NUREG/IA-0180

International Agreement Report

Application of RELAP5/MOD3.1 to ATWS Analysis of Control Rod Withdrawal From 1% Power Level

Prepared by

H. Kantee

Fortum Engineering Ltd. P.O. Box 10 00048 Fortum FINLAND

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555–0001

June 2000

Prepared as part of The Code Application and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at www.nrc.gov/NRC/ADAMS/index.html. Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal</i> <i>Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at— The NRC Technical Library
NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i> , in the Code of <i>Federal Regulations</i> may also be purchased from one	Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738
 of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office P. O. Box 37082 Washington, DC 20402–9328 www.access.gpo.gov/su_docs 202–512–1800 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000 	These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from American National Standards Institute 11 West 42 nd Street New York, NY 10036-8002 www.ansi.org 212-642-4900
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: Office of the Chief Information Officer, Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301-415-2289	The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/IA-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of
Some publications in the NUREG series that are posted at NRC's Web site address www.nrc.gov/NRC/NUREGS/indexnum.html are updated regularly and may differ from the last printed version.	Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: This report was prepared under an international cooperative agreement for the exchange of technical information. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

NUREG/IA-0180

International Agreement Report

Application of RELAP5/MOD3.1 to ATWS Analysis of Control Rod Withdrawal From 1% Power Level

Prepared by

H. Kantee

Fortum Engineering Ltd. P.O. Box 10 00048 Fortum FINLAND

Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

June 2000

Prepared as part of The Code Application and Maintenance Program (CAMP)

Published by U.S. Nuclear Regulatory Commission

ABSTRACT

The RELAP5/MOD3.1 computer code has been applied in the analysis of a regulating control rod group withdrawal from 1 % power level. The analysis has been carried out as an Anticipated Transient Without Scram (ATWS) event.

The analysis is related to an extensive inherent boron dilution study which was performed to Loviisa Nuclear Power Plant (NPP) in the mid 1990's. The main goal of the analysis was to study if during the accident so called boiling-condensing mode develops and thereafter a water plug with low boron concentration is formed in the cold leg loop seal.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

EXECUTIVE SUMMARY

1	INTRODUCTION	1
2	NODALIZATION MODEL	2
3	ASSUMPTIONS AND ANALYZED CASES	3
4	ANALYSIS RESULTS	5
	4.1 BASE CASE, REACTIVITY OF WITHDRAWAL 3.6 \$	5
	4.2 BASE CASE, REACTIVITY OF WITHDRAWAL 4.0 \$	6
	4.3 REACTIVITY OF WITHDRAWAL 2.2 \$	6
	4.4 REACTIVITY OF WITHDRAWAL 1.4 \$	7
	4.5 REACTIVITY OF WITHDRAWAL 1.8 \$	7
	4.6 REACTIVITY OF WITHDRAWAL 1.9 \$	
	4.6.1 Reactivity of withdrawal 1.9 \$ and turbine bypass not available	9
	4.6.2 Reactivity of withdrawal 1.9 \$ and one main feedwater pump available	9
5	RUN STATISTICS	
6	CONCLUSIONS	

REFERENCE

TABLES

FIGURES

APPENDIX

1

1 - 1

LIST OF TABLES

.

- Table 2-1
- Initial value of the main parameters Initial control rod position and reactivity worth Table 2-2
- Table 5-1 Run time statistics

LIST OF FIGURES

- Figure 2-1 Pressure vessel nodalization
- Figure 2-2 Loop YA11 nodalization
- Figure 2-3 Pressurizer nodalization
- Figure 2-4 HPI, make-up, letdown and purification systems nodalization
- Figure 2-5 Steam generator YB11, steam line and feedwater injection system nodalization
- Figure 4.1-1 Total and fission power
- Figure 4.1-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.1-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.1-4 Void fraction in core volumes
- Figure 4.1-5 Void fraction in hot leg
- Figure 4.1-6 Core entrance and bypass mass flow rate
- Figure 4.1-7 Pressure in hot leg, cold leg and pressurizer
- Figure 4.1-8 Primary coolant mass inventory
- Figure 4.1-9 Steam generator liquid level
- Figure 4.1-10 Boron concentration core volumes
- Figure 4.1-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.1-12 Total reactivity
- Figure 4.2-1 Total and fission power
- Figure 4.2-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.2-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.2-4 Void fraction in core volumes
- Figure 4.2-5 Void fraction in hot leg
- Figure 4.2-6 Core entrance and bypass mass flow rate
- Figure 4.2-7 Pressure in hot leg, cold leg and pressurizer
- Figure 4.2-8 Primary coolant mass inventory
- Figure 4.2-9 Steam generator liquid level
- Figure 4.2-10 Boron concentration core volumes
- Figure 4.2-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.2-12 Total reactivity
- Figure 4.3-1 Total and fission power
- Figure 4.3-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.3-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.3-4 Void fraction in core volumes
- Figure 4.3-5 Void fraction in hot leg
- Figure 4.3-6 Core entrance and bypass mass flow rate
- Figure 4.3-7 Pressure in hot leg, cold leg and pressurizer

- Figure 4.3-8 Primary coolant mass inventory
- Figure 4.3-9 Steam generator liquid level
- Figure 4.3-10 Boron concentration core volumes
- Figure 4.3-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.3-12 Total reactivity
- Figure 4.4-1 Total and fission power
- Figure 4.4-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.4-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.4-4 Void fraction in core volumes
- Figure 4.4-5 Void fraction in hot leg
- Figure 4.4-6 Core entrance and bypass mass flow rate
- Figure 4.4-7 Pressure in hot leg, cold leg and pressurizer
- Figure 4.4-8 Primary coolant mass inventory
- Figure 4.4-9 Steam generator liquid level
- Figure 4.4-10 Boron concentration core volumes
- Figure 4.4-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.4-12 Total reactivity
- Figure 4.5-1 Total and fission power
- Figure 4.5-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.5-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.5-4 Void fraction in core volumes
- Figure 4.5-5 Void fraction in hot leg
- Figure 4.5-6 Core entrance and bypass mass flow rate
- Figure 4.5-7 Pressure in hot leg, cold leg and pressurizer
- Figure 4.5-8 Primary coolant mass inventory
- Figure 4.5-9 Steam generator liquid level
- Figure 4.5-10 Boron concentration core volumes
- Figure 4.5-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.5-12 Total reactivity
- Figure 4.6-1 Total and fission power
- Figure 4.6-2 Core entrance, core exit and saturation coolant temperature
- Figure 4.6-3 Collapsed liquid level above hot leg center line, in core and in pressurizer
- Figure 4.6-4 Void fraction in core volumes
- Figure 4.6-5 Void fraction in hot leg
- Figure 4.6-6 Core entrance and bypass mass flow rate
- Figure 4.6-7 Pressure in hot leg, cold leg and pressurizer
- Figure 4.6-8 Primary coolant mass inventory
- Figure 4.6-9 Steam generator liquid level
- Figure 4.6-10 Boron concentration core volumes
- Figure 4.6-11 Boron concentration in cold leg loop seal horizontal part

Figure 4.6-12	Total reactivity		
Figure 4.6.1-1	Total and fission power		
Figure 4.6.1-2	Core entrance, core exit and saturation coolant temperature		
Figure 4.6.1-3	-3 Collapsed liquid level above hot leg center line, in core and in pressurizer		
Figure 4.6.1-4	Void fraction in core volumes		
Figure 4.6.1-5	Void fraction in hot leg		
Figure 4.6.1-6	Core entrance and bypass mass flow rate		
Figure 4.6.1-7	Pressure in hot leg, cold leg and pressurizer		
Figure 4.6.1-8	Primary coolant mass inventory		
Figure 4.6.1-9	Steam generator liquid level		
Figure 4.6.1-10	Boron concentration core volumes		
Figure 4.6.1-11	Boron concentration in cold leg loop seal horizontal part		
Figure 4.6.1-12	Total reactivity		
Figure 4.6.2-1	Total and fission power		
Figure 4.6.2-2	Core entrance, core exit and saturation coolant temperature		
Figure 4.6.2-3	Collapsed liquid level above hot leg center line, in core and in pressurizer		
Figure 4.6.2-4	Void fraction in core volumes		
Figure 4.6.2-5	Void fraction in hot leg		

- Figure 4.6.2-6 Core entrance and bypass mass flow rate
- Figure 4.6.2-7 Pressure in hot leg, cold leg and pressurizer

Figure 4.6.2-8 Primary coolant mass inventory

- Figure 4.6.2-9 Steam generator liquid level
- Figure 4.6.2-10 Boron concentration core volumes
- Figure 4.6.2-11 Boron concentration in cold leg loop seal horizontal part
- Figure 4.6.2-12 Total reactivity

1

EXECUTIVE SUMMARY

An extensive study for Loviisa NPP concerning inherent boron dilution was carried out in the mid 1990's. One of the main concerns was that during a transient or an accident liquid level in the pressure vessel decreases below the hot leg elevation and so called boiling-condensing mode begins. Boiling-condensing mode means that coolant boils in the pressure vessel and steam condenses in the steam generators forming a low boron concentration water plug in the cold leg loop seal. In case of Loviisa, condensing in the steam generator is obvious, since primary side cooldown is done by cooling down the secondary side.

