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You Are Here

� Used for both nominal and volcanic
scenarios in TSPA

� CLST IRSR primarily related to this model
(October 12, 2000)

– Subissue 3 (CLST3):  CSNF degradation
– Subissue 4 (CLST4):  HLW degradation

� ENFE IRSR (September 7, 2000)
– Subissue 3 (ENFE3):  Coupled thermal-

hydrological chemical coupling

� TSPAI IRSR
– Subissue 3 (TSPAI3):  Model abstraction

� ENG3:  Chemistry of water contacting
waste

� ENG4:  RN release rates and
solubility limits

– Subissue 2 (TSPAI2):  Scenario analysis

Waste Form Degradation Model

*  Discussed in Waste Form Degradation PMR
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Waste Form Degradation Model
has Eight Components



In-Package Chemistry Component Couples to Five
Other Components

� Addresses thermal-hydrological-chemical coupling issue in ENFE3
� Addresses T5 (integration criterion) of TSPAI/ENG3 model abstraction
� Uncertainty in chemistry important source of uncertainty in 5 other components

(addresses T2-data uncertainty)
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*  Discussed in In-Package Chemistry Abstraction AMR
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In-Package Chemistry Component
Estimates pH, Calculates [CO3]T, and

Samples [i] and [F]
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In-Package Chemistry Component Developed
from Regression Analysis on EQ3/6 Runs

*  Corrosion of steel releases sulfur which can lower pH; the CLST IRSR specifically
notes influence of corrosion products on CSNF and HLW matrix degradation

� Addresses TSPAI3/ENG3 and ENG4/TI, T4, and T5
� Addresses CLST3 and its concern that influence of

corrosion products on waste degradation be evaluated
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CSNF Matrix Degradation Component*
Based on Regression of
Laboratory Experiments

*  Discussed in CSNF Waste Form Degradation Summary and
Abstraction AMR
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� Addresses CLST3: CSNF degradation and influence of T, pH, [CO3]T

� Addresses TSPAI/ENG3/T1 and T4 (not T2 - data uncertainty - since in
chemistry
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Cladding Degradation* Consists of Two
Steps:  Perforation and Unzipping

*  Discussed in Clad Degradation - Summary
Abstraction AMR
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% of Rods Initially Perforated in a WP
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than median CCDF

Failure Rate 
Used in VA

Median 

Fraction of WPs with
More than
X% of the Rods
Perforated

Triangular distribution
used when sampling

*  Discussed in Initial Cladding Condition AMR

Cladding Perforations* before Receipt
based on NRC Contractor Report (1969-

1985) and Literature from 1985-1995

� Addresses CLST3
request for evaluation
of cladding damage
during operation,
storage, and
transportation

� Related to TSPAI/ENG4
issue on RN release
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In TSPA-SR, Perforation from
Cladding Creep Sampled Between

Analytical Estimates
� Addresses request in CLST3 for evaluation of creep rupture models (alternate

DCCG creep model addressed as FEP)
� Related to TSPAI/ENG4
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 * Fluoride pitting discussed in Clad Degradation - Summary and Abstraction AMR

Perforation of Cladding*
by Localized Corrosion

� To account for microvariation in chemistry, pitting is
included since it is thought to be more likely to occur
relative to other localized corrosion mechanisms

� Fraction of perforated rods conservatively assumed
to be proportional to seepage of water into WP

� Both CLST3 and TSPAI/ENG4 ask for evaluation of
potential for pitting corrosion
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Cladding Unzipping* Follows Perforation

* Discussed in Clad Degradation - Wet Unzipping, Clad Degradation - Dry Unzipping, and 
Clad Degradation - Summary and Abstraction AMRs
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� Addresses request in CLST3
to develop models for clad
splitting

� Related to TSPAI/ENG4
discussion

� Unzipping rate in dry
environment bounded by wet
unzipping rate at
temperatures anticipated in
WP and thus included
indirectly (no release,
however, until water seeps
into the container)

� Radioisotope releases from
unzipping conservatively
bound diffusive releases out
of pinhole perforations
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Cladding Perforation from Several
Mechanisms Evaluated
(TSPAI2-FEP analysis)

 2. In general, localized corrosion not predicted to occur for CSNF WP; thus,
localized corrosion FEPs generally screen out-(discussed in Clad Degradation - Local
Corrosion of Zirconium and its Alloys under Repository Conditions AMR)

� �10 -4 m10-4  < [F] < 91

3.6 < pH < 8.1
[Cl] = 2   10 -4 m�

 1. Perforation from delayed hybrid cracking and hydrogen embrittlement
screen out - (discussed in Hydrogen-Related Degradation of SNF cladding under
Repository Conditions AMR)

      3.    Generalized corrosion screened out - (discussed in Clad Degradation - FEPs Screening
Arguments AMR)

      4.    Unlike TSPA-VA, cladding failure from rockfall screened out since other
perforation mechanisms more likely now that WP life has been extended

      5.    TSPA-SR does include perforation from severe earthquake (frequency of
10-6/yr) - (discussed in Clad Degradation - Summary and Abstraction AMR)
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DSNF Degradation Component* uses
Constant Degradation Rate

* Discussed in DSNF and Other Waste Form Degradation Abstraction AMR
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Constant Degradation Rate Used for DSNF
Category Bounds all Measured
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� Addresses
TSPAI3/ENG4
issue on RN
release
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HLW Degradation Component Uses Arrhenius Rate
Expression with First Coefficient Dependent on pH

