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Abstract

The Nuclear Power Engineering Corporation (NUPEC)* of Japan and the U.S. Nuclear Regulatory Commission
(NRC), Office of Nuclear Regulatory Research, are co-sponsoring and jomt.ly funding a Cooperative Containment
Research Program at Sandia National Laboratories (SNL). As a part of this program, a steel containment vessel
(SCV) model and contact structure assembly will be tested to failure at SNL in December 1996. The SCV model is
representative of a steel containment for an improved Japanese Mark-II Boiling Water Reactor Plant. The
geometric scale is 1:10 and the thickness scale is 1:4. The contact structure, a thick, bell-shaped steel shell separated
at a nominally uniform distance from the SCV model, provides a simplified representation of some features of a
reactor concrete shield building in the actual plant. The objective of the internal pressurization test is to provide
measurement data of the structural response of the composite structure up to its failure in order to validate analytical
modeling, to find the pressure capacity of the model, and to observe the failure mechanisms.

A pretest analysis of this structural assembly was conducted by the following organizations:

Argonne National Laboratory (ANL) [U.S.]

Agenzia Nazionale per 12 Protezione dell Ambienti (ANPA) [Italy]

Bhabha Atomic Research Centre (BARC) [India]

General Dynamics Electric Boat Division (GD-EB) [U.S.]

Japan Atomic Energy Research Institute (JAERI) [Japan]

Nuclear Power Engineering Corporation (NUPEC) [Japan]

Sandia National Laboratories (SNL) [U.S.]

Staatliche Material priifungsanstalt, Universitiit Stuttgart (MPA Stuttgart) [Germany]

Each organization was supplied with the same basic information to use in its analyses, including design drawings of
the SCV model and contact structure, as-measured material properties, and - certain as-built geometrical
measurements. Each organization worked independently, using its own analytical methods. The Round Robin
analysis exercise provides a forum for participants to discuss pretest predictions of the deformation behavior of the
SCV model at the same locations as well as to compare pretest predictions with the test data.

This report describes the analysis models and tabulates the pretest predictions submitted by each participant
organization. The participants’ analysis results at 43 specified locations on the SCV model were compiled to
facilitate discussions at the SCV Round Robin pretest meeting on October 1-2, 1996, in Albuquerque. This report
also includes a surnmary of participants’ predictions of the failure pressure and mechanisms. All pretest predictions
will be compared to the test data after the test.

* The work of the Nuclear Power Engineering Corporation is performed under the contract by the Ministry of International Trade
and Industry, Japan.
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Executive Summary

For several years, Sandia National Laboratories (SNL)
has tested and analyzed numerous scale models of
containment vessels that have been pressurized to
failure as part of the Containment Integrity Programs
sponsored by the U.S. Nuclear Regulatory Commission
(NRC). The overall objective of the programs has
been to develop test-validated analytical methods that
can be used to predict the performance of light water
reactor (LWR) containment vessels subject to loads
beyond the design basis. Five scale steel containment
models and a scale reinforced-concrete containment
model have been tested. For the static internal
pressurization - test of the reinforced concrete
containment model, a number of organizations in the
United States and Europe performed pretest and
posttest analyses of predicted response and failure.
* This activity, referred to as a Round Robin analysis,
occurred in the mid- to late-1980s.

SNL is now involved in a Cooperative Containment
Research Program for LWR containments under the
joint sponsorship of the Nuclear Power Engineering
Corporation (NUPEC)"® of Tokyo, Japan and the NRC.
This report discusses pretest analyses of an internal
pressurization test on a scale model of a steel
containment vessel (SCV) that represents certain
features of an improved boiling water reactor (BWR)
Mark-II containment vessel in Japan. The SCV model
uses a mixed-scale design: 1:10 for the geometry scale
and 1:4 for the thickness scale. The objective of the
test is to measure the failure pressure of the model, to
observe the failure mode and mechanisms, and to
provide data on the containment structural response up
to failure to validate analytical models. The test
assembly includes a bell-shaped steel contact structure
(CS) at a nominally uniform distance from the SCV
model. The uniform gap between these two structures
permits the SCV model to undergo deformation well
beyond the elastic range prior to its contact with the
CS. The CS, a much simplified representation of a
concrete shield building in a physical plant, allows an
in-depth study of SCV model behavior after it makes
contact with the CS. The SCV/CS structural assembly
provides specific features of the interaction to be
investigated, including closure of gap, progression of
contact, and load sharing between the SCV and the CS.

In separate efforts, NUPEC conducted a full-scale
hatch test, a biaxial tensile test, and a scaled cylindrical
vessel failure test. The purpose of these tests is to

® The work of the Nuclear Power Engineering Corporation is
performed under the contract by the Ministry of International
Trade and Industry, Japan

ES-1

provide additional information on containment vessel
deformation behavior to supplement the SCV model
pressure test.

Eight organizations from the U.S., Europe, and Asia
have participated in a Round Robin analysis activity to
conduct pretest predictions of the response of the
coupled SCV/CS assembly. Their efforts will help
validate analytical methods used for predicting the
structural behavior of actual containments under severe
accident conditions. The participating organizations
are:

Argonne National Laboratory (ANL) [U.S.]

Agenzia Nazionale per la Protezione dell Ambienti
(ANPA) [Italy]

Bhabha Atomic Research Centre (BARC) [India]

General Dynamics Electric Boat Division
(GD-EB) [U.S.] ‘
Japan Atomic Energy Research Institute

(JAERI) [Japan]
Nuclear Power Engineering Corporation (NUPEC)
{Japan] :
Sandia National Laboratories (SNL) [U.S.]
Staatliche Material priifungsanstalt,
Universitit Stuttgart (MPA Stuttgart)
[Germany]

NUPEC and the NRC jointly invited these international
organizations to participate in the pretest analyses in
the spring of 1995. The analyses began in the summer
of 1995 and were completed by June 1996. The
Round Robin analysis activity was coordinated by
SNL, which provided participants with all details
necessary to perform the pretest analyses, maintained
close contact with participants, prepared the Round
Robin pretest analysis report, and organized the pretest
meeting held October 1-2, 1996, in Albuquerque, NM.
Each organization was supplied with the same basic
information, including design drawings of the SCV
model and the CS, as-measured material properties,
and certain as-built geometrical measurements. All
participants were instructed to provide pretest
predictions at 43 specified standard output locations on
the SCV model to facilitate comparison and discussion
of analysis results and to correlate with test data after
the internal pressurization test, scheduled for
December 1996.

Several benefits have resulted from the Round Robin
analysis exercise. First, it provides a forum for
participants to discuss pretest predictions, based on
different numerical codes and modeling approaches, of
the deformation behavior of the SCV model at the

NUREG/CR-6517



same locations, as well as to compare pretest
predictions to the test data. Second, when expert
analysts use different finite-clement codes such as
ABAQUS, NEPTUNE, MARC, and TABS to solve
the same problem, it is possible to advance the state-of-
the-art of predictive techniques and to evaluate the
suitability of these codes for the nonlinear analysis of
steel structures (including contact phenomena).
Finally, this exercise has led to greater recognition of
the importance of containment performance and
reliable prediction techniques and has facilitated the
exchange of information on these and other related
topics.

This report describes the pretest analyses and compiles
the analysis results of the participating organizations.
The background information and the description of the
containment integrity program are given in Section 1.
The design and material properties of the SCV model,
and the design and special features of the CS are
discussed in Section 2 and 3, respectively. Section 4
describes the instrumentation installed on the SCV
model and the CS. The pressurization sequence of the
SCV model test is summarized in Section 5. Section 6
consists of participants’ predictions of failure pressure
and mechanisms. Section 7 contains the conclusions.

NUREG/CR-6517

- Appendices A and B contain design drawings of the

SCV and CS, respectively. Appendix C presents
measured material properties of the SCV. Appendix D
comprises the compilation of participants’ analysis
results. The analysis reports and results from the
participants are included in Appendix E in their
entirety. :

At this time, comments on the compilation of analysis
results from participants are limited primarily to
observations.  Participants had to make strategic
decisions about the features of the SCV/CS structural
assembly to be represented in their analytical models
such as as-built versus as-designed configurations and
other structural details. As shown in Section 6, the
pretest failure predictions by participants are very
much dependent on their modeling approach. A true
evaluation of the accuracy of the pretest predictions
can be made more appropriately in light of the test
data. There is no specific plan for the posttest analysis
effort. After the SCV pressurization test, the pretest
predictions will be compared with the test data on
failure pressure, location and mechanisms, and a
decision will be made at that time whether there will be
a formal Round Robin posttest analysis exercise.

ES-2



1. INTRODUCTION

1.1 Background

The Cooperative Containment Research Program is co-
sponsored and jointly funded by the Nuclear Power
Engineering Corporation (NUPEC)® of Japan and the
US Nuclear Regulatory Commission (NRC), Office of
Nuclear Regulatory Research. The purpose of the
program is to investigate the response of representative
scale models of nuclear containments to pressure-
loading beyond the design basis accident and to
compare analytical predictions to measured behavior.
This is accomplished by conducting static, pneumatic
overpressurization tests of scale models at ambient
temperature. Prior to testing, a number of
organizations are requested to conduct predictive
modeling of the response of containment models to
overpressurization. The containment models are being
constructed by NUPEC, which is funding Sandia
National Laboratories (SNL) for planning and site
preparation, review of the model design and design
support, instrumentation and data collection, and
reporting. The NRC is funding SNL to perform
analyses of the models and conduct the tests. Both
sponsors are funding SNL to coordinate the Round
Robin pretest analysis activities reported here.

1.2 Program Description

The first test in the Cooperative Containment Research
Program consists of pressure testing a mixed-scale
model of a steel containment vessel (SCV). The model
is representative of a steel containment for a Japanese-
improved Mark-II Boiling Water Reactor containment.
The geometric scale is 1:10. However, because the
same materials are being used for the model as for the
actual plant, the scale on the wall thickness was set at
1:4 for manufacturability and material availability.
The model was fabricated at the Hitachi Works, Japan.
The model arrived at SNL on March 8, 1995, and was
installed in the fragment barrier on March 22, 1995.
The fragment barrier houses the SCV model during
instrumentation and pressure tests. It is designed,
along with its earthen cover, to contain the fragments
and safely vent the overpressure from a probable
catastrophic failure of the model at a maximum
pressure of 12.4 MPa (1800 psig). Instrumentation of

® The work of the Nuclear Power Engincering Corporation is
performed under the contract by the Ministry of Intemationa!
Trade and Industry, Japan.

the model consists of over 800 channels of data,
including strain gages, displacement transducers, and
temperature sensors, as well as visual monitoring. A
steel contact structure (CS) is placed over the SCV
model prior to testing to represent some features of the
concrete reactor shield building in the actual plant.
The model should come into contact with the CS,
resulting in deformation and failure modes which
include the effects of contact due to a combination of
pressure and thermal growth. The pressure test of the
SCV model is planned to occur during December 1996.

The SCV model test is intended to accomplish the
following specific objectives:

1. To provide experimental data for validating the
predictive capabilities of analytical methods
representing certain aspects of the static internal
pressure response of a steel containment, first
beyond the elastic range without consideration
of contact with a surrounding shield structure or
thermal effects, then after contact with a
surrounding shield structure.

2. To provide experimental data for the evaluation
of steel containments.

Round Robin pretest analyses of this structural
assembly were conducted by the following
organizations:

Argonne National Laboratory (ANL) [U.S.]

Agenzia Nazionale per la Protezione dell Ambienti
(ANPA) [ltaly] '

Bhabha Atomic Research Centre (BARC) [India)

General Dynamics Electric Boat Division
(GD-EB) [U.S.]

Japan Atomic Energy Research Institute
(JAERI) [Japan]

Nuclear Power Engineering Corporation (NUPEC)
[Japan]

Sandia National Laboratories (SNL) [U.S.]

Staatliche Material priifungsanstalt,
Universitit Stuttgart (MPA Stuttgart)
[Germany)

Each organization was supplied with the same basic
information to use in its analyses, including design
drawings of the SCV model and the CS, as-measured
material properties, and certain as-built geometrical -

NUREG-CR-6517




measurements.*>!  Bach  organization = worked

independently using its own analytical methods.
1.3 Organization of Report

This report presents the results of pretest predictive
modeling of the effects of overpressurization on a scale
SCV model at 43 selected locations. Section 2
describes the design of the SCV model and the
measured properties data on the steel materials used in
its construction. The contact structure which encloses
the SCV model is discussed in Section 3. In Section 4,
the instrumentation on the SCV model is reported.
Special attention is focused on the strain gages and

4 Branstetter, LJ., Sandia letter to SCV Round Robin participants,

July 10, 1995.

® Hessheimer, MF., Sandia letter to SCV Round Robin

participants, February 20, 1996.

T Luk, VK, Sandia letter to SCV Round Robin participants, May

9, 1996.

NUREG/CR-6517

displacement transducers at the 43 specified locations
where pretest predictions of strain and displacement
were made. The procedure for pressurization of the
SCV model is described in Section 5. In Section 6, the
results of predictive modeling by all participants are
reported. Section 7 presents the conclusions of the
pretest analyses. References are given in Section 8.
Appendices A and B contain design drawings of the
SCV model and the CS, respectively. Appendix C
presents data on measured material properties for the
SCV model. A compilation of the analysis results from
the participants is given in Appendix D, and the
complete pretest analysis reports and results from each
of the participants are found in Appendix E.



2. DESIGN OF THE STEEL CONTAINMENT VESSEL MODEL

2.1 Model Design

The steel containment vessel (SCV) model is scaled
1:4 in shell thicknesses and 1:10 in overall geometry
from a prototype Mark-II Boiling Water Reactor
(BWR) containment structure. The model is 2.9 m in
diameter and 5.9 m tall, with an enclosed volume of
about 21 m’. The model weighs 15,800 kg.

