From Compressive Tests on Saturated Samples of Topopah 
Spring Tuff From Busted Butte at 5 MPa Confining Pressure, 1501C Temperature and 10- Per Second 
Strain Rate
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Figure 3.1.1.2.7.3.1-10 Youngt s Modulus Versus Functional Porosity. After Price and Bauer (1985)
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Figure 3.1.1.2.7.3.2-2 Effect of Saturating Samples on Comprehensive Strength
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Figure 3.1.1.2.7.4.5-1 Plot of the coefficient of friction against log sliding velocity for oven-dried and 
water-saturated joints for Grouse Canyon Member welded tuff. Modified from Teufel (1981)
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Figure 3.1.1.2.7.4.5-2 Shear stress versus shear displacement for oven-dried Grouse Canyon Member 
welded tuff sample for 60 and 2,400 s. periods of static contact. Modified from Teufel (1981)
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Figure 3.1.1.2.7.4.5-3 Plot of the coefficient of friction against log sliding velocity for oven-dried and 
water-saturated joints for Grouse Canyon Member welded tuff. Modified from Teufel (1981)
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Figure 3.1.2.1.1-1 Hydrographic Study Area, Showing the Eight Hydrographic Areas and Major Stream 
Channels. Modified from Waddell, et al. (1984)
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Figure 3.12.1.1-2 Locations of Crest-Stage Sites in the Hydrologic Study Area and Adjacent Areas.  

Modified from Squires and Young (1984)
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Figure 3.1.2.1.2-1 Regional Surface-Water Monitoring Network
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Figure 3.1.2.1.2-2 Site Surface-Water Monitoring Network
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Figure 3.1.2.1.5-1 Flood-Prone Areas in the Vicinity ofFortymile Wash. Modified from Squires and 
Young(1984)
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Figure 3.1.2.1.5-2 Site Topography and Flood Potential Areas. Modified from Squires and Young (1984)

F-3.1-85

SKELETON TEXT 
Date: 03/31/95

YMP/94-05, Rev. 0

ICENTRAL 

S~IURFACE\Nr 

bI ) -- 'jEG~UD/! 
FAACILITIES UNDE RGRUD 

I MILE 

SKILOMETER 

LEGEND: 

POTENTIAL AREA OF 
100-YEAR FLOOD EPOTENTIAL AREA OF 
500.YEAR FLOOD 

E POTENTIAL AREA OF 
REGIONAL MAXIMUM FLOOD 

-... DRAINAGE BASIN DIVIDE



SKELETON TEXT YMP/94-05, Rev. 0 
Date: 03/31/95

Pahranagat -lhranagat 
. K Range VMlley 

/ -- \.

Pahute . - o 
0.  

"Mesa Emigrant 
Valley \ 

-- Buck-,_/ Yucca''-, ,, .  
Z2 ', board"- Flat '' 
"- IMesao 

+ -- ,,, - \ Rar 

Crateý .Jackass - Three\ 
Frenchman Lakes 

Flat Flat Flat . Valley 

S .__ .,..: c

'týOck

+ Ash 
Meadovs 

Alkali, 
Flat It

a) 
ep' 9.  

Ce"i
'I

S/ -

.Mercury -. .... ..  
Valley W9geS 

.•'"-- , -- ."Las ,", 
•~~~ ~~~ ý ....... -M" 'egas-\all1ey 

'-, (northern) , 
\, Spring> 

Mtns. Corn 
. .. . Creek

uenne .0

miles

TT Op. (2 

OlManse Sp,.  
Pahrump .; 
Valley.,

0 
0

Las Vegas 
Valley 

(southern)

36 N+

50

0 kilometers 50 

Figure 3.1.22.12-I Recharge, Discharge, and Hydrographic Areas. Light shading bounded by solid lines 
indicates principal recharge areas; dark shading bounded by solid lines indicates principal discharge areas.  
See Figure 3.1.2.2.1.2-3 for background symbols and related references.

F-3.1-86

+

Yucca Mt.

'.-..- -N-
1

- 37N 
J.

