

. LULAL US. .. UNLY

ALC-K 2/21

June 16, 1967

ATOMIC ENERGY COMMISSION

PROPOSED AMENDMENT TO 10 CFR 50: GENERAL DESIGN CRITERIA FOR NUCLEAR POWER PLANT CONSTRUCTION PERMITS

Note by the Secretary

1. The Director of Regulation has requested that the attached report be circulated for consideration by the Commission at an early date.

2. The Commission approved the proposed design criteria, as revised, during consideration of AEC-R 2/49 at Regulatory Meeting 223 on November 10, 1965.

W. B. McCool

Secretary

DISTRIBUTION	NO. OF COPIES	DISTRIBUTION	NO. OF COPIES
Secretary Chairman Seaborg Commissioner Ramey Commissioner Tape Commissioner Nabrit Commissioner Johnson eneral Manager outy Gen. Mgr.	11 4 1 2 2 2 2 2 1 3	Asst. GM for Operations Asst. GM for Reactors General Counsel Compliance Congr. Relations Inspection Materials Licensing Operational Safety	1 1 6 2 1 2 5

OFFICIAL USE ONLY

ATOMIC ENERGY GOMMISSION

PROPOSED AMENDMENT TO 10 CFR 50: GENERAL DESIGN CRITERIA FOR NUCLEAR POWER PLANT CONSTRUCTION PERMITS

Report to the Director of Regulation by the Director, Division of Reactor Standards

THE PROBLEM

1. To consider the publication for public comment of a proposed amendment to 10 CFR Part 50, "Licensing of Production and Utilization Facilities," which would add an Appendix A, "General Design Criteria for Nuclear Power Plant Construction Permits." The purpose of the proposed amendment would be to provide guidance to applicants in developing the principal design criteria for nuclear power plants to be included in applications for construction permits. Under the proposed amendments to this Part, specifically to §50.34, which were published for public comment in the <u>Federal Register</u> on August 16, 1966, applicants for an AEC construction permit would be required to specify these principal design criteria for a proposed facility. The proposed new guide would be substituted for the present Appendix A to Part 50.

BACKGROUND AND SUMMARY

2. The development and publication of criteria for nuclear power plants was one of the key recommendations of the Regulatory Review Panel which studied ways of streamlining the Commission's reactor licensing procedures. The Panel particularly stressed the need for design criteria to be used at the construction permit stage of a licensing proceeding. Work on the development of general criteria had been in progress at the time of the Review Panel's study. This effort was accelerated and led to the issuance in a Commission construction Permits." The purpose of the proposed amendment would be to provide guidance to applicants in developing the principal design criteria for nuclear power plants to be included in applications for construction permits. Under the proposed amendments to this Part, specifically to §50.34, which were published for public comment in the <u>Federal Register</u> on August 16, 1966, applicants for an AEC construction permit would be required to specify these principal design criteria for a proposed facility. The proposed new guide would be substituted for the present Appendix A to Part 50.

BACKGROUND AND SUMMARY

7

1

2. The development and publication of criteria for nuclear power plants was one of the key recommendations of the Regulatory Review Panel which studied ways of streamlining the Commission's reactor licensing procedures. The Panel particularly stressed the need for design criteria to be used at the construction permit stage of a licensing proceeding. Work on the development of general criteria had been in progress at the time of the Review Panel's study. This effort was accelerated and led to the issuance in a Commission press release dated November 22, 1965, of draft criteria for use in the evaluation of applications for nuclear power plant construction permits.^{*1} The criteria were largely statements of design principles and objectives previously used by the staff in evaluating applications for reactor construction permits. Although they reflected the predominating experience with water reactors, they were considered to be generally applicable to other reactors as well.

*Secretariat Note: A copy of AEC press release H-252, November 22, 1965, is on file in the Office of the Secretary.

- 2 -

OFFICIAL USE ONLY

3. As invited in the press release, twenty-two groups of individuals submitted comments, as listed in Appendix "A." Because of the volume, the correspondence is not attached. Copies of all comments received except those originated within the Commission have been placed in the Public Document Room.

4. The general reaction was that the criteria fulfilled a need and the AEC should continue their development. None of the correspondents objected to the issuance of general criteria and their comments were constructive. The Atomic Industrial Forum, for example, submitted a complete proposed revision reflecting considerable interest and effort on the part of that organization. The comments received fell into the following broad categories:

a. Title each criterion. This was suggested as an aid in indexing and referencing.

b. Improve the organization of the criteria. Comments included suggestions for arranging criteria according to type of systems and for grouping the criteria according to the degree of public protection.

c. Simplify the format. A number of suggestions were made for eliminating repetition for combining criteria and for clarification.

d. Eliminate details. Some comments suggested that the criteria should state only objectives, and that specific details and manner of implementation should not be stated. A number of comments expressed a desire for less general and for more comprehensive and detailed criteria.

e. Relate the criteria only to the protection of the public. Views were expressed that some criteria as written related to operational problems and should be eliminated.

f. Retitle the document. A belief was expressed that as written these were not truly criteria, but principles or fundamentals.

g. Apply the criteria more broadly than construction permits alone. This comment essentially urged that the restriction of the criteria to construction permits should be deleted and that they should be made applicable to all stages of licensing, including the operating license 5. The staff has considered all comments received in further developing the criteria. In addition, subsequent redrafts were circulated to other divisions within the Commission. Principal comments from these divisions have been reflected in the revised criteria. Other comments from within the Commission will be considered in conjunction with public comments received after publication in the Federal <u>Register</u>.

- ----

6. The regulatory staff has worked closely with the Advisory Committee on Reactor Safeguards on the development of the criteria and the revision of the proposed criteria reflects ACRS review and comment. The ACRS has stated that it believes that the revised criteria are appropriate to publish for public comment.

7. It is proposed that the criteria be included as Appendix A to 10 CFR 50. The proposed amendment, which is attached as Appendix "B," provides that the General Design Criteria be used for guidance by an applicant in developing the principal design criteria for the facility. For a specific reactor case, some of the General Design Criteria may be unnecessary or inappropriate and the criteria, as a whole, may be insufficient. It is expected that additional criteria will be needed particularly for unusual sites and environmental conditions, and for new and advanced reactor types. In any case, there must be essurance that the principal design criteria proposed by an applicant encompass all those facility design features required in the interest of public safety.