The design pressure of the prototype containment is
0.31 MPa (45 psig). The design pressure for the model
is calculated as:

10 (geometric scale)

- % 0.31 MPa = 0.78 MPa (113 psig)
4 (thickness scale)

Containment details that are included in the SCV
model are: the equipment hatch penetration and
reinforcement plate (the hatch is not to scale, and the
hatch cover is welded shut); the drywell head (also
welded shut); and the SGV480/SPV490 material
transition location. All other hatches, airlocks, and
penetrations were omitted from the SCV model. In
addition, the lower wetwell and wall-basemat junction
has been replaced by a thick bottom head which is
designed to ensure that failure will not occur there
during testing, and that deformations in this area will
be minimal. All internal structures not integral to the
vessel have been omitted from the model. All thickness
variations in the model occur on its outer surface; the
inner surface of the model is smooth.

Figure 2.1, a diagram of the SCV model, illustrates
sections and features such as a top flange, knuckle
region, several stiffeners, equipment hatch with
reinforcement plate, various welds, and an interface
where two dissimilar steel materials come together at a
butt weld. The design drawings of the SCV model are
included in Appendix A.

A standard “global” coordinate system is used,
corresponding to the one originally employed by
Hitachi Works in describing the model. The origin of
the coordinate system is on the axis of the model, at the
elevation of the top surface of the ring support girder
(Figure 2.1). Positive elevations are upward on the
model. The global coordinate system is a lef--handed
cylindrical (r, 0, Z) system (i.e., looking downward at
the model, positive rotation is clockwise). The
equipment hatch is at an angular orientation of 90°.

Figure 2.2 shows angular orientations in the global
system looking down at the model.

Figure 2.3 compares a cutaway view of an actual
containment and the SCV model. The diagram of the
actual containment includes an exterior structure that is
a concrete shield building. The upper portion of the
SCV model (the portion above the ring support girder)
approximates the major features of an actual
containment.

The outside surface of the SCV model has been
covered by a layer of protective paint. The inside
surface of the CS, however, is not painted. There are
no plans to experimentally determine the coefficient of
friction between the SCV model and the CS. The
participants were asked to exercise their best modeling
judgment in this regard.

2.2 Material Properties

The upper portion of the model consists of two
materials: SGV480 steel and SPV490 steel. NUPEC
has supplied standard properties for these materials.
For any thickness of SGV480 steel, the standard

properties are:
minimum yield: 265 MPa;
tensile strength: 480 to 590 MPa; and
minimum elongation after fracture: 17%.

In the NUPEC-supplied standard properties for
SPV490 steel, the minimum elongation after fracture
depends on thickness, but the minimum yield strength
and the tensile strength do not. For SPV490 steel, the
standard properties are given as:

minimum yield strength: 490 MPa;
tensile strength: 610 to 735 MPa; and
minimum elongation after fracture:
18% for 9 mm thickness
25% for 17.5 mm thickness.

NUPEC has also conducted tensile tests on samples of
SGV480 steel and SPVA490 steel. These samples were
taken from the actual material lots used to construct the
model. Tests were performed on material taken from
12 locations on the SCV model. Four tests, two in the
roll direction and two in the rectangular (i.e., vertical)
direction, were performed at each location for a total of
48 tests. The tests were taken to failure. The data on
measured material properties are available in
Appendix C.
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Figure 2.1. Steel containment vessel (SCV) model.
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3. DESIGN OF THE CONTACT STRUCTURE

3.1 Structure and Design

The CS allows investigation of the response of the
SCV model against an almost rigid surrounding shield
structure during pressurization. It is mot, however,
intended to simulate the effects of the concrete shield
building in physical plants. The CS is designed to
remain essentially elastic until the SCV model reaches
an internal pressure of approximately 10 P,.

The CS is a bell-shaped structure (Figure 3.1)
constructed of SA-516-70 steel with a nominal
thickness of 38 mm. This material has a nominal yield
strength of 258 MPa and a nominal ultimate strength of
476 MPa. The CS was welded to the top surface of the
ring support girder after it was placed over the model.
1t does not touch the surface of the model at any point
prior to the test.

Seventy holes, 12.7 mm in diameter, were drilled in the
CS, both to measure the gap between the CS and the
SCV model to align the CS during its installation, and
Jater to install contact detection devices to measure gap
closure during the test. In addition, four 50.8-mm
depressions were counterbored into the inside of the
CS to allow for continuation of strain measurements of
the SCV model after it has contacted the CS during
testing. Appendix B contains the design drawings for
the CS.

3.2 Gap Dimensions

The minimum gap between the prototype containment
and its concrete shield building is 90 mm. For

geometric scaling, the gap between the SCV model and
the CS should be 9 mm. However, two factors
preclude using this gap. First, as noted previously, the
inside of the SCV model is smooth, with material
thickness  differences occurring on the outside.
Second, the SCV model is fabricated in sections, and
during the fabrication process, the model can become
out-of-round and out-of-plumb. However, the major
portion of the CS, the conical section, is machined in
one piece and is almost perfectly round and plumb.
Therefore, to account for these possible irregularities,
the scaled gap was increased by a factor of two to 18
mm.

To ensure that the internal geometry of the CS matched
the external geometry of the SCV model as closely as
possible, the SCV model was measured at 20 different
clevations, with eight measurements (at 45°
increments) taken at each elevation, for a total of 160
radial-geometry measurements. These measurements
showed that the axis of the SCV model is close to
vertical, and that the exterior radius of the SCV model
at each location is within Hitachi fabrication tolerance
(£ 6 mm).

After the CS was installed over the SCV model, the
gap size between the CS and the SCV model was
measured at each of the 70 hole locations. By design,
the gap sizes at the lowest three rows of measurement
holes are much larger than the design requirement of
18 mm (sec Appendix B). The majority of measured
gap sizes everywhere else lie between 18 mm and 22
mm. A minimum gap size of 13.4 mm was measured
at a hole location below the equipment hatch.
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4. INSTRUMENTATION

4.1 Model Instrumentation

The complete suite of instruments that has been
installed on the SCV model and the CS will:

1. measure the strain distribution, both membrane
and bending components, on the model
surfaces;

2. measure the displacements of the model,

relative to the interior wall of the fragment
barrier and to the rigid lower portion of the
- model;

3. measure the size of the gap between the SCV
model and the CS;

4, provide information on the extent of contact
between the SCV model and the CS;

5. relate all data to the internal pressure loads on
the model.

The number and the locations of different types of
instruments installed on the SCV model are described
in detail in the SCV Instrumentation Plan®. The
following sections describe only the strain,
displacement, and pressure measurements that are
related to pretest predictions.

4.1.1 Strain Measurements

The primary means of evaluating the structural
behavior in this experiment is through the
measurement of local strains over the surface of the
- SCV model. These measurements will be made using
standard electrical-resistance strain gages installed in
selected locations to evaluate the strain state of the
model as a function of the internal pressure. Density,
placement, and orientation of the gages are based on
pretest analytical predictions of the model response by
SNL. -

Strain gages are located to provide strain information
in the hoop direction (circumferential) and the
meridional direction (vertical or axial). Around the
equipment hatch, gages are aligned in a radial manner
with respect to the hatch geometry to provide data on
the complex: effects the hatch creates. In addition,
gages have been placed on both the inner and outer
surfaces of the model to allow the total strains to be

¥ Rightley, M.J. and Lambert, LD, “SCV Instrumentation Plan,”
Project Report No. R-SN-S-001, Rev. B, Sandia National
Laboratorics, Albuguerque, NM, September 1996.

differentiated into membrane and bending components
during the portion of the test before contact is made
with the CS. Once contact occurs, the signals from the
exterior gages will be lost due to gage or lead wire
failure, but since the pretest analyses indicate that
bending moment strains should become negligible after
contact, this loss is not considered detrimental to the
experiment. However, continuous monitoring of
exterior strain gages after contact will occur at the four
counterbored indentations in the CS.

Multi-element strip gages are installed in areas
predicted to have relatively large strain gradients.
These areas include the drywell head, in the vicinity of
the knuckle, and around the equipment hatch. Bending
moments will be obtained through the use of single-
element gages mounted to the exterior surface adjacent
to one of the strip elements. Thirty-nine strip gages
have been installed on the SCV model.

Single-element strain gages are used to determine point
strains on both the inner and outer surfaces of the
model in areas where the strain gradient is predicted to
be small or, as stated previously, to provide
complementary data for evaluation. of bending
moments adjacent to inner-surface strip gages. These
gages are oriented to monitor strains in the hoop or
circumferential direction. There are 153 single-
element gages on the SCV model.

Finally, in areas in which biaxial strain data are
desired, three-element rosette strain gages are used.
These gages provide membrane strain data  for
determination of the principal strains and location of
the principal axes. They are installed in areas in which
bending moments are considered very small

. throughout the entire test, such as the free ficlds

midway between the stiffener rings. Some rosette
gages are also included on the surface of the CS for
membrane strain measurements after contact with the
model. There are 85 rosette gages installed on the SCV
model.

4.1.2 Displacement Measurements

Detailed measurements of local displacements of the
SCV model and the CS are collected by displacement
measuring devices. Variable resistance linear
displacement transducers (also known as resistance
potentiometers or rheostats) are installed to measure
displacement over the expected ranges of the test.
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They operate through the use of spring-loaded wire
cables mounted to known reference locations.

All cable potentiometers installed inside the SCV
model are mounted on the central support column that
is rigidly attached to the ring support girder. ‘The cable
potentiometer measurements are taken either in the

horizontal or vertical direction with respect to the -

central support column whose displacement is
monitored by two inclinometers installed to measure its
tilt along orthogonal axes. Displacement data values
will be adjusted based on the output of the
inclinometers. There are 60 interior and 6 exterior
cable potentiometers installed on the SCV model.

4.1.3 Pressure Measurements

Two high-accuracy i)ressure transducers are installed in
the SCV model. They will measure the internal gas
pressure inside the model at all times during the test.

4.2 Standard Output Locations

The objective of the pretest analysis is to obtain
predictions of the SCV model behavior to compare to
data collected during the test. Forty-three locations for
pretest analyses,™ referred to as standard outputs, have
been specified for five categories: equipment hatch
area strains; top head-area strains; transition region
strains; free-field strains; and displacements. The
standard outputs are listed in Table 4.1 and shown in
Figures 4.1 through 4.5. Many of the standard outputs
correspond to pairs of measuring instruments (one on
the inside surface and one on the outside surface of the
SCV model) to estimate local bending within the SCV
model. o

Six standard outputs (1-6) were specified in the area of
the equipment hatch at several angular orientations at a
distance of 360 mm from the center of the hatch, 20
mm beyond the reinforcement plate. A combination of
single gages, rosettes, and strip gages will monitor
these areas. The angular orientations of these outputs
are shown in Figure 4.1. In addition, four standard
outputs (40-43) were later specified corresponding to
rosette gages installed on the interior of the SCV model
in an area of thinned material near the equipment hatch

® Branstetter, L.J., Sandia letter to SCV Round Robin participants,
July 10, 1995. ,

! Hessheimer, MF., Sandia letter to SCV Round Robin
participants, February 20, 1996.
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reinforcement plate.) The locations of these outputs are
shown in Figure 4.1.

Four strains (7-10) in the top head area were specified.
One prediction was requested at the apex of the top
head, and the other three were requested at 270°, near
the point of minimum radius of curvature of the top
head surface. Rosette gages have been mounted on the
model in each of these locations. A schematic diagram
with the locations of these outputs is given as
Figure 4.2.

The transition regions are Jocations near geometric or
material changes in the model for the prediction of
meridional strain. The ten predictions (11-20) consist
of five pairs of values — one on the inside surface of the
model and one on the outside surface. A combination
of single gages, rosettes, and strip gages has been
mounted on the model at these locations, all 90°
counterclockwise of the equipment hatch (Figure 4.3).

Fourteen free-field strains were specified at locations
away from geometric or material changes in the model.
Some free-field predictions are requested in pairs, one
on the inside surface of the model and one on the
outside surface of the model. Four such pairs (21-28),
corresponding to eight standard outputs, are requested:
two for meridional strain and two for hoop strain.
These pairs all correspond to measurements taken 45°
counterclockwise of the equipment hatch in the global
coordinate system (Figure 4.4). The remaining six
free-field standard output strains (29-34) were
specified at locations where gages are to be located
only on the inside surface of the model (Figure 4.5). A
rosette at the midheight of the spherical shell will be
used to measure both meridional and hoop strain 45°
counterclockwise of the equipment hatch (global
coordinate system). Another rosette at the midheight
of the upper conical section and directly opposite the
equipment hatch (i.e., at global 270°) will measure
both meridional and hoop strains at that position, and a
final rosette will measure both of these quantities
midway between the material change interface and the
top of the lower stiffeners (also at global 270°).