Furace 
Creek

+

0

LO

/ i



SKELETON TEXT 
Date: 03/31/95

117,00, 116600, 1 1500'

0 10 20 MILES 

~W'?~040 KILOMETERS 

E > GENERAL DIRECTION OF REGIONAL GROUND-WATER FLOW 
(OIUESTION MARK INDICATES UNCERTAINTY) 

A. OASIS VALLEY SUBBASIN 
B. ALKALI FLAT-FURNACE CREEK RANCH SUBBASIN 
C. ASH MEADOWS SUBBASIN 

Figure 3.1.2.2.1.2-2 Hydrogeologic Study Area Showing Three Ground-Water Subbasins. Modified from 

Rush (1970), Blankennagel and Weir (1973), Winograd and Thordarson (1975), Dudley and Larsen (1976), 

Waddell (1982), and Waddell et al. (1984). Modified by Dudley - solid arrows-flow in Cenozoic Units.  

Open arrows--flow in Pre-Cenozoic Units. Added arrows--in Oasis Valley and--to Alkali Flat. From 

Dudley's Exhibits for J-13 Hearings.
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Figure 3.1.2.2.1.2-3 Regional and Sub-regional Hydrologic Model Boundaries. Thrust fault correlations 
from Wernicke etal. (1988b) and Jayko(1990). High-angle faults shown include Death Valley- Furnace 
Creek Fault Zone (DVFCFZ), Pahrump Valley Fault Zone (PVFZ), "Gravity Fault" (GF), Western Spring 
Mountains Fault Zone (WSMFZ), Las Vegas Shear Zone (LVSZ), Pahranagat Valley Fault System (PVFS), 
Rock Valley Fault System (RVFS), and Cane Spring Fault (CSF).
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Figure 3.1.2.2.1.2-4 Potentiometric Levels in Cenozoic Rocks and Boundary Conditions for Two
Dimensional, Sub-Regional Model of Ground-Water Flow. Water levels from Ervin et at. (1993) and 
Czarnecki (1990). Contours in meters AMSL. Arrows and highlighted boundary segments represent 
boundary conditions prescribed by Czamecki and Waddell (1984); solid circles represent constant-head 
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Figure 3.1.2.2.3-4 Semilog Graphs of Drawdown and Residual Drawdown of Water Level During 
Pumping Testing in Test Well 88-66, March 16.20, 1962
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Figure 3.1.2.2.3-5 Water-Level Drawdown, Pumping Test 2, Depth Interval 1,297 to 1,805 Meters
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Figure 3.1.2.2.3-6 Residual Drawdown, Recovery Test 2, Depth Interval 1,297 to 1,805 Meters. Craig and 

Robison (1984)

F-3.1-97

YMP/94-05, Rev. 0

0.1

! ISk

.I

a

.il** 9

m



YMP/94-05, Rev. 0SKELETON TEXT 
Date: 03/31/95

10

TOM AFTER PUMPWIO $TARTED. h. IN MUTES

Figure 3.1.2.2.3-7 Analysis of Adjusted Water-Level Drawdown, Pumping Test2, Depth Interval 1,297 to 
1,805 Meters, Theis Method. Craig and Robison (1984 