One of the accidents which was analyzed during the study using RELAP5/MOD3.1 computer code was a regulating control rod group withdrawal from 1 % power level as an ATWS case. Concerning this kind of analysis the point core kinetics model in RELAP5/MOD3.1 is not a very good model to calculate power behavior since it does not take into consideration the change in the axial power profile when the control rod is moving upward. However, from the boron dilution point of view this shortcoming was not considered significant because the main goal was to find out events during which boiling-condensing mode develops. Therefore RELAP5/MOD3.1 code was used in the preliminary analysis to get qualitative data, which was later utilized when the sequences were considered for detailed analyses using the coupled thermal-hydraulic and 3-D reactor dynamics code HEXTRAN [1].

The RELAP5/MOD3.1 analyses results showed that continuous long-term boilingcondensing mode did not develop. Instead it was typical that one or sometimes more boiling-condensing mode phases took place during an accident but they lasted so short time that a serious boron dilution problem was not discovered. The maximum boron dilution was only 300 ppm, which corresponds to 2.3 % reactivity. This kind of dilution would probably not cause a serious core power transient during natural circulation even if all the control rods would be above the core.

INTRODUCTION

1

The first scenarios of local boron dilution accidents concerning Loviisa NPP were analyzed in 1990. It was quite soon recognized that the loop thermal-hydraulics in the two-phase mode had a strong effect on the development of inherent boron dilution conditions. Therefore, scoping studies of different ATWS sequences were also made using RELAP5 code with the point kinetics core model.

The inherent boron dilution arises in the primary circuit when boiling-condensing cooling mode prevails. Boiling-condensing mode occurs when coolant boils in the pressure vessel and steam condenses in the steam generators forming a low boron concentration water plug in the cold leg loop seal. Very detailed description of the thermal hydraulics and core neutronics is necessary to reliably analyze the event. It was found that only 3-D modeling of neutronics is capable to predict the core reactivity level reliably in all conditions because axial and even radial density distributions in the core strongly changed during the transient due to different flow conditions: nominal forced flow, main circulation pump rundown, and different natural circulation phases. Using fewer dimensions in the core modeling in some cases changed the whole accident scenario with respect to the occurrence of inherent boron dilution.

The amount of the primary coolant mass lost during the pressure increase and after stop of the reactor coolant pumps (RCP) depends crucially on the fission power behavior of the core. In the beginning of cycle (BOC) conditions, when the reactivity feedback of coolant density is very weak, there must be boiling in order to decrease the fission power, and the coolant mass inventory can decrease to such low level that boiling-condensing mode occurs. In the middle of cycle (MOC) conditions, threat of inherent boron dilution during ATWS cases is over because of clearly stronger feedback of coolant density. The studies with the different core models indicated that reliable fission power prediction during the transient was only achieved with a 3-D core model describing neutronics and flow channels of the fuel assemblies individually. Using less dimensions in the core modeling did in some cases change the whole accident scenario with respect to the occurrence of inherent boron dilution, even though the model was separately validated both in nominal and natural circulation flow conditions.

Mixing provides an effective natural defense against severe reactivity excursions. Mixing occurs already in the steam generator in the build up phase of the diluted water plug and later in the reactor pressure vessel downcomer and in the lower plenum, when the diluted plug starts to move towards the core. Consequences of a reasonably conservative 50 % diluted water plug reaching the core with natural circulation would be limited to heat transfer crisis and consequent temporary fuel cladding overheating. High fuel temperatures are not to be expected with natural circulation.

It should also be emphasized that a common cause failure causing mechanical jamming of all control rods in the VVER-440 reactor is considered to be highly

improbable. Drop of at least some of the rods help the shutdown of the core to such an extent that natural circulation is not disturbed. In the case of electrical failure even delayed scram actuated by the operator effectively eliminates the consequences of possible diluted water plugs.

In 1996 RELAP5/MOD3.1 computer code was applied in the ATWS analysis of a regulating control rod group withdrawal from 1 % power level. When RCPs are not running and the coolant inventory is reduced in the primary circuit, it is possible that two-phase natural circulation is interrupted when liquid level decreases below hot leg elevation. The main goal of the analysis was to investigate if during the accident this phenomenon takes place and a boiling-condensing mode develops. If it does, there is a possibility that steam generated in the core flows to the steam generators, condenses and forms a diluted water plug in the cold leg loop seal. The analysis concentrated on the formation of the diluted plug and less attention was paid on the reactivity effect when the diluted plug flows into the core after restart of the two-phase natural circulation.

The shortcoming of the core model in the RELAP5/MOD3.1 code in this kind of event is that it cannot calculate the change in axial power profile when a control rod moves upwards and when a diluted water plug flows into the core. On the other hand, the effect of the control rod movement can be taken into account in the point kinetics model in such a way that the total power generation in the core is tuned to correspond the real power generation. Control rod group withdrawal is given in the code input so that the insertion of reactivity is based on the elevation where the withdrawal starts and it changes linearly as a function of control rod position. Additionally, also reactivity feedback from coolant density, fuel temperature and boron concentration is needed.

Several parameter variations were carried out and the main interest was focused on the reactivity worth of the control rod group withdrawal, which mainly depends on the initial position of the control rod. Therefore, because of strong reactivity variations from the control rod group withdrawal, the feedback inaccuracy of point kinetics model from coolant density and fuel temperature at least partly disappeared.

The selection of RELAP5/MOD3.1 code to these analyses can be justified since the main goal of the analyses was to get qualitative data, which was later utilized when the sequences for detailed analyses using the 3-D reactor dynamics code HEXTRAN [1] were considered.

2 NODALIZATION MODEL

There are two VVER-440 units at the Loviisa site and Unit 1 was chosen as a reference unit. Basically both units are similar but there are some differences like a little higher (approx. 4 %) primary coolant mass flow rate in Unit 2.

The input model included a detailed description of the primary circuit with all six loops modeled separately. In Figures 2-1 and 2-2 the nodalization model of pressure vessel and one of the six loops is depicted, respectively.

Concerning pressure vessel nodalization one important feature can be mentioned. The volume in the upper plenum at the hot leg elevation (volume # 5) should locate at the hot leg elevation and should have the height of the hot leg pipe diameter. The reason for this is when the liquid level in the pressure vessel decreases below the hot leg elevation, the flow at the same time changes from two-phase to single-phase steam flow. Higher volume was found to have a distinct effect on the results.

As Figure 2-2 shows, Loviisa has a unique feature since there are two loop seals in the primary loop. One is in the hot leg and the other in the cold leg. Also reactor coolant pump is different from a typical one. Suction takes place from the side and discharge is downwards.

Figure 2-3 shows the nodalization model of the pressurizer. As one can see pressurizer is connected to two hot legs (YA13 and YA14). Pressurizer pressure vessel was divided into 15 volume.

High-pressure injection (HPI), make-up injection, letdown and also primary coolant purification systems were modeled as shown in figure 2-4.