The locations of the displacement standard outputs
(35-39) (Figure 4.6) should be self-explanatory. The
displacements specified are absolute displacements in a
fixed coordinate frame. Vertical displacements of the
apex of the top head and just below the knuckle are

J Luk, VK. Sandia letter to SCV Round Robin participants,
May 9, 1996.



specified.  Horizontal (radial) displacements are
specified at three locations: just above the top flange,
just below the knuckle, and at the center of the

11

equipment hatch cover. For these measurements,
positive vertical displacements are upward, and
positive horizontal displacements are outward.
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Table 4.1. SCV standard output list

Category | Plot Instrament ID Inst, Model | Coord. 6,X Output
ID Type | Surface | System | (degrees, m) Quantity
Equipment 1 - RSG-1I-EQH-12 rosette inside Hatch 67.5,0.36" max. prin. strain
Hatch 2 RSG-I-EQH-8 rosette inside Hatch 45, 0.36 max. prin. strain
Area 3 STG-O-EQH-4¢ strip outside | Hatch 0, 0.36" ext. merid. strain
(Strains) 4 STG-I-EQH-2¢c strip inside Hatch 0,0.36" int. merid. strain
5 SSGH-O-EQH-18 single outside Hatch 90, 0.36' ext. hoop strain
6 STG-I-EQH-16¢ strip inside Hatch 90, 0.36 int. hoop strain
Top Head 7 RSG-O-THD-1 rosette outside Top -, 0.00" max. prin. strain
Area 8 RSG-O-THD-9 rosette outside Top 270, 0.48" ext. hoop strain
(Strains) 9 RSG-O-THD-9 rosette outside Top 270, 0.48" ext. merid. strain
10 RSG-I-THD-10 rosette inside Top 270, 0.48" int. merid. strain
Transition 11 STG-0-UCYS-25¢ strip outside | .Global 0,347 ext. merid. strain
Regions 12 SSGM-1-UCYS-27 | single inside | ~Global 0,347 int. merid. strain
(Strains) 13 STG-O-KNU-1¢ strip outside Global 0,3.32° ext. merid. strain
14 STG-1-KNU-9¢ strip inside Global 0,3.32 int. merid. strain
15 SSGM-O-MST-1 single | outside | Global 0,2.1¢° ext._merid. strain
16 SSGM-I-MST-7 single inside Global 0,2.10° int. merid. strain
17 SSGM-0-MCI-2 single outside Global 0, 1.60° ext. merid. strain
18 RSG-I-MCl-1a rosette inside Global 0, 1.60° int. merid. strain
19 SSGM-0O-LST-17 single outside Global 0, 0.80" ext. merid. strain
20 SSGM-I-LST-25 single inside Global 0, 0.80° int. merid. strain
Free Field 21 RSG-0-UCS-17 rosette outside Global 45,249 ext. merid. strain
(Strains) 22 RSG-1-UCS-18 rosette inside Global 45, 2.49" int. merid. strain
23 RSG-0-UCS-17 rosette | - outside Global 45,2.49° ext. hoop strain
24 RSG-I-UCS-18 rosette inside |° Gilobal 45,2.49° int. hoop strain
25 RSG-0O-LCS-5 rosette: outside Global 45, 1.45° ext. merid. strain
26 RSG-I-LCS-6 rosette inside Global 45, 1.45° int. merid. strain
27 RSG-O-LCS-5 rosette outside Global 45, 1.45' ext. hoop strain
28 RSG-I-LCS-6 rosette inside Global 45, 1.45° int. hoop strain
29 RSG-I-SPH-2 rosette inside Global 45,3.13° int. merid. strain
30 RSG-I-SPH-2 rosette inside Global 45,3.13’ int. hoop strain
31 RSG-I-UCS-16 rosette inside Global 270, 2.49° int. merid. strain
32 RSG-I-UCS-16 rosette inside Global 270, 2.49° int. hoop strain
33 RSG-I-LCS-11 roseite inside Global 270, 1.25° int. merid. strain
34 RSG-I-LCS-11 rosette inside Global 270, 1.25° int. hoop strain
General 35 VCP-I-THD-11 rheostat inside Top -, 0.00" vertical disp.
(Disp.) 36 HCP-O-UCYS-43 rheostat outside Global 45,3.5T horizontal disp.
HCP-I-UCYS-39 | rheostat inside Global 45,3.57 horizontal disp.
37 HCP-I-KNU-17 rheostat inside Global 0,3.32° horizontal disp.
38 VCP-I-KNU-18 theostat inside Global - 0,332 vertical disp.
39 HCP-1-MCI-16 rheostat inside Hatch -, 0.00* horizontal disp.
Equipment 40 RSG-I-EQH-45 rosette inside Global 105.2, 1.569° int. merid. strain
Hatch 41 RSG-I-EQH-45 rosette inside Global 105.2, 1.569° int. hoop strain
Area 42 RSG-I-EQH-44 rosette inside Global 74.6, 1.569° int. merid. strain
(Strzins) 43 RSG-I-EQH-44 rosette inside Global 74.6, 1.569° int. hoop strain

Note: a: 6, R,(H=Hatch) b: 8,R,(T= Top.Head) c: 8, Z, (G = Global)
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Figure 4.1. Locations of standard outputs near equipment hatch.
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Figure 4.2. Locations of standard outputs on top head.
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5. INTERNAL PRESSURIZATION TEST

5.1 Pressure Supply

For the internal pressurization test of the SCV model,
the pressure source is liquid nitrogen that is gasified
and regulated to a constant pressure and temperature.
The pressure level and the flow rate of nitrogen gas
into the SCV model is controlled by an elaborate
pressurization system. The temperature of the nitrogen
gas inside the SCV model is maintained to within
$3.00°C of the ambient temperature (15.00°C). This
relatively constant gas temperature is achieved by first
setting the temperature at the pressure source location;
additional heating, if needed, is supplied by heaters
before the nitrogen gas enters the model.

5.2 Pressurization Sequence

The pressurization sequence of the SCV test follows a
monotonic rise of the internal pressure inside the SCV
model until the model fails or the pressure level
reaches 12.4 MPa (1800 psi)". The pressurization test
will be terminated when the SCV model experiences a
structural failure in terms of a catastrophic failure or a
significantly large tear. If the SCV model leaks due to
the occurrence of multiple small cracks, then the
pressurization system may not be able to maintain a
constant pressure inside the model. At this time, the
SCV model will have functionally failed, and the test
will be terminated.

The internal pressurization test has three distinct stages
in its test sequence:

first stage (0 - 4.6 P4)
second stage (4.6 P;)
third stage (4.6 P, - model failure or 159 P, )

kK Luk, VK., “Steel Containment Vessel Model Test Plan.” Project
Report No. R-SN-5-003, Rev. B, Sandia National Laboratories,
Albuquerque, NM, December 1996.
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where P, is the scaled design pressure (0.78 MPa). The
entire test sequence is shown in Figure 5.1.

5.2.1 First Stage (0 -4.6 Py)

According to Sandia National Laboratories’ pretest
analysis results', the conical section of the SCV model
expands 9 mm at an internal pressure of 4.6 P,, and the
structure behaves essentially in the elastic domain
throughout this stage.

5.2.2 Second Stage (4.6 Py)

This pressure condition is held at a constant level for
30 minutes.

5.2.3 Third Stage (4.6 P4 - model failure
or 159 P,)

The SCV model behaves in the plastic domain
throughout this stage. The pressure rise time is kept at
a minimum of 3 minutes for each pressure step. The
maximum pressure increment is maintained at 0.1 P,
for each pressure step until pressure reaches 6.0 P, at
which time the maximum pressure increment is
reduced to 0.05 P, for each pressure step.

The dwell time is expected to increase as pressure
increases because the structure takes a longer time to
achieve its equilibrium state in the plastic domain. The
increase of strain and/or displacement as a function of
pressure at certain critical locations on the model will
be monitored at all times during the test to provide
indications of an imminent model failure.

! Porter, V.L., Carter, P.A.. and Key, S.W., “Pretest Analyses of the
Steel Containment Vessel Model,” NUREG/CR-6516, SAND96-
2877, Sandia National Laboratories, Albuquerque, NM,
November 1996 (1o be published).
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Figure 5.1. Pressurization sequence for the high-pressure test.
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6. PRETEST ANALYSIS

6.1 Compilation of Analysis Results
from Participants

Each organization participating in the Round Robin
analysis of the SCV performed an independent
analysis, using its own analytical methods. Participants
were supplied with the same basic information to use
in their analyses, including design drawings of SCV
model and contact structure, as-measured material
properties, and certain  as-built geometrical
measurements. All participants and the numerical
codes they used are shown in Table 6.1. A detailed
summary of the modeling approaches used by each
participant is given in Table 6.2.

Two comparison indicators among the models that
demonstrate the effects of the overall modeling
approaches and inputs are the pressures and locations
of the first yield of the SCV model and the first contact
between the SCV model and the CS (Table 6.3). With
the exception of low predicted pressures by GD-EB,
the range for first yield falls between 1.78 MPa and
3.0 MPa. Predictions of the location of first yicld are
mostly in the knuckle region or the area of the
equipment hatch. Predicted pressures for first contact
between the structures range between 3.2 MPa and 4.4
MPa, with most participants predicting first contact
occurring in the knuckle region or the upper and
middle conical shells.

After the analysis was performed, each participant was
asked to provide plots of internal gage pressure versus
strain or internal gage pressure versus displacement at
the 43 standard output locations on the SCV model

(Table 4.1). Each of the participants submitted both
hardcopy plots and electronic files of predicted results
at these locations. SNL then combined these files and
plotted them together in the same format

(Appendix D).

Participants were given the option to perform analyses
using either zero friction between the SCV and the CS,
or nonzero friction, or both. The coefficient of friction
between the SCV model and the contact structure was
not experimentally determined. Therefore, the
participants were asked to exercise their best judgment
if a nonzero friction was used.

In Appendix D, two plots are given for each standard
output location. The first shows all results for the
participants who performed the analyses using zero
friction. The second shows the results for participants
using nonzero friction as well as the coefficient of
friction chosen by each participant. Most of the
participants chose to submit only one set of data using
either zero friction or nonzero friction. However, two
participants submitted plots for both zero friction and
nonzero friction.

Most of the participants submitted plots for all 43
standard output locations. However, some of the
participants performed only 2-D axisymmetric
analysis, ignoring the equipment hatch, or they used a
3-D model but did not model the equipment hatch.
These participants did not submit results for locations
1-6 and 39-43, which were measurements taken on or
near the equipment hatch. The remaining locations
(7-38) include results from every participant.

Table 6.1: List of participants and numerical codes

21

Participant [country) Numerical Code
| Argonne National Laboratory (ANL) [U.S.] NEPTUNE
Agenzia nationale per la Protezione dell Ambienti (ANPA) [Italy} MARC
Bhabha Atomic Research Centre (BARC) {India] ABAQUS and TABS/NISA
Genera Dynamics Electric Boat Division (GD-EB) [U.S.] ABAQUS
Japan Atomic Energy Research Institute (JAERI) (Japan}] ABAQUS
Nuclear Power Engineering Corporation (NUPEC) [Japan] ABAQUS
Sandia National Laboratories (SNL) [U.S.] '] ABAQUS
Staatliche Material priffungsanstalt, Universitit Stuttgart ABAQUS
(MPA Stuttgart) {Germany]
NUREG-CR-6517
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Table 6.2. Detailed description of analysis models

Participant Type of Model Post-Yield SCV/CS Gap Representation | Model Details Shell Local Eccentricity Due Type of
© Used Maierial Model Dimension of CS Modelat | of Head Reglon | Thickness of Thinning to Different Shell Contact
Knuckle SCV Model | Incorporated? Thicknesses of between SCV
SCV Model? and CS
ANL 3-D 360° shell Isotropic/bi-linear | As-built As-designed; No Design No No Elasto-plastic
least squares fit shell clements
ANPA 3-D 90° shell Mean pioperties; As-built at Per machining No fillet; Nominal Yes No Rigid-
high fidelity measurement hole | geometry continuum ' deformable
filling total range | #9 elastic-plastic
surface
BARC 2-D Axisynunetric Isotropic As-designed As-designed No As-built No No Hard contact
ABAQUS solid piccewise linear of with opening
minimum and closing
thickness
specimen
BARC 2-D Axisymmetric | Isolropic As-built averaged | As-built No As-built No No Hard contact
TABS/NISA | solid piecewise lincar; over with opening
mean values circumference : and closing
EB Axisymmetric shell | Isouopic Average as-built; | As-built Fillet welds Averageas- | Yes Only at equipment | Elastic-plastic
free field; piecewise lincar 21.0/25.7 mm at geometry simulated in built hatch minimum
Axisymmetric solid equipment hatch axisymmetric properties
knuckle; solid models
3-D shell equipment
hatch
JAERI 3.D 180° shell Tri-linear fit Nominal; Design No Design No No Elastic
hard contact
NUPEC 3-D global; Mean propertics; Nominal 18mm; Design No (shell model) | Nominal No Only at equipment | Elasto-plastic
3-D equipment high fidelity hard contact hatch insert platc | (same as
haich submodel; filting total range equipment hatch
3-D top head material)
subimodel
SNL 3-D shell; Mean propestics; | Nominal 18mm; As-built No filled; Nomiinal Yes Only at equipment | Elastic-plastic
Axisymmelric high fidelity ABAQUS hard geometry continuum hatch insest plate | nominal
continuum top fitting total range | conlact properties
head;
3-D shell equipment
hatch ‘
MPA 3.D 180° shell Isoicopic Nominal 18mm Design No Nominal No No ABAQUS
Stuttgart kinemetic surface
hardening model interaction

option




Table 6.3. Locations and pressures of first yield and first contact between the SCV model and the CS

First Yield First Contact between SCV Model and CS
Participant Pressure Location Pressure Location
(MPa) (MPa)
ANL 26 Bottom of equipment hatch and 44 Upper conical shell
reinforcing plate
ANPA 3.0 Upper portion of spherical shell 3.5 Not stated in analysis report
BARC: ABAQUS 1.78 Below knuckle region 342 Knuckle region
TABS/NISA 20 Top spherical shell 35 Between knuckle region and top
spherical shell
GD-EB 1.0 Knuckle region 3.2 Knuckle region
1.1 Locally thin area around
equipment hatch )
JAERI 28 Around knuckle region and .40 Upper and middle conical shells
top head and around knuckle region
NUPEC 2.1 Below knuckle region 3.5 Knuckle region
SNL 2.0 | Knuckle region 3.2 Knuckle region
MPA 2.5 Near equipment hatch 3.5 Upper and middle conical shells

6.2 Predictions of Failure Pressure

and Mechanisms

Participants used various finite-element codes and
adopted a hierarchy of modeling approaches to
perform the SCV model analyses. The analyses reports

modeling strategies were chosen and how different

assumptions were made in the analysis efforts. In
addition to plotting the pretest analysis results on

of the participants (Appendix E) describe what

23

deformation history as a function of internal pressure at
the 43 specified standard output locations, participants
have also provided failure predictions of the SCV
model as highlights of their analyses (Table 6.4).