T.~ 

I: 6S ' Aw 

13 

11*0 
1S~ n ta ia .,

A1 4.S 

IlI 11 I ii 1W U. AV m 

TIME AFTER UPUMPG STARTED, hi. IN MINUTS 

Figure 3.1.2.2.3-8 Analysis of Adjusted Water-Level Drawdown, Pumping Test 2, Depth Interval 1,297 to 
1,805 Meters, Straight-Line Method. Craig and Robison (1984
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Figure 3.1.2.2.3-9 Drawdown and Analysis of Drawdown During Step-Drawdown Test of Pumping Test 
i, Stallman's Method. Thordarson (1983)
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Figure 3.1.2.2.3-10 Drawdown and Analysis of Drawdown During Pumping Test 3, Straight-Line Method.  
Thordarson (1983)
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Figure 3.1.2.2.3-I I Analysis of Water-Level Drawdown, Pumping Test I, Depth Interval 382 to 1,301 
Meters, Theis Method. Craig and Robison (1984)
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Figure 3.1.2.2-3-12 Analysis of Water-Level Drawdown, Pumping Test 1, Depth Interval 382 to 1,301 
Meters, Straight-Line Method. Tuffs
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Figure 3.1.2.2.3-13 Analysis of Residual Drawdown, Recovery Test 1, Depth Interval 382 to 1,301 
Meters, Straight-Line Method. Craig and Robison (1984)
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Figure 3.1.2.2.3-14 Drawdown in Well USW VH-I During Test 3. Thordarson and Howells (1987)
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Figure 3.1.2.2.3-15 Drawdown in Well USW VH-i During Test S. Thordarson and Howells (1987)
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Figure 3.1.2.2.3-16 Recovery in Well USW VH-1 During Test 4. Thofdarson and Howells (1987)
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Figure 3.1.2.2.3-17 Recovery in Well USW VH-1 During Test 6. Thordarson and Howells (1987)
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Figure 3.1.2.2.3- 8 Drawdown in Test Wells UE-25b#I and UE-25a#l During Pumping Test 3. Lahoud 
et al. (1984)
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Figure 3.1.2.2.3-19 Analysis in Water-Level Drawdown, Pumping Test 1, Zone from 572 to 688 Meters in 

the Well, Theis Method. Rush et al. (1984) 
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Figure 3.1.2.2.3-20 Analysis of Water-Line Drawdown, Pumping Test 1. Zone from 572 to 688 Meters in 

the Well, Straight-Line Solution
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Figure 3.1.2.2.3-21 Analysis of Water-Level Recovery, Pumping Test 1, Zone from 572 to 688 Meters in 
the Well, Straight-Line Solution
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Figure 3.1.2.2.3-22 Analysis of Water-Line Drawdown, Pumping Test 2, Zone from 687 to 1,829 Meters 

in the Well, Theis Method 
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Figure 3.1.2.2.3-23 Analysis of Water-Level Drawdown, Pumping Test 2, Zone from 687 to 1,229 Meters 

in the Well, Straight-Line Solution. Rush et al. (1984)
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Figure 3.11..2.3-24 Analysis of Water-Level Drawdown, Pumping Test 3, Zone from 637 to 1,829 Meters 
in the Well, Theis Method. Rush et al. (1984) 
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Figure 3.12.2.23-25 Analysis of Water-Level Drawdown, Pumping Test 3, Zone from 627 to 1,829 Meters 
in the Well, Straight-Line Solution
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Figure 3.1.2.2.3-26 Analysis of Water-Level Recovery, Pumping Test 2, Zone from 687 to 1,829 Meters in 
the Well, Straight-Line Solution. Rush et al. (1984)
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Figure 3.1.2.2.3-27 Analysis of Water-Line Recovery, Pumping Test 3, Zone from 687 to 1,829 Meters in 
the Well, Straight-Line Method. Rush et al. (1984)
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Figure 3.1.2.2.3-28 Analysis of Water-Level Recovery, Following Second Cycle of Pumping of the Interval 
from 754 to 1,219 Meters, Using the Straight-Line Method 
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Figure 3.1.2.2.3-29 Analysis of the Pumping Test of the Interval from 754 to 1,219 Meters, Using Brown's 
Method for a Cyclically Pumped Well. Thordarson ¢t al. (1985)
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Figure 3.1.2.2.3-30 Analysis of the Water-Level Drawdown of the Interval from 822 to 1.219 Meters, 
Using Theis Method. Thordarson et al. (1985)
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Figure 3.12.2.3-31 Analysis of Water-Level Drawdown Versus Time for Pumping Test 6, Depth Interval 
from 519 to 1,219 Meters, Using the Straight-Line Method of Analysis. Whitfield at al. (19S5) 
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Figure 3.1.2.2.3-32 Analysis of Water-Level Recovery Versus Time for Pumping Test 6, Depth Interval 
from 519to 1,219 Meters
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Figure 3.1.2.2.3-33 Water-Level Drawdown, Pumping Test 3, Depth Interval from 704 to 1,219 Meters.  

