Regulatory Status of Burnup Credit for Spent Fuel Dry Storage and Transport in the United States

Donald E. Carlson

Spent Fuel Project Office U.S. Nuclear Regulatory Commission

Technical Committee Meeting on the Implementation of Burnup Credit in Spent Fuel Management Systems

> International Atomic Energy Agency Vienna, Austria 10-14 July 2000

Status of LWR Burnup Credit in U.S.

- Storage Pools
 - PWR Burnup Credit used since early 1980s
- Casks for Dry Storage and Transport
 - PWR Burnup Credit First applications to be submitted in August and November 2000
- Geologic Repository
 - LWR Burnup Credit under development

U.S. DOE Efforts on Burnup Credit in Casks

- DOE Topical Report on Proposed Method for Actinide-Only Burnup Credit in PWR SNF Casks
 - DOE cooperative studies with industry started in 1986.
 - Emphasized PWR over BWR fuel due to greater transportation cost benefits.
 - DOE Topical Report submitted to NRC in May 1995.
 - Topical Report revised in May 1997 and September 1998 in response to NRC comments.
 - Further efforts transferred to NRC in 1999.

U.S. NRC Efforts on Burnup Credit in Casks

- NRC Technical Review Guidance and Research
 - NRC Burnup Credit Research Program started in May 1999.
 - Industry input on needs and issues provided at NRC/NEI meetings in May and December 1999.
 - NRC Interim Staff Guidance for Limited Burnup Credit in PWR Spent Fuel Casks:
 - <u>ISG-8 Rev.0</u> issued in May 1999. No applications.
 - <u>ISG-8 Rev.1</u> issued in July 1999, incorporated into updated NRC Standard Review Plans in March 2000. First applications expected later this year.
 - NRC will issue further guidance revisions to reflect new information from research and licensing experience.

NRC Technical Review Guidance - Recommendations in 6 Areas -

- 1. Limits for the Licensing Basis
- 2. Validation of Codes and Methods
- 3. Licensing-Basis Model Assumptions
- 4. Loading Curve
- 5. Assigned Burnup Loading Value
- 6. Estimate of Additional Reactivity Margin

Limits for the Licensing Basis Review Guidance -

- Credit from Actinides Only in UO₂ PWR Fuel
- Maximum credited burnup = 40 GWd/MTU
- Loading Offset for initial enrichments between 4 and 5 wt%
 - Example: 4.5 wt% reduces assigned burnup by 5 GWd/MTU
- No credit in fuels exposed to burnable absorbers
- Analyzed cooling time = 5 years, all fuels cooled \geq 5 years

Credit for fuels and actinide compositions outside these limits requires additional isotopic assay data and/or extrapolation techniques.

Limits for the Licensing Basis Comments -

- Credit limited to actinides only:
 - Little validation of fission product isotopics and worths.
 - Need margin from neglect of fission products to address uncertainties in actinide credit (see Recommendation 6).
- Burnup Limit and Loading Offset:
 - Lack of assay data beyond 40 GWD/MTU and 4.0 wt%.
 - Loading Offset reduces credited burnup to compensate for validation uncertainties in fuels enriched beyond 4.0 wt%.
- No credit in fuels affected by burnable absorbers:
 - Initial lack of design information and modeling studies.
 - Lack of chemical assay data.

2. Validation of Codes and Methods- Review Guidance -

- Derive isotopic bias & uncertainty from applicable fuel assay benchmarks.
- Derive k_{eff} bias & uncertainty from benchmark experiments representing major features of cask and spent fuel.
- In computing k_{eff}, use only those nuclides established in the validation process.
- Consider the bias uncertainties arising from lack of experiments that are prototypic of spent fuel in the cask.
- Apply bias and uncertainties only in ways that ensure conservatism in the licensing safety analysis.

2. Validation of Codes and Methods - Comments -

- Nonprototypicality of fresh UO₂ and MOX criticals for cask criticality validation:
 - Actinide isotopic mixes differ from those in spent fuel.
 - ► No axial composition gradients representing end effects.
 - Solid boron worth is typically much lower in benchmarks (|∆k/k|<0.04) than in casks (|∆k/k|>0.20).
- Actual criticality bias and uncertainty may be larger than that derived from UO₂ and MOX benchmarks.
 - Where practical, apply extra bias and uncertainty adjustments to the licensing-basis calculations.
 - Evaluate any remaining validation uncertainties against estimated additional margins (see Recommendation 6).

3. Licensing-Basis Model Assumptions - Review Guidance -

- For isotopic calculations, assume in-core conditions and parameters that maximize k_{eff} in the cask.
- Calculate k_{eff} using models and assumptions that allow adequate representation of important physics, including:
 - Axial and horizontal burnup profiles within assemblies
 - The more reactive actinide compositions of fuels burned with inserted control rods or absorbers
 - Local neutron scattering and absorption effects around most reactive axial fuel regions.

3. Licensing-Basis Model Assumptions - Comments (1 of 3) -

- Effects of In-Core Operating Parameters on Fuel Isotopics:
 - Fissile Pu production per burnup increment is bounded by maximizing: (1) in-core absorber rods, (2) dissolved boron, (3) moderator temperature, (4) fuel temperature, (5) specific power.
 - Isotopic calculations should assume values of in-core operating parameters that bound all spent fuel contents.
- Effects of Cladding Creep-Down and Hydrogen Absorption:
 - Increased moderation can be safely neglected in fuel depletion models used for actinide burnup credit.
 - May warrant consideration in modeling isotopic benchmarks.
 - Adequately approximated in cask criticality models by assuming unirradiated fuel dimensions with water in pellet-clad gap.

