

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Engineered Barrier System Environments-Thermal Hydrology & Near-Field Host Rock Chemical Environment

Presented to: NRC/DOE Technical Exchange on Total System Performance Assessment (TSPA) for Yucca Mountain San Antonio, Texas

Presented by: Nicholas D. Francis Performance Assessment Department CRWMS M&O/Sandia National Laboratories

> YUCCA MOUNTAIN PROJECT

June 6, 2000

TSPA-SR Nominal Scenario

Key Technical Issues

- Relevant Integrated Subissues from the Total System Performance Assessment and Integration Issue Resolution Status Report Rev. 2 include:
 - Quantity and Chemistry of Water Contacting Waste
 Packages and Waste Form
- Other relevant acceptance criteria may be found in the following Issue Resolution Status Reports:
 - Thermal Effects on Flow
 - Evolution of the Near-Field Environment
- The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (PMR) and Near-Field Environment PMR address acceptance criteria related to this topic and will be discussed at a Technical Exchange scheduled for September 7, 2000.

TSPA-SR Nominal Scenario

- Primary Attributes of Repository Performance Addressed in Engineered Barrier System Environment
 - Water Contacting Waste Package
 - Percolation Flux Affected by Thermal-Hydrological (TH) Process
 - Seepage Composition Affected by Thermal-Hydrological-Chemical (THC) Process
 - Waste Package Lifetime
 - Temperature and Relative Humidity on Drip Shield and Waste Package
 - Evaporation Rate at Drip Shield and in Invert
 - Volume Flow of Water at Drip Shield and in Invert

Conceptualization

abq0063G099.eps

Multiscale TH Model Components

- **SDT = Smeared-Heat-Source Drift-Scale Thermal-Conduction Submodel**
- LDTH = Line-Averaged-Heat-Source Drift-Scale Thermal Hydrologic Submodel
- DDT = Discrete-Heat-Source Drift-Scale Thermal-Conduction Submodel
- SMT = Smeared-Heat-Source Mountain-Scale Thermal-Conduction Submodel

TSPA-SR Abstraction-TH

610 Low Glacial Infiltration Bin Locations

610 Medium Glacial Infiltration Bin Locations

610 High Glacial Infiltration Bin Locations

TSPA-SR Abstraction-TH (continued)

- 610 Location Dependent Results Abstracted Directly from the Multiscale TH Model
 - Temperature and Relative Humidity at
 - Drip Shield
 - Waste Package
 - Percolation Flux Above the Crown
- TH Process Model Features
 - Repository Edge and Center Proximity
 - Infiltration Rate Variability and Uncertainty
 - Two Future Climate States
 - Repository Design without Backfill

TSPA-SR Abstraction-TH (continued)

- Infiltration Rate Bin Averaged Results Computed from the Multiscale TH Model Results
 - Temperature and Relative Humidity at
 - Drift Wall
 - Drip Shield
 - Waste Package
 - Invert
 - Water Flow Rate and Evaporation Rate
 - Invert
 - Infiltration Bin Maximum Waste Package Temperature (not an average)
 - Liquid Saturation in Invert

TSPA-SR Abstraction-TH

(continued)

Waste Package Surface Temperature No Backfill, Medium Infiltration Flux Case Infiltration Rate Bin 10 to 20 mm/yr (170 of 610)

TSPA-SR Abstraction-TH (continued)

- Heat Balance Applied at the Drip Shield Upper Surface to Determine Maximum Potential Seepage Water Evaporation Rate
 - Average commercial spent nuclear fuel (CSNF)
 - Average high level waste

Coupled Thermal Chemical Effects on Water Composition

Diagram Showing THC Processes

- 2-D Drift-Scale Coupled THC Model
 - Low, Medium, High Flux Cases
- Incoming Water and Gas Composition Derived from Coupled THC Model at the Drift Wall for a Range of Infiltration Rates
- Aqueous Chemical Attributes Include pH, HCO⁻₃, and Cl⁻
- Gas Composition Considers CO₂

Coupled Thermal Chemical Effects on Water Composition (continued)

Aqueous Species	Gaseous Species	Minerals	
Both models:	Both models:	Both models:	
H⁺	CO ₂	Calcite	Amorphous Silica
Ca ⁺²		Tridymite	Gypsum
Na [⁺]		α–Cristobalite	Glass
H ₂ O		Quartz	
SiO ₂		Complex model only:	
CI⁻		Hematite	K-Smectite
HCO ₃ ⁻		Fluorite	Illite
SO4 ⁻²		Goethite	Kaolinite
Complex model only:		Albite	Sepiolite
Mg ⁺²		Microcline	Stellerite
K ⁺		Anorthite	Heulandite
AIO ₂ ⁻		Ca-Smectite	Mordenite
HFeO ₂		Mg-Smectite	Clinoptilolite
F ⁻		Na-Smectite	

