QUESTION 1

The plant is operating at 100 % power.

Main Steam Isolation Valve B21-F022A inadvertently isolates.

Which one of the following describes the response of the reactor to this action?

Reactor power will:

- A. rise due to the reactor pressure rising. This causes a collapse of voids in the core which adds positive reactivity. The reactor may scram on either high flux or high pressure.
- B. rise due to a rising core water level caused by rising reactor pressure. Power will return to a slightly lower level in response to Reactor Water Level Control and Turbine Control Valve movement.
- C. be unaffected due to the Turbine Control Valves quickly opening to reduce any pressure transient on the reactor through the remaining three Steam lines.
- D. drop initially due to the void boundary being pushed lower in the core. This adds negative reactivity. As the Turbine Control Valves respond to lower reactor pressure, power rises as the void boundary rises.

LP# GG-1-LP	SYSTEM # B2 -RO-F1502.00	NRC RECORD K/A 295007 GROUP 1 / RO TIER	AA2.02: 4.1/4.1 AA2.03: 3.7/3.7
REFERENC E:	Tech Spec Bases 3.3.1.	<u>NEW</u>	CLASS
DIFF 3, CA	FSAR 15.2.4.1.2.2 15.2.4.3.3.2	MODIFIED	BANK
DATE USED: REFERENCE REQUIRED:	MATERIAL	RO SRO <u>BOZ</u> None	<u>TH</u> CFR 41.7

QUESTION 2

The plant is in mode 4.

RHR Shutdown Cooling is lost.

Both Recirculation Pumps are shutdown for repairs.

Which one of the following is the minimum reactor water level above vessel zero that will provide adequate core circulation to provide temperature indication?

A. + 569 inches

B. + 587 inches

C. + 615 inches

D. + 648 inches

QUESTION RO 2 NRC RECORD # WRI 202 ANSWER:. C. SYSTEM # B13; K/A 295009 AK1.05: 3.3/3.4

B21

LP#

OBJ. SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 REFERENC ONEP 05-1-02-III-1 NEW CLASS

E: step 3.1.2

Tech Spec Bases MODIFIED BANK

DIFF 2, M Figure 3.3.1.1-1

DATE USED: RO SRO *BOTH* **CFR 41.2/41.14**

REFERENCE MATERIAL None

QUESTION 3

Scram conditions exist. All control rods did NOT fully insert.

Reactor water level is being maintained at -60 inches.

Reactor pressure is being maintained at 910 psig.

Reactor power is 20 %.

The following indications exist:

RPS white lights on H13-P680 are extinguished.

Scram Air Header Pressure low annunciator is illuminated.

Manual Scram annunciator is illuminated.

Which one of the following contains the minimum actions required to drive the control rods to position 00 using Rod Control and Information System?

- A. Defeat the RPS scram signal and reset RPS, unisolate the Instrument Air header, defeat Alternate Rod Insertion, bypass Control Rod Drive withdrawal blocks, confirm a CRD pump is operating, select control rods and insert.
- B. Defeat the RPS scram signal and reset RPS, unisolate the Instrument Air header, defeat Alternate Rod Insertion, bypass Control Rod Drive withdrawal blocks, confirm a CRD pump is operating, select control rods in sequence and insert.
- C. Defeat the RPS scram signal and reset RPS, unisolate the Instrument Air header, defeat Alternate Rod Insertion, bypass Control Rod Drive insert and withdrawal blocks, confirm a CRD pump is operating, select control rods and insert.
- D. Defeat the RPS scram signal and reset RPS, unisolate the Instrument Air header, defeat Alternate Rod Insertion, confirm a CRD pump is operating, select control rods in sequence and insert.

QUESTION RO 3 NRC RECORD # WRI 203 ANSWER:. C. **SYSTEM # C11-2** K/A 295015 AK3.01: 3.4/3.7 LP# GG-1-LP-RO-EP02A.02 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 OBJ. 5 REFERENC EP 05-S-01-EP-2A NEW**CLASS** E: Step 48 Att. 18, 19 & 20 **MODIFIED BANK** DIFF 3, CA **DATE USED:** RO SRO **BOTH** CFR 41.6/43.6

REFERENCE MATERIAL None

QUESTION 4

The plant is performing a reactor startup from cold shutdown. The reactor is at the point of adding heat. The Plant Supervisor instructed the operators to stop the startup for a short duration to perform a surveillance. During this time, the reactor went subcritical and power dropped to range 3 of the IRMs. The At-The-Controls Operator, noting that reactor power had dropped selected the next control rod and withdrew the control rod from 00 to 48 with continuous motion. This resulted in a sustained 20-second period. The following are the plant parameters at present:

Reactor Pressure 80 psig

Reactor Level + 40 inches

Which one of the following describes the next action the At-The-Controls operator should take?