The secondary side included a detailed modeling of each steam generator and steam lines to the turbines. Also all the main, emergency and auxiliary emergency feed water systems were modeled as shown in Figure 2-5. Secondary side was divided only into three stacked volumes on the heat transfer tube area. The height of the bottom volume was 0.75 m, the middle volume 0.69 m and the top volume 0.549 m. During the accident, however, liquid level in steam generators decreased and the number of steam generator secondary side volumes can be considered too small. This is due to the fact that RELAP5 tends to overestimate heat transfer in steam generator when liquid level decreases. A good heat transfer rate is predicted from primary to secondary side in the volumes until practically all the water has boiled off and void fraction in the volume becomes 1.0. This kind of behavior results in unrealistic coolant temperature behavior in the cold leg. When secondary side volume dries out, heat transfer to the secondary side stepwise decreases and cold leg coolant temperature stepwise increases. This phenomenon was also seen in these analyses, especially in the cases where steam generators liquid level decreased slowly.

3 ASSUMPTIONS AND ANALYZED CASES

As a reference case an earlier calculation, which was carried out using 3-D reactor dynamics code HEXTRAN, was used. In that case control rod group withdrawal took place from 1 % power level assuming 2.2 % reactivity worth of the control rod and the initial position of the rod 2 m below the top of the core. This assumption made it possible to supply maximum reactivity during withdrawal since, according to the Technical Specifications, control rods are not allowed to locate deeper during a hot standby situation.

In order to get the result of RELAP5/MOD3.1 calculation correspond the reference result, some tuning calculations were carried out. During these calculations reactivity feedback data was tuned to get approximately equal total reactor power at the end of withdrawal as in the reference case.

In RELAP5/MOD3.1 calculation the reactivity insertion as a result of the control rod group withdrawal was modeled, e.g. in the base case, in such a way that reactivity increased linearly from 0 to 3.6 \$ in 100 s. This was due to the fact that the initial position of the control rod was the lowest allowed and withdrawal speed was 2 cm/s. The calculation was continued in each case at least up to 30 min. Reactor scram was not assumed to take place from any reactor protection signal during this period. However, it is realistic to assume that after some time (30 min) the operators are able to insert the control rods into the core e.g. by disconnecting the electricity from them. Then at least the rod, which was withdrawn, drops down into the core because it could not be mechanically stuck.

In one case analysis was continued up to 60 min without reactor scram since the accident had developed to a boiling-condensing mode and the length of the mode was examined. After the reactor trip starting of the boiling-condensing mode is not very probable since there is not any leakage in the primary circuit. When the control rods are in the core the reactor can also tolerate more dilution than in the case when the control rods are above the core.

To maximize decay heat power initial power history was assumed to be such that fuel had been in the reactor for two years in average. About two days earlier the reactor had been scrammed and the operators were returning it back to the power so that the reactor had been 15 min at 1 % power level. This kind of power history results to the state where both fission power and decay heat power are 0.5 % of the nominal full power. On the other hand, to get the weakest reactivity feedback and thus to maximize boiling in the core, BOC reactivity feedback was assumed. Reactivity dependency from coolant density, fuel temperature and coolant boron concentration is presented in the Appendix in RELAP5 input format.

In the analysis it was assumed that one out two emergency feedwater pumps is available and secondary side pressure was approximately at the opening pressure of the turbine bypass valves (4.7 MPa). It was also assumed that one out of two high head boron injection pumps is available and both HPI pumps from one redundancy. These assumption were not, however, considered to have any greater significance to the results since the actuation signal was not expected to turn on, at least not in the early phase of the accident. Moreover, due to the shut-off head of the HPI pumps, the HPI system is capable to inject ECC water into primary circuit only when pressure is less than 12.5 MPa. All other ECC and normal operating systems were assumed to operate as designed including the letdown system.

The fuel gap width was adjusted to get the mean fuel temperature of 530 °C as in HEXTRAN run. Initial boron concentration was assumed to be 1646 ppm. Main primary and secondary side parameter values are presented in Table 2-1.

The effect of reactivity worth was studied in such a way that the withdrawal started from different elevations. Altogether six different variations were analyzed. The initial control rod position and reactivity worth in each case is presented in Table 2-2. The difference between case 1 and 2 was due to the fact that the case 2 was calculated in order to find out the effect of unrealistic high (4 \$) control rod reactivity worth. When withdrawal begins from 2 m, 3.6 \$ reactivity worth can be considered a conservative value.

In addition to 6 cases presented in Table 2-2, two parameter variations were carried out for the case 6 studying the effect of secondary side pressure and feedwater capacity.

4 ANALYSIS RESULTS

4.1 Base case, reactivity of withdrawal 3.6 \$

As already mentioned an event, where control rod is locating 2 m below the top of the core and withdrawal velocity is 2 cm/s, was chosen as a base case. The case was used to check that the reactor power at the end of withdrawal was close to the power calculated using HEXTRAN. In Figures 4.1-1...4.1-12 the behavior of the main parameters during calculation is presented.

As a result of the control rod group withdrawal reactor power begins to increase reaching the maximum power of 2342 MW at the point of time when control rod movement stops (Figure 4.1-1). After that feedback from coolant density or core void fraction (Figure 4.1-4) makes core power to decrease first slowly but after 140 s faster, because as a result of low level (< 1.6 m) in steam generators RCP stops in the corresponding loop. In this case all RCPs stop at the same time since in the early phase of the accident the steam generator liquid level behaves in the same way in each steam generator (Figure 4.1-9). Also primary pressure increases in the early phase reaching maximum 16.6 MPa at 205 s (Figure 4.1-7). Thereafter two-phase natural circulation phase begins. Hot leg void fraction maintains at approximately 0.6 (Figure 4.1-5) and the mass flow rate into the core at about 400 kg/s (Figure 4.1-6). Steam condenses totally in the steam generators and coolant is approximately 10 °C subcooled when entering the core (Figure 4.1-2). From 500 s onward the situation remains rather constant till the end of the calculation.

Boron concentration does not decrease in the core volumes from the initial value (Figure 4.1-10). Instead it slightly increases in the early phase of the accident because a lot of steam is discharged through the pressurizer safety valves. At certain point of time during the calculation boron concentration in each cold leg loop seal decreases below the initial value (Figure 4.1-11) as a result of steam condensation in the steam generators. Degradation is, however, rather small (< 100 ppm) and therefore it does not cause any safety problem.

In the beginning of the accident reactivity increases very strongly (Figure 4.1-12) reaching the maximum value of 0.58 \$ at 20 s. After that point of time feedback, especially from coolant density, becomes effective and reactivity begins to decrease.

At the moment when maximum core power is reached reactivity is already less than 0.1 \$.

4.2 Base case, reactivity of withdrawal 4.0 \$

Since previous case did not result in boiling-condensing mode, it was decided to increase reactivity from the withdrawal up to 4.0 \$. This value can be considered very conservative because the initial position of the control rods and the withdrawal time was maintained the same.

The increased reactivity results, of course, in greater maximum power (2588 MW) at 100 s (Figure 4.2-1). After that the behavior of power does not essentially differ from the power behavior in the previous case. RCPs stop some time earlier (130 s) due to faster degradation of the steam generators liquid level (Figure 4.2-9). This also results in earlier power degradation due to the reactivity feedback. Just before the calculation was stopped fission power fades away and the situation develops to a boiling-condensing mode in which the two-phase natural circulation stops. The analysis was not, however, continued since at 30 min the operators can be assumed to be able to get at least the withdrawn control rod into the core.

In spite of the greater maximum power in the early phase of the accident primary pressure does not rise as high as in the previous case (Figure 4.2-7). This results from the fact that power degradation begins 10 s earlier due to stop of RCPs.

As in the previous case boron concentration in the core volumes does not decrease below the initial value (Figure 4.2-10). In the later phase boron concentration strongly increases because boiling in the core. Boron concentration in the cold leg loop seals behaves also like in the previous case and not any low boron concentration water plugs are predicted to form (Figure 4.2-11).