8. The criteria are designated as "General Design Criteria for Nuclear Power Plant Construction Permits" to emphasize the key role they assume at this stage of the licensing process. The criteria have been categorized as Category A or Category B. Experience has shown that more definitive information is needed at the construction permit stage for the items listed in Category A than for Category B.

PFICIAL USE ONLY

9. The proposed General Design Criteria are expected to be useful as interim guidance until such time as the Commission takes further action on them.

STAFF JUDGMENTS

10. The Office of the General Counsel and the Divisions of Reactor Licensing and Compliance concur in the recommendations of this paper. The Office of Congressional Relations concurs in Appendix "C." The Division of Public Information concurs in recommendation 11.c.

RECOMMENDATION

11. The Director of Regulation recommends that the Atomic Energy Commission:

a. <u>Approve</u> publication of the proposed amendments to 10 CFR Part 50 contained in Appendix "B."

b. <u>Note</u> that the Joint Committee on Atomic Energy will be informed
by letter such as Appendix "C."

c. <u>Note</u> that a public announcement such as Appendix "D" be issued on filing the notice of proposed rule making with the <u>Federal Regi</u>ster.

LIST OF ENCLOSURES

APPENDIX

Page No.

"An	List of Incoming Correspondence on "AEC Seeking Public Comment on Proposed Design Criteria for Nuclear Power Plant Construction Permits" Press	
•	Release No. H-252 Dated November 22, 1965	. 6
"B#	Notice of Proposed Rule Making	7
"C"	Draft Letter to the Joint Committee on Atomic Energy	35
"D"	Draft Public Announcement	37

APPENDIX "A"

LIST OF INCOMING CORRESPONDENCE ON "AEC SEEKING PUBLIC COMMENT ON PROPOSED DESIGN CRITERIA FOR NUCLEAR POWER PLANT CONSTRUCTION PERMITS" PRESS RELEASE NO. H-252 DATED NOVEMBER 22, 1965

J. B. McCarty, Jr., U.S. Coast Guard, 1/26/66. 1. E. P. Epler, Oak Ridge National Laboratory, 1/26/66. 2. Dr. Emerson Jones, Technical Management, Inc., 2/2/66. 3. H. C. Paxton and D. B. Hall, Los Alamos Scientific Laboratory, 2/2/66. 4. C. Starr, Atomics International, 2/4/66. 5. C. T. Chave, Stone and Webster Engineering Corporation, 2/11/66. 6. R. L. Junkins, Pacific Northwest Laboratory, 2/8/66. 7. Richard Hughes, Governor of New Jersey, 2/10/66. 8. Royce J. Rickert, Combustion Engineering, Inc., 2/11/66. 9. 10. W. B. Cottrell, Oak Ridge National Laboratory, 2/11/66. Peter A. Morris, Director, Division of Operational Safety, 2/11/66. 11. 12. Holmes & Narver, Inc., 2/11/66. CDR J. C. Ledoux, BuY&D, Dept. of Navy, 2/11/66. 13. 14. Richard H. Peterson, Pacific Gas and Electric Company, 2/14/66. Norbert L. Kopchinski, Professional Engineer, California, 2/14/66. 15. 16. D. L. Crook, Dept. of Commerce, Maritime Adm., Wash., D.C., 2/15/66. 17. R. H. Harrison, Babcock & Wilcox, 2/22/66. 18. Theodore Stern, Westinghouse Electric Corporation, 2/25/66. 19. E. A. Wiggin, Atomic Industrial Forum, 2/28/66. 20. James G. Terrill, Jr., Dept. of Health, Education, and Welfare, Washington, D.C., 3/7/66. 21. J. P. Hogan, General Atomic, 4/30/66. 22. H. G. Rickover, Director, Division of Naval Reactors, 7/26/66.

APPENDIX "B"

/TO CFR PART 507

LICENSING OF PRODUCTION AND UTILIZATION FACILITIES

Gereral Design Criteria for Nuclear Power Plant Construction Permits-

The Atomic Energy ommission has under consideration an amendment to its regulation, 10 CFR Part 50, "Licensing of Production and Utilization Facilities," which would add an Appendix A, "General Design Criteria for Nuclear Power Plant Construction Permits." The purpose of the proposed amendment would be to provide guidance to applicants in developing the principal design criteria to be included in applications for Commission construction permits. T¹ 25% General Design Criteria would not add any new requirements, but are intended to describe more clearly present Commission requirements to assist applicants in preparing applications.

The proposed amendment would complement other proposed amendments to Part 50 which were published for public comment in the FEDERAL REGISTER on August 16, 1966 (31 F.R. 10891).

^{1/} Inasmuch as the Commission has under consideration other amendments to 10 FR Part 50 (31 F.R. 10891), the amendment proposed herein would be a further revision to Part 50 previously published for comment in the FEDERAL REGISTER.

The proposed amendments to Part 50 reflect a recommendation made by a seven-member Regulatory Review Fanel, appointed by the Commission to study: (1) the programs and procedures for the licensing and regulation of reactors and (2) the decision-making process in the Commission's regulatory program. The Panel's report recommended the development, particularly at the construction permit stage of a licensing proceeding, of design criteria for nuclear power plants. Work on the development of such criteria had been in process at the time of the Panel's study.

As a result, preliminary proposed criteria for the design of nuclear power plants were discussed with the Commission's Advisory Committee on Reactor Safeguards and were informally distributed for public comment in Commission Press Release H-252 dated November 22, 1965. In developing the proposed criteria set forth in the proposed amendments to Part 50, the Commission has taken into consideration comments and suggestions from divisions within the Commission, from the Advisory Committee on Reactor Safeguards, from members of industry, and from the public.