- A. Monitor IRMs and range them according to the power increase to keep them on scale.
- B. Perform the coupling checks for the Control Rod, and inform the Reactor Engineer of the power rise.
- C. Withdraw the next in sequence Control Rod to maintain the power rise to reach the point of adding heat.
- D. Insert the Control Rod to a position which causes reactor period to be > 50 seconds.

QUESTION RO 4 NRC RECORD # WRI 204 ANSWER:. D. SYSTEM # C11-2; K/A 295014 AK3.01: 4.1/4.1 C51

LP#

OBJ. SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1

REFERENC 03-1-01-1 <u>NEW</u> CLASS

E:

Susquehanna reactivity MODIFIED BANK

DIFF 3, CA Event 7/98

DATE USED: RO SRO <u>BOTH</u> **CFR 41.1/41.2/**

41.6/43.6

REFERENCE MATERIAL None

QUESTION 5

The plant is operating at 100 % power with the Electrical Distribution System aligned in the Normal Preferred lineup.

An internal short on BOP Transformer 12B causes a sudden pressure fault on the transformer. Which one of the following describes the resulting availability of power for the Safe Shutdown Systems?

- A. Power to ESF 11 and 21 Transformers is uninterrupted.
- B. Power to ESF 11 Transformer is lost, however the diesel generator for the affected ESF buses will assume the load.
- C. Power to both ESF 11 and 21 Transformers is lost, however the diesel generators for the ESF buses will assume the loads.
- D. Power to ESF 11 and 21 Transformers will be lost and is unavailable until the faulted transformer's incoming disconnects are manually opened.

QUESTION	RO 5	NRC RECORI	O# WRI 205
ANSWER:. A.	SYSTEM # R27	K/A 295003	AA2.05: 3.9/4.2
LP# GG-1-LP-R	O-R2700.00		AA1.03: 4.4/4.4
OBJ. 3, 13	SRO TIER 1 GRO	OUP 1 / RO TIEI	R 1 GROUP 2
8,			
REFERENC E	E-0001	<u>NEW</u>	CLASS
E :			
A	ARI 04-S-02-H13-P807	MODIFIED	BANK
DIFF 3, CA	4A-B6		
DATE USED:		RO SRO <u>Bo</u>	<u>TH</u> CFR 41.7
REFERENCE M.	ATERIAL	None	
REQUIRED:			

QUESTION 6

Which one of the following describes the basis for the Low-Low Set function of the Safety Relief Valves?

- A. Prevent the over pressurization of the reactor caused by the actuation of the SRVs on the Safety Function thus challenging the integrity of the Reactor Coolant Pressure Boundary.
- B. Prevent the cyclic stresses on the Reactor Coolant Pressure Boundary by lowering the actuation and reset of the primary operating SRVs.
- C. Prevent multiple RPS actuations on high pressure by reducing the actuation setpoints of the primary operating SRVs.
- D. Prevent multiple actuations in rapid succession of the SRVs after their initial actuation thus mitigating the effects of pressure loads on Containment.

QUESTION RO 6 NRC RECORD # WRI 206 ANSWER:. D. SYSTEM # B21 K/A 295025 EK2.05: 4.1/4.2 LP# GG-1-LP-RO-E2202.00 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 4, 18a **Tech Spec Bases 3.3.6.5** REFERENC NEW**CLASS E**: **MODIFIED BANK** DIFF 2, M

DATE USED:RO SRO BOTHCFR 41.3/41.5/41.7REFERENCE MATERIALNone43.2

QUESTION 7

The plant is shutdown following an order to evacuate the Main Control Room due to a fire in H13-P870 panel. Control has been established at the Remote Shutdown Panel per the Off Normal Event Procedure. The Reactor Operator at the Remote Shutdown Panel is attempting to align RHR 'A' for Shutdown Cooling operation.