NUREG-CR-6517
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Table 64. Predicted failure pressure and mechanisms

Name of Numerical Analytical Model Used in Failure Pressure Failure Locatlon Failure Mechanisuw/Criteria
Participant Code Used Failure Prediction
Organization
ANL NEPTUNE Solid model of SCV model 5.5MPa Just above the knuckle region | Uniaxial ultimate strain (plastic
and CS 4.9 MPa (high confidence [>98%] failure strain) of 9.9%
that there is a low probability for
failure)
ANPA MARC 3.D shell model of SCV model, No plastic instability at 10 MPa; Top head region Local buckling
no CS and rigid surface for CS Jocal buckling of torospherical
head at 10.87 MPa
BARC ABAQUS 3-D shell model with-SCV model | 11.49 MPa Top head region Steain at top head regions
and CS based on as-designed reaches ultimate strain
configurations
| TABS/NISA 2-D axisymmetrical model with 11.5 - 12.0 MPa Top head region at elevation Imply possibility of in-plane
SCV model and CS, based on 10 cm above the junction axisymmetrical buckling
some as-built configurations such between the top head and the
as average thickness and average top cylinder
£ap
GD-EB ABAQUS Shell submodel to address the 4.7 MPa Local thinned section around Minimum ultimate strain of 8%
effect of local thinning equipment hatch (reduced by a series of
reduction factors to account for
the variation and unknowns in
the as-built SCV model)
JAERI ABAQUS Shell element model of SCV 10.81 MPs Top head region Numerical instability due to
: model and CS based on as- yielding in the top head region
designed configuration
NUPEC ABAQUS Two submodel analyses - 7.3 MPa Near equipment hatch, below Maximum surface strain value
equipment hatch and knuckle 73-11.8 MPa knuckle joint, and below top
region, using as-designed head flange joint.
configuration Top head apex
11.8 MPa
SNL ABAQUS Equipment haich submodel with | 4.5 MPa Local thinned section next to Ductile rupture. SPV490 steel
thinned section equipment hatch reinforcement | material reaches a plastic strain
plate that in the uniaxial-stress
tensile test led to necking
MPA ABAQUS 3-D shell for half of SCV and CS; | N/A N/A N/A
no failure analysis was performed
NUREG-CR-6517 24




7. CONCLUSIONS

The support and continuing effort of the Round Robin
participants is greatly appreciated. This work was
performed on a tight schedule that limited the scope of
analysis efforts, and the results included in this report
reflect what could be accomplished within the
limitations imposed. An important benefit of the
Round Robin activity was obvious at the pretest
meeting, when experts from the participating
organizations who used different codes to conduct
independent analyses shared their results, conclusions,
and knowledge. ‘

The pretest predictions of the behavior and failure of
the SCV model are dependent on details of the features
of the SCV model that were included in the analytical
effort, such as the as-designed vs. the as-built
configuration of the model. Results from the two
organizations that incorporated the locally thinned
sections around the equipment hatch into the numerical
models indicate that those locally thinned areas are the
most vulnerable sections for failure. Furthermore, their
results indicate failure occurring at a lower pressure
than shown by results based on the as-designed
configuration of the SCV model. Generally, failures
are predicted to take place in either the locally thinned
areas around the equipment hatch, around the knuckle
region, or at the top head apex.

The analysis results from the participants clearly
indicate that there are differences among predictions of
SCV model deformation behavior in terms of strain
and displacement.  However, there are striking
similarities in the trends of their variation. The onset
of contact between the SCV model and the CS plays a
dominant role in affecting the deformation behavior of
the model. Compiled analytical results indicate that the
various values of friction coefficient at the interaction
surface between the two structures do not affect
analytical results to any great extent. There are,
however, differences in results between zero friction
and nonzero friction cases.

Most participants experienced numerical stability
difficulties in simulating contact between the SCV
model and the CS. Analysis results are sensitive to
how the two structures interact at the contact interface.
It will be crucial to have improved understanding and
simulations on the part of numerical algorithms.

All pretest predictions should be considered in light of
the design details that were incorporated in the
numerical models, and the accuracy of the predictions,
when compared to test data, should be evaluated in that

respect.

NUREG-CR-6517



Appendix A

SCV Model Design Drawings
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Appendix B

Contact Structure Design Drawings
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Appendix C

Measured Material Properties for the SCV Model
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Figure C.1. Stress-strain curves for SGV480: thickness 6.0 mm plate, location 1.
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Figure C.2. Stress-strain curves for SGV480: thickness 6.0 mm plate, location 2.
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Figure C.3. Stress-strain curves for SGV480: thickness 7.5 mm plate, location 3.
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Figure C.4. Stress-strain curves for SGV480: thickness 8.0 mm plate, location 4.
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Figure C.5. Stress-strain curves for SGV480: thickness 8.5 mm plate, location 5.
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Figure C.6. Stress-strain curves for SGV480: thickness 9.5 mm plate, location 6.
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Figure C.7. Stress-strain curves for SGV480: thickness 12.5 mm plate, location 7. A
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Figure C.8. Stress-strain curves for SGV480: thickness 19.0 mm plate, location 8.
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Figure C.9. Stress-strain curves for SGV480: thickness 20.0 mm plate, location 9.
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Figure C.10. Stress-strain curves for SGV480: thickness 28.0 mm plate, location 10.
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Compilation of Analysis Results from Participants
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Figure D-1. Standard Output Location #1 (zero friction case)
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Figure D-3. Standard Output Location #2 (zero friction case)
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Figure D-4. Standard Output Location #2 (nonzero friction case)
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Figure D-10. Standard Output Location #5 (nonzero friction case)
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Figure D-11. Standard Output Location #6 (zero friction case)
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Figure D-12. Standard Output Location #6 (nonzero friction case)
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Figure D-13. Standard Output Location #7 (zero friction case)
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Figure D-16. Standard Output Location #8 (nonzero friction case)
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Figure D-17. Standard Output Location #9 (zero friction case)
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Figure D-18. Standard Output Location #9 (nonzero friction case)
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Figure D-19. Standard Output Location #10 (zero friction case)
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Figure D-20. Standard Output Location #10 (nonzero friction case)
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Figure D-21. Standard Output Location #11 (zero friction case)
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Figure D-22. Standard Output Location #11 (nonzero friction case)
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| Figure D-23. Standard Output Location #12 (zero friction case)
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Figure D-24. Standard Output Location #12 (nonzero friction case)
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Figure D-25. Standard Output Location #13 (zero friction case)
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Figure D-26. Standard Output Location #13 (nonzero friction case)
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Figure D-27. Standard Output Location #14 (zero friction case)

Location #14
Spherical Shell
Inside Surface
Global (0°, 3.32 m)
int. merid. strain




1ed

intemal Pressure (MPa)

Strain (%)

5 : 10 15

T ¥ T L} ¥ T v T T v T

—— Electric Boat (u=0.4)

1] —®— Bhabha/Abaqus (u=0.75)
< | —¢— Sandia (u=0.2)

4] —&— NUPEC (u=0.2)

—O—— MPA (n=0.3)'

1 Location #14

i Spherical Shefl
‘ Inside Surface

i Global (0°, 3.32 m)
- Int. merid. strain

10 15 20
Muttiples of Deslgn Pressure (1 P = 0.78 MPa)

Figure D-28. Standard Output Location #14 (nonzero friction case)
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Figure D-29. Standard Output Location #15 (zero friction case)
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Figure D-30. Standard Output Location #15 (nonzero friction case)
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Figure D-31. Standard Output Location #16 (zero friction case)
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Figure D-32. Standard Output Location #16 (nonzero friction case)
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Figure D-33. Standard Output Location #17 (zero friction case)
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Figure D-34. Standard Output Location #17 (nonzero friction case)
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Figure D-35. Standard Output Location #18 (zero friction case)
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Figure D-36. Standard Output Location #18 (nonzero friction case)




Strain (%)

0.2

-1.2

Iintemal Pressure (MPa)

—e— JAERI (1=0.0)

—%— Electric Boat (1=0.0)
| | —=— Bhabha/Abaqus (1=0.0)
—{— Bhabha/Tabs (1=0.0) |

—k— Argonne (u=0.0)
ety ANPA

Location # 19

] Lower Conical Shell
-1 Outside Surface
1 Global (0°, 0.80 m)
ext. merid. strain

10 156 20
Multiples ot Design Pressure (1 P a = 0.78 MPa)

Figure D-37. Standard Output Location #19 (zero friction case)
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Figure D-38. Standard Output Location #19 (nonzero friction case)
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Figure D-39. Standard Output Location #20 (zero friction case)
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Figure D-40. Standard Output Location #20 (nonzero friction case)
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Figure D-41. Standard Output Location #21 (zero friction case)
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Figure D-42. Standard Output Location #21 (nonzero friction case)




Intemal Pressure (MPa)

1 | —— JAERI (1=0.0)
- | —¥— Electric Boat (1=0.0)

1 | —=— Bhabha/Abaqus (1=0.0) §
—0— Bhabha/Tabs (p=0.0) |

—a&— Argonne (j1=0.0)
- ANPA

Lacation #22

Upper Conical Shell

Inside Surface
1 Global (45°, 2.49 m)
y int. merid. strain

o-a
Strain (%)

Hﬂ

=

0 5 10 15 20
Multiples of Design Pressure (1 Pd =0.78 MPa)

Figure D-43. Standard Output Location #22 (zero friction case)
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Figure D-44. Standard Output Location #22 (nonzero friction case)
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Figure D-45. Standard Output Location #23 (zero friction case)
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Figure D-46. Standard Output Location #23 (nonzero friction case)
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Figure D-47. Standard Output Location #24 (zero friction casc)
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Figure D-48. Standard Output Location #24 (nonzero friction case)
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Figure D49. Standard Output Location #25 (zero friction case)
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Figure D-50. Standard Output Location #25 (nonzero friction case)
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Figure D-51. Standard Output Location #26 (zero fnjiction case)
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Figure D-52. Standard Output Location #26 (nonzero friction case)
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Figure D-53. Standard Output Location #27 (zero friction case)
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Figure D-54. Standard Output Location #27 (nonzero friction case)
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Figure D-55. Standard Output Location #28 (zero friction case)
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Figure D-56. Standard Output Location #28 (nonzero friction case)
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Figure D-57. Standard Output Location #29 (zero friction case)
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Figure D-58. Standard Output Location #29 (nonzero friction case)
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Figure D-59. Standard Output Location #30 (zero friction case)
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Figure D-61. Standard Qutput Location #31 (zero friction case)
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Figure D-63. Standard Output Location #32 (zero friction case)
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Figure D-64. Standard Output Location #32 (nonzero friction case)
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Figure D-65. Standard Output Location #33 (zero friction case)
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Figure D-67. Standard Output Location #34 (zero friction case)




ILa

Strain (%)

intemnal Pressure (MPa)

0 5 10 15
2 L] L) L] L) L) ' L] L) T ¥ L] l L] L] LJ T L ¥ L] L] l
—¥— Electric Boat (1=0.4)
—#— Bhabha/Abaqus (1=0.75) |
1| —¢— Sandia (u=0.2)
1.5 v- p—— A 1| —2— NUPEC (u=0.2)
. . o—st—o— ¢ 1| —0— MPA (u=0.3)
N “,.,,.—-H‘ |
1 1 - Locatlon #34
i . Lower Conical Shell
] Inside Surface
/ Global (270°, 1.25 m)
int. hoop strain
0.5 [' P ]
) i
<% 3 E /
A ®
Ny Y =Y U0O-C Y0 O /
L [l 3 l 1 1 ] 1 ' i ] 1 1 I 2 L A i
0 5 10 15 20

Multiples of Design Pressure (1 P 4= 0.78 MPa)

6

Figure D-68. Standard Output Location #34 (nonzero friction case)
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Figure D-69. Standard Output Location #35 (zeto friction case)
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Figure D-70. Standard Qutput Location #35 (nonzero friction case)
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Figure D-72. Standard Output Location #36-outside (nonzero friction case)
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Figure D-73. Standard Output Location #36-inside (zero friction case)
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Figure D-74. Standard Output Location #36-inside (nonzero friction case)
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Figure D-75. Standard Output Location #37 (zero friction case)
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Figure D-81. Standard Output Location #40 (zero friction case)
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Figure D-83. Standard Output Location #41 (zero friction case)
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Figure D-87. Standard Output Location #43 (zero friction case)
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Argonne National Laboratory
Round-Robin Pretest Analyses of a 1:10-Scale Steel Containment Vessel

by:

P. A. Pfeiffer, R. F. Kulak
Reactor Engineering Division, Argonne National Laboratory

F.1 Saral
IAEA Fellow, Turkey

and

J. Bonnet
INPG-INSTN Student, France

INTRODUCTION

Pretest predictions were made by the Reactor Engineering Division of Argonne National
Laboratory (ANL) for the response of the 1:10 scale Steel Containment Vessel (SCV) to
be tested by Sandia National Laboratories (SNL). The SCV model is scaled 1:10 in overall
geometry and a 1:4 scale is used for the thickness from a prototype BWR Mark-II
containment. The pretest predictions were made with a full three-dimensional model using
the NEPTUNE finite element code. The NEPTUNE [4.1, 4.2 and 4.3] code was primarily
intended for 3-D fluid structure interaction problems, however additions [4.4] to the code
were made to incorporate simulation of pressurized vessel analyses.