Also the behavior of reactivity is similar if the last 100 s is not taken into account which indicates the beginning of the boiling-condensing mode. The behavior of void fraction in the core (Figure 4.2-4) and in hot legs (Figure 4.2-5) as well as the core inlet mass flow rate (Figure 4.2-6) at the end of calculation also indicates the beginning of the boiling-condensing mode.

As a conclusion it can be mentioned that the increase of reactivity worth from 3.6 \$ to 4.0 \$ has only a rather mild effect on the results during the first 30 min.

4.3 Reactivity of withdrawal 2.2 \$

In this case withdrawal reactivity was decreased down to 2.2 \$. This meant that the initial position of the control rod was 1.22 m below the top of the core and withdrawal time 61 s.

When less reactivity is inserted the reactor maximum power does not rise as high as in the previous cases; only up to 1707 MW (Figure 4.3-1). Smaller reactor power also causes slower degradation of the steam generators liquid level (Figure 4.3-9) and later stop (175 s) of RCPs. At about 800 s boiling in the core begins continuing almost continuously to the end of the calculation. This results in strong reactivity feedback (Figure 4.3-12) and at about 15 min fission power fades away. Steam is not, however,

able to flow into the steam generators because of water in the hot leg loop seals blocks the steam flow. At 20 min steam pushes the hot leg loop seals open and flows into the steam generators condensing there. As a result primary pressure decreases rapidly from 13.6 MPa down to 12.2 MPa (Figure 4.3-7). This makes two-phase natural circulation to restart but only for a short period (Figure 4.3-6). When the hot leg loop seals fill with water the earlier boiling mode is restored.

Boron concentration in the core volumes behaves as in two previous cases; i.e. it does not decrease below the initial value during the calculation (Figure 4.3-10). Instead the situation in the cold leg loop seals is different. In three loops boron concentration decreases below initial concentration (Figure 4.3-11). In YA13 and YA14 loops boron concentration decreases less than 100 ppm but in YA11 loop minimum concentration is 300 ppm below initial value. No problem is expected if the control rods are in the core but if they are above some kind of power transient can be expected. The power transient depends on the size of diluted water plug, entrance velocity and core reactivity level when the water plug enters the core.

It can be concluded that a continuous boiling-condensing mode was not predicted but occasional boiling-condensing mode was developed during the event. This mode is characterized by sporadic steam flow through hot leg loop seals and it can be called a bubbling mode.

4.4 Reactivity of withdrawal 1.4 \$

This case dealt with the event in which initial control rod position was 0.78 m below the top of the core. Withdrawal time was 39 s and reactivity worth 1.4 \$.

As a result of withdrawal maximum power reaches "only" 1083 MW (Figure 4.4-1). Power behavior shows that this case does not develop to a bubbling mode like the previous case. This can also be seen from the behavior of the core entrance mass flow rate (Figure 4.4-6), which never decreases as small as in bubbling mode. Also pressure vessel liquid level maintains above hot leg elevation during the calculation (Figure 4.4-3).

As for boron concentration the situation also looks good since both in the core volumes (Figure 4.4-10) and in the cold leg loop seals (Figure 4.4-11) boron concentration never decreases below the initial value.

1.4 \$ reactivity worth as a result of control rod group withdrawal is not enough to remove so much coolant from the primary circuit through the safety and relief valves that the liquid level in the pressure vessel would decrease below hot leg elevation. The event can be considered as a "traditional" ATWS where reactor power finally settles down to a certain low level.

4.5 Reactivity of withdrawal 1.8 \$

Since in the previous case reactivity effect caused by the withdrawal was too weak, it was decided to increase reactivity assuming that the initial location of the control rod was 1 m below the top of the core. Thus withdrawal time was 50 s and the reactivity effect 1.8 \$ which was 50 % of the base case reactivity.

The peak power in this case reaches 1438 MW (Figure 4.5-1). Power behavior shows that fission power does not fade away during the calculation, which is a clear indication, that two-phase natural circulation continues throughout the analyzed period. This can also be seen from the behavior of the pressure vessel liquid level (Figure 4.5-3), void fraction in the core (Figure 4.5-4) and the core entrance mass flow rate (Figure 4.5-6).

Boron concentration behavior is also favorable due to the primary circuit behavior. Boron concentration in the core volumes (Figure 4.5-10) and in the cold leg loop seal (Figure 4.5-11) does not decrease below the initial boron concentration except temporarily in the loop YA13 (<50 ppm).

As a conclusion it can be mentioned that a withdrawal, starting from 1 m depth, is not able to decrease primary coolant mass inventory so much that liquid level in the pressure vessel would drop below the hot leg elevation and two-phase natural circulation would stop.

4.6 Reactivity of withdrawal 1.9 \$

Since the previous case did not result in boiling-condensing mode, it was decided still increase the withdrawal depth; this time, however, only a little bit from 1 m to 1.06 m. This increased reactivity worth from 1.8 s to 1.9 s. The reason for such a small increment was that there was a feeling that the "edge" was quite close.

It can be easily seen from the reactor power behavior that the situation changes drastically compared with the previous one (Figure 4.6-1). When reactor remains on decay power it means that two-phase natural circulation stops due to the pressure vessel liquid level dropping below hot leg elevation (Figure 4.6-3). This time it was also decided to find out how long time it takes until two-phase natural circulation restarts and how the reactor behaves during that period. Therefore calculation was continued up to 1 h point of time.

The reactor is under boiling-condensing mode altogether for 35 min (Figure 4.6-6). At 1500 s two-phase natural circulation restarts for a short period but it is not until at 3100 s when the two-phase natural circulation restarts and continues at least up to the point of time when calculation is stopped. The reason for the second restart is that large amount of steam enters the steam generators and condenses there and as a result pressurizer level decreases below the HPI pumps set point. At the same time primary pressure decreases below the HPI pumps shut-off head and water draining from the pressurizer together with high-pressure injection increases the pressure vessel coolant mass inventory so much (Figure 4.6-8) that two-phase natural circulation can restart.

Like in all other cases boron concentration in the core volumes does not decrease below the initial value (Figure 4.6-10). Instead in three cold leg loop seals boron concentration decreases below the initial concentration after 1500 s (Figure 4.6-11). The drop is, however, rather small since minimum concentration in the loop YA16 is only approximately 200 ppm below the initial concentration.

4.6.1 Reactivity of withdrawal 1.9 \$ and turbine bypass not available

In the all calculated cases it was assumed that turbine bypass valves are operating as designed. The valves start to open at 4.7 MPa and are fully open at 5.1 MPa. This resulted in situation in which heat transfer to the secondary side was better than in the case if only secondary side relief valves would be available. These vales start to open at 5.2 MPa and are fully open at 5.4 MPa. Therefore it was decided to calculate a case where only secondary side relief valves were assumed to be available and thus the initial secondary side pressure was raised from 4.7 MPa up to 5.2 MPa. As a result of this assumption ΔT between primary and secondary side became smaller which decreased heat transfer between primary and secondary side.

Reactor power behavior in this case is very much the same as in the previous case (Figure 4.6.1-1). Maximum power is a little bit smaller and fission power fades away somewhat earlier. The former is due to the fact that reactivity feedback from coolant density is slightly stronger and the latter results from earlier stop of two-phase natural circulation (Figure 4.6.1-6) since pressure vessel liquid level decreases more rapidly below the hot leg elevation (Figure 4.6.1-3). Core entrance mass flow rate behavior shows that like in the previous case two-phase natural circulation restarts at 1500 s. However, now the two-phase natural circulation does not quickly stop again but after a short degradation period it seems to start again. The reason for this is that as a result of condensation in the steam generators, liquid in the pressurizer is discharged to the pressure vessel raising the liquid level (Figure 4.6.1-3). Another reason is that the primary coolant mass inventory does not decrease as much as in the previous case (Figure 4.6.1-8).

Boron concentration behavior in the core volumes (Figure 4.6.1-10) and in the cold leg loop seals (Figure 4.6.1-11) is almost similar in both cases.

