Indian Point 2 Condition Monitoring Operational Assessment Plan

Tom Pitterle Westinghouse Electric Company

Definitions

- Condition Monitoring (Backwards Looking)
 - Evaluation of indications found this inspection against performance criteria
- Operational Assessment
 - Evaluation against performance criteria at the end of the next operating period
- Burst
 - Gross structural failure of tube wall---unstable opening displacement
 - Not ligament tearing

Performance Criteria

- Steam generator tubing shall retain structural integrity over full range of operating conditions
 - Margin of 3 against burst under normal steady state full power operation
 - Margin of 1.4 against burst under SLB
- Primary to secondary accident induced leakage not to exceed 1 gpm. under SLB

Issues

- Show that all structurally significant degradation has been detected and that which is undetected will not grow to be structurally significant during the next operating cycle
 - Probability of Detection (POD)
 - Growth Rate
 - NDE Sizing
- Complicating Factors
 - Secondary side scale deposits (copper) result in low signal to noise ratios making NDE data more difficult to interpret

Tube Integrity Considerations

- Low row U-bends (PWSCC)
- Dented tube support plate intersections (primarily PWSCC but also potential for ODSCC)
- Sludge pile (within 10" TTS)--(ODSCC)
- Area just above sludge pile (ODSCC)
- Tubesheet region
 - Dents at TTS (primarily PWSCC but also potential for ODSCC)
 - Crevice region (ODSCC)
 - Roll transition (PWSCC)

Low Row U-Bends

- R2C5 leaked in service
 - Would not have been "called"
 - Improvements in NDE would not leave an indication of this size in service in 2000 inspection
- POD
 - Improvements in analyst guidelines & training
 - High frequency probe has improved data quality & detection
 - Enhanced S/N ratio
 - Found additional smaller indications
 - No indications in rows 3 & 4
 - POD compared to other industry experience
 - PWSCC in symmetrical and axial dents

Figure 5-1. Comparisons of +Point Average Depth PODs

Figure 5-2. Comparisons of + Point Maximum Depth PODs

Low Row U-Bends

- Growth Rate
 - Establish operating period such that the largest "undetected" flaw will not grow to be structurally significant during next operating period
 - Combination of POD and growth rate determines operating period
- Determination of growth rate
 - Derive estimate from 9 indications in 5 tubes
 - Comparison of 400 KHz data
 - Must compare like data between 1997 & 2000
 - +Point sizing techniques based on 300-400 kHz techniques and uncertainties (std. dev. increased by 25%) from PWSCC at dented TSP intersections as used for PWSCC ARC (WCAP-15128)
 - 400 KHz sizing data more consistent with in-situ test results
 - Data adjusted for small sample size
 - Comparison to historical data from dented TSPs and other industry data

Table 5-1. Indian Point-2 U-Bend Axial PWSCC Growth Rates (400 kHz Data)																				
		+Point - 2000 inspection							+Point - 1997 Inspection						Growth per EFPY					
q	Tuba	Crack	Yack Max Max Axo Lenoth Birst Birst						Max Max Aug Longth Burst Burst						Max Max Avg Length Burst Burst					
G	1000	Na	Volts	Depth	Depth	Langui	Avg. Depth	Length	Volts	Depth	Depth	LLIGH	Avg. Depth	Length	Volts	Depth	Depth	LYUEU	Avg. Depth	Length
	R2C5 Note 1	1		100			90		227 231	92 92	63.2 70.6	2.43 2.43	73.8 80.2	1.26 1.87		8.00	10.95		10.95	
	Daglas					0.01	~ 0.0	0.70	1.00				00.0	0.5	0.00	0.70		0.01	0.04	0.00
4	K2C69	1	2.71	74	55.2	0.91	58.3	0.78	1.33	84 50	57.0	0.9	62.8	0.7	0.93	-6.76	-1.22 0.70	0.01	-3.04	0.06
			1.05	14 54	44.0 98.9	0.11	44.0		0.04	50	22.0	0.20	39.0	0.10	0.33	9.70	0.10	-0.05	- 0,72 	0.05
			0.54	04	00.2	0.20	44.0	0.20	0.01	0	00.0	0.10	01.1	0.10	0.22		4.01	0.00	4.01	0.00
4	R2C72	11	3.17	82	59.8	0.54	66.6	0.44	1.3	79	61.8	0.39	66.4	0.35	1.26	2.03	-1.35	0.10	0.14	0.06
4	R2C71	1	2.43	96	64.0	0.57	69.0	0.48	1.87	87	57.5	0.68	63.1	0.57	0.38	6.08	4.39	-0.07	3.99	-0.06
1	R2C87	1	1.68	55	42.8	0.30	48.0	0.25	1.05	63	40.8	0.15	40.8	0.15	0.43	-5.41	1.35	0.10	4.86	0.07
		1	2.25	61	43.6	0.29	48.0	0.25	0.76	53	36.4	0.19	40.8	0.16	1.01	5.41	4.86	0.07	4.86	0.06
		1	2.28	53	41.6	0.35	44.3	0.31	0.95	63	36.5	0.27	45.2	0.19	0.90	-6.76	3.45	0.05	-0.61	0.08
													·	Avg.	0.68	2.39	3.80	0.03	3.09	0.04
														Max.	1.26	16.22	10.9	0.10	10.9	0.08
Nc +1	te 1.]	R2C5 r	not siz	eable i	in 2000) by NE)Eafte:	r crack	openiu tod ast	ng resi	lting	 in leaka	ige. M	aximum	l depti	nin 20	00 is a	ssumed	tobe	ont of

throughwall. For ligament tearing, which is the expected cause for opening the R2C5 crack, the average depth to tear the ligament of a 2.2 to 2.4 inch flaw would be about 90%. The 90% depth value is applied with the smaller burst effective depth estimate for R2C5 in 1997 to assign a conservative growth value to R2C5.