Section 50.34, paragraph (b), as published for comment in the FEDERAL REGISTER on August 16, 1966, would require that each application for a construction permit include a preliminary safety analysis report. The minimum information to be included in this preliminary safety analysis report is (1) a description and safety assessment of the site, (2) a summary description of the facility, (3) a preliminary design of the facility, (4) a preliminary safety analysis and evaluation of the facility, (5) an identification of subjects expected to be technical specifications, and (6) a preliminary plan for the organization, training, and operation. The following information is specified for inclusion as part of the preliminary design of the facility:

- " (i) The principal design criteria for the facility;
 - (ii) The design bases and the relation of the design bases to the principal design criteria;
- (iii) Information relative to materials of construction, general arrangement and approximate dimensions, sufficient to provide reasonable assurance that the final design will conform to the design bases with adequate margin for safety;"

The "General Design Criteria for Nuclear Power Plant Construction Permits" proposed to be included as Appendix A to this part are intended to aid the applicant in development item (i) above, the principal design criteria. All criteria established by an applicant and accepted by the Commission would be incorporated by reference in the construction permit. In considering the issuance of an operating license under the regulations, the Commission would assure that the criteria had been met in the detailed design and construction of the facility or that changes in such criteria have been justified.

Section 50.34 as published in the FEDERAL REGISTER on August 16, 1966, would be further amended by adding to Part 50 a new Appendix A containing the General Design Criteria applicable to the construction of nuclear power plants and by a specific reference to this Appendix in §50.34, paragraph (b).

The Commission expects that the provisions of the proposed amendments relating to General Design Criteria for Nuclear Power Plant Construction Permits will be useful as interim guidance until such time as the Commission takes further action on them.

Pursuant to the Atomic Energy Act of 1954, as amended, and the Administrative Procedure Act of 1946, as amended, notice is hereby given that adoption of the following amendments to 10 CFR Part 50 is contemplated. All interested persons who desire to submit written comments or suggestions in connection with the proposed amendments should send them to the Secretary, United States Atomic Energy Commission, Washington, D.C. 20545, within 60 days after publication of this notice in the FEDERAL REGISTER. Comments received after that period will be considered if it is practicable to do so, but assurance of consideration cannot be given except as to comments filed within the period specified. Copies of comments may be examined in the Commission's Public Document Room at 1717 H Street, N.W., Washington, D.C.

1. §50.34(b)(3)(i) of 10 CFR Part 50 is amended to read as follows:

§50.34 <u>Contents of applications; technical information safety analysis</u> report.<u>2</u>/

* * *

(b) Each application for a construction permit shall include a preliminary safety analysis report. The report shall cover all pertinent

2/ Inasmuch as the Commission has under consideration other amendments to §50.34 (31 F.R. 10891), the amendment proposed herein would be a further revision of §50.34(b)(3)(i) previously published for comment in the FEDERAL REGISTER. /Additions are underscored./ subjects specified in paragraph (a) of this section as fully as available information permits. The minimum information to be included shall consist of the following:

* * * * *

(3) The preliminary design of the facility, including:

(i) The principal design criteria for the facility.
<u>Appendix A, "General Design Criteria for Nuclear</u>
<u>Power Plant Construction Permits," provides guidance</u>
<u>for establishing the principal design criteria for</u>
<u>nuclear power plants.</u>

2. A new Appendix A is added to read as follows:

(See Attachment)

(Sec. 161, 68 Stat. 948; 42 U.S.C. 2201)

Dated at ______ this _____ this _____

For the Atomic Energy Commission.

W. B. McCool Secretary

APPENDIX A

GENERAL DESIGN CRITERIA FOR

NUCLEAR POWER PLANT CONSTRUCTION PERMITS $\frac{3}{}$

Table of Contents

INTRODUCTION

<u>Group</u><u>Title</u><u>Criterion No.</u> I. OVERALL PLANT REQUIREMENTS

Quality Standards1Performance Standards2Fire Protection3Sharing of Systems4Records Requirements5

II. PROTECTION BY MULTIPLE FISSION PRODUCT BARRIERS

Reactor Core Design	6
Suppression of Power Oscillations	7
Overall Power Coefficient	8
Reactor Coolant Pressure Boundary	9
Containment	10

III. NUCLEAR AND RADIATION CONTROLS

Control Room	11
Instrumentation and Control Systems	12
Fission Process Monitors and Controls	13
Core Protection Systems	14
Engineered Safety Features Protection Systems	15
Monitoring Reactor Coolant Pressure Boundary	16
Monitoring Radioactivity Releases	17
Monitoring Fuel and Waste Storage	18

Inasmuch as the Commission has under consideration other amendments to 10 CFR Part 50 (31 F.R. 10891), the amendment proposed herein would be a further revision to Part 50 previously published for comment in the FEDERAL REGISTER. Group <u>Title</u>

IV. RELIABILITY AND TESTABILITY OF PROTECTION SYSTEMS

Protection Systems Reliability	19
Protection Systems Redundancy and Independence	20
Single Failure Definition	21
Separation of Protection and Control Instru- mentation Systems	22
Protection Against Multiple Disability for Protection Systems	23
Emergency Power for Protection Systems	24
Demonstration of Functional Operability of Protection Systems	25
Protection Systems Fail-Safe Design	26

V. REACTIVITY CONTROL

Redundancy of Reactivity Control	27
Reactivity Hot Shutdown Capability	28
Reactivity Shutdown Capability	29
Reactivity Holddown Capability	30
Reactivity Control Systems Malfunction	31
Maximum Reactivity Worth of Control Rods	32

VI. REACTOR COOLANT PRESSURE BOUNDARY

Reactor Coolant Pressure Boundary Capability	33
Reactor Coolant Pressure Boundary Rapid	34
Propagation Failure Prevention	
Reactor Coolant Pressure Boundary Brittle	35
Fracture Prevention	
Reactor Coolant Pressure Boundary Surveillance	36

VII. ENGINEERED SAFETY FEATURES

A. General Requirements for Engineered Safety Features

Engineered Safety Features Basis for Design	37
Reliability and Testability of Engineered	38
Safety Features	
Emergency Power for Engineered Safety Features	39
Missile Protection	40
Engineered Safety Features Performance Capability	41
Engineered Safety Features Components Capability	42
Accident Aggravation Prevention	43

Group <u>Title</u>

VII. ENGINEERED SAFETY FEATURES

B. Emergency Core Cooling Systems

Emergency Core Cooling Systems Capability	44
Inspection of Emergency Core Cooling Systems	45
Testing of Emergency Core Cooling Systems	46
Components	
Testing of Emergency Core Cooling Systems	47
Testing of Operational Sequence of Emergency	48
Core Cooling Systems	