Robison and Craig (1991)
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Figure 3.1.2.2.3-34 Water-Level Drawdown, Pumping Test 4, Depth Interval from 704 to 1,219 Meters
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Figure 3.1.2.2.3-35 Data for Pumping and Recovery Tests 4, Depth Interval from 704 to 1,219 Meters 
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Figure 3.1.2.2.3-36 Analysis of Late-Time Data, Pumping Test 4, Depth Interval from 704 to 1,219 
Meters, Straight-Line Method. Robison and Craig (1991)
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Figure 3.1.2.2.3-37 Analysis of Adjusted Water-Level Drawdown, Pumping Test 4, Depth Interval from 
704 to 1,219 Meters, Theis Method (Lohman, 1972). Robison and Craig (1991)
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Figure 3.1.2.2.3-38 Analysis of Adjusted Water-Level Drawdown, Pumping Test 4, Depth Interval from 
704 to 1,219 Meters, Method of Neuman (1975) 
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Figure 3.1.2.2.3-39 Analysis ofResidual Drawdown, Pumping Test 4, Depth Interval from 704 to 1,219 
Meters, Straight-Line Method
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Figure 3.12.2.3-40 Analysis of Pumping Test 3, Depth Interval from 704 to 1,219 Meters, Vertical
Fracture Model, Curve-Match Method 
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Figure 3.1.2.2.3-41 Analysis of Pumping Test 4, Depth Interval from 704 to 1,219 Meters, Vertical

Fracture Model, Curve-Match Method. Robison and Craig (1991)
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Figure 3.1.2.2.3-42 Analysis of Recovery Test 4, Depth Interval from 704 to 1,219 Meters. Vertical
Fracture Model, Curve-Match Method 
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Figure 3.1.2.2.3-43 Analysis oflPumping Test 4, Depth Interval frm 704 to 1,219 Meters. Vertical

Fracture Model, Bilinear-Flow Method. Robison and Craig (1991)
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Figure 3.1.22.3-44 Analysis of Pumping Test 3, Depth Interval from 704 to 1,219 Meters, Vertical
Fracture Model, Linear-Flow Method 
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Figure 3.1.2.23-45 Analysis of Pumping Test 4, Depth Interval from 704 to 1,219 Meters, Vertical
Fracture Model, Linear-Flow Method. Robison and Craig (1991)
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Figure 3.1.2.2.3-48 Analysis of Recovery Test 4, Depth Interval from 704 to 1,219 Meters, Vertical
Fracture Model, Bilinear-Flow Method. Robison and Craig (1991)
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Figure 3.1.2.2.3-49 Analysis of Water-Level Drawdown, Pumping Test 1, Depth Interval from 526 to 
1,220 Meters, Theis Method. Craig and Reed (1991)
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Figure 3.1.22.3-50 Analysis of Water-Level Drawdown, Pumping Test 1, Depth Interval from 526 to 
1,220 Meters, Straight-Line Solution with Dual-Porosity Model. Craig and Reed (1991)
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Figure 3.1.2.2.3-51 Analysis of Water-Level Drawdown, Pumping Test 2, Depth Interval from 526 to 
1,220 Meters, Straight-Line Solution with Dual Porosity Model
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Figure 3.1.2.2.3-52 Water-Level Recovery, Pumping Test 2, Depth Interval from 526 to 1,220 Meters.  

Craig and Reed (1991)
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Figure 3.1.2..3-53 Analysis of Water-Level Drawdown, Pumping Test 3, Depth Interval from 753 to 834 
Meters, Straight-Line Solution with Dual-Porosity Model 
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Figure 3.1.223-54 Residual Drawdown, Recovery Test 3, Depth Interval from 753 to 834 Meters. Craig 
and Reed (1991)
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Figure 3.1.2.2.3-55 Water-Level Drawdown, Pumping Test 4, Depth Interval from 608 to 645 Meters 
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Figure 3.1.2.2.3-56 Water-Level Recovery, Recovery Test 4, Depth Interval from 608 to 645 Meters.  
Craig and Reed (1991)
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Figure 3.1.2.2.8-2 State Hydrographic Areas Within the Hydrogeologic Study Area 

C



)

Z 

Ecn

I 

0 

�2 

0 

C.' 