Which one of the following describes the status of interlocks or automatic functions that exist in this condition?

- A. Interlocks between E12-F004A (RHR A Supp Pool Suction) and E12-F006A (RHR A SDC Suction) are disabled.
- B. Interlocks requiring the enable/disable handswitches for E12-F004A (RHR A Supp Pool Suction) and E12-F006A (RHR A SDC Suction) are removed.
- C. Auto Open capability for E12-F064A (RHR A Minimum Flow) on low flow conditions is functional when the RHR A Pump is operated.
- D. Operation of E12-F009 (RHR SDC INBD Isolation) closed on a Low Reactor Water Level is still functional.

QUESTION RO 7 NRC RECORD # WRI 207 ANSWER:. D. SYSTEM # C61; K/A 295016 AK2.01: 4.4/4.5

LP# GG-1-LP-RO-C61.00

OBJ. 18, 19 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 2
REFERENC 05-1-02-II-1 Att III & IV <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.7

REFERENCE MATERIAL 05-1-02-II-1 Att. III & IV

E12

QUESTION 8

The plant is in a Refueling Outage moving irradiated fuel in the Spent Fuel Pool.

The fuel handling operator moving the Fuel Handling Bridge has a spent fuel bundle on the grapple. The bundle is NOT raised high enough to clear the gate from the Transfer Canal to the Spent Fuel Pool.

The spent fuel bundle hits the Transfer Canal gate causing a large bubble to rise from the fuel bundle. The Fuel Handling Area Radiation Monitor is in alarm.

Which one of the following describes actions to be taken and their reason?

- A. Stop all movement of fuel inside the Containment to allow personnel working inside Containment to have a pathway for evacuation of the Containment.
- B. Isolate the Containment to prevent any airborne radiation from entering the Containment and have the Refueling Floor Health Physicist determine if respirators are required.
- C. Place bundle in safe condition and evacuate the Fuel Handling Area personnel to prevent overexposure to fission products released into the Auxiliary Building atmosphere.
- D. Move the fuel bundle to the Horizontal Fuel Transfer Mechanism in preparation to move it back to Containment to limit release of radioactive material into the Auxiliary Building.

QUESTION RO 8	NRC RECORD #	WRI 208
ANSWER:. C. SYSTEM # F	11 K/A 295023 A	K3.01: 3.6/4.3
LP# OP-LOR-ONEP-LP-		
001.04		
OBJ. 1 SRO TIER 1	GROUP 1 / RO TIER 1	GROUP 3
REFERENC 05-1-02-II-8 sect. 2.1	\underline{NEW}	CLASS
E:		
01-S-06-2 sect 6.7.14	MODIFIED	BANK
DIFF 2, M		
DATE USED:	RO SRO <u>BOTH</u>	CFR 41.2/41.10/
REFERENCE MATERIAL	None	41.12/43.4/43.5/
REQUIRED:		43.6/43.7

QUESTION 9

An ATWS has occurred. The MSIVs are open with the Turbine Bypass Valves closed.

The following parameters exist:

Reactor Power 45 %

Reactor Pressure 1000 psia

Reactor Level - 100 inches Fuel Zone

Suppression Pool Level 16.5 feet Suppression Pool Temperature 150 °F

Drywell Pressure + 1.0 psig

Which one of the following describes actions to be taken?

- A. Maintain RPV water level between -192 and + 53.5 inches and RPV pressure < 1064.7 psig.
- B. Maintain RPV water level between -192 and + 53.5 inches and confirm SPMU has initiated.
- C. Terminate and prevent all injection into the RPV except for CRD and Boron, and lower RPV water level to the top of active fuel.
- D. Terminate and prevent all injection into the RPV except for Boron, CRD and RCIC and emergency depressurize the RPV.

QUESTION RO 9 NRC RECORD # WRI 209 ANSWER:. D. SYSTEM # M41; K/A 295026 EK2.01: 3.9/4.0

B21

LP# GG-1-LP-RO-EP03

OBJ. 2.3

LP# GG-1-LP-RO-EP02A

OBJ. 7, 10h SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 2 REFERENC 05-S-01-EP2 EP2A <u>NEW</u> CLASS

E:

Step 33 MODIFIED BANK

05-S-01-EP3 Step 15 and

HCTL

DIFF 3, CA

 DATE USED:
 RO SRO BOTH
 CFR 41.7/41.9/

 REFERENCE MATERIAL
 EP-2A and EP-3
 41.10/41.14/43.5

QUESTION 10

A plant startup is in progress.