NEPTUNE is a three-dimensional finite element program that was developed to simulate
the response of reactor components in 3-D space to design and beyond-design-basis loads.
The code has evolved over the years to address safety issues. Since the code was
developed to solve a variety of problems, the current version is a general purpose 3-D
finite element code primarily suited for nonlinear problems. An important feature of
NEPTUNE is its ability to handle nonlinear problems, which often occur during beyond-
design basis loads. The element formulations can properly treat large deformations (i.c.
geometric nonlinearities), and the rate-type material models can handle large material
strains (i.e. material nonlinearities). A Von Mises elastic-plastic constitutive material law is
utilized for yielding and post yielding of material. The failure model used is based on a
Davis triaxial factor for multiaxial state of stress in combination with Von Mises elastic-
plastic constitutive law. Explicit solution algorithms are used to economically solve short
duration transient problems, and a dynamic relaxation (DR) method is utilized to simulate
quasi-static problems. ' ‘
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The explicit time integration scheme is used in the NEPTUNE code. The numerical
algorithm for the explicit time mtcgratlon is based on the solution of the following
equation of motion

myily + fi* = £, (no sum) 4.1)

where my is a diagonal mass matrix, uy is a nodal displacement, £ and f are the -

internal and external nodal forces, respectively, of node J in the ith direction. Superscnpt
dots are used to denote temporal derivatives. The equations of motion are solved using the
central difference formulas. For static analysis the equilibrium equations are given by

= 4.2)

There are various methods available for obtaining static solutions, NEPTUNE uses the
dynamic relaxation (DR) method. Details are provided in Ref. [4.4] on the numerical
algorithm utilized for the DR method. The main problem associated with the DR
algorithm, as well as other iterative techniques, is whether the current solution vector is
close enough to the true solution so that the iteration process can be terminated.
Premature termination will result in an incorrect solution, whereas excessive iterations will
increase the time of the solution. An effective and efficient way to determine when the
iteration process should cease is utilized in the code. The dual criteria used are

at.n mt.nI
i

——2x100<e @3
151 '

n+l/2
ﬂu At" x100 <e, (4.4)

n+l
H;;*' llz

where | I, indicates the Euclidean norm. Accurate results without excessive
computations are usually obtained with & = 1.0 and &, = 0.1 in Egs. (4.3) and (4.4). Once
these equations are satisfied, the iteration process is terminated, a load increment is
applied, and the iteration process is restarted. The DR method does not change the basic

architecture of the central difference scheme, but enhances it so that static problems can be
solved.

MODEL DESCRIPTION

The finite element model is depicted in Figs. 4.1 and 4.2. Figure 4.1 is the SCV solid
model and Fig. 4.2 is the Contact Structure (CS) solid model. The overall model contains
27538 nodes (3 degrees of freedom) and 18001 elements. The SCV consists of 9734
quadrilateral plate elements for the steel shell and 400 bar elements for the 5 stiffeners (i.e.
80 bar elements for each stiffener). The CS consists of 3888 quadrilateral plate elements
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for the steel shell and 3979 contact elements are located Between the CS and the SCV.
The model contains 9790 translational nodes and 9790 rotational nodes in the SCV and
3979 translational nodes and 3979 rotational nodes in the CS.

The model is subjected to a fixed boundary condition (no translation or rotation allowed)
at the 0.000 m elevation for the SCV and CS, and at the -0.400 m elevation of the SCV.
These are the upper and lower elevation of the ring support girder. It was assumed that
the support girder was rigid, and thus, a fixed boundary condition was used.

MATERIAL DATA

The material test data that was provided by SNL was used to obtain material property
values for input to the constitutive model for metals. The true stress - true strain data was
analyzed by a best fit least square algorithm. The data was split into two portions, elastic
and elastic-plastic, with each portion fit to a line equation. The bi-linear stress-strain data
is used as input for the material law in NEPTUNE. The fits are shown in Figs. 4.3 through
4.14. Figure 4.3 indicates a Young’s modulus of 2.09x10" Pa, yield stress of 416.8 MPa,
plastic modulus of 1.4x10° Pa, ultimate stress of 694 MPa and an ultimate failure strain of
20%. The coefficient of correlation, r, for the plastic region of the data fits varies from
0.941 to 0.986 with most of data fits around r = 0.97, which indicates a very good fit of
the all the test data provided. When no test data was available for a2 material with 2 certain
thickness in the finite elernent model, the closest thickness for the material was used for
material properties. Poisson’s ratio was assumes to be 0.33 for all materials. The CS was
assumed to have ASTM-A36 steel properties as given by SNL.

FAILURE MODEL

An clastic-plastic analysis was performed and failure is assumed to occur when the
effective plastic strain reaches the ultimate strain. When an elastic-plastic analysis is
utilized, the effect of multiaxial stress needs to be accounted for in the analysis. Manjoine
[4.5] discusses the effect of multiaxial stress on the uniaxial stress-strain behavior.
Reference [4.6] also discusses the effect of multiaxial stress on failure. Essentially, the
ductility of a material can vary under a multiaxial state of stress, which in turn may reduce
the plastic strain at which the material will fail. Manjoine proposed a formulation for the
ductility ratio based on the Davis triaxial factor. The Davis triaxiality factor, TFp, is equal
to the sum of the principal stresses divided by the octahedral shearing stress and
normalized to unity for plane stress or uniaxial tension. Thus,

TF C,+0,+0,

o —sll-f[(o'l _0’2)2 +(c, -03)2 +(o5 -0’)2]"2

4.5)

where 0,, ©; and ©; are the principal stresses. The ductility ratio is defined as
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4.6

_effective von mises strain

tensile elongation .6)
and the ductility ratio can be described by the triaxiality factor as
c=20") ¢ <20 @7
Therefore, under multiaxial stress states the equivalent uniaxial strain is
g, ==L | | @y

C

where g.g is the calculated effective Von Mises strain and &, is the strain to be compared
with, i.e. uniaxial or tensile elongation data. The value of TFp under uniaxial stress is 0
and thus ¢ = 1.0, and the value of TFp under a biaxial state of stress (0, = o) is 2.0, and
thus, ¢ = 0.5. Therefore under a biaxial state of stress (0} = 03), the strain to failure is
reduced by 50%. This is important when the strain to failure is the dominating failure
mode under multiaxial stresses.

CONTACT ELEMENT

The contact element utilized in this analysxs was a line interface contact element that
consists of two nodes connected by a spnng type element. This element is based upon a
penalty formulation that allows compression only, i.e. no tension. Thus, when contact is
made a compressive force develops, and when the nodes separate a zero tension force
develops, which allows the two nodes to act independently. Reference [4.7] provides the

* details for the contact element formulation used in NEPTUNE, Ref. [4.8] addresses the

critical time step concerns with this type of element, and Ref. [ 4. 4] provides an overview
of the contact elements.

The contact element requires the initial gap distance, between the two contact nodes, for
input to determine when contact will occur. The actnal measured gap distances were used
in the model for the elevations and angles provided by SNL. A double interpolation was
done with the gap data to provide an approximate gap distance for the contact element
locations that were in-between the measured locations.

VESSEL RESPONSE DUE TO PRESSURIZATION

The load is a pressure incrementally applied to the inside surface of the SCV. Initially the
vessel model was run elasticity to determine when the yield stress will be reached under
internal pressure. That value is approximately 2.6 MPa internal pressure with yielding near
the bottom connection of the equipment hatch and the vessel. The vessel model was then
analyzed for an elastic-plastic response. A pressure of 2.6 MPa is applied in the first load
step, and 0.1 MPa increments are used thereafter for each load step. The model was
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pressurized incrementally up to failure, which occurred at 5.5 MPa. At each load step,
static equilibrium was checked with Eqgs. 4.3 and 4.4 using & = 1.5 and &, = 0.1 for the
convergence check. Static equilibrium was obtained for load steps 1 through 29 (ie.
internal pressure = 5.4 MPa).

Yielding of the vessel occurred first at the bottom of the equipment hatch sleeve and the
vessel reinforcing plate (6 = 180°% Ry = 200 mm in the hatch coordinate system) for a
pressure of 2.6 MPa. At a pressure of 2.8 MPa yielding occurs all around ( 360° ) the
knuckle at the top ( elev. 3.431 m) and the bottom (elev. 3.354 m). Contact between the
CS and SCV occurs at 4.4 MPa at an elevation of 2.402 m. The vessel model fails at a
pressure of 5.5 MPa at the location just above the knuckle in the 6 mm thick upper
cylindrical shell. The failure plastic strain is reduced to 9.9% strain because of the biaxial
state of stress in the shell, the value of ¢ in Egs. 4.7 and 4.8 is approximately 0.5.

Displacements and strains for the model are given in Figs. 4.15 through 4.34, the
displacements are shown in Figs. 4.15 through 4.19 and the strains are depicted in Figs.
4.20 through 4.34. The locations are the same as the standard PLOT ID requested by
SNL, the PLOT ID numbers are given in the ordinate label of the figures. However, the
displacement plots (Figs. 4.15 through 4.19) are for the nodes in the finite element model
which are the centerline deflections of the plate elements, i.e. approximately the average of
the inside and outside deflections of the plate. Thus, for PLOT ID #36 in Fig. 4.16, the
deflection shown is the average of the inside and outside deflection. In Figs. 4.15, 4.17,
4.18 and 4.19 the centerline deflections are very close to the inside deflections requested,
because of the defiection shape at these locations in the vessel. The figures indicate the
elastic and elastic-plastic response of the SCV to internal pressure.

BUCKLING EFFECTS IN TOP HEAD

No buckling occurred during the internal pressurization of the SCV model. The DR
method employed is capable of capturing buckling behavior, but none was observed.

FRICTION EFFECTS BETWEEN SCV AND THE CS

The contact element that was used in the analysis does not include friction effects, thus no
transverse force develops when the CS:-and SCV contact. This preliminary analysis
indicates that when two nodes contact, very little transverse motion occurs after contact.
Thus, if friction were included it would be of a secondary cffect and should not be a major
concemn by our estimation.

INITIAL YIELD AND CONTACT
Yiclding of the vessel occurred at the bottom of the equipment hatch sleeve and the vessel

reinforcing plate (6 = 180°, Ry; = 200 mm in the hatch coordinate system) at a pressure
of 2.6 MPa. Initial contact between the CS and SCV occurred at 4.4 MPa at an elevation
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of 2.402 m and locally at 65 = 0°, 90°, 180° and 270° as indicated in Fig. 4.35. The dark
lines on the vessel surface indicate initial contact locations between the CS and SCV.

CONTACT RESPONSE

The contact response is depicted in Figs. 4.35 through 4.40 for increasing pressures.
Contact initially occurs at 4.4 MPa and is maintained up until the failure pressure of 5.5
MPa. Contact is indicated by the short black lines shown on the surface of the SCV. The
figures indicate how the contact region grows as the pressure increases. Contact is
predicted to be confined between elevations of 1.656 m to 2.548 m as shown in Fig. 4.40.

FAILURE PRESSURE

The vessel model fails at an internal pressure of 5.5 MPa at the location just above the
knuckle in the 6 mm thick upper cylindrical shell. The uniaxial ultimate strain (plastic
failure strain) is reduced to 9.9% strain because of the biaxial state of stress in the shell;
the value of ¢ in Egs. 4.7 and 4.8 is approximately 0.5. Once the 6 mm shell fails, the
failure could propagate around the circumference and the top head and upper cylindrical
shell will exit (fly off) the SCV.

SUMMARY

The predicted failure of the steel containment vessel is at an internal pressure of 5.5 MPa.
The location of the failure is just above the knuckle, and could occur at any point along
the circumference in the upper cylindrical shell. Therefore, a maximum pressure of 5.4
MPa is estimated before a failure will occur. The maximum pressure with high confidence
(>95%) that there is a low probability of failure (<1%) of the model would be about 90 %
of this value, i.e. maximum internal pressure of 4.9 MPa. The 90% factor is based on the
uncertainties in modeling, code calculation, material property response, and residual
stresses due to welding and manufacturing.

The vessel will remain elastic until an internal pressure of 2.6 MPa is reached. The vessel
wall is predicted to impact the contact structure at an internal pressure of 4.4 MPa.
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Figure 4.4 Material Property Fit at Test Location 2
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Figure 4.8  Material Property Fit at Test Location 6
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Figure 4.10  Material Property Fit at Test Location 8
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Figure 4.12  Material Property Fit at Test Location 10
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Figure 437 Contact Configuration at 4.8 MPa Internal Pressure
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Figure 440  Contact Configuration at 5.4 MPa Intemal Pressure
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INTRODUCTI

_ Elastic-plastic computations have been performed on a 3-D shell model, representing a quarter of the
vessel. To this purpose the MARC computer code has been used. This code allows for finite element
modelling of shell structures. The element type 75 (thick sheil) of the MARC library has been
chosen. This is a four nodes element with a bilinear shape function formulation. Contact problems
have been managed using the contact option of the MARC code.

Prototypic structure is the BWR vessel. The design pressure is 0.31 Mpa. Thickness is reproduced
according to a scale 1:4 while the scale 1:10 helds for the overall geometry.