Weaker heat transfer does not seem to have any major effect on the results. The situation seems even more favorable during the first 30 min if the criterion is the generation of the boiling-condensing mode.

4.6.2 Reactivity of withdrawal 1.9 \$ and one main feedwater pump available

In the second variation one out of four feedwater (FW) pumps was assumed to be available in addition to one emergency feedwater (EFW) pump which was available in all other cases.

During the first 500 s reactor power behavior is quite close to the behavior in the two previous cases (Figure 4.6.2-1). Fast fission power degradation as a result of RCPs stop begins this time a little bit later because liquid level in the steam generators decreases more slowly (Figure 4.6.2-9). After 500 s power behavior is, however, completely different. This is due to the fact that as a result of better heat transfer to the secondary side primary coolant mass inventory drops clearly less than in the reference cases (Figure 4.6.2-8). Therefore pressure vessel liquid level never decreases below the hot leg elevation (Figure 4.6.2-3) and boiling-condensing mode cannot start. Two-phase natural circulation maintains good during the whole calculation (Figure 4.6.2-6) and the system reaches a stationary state where heat generated in the core is removed from the primary coolant by the steam generators. The only disturbing factor is the

letdown system, which decreases the primary coolant mass inventory as a result of high pressurizer liquid level. If the operators do not do anything the degradation of the mass inventory later ends the stationary state.

As a concluding remark it can be mentioned that one main FW pump during the accident improves essentially the situation and the beginning of boiling-condensing mode is not predicted during 30 min.

5 RUN STATISTICS

The analyses were run on DEC 3000 AXP Model 700 workstation. The input model included 587 volume, 680 junctions and 376 heat structures with 1476 mesh points. Each calculation was carried out using a maximum time step size of 0.04 s from 0 s to 300 s. After that the maximum time step size was increased to 0.1 s and it was used during rest of the calculation. Run time statistics from 0 s to 300 s and from 300 s to 1800 s is presented in Table 5-1. The average grind time

CPU-time / [(number of vol's) (number of time steps)]

was about 0.33 ms.

6 CONCLUSIONS

This report deals with the regulating control rod group withdrawal from an initial 1 % power level. The analysis was carried out using RELAP5/MOD3.1 computer code and it focused on studying the effect of the initial control rod location to the primary coolant boron dilution.

The weakness of RELAP5/MOD3.1 code in the analysis of reactivity accidents is the fact that it only has the point kinetics calculation capability, which does not take into account the change in the axial power profile during the control rod group withdrawal. One should, however, bear in mind that from the boron dilution point of view this shortcoming is not significant. The aim of the analysis was find out situations where boiling-condensing mode begins and as a result a diluted water plug may develop in the cold leg loop seal. The analysis covers quite many variations of the initial control rod location. Thereby the feedback inaccuracy of the coolant density and the fuel temperature can be considered to have only minor effect as compared to the broad variation of the control rod reactivity worth.

The results indicate that the continuous boiling-condensing mode does not develop in the analyzed cases. In some cases the occasional boiling-condensing or bubbling mode was predicted. This kind of situation does not result in a serious boron dilution problem, because steam condensation followed by dilution takes place only temporarily when steam can flow through the hot leg loop seals and the steam generator primary side is filled with water. Between bubbling periods primary coolant is getting "power" to be able to bubble again. The maximum dilution in the cold leg loop seal was only about 300 ppm, which corresponds approximately 2.3 % reactivity. During natural circulation this kind of dilution will not probably cause any serious power transient though the control rods are above the core. Moreover, the diluted water plug hardly flows into the core without any mixing on the way.

It should be pointed out that due to the numerical diffusion, the boron concentration behavior in different parts of the primary circuit is not predicted correctly. Therefore, more attention should be paid to phenomena like bubbling of the loop seals and fading away of the fission power than to the value of the boron concentration. Also from the operators point of view almost the only indication of the boiling-condensing mode is the information received from the fission power measurement since there is not any pressure vessel liquid level measurement in Loviisa. It is a clear indication of boilingcondensing if fission power fades away in case where control rods are above the core and no boron is injected into the primary circuit.

Another important feature is also the initial position of the control rod since the reactivity worth was found to be a sensitive parameter. When initial position was changed only from 1 m to 1.05 m (1.8 $\$ \rightarrow 1.9 \$$), thermal-hydraulic behavior changed considerably. Good two-phase natural circulation ended and the bubbling mode began.

An important finding was also that even if one MFW pump is available, the situation is considerably improved because one MFW pump is capable to maintain steam generators liquid level except in the early phase of the accident. A good heat transfer to the secondary side ensures that the primary coolant mass inventory does not decrease so much that the pressure vessel liquid level would drop below the hot leg elevation.

REFERENCE

[1] R. Kyrki-Rajamäki, HEXTRAN: Three Dimensional Reactor Dynamics Code for VVER-reactor Cores. Proceedings of the International Topical Meeting on Advances in Mathematics, Computations and Reactor Physics. Pittsburgh, PA, USA, 28.4. - 2.5.1991

Parameter	Initial value	
Pressure	[MPa]	
Upper part of pressurizer	12.30	
Hot leg	12.33	
Cold leg	12.69	
Steam generators	4.71	
Steam header	4.71	
Pressure difference	[MPa]	
Pressure vessel inlet - exit	0.35	
Across core	0.23	
Across reactor coolant pump	0.46	
Temperature	[°C]	
Hot leg	261.1	
Cold leg	260.9	
Mass flow rate	[kg/s]	
Downcomer	8709	
Core	7710	
Core bypass	11.5 %	
Steam flow	8.9	
Miscellaneous		
Pressurizer liquid level	3.88 m	
Steam generator liquid level	2.22 m	
Core power	13.84 MW	
Steam generators power	16.46 MW	
Average linear power	1.44 W/cm	
Maximum linear power	3.25 W/cm	

Table 2-1Initial value of the main parameters

Case	Position of the control rod	Reactivity worth	
	cm	\$	
1	200	3.6	
2	200	4.0	
3	122	2.2	
4	78	1.4	
5	100	1.8	
6	105	1.9	

Table 2-2 Initial control rod position and reactivity worth

Reactivity worth [\$]	$\begin{array}{ c } CPU time [s] \\ 0 \rightarrow 300 \end{array}$	Average time step size [ms]	CPU time [s] $300 \rightarrow 1800$	Average time step size [ms]
3.6	1893	30.33	2913	99.86
2.2	2149	27.95	3073	99.91
1.8	2049	28.70	3066	99.97
1.4	1442	40.00	2976	100.00
1.9	1969	28.72	2961	99.97
1.9 Var. 1	2009	29.65	3086	100.00
1.9 Var. 2	2110	27.25	3006	99.95

Table 5-1Run time statistics

Figure 2-1 Pressure vessel nodalization

Figure 2-2 Loop YA11 nodalization

.

Figure 2-3 Pressurizer nodalization

Figure 2-4 HPI, make-up, letdown and purification systems nodalization

Figure 2-5 Steam generator YB11, steam line and feedwater injection system nodalization

Figure 4.1-1

Figure 4.1-2

.

Figure 4.1-3

Figure 4.1-4

I.