Source: CRWMS M&O (2000, U0110, Tables 7, 8)

Coupled Thermal Chemical Effects on Water Composition (continued)

	Preclosure	Boiling	Transitional Cool-Down	Extended Cool- Down
	Period 1	Period 2	Period 3	Period 4
Parameter	Abstracted Values	Abstracted Values	Abstracted Values	Abstracted Values
Time	0 - 50 years	50 - 1000	1000 - 2000	2000 - 100,000
		years	years	years
Temperature, °C	80	96	90	50
log CO ₂ , vfrac	-2.8	-6.5	-3.0	-2.0
рН	8.2	8.1	7.8	7.3
Ca ²⁺ , molal	1.7E-03	6.4E-04	1.0E-03	1.8E-03
Na⁺, molal	3.0E-03	1.4E-03	2.6E-03	2.6E-03
SiO ₂ , molal	1.5E-03	1.5E-03	2.1E-03	1.2E-03
Cl ⁻ , molal	3.7E-03	1.8E-03	3.2E-03	3.3E-03
HCO₃ [−] , molal	1.3E-03	1.9E-04	3.0E-04	2.1E-03
SO ₄ ²⁻ , molal	1.3E-03	6.6E-04	1.2E-03	1.2E-03
Mg ²⁺ , molal	4.0E-06	3.2E-07	1.6E-06	7.8E-06
K⁺, molal	5.5E-05	8.5E-05	3.1E-04	1.0E-04
AIO_2^{-} , molal	1.0E-10	2.7E-07	6.8E-08	2.0E-09
HFeO ₂ , molal	1.1E-10	7.9E-10	4.1E-10	2.4E-11
F [−] , molal	5.0E-05	2.5E-05	4.5E-05	4.5E-05

Comparison to TSPA-VA Models and Abstraction

TH Abstraction

- Utilizes Infiltration Rate Binning Instead of Subregion Binning
 - 5 Infiltration Rate Bins Instead of 6 Subregion Bins
- Provides More Spatial Resolution to TSPA
 - 610 Location Dependent Results Instead of 180 Maximum Possible Different Results

THC Abstraction

- Uses Host Rock Water and Gas Composition Obtained from a Fully Coupled Process-Level THC Model
 - Two Geochemical Systems Compared to Drift Scale Test results in order to consider alternative modeling approaches consistent with available data and current understanding
- Process model comparison of near-field host rock flow and state variables between TH-only and fully coupled THC models

Model and Abstraction Uncertainty

- The TH and THC Model Uncertainty Included in the Abstraction of TH Data for the Near-Field Environment Component of TSPA is Specified by the UZ Flow and Transport Component of TSPA
 - Ground Surface Infiltration Rates
 - Low, Medium, High
 - Fracture Hydrologic Properties
 - Low, Medium, High
 - Initiation of Future Climate States
 - Monsoonal (600 Years), Glacial-Transition (2000 Years)

Conclusions

- TH and THC Abstractions Provide Direct Inputs to TSPA Models that Result in an Assessment of Attributes of Repository Performance
 - Water Contacting Waste Package
 - Waste Package Lifetime

• TSPA Models Applying TH and THC Abstractions

- Chemical Environments (EBS Environments Subcomponent)
- Unsaturated Zone Flow
- Waste Package and Drip Shield Degradation
- Waste Form Degradation
- Engineered Barrier System Transport

Conclusions

- TH and THC Models and Abstractions Include
 - Drift-Scale (TH and THC) and Mountain-Scale (TH only) Effects
 - Waste Package Variability (TH only)
 - Dual-Permeability (Active Fracture) Flow Model (TH and THC)
- Model Confidence
 - Thermal Properties from Lab Measurements
 - Comparison to ESF Thermal Tests and Large Block Test
 - Property Set Testing
 - Conceptual Model Validation

Integration

- Both Models (TH and THC) Apply:
 - Low Areal Mass Loading (AML) Repository Design Features Including Ventilation
 - Active Fracture Conceptual Flow Model to Ensure Fracture Flow During Heating
 - Identical Infiltration Flux Cases (Including Future Climate States)
 - Results of the Thermal Tests and LBT to Assess Conceptual Models
- Abstractions Apply:
 - Methods that Maintain the Ranges of Results from the Process Models Through
 - » Direct use of Data
 - » Appropriate Averages Based on Data Fitting Similar Characteristics

References

- Multiscale Thermohydrologic Model
 - ANL-EBS-MD-000049
- Abstraction of NFE Drift Thermodynamic Environment and Percolation Flux
 - ANL-EBS-HS-000003
- Drift-Scale Coupled Processes (DST and THC Seepage) Models
 - MDL-NBS-HS-000001
- Abstraction of Drift-Scale Coupled Processes
 - ANL-NBS-HS-000029
- Features, Events, and Processes in Thermal Hydrology and Coupled Processes
 - ANL-NBS-MD-000004