C. Containment

Containment Design Basis	49
NDT Requirement for Containment Material	50
Reactor Coolant Pressure Boundary Outside Containment	51
Containment Heat Removal Systems	52
Containment Isolation Valves	53
Containment Leakage Rate Testing	54
Containment Periodic Leakage Rate Testing	55
Provisions for Testing of Penetrations	56
Provisions for Testing of Isolation Valves	57

D. Containment Pressure-Reducing Systems

Inspection of Containment Pressure-Reducing	58
Systems	
Testing of Containment Pressure-Reducing Systems	59
Testing of Containment Spray Systems	60
Testing of Operational Sequence of Containment	61
Pressure-Reducing Systems	

E. <u>Air Cleanup Systems</u>

of Air Cleanup Systems	62
Air Cleanup Systems Components	63
	64
Operational Sequence of Air Cleanup	65
	of Air Cleanup Systems Air Cleanup Systems Components Air Cleanup Systems Operational Sequence of Air Cleanup

Group <u>Title</u>

VIII. FUEL AND WASTE STORAGE SYSTEMS

.

Prevention of Fuel Storage Criticality	66
Fuel and Waste Storage Decay Heat	67
Fuel and Waste Storage Radiation Shielding	68
Protection Against Radioactivity Release from	69
Spent Fuel and Waste Storage	

IX. PLANT EFFLUENTS

Control of Releases of Radioactivity to the Environment 70

;

INTRODUCTION

Every applicant for a construction permit is required by the provisions of §50.34 to include the principal design criteria for the proposed facility in the application. These General Design Criteria are intended to be used as guidance in establishing the principal design criteria for a nuclear power plant. The General Design Criteria reflect the predominating experience with water power reactors as designed and located to date, but their applicability is not limited to these reactors. They are considered generally applicable to all power reactors.

Under the Commission's regulations, an applicant must provide assurance that its principal design criteria encompass all those facility design features required in the interest of public health and safety. There may be some power reactor cases for which fulfillment of some of the General Design Criteria may not be necessary or appropriate. There will be other cases in which these criteria are insufficient, and additional criteria must be identified and satisfied by the design in the interest of public safety. It is expected that additional criteria will be needed particularly for unusual sites and environmental conditions, and for new and advanced types of reactors. Within this context, the General Design Criteria should be used as a reference allowing additions or deletions as an individual case may warrant. Departures from the General Design Criteria should be justified.

The criteria are designated as "General Design Criteria for Nuclear Power Plant Construction Permits" to emphasize the key role they assume at this stage of the licensing process. The criteria have been categorized as Category A or Category B. Experience has shown that more definitive information is needed at the construction permit stage for the items listed in Category A than for Category B.

I. OVERALL PLANT REQUIREMENTS

CRITERION 1 - QUALITY STANDARDS (Category A)

Those systems and components of reactor facilities which are essential to the prevention of accidents which could affect the public health and safety or to mitigation of their consequences shall be identified and then designed, fabricated, and erected to quality standards that reflect the importance of the safety function to be performed. Where generally recognized codes or standards on design, materials, fabrication, and inspection are used, they shall be identified. Where adherence to such codes or standards does not suffice to assure a quality product in keeping with the safety function, they shall be supplemented or modified as necessary. Quality assurance programs, test procedures, and inspection acceptance levels to be used shall be identified. A showing of sufficiency and applicability of codes, standards, quality assurance programs, test procedures, and inspection acceptance levels used is required.

CRITERION 2 - PERFORMANCE STANDARDS (Category A)

Those systems and components of reactor facilities which are essential to the prevention of accidents which could affect the public health and safety or to mitigation of their consequences shall be designed, fabricated, and erected to performance standards that will enable the facility to withstand, without loss of the capability to protect the public, the additional forces that might be imposed by natural phenomena such as earthquakes, tornadoes, flooding conditions, winds, ice, and other local site effects. The design bases so established shall reflect: (a) appropriate consideration of the most severe of these natural phenomena that have been recorded for the site and the surrounding area and (b) an appropriate margin for withstanding forces greater than those recorded to reflect uncertainties about the historical data and their suitability as a basis for design.

CRITERION 3 - FIRE PROTECTION (Category A)

The reactor facility shall be designed (1) to minimize the probability of events such as fires and explosions and (2) to minimize the potential effects of such events to safety. Noncombustible and fire resistant materials shall be used whenever practical throughout the facility, particularly in areas containing critical portions of the facility such as containment, control room, and components of engineered safety features.

CRITERION 4 - SHARING OF SYSTEMS (Category A)

Reactor facilities shall not share systems or components unless it is shown safety is not impaired by the sharing.

CRITERION 5 - RECORDS REQUIREMENTS (Category A)

Records of the design, fabrication, and construction of essential components of the plant shall be maintained by the reactor operator or under its control throughout the life of the reactor.

II. PROTECTION BY MULTIPLE FISSION PRODUCT BARRIERS

CRITERION 6 - REACTOR CORE DESIGN (Category A)

The reactor core shall be designed to function throughout its design lifetime, without exceeding acceptable fuel damage limits which have been stipulated and justified. The core design, together with reliable process and decay heat removal systems, shall provide for this capability under all expected conditions of normal operation with appropriate margins for uncertainties and for transient situations which can be anticipated, including the effects of the loss of power to recirculation pumps, tripping out of a turbine generator set, isolation of the reactor from its primary heat sink, and loss of all offsite power.

CRITERION 7 - SUPPRESSION OF POWER OSCILLATIONS (Category B)

The core design, together with reliable controls, shall ensure that power oscillations which could cause damage in excess of acceptable fuel damage limits are not possible or can be readily suppressed.

CRITERION 8 - OVERALL POWER COEFFICIENT (Category B)

The reactor shall be designed so that the overall power coefficient in the power operating range shall not be positive.

CRITERION 9 - REACTOR COOLANT PRESSURE BOUNDARY (Category A)

The reactor coolant pressure boundary shall be designed and constructed so as to have an exceedingly low probability of gross rupture or significant leakage throughout its design lifetime.

CRITERION 10 - CONTAINMENT (Category A)

Containment shall be provided. The containment structure shall be designed to sustain the initial effects of gross equipment failures, such as a large coolant boundary break, without loss of required integrity and, together with other engineered safety features as may be necessary, to retain for as long as the situation requires the functional capability to protect the public.