VESSEL GEOMETRY

The geometry of the vessel under analysis is defined by the vessel outline provided in tab. 1. In the
table the location of each relevant point on a meridian of the vessel inner surface is reported.
Location on the outer surface are also determined taking into account the local thickness. Note that
in the modelling only the inner surface has been considered to locate the shell elements, the outer
surface being defined by the shell thickness. When available data were redundant to completely
define the geometry only a selected set of independent data has been considered, being the other data
obtained by geometric conditions. This is to assure congruence between data and geometric
assumptions. By this reason small discrepancies whith the provided data can arise.

Stiffeners data are reported in Tab.2. A negative value for the stiffener wideness means it is internal
with respect to the vessel surface.

All the shell elements of the model have been distributed in different sets which differ with regard to
the shell thickness or to the material data. In Tab. 3 the extension of each set is reported together
with the corresponding thickness and material identification number.

Two views of the model are shown in Figs. 1 and 2.




TAB. ]

VESSEL OUTLINE
(Reference: July 10,95 -Fig. 1)
Item Location| X (m) Ro Ri
Origin A 0.000 | 14670 | 1.4290
Bottom Head-Lower Cylindrical Shell Transition B 0.250 | 1.4590 | 1.4500
Lower Cvlindrical -Lower Conical Shell Transition C 0.750 | 1.4590 | 1.4500
First Lower Stiffener D1 0816 1.4444 | 1.4352
“ Dm 0.822 | 1.4430 | 1.4338
D2 0.828 | 1.4417 | 14325
Second Lower Stiffener El 0916 | 1.4219 | 14127
“ Em 0.921 1.4208 | 14116
- E2 0926 | 14197 | 14105
Material Change Interface F 1.579 | 1.2731 | 1.2639
Middie Stiffener Gl 2070 | 1.1623 | 1.1536
“ Gm 20795 | 1.602 | 1.1515
“ G2 2089 | 1.1580 | 1.1493
Weld Line at 2.275 m H 2275 | 1.1163 | 1.1076
Weld Line at 2.694 m - Conical to Sherical Transition 1 2.694 1.0212 | 1.0135
Upper Stiffener J1 2.834 :
~ Jm 2.8935
“ )2 2.903
Sherical Shell- Knuckle Transition K 3.359 0.5246
Knuckle -Upper Cylindrical Shell Transition L 3432 | 0.4885 | 0.4825
Top Flange M1 3.512 | 0.4885 | 0.4825
* Mm 3.522 | 0.4885 | 0.4825
“ M2 3.532 | 0.4885 | 0.4825
Upper Cylindrical Shell - Top Head Transition N 3.746 | 0.4885 | 0.4825
Curvature Change O 3.892 0.3963
Top Head Apex P 3.994 0.0

Spherical Shell Geometry

1. (sphere) :
X01=2.461 ;YOI1=0;R=1.040
XE1=2.694 ;YEI=1.0135
XE2=3.359 ; YE2-0.5246

2. (knuckle)

X02=3.432 ;YO02=0.567 ; R=0.0849
XEI=3.359 ;YE1=0.5246
XE2=3.432 ;YE2=0.4825

3. (torospherical head)

X03=3.746 ;YO03=0.3158 ; R=0.1667
XE1=3.746 ; YE1=0.4825
XE2=3.892 ; YE2=0.3963

X04=3.173 ; YO4= 0 ; R=0.8207
XE1=3.892 ; YE1=0.3963
XE2=3.994 ; YE2=0




Equipment Hatch Sleeve Geometry

axis level=1.633 (corresponding inner radius=1.2517)
inner radius=0.180  ; outer radius 0.200

plate radius= 0.332
TAB. 2
Stiffeners data
Stiffener | Wideness | Location | Thickness Level
(m) (m) (m)
STIFF1 <0.090 Dm 0.0125 0.822
STIFF2 | -0.020 Em 0.095 0.921
STIFF3 -0.0613 Gm 0.019 2.0798
STIFF4 0.0562 Jm 0.019 2.8935
STIFF5A +0.0175 Mm 0.020 3.522
STIFF5B -0.0415 Mm 0.020 “
TAB.3
Shell thickness and related material
Zone From To Thickness | Material
(m)
1 A B 0.038 12
2 B C 0.009 11
3 C Dm 0.009 11
4 Dm Em 0.009 11
5 Em F 0.009 11
6 F Gm 0.0083 5
7 . Gm H 0.0085 5
3 H 1 0.0075 3
9 1 Jm 0.008 4
10 Jm K 0.008 4
11 K L 0.0163 10
12 L Mm 0.006 1
13 Mm N 0.006 1
14 N [8) 0.006 2
15 0] P 0.006 2
Plate 0.0175 12
Hatch 0.020 9
Stiffl Dm Dm 0.0125 7
Stifi2 Em Em 0.0095 6
Stff3 Gm Gm 0.019 3
Stiff4 Jm Jm 0.019 - 8
Stffs Mm Mm 0.020 9
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ATERIAL

Material data as provided by SNL have been treated to obtain data suitable for MARC code
application.

Plastic analysis is performed by the code according to the Prandtl-Reuss model of incremental
plasticity and a true stress-natural plastic strain curve is required to define the material behaviour in
the plastic range.

Test data have been provided by SNL for twelve different locations. For each location four tensile
tests have been performed, two for the roll direction of the shell and two for the transverse direction.
The steps of the data treatment are listed below.

1. To each quadruple of data a yield stress has been associated as the average of the experimental
(lower) yield stresses.

2. From each single true stress-true (total)strain curve a true stress-true plastic strain curve has been
obtained by subtracting the term o(e)/E from the total strain.

3. By interpolation data on each single curve have been computed for a same set of strains

4, For each location an average curve has been obtained by averaging the stress values related to the
same natural plastic strain.

The above steps provide suitable curves up to the ultimate stress. After this point necking occurs and
strains are no more uniform in the specimen. Experimental strains provided by test reports are
averaged on the initial gauge lenght of the specimen. Obviously a local stress-strain correlation needs
to perform accurate plastic calculations in the post necking region. To obtain this it has been
assumed, according to Mc Gregor and Davidenkov, that a linear relation exists between the average
stress and the local natural strain in the after-necking region. Therefore, from the knowledge of the
average stress at rupture local data can be computed inside the necked region. This can be made
using the Bridgmann formula. However, to this purpose, a value of the curvature radius at the neck
must be provided. This value should be obtained from the experimental tests. More precisely a
complete characterization of the material behaviour in the after necking region would require an
experimental diagram relating the curvature in the neck to the area reduction as it increases from the
beginning of the instability to the rupture. In the absence of experimental data an hypothesis on the
shape of the neck must be made. In the present analysis proportionality between the curvature radius
at the neck and the local natural strain has been assumed. The curvature radius has been assumed to
be zero at the beginning of the necking phase. At rupture a value of 0.75 for the ratio between the
curvature radius and thé reduced radius of the specimen because of neck has been assumed, on the
basis of experimental data on carbon steel available at ANPA.

In any case the posmeckmg region of the material behaviour cannot be reached in the present
analysis because of the primary load nature of pressure. In fact plastic instability should occur under
increasing pressure at a strain value lesserthan the maximum uniform strain.

See page 5a for assumed material curves for SA-516 and SA-537.

FAILURE CRITERIA i

Two modes of failure have been considered. The first one is plastic instability which can be reached
locally as soon as an increase in pressure cannot be balanced any more increasing the strain. This
condition appears in the computation as a numerical instability stopping the calculation.

The second one is local ductility reduction because of triaxjality effects and it can be relevant in the

neighborough of penetrations and stiffeners. This is considered computing the ductility reduction .
according to the formula:
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&, = 2(1-7)

with

€~equivalent strain
e=elongation at rupture by the uniaxial test

and

V2-(0,+0, +0;)

IFD=
\/(o, -‘csz)2 +{o, -cs,)2 +(o, —c,)2

The shell elements used in the model are based on 2 plane stress formulation and therefore they are
not suitable to provide local triaxiality factors. However an approximate evaluation can be
performed. If a triaxial condition exists deviatoric stresses and plastic strains are reduced.
Supposing to have an imposed total strain in the direction normal to the shell surface and given
stresses in the shell plane, the local out of plane strress can be determined according to the Prandtl-
Reuss model.

Finally it must be observed that buckling at the torospherical head is also possible. If buckling occurs
local rupture by bending stress in the meridional direction can follow. To take into account this latest

possibility the buckling load for the torospherical head has been computed according to the Galletly
simplified formula: )

The computation provides a buckling pressure of 10.87 MPa.
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SIMPLIFIED AN 1

Some evaluations have been performed by simplified analysis to provide a first picture of the results
to be expected.

First of all the pressure corresponding to the contact between the vessel and the CS structure has
been evaluated . A pressure equal to 3.5 MPa has been obtained. This pressure is below the limit
values obtained from the analysis of the vessel in the absence of the CS structure. Therefore no
rupture should occur before the contact. After the contact stress redistribution occurs. As a possible
mode of failure local bending near changes in thickness has been considered. For example the
reinforcement plate around the hatch has a thickness of 0.0175 m while the surrounding shell at the
same level has a thickness of 0.008 m. As the plate touches the CS structure the surrounding shell
remains at 0.0095 m from the CS. Increasing the pressure also the surrounding shell goes into
contact but locally, near the thickness change a bendmg occurs. To evaluate this effect the following
formulas have been used: °

1_4’72-54-:,-:’
12.P

£ o 4EE
’ («/l?+.jf,)2
2-E--8
Agt =T
12.P-P
U 1oAY
12.P.P
K= ‘E
1+,
E
K= ‘E
1+ |[—
E

At a pressure of 4 Mpa, which is beyond the value related to the first contact with the CS the
following data are obtained:

1= 0.068m
Ae* =118-10°

showing that the considered effect is negligible.
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RESULTS

.Plastic deformations, total strains and displacements at the required locations are reported in figs. 3-
23. .

Note that only plastic strains are reported. So they are zero in each location untill yielding occurs.
Conventional time is reported on the abscissa. To get the corresponding pressure value in MP2 the
time value must be multiplied by 0.05.

The output variables which are reported in the figures can be identiffied according to the list reported
below.

plmax1: maximum principal strain inside

plmaxS: maximum principal strain outside

epinll: meridional strain inside

epinl2: circurnferential strain inside

epln51: meridional strain outside

epln52: circumferential strain outside

displacement x: horizzontal displacement (90° direction)  (m)
- displacement y: vertical displacement (m)
displacement z: horiizzonta! displacement (180° direction) (m)

The correspondence between the nodes which are representative of the required locations and the
plot identification numbers is reported in Tab. 4.

TAB. 4
Correspondence betweeen gauge locations,
representative nodes in the model and figures.

Piot1d.] Node | Fig. [Plotld. | Node | Fig. Plot1d.] Node | Fig. |Plotid | Node | Fig.
1 186 3 12 {1490 9 23 | 240 | 14 34 |'716 | 18
2 948 4 13 (1258 10 24 | 240 | 14 35 | 18461 19
3 195 S 14 {1258 10 25 | 128 | 15 36 | 1548 | 20
4 195 S 15 {157 | 11 26 | 128 | 15 37 {1258 | 21
5 942 6 |.16 {1571 1 27 | 128 | 15 38 (1258 | 21
6 842 6 17 {104 | 12 28 | 128 | 15 39 | 2154 22
7 |1846| 7 18 § 104 | 12 29 | 13141 16 40 | 831 | 23
8 419 8 19 78 13 30 | 1314 16 41 | 831 | 23
9 419 8 20 78 13 31 | 220 } 17 42 | 831 | 23
10 | 419 8 21 | 240 | 14 32 | 220 | 17 43 | 831 | 23
11 {1490] 9 22 {240 | 14 33 | 716 | 18 - - -




Note that in the absence of the CS the plastic instability occurs at the pressure 0.05*121 MPa.
When the CS is considered this value can be Passed because of stress redistribution after contact.
Limit pressures in the absence of the CS are reported in Tab. S.

Tab. 5
Limit Pressure MPa
Failure mode Without CS | With CS
Plastic instability 6.05 -
Local ductility reduction o -
Local buckling of the torospherical head 10.87 10.87
Plastic instability in the upper cylinder @ >6.98 >6.98
Plastic instability in the lower cylinder @ >4.78 >4.78
Notes: : '
1. By dimplified methods a triaxiality factor equal to 2.05 has been obtained near the penetration at a

pressure of 3.5 Mpa, just before the contact of the vessel with the
equal to 0.0023. According to the above criterion no rupture b

before the contact.

2. Plastic instability in these regions has been evaluated by the Cooper’s formula for thin cylinders.
Therefore the values for the Iimit pressure are underestimated because of differences between the
cylindrical shape and the local deformed shape due to the effect of the stiffeners.

CONCLUSIONS

CS. The local equivalent strain is
ecause of local ductility should occur

According to the performed analysis no rupture should occur before the contact of t.
the CS. After the contact the value of the limit pressure computed for different modes
the absence of the CS could be passed and further analyses are required to evaluate the ,

in this latest case. .
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- z view.

Fig. 2 - Vessel Model
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Fig.