��1 
(�1 
C.'

00

)



R.AS E. R.48 E. R.50 E. R.48 E. R.49 E. R'.50 E.  

BIG BIG DUNE DUNE 

•..• oosA VALLEY Tv AmARGOSA VALLEY T.  
15 1 
S. \ 

Is Is 

6I . ..........  

962 j 1 9 1984 \ , ,o , .; +ML:\ 

01MEV- + H L KILOMETERS DEVILS H 

EXPLANATION 

--- ~IFE-D FAULT - From Winograd and Thordarson (1975. -- 2zzo-- WATER-LEVEL CONTOUR - Shows altitude of ground-water page C70. plate 1); delineated on basis of gravity survey level In valley-fill deposits Dashed where approximately located.  Contour interval 10 feet Datum is sea level. Contours for 1962 

from Walker and Eakin (1963. plate 3) SGENERIALIZED AREA OF SPRtING DISCXARC• 

a 7z WELL -- Nlumber is water-surface altitude. January 1984. in feet 
GENERALIZED AREA WHERE NET WATER-LEVEL DECLONE above 2.200 feet (question mark indicates lack of water-level 
BETWEEN 1962 AND 1984 EXCEEDED 10 FEET measurement in 1984) Datum is sea level 

Figure 3.1.2.2.8-4 Potentiometric Maps of the Amargosa Desert (Valley Fill Aquifer) Based on the Well Data from (1962) (A) and 1984 
(B). Modified from Nichols and Akers (1985) 

C 
Lit 

0

(



SKELETON TEXT 
Date: 03/31/95

YMP/94-05, Rev. 0

0 SA Ior12-18 MESH SAND 

SSPECIAL COMPOSTON 

3S saw IS I m INSMUMPT STATION ANDM IDENTIFYING NUM•BIER 

U ISOLATION PLUG 

2aHEAT RISPATION PROBE 
P AND INTFYING NUMBER 

awlI THERMOCOUPLE 
to - &N so" PSYCHROMETER 

SI 7V DEPTH IN FEET 

2100S~-:~ 
31V1 

Figure 3.1.2.3. 1-1 Instrumentation of Monitoring Borehole USW UZ- I (0- to 623-feet depth). Modified 
from Montazer et al. (1986)
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Figure 3.1.2.3.1-1 Instrumentation of Monitoring Borehole USW UZ-1 (623-1217.5 fet depth). Modified 
from Montazeret al. (1986Xcontinued)
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Figure 3.1.2.3.1-2. Unsaturated Zone Moisture Monitoring Sites (DOE, 1992).
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Figure 3.1.2.3.1-3. Saturated Zone Monitoring Sites (DOE, 1992).
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"Thlcknesa 
Cm)

Alluvium GAL 3 IrIgulrly distributed surffiall deposits 

I of alluvium andcolluvlum

Thve Canyon 
Member 

Yucca 

Mountain 
Member 

Pah Canyon 
Member 

Topopah 
Spring 

Member

Tuffaceous beds 
of 

Calico HIlls 
Prow Pase 
Member 

S Bullfrog 
if Member

TCw 0-160 Moderately to densely welded, deytrifled 
ash-flow tuff

Partially welded to nonwelded, vilrlc and 
occasionally dMvltrolled tufts 

Moderately to densely welded, devitrilfled 
Ish-flow iuffe that ar locally lltvophysse

TSw 290-3r0 ich In the upper part Includes basal 

vi-rphr 

I C~nv Nonwelded I 
to partially I Vitric 

I / welded 
1004/ ash-flow I SI / 100-400 tufts I 

•1 /I -

/ CHnz 2eolltized 
to I"

CFu 0-200
Undiferentiated, welded and nonwelded, 
vltrc devtrilled, and zeollzed h-flow 
a dir-hall tufts

*Sources: Monlazer and Wilson (1984) except as noted.  

bOAL Culternary Alluvium, TCw - Tiva Canyon welded unit. PTn - Paintbrush nonwelded unit, 