Figure 3-4. Indian Point-2: Comparison of SG 4 R2C69 400 and 800 kHz Depth Profiles

Figure 3-5. Indian Point-2: Comparison of SG 4 R 2 C 71 400 and 800 kHz Depth Profiles

Low Row U-Bends

- Ovality has little or beneficial effect, particularly row 3 compared to row 2
- Effect of leg displacement on operating stresses
 - Site measurements of displacements input to plate model
 - Plate model determines displacements by row
 - Determine stresses at apex due to plate displacement
 - Row 3 stresses less than row 2, etc.
 - Stress effects from leg displacement present in the past and not changing significantly with time
- Industry Experience
 - Industry data suggests row 3 is not a concern
 - Row 2 is now plugged at Indian Point-2

Benchmarking of Analysis Methods and Data

- Benchmarking Analyses performed to support adequacy of data and methods
 - Demonstrate the methods provide conservative predictions of structural and leakage integrity at specified confidence
 - Provide integral test of NDE sizing technique, NDE uncertainty, and material properties
- Compare 1997 projections to 2000 data
 - R2C5 leakage
 - In situ tests
 - Comparisons with burst pressures and leakage from year 2000 profiles
- Compare analyses using year 2000 profiles with in situ test for burst pressure and leakage thresholds

Low Row U-Bend In Situ Tests

- In-Situ testing--total 10 tubes
 - Tested to as high a pressure as possible to demonstrate margin (5500 psi.)
 - Test results used to benchmark tube integrity analysis methods
- Tested all indications
 - Test results met NEI-97-06 Criteria ($3\Delta P_{NO} = 4617$ psi, hot)
- R2C71 in situ test
 - Test limited to 4206 psi (hot) by progressively increasing leakage
 - NDE and post peak pressure leak rates show short TW (<0.39")
 - Indication has not reached full ligament tearing of deep section (≈0.5") and burst pressure would be about 300 psi above tearing
- Tested 3 NDD tubes to $>3\Delta P_{NO}$ (5173psi)
 - 2 Row 2 tubes, 1 Row 3 tube
 - No leaks & no indications in post test NDE

Low Row U-Bend Operational Assessment

- Row 3 is now the limiting row
 - No Indian Point-2 indications found in row 3
 - Industry experience for Model 44/51 is no cracking in row 3
 - Higher operating temperature plants with no row 3 heat treated tubes
- Operating period very conservatively calculated by assuming indications found in row 2 were found in row 3
 - High frequency probe POD
 - POD correction per NRC GL 95-05 applied to account for potential undetected indications
- Analysis methods employed
 - Reference analysis is single cycle profile analysis as applied for PWSCC ARC at dented TSP intersections (WCAP-15128 Rev. 2)
 - Multi-cycle analysis methodology as independent check and guide to crack initiation history

Dented TSP Intersections

- Cecco results
- Qualification accepted by NRC
- No Cecco indications confirmed as flaws by +Point inspection

Area Above Sludge Pile

- Inspected with CECCO/bobbin probe
- 20% of tubes in each steam generator inspected with +Pt. to just below 1st TSP
 - Confirmed CECCO overcalls in this region
- 23 tubes in one steam generator inspected through 1st TSP with UTEC
 - UT inspection lessened influence of copper
 - 1 tube could not be inspected through 1st TSP
 - 2 tubes inspected after in-situ test
 - Confirmed CECCO calls
- 5 tubes in-situ tested in this region
 - All met NEI-97-06 structural and leakage criteria

Sludge Pile

- Detect with Cecco/confirm with + Point
 - Confirmation rate lower than qualification data
- Inspected 100% of hot leg tubes with + Point from TEH to 24" above top of tubesheet
 - Found a total of 6 small indications not found by CECCO
- UTEC inspection of 23 tubes in 1 steam generator
 - Confirmed CECCO calls
- 31 tubes in-situ tested in this region
 - All met NEI-97-06 structural and leakage criteria
 - R34C51: peak test pressure = 4985 psi = 4591 psi hot
 - Burst margin = $4591/1539(\Delta P_{NO}) = 2.98 = 3\Delta P_{NO}$ burst margin

Cold Leg Program

- Initial inspection with CECCO/bobbin probe
- Inspected 20% of 1 steam generator with +Pt from TEC to just below 1st TSP
- Inspected 20% of each of the other 3 steam generators with +Pt from TEC to 24" above top of tubesheet
- No crack-like indications found
- S/G 23 & 24 expanded to 40% due to pit indications
 - All pit indications plugged

Tubesheet Region

- Within tubesheet, burst prevented by tubesheet constraint
- Cecco/+ Point correlation similar to qualification
- Less of an influence of copper
- However---one indication within crevice did grow larger (crack opening and probable tearing) after an in situ test to 5000 psi for another indication
- Tubesheet region included in 100% H/L +PT. inspection and 20% C/L inspection
- In-situ tested 5 indications
 - All met NEI-97-06 leakage criteria

Other Tube Degradation Considerations

- Plugging all pits
- AVB wear is well understood
 - Growth rate consistent with industry experience
- Support plate condition
 - Analysis shows plates maintain tube integrity support function
- Wear due to loose parts also being evaluated