3-Plotl.
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Fig. 4 -

shell10 sandia vessel Node 543
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Fig. 5 - Plots 3, 4.
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Fig. 6 -Plots 5, 6.
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A Fig. 7-Plot 7.
(Zero plastic strain is obtained because the yielding point is never passed.)
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Fig. 8- Plots 8, 9,10.
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Fig. 9-Plots 11, 12.
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Fig. 10 - Plots 13, 14.
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Fig. 12 - Plots 17, 18.
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Fig. 13 - Plots 19, 20.
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Fig. 14 - Plots 21, 22, 23, 24.
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Fig. 15 - Plots 25, 26, 27, 28.
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Fig. 16 - Plots 29, 30.
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Fig. 17 - Plots 31, 32.
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Fig. 18 - Plots 33, 34.
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Displacements y (x.01)
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Fig. 19 - Plot 35.
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Fig. 20 - Plot 36.
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Fig. 21 - Plots 37, 38.
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Fig. 22 - Plot 39.
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Fig. 23 - Plots 40, 41, 42, 43.
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ODUCTION

A 3-D analysis of the Vessel to be tested, but with no Contact Structure (CS) is reported in (1). In
the present note the same model is considered but the CS is now represented. To this purpose the
contact option of the MARC code has been used. The CS has been simulated by a set of rigid
surfaces, limiting the displacements of the Vessel shell. In the model the CS structure is axisymmetric
but the axis of simmetry has been displaced with respect to the Vessel axis in order to make the
related gaps partially consistent with the measured data. A maximum pressure of 10 MPa has been
reached in the calculation.

VESSEL GEOMETRY AND MATERIAL DATA

The geometry of the vessel under analysis is the same defined in (1). As far as it concerns material
data they are also reported, for the vessel in (1).

CONTACT SURFACE

The CS structure has been introduced in the model as  rigid surface which limits the deformation of
the vessel shell. A tronco-conic surface, defined by the data listed below, has been considered.

Level of the upper base: 2.6972 m

Upper base radius: 1.0729 m

Level of the lower base: 0.2245m  (0.7000 m in the model to limit the contact controls)
Lower base radius: 1.6193 m (1.5142 m in the model to limit the contact controls)

A spherical surface has also been added, in order to represent the upper region of the CS. Data
defining this region are listed below.

Level of the center of the sphere: 2.4601 m

Level of the starting point on the surface: 2.6972 m
Radius of the starting point on the surface: 1.0729
Leve! of the ending point on the surface: 3.4260 m
Radius of the ending point on the surafce: 0.5239 m

Finally the vertical axis of the CS has been displaced, towards the 180° direction, by 0.02468 m with
respect to the vertical axis of the vessel, to get a gap of 0.02939 m at the location 9 as measured.

Contact controls have not been applied on the hatch nodes and on the vesse! nodes located under the
hatch. This to the purpose of simulating the opening in the CS.

FAILURE CRITERIA

The same failure criteria as in (i) have been considered. Because of the Contact Structure the

occurrence of the the plastic instability is displaced towards an higher pressure. Really the analysis
has been performed up to 2 maximum pressure of 10 MPa with no appearance of plastic instability.

E-73



As far as it concemns local ductility reduction because of triaxiality effects only some rough
extimation have been performed. They do not indicate any local rupture before 10 Mpa. However a
more detailled analysis regarding this failure mode is now in progress.

As reported in (1) buckling of the torospherical head is expected at 10.87 MPa.

RESULTS

Plastic deformations, total strains and displacements at the required locations are reported in figs. 3-
23.

Note that only plastic strains are reported. So they are zero in each location untill yielding occurs.
Conventional time is reported on the abscissa. To get the corresponding pressure value in MPa the
time value must be multiplied by 0.05.

The output variables which are reported in the figures can be identified according to the list reported
below. )

plmax1: maximum principal strain inside

plmax5: maximum principal strain outside

epinll: - -meridional strain inside

epinl2: circumferential strain inside

epln51: - meridional strain outside

epln52: ~ circumferential strain outside

displacement x: horizzontal displacement (90° direction)  (m)
displacement y: vertical displacement (m)
displacement z: horizzontal displacement (180° direction) (m)

The correspondence between the nodes which are representative of the required locations and the
plot identification numbers is reported in Tab. 1.

TAB. 1
Correspondence betweeen gauge locations,
representative nodes in the model and figures.

Plot!d.|{ Node | Fig. |Plotld| Node | Fig. |Plotld.| Node | Fig. |Plotld | Node | Fig |

1.1 186 3 12 114950 ] 9 23 | 240 | 14 34 | 716 | 18

2 948 4 13 | 12581 10 24 | 240 | 14 35 11846 19

3 195 5 14 11258} 10 25 | 128 } 15 36 1 1548| 20

4 195 5 15 1157 | 11 26 | 128 | 15 37 | 1258 1 21
.5 942 6 16 | 157 | 11 27 | 128 | 15 33 | 1258 | 21

6 942 6 17 1104 | 12 28 | 128 § 15 39 12154 | 22

7 (18461 7 18 | 104 | 12 29 [1314] 16 40 | 831 | 23

8 419 8 19 78 13 30 11314} 16 41 | 831 | 23

9 419 8 | 20 78 13 31 } 220 | 17 42 | 831 | 23
10 | 419 3 21 | 240 | 14 32 | 220 | 17 43 | 831 | 23
11 {1490]| 9 22 | 240 { 14 33 17161 18 - - -
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Note that in the absence of the CS the plastic instability occurs at -the pressure 0.05%121 MPa.
When the CS is considered this value can be passed because of stress redistribution after contact.
Limit pressures in the absence of the CS as well as in the case of CS included are reported in Tab. 2.

Tab. 2
Limit Pressure MPa
Failure mode Without CS | With CS
Plastic instability 6.05 >10
Local ductility reduction M ©)
Loca! buckling of the torospherical head 10.87 10.87
Plastic instability in the upper cylinder @ >6.98 > 6.98
Plastic instability in the lower cylinder © >4.78 >4.78

Notes:
1. By simplified methods a triaxiality factor equal to 2.05 has been obtained near the penctration at a

~ pressure of 3.5 Mpa, just before the contact of the vessel with the CS. The local equivalent strain is
equal to 0.0023. According to the above criterion no rupture because of local ductility should occur

before the contact.

2. Plastic instability in these regions has been evaluated by the Cooper’s formula for thin cylinders.

Therefore the values for the limit pressure are underestimated because of differences between the

cylindrical shape and the local deformed shape due to the effect of the stiffeners.

3. Triaxiality effects are comparable with the CS missing case.

CONCLUSIONS

In the present analysis 2 maximum pressure of 10 MPa has been reached without any occurrence of
plastic instability. This result should be compared with the plastic instability pressure of 6.05 MPa
obtained in absence of the Contact Structure. Anyway, buckling of the torospherical head is expected
at a pressure of 10.87 MPa. Triaxiality effects have also been considered in a simplified manner. No
rupture according to this mode of failure has been found up to the maximum pressure of 10 MPa.
However the performed anlysis is thought to be not sufficient to provide a reliable result with respect
to this latest mode of failure.

REFERENCES

1. Giuseppe Maresca, Giovanni Pino “Pre-Test Vessel Analysis (In absence of the Contact
Structure)” . ANPA document, July 96.
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Fig. 1-CS Model.
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Fig. 2 - Vessel and CS together.

E-T7




Fig. 3-Plot 1.
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Fig. 5-Plots 3, 4.
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ig. 6-Plots 5, 6.
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Fig. 7-Plot7.
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Fig. 8 - Plots 8, 9,10.
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Fig. 9-Plots 11, 12.
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Fig. 10 - Plots 13, 14.
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Fig. 11- Plots 15, 16.
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Fig. 12 - Plots 17, 18.
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Fig. 14 - Plots 21, 22, 23, 24.
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Fig. 15 - Plots 25, 26, 27, 28.
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Fig. 18 - Plots 33, 34.
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Fig. 19 - Plot 35.
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Fig. 20 - Plot 36.
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Fig. 21 - Plots 37, 38.
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Fig. 22 - Plot 39.
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' Fig. 23 - Plots 40, 41, 42, 43.
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Introduction

Analytical studies of Steel Containment Vessel (SCV) model, were done
as a part of Round Robin Analysis Activity for the Cooperative .Containment
Model Programme. This programme is being coordinated by Sandia Nationa!
Laboratories (SNL), [1]. This cooperative programme involves analytical studies
followed by experimental studies (to be done by SNL) on SCV model. This is a
pretest analysis report.

The SCV model is scaled from a prototype BWR Mark-Il containment, [1]
& [2]. The SCV model is fabricated by welding rolled steel plates of different
thickness. The model has equipment hatch opening with thickened
reinforcement plate. The SCV model consists of different sections and has
several stifieners. In this report the different sections will be referred to as
“spherical shell", "upper conical shell", "lower conical shell", "knuckle", "top
head", “top head knuckle" etc. The complete outline of the model along with the
names of difierent sections and stiffeners is shown in Fig.1.

The SCV model is coaxially located within the Contact Structure (CS)
fabricated out of 38 mm thick stee! plate. The CS extends upto the knuckle
region of SCV model. Except in the lower cylindrical shell region, the gap
between the SCV and CS s almost constant.

The SCV model is made up of two materials. The upper portion is made
up of SGV-4B0 (SA-516 Grade 70 steel) while the lower portion of SPV-490
(SA-537 Class 2 steel). The CS is made up of SA516-70 steel, [1].

The SCV model was subjected to increasing internal pressure. The
analysis was done using Finite Element Method (FEM). Two different models
namely, 3-Dimensional (3D) She)l. Model and Axisymmetric Model were
‘employed. The results, discussed in this report and submitted in the form of
plots, pertain to axisymmetric model only. Finite element computer code
"ABAQUS" Ver. 5.3, [3], was used for the analysis.
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-1.0 Finite Element Model

Initially it was planned to analyse a 3D half symmetric (180
degres) finite element model of the SCV along with the CS. Some preliminary
studies were done using this model. The resuits showed that the deflection
pattern, stress & strain distribution js. axisymmetric about the vertical axis, except
in the region around the equipment hatch opening.

- This observation led to the conclusion that in a gross sense, an
axisymmetric model will correctly predict, the deformation of the SCV and its
contact pattern, except in the region near hatch opening.

Both 3D shell and axisymmetric models are deécribed in the following
sections. The models are as per the original dimensions given in SCV design

package, [1). The as measured dimensions given in reference [2], have not
been used for the analysis.

1.1 Axisymmetric Mode]

SCV and CS were modelled using 8 noded axisymmetric solid
elements with reduced integration option (“CAX8R" elements of ABAQUS, [3)).
The gap between them was maintained as per the design drawings, [1]. The gap
monitoring and post contact behaviour was modelled using 3-Noded
axisymmetric interface contact elements ("ISL22A" of ABAQUS).

All the sections of SCV and the correshonding thickness changes
at interfaces, have been modelled. The model was fixed at the base. The base of

the model is the top flange of the ring support girder. The model is subjected to
internal pressure.

The stiffeners and the top flange were also modelled using 8
noded axisymmetric solid elements with reduced integration optioh ("CAX8R").
The model uses 770 "CAX8R" elements in the containment vessel, 20 "CAX8R"
elements in the contact structure and 238 "ISL22A" contact elements. The total
number of nodes, in F.E. model, are 3159,

The axisymmetric model is shown in Fig.2 through Fig.4.
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1.2 Shell Model

The 3D half symmetric (180 degree) finite element model of SCV
is shown in Fig.5 through Fig.7. The mode! also includes contact structure and
equipment hatch with its cover. 4 noded shell elements with reduced integration
option (designated as "S4R5"), were used to discretize the structure. The gap
monitoring and post contact behaviour was modelled using slideline interface
contact elements (designated as "ISL31A") There are 3744 "S4R5" elements in
the containment structure, 132 "S4R5" elements in the contact structure and 307
"ISL31A" contact elements. There are 4007 nodes in F.E. model.

2.0 Use of NUPEC Tensile Test Data

The true stress - true strain curves were used in the analysis. One
representative stress-strain curve is used in the analysis for each of the two
materials. For the material SGV-480, the data for specimen R1, given in Table 6
of the design specification, [1], was used. The material stress-strain curve is
also shown in Fig.8. The specimen'R1, is of thickness of 6 mm. The Top Head
is not shielded by contact structure and is the least thickness region of SCV. Its
thickness is 6 mm. This region is likely to fail under large internal pressure.
Therefore, the stress-strain material data from this region of SCV, is used to
represent the material SGV-480.

For the material SPV 490, the data for specimen R21, given in
Table 14 of the design specification, [1), was used. The material stress-strain
curve is also shown in Fig.9. The specimen R21, is 9 mm thick.

The value of modulus of elasticity (E) used in analysis, is for the
roll direction, since the material stress-strain data used, corresponds to the roll
direction. The E value considered for both the materials, is 216,700 MPa. The
Poisson’s ratio for both the materials is taken as 0.3.

3.0 Analyﬁcal Models

In this analysis both material and geometric nonlinearity have been
considered. The von mises isotropic yield criteria is used. The analysis employs
a large strain, large displacement, updated lagrangian formulation to account
for the geometric nonlinearity. The applied load adapts itself to shape changes
in the structure as the analysis progresses. Reduction in shell thickness, as a
result of deformation, has been accounted for. -
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4.0 Steel Containment Vessel / Contact Structure Interaction

The magnitude of gap between 'SCV and CS, is taken, as given in the
original design drawings, [1] The interaction between SCV and CS was
modelled using 3-Noded axisymmetric contact elements. During analysis gap is
monitored all along the CS, at each integration point of contact element. Some
of the details of modelling of these contact elements are listed below+

(a) When contact occurs, the SCV loads CS and €S inturn exerts
reaction unto SCV. After contact CS also shares the load.

(b) The opening of contact is allowed. The contact opens if the reaction
force on SCV becomes tensile or zero.

(c) Sliding of SCV on CS is permitted.

«(d) Coefficient of friction ( ) is used to characterize the sliding friction
effect. The value of p used, corresponds to static & dry friction
conditions. The standard design handbooks, [4] & [5], suggest that for
clean steel plates, the value of u lies between 0.7 and 0.8. Therefors,
for this analysis, a mean value of 0.75 was used.

(e) When any point on SCV comes into contact with CS, then its
meridional movement is constrained until it overcomes the frictional
resistance. In absenca of friction, free sliding is permitted.