3. Licensing-Basis Model Assumptions - Comments (2 of 3) -

Effects of Horizontal Burnup Profiles within Assemblies:

- Cask analysis models must consider most-reactive relative orientations of assemblies with strong burnup tilts.
- Effects are especially significant in small casks.
- DOE Topical (Rev.2) describes an acceptable modeling approach.

3. Licensing-Basis Model Assumptions - Comments (3 of 3) -

- Effects of Axial Burnup Profiles associated with In-Core Absorber Rods:
 - Higher k_{eff} governed by two phenomena: (1) lower local burnup and (2) absorber-rod spectral hardening resulting in more fissile Pu production per burnup increment.
 - Most axial profile studies to-date have considered only effects of lower local burnup.
 - Absorber-rod effect on Pu production may be more important.
 - Worst-case "end effect" profiles typically result from partial insertion of control rods. Axial leakage limits increase in k_{eff}.
 - Saddle effect" profiles caused by part-length absorber rods around midplane. Less widely studied, but may prove bounding.
 - Significant uncertainties remain. More information needed.

4. Cask Loading Curve - Review Guidance -

- As a function of initial enrichment, plot the Assigned Burnup Loading Value above which fuel assemblies may be loaded.
- Loading curves based on analysis for 5-year cooling.
- Load only assemblies cooled 5 years or more.

4. Cask Loading Curve - Comments -

- Loading curves typically derived from licensing-basis k_{eff} calculations on cask loaded with identical fuel assemblies.
 - Supplemental calculations needed for effect of mixed loadings.
- Initial restriction to analyzed 5-year cooling based on:
 - 5-year cooling assumed in most modeling studies to-date
 - Little need in U.S. for cooling times less than 5 years
 - Questions on amplification of axial effects with cooling time (slowing net decrease in k_{eff} from ²⁴¹Pu decay to ²⁴¹Am)
 - Questions on multiple cooling times with added complexity in fuel loading specifications.

5. Assigned Burnup Loading Value - Review Guidance -

- Applicant describes administrative procedures by which cask user ensures fuel loading is within specifications.
- Pre-loading measurement to confirm reactor record value of assembly burnup.
 - Measurement may be calibrated to reactor records for representative set of assemblies.
 - Confirmation: Measured and record burnup values agree within 95% confidence interval based on measurement uncertainty.
- Reduce the confirmed record value of assembly burnup by combined uncertainties in records and measurement.

5. Assigned Burnup Loading Value - Comments (1 of 2) -

- Reasons for requiring pre-loading measurements:
 - Events reported at spent fuel pools suggest that errors in records, selection, and handling can be expected.
 - Measurements called for in ST-1(1996) and NRC RG 3.71: Criticality safety based on measured values.
- Calibration and measurement strategy:
 - Protection against internal inconsistencies in records.
 - Subtracting measurement and record uncertainties encourages high-quality measurements and records.
 - Sampling plan may be considered after positive experience is gained with quality of records and loading operations.

5. Assigned Burnup Loading Value - Comments (2 of 2) -

- Measurements based on gamma-rays or combination of gamma-rays and neutrons:
 - Passive neutron measurements see increased production of ²⁴⁴Cm caused by spectral hardening effects of absorber rods.
 - Neutron measurements may find use in addressing effects of absorber-rodded burnup histories.

6. Estimate Additional Reactivity Margin - Review Guidance -

- Estimate reactivity margins from actinides and fission products not included in licensing safety basis.
- Verify the analysis methods for estimating margins using:
 - Available experimental data (e.g., FP assays, worths)
 - Computational benchmarks comparing against independent methods and analyses (e.g., OECD/NEA BUC).
- Assess estimated margins against estimates of:
 - Any uncertainties not directly accounted for in the modeling or validation process (e.g., non-prototypicality of k_{eff} benchmarks)
 - Potential nonconservatisms in the licensing-basis models and assumptions (e.g., neglect of outlier rodded burnup histories)

6. Estimate Additional Reactivity Margin - Comments -

- Goal: Show that additional margin is larger than the uncertainties remaining in actinide-only analysis.
- Note: Margin from neglect of fission products varies with cask design, enrichment, burnup, axial burnup profiles, depletion parameters, cooling times, etc.
- Validation Uncertainties
 - Criticality benchmarks not fully representing major phenomena
- Potentially nonconservative modeling assumptions
 - Example: No control rods or part-length rods assumed in calculating fuel depletion. Underpredicts fissile Pu production.

U.S. Regulatory Status of Cask Burnup Credit What Next? (1 of 3)

- NRC and Industry Priorities on Expanded Burnup Credit:
 - Burnable Absorbers in PWR Fuel
 - Credit for Cooling Times > 5 Years
 - Credit for Burnup > 40 GWd/MTU
 - Reducing Offset for 4 to 5 wt% Enrichments
 - Fission Product Credit
 - Limited BWR Burnup Credit

U.S. Regulatory Status of Cask Burnup Credit What Next? (2 of 3)

- Information Needed on Fuels and Reactors:
 - Burnable Absorber Designs and Uses
 - Rodded Burnup Histories:
 - Worst-case U.S. plants, how much, how, when?
 - Needed for reducing actinide-only uncertainties and enabling future credit for fission products

U.S. Regulatory Status of Cask Burnup Credit What Next? (3 of 3)

NRC Research: Ongoing Analytical Studies

- Modeling issues and assumptions
- Uncertainties and sensitivities

NRC Research: Experimental Data

- Participating in international REBUS program
- New U.S. assay data from high-burnup fuel (HB Robinson)
- Assay data from Ariane program
- New criticality data from DOE NERI program
- Considering additional industry and international collaboration

U.S. Regulation of Cask Burnup Credit Conclusion

NRC will issue further burnup credit guidance as information and insights emerge from:

- Cooperative Research
- Licensing Experience
- Industry Data and Analysis