III. NUCLEAR AND RADIATION CONTROLS

CRITERION 11 - CONTROL ROOM (Category B)

1

The facility shall be provided with a control room from which actions to maintain safe operational status of the plant can be controlled. Adequate radiation protection shall be provided to permit access, even under accident conditions, to equipment in the control room or other areas as necessary to shut down and maintain safe control of the facility without radiation exposures of personnel in excess of 10 CFR 20 limits. It shall be possible to shut the reactor down and maintain it in a safe condition if access to the control room is lost due to fire or other cause.

CRITERION 12 - INSTRUMENTATION AND CONTROL SYSTEMS (Category B)

Instrumentation and controls shall be provided as required to monitor and maintain variables within prescribed operating ranges.

CRITERION 13 - FISSION PROCESS MONITORS AND CONTROLS (Category B)

Means shall be provided for monitoring and maintaining control over the fission process throughout core life and for all conditions that can reasonably be anticipated to cause variations in reactivity of the core, such as indication of position of control rods and concentration of soluble reactivity control poisons.

CRITERION 14 - CORE PROTECTION SYSTEMS (Category B)

Core protection systems, together with associated equipment, shall be designed to act automatically to prevent or to suppress conditions that could result in exceeding acceptable fuel damage limits.

CRITERION 15 - ENGINEERED SAFETY FEATURES PROTECTION SYSTEMS (Category B)

Protection systems shall be provided for sensing accident situations and initiating the operation of necessary engineered safety features.

CRITERION 16 - MONITORING REACTOR COOLANT PRESSURE BOUNDARY (Category B)

Means shall be provided for monitoring the reactor colant pressure boundary to detect leakage.

CRITERION 17 - MONITORING RADIOACTIVITY RELEASES (Category B)

Means shall be provided for monitoring the containment atmosphere, the facility effluent discharge paths, and the facility environs for radioactivity that could be released from normal operations, from anticipated transients, and from accident conditions.

CRITERION 18 - MONITORING FUEL AND WASTE STORAGE (Category B)

Monitoring and alarm instrumentation shall be provided for fuel and waste storage and handling areas for conditions that might contribute to loss of continuity in decay heat removal and to radiation exposures.

IV. RELIABILITY AND TESTABILITY OF PROTECTION SYSTEMS

CRITERION 19 - PROTECTION SYSTEMS RELIABILITY (Category B)

Protection systems shall be designed for high functional reliability and in-service testability commensurate with the safety functions to be performed.

CRITERION 20 - PROTECTION SYSTEMS REDUNDANCY AND INDEPENDENCE (Category B)

Redundancy and independence designed into protection systems shall be sufficient to assure that no single failure or removal from service of any component or channel of a system will result in loss of the protection function. The redundancy provided shall include, as a minimum, two channels of protection for each protection function to be served. Different principles shall be used where necessary to achieve true independence of redundant instrumentation components.

CRITERION 21 - SINGLE FAILURE DEFINITION (Category B)

)

Multiple failures resulting from a single event shall be treated as a single failure.

CRITERION 22 - SEPARATION OF PROTECTION AND CONTROL INSTRUMENTATION SYSTEMS (Category B)

Protection systems shall be separated from control instrumentation systems to the extent that failure or removal from service of any control instrumentation system component or channel, or of those common to control instrumentation and protection circuitry, leaves intact a system satisfying all requirements for the protection channels.

<u>CRITERION 23 - PROTECTION AGAINST MULTIPLE DISABILITY FOR PROTECTION SYSTEMS</u> (Category B)

The effects of adverse conditions to which redundant channels or protection systems might be exposed in common, either under normal conditions or those of an accident, shall not result in loss of the protection function.

CRITERION 24 - EMERGENCY POWER FOR PROTECTION SYSTEMS (Category B)

In the event of loss of all offsite power, sufficient alternate sources of power shall be provided to permit the required functioning of the protection systems.

<u>CRITERION 25 - DEMONSTRATION OF FUNCTIONAL OPERABILITY OF PROTECTION SYSTEMS</u> (Category B)

Means shall be included for testing protection systems while the reactor is in operation to demonstrate that no failure or loss of redundancy has occurred.

CRITERION 26 - PROTECTION SYSTEMS FAIL-SAFE DESIGN (Category B)

The protection systems shall be designed to fail into a safe state or into a state established as tolerable on a defined basis if conditions such as disconnection of the system, loss of energy (e.g., electric power, instrument air), or adverse environments (e.g., extreme heat or cold, fire, steam, or water) are experienced.

V. REACTIVITY CONTROL

CRITERION 27 - REDUNDANCY OF REACTIVITY CONTROL (Category A)

At least two independent reactivity control systems, preferably of different principles, shall be provided.

CRITERION 28 - REACTIVITY HOT SHUTDOWN CAPABILITY (Category A)

At least two of the reactivity control systems provided shall independently be capable of making and holding the core subcritical from any hot standby or hot operating condition, including those resulting from power changes, sufficiently fast to prevent exceeding acceptable fuel damage limits.

CRITERION 29 - REACTIVITY SHUTDOWN CAPABILITY (Category A)

At least one of the reactivity control systems provided shall be capable of making the core subcritical under any condition (including anticipated operational transients) sufficiently fast to prevent exceeding acceptable fuel damage limits. Shutdown margins greater than the maximum worth of the most effective control rod when fully withdrawn shall be provided.

CRITERION 30 - REACTIVITY HOLDDOWN CAPABILITY (Category B)

At least one of the reactivity control systems provided shall be capable of making and holding the core subcritical under any conditions with appropriate margins for contingencies.

CRITERION 31 - REACTIVITY CONTROL SYSTEMS MALFUNCTION (Category B)

The reactivity control systems shall be capable of sustaining any single malfunction, such as, unplanned continuous withdrawal (not ejection) of a control rod, without causing a reactivity transient which could result in exceeding acceptable fuel damage limits.

CRITERION 32 - MAXIMUM REACTIVITY WORTH OF CONTROL RODS (Category A)

Limits, which include considerable margin, shall be placed on the maximum reactivity worth of control rods or elements and on rates at which reactivity can be increased to ensure that the potential effects of a sudden or large change of reactivity cannot (a) rupture the reactor coolant pressure boundary or (b) disrupt the core, its support structures, or other vessel internals sufficiently to impair the effectiveness of emergency core cooling.

