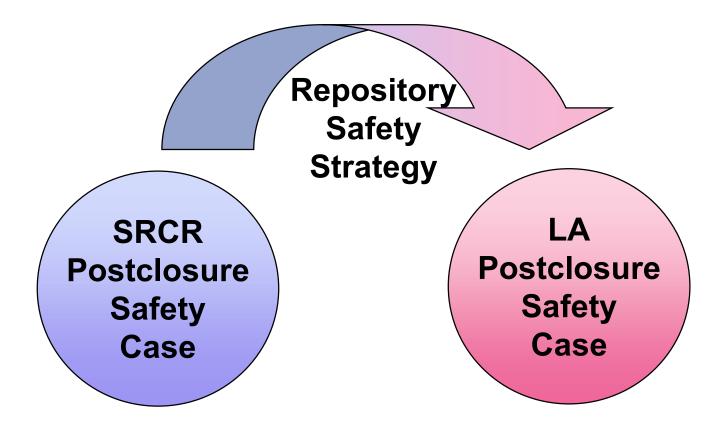


U.S. Department of Energy Office of Civilian Radioactive Waste Management

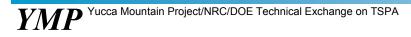
DOE's Repository Safety Strategy Revision 4--Postclosure Safety Strategy


Presented to: DOE/NRC Technical Exchange on Total System Performance Assessment (TSPA) for Yucca Mountain San Antonio, Texas

Presented by: Abe Van Luik Senior Policy Advisor for Performance Assessment U.S. Department of Energy

YUCCA MOUNTAIN PROJECT

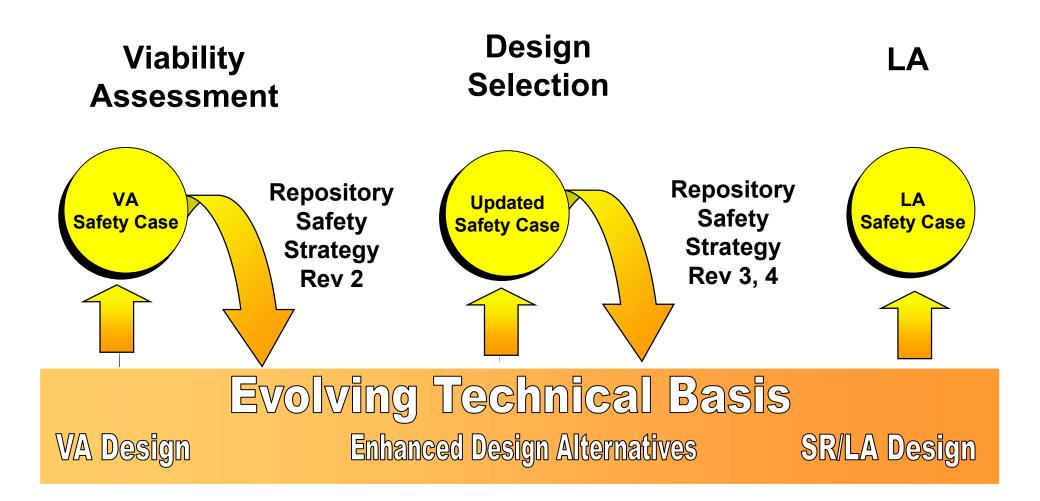
June 7, 2000


Repository Safety Strategy is a Plan

This plan is determined by management after technical input

Development of Strategy Involves a Sequence of Assessments

- Quantitative assessments performed within context of TSPA-SR
 - Based upon information in AMRs and PMRs
 - Analysis of expected performance
 - Uncertainty, sensitivity, and barrier importance analyses
- Qualitative assessment of confidence and unquantified uncertainty determined from numerous workshops with AMR and PMR leads
- Additional judgment will be applied in scientific reviews of SR products