5.0 Analysis Procedure and Results

The analysis was done by increasing the load in steps with auto
load stepping procedure. The maximum load step was 1.5 MPa and the minimum
was 0.00015 MPa. The convergenca in each load step was set in terms of ratio
of the residual force to the average force (= 5.0E-3) and the ratio of

displacement correction to the incremental displacement, of that load step
=1.0E-2).

Two cases were studied. In ons of the cass, coefficient of friction (1) was taken
as 0.75 and in another case the friction effects wers neglected (4 = 0.0). The
results of both these cases are submitted. For both the cases the maximum
pressure, upto which analysis could proceed was 11.49 MPa, At this pressure,

the strain induced in "top head crown" approaches the true ultimats strain of
SGV-480 material.
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The detailed results of deflection v/s pressure and strain vis
pressure are given in the form of plots, &t different locations. These locations are
defined in the SCV design package, [1], in the form of Plot ID numbers. These
plots are given in Appendix. Since, submitted results pertain to axisymmetric
model only, hence, plots of strain v/s load near equipment hatch opening are not
included. These plots correspond to Plot ID 1-6 and Piot ID 39. The computer
programme yields strain output in global coordinate system. These strains were
transformed in local directions, in order to evaluate strain in meridional direction.

Some of the results are included in this report also. These are
given in the form of plots. The vertical deflection v/s load, at apex of "top head
crown", is shown in Fig.10, for the cases with and without friction effects. It is
observed that the vertical deflection at apex is not significantly affected by
friction. The horizontal deflection v/s load, in the knuckle region of top head
("top head knuckle") is shown in Fig.11 end Fig.12. These figures are for two
different locations in "top head knuckle". The observations from Fig.11 and
Fig.12, are discussed in art.6.0.

6.0 Potential of Buckling of SCV model in the Head Region.

Fig.11 shows a plot of the horizontal displacement at node no 1646
which lies in “top head knuckle". From this figure it is seen that at a pressure of
10.0 MPa reversal of direction of horizontal displacement takes place. Upto this
pressure the horizontal displacement is negative (i.e. "top head knuckle" deform
inwards). After about 10.0 MPa the deformation suddenly shoots up in positive
direction (i.e. "top head knuckle" starts deforming outwards). This is the clear
indication that the tendency towards buckling exists. Upto 10 MPa pressure the
stresses are compressive. However, with the increasing load these stresses
becomes tensile. It is observed, from the graph, that for the same value of
horizontal displacement there are two different values of internal pressure.
Similar behaviour is noticed in Fig.12, for node 1654. This node also lies in "top
head knuckle". : '

7.0 Effect of Friction on the Interaction of SCV and CS

The presence of friction forces (or surface tractions) along contact
interface, affects the post contact interaction of SCV and CS. This effect was
studied based on the results of analyses done for p = 0.75 and p=0.0. The
important observations at each Piot ID location are listed below. For reference,
see plots of strain v/s pressure and deflection v/s pressure, at these locations.
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For Plot ID 8,9,10 the strains for the two cases (with friction and
without friction) match with each other. This is true for meridional
and hoop strain. . ,

For Plot ID 11,12 the strains, with friction, are higher than
the strains without friction.

For Plot ID 13, the maximum positive strain, in the case of friction,
is about 5 times that without friction. Also, the negative strain with
friction (at maximum load) is about 2 times that without friction.

For Plot ID 14, the strain v/s pressure behaviour, with and without
friction, is quite different.

- For Plot ID 15,16,17,18 strains, with friction, are lower than
the strains without friction cass,

For Plot ID 19,20, the strain v/s pressurs behaviour, with and
without friction, is quite different.

For Plot ID 21,22 meridional strains are considerably lower with
friction than the meridional strains without friction.

For Plot ID 23,24 hoop strains, with friction, are slightly lower than
the hoop strains without friction.

For Plot ID 25,26 meridional strains, with and without friction,
match with each other upto a pressure of 5.0 MPa. At higher
pressure the strains with friction are lower.

For Plot ID 27,28 hoop strains, with friction, are slightly lower than
the hoop strain without friction.

For Plot ID 29,30 meridicnal strains, with friction, are slightly higher
than the meridional strains without friction. i

For Plot ID 33 meridional strains, with friction, .ara higher than the
meridional strains wimqut friction.

For Plot ID 34 hoop strains, with friction, are slightly lower than the
hoop strain without friction.

- For Plot ID 38, the displacements with and without friction are .
almost matching.
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For Plot ID 37, horizonta! displacements, with friction, are slightly
lower.

For Plot ID 38, after about a pressure of 6 MPa, the vertical
displacements, with friction, are much higher.

The presence of friction increases the constraint of the structure. The
contact structure restricts the movement of SCV in normal direction. The
presence of friction restricts the movement in meridional direction also, to the
extent that meridional force is unable to overcome the frictional resistance of the
contact. The increase in constraint, leads to lower strains in the free field
regions. The free field regions are away from discontinuities. Whereas, increase
in constraint leads to higher strains in the region of discontinuities such as
regions near flanges, spherical to knuckle junction etc. Some of the free field
regions (like mid height of spherical shell) also experience slightly higher strains
due to presence of friction. This could be due to its proximity to discontinuity or
due to secondary bending caused by localised shape changes after contact.

The strains at locations, away from contact structures (like top head
crown), are not affected significantly, by presence or absence of friction. The
load and location, of first yield and first contact are not effected by the presence
of friction. The magnitude of maximum pressure is, also, not effected by the
-presence of friction.

8.0 Pressure and Location of First.Yield and First Contact

The first yield occurs at a pressure of 1.78 MPa just below the knuckle, at
the intersection with the spherical shell. The material at this location is SGV-480.
The first contact occurs at g pressure of 3.42 MPa at the knuckle.

9.0 Expected Pattern of Contact Propagation

The expected pattern of contact propagation, with increase in intemnal
pressure, is discussed briefly in Table 1. At internal pressure values of
4.605, 6.480, 8.400 and 11.490 MPa, the contact pattemn is also shown in the
form of deformed plots (see Fig.13 through Fig.24). Table 1 pertains to the
analysis case in which coefficient of friction was taken as 0.75. Frictional effect
does not cause a major change in the pattern of contact at any given pressure.
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Table 1 : Expected Contact Propagation with increase in internal pressure

Internal Pressure | Expected Contact Location and propagation
(in MPa)

3.420 contact occurs at knuckle

3.780 contact initiates in upper conical shell with 7.5 mm
thickness (just above 2.275 m elevation weld line)

3.780 10 3.945 the contact zone initiated at 3.78 MPa pressure (i.e. in
upper conical shell), spreads in upwards direction

3.990 contact initiates in middle conical shell with 8.5 mm
thickness (between middle stiffener and material change
interface)

4.000' to 4.600 (a) contact zone initiated at 3.78 MPa (in upper conical
shell), spreads further in upward direction

(b) contact zone initiated at 3.99 MPa (in middle conical
shell), spreads in upwards and downwards direction

4.605 the deformed plot of SCV and CS, depicting contact
pattern, Is shown in Fig.13 through Fig.16.

4.605t0 4.75 contact zones spread further in a manner, as discussed
for 4.0 to 4.6 MPa pressure

4.750 to 5.049 (a) contact zone initiated at 3.78 MPa (in upper conical

shell), spreads further upwards and also starts spreading
in downwards direction

(b) contact zone initiated at 3.99 MPa, spreads further in
upper and lower direction

5.050 (a) contact initiates in lower conical shell (just near the
material interface) '

(b) contact zones initiated at 3.78 MPa and 3.99 MPa,
spread further in upper and lower direction
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Table 1 (Continued) : Expected Co4ntact Propagation

5.055 to0 6.000

contact zones initiated at 3.78 MPa, 3.99 MPa and 5.050
MPa, spread further in upper and lower direction

6.105

(a) contact zone initiates in spherical shell portion (near
mid-height of spherical portion)

(b) contact zone initiated at 3.78 MPa, 3.99 MPa and
5.055 MPa, spread further in upper and lower direction

6.110 10 6.470

(a) contact zone initiated at 6.105 MPa (at mid height of
spherical shell), spreads in upward .direction towards
knuckle '

(b) contact zones initiated at 3.78 MPa, 3.99 MPa and
5.050 MPa, spread further in upper and lower direction

6.480

the deformed plot of SCV & CS, depicting contact
pattern, Is shown in Fig.17 through Fig.18.

6.480t0 7.755

(a) contact zone initiated at 3.78 MPa (in upper conical
shell), spreads further and approaches near upper
stiffener and middle stiffener )

(b) contact zone initiated at 3.99 MPa (in middle conica!
shell), spreads further and approaches near middle
stifiener and material change interface

(c) contact zone initiated at 5.05 MPa (in lower conical
shell), spreads further and approaches near lower
stiffeners and material change interface

(d) contact zone initiated at 6.105 MPa (at mid height of
spherical shell), spreads further in upper and lower
direction

7.760 to 8.230

(a) the upper one, of the two lower stiffeners, comes into
contact ‘ ‘

(b) contact zone spreads in between the two lower
stiffeners

(c) contact zone initiated at 6.105 MPa (at mid height of
spherical shell), spreads further in upper and lower
direction

8.235

contact initiates in lower cylindrical shell (just below the

lower stiffeners)
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Table 1 (continued) :Expected Contact Propagation

8.235 {0 8.390 (a) contact zone initiated at 6.105 MPa (at mid height of
spherical shell), spreads further in upper and lower
direction '

8.400 the deformed plot of SCV & CS, depicting contact
pattemn, is shown in Fig. 19.

8.400 to 11.480 (a) most of the portion of spherical shell comes mto
_ contact

(b) contact zone initiated at 8.235 MPa (in lower
cylindrical shell - just below the lower stiffeners), starts
spreading downwards

11.490 (a) the deformed plot of SCV & CS, depicting contact
pattern, is shown in Fig.20 to Fig.24.

(b) this is the maximum pressure achieved

10.0 Concluding Remarks

Finite element nonlinear analyses were done for SCV model subjected to
internal pressure. The analyses were done for two cases viz. with friction and
without friction. Based on these studies it was concluded that :

(1) The top head region, of the SCV, is the critical region. At a pressure of 11.49
MPa the strain value in crown approaches true ultimate strain. This leads to
collapse of SCV. The magnitude of this pressure is independent of friction
effects.

(2) The region just below the knuckle yield"ﬁrst, at a pressure of 1.78 MPa. The
first contact occurs at 3.42 MPa, at the knuckle.

(3) At a pressure of about 10 MPa, there is a sudden change in the deflection
pattern of “top head knuckle®. Below 10 MPa it deforms inwards, whereas above
10 MPa it deforms outwards.

(4) The presencs of friction affects the post contact interaction between SCV
and CS, due to increase in constraint. However, the magnitude of maxnmum
pressure is not affected.. ,
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(5) The presence of "equipment hatch opening” demands rigorous 3D analysis.
Preliminary studies on 3D shell model indicate that the effect of opening is
localised in nature. Therefore, axisymmetric model will yield realistic results,
except around the equipment hatch. The possibility of failure near equipment
hatch opening is less 'since, it is reinforced by thick plate and is shielded by CS.
The gap between SCV and CS, near the equipment hatch opening is lesser than
the other regions. After contact it will experience a rigid support.
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Fig.¢« Outline of Steel Containment Vessel Test Model
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Fig.2. Finite Element Mesh of Axisymmetric Model
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Flg.3 View of Axisymmetric F.E.Model near Lower Stiffners




si-g

ABAQUS

[

Fig. 4. View of Axisymmelric F.E.Model in Top Head Reglon
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_Fig. 5 Half Symmetric ( 180 degree ) Shell Model of SCV
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Fig.¢ Details of Shell Model near the Equipment Hatch
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Fig.3 Details of F.E. Mesh for the Contact Structure Only
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 Fig.iq Deformed Plot of SCV with CS at Int. Pressure of 8.400 MPa showing Contact Paltern.
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APPENDIX A

STRAIN V/S PRESSURE AND DEFLECTION V/S PRESSURE PLOTS IN THE
FORM OF DIGITAL DATA

The digital data of strain v/s pressure and deflection v/s pressure plots, is given
in the floppy diskettes, enclosed along with the pretest report.

The Diskette marked A, containing files plot7.dat to plot38.dat, is for the
analysis, in which coefficient of friction =0.75. One additional file plot7e.dat
contains the plot data for the minimum principal strain (but maximum in
magnitude) at ID7.

The Diskette marked B, containing files p7.dat to p38.dat, is for the analysis, in
which coefficient of friction =0.0. One additional fila p7e.dat contains the plot
data for the minimum principal strain (but maximum in magnitude) at ID7.

Since the submitted resuits pertain to axisymmetric model, hence plot data
corresponding to locations, near equipment hatch opening (plot1.dat to plot6.dat
and plot39.dat), are not included.
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APPENDIX B

STRAIN V/S PRESSURE AND DEFLECTION V/S PRESSURE PLOTS IN THE
FORM OF HARDCOPIES

The strain v/s pressure and deflection v/s pressure plots are enclosed. The plots
at different locations can be identified by Plot ID number indicated on them.
These Plot ID numbers are corresponding to those mentioned in SCV design
package. Since the submitted results pertain to axisymmetric model, hence
plots at locations near equipment hatch opening are not included. These
correspond to Plot ID no. 1-6 and 39.

Fig.25 to Fig.58, are plots of strain v/s pressure and deflection v/s pressure, for
the case in which coefficient of friction (1) =0.75.

Fig.59 to Fig.92, are plots of strain v/s pressure and deflection v/s pressure, for
the case in which coefficient of friction (r) =0.0
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