VI. REACTOR COOLANT PRESSURE BOUNDARY

CRITERION 33 - REACTOR COOLANT PRESSURE BOUNDARY CAPABILITY (Category A)

The reactor coolant pressure boundary shall be capable of accommodating without rupture, and with only limited allowance for energy absorption through plastic deformation, the static and dynamic loads imposed on any boundary component as a result of any inadvertent and sudden release of energy to the coolant. As a design reference, this sudden release shall be taken as that which would result from a sudden reactivity insertion such as rod ejection (unless prevented by positive mechanical means), rod dropout, or cold water addition.

CRITERION 34 - REACTOR COOLANT PRESSURE BOUNDARY RAPID PROPAGATION FAILURE PREVENTION (Category A)

The reactor coolant pressure boundary shall be designed to minimize the probability of rapidly propagating type failures. Consideration shall be given (a) to the notch-toughness properties of materials extending to the upper shelf of the Charpy transition curve, (b) to the state of stress of materials under static and transient loadings, (c) to the quality control specified for materials and component fabrication to limit flaw sizes, and (d) to the provisions for control over service temperature and irradiation effects which may require operational restrictions.

CRITERION 35 - REACTOR COOLANT PRESSURE BOUNDARY BRITTLE FRACTURE PREVENTION (Category A)

Under conditions where reactor coolant pressure boundary system components constructed of ferritic materials may be subjected to potential loadings, such as a reactivity-induced loading, service temperatures shall be at least 120[°]F above the nil ductility transition (NDT) temperature of the component material if the resulting energy release is expected to be absorbed by plastic deformation or 60[°]F above the NDT temperature of the component material if the resulting energy release is expected to be absorbed within the elastic strain energy range.

CRITEPION 36 - REACTOR COOLANT PRESSURE BOUNDARY SURVEILLANCE (Category A)

Reactor coolant pressure boundary components shall have provisions for inspection, testing, and surveillance by appropriate means to assess the structural and leaktight integrity of the boundary components during their service lifetime. For the reactor vessel, a material surveillance program conforming with ASTM-E-185-66 shall be provided.

VII. ENGINEERED SAFETY FEATURES

CRITERION 37 - ENGINEERED SAFETY FEATURES BASIS FOR DESIGN (Category A)

Engineered safety features shall be provided in the facility to back up the safety provided by the core design, the reactor coolant pressure boundary, and their protection systems. As a minimum, such engineered safety features shall be designed to cope with any size reactor coolant pressure boundary break up to and including the circumferential rupture of any pipe in that boundary assuming unobstructed discharge from both ends.

CRITERION 38 - RELIABILITY AND TESTABILITY OF ENGINEERED SAFETY FEATURES (Category A)

All engineered safety features shall be designed to provide high functional reliability and ready testability. In determining the suitability of a facility for a proposed site, the degree of reliance upon and acceptance of the inherent and engineered safety afforded by the systems, including engineered safety features, will be influenced by the known and the demonstrated performance capability and reliability of the systems, and by the extent to which the operability of such systems can be tested and inspected where appropriate during the life of the plant.

CRITERION 39 - EMERGENCY POWER FOR ENGINEERED SAFETY FEATURES (Category A)

Alternate power systems shall be provided and designed with adequate independency, redundancy, capacity, and testability to permit the functioning required of the engineered safety features. As a minimum, the onsite power system and the offsite power system shall each, independently, provide this capacity assuming a failure of a single active component in each power system.

CRITERION 40 - MISSILE PROTECTION (Category A)

Protection for engineered safety features shall be provided against dynamic effects and missiles that might result from plant equipment failures.

CRITERION 41 - ENGINEERED SAFETY FEATURES PERFORMANCE CAPABILITY (Category A)

Engineered safety features such as emergency core cooling and containment heat removal systems shall provide sufficient performance capability to accommodate partial loss of installed capacity and still fulfill the required safety function. As a minimum, each engineered safety feature shall provide this required safety function assuming a failure of a single active component.

CRITERION 42 - ENGINEERED SAFETY FEATURES COMPONENTS CAPABILITY (Category A)

Engineered safety features shall be designed so that the capability of each component and system to perform its required function is not impaired by the effects of a loss-of-coolant accident.

CRITERION 43 - ACCIDENT AGGRAVATION PREVENTION (Category A)

Engineered safety features shall be designed so that any action of the engineered safety features which might accentuate the adverse after-effects of the loss of normal cooling is avoided.

CRITERION 44 - EMERGENCY CORE COOLING SYSTEMS CAPABILITY (Category A)

At least two emergency core cooling systems, preferably of different design principles, each with a capability for accomplishing abundant emergency core cooling, shall be provided. Each emergency core cooling system and the core shall be designed to prevent fuel and clad damage that would interfere with the emergency core cooling function and to limit the clad metal-water reaction to negligible amounts for all sizes of breaks in the reactor coolant pressure boundary, including the double-ended rupture of the largest pipe. The performance of each emergency core cooling system shall be evaluated conservatively in each area of uncertainty. The systems shall not share active components and shall not share other features or components unless it can be demonstrated that (a) the capability of the shared feature or component to perform its required function can be readily ascertained during reactor operation, (b) failure of the shared feature or component does not initiate a loss-of-coolant accident. and (c) capability of the shared feature or component to perform its required function is not impaired by the effects of a loss-of-coolant accident and is not lost during the entire period this function is required following the accident.

CRITERION 45 - INSPECTION OF EMERGENCY CORE COOLING SYSTEMS (Category A)

Design provisions shall be made to facilitate physical inspection of all critical parts of the emergency core cooling systems, including reactor vessel internals and water injection nozzles.

CRITERION 46 - TESTING OF EMERGENCY CORE COOLING SYSTEMS COMPONENTS (Category A)

Design provisions shall be made so that active components of the emergency core cooling systems, such as pumps and valves, can be tested periodically for operability and required functional performance.

CRITERION 47 - TESTING OF EMERGENCY CORE COOLING SYSTEMS (Category A)

A capability shall be provided to test periodically the delivery capability of the emergency core cooling systems at a location as close to the core as is practical.