The following parameters exist:

Reactor Power range 4 of IRMs

Reactor Level + 46 inches

Reactor Pressure 0 psig Reactor Temperature 180 $^{\circ}$ F

The operating Control Rod Drive Pump trips. The Control Room Operator attempted to start the standby CRD Pump and the pump failed to start. Control Rod movement has been suspended.

Which one of the following describes the response of Reactor water level? (ASSUME NO OPERATOR ACTION)

Reactor Water level will:

- A. remain stable due to water expansion from heating overcoming any losses to steam.
- B. remain stable due to water expansion from heating overcoming any losses to RWCU.
- C. rise due to the reactor being at the point of adding heat.
- D. drop due to RWCU rejecting water for level control.

QUESTION RO 10 NRC RECORD # WRI 210 ANSWER:. D. SYSTEM # B21; K/A 295022 AK2.04: 2.5/2.7 C11; G33; IOI

LP#

OBJ. SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 REFERENC 03-1-01-1 sect 2.2.5; <u>NEW</u> CLASS

E:

3.3.1.d; 3.3.3.a MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO <u>BOTH</u> CFR 41.5

REFERENCE MATERIAL None

QUESTION 11

REQUIRED:

A Reactor scram resulted in water level dropping to – 46 inches on Wide Range Level.

Reactor level has since recovered to + 10 inches on Narrow Range. Reactor Pressure is being maintained with the Turbine Bypass Valves. The maximum Reactor Pressure during the transient was 1080 psig.

The Roving Control Room Operator has noticed Suppression Pool Temperature is rising. Which one of the following could be the cause of rising Suppression Pool parameters?

- A. Cooling down of SRV tailpipes following SRV actuation.
- B. Steam from Reactor Core Isolation Cooling operation.
- C. Water drained from the Scram Discharge Volume to the Suppression Pool.
- D. LPCI Pumps operating on minimum flow to the Suppression Pool.

QUESTION RO 11 NRC RECORD # WRI 211 ANSWER:. B. SYSTEM # E51; K/A 295013 AA1.02: 3.9/3.9 B21; C11 LP# GG-1-LP-RO-E51.00 **OBJ.** 9; 21 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 2 18a; REFERENC ARI 04-1-02-H13-P601 **NEW** CLASS E: **MODIFIED** 21A-C5, 19A-B6; 16A-A4 **BANK** P870 3A-E3 DIFF 2, CA **DATE USED:** RO SRO **BOTH** CFR 41.9/41.10 REFERENCE MATERIAL None

QUESTION 12

A Reactor scram resulted in water level dropping to – 46 inches on Wide Range Level.

Which one of the following systems would be completely shutdown? (ASSUME NO OPERATOR ACTION)

- A. Plant Chilled Water System
- **B.** Plant Service Water System
- C. Standby Service Water System
- D. Component Cooling Water System

QUESTION	RO 12	NRC RECORD	# WRI 212
ANSWER:. A.	SYSTEM # P71	K/A 295031	EK2.12: 4.5/4.5
LP# GG-1-LP-	RO-P71.00		
OBJ. 7, 8, 1	5, 18 SRO TIER 1 GR	OUP 1 / RO TIER	R 1 GROUP 1
REFERENC	05-1-02-III-5 isolations	<u>NEW</u>	CLASS
E :			
	04-1-02-H13-P870-5A-A1	MODIFIED	BANK
DIFF 2, M	5A-A4 P601-16A-A4		
DATE USED:		RO SRO <u>Bot</u>	<u>CFR 41.7/41.10</u>
REFERENCE N	MATERIAL	None	43.5
REQUIRED:			

QUESTION 13

A loss of coolant accident through a rupture in a flange on the RWCU Regenerative Heat Exchanger inlet has caused RWCU to isolate.

The following conditions exist in the plant:

Reactor level has remained stable at +36 inches

Reactor pressure 1000 psig and stable

Drywell pressure + 1.0 psig
Drywell temperature 110 °F
Containment pressure + 6.5 psig
Containment temperature 188 °F
Suppression Pool Temperature 91 °F
Suppression Pool Level 18.6 feet

Which one of the following describes the heat removal method to be used to remove heat from the Containment?