*  Discussed in Defense High Level Waste Glass
Degradation-AMR

� Addresses CLST4 and TSPAI/ENG4
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HLW Reaction Rates in SR similar to VA
� Addresses HLW degradation in CLST3 and RN release in TSPAI3/ENG4
� HLW rate less than CSNF degradation except at high pH and high

temperature
� HLW rate bounds stage I, II and III degradation rates
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Highest Percentage of Radioisotopes
Reside in CSNF Packages (TSPA-SR)
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Percentage of Radioisotopes in Packages
Similar in TSPA-VA
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TSPA-SR
Nominal Volcanic Intrusion

Isotope 104 106 104 106 104 106 TSPA-VA
NRC IPA

99
TSPA

93 & 95 Comments
Total 16 21 12 16 18 23 9 20 38
14C � � � � � � � Aqueous 14C, nonsorbing tracer
99Tc � � � � � � � Tracked since 1984
129I � � � � � � � Tracked since 1984
227Ac � � � � � � � 
229Th � � � � � � � 
230Th � � � � � 106 yr runs
232Th � Groundwater protection; originally screened in for SR
232U � � � � � � 
233U � � � � � � � In DSNF
234U � � � � � � � 
235U � In DSNF; helps track in growth of 231 Pa; originally in for SR
236U � � � � � 
238U � � � � � � 
237Np � � � � � � � Tracked since 1984; daughter of 241Am &241 Pu
238Pu � � � � � � � 
239Pu � � � � � � � � � 
240Pu � � � � � � � � 
242Pu � � � � � 106 yr runs
241Am � � � � � � � � 
243Am � � � � � � � � 
90Sr � � � � Volcanic & intrusion scenario
137Cs � � � � � Volcanic & intrusion scenario
210Pb � � � � � 106 yr runs
231Pa � � � � � � 
226Ra � � � � � Groundwater protection, 106 yr runs
228Ra � Groundwater protection; originally screened in for SR

Radioisotope Selection Updated for TSPA-SR     
   As Requested in CLST3 and TSPAI3/ENG4
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Isotope TSPA-SR TSPA-VA
NRC IPA

99
TSPA

93 & 95 Comments
Total 9 20 38
36Cl � Estimate updated from CDB value-no longer important
59Ni � 
63Ni Originally screened in for SR
79Se � � � Error in half-life corrected
93mNb � 
94Nb � � 
99Zr � 
107Pd � 
126Sn � 
135Cs � � 
151Sm � 
241Pu � 
242mAm � 
244Cm � 
245Cm � � 
246Cm � � 

Radioisotope Selection Updated for TSPA-SR
as Requested in CLST3 TSPAI3/ENG4
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Dissolved Concentration Component*
Determines Aqueous Concentration of

Radioisotopes

*  Discussed in Summary of Dissolved Concentration Limits AMR
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Solubility of Important Radioisotopes
updated for TSPA-SR

� Empirical functions
– Np = f (pH)
– Am = f (pH, Pco2)
– U = f (pH, Pco2, T)

� Distributions
– Pu
– Pa
– Pb

� Constants
– Tc = I = Sr = Cs = C = 1M

� Estimates based on EQ3/6 simulation
– Thermodynamic data used recent NEA and literature

� Reevaluation addresses CLST3 and TSPAI3/ENG4 request to update
solubilities

*  Discussed in Summary of Dissolved Concentration Limits AMR
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Np Solubility Range in SR Similar to Range
in TSPA VA and TSPA-95

3          4          5          6          7          8          9         10

TSPA-SR Simulations
• EQ3NR
• YMP and NEA data
• Np2 O5 controlling solid
• Secondary phases neglected*

HLW
> 1000 yr

CSNF
> 1000 yr

CSNF
< 1000 yr

HLW
> 1000 yr

CSNF
< 1000 yr

TSPA-SR Abstraction
SNp = f(pH)

pH

10-6

10-5

10-4

10-3

10-2

10-7

10-8

CSNF
> 1000 yr

10-1

TSPA
VA

TSPA
1995

HLW
< 1000 yr

(mol/L)

HLW
< 1000 yr

� Similar to range in TSPA-VA 1000 yr
after WP Breach

� Similar to range in TSPA-95 prior to
1000 yr

� CLST3 requested reevaluating Np
solubility in relation to in-package
chemistry (related to TSPAI3/ENG4)

*  Secondary phase formation discussed in Secondary
Uranium-Phase Paragenesis and Incorporation of
Radionuclides into Secondary Phases AMR



Colloidal Component* Evaluates the Colloid
Concentration on Three Types of Colloids:

Waste, Rust and Natural

*  Discussed in Waste Form Colloid - Associated
Radionuclide Concentration Limits AMR
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Colloid Component uses Lab Results and
Estimated pH and Ionic Strength to Determine

Availability and Stability of Colloids
� Irreversible waste colloid

concentration function based
on HLW degradation data
(colloids treated separately
from HLW degradation)

� Calculated ionic strength and
pH of water used to
determine concentration

� Pu and Am transported as
irreversible colloids

� Pu, Am, Th (Ra, Pb), Pa (Ac),
Sr, Cs transported as
reversible colloids

� CLST and TSPAI3/ENG4
states colloids of low
concern but recommends
continued modeling

Relationship Between Colloid 
Concentration and Ionic Strength 