CRITERION 48 - TESTING OF OPERATIONAL SEQUENCE OF EMERGENCY CORE COOLING SYSTEMS (Category A)

A capability shall be provided to test under conditions as close to design as practical the full operational sequence that would bring the emergency core cooling systems into action, including the transfer to alternate power sources.

CRITERION 49 - CONTAINMENT DESIGN BASIS (Category A)

The containment structure, including access openings and penetrations, and any necessary containment heat removal systems shall be designed so that the containment structure can accommodate without exceeding the design leakage rate the pressures and temperatures resulting from the largest credible energy release following a loss-of-coolant accident, including a considerable margin for effects from metal-water or other chemical reactions that could occur as a consequence of failure of emergency core cooling systems.

CRITERION 50 - NDT REQUIREMENT FOR CONTAINMENT MATERIAL (Category A)

Principal load carrying components of ferritic materials exposed to the external environment shall be selected so that their temperatures under normal operating and testing conditions are not less than 30° F above nil ductility transition (NDT) temperature.

CRITERION 51 - REACTOR COOLANT PRESSURE BOUNDARY OUTSIDE CONTAINMENT (Category A)

If part of the reactor coolant pressure boundary is outside the containment, appropriate features as necessary shall be provided to protect the health and safety of the public in case of an accidental rupture in that part. Determination of the appropriateness of features such as isolation valves and additional containment shall include consideration of the environmental and population conditions surrounding the site.

CRITERION 52 - CONTAINMENT HEAT REMOVAL SYSTEMS (Category A)

Where active heat removal systems are needed under accident conditions to prevent exceeding containment design pressure, at least two systems, preferably of different principles, each with full capacity, shall be provided.

CRITERION 53 - CONTAINMENT ISOLATION VALVES (Category A)

Penetrations that require closure for the containment function shall be protected by redundant valving and associated apparatus.

CRITERION 54 - CONTAINMENT LEAKAGE RATE TESTING (Category A)

Containment shall be designed so that an integrated leakage rate testing can be conducted at design pressure after completion and installation of all penetrations and the leakage rate measured over a sufficient period of time to verify its conformance with required performance.

CRITERION 55 - CONTAINMENT PERIODIC LEAKAGE RATE TESTING (Category A)

The containment shall be designed so that integrated leakage rate testing can be done periodically at design pressure during plant lifetime.

CRITERION 56 - PROVISIONS FOR TESTING OF PENETRATIONS (Category A)

Provisions shall be made for testing penetrations which have resilient seals or expansion bellows to permit leaktightness to be demonstrated at design pressure at any time.

CRITERION 57 - PROVISIONS FOR TESTING OF ISOLATION VALVES (Category A)

Capability shall be provided for testing functional operability of valves and associated apparatus essential to the containment function for establishing that no failure has occurred and for determining that valve leakage does not exceed acceptable limits.

CRITERION 58 - INSPECTION OF CONTAINMENT PRESSURE-REDUCING SYSTEMS (Category A)

Design provisions shall be made to facilitate the periodic physical inspection of all important components of the containment pressure-reducing systems, such as, pumps, valves, spray nozzles, torus, and sumps.

CRITERION 59 - TESTING OF CONTAINMENT PRESSURE-REDUCING SYSTEMS COMPONENTS (Category A)

The containment pressure-reducing systems shall be designed so that active components, such as pumps and valves, can be tested periodically for operability and required functional performance.

CRITERION 60 - TESTING OF CONTAINMENT SPRAY SYSTEMS (Category A)

A capability shall be provided to test periodically the delivery capability of the containment spray system at a position as close to the spray nozzles as is practical.

CRITERION 61 - TESTING OF OPERATIONAL SEQUENCE OF CONTAINMENT PRESSURE-REDUCING SYSTEMS (Category A)

A capability shall be provided to test under conditions as close to the design as practical the full operational sequence that would bring the containment pressure-reducing systems into action, including the transfer to alternate power sources.

CRITERION 62 - INSPECTION OF AIR CLEANUP SYSTEMS (Category A)

Design provisions shall be made to facilitate physical inspection of all critical parts of containment air cleanup systems, such as, ducts, filters, fans, and dampers.

CRITERION 63 - TESTING OF AIR CLEANUP SYSTEMS COMPONENTS (Category A)

Design provisions shall be made so that active components of the air cleanup systems, such as fans and dampers, can be tested periodically for operability and required functional performance.

CRITERION 64 - TESTING OF AIR CLEANUP SYSTEMS (Category A)

A capability shall be provided for in situ periodic testing and surveillance of the air cleanup systems to ensure (a) filter bypass paths have not developed and (b) filter and trapping materials have not deteriorated beyond acceptable limits.

CRITERION 65 - TESTING OF OPERATIONAL SEQUENCE OF AIR CLEANUP SYSTEMS (Category A)

A capability shall be provided to test under conditions as close to design as practical the full operational sequence that would bring the air cleanup systems into action, including the transfer to alternate power sources and the design air flow delivery capability.

VIII. FUEL AND WASTE STORAGE SYSTEMS

CRITERION 66 - PREVENTION OF FUEL STORAGE CRITICALITY (Category B)

Criticality in new and spent fuel storage shall be prevented by physical systems or processes. Such means as geometrically safe configurations shall be emphasized over procedural controls.

CRITERION 67 - FUEL AND WASTE STORAGE DECAY HEAT (Category B)

Reliable decay heat removal systems shall be designed to prevent damage to the fuel in storage facilities that could result in radioactivity release to plant operating areas or the public environs.

CRITERION 68 - FUEL AND WASTE STORAGE RADIATION SHIELDING (Category B)

Shielding for radiation protection shall be provided in the design of spent fuel and waste storage facilities as required to meet the requirements of 10 CFR 20.

CRITERION 69 - PROTECTION AGAINST RADIOACTIVITY RELEASE FROM SPENT FUEL AND WASTE STORAGE (Category B)

Containment of fuel and waste storage shall be provided if accidents could lead to release of undue amounts of radioactivity to the public environs.