ſ

Figure 4.1-5

Figure 4.1-6

Figure 4.1-7

20

; ·

Figure 4.1-9

Figure 4.1-10

Figure 4.1-11

Figure 4.1-12

Figure 4.2-1

Figure 4.2-3

Figure 4.2-4

ſ

Figure 4.2-5

Figure 4.2-6

Figure 4.2-7

Figure 4.2-8

I.

r

Figure 4.2-9

Figure 4.2-11

Figure 4.2-12

I

,

Figure 4.3-1

Figure 4.3-2

Figure 4.3-3

Figure 4.3-4

[

Figure 4.3-5

Figure 4.3-6

Figure 4.3-7

Figure 4.3-8

Figure 4.3-9

Figure 4.3-10

Figure 4.3-11

Figure 4.3-12

Figure 4.4-1

Figure 4.4-2

Figure 4.4-3

Figure 4.4-4

ĺ

Figure 4.4-5

Figure 4.4-6

Figure 4.4-7

Figure 4.4-8

Figure 4.4-9

Figure 4.4-10

Figure 4.4-11

Figure 4.5-1

Figure 4.5-2

Figure 4.5-3

Figure 4.5-4

ſ

Figure 4.5-5

Figure 4.5-6

Figure 4.5-7

Figure 4.5-8

Figure 4.5-9

Figure 4.5-10

•

Figure 4.5-11

Figure 4.5-12

[

Figure 4.6-1

Figure 4.6-2

Figure 4.6-3

Figure 4.6-4

Figure 4.6-5

Figure 4.6-6

Figure 4.6-7

Figure 4.6-8

Figure 4.6-11

52

_

Figure 4.6.1-1

Figure 4.6.1-2

Figure 4.6.1-3

Figure 4.6.1-4

Figure 4.6.1-5

Figure 4.6.1-6

Figure 4.6.1-7

Figure 4.6.1-8

[

Figure 4.6.1-9

Figure 4.6.1-11

Figure 4.6.1-12

Figure 4.6.2-1

Figure 4.6.2-2

Figure 4.6.2-3

Figure 4.6.2-4

[

Figure 4.6.2-5

Figure 4.6.2-6

Pressure [MPa]

Figure 4.6.2-7

Figure 4.6.2-8

Figure 4.6.2-9

Figure 4.6.2-10

.

Figure 4.6.2-11

64

APPENDIX

Reactor kinetics input

٠

<pre>*mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm</pre>						
*	point	-2 table4	-3	-4	-5	-67
* React	or kinetic:	s informat	ion card			
30000001	gamma-ac	13.8378+6		274 0	1 0	0 621
* Fissi	on product	decay inf	ormation	274.0	1.0	0.031
30000002	ang79-1	decay Int	Ormacion			
* Power	history d:	-+				
30000401	1375 0+6]e			
30000401	1373.0.0	35 0	wr. hr			
30000402	13 75+6	1000 0	111			
30000403	13.73+0	1000.0	sec			
30000011	ann	5				
***********	900					
* Kipot:	indunation					mmmmmmmmmmm
*		2 Labie C		uala	- E	с п
30001911	300 0	400 0	500 0	600 0	-5	* Demeditor
30001911	700.0	400.0	750.0	800.0	65U.U 1000 0	* Density
*	/00.0	725.0	/50.0	800.0	1000.0	
30001921 *	473.0	633.0	* Moderat	or T, Feed	back = ZER	0
30001931 *	500.0	700.0	803.0	900.0	1100.0	* Doppler
30001941	0.000	0.375	0.750	1.050	1.500	* Boron
30001942	1.875					
*mmmmmmmm	mmmmmmmmm	mmmmmmm	nmmmmmmmm	mmmmmmmm	mmmmmmmm	mmmmmmmmmm
* Kineti	lcs feedbac	k table				
*	1	2	-3	-4	-5	-67
30002001	00000000	-6.258		30002002	00000001	-11.836
30002003	00000002	-16.930		30002004	00000003	-20.697
30002005	00000004	-25.895		30002006	00000005	-29.860
30002007	00000100	-8.216		30002008	00000101	-13.706
30002009	00000102	-18.718		30002010	00000103	-22.425
30002011	00000104	-27.540		30002012	00000105	-31.442
30002013	00000200	-9.109		30002014	00000201	-14.558
30002015	00000202	-19.534		30002016	00000203	-23.213
30002017	00000204	-28.291		30002018	00000205	-32.164
30002019	00000300	-9.900		30002020	00000301	-15.313
30002021	00000302	-20.255		30002022	00000303	-23.911
30002023	00000304	-28.955		30002024	00000305	-32.803
30002025	00000400	-11.434		30002026	00000401	-16.777
30002027	00000402	-21.657		30002028	00000403	-25.265
30002029	00000404	-30.244		30002030	00000405	-34.042
30002031	00010000	-6.258		30002032	00010001	-11 836
30002033	00010002	-16,930		30002034	00010001	-20 697
30002035	00010004	-25.895		30002036	00010005	-29 860
30002037	00010100	-8,216		30002038	00010000	-13 706
30002039	00010102	-18 718		30002040	00010101	-22 /25
30002041	00010104	-27 540		30002040	00010105	-31 //3
30002043	00010200	-9 109		30002042	00010105	-JI.442 -1/ 550
30002045	00010200	-10 52/		30002044	00010201	-14+000
30002043	00010202	-28 201		30002040	00010203	-43,413 -30 164
30002049	00010204	-9 900		30002040	00010203	-J2.104 15 217
20002042	00010000	2.200		20002020	00010201	-TO'OTO