TSw -Topopsh Spring welded unit. CHn - Calico Hills nonwelded unit, CHnv - Calico Hills 
nonwelded vltric unit, CHnz - Calico Hills nonwelded zeolitfzed unit, CFu - Crater Flat 
undifferentiated unit.  

cLithology summarized from Ortiz et a1. (1985), 

Figure 3.1.2.3.2-1 Definition of Unsalurated-Zone Hydrogeologic Units and Correlation with Rock

Stratigraphic Units"
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Figure 3.1.2.3.3.2-1 Revised Potentiometric-Surface Map, Yucca Mountain (Constructed From Mostly 

1988 Average Water Levels). Ervin et al. (1993)
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Figure 3.1.3.2.1.1-1 Index Map Showing the Location of Drill Holes in Relation to the CPDB from Which 
Data Primarily were Derived for this Section of the Annotated Outline
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Figure 3.1.3.21.1.1-I Total Alkali Silica Diagram (Le Bas et al. (1986)) for Representative Fresh and 

Altered Samples of Latite and Rhyolite Tuff of the Topopah Spring Member of the Paintbrush Tuff. Data 
from Schuryatz et al. (1989), and Broxton et al. (1986)
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Figure 3.1.3.2.1.1.1-2 Sm-Nd Plot for Representative Samples of the Topopah Spring Member of the 
Paintbrush Tuff. Note the distinct break between the latites and rhyolites in that the latite has distinctly 
higher REE abundances and is LREE enriched (lower Sm/Nd ratio). Plotted data from Peterman et al.  
(1991), and Tegtmeyer and Farmer (1989). Data from Schuryatz et al. (1989) cited for comparative 
purposes
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Figure 3.1.3.2.1.1.1-3 Enrichment Diagram for Major Elements in Altered Topopah Spring Rhyolite.  

Normalization value from sample BB8-85WR of Schuryatz et al. (1989)
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Figure 3.1.3.2.1.1.2-1 Illustration of the Cumulative Percent of Phenocrysts and Lithic Fragments with Depth in the Topopah Spring 
Member for a) Drill Hole USW G-4 and b) UE-25 all. Data from Broxton et at. (1989)
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Figure 3.1.3.2.1.1.2-2 Illustration of the Cumulative Percent of Felsic Phenocrysts with Depth in the Topopah Spring Member for a) Drill 
Hole USW G4 and b) UE-25 a#l. Data from Broxton et al. (1989)
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Figure 3.1.3.2.1.1.2-3 Illustration of the Cumulative Percent of Mafic Phenocrysts with Depth in the Topopah Spring Member for a) Drill 
Hole USW G-4 and b) UE-25 a#l. Data from Broxton et al. (1989)
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Figure 3.1.3.2.1.1.2-4 Ilustration of the Cumulative Percent Phases as Determined by Quantitative X-Ray Diffraction with Depth in the 
Topopah Spring Member for: a) Drill Hole USW 0-4 and b) UE-25 a#l. Data from Bish and Chipera (1989)
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Figure 3.1.3.2.1.1.3-1 Illustration of the Cumulative Percentage of Matrix Textures with Depth in the 
Topopah Spring Member Compared to Macroscopic Welding Horizons for Drill Hole UE-25 a#1. Data 
from Byers and Moore (1987)
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Figure 3.1.3.2.1.1.3-2 Comparison of the Matrix Textures Within the Proposed Repository Horizon for 

Drill Holes USW G-4, UE-25 a#l, and USW GU-3. Data from Byers and Moore (1987) and Byers (1985)
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Figure 3.1.3.2.1.1.4-1 These Plots are an Expansion of the Horizontal Scale for Data Not Shown in Figure 8 to Better Illustrate the 
Distribution of Digenetic Phases in the Topopah Spring Member for a) Drill Hole USW G-4 and b) UE-25 a#l. Data from Bish and 
Chipera (1989) 
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Figure 3.1.3.2.1.1.4-2 Ternary Plot of Exchangeable Cations in Clinoptilolite and Heulandite Zeolites in 

the Topopah Spring Member
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