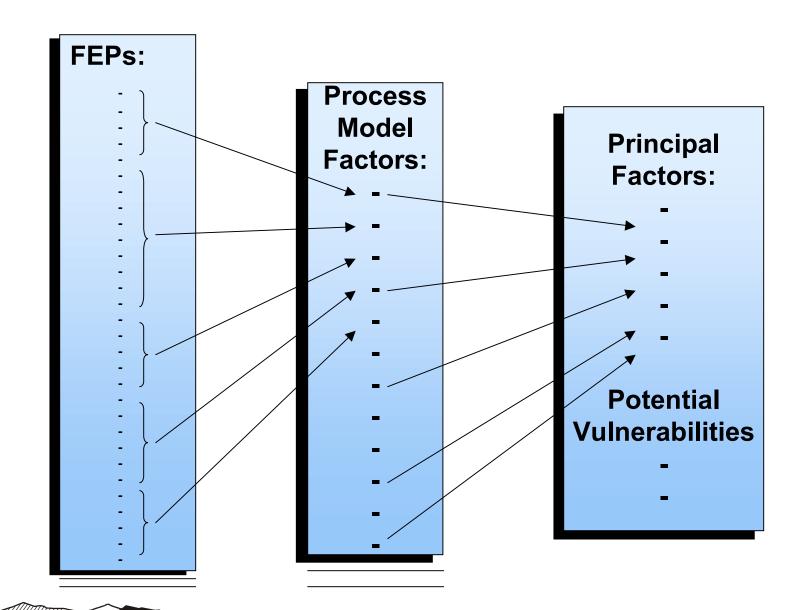
Focus of the Assessments for the Repository Safety Strategy

- Principal factors--factors of the multiple barrier system that are necessary and sufficient to determine postclosure safety
- Performance assessment--analyses and supporting technical information to show whether regulatory postclosure performance objective is met
- Measures to provide additional assurance of postclosure safety

Revising the Repository Safety Strategy

Revision 3 of the Repository Safety Strategy

- Principal Factors
 - Subjective judgements about factors expected to be important to performance
 - Judgements supported by "barrier neutralization" analyses
 - No consideration of disruptive FEPs
- Performance Assessment
 - VA models
- Measures to Increase Assurance of Safety
 - Preliminary consideration of safety margins and defense-in-depth
 - Initial plans for safety assurance, performance confirmation


Revision 4 of the Repository Safety Strategy

- Principal Factors
 - Based on extensive TSPA analyses and barrier importance analyses
 - TSPA includes both nominal and igneous activity scenarios
- Performance Assessment
 - Updated models fully documented in PMRs and AMRs
 - Analyses fully probabilistic to address range of uncertainties
- Measures to Increase Assurance of Safety
 - Full evaluation of safety margins and defense-in-depth
 - Full documentation of potentially disruptive FEPs
 - Rev 1 of Performance Confirmation Plan

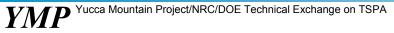
Status of Repository Safety Strategy for SRCR

Assess Information Needs	Completed in FY 00 Plan
Update Information - Design	Completed System Design Descriptions
Update Information - Improve models	Completed 122 AMRs, 9 PMRs
Update Information - Improve Scientific Basis	Completed/ongoing tests: ESF niches, Nye Co. drilling, Busted Butte, Drift Scale Test, EBS tests, materials tests
Assess performance	Completed TSPA-SR model Ongoing uncertainty, sensitivity and barrier importance analyses
Update Safety Case	Completed identification of process model factors and barriers Ongoing analysis to identify principal factors
Assess Information Needs	Ongoing in FY 01 Planning

Concept

Example of Relationship Between FEPs and Process Model Factors

Table B-7. Features, Events, and Processes Considered for Waste Package Degradation Model