_____. . .

30002051	00010302	-20.255	30002052	00010303	-23.911
30002053	00010304	-28.955	30002054	00010305	-32.803
30002055	00010400	-11.434	30002056	00010401	-16.777
30002057	00010402	-21.657	30002058	00010403	-25.265
30002059	00010404	-30.244	30002060	00010405	-34.042
30002061	01000000	4.697	30002062	01000001	-1.502
30002063	01000002	-7.165	30002064	01000003	-11.355
30002065	01000004	-17.140	30002066	01000005	-21.555
30002067	01000100	2,932	30002068	01000101	-3.187
30002069	01000102	-8.778	30002070	01000103	-12.914
30002000	01000104	-18,625	30002072	01000105	-22.983
30002072	01000200	2,127	30002074	01000201	-3,957
30002075	01000202	-9.514	30002076	01000203	-13.626
30002073	01000202	-19 302	30002078	01000205	-23.635
20002077	01000204	1 111	30002080	01000301	-4 637
20002079	01000300	-10 165	30002082	01000303	-14 255
30002081	01000302	-10.103	30002082	01000305	-24 211
30002083	01000304	-19.902	30002084	01000303	-5 959
30002085	01000400	11 420	30002088	01000401	-15 477
30002087	01000402	-11.429	30002088	01000405	-15.4//
30002089	01000404	-21.065	30002090	010100405	-25.330
30002091	01010000	4.697	30002092	01010001	-1.502
30002093	01010002	-7.165	30002094	01010003	-11.355
30002095	01010004	-17.140	30002096	01010005	-21.555
30002097	01010100	2.932	30002098	01010101	-3.18/
30002099	01010102	-8.778	30002100	01010103	-12.914
30002101	01010104	-18.625	30002102	01010105	-22.983
30002103	01010200	2.127	30002104	01010201	-3.957
30002105	01010202	-9.514	30002106	01010203	-13.626
30002107	01010204	-19.302	30002108	01010205	-23.635
30002109	01010300	1.414	30002110	01010301	-4.637
30002111	01010302	-10.165	30002112	01010303	-14.255
30002113	01010304	-19.902	30002114	01010305	-24.211
30002115	01010400	0.031	30002116	01010401	-5.958
30002117	01010402	-11.429	30002118	01010403	-15.477
30002119	01010404	-21.065	30002120	01010405	-25.330
30002121	02000000	12.932	30002122	02000001	6.265
30002123	02000002	0.170	30002124	02000003	-4.340
30002125	02000004	-10.571	30002126	02000005	-15.329
30002127	02000100	11.323	30002128	02000101	4.728
30002129	02000102	-1.300	30002130	02000103	-5.762
30002131	02000104	-11.925	30002132	02000105	-16.631
30002133	02000200	10.590	30002134	02000201	4.028
30002135	02000202	-1.971	30002136	02000203	-6.410
30002137	02000204	-12.543	30002138	02000205	-17.226
30002139	02000300	9.941	30002140	02000301	3.408
30002141	02000302	-2.564	30002142	02000303	-6.984
30002143	02000304	-13.089	30002144	02000305	-17.751
30002145	02000400	8.681	30002146	02000401	2.204
30002147	02000402	-3.716	30002148	02000403	-8.098
30002149	02000404	-14.150	30002150	02000405	-18.772
30002151	02010000	12.932	30002152	02010001	6.265
30002153	02010002	0,170	30002154	02010003	-4.340
30002155	02010004	-10,571	30002156	02010005	-15.329
30002155	02010100	11 323	30002158	02010101	4.728
30002157	02010102	-1.300	30002150	02010103	-5.762
30002133	02010102	-11 025	30002100	02010105	-16 631
~~~~~	020×0×04	*******	50002102		

30002163	02010200	10.590	30002164	02010201	4.028
30002165	02010202	-1.971	30002166	02010203	-6.410
30002167	02010204	-12.543	30002168	02010205	-17.226
30002169	02010300	9.941	30002170	02010301	3.408
30002171	02010302	-2.564	30002172	02010303	-6.984
30002173	02010304	-13.089	30002174	02010305	-17.751
30002175	02010400	8.681	30002176	02010401	2.204
30002177	02010402	-3.716	30002178	02010403	-8.098
30002179	02010404	-14.150	30002180	02010405	-18.772
30002181	03000000	19.187	30002182	03000001	12.163
30002183	03000002	5.740	30002184	03000003	0.983
30002185	03000004	-5.590	30002186	03000005	-10.612
30002187	03000100	17.709	30002188	03000101	10.751
30002189	03000102	4.388	30002190	03000103	-0.324
30002191	03000104	-6.836	30002192	03000105	-11.810
30002193	03000200	17.035	30002194	03000201	10.107
30002195	03000202	3.771	30002196	03000203	-0.920
30002197	03000204	-7.404	30002198	03000205	-12.357
30002199	03000300	16.438	30002200	03000301	9.537
30002201	03000302	3.226	30002202	03000303	-1.448
30002203	03000304	-7.907	30002204	03000305	-12.841
30002205	03000400	15.280	30002206	03000401	8.431
30002207	03000402	2.167	30002208	03000403	-2.472
30002209	03000404	-8.883	30002210	03000405	-13.779
30002211	03010000	19.187	30002212	03010001	12.163
30002213	03010002	5.740	30002214	03010003	0.983
30002215	03010004	-5.590	30002216	03010005	-10.612
30002217	03010100	17.709	30002218	03010101	10.751
30002219	03010102	4.388	30002220	03010103	-0.324
30002221	03010104	-6.836	30002222	03010105	-11.810
30002223	03010200	17.035	30002224	03010201	10.107
30002225	03010202	3.771	30002226	03010203	-0.920
30002227	03010204	-7.404	30002228	03010205	-12.357
30002229	03010300	16.438	30002230	03010301	9.537
30002231	03010302	3.226	30002232	03010303	-1.448
30002233	03010304	-7.907	30002234	03010305	-12.841
30002235	03010400	15.280	30002236	03010401	8.431
30002237	03010402	2.167	30002238	03010403	-2.472
30002239	03010404	-8.883	30002240	03010405	-13.779
30002241	04000000	21.736	30002242	04000001	14.567
30002243	04000002	8.008	30002244	04000003	3.151
30002245	04000004	-3.564	30002246	04000005	-8.694
30002247	04000100	20.315	30002248	04000101	13.209
30002249	04000102	6.708	30002250	04000103	1.894
30002251	04000104	-4.762	30002252	04000105	-9.847
30002253	04000200	19.667	30002254	04000201	12.590
30002255	04000202	6.115	30002256	04000203	1.320
30002257	04000204	-5.308	30002258	04000205	-10.373
30002259	04000300	19.093	30002260	04000301	12.042
30002261	04000302	5.591	30002262	04000303	0.813
30002263	04000304	-5.792	30002264	04000305	-10.838
30002265	04000400	17.980	30002266	04000401	10.978
30002267	04000402	4.572	30002268	04000403	-0.172
30002269	04000404	-6.730	30002270	04000405	-11.741
30002271	04010000	21.736	30002272	04010001	14.567
30002273	04010002	8.008	30002274	04010003	3.151

30002275	04010004	-3.564	30002276	04010005	-8.694
30002277	04010100	20.315	30002278	04010101	13.209
30002279	04010102	6.708	30002280	04010103	1.894
30002281	04010104	-4.762	30002282	04010105	-9.847
30002283	04010200	19.667	30002284	04010201	12 590
30002285	04010202	6 115	30002286	04010203	1 320
30002203	04010202	-5 308	30002288	04010205	-10 373
20002207	04010204	10 002	30002200	04010200	10.575
30002289	04010300	19.095	30002290	04010301	12.042
30002291	04010302	5.591	30002292	04010303	0.813
30002293	04010304	-5./92	30002294	04010305	-10.838
30002295	04010400	17.980	30002296	04010401	10.978
30002297	04010402	4.572	30002298	04010403	-0.172
30002299	04010404	-6.730	30002300	04010405	-11.741
30002301	05000000	23.966	30002302	05000001	16.669
30002303	05000002	9.992	30002304	05000003	5.045
30002305	05000004	-1.793	30002306	05000005	-7.020
30002307	05000100	22.597	30002308	05000101	15.361
30002309	05000102	8.740	30002310	05000103	3.834
30002311	05000104	-2.948	30002312	05000105	-8.131
30002313	05000200	21.973	30002314	05000201	14.764
30002315	05000202	8.168	30002316	05000203	3.282
30002317	05000204	-3.474	30002318	05000205	-8.638
30002319	05000300	21.421	30002320	05000301	14.236
30002321	05000302	7.663	30002322	05000303	2.793
30002323	05000304	-3.940	30002324	05000305	-9.086
30002325	05000400	20 348	30002326	05000401	13 212
30002323	05000402	6 682	30002328	05000403	1 844
30002327	05000402	-1 845	30002320	05000405	-9 956
20002323	05000404	22 045	30002330	05010001	16 669
20002331	05010000	23.900	30002332	05010001	10.009
20002333	05010002	-1 702	30002334	05010005	-7 020
30002335	05010004	-1./93	20002336	05010005	-7.020
30002337	05010100	44.597	30002338	05010101	12.301
30002339	05010102	8.740	30002340	05010103	3.834
30002341	05010104	-2.948	30002342	05010105	-8.131
30002343	05010200	21.973	30002344	05010201	14.764
30002345	05010202	8.168	30002346	05010203	3.282
30002347	05010204	-3.474	30002348	05010205	-8.638
30002349	05010300	21.421	30002350	05010301	14.236
30002351	05010302	7.663	30002352	05010303	2.793
30002353	05010304	-3.940	30002354	05010305	-9.086
30002355	05010400	20.348	30002356	05010401	13.212
30002357	05010402	6.682	30002358	05010403	1.844
30002359	05010404	-4.845	30002360	05010405	-9.956
30002361	06000000	24.973	30002362	06000001	17.619
30002363	06000002	10.888	30002364	0600003	5.901