IX. PLANT EFFLUENTS

CRITERION 70 - CONTROL OF RELEASES OF RADIOACTIVITY TO THE ENVIRONMENT (Category B)

The facility design shall include those means necessary to maintain control over the plant radioactive effluents, whether gaseous, liquid, or solid. Appropriate holdup capacity shall be provided for retention of gaseous, liquid, or solid effluents, particularly where unfavorable environmental conditions can be expected to require operational limitations upon the release of radioactive effluents to the environment. In all cases, the design for radioactivity control shall be justified (a) on the basis of 10 CFR 20 requirements for normal operations and for any transient situation that might reasonably be anticipated to occur and (b) on the basis of 10 CFR 100 dosage level guidelines for potential reactor accidents of exceedingly low probability of occurrence except that reduction of the recommended dosage levels may be required where high population densities or very large cities can be affected by the radioactive effluents.

APPENDIX "C"

DRAFT LETTER TO JOINT COMMITTEE ON ATOMIC ENERGY

1. Enclosed for the information of the Joint Committee on Atomic Energy is a Notice of Proposed Rule Making which would add to the proposed amendments to the Commission's regulations 10 CFR Part 50, "Licensing of Production and Utilization Facilities," which were published in the <u>Federal Register</u> for comment on August 16, 1966. This amendment would add a new Appendix A to Part 50 "General Design Criteria for Nuclear Power Plant Construction Permits" to assist in the preparation of applications for construction permits for nuclear power plants.

2. The proposed change implements one of the key recommendations of the Regulatory Review Panel in which the Panel expressed the need for criteria to be used at the construction permit stage. As you know, work had been in progress on criteria development at the time of the Panel's recommendation. This effort was accelerated and led to the issuance of preliminary proposed criteria for public comment in Press Release H-252 dated November 22, 1965. The General Design Criteria included in the enclosed proposed amendment reflect comments and suggestions on the preliminary criteria received from industry, divisions within the Commission, the Advisory Committee on Reactor Safeguards, and the public.

3. The proposed criteria are intended to be used as guidance to an applicant in establishing the principal design criteria for a nuclear power plant as contemplated by the previously published revisions to Part 50. The framework within which the criteria are presented provides sufficient flexibility for applicants to establish design requirements using alternate and/or additional criteria so long as safety can be assured. In particular, additional criteria will be needed for unusual sites and environmental conditions and for new or advanced types of reactors. In every case, however, the applicant will be required to identify its principal design criteria and provide assurance that they encompass all those facility design features required in the interest of public health and safety.

4. The provisions of the proposed amendments relating to the General Design Criteria are expected to be useful as interim guidance until such time as the Commission takes further action on them.

5. The notice of proposed rule making has been transmitted to the Office of the Federal Register for publication. Sixty days for public comment are provided. Enclosed also is a copy of an announcement we plan to issue in the next few days on this matter.

APPENDIX "D"

DRAFT PUBLIC ANNOUNCEMENT

AEC PUBLISHES GENERAL DESIGN CRITERIA FOR NUCLEAR POWER PLANT CONSTRUCTION PERMITS

The AEC is publishing for public comment a revised set of proposed General Design Criteria which have been developed to assist in the preparation of applications for nuclear power plant construction permits.

In November 1965, the AEC issued an announcement requesting comments on General Design Criteria developed by its regulatory staff. These criteria were statements of design principles and objectives which have evolved over the years in licensing nuclear power plants by the AEC.

It was recognized at the time the criteria were first issued for comment that further efforts were needed to develop them more fully. The revision being published today reflects comments received following the 1965 announcement, suggestions made at meetings with the Atomic Industrial Forum, and review within the AEC.

The regulatory staff has worked closely with the Commission's Advisory Committee on Reactor Safeguards on the development of the criteria and the revision of the proposed criteria reflects ACRS review and comment.

The General Design Criteria reflect the predominating experience to date with water reactors, but they are considered to be generally applicable to all power reactors. The proposed criteria are intended to be used as guidance to an applicant in establishing the principal design criteria for a nuclear power plant. The framework within which the criteria are presented provides suffi-

ما دو الما يحروف ولا يكوف <mark>كوم م</mark>ا الراج والجاج معد المك

In November 1965, the AEC issued an announcement requesting comments on General Design Criteria developed by its regulatory staff. These criteria were statements of design principles and objectives which have evolved over the years in licensing nuclear power plants by the AEC.

It was recognized at the time the criteria were first issued for comment that further efforts were needed to develop them more fully. The revision being published today reflects comments received following the 1965 announcement, suggestions made at meetings with the Atomic Industrial Forum, and review within the AEC.

The regulatory staff has worked closely with the Commission's Advisory Committee on Reactor Safeguards on the development of the criteria and the revision of the proposed criteria reflects ACRS review and comment.

The General Design Criteria reflect the predominating experience to date with water reactors, but they are considered to be generally applicable to all power reactors. The proposed criteria are intended to be used as guidance to an applicant in establishing the principal design criteria for a nuclear power plant. The framework within which the criteria are presented provides sufficient flexibility for applicants to establish design requirements using alternate and/or additional criteria so long as safety can be assured. In particular, additional criteria will be needed for unusual sites and environmental conditions and for new or advanced types of reactors. In every case,

- 37 -

Appendix "D"

however, the applicant will be required to identify its principal design criteria and provide assurance that they encompass all those facility design features required in the interest of public health and safety.

The criteria are designated as "General Design Criteria for Nuclear Power Plant Construction Permits" to emphasize the key role they assume at this stage of the licensing process. The criteria have been categorized as Category A or Category B. Experience has shown that more definitive information is needed at the construction permit stage for the items listed in Category A than for Category B.

Development of these criteria is part of a longer-range Commission program to develop criteria, standards, and codes for nuclear reactor plants. This includes codes and standards that industry is developing with AEC participation. The ultimate goal is the evolution of industry codes and standards based on accumulated knowledge and experience as has occurred in various fields of engineering and construction.

The provisions of the proposed amendment relating to General Design Criteria are expected to be useful as interim guidance until such time as the Commission takes further action on them.

The proposed criteria, which would become Appendix A to Part 50 of the AEC's regulations, will be published in the <u>Federal Register</u> on ______. Interested persons may submit written comments or suggestions to the ' retary, U. S. Atomic Energy Commission, Washington, D.C., 20545, within 60 days. A copy of the proposed "General Design Criteria for Nuclear Power Plant Construction Permits" is attached.