PMR	FEP Number	FEP Title	Process Model Factor	
Waste Package		Corrosion of waste containers		
(FEPs analyzed in ANL-EBS-PA-	2.1.03.02.00	Stress corrosion cracking of waste containers	Waste Package Degradatior and Performance	
000002 Rev 00)	2.1.03.03.00	Pitting of waste containers		
	2.1.03.05.00	Microbially-mediated corrosion of waste container		
	2.1.03.11.00	Container form		
	2.1.03.12.00	Container failure (long-term)	1	
	2.1.10.01.00	Biological activity in waste and EBS		
	2.1.11.06.00	Thermal sensitization of waste containers increases fragility		
	2.1.06.06.00	Effects and degradation of drip shield (general corrosion, localized corrosion, microbial effects)	Drip Shield Degradation and Performance	
	1.2.02.03.00	Fault movement shears waste container		
	1.2.03.02.00	Seismic vibration causes container failure (effects on either waste package or drip shield excluded by design)		
	2.1.03.04.00	Hydride cracking of waste containers		
	2.1.03.06.00	Internal corrosion of waste container		
	2.1.03.07.00	Mechanical impact on waste container (effects of rockfall on drip shield or on waste package—even if drip shield is not present—excluded by design)		
	2.1.03.08.00	Juvenile and early failure of waste containers (initial defects of waste packages or drip shields sufficient to result in juvenile failure excluded)		
	2.1.03.09.00	Copper corrosion		
	2.1.03.10.00	Container healing	Excluded from TSPA	
	2.1.06.07.00	Effects at material interfaces		
	2.1.07.01.00	Rockfall (large block)		
	2.1.07.05.00	Creeping of metallic materials in the EBS		
	2.1.09.03.00	Volume increase of corrosion products		
	2.1.09.09.00	Electrochemical effects (electrophoresis, galvanic coupling) in waste and EBS	1	
	2.1.11.05.00	Differing thermal expansion of repository components	1	
	2.1.12.03.00	Gas generation (H2) from metal corrosion	1	
	2.1.13.01.00	Radiolysis	1	

Selected Process Model Factors

Climate	In-drift moisture distribution (and removal)	DHLW degradation and performance	EBS (invert) degradation and performance
Net infiltration	Waste package degradation and performance	DSNF degradation and performance	UZ radionuclide transport
UZ flow	Drip shield degradation and perfomance	Dissolved radionuclide concentrations	Coupled effects on UZ radionuclide transport
Coupled effects on UZ flow	Radionuclide distribution in repository	Colloid associated radionuclide concentrations	SZ flow
Seepage into emplacement drifts	In-package environments	Gaseous radionuclide source term	Changes in SZ flow
Coupled effects on seepage	Cladding degradation and performance	Seismic effects on source term	SZ radionuclide transport
In-drift physical and chemical environments	CSNF degradation and performance	In-package radionuclide transport	Biosphere dose conversion factors

TSPA Sensitivity/Importance Studies

- Fully probabilistic base case up to 100,000 years
 - Nominal + igneous activity scenarios
 - Human intrusion scenario
- Numerous sensitivity and uncertainty analyses to assess uncertainties captured in TSPA and support FEP screening
- Barriers importance analyses to identify principal factors and address defense-in-depth issues
 - Degraded barrier analyses
 - Neutralized barriers analyses

Preliminary Principal Factors

- Critical to Performance
 - Waste package performance (nominal scenario)
 - Probability of igneous intrusion (igneous activity scenario)
 - Repository response to igneous intrusion (igneous activity scenario)
- Assurance factors
 - Drip shield performance
 - Seepage
 - Radionuclide concentrations at the source
 - Radionuclide travel time in UZ and SZ
 - Biosphere dose conversion factors