30002365	06000004	-0.994	30002366	06000005	-6.264
30002367	06000100	23.629	30002368	06000101	16.334
30002369	06000102	9.658	30002370	06000103	4.712
30002371	06000104	-2.128	30002372	06000105	-7.355
30002373	06000200	23.016	30002374	06000201	15.748
30002375	06000202	9,097	30002376	06000203	4.169
30002377	06000204	-2.645	30002370	06000205	-7 252
30002379	06000300	22.474	30002370	06000203	15 230
30002391	06000302	22,47,7 8 601	20002380	06000301	3 200
30002301	06000304	-3 103	20002302	06000303	-0 -00
30002303	0600000400	21 /21	20002304	06000303	11 004
20002202	00000400	∠⊥•4∠⊥	20002280	00000401	14.224

30002387	06000402	7.637	30002388	06000403	2.757
30002389	06000404	-3.991	30002390	06000405	-9.149
30002391	06010000	24.973	30002392	06010001	17.619
30002393	06010002	10.888	30002394	06010003	5.901
30002395	06010004	-0.994	30002396	06010005	-6.264
30002397	06010100	23.629	30002398	06010101	16.334
30002399	06010102	9.658	30002400	06010103	4.712
30002401	06010104	-2.128	30002402	06010105	-7.355
30002403	06010200	23.016	30002404	06010201	15.748
30002405	06010202	9.097	30002406	06010203	4.169
30002407	06010204	-2.645	30002408	06010205	-7.853
30002409	06010300	22.474	30002410	06010301	15.230
30002411	06010302	8.601	30002412	06010303	3.689
30002413	06010304	-3.103	30002414	06010305	-8.294
30002415	06010400	21.421	30002416	06010401	14.224
30002417	06010402	7.637	30002418	06010403	2.757
30002419	06010404	-3.991	30002420	06010405	-9.149
30002421	07000000	25.915	30002422	07000001	18.507
30002423	07000002	11.726	30002424	07000003	6.701
30002425	07000004	-0.247	30002426	07000005	-5.559
30002427	07000100	24.595	30002428	07000101	17.245
30002429	07000102	10.517	30002430	07000103	5.532
30002431	07000104	-1.361	30002432	07000105	-6.631
30002433	07000200	23.993	30002434	07000201	16.669
30002435	07000202	9.966	30002436	07000203	4.999
30002437	07000204	-1.870	30002438	07000205	-7.120
30002439	07000300	23.460	30002440	07000301	16.160
30002441	07000302	9.478	30002442	07000303	4.527
30002443	07000304	-2.319	30002444	07000305	-7.553
30002445	07000400	22.426	30002446	07000401	15.171
30002447	07000402	8.531	30002448	07000403	3.611
30002449	07000404	-3.192	30002450	07000405	-8.393
30002451	07010000	25.915	30002452	07010001	18.507
30002453	07010002	11.726	30002454	07010003	6.701
30002455	07010004	-0.247	30002456	07010005	-5.559
30002457	07010100	24.595	30002458	07010101	17.245
30002459	07010102	10.517	30002460	07010103	5.532
30002461	07010104	-1.361	30002462	07010105	-6.631
30002463	07010200	23.993	30002464	07010201	16.669
30002465	07010202	9.966	30002466	07010203	4.999
30002467	07010204	-1.870	30002468	07010205	-7.120
30002469	07010300	23.460	30002470	07010301	16.160
30002471	07010302	9.478	30002472	07010303	4.527
30002473	07010304	-2.319	30002474	07010305	-7.553
30002475	07010400	22.426	30002476	07010401	15.171
30002477	07010402	8.531	30002478	07010403	3.611
30002479	07010404	-3.192	30002480	07010405	-8.393
30002481	08000000	27.706	30002482	08000001	20.129
30002483	08000002	13.198	30002484	08000003	8.065
30002485	08000004	0.971	30002486	08000005	-4.449
30002487	08000100	20.430	30002488	08000101	18.910
30002489	08000102	12.031	30002490	08000103	6.937
30002491	08000104	-0.104	30002492	08000105	-5.484
30002493	08000200	25.848	30002494	08000201	18.354
30002495	08000202	11.499	30002496	08000203	6.422
30002497	08000204	-0.595	30002498	08000205	-5.956

[

30002499	08000300	25.334	30002500	08000301	17.862
30002501	08000302	11.028	30002502	08000303	5.966
30002503	08000304	-1.029	30002504	08000305	-6.374
30002505	08000400	24.334	30002506	08000401	16.907
30002507	08000402	10.114	30002508	08000403	5.082
30002509	08000404	-1.872	30002510	08000405	-7.185
30002511	08010000	27.706	30002512	08010001	20.129
30002513	08010002	13.198	30002514	08010003	8.065
30002515	08010004	0.971	30002516	08010005	-4 449
30002517	08010100	26.430	30002518	08010101	18 910
30002519	08010102	12.031	30002520	08010103	6.937
30002521	08010104	-0.104	30002522	08010105	-5 484
30002523	08010200	25.848	30002524	08010201	18 354
30002525	08010202	11.499	30002526	08010203	6 422
30002527	08010204	-0.595	30002528	08010205	-5 956
30002529	08010300	25.334	30002530	08010203	17 862
30002531	08010302	11.028	30002532	08010303	5 966
30002533	08010304	-1.029	30002534	08010305	-6 374
30002535	08010400	24.334	30002536	08010401	16 907
30002537	08010402	10.114	30002538	08010401	±0.907
30002539	08010404	-1.872	30002530	08010405	-7 195
30002541	09000000	33.209	30002540	00010405	25 020
30002543	09000002	17.565	30002542	09000001	12 040
30002545	09000004	4 440	30002544	09000003	12.049
30002547	09000100	32.087	30002548	09000005	-1.300
30002549	09000102	16.541	30002548	09000101	23.950
30002551	09000104	3,499	30002552	09000105	-2 266
30002553	09000200	31.574	30002554	09000103	-2.200
30002555	09000202	16.074	30002556	09000201	23.409 10 609
30002557	09000204	3,069	30002558	09000203	10.000
30002559	09000300	31,122	30002550	09000203	-2.079
30002561	09000302	15.661	30002562	09000303	10 200
30002563	09000304	2.689	30002564	09000305	-3 044
30002565	09000400	30.242	30002566	09000401	22 102
30002567	09000402	14.858	30002568	09000403	0 133
30002569	09000404	1.951	30002570	09000405	-3 753
30002571	09010000	33,209	30002572	09010001	25 029
30002573	09010002	17.565	30002574	09010003	12 049
30002575	09010004	4.440	30002576	09010005	-1 360
30002577	09010100	32.087	30002578	09010101	23 958
30002579	09010102	16.541	30002580	09010103	11 059
30002581	09010104	3.499	30002582	09010105	-2 266
30002583	09010200	31.574	30002584	09010201	23 469
30002585	09010202	16.074	30002586	09010201	10 608
30002587	09010204	3.069	30002588	09010205	-2 679
30002589	09010300	31.122	30002590	09010203	2.075
30002591	09010302	15.661	30002592	09010303	10 200
30002593	09010304	2,689	30002592	09010305	-3 014
30002595	09010400	30,242	30002594	09010701	-J.V44 22 100
30002597	09010402	14.858	30002590	09010402	66.130 0 133
30002599	09010404	1.951	20002530	00010400	2.433
			20002000	02010403	-3./53

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (2-89) NRCM 1102, 3201, 3202 BIBLIOGRAPHIC DATA SHEET	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)		
(See instructions on the reverse)	NUREG/IA-0180		
Application of RELAP5/MOD3.1 to ATWS Analysis of			
Control Rod Willidiawai From 1% Power Level	MONTH	YEAR	
	June	2000	
	4. FIN OR GRANT NUME	BER	
5. AUTHOR(S)	6. TYPE OF REPORT		
H. Kantee			
	7. PERIOD COVERED (I	nclusive Dates)	
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Comm provide name and mailing address.)	nission, and mailing address; i	f contractor,	
P.O. Box 10			
00048 Fortum			
FINLAND			
<ol> <li>SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or and mailing address.)</li> </ol>	r Region, U.S. Nuclear Regula	tory Commission,	
Division of System Analysis and Regulatory Effectiveness			
Office of Nuclear Regulatory Research			
U.S. Nuclear Regulatory Commission			
Washington, DC 20555-0001			
10. SUPPLEMENTARY NOTES			
11. ABSTRACT (200 words or less)			
The RELAP5/MOD3.1 computer code has been applied in the analysis of a regulating control rod power level. The analysis has been carried out as an Anticipated Transient Without Scram (ATWS	group withdrawal fror 6) event.	n 1%	
The analysis is related to an extensive inherent boron dilution study which was performed to Loviisa the mid 1990's. The main goal of the analysis was to study if during the accident so called boiling of thereafter a water plug with low boron concentration is formed in the cold leg loop seal.	a Nuclear Power Plar condensing mode de	nt (NPP) in velops and	
		1	
12. KEY WORDS/DESCRIPTORS / ist words or obrases that will assist measurhans in leasting the second t	13. AVAILABILITY	STATEMENT	
	un!	imited	
KELAP5		ASSIFICATION	
boron dilution	(This Pane)		
	uncl	assified	
	(This Report)		
	und	assified	
	15. NUMBER C	OF PAGES	



## Federal Recycling Program

[

## APPLICATION OF RELAP5/MOD3.1 TO ATWS ANALYSIS OF CONTROL ROD WITHDRAWAL FROM 1% POWER LEVEL

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555-0001