Preliminary Principal Factors

RSS3 Factors Principal		RSS4	
Factors Principal Factors	RSS4 Principal Factors	Rationale	
Waste Package Performance	~	~	Waste packages expected to remain intact for >>10,000 years and prevent any release well beyond regulatory period.
Seepage into Emplacement Drifts	~	~	Invoked for defense-in-depth. Affects release of solubility-limited radionuclides after waste packages have breached.
Drip Shield Performance	~	•	Invoked for defense-in-depth. Redundant barrier to prevent exposure of waste to water.
Dissolved Radionuclide Concentrations	~	~	Invoked for defense-in-depth. Affects release of radionuclides after waste packages have breached
Colloid-Associated Radionuclide Concentrations		~	Invoked for defense-in-depth. Affects release of radionuclides after waste packages have breached
UZ Radionuclide Travel Time	~	•	Invoked for defense-in-depth. Affects release of radionuclides after waste packages have breached
SZ Radionuclide Travel Time	~	~	Invoked for defense-in-depth. Affects release of radionuclides after waste packages have breached
Wellhead Dilution	~		No longer considered as Principal Factor because dilution factors will be determined by regulation
Igneous Activity Probability		~	Release possible in less than 10,000 years. Risk depends on probability of occurrence
Igneous Activity— Repository Effects		~	Release possible in less than 10,000 years. Risk depends on damage to waste packages and drip shields
Biosphere Dose Conversion Factors		~	Release possible in less than 10,000 years. Risk depends on biosphere transport and uptake

Barriers Potentially Important to Waste Isolation

- Overlying rock (including capillary effects)
- Drip shield
- Waste package
- UZ radionuclide transport barrier
- SZ radionuclide transport barrier
- Other barriers
 - Spent fuel cladding
 - Waste canister
 - Drift invert
 - Inner waste package barrier

Additional Work Needed to Complete the Postclosure Safety Case

Measures to Increase Assurance	Applicability to Potential Vulnerabilities	Other Applicability	Adequacy of Current Information
Quality of the Performance Assessment	Addresses issue of uncertainty	 Standard approach to assurance of safety in licensing Recommended by NEA 	 Models will be traceable to FEPs Comprehensive analysis of parameter uncertainty will be conducted Extensive sensitivity and importance analyses to identify areas where uncertainty may be important May be some over-conservatisms that obscure understanding
Safety Margins and Defense-in-Depth	Addresses issue of uncertainty, reliability of individual barriers	 Standard approach to assurance of safety in licensing Recommended by NEA 	 System contains substantial margin in 1st 20,000 year System may not have adequate defense-in-depth with respect to the performance objective of the proposed rule
Explicit Consideration of Potentially Disruptive Processes and Events	Directly addresses potential for igneous activity	Recommended by NEA	 Traceability of FEPs screening to process models is incomplete Basis for excluding nuclear criticality, seismic activity, water table rise is incomplete but proceeding Analyses of igneous activity and human intrusion is incomplete but proceeding
Insights from Natural Analogues	Could increase confidence in long-term behavior of metal passive layers, transport models, effects of heat on host rock	Recommended by NWTRB, NEA	 Some information is available Additional information could be obtained during performance confirmation period
Safety Assurance Performance Confirmation Testing Retrievability Closure decisions Postclosure montoring	Do not directly address identified vulnerabilities	 Required by Act and Proposed rule Address broader confidence issue 	Plans not completely developed at present

Work to Address Specific Vulnerabilities

Potential Vulnerabilities	Recommended Approaches
1. Adequacy of treatment of model uncertainty	 Mitigate uncertainties through defense-in-depth Ensure effects of rockfall analyzed
2. Over-conservatism in some models	Conduct studies to determine appropriateness of reducing over-conservatism in key models
3. Thermal loading issues	 Improve basis for selecting a thermal design by LA Utilize flexible design that permits a decision after performance confirmation testing Maintain options until thermal design can be selected before emplacement
4. Potential for igneous activity at this site	 Demonstrate low probability of occurrence Demonstrate low risk and substantial margin
5. Reliability of complex metal barriers	 Mitigate uncertainties through defense-in-depth Utilize alternative engineered barrier concepts
6. Possibility of peak dose rate exceeding 100 mrem/year	 Reduce conservatism in key models Solubilities of neptunium and plutonium UZ flow and transport SZ flow and transport

Steps to Complete the Repository Safety Strategy

Complete uncertainty, sensitivity
and barrier importance analyses
for nominal and disruptive event
scenarios
Complete documentation of TSPA-
SR
Complete RSS Rev 4July - AugustComplete RSS Rev 4July - AugustComplete reviews of TSPA-SR and
RSS Rev 4August -
September
September -

November