- A. Containment Coolers and Containment Steam Tunnel Coolers in operation.
- B. Containment Coolers, Containment Steam Tunnel Coolers in operation, however, chilled water is isolated.
- C. Containment Coolers, Containment Steam Tunnel Coolers in operation and Containment Spray with RHR A and B initiated.
- D. Containment Coolers, Containment Steam Tunnel Coolers in operation without chilled water and Containment Spray with RHR A and B initiated.

QUESTION ANSWER:. O	M41/M41-1	NRC RECORI K/A 295027	D# WRI 213 EK2.03: 3.5/3.7 EK2.01: 3.2/3.4
LP# GG-1-LP	P-RO-EP03.00		
OBJ.	3 SRO TIER 1 GRO	UP 1 / ROTIE	R 1 GROUP 2
REFERENC	GGNS PSTG app B	<u>NEW</u>	CLASS
E :			
	05-S-01-EP-3 step 23	MODIFIED	BANK
DIFF 4, CA	M-1079		

DATE USED:RO SRO BOTHCFR 41.5/41.9/REFERENCE MATERIALEP-341.10/43.5

QUESTION 14

A LOCA has occurred.

The following conditions exist in the plant:

Reactor

Wide Range Level - 140 inches Fuel Zone Level - 190 inches
Upset Range Level 0 inches Shutdown Range Level 0 inches

Pressure 50 psig Narrow Range Level 0 inches

Drywell

Pressure + 5.2 psig

Temperature 166 ft. 220 °F Temperature 139 ft 190 °F

Containment

Pressure + 1.0 psig

Temperature 166 ft. 155 °F Temperature 139 ft. 150 °F

Which one of the following Reactor Level Instruments is usable?

A. Fuel Zone Range

B. Wide Range

C. Upset Range

D. No level instruments are accurate RPV Flooding Required

 QUESTION
 RO 14
 NRC RECORD # WRI 214

 ANSWER:. A.
 SYSTEM # B21
 K/A 295028
 EA2.03: 3.7/3.9

 LP# GG-1-LP-RO-EP02.01
 2.4.20: 3.3/4.0

 OBJ.
 4
 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2

 REFERENC
 05-S-01-EP-2 Caution 1
 NEW
 CLASS

E:

DIFF 3, CA

MODIFIED
NRC EXAM 1998
WRI 1

DATE USED: RO SRO <u>BOTH</u> CFR 41.5/41.10/

REFERENCE MATERIAL EP-2 Caution 1 41.14/43.5

QUESTION 15

An ATWS has occurred.

The following conditions exist in the plant:

Reactor level - 100 inches Reactor pressure 900 psig

Reactor Power 30 %

Drywell pressure + 1.1 psig
Drywell temperature 130 °F
Containment pressure + 1.5 psig
Containment temperature 100 °F
Suppression Pool Temperature 116 °F
Suppression Pool Level 24.8 feet

Suppression Pool Makeup has actuated.

Which one of the following describes the basis for Emergency Depressurization of the Reactor?

Suppression Pool Level:

- A. can result in exceeding the maximum pressure suppression pressure preventing Minimum RPV Flooding Pressure from being reached before the Primary Containment Pressure Limit is reached.
- B. with the RPV heat load will cause excessive steam generation in Containment that will rapidly challenge Containment Temperature Limits.
- C. results in a higher pressure in the SRV Tailpipes and the challenge to the integrity of the tailpipes by exceeding the SRV Tailpipe Level Limit.
- D. will cause the loss of equipment located in the Drywell 93 foot elevation required for control of Drywell conditions and removal of fission products from the Drywell.

QUESTION RO 15 ANSWER:. A. SYSTEM # M41	NRC RECORD # V K/A 295029 EK	
LP# GG-1-LP-RO-EP03.00		4.18: 2.7/3.6
OBJ. 6 SRO TIER 1 GRO	OUP 2 / ROTIER 1	GROUP 2
REFERENC 05-S-01-EP-3 step 52&53	<u>NEW</u>	CLASS
E:		
GGNS PSTG App C PSP	MODIFIED	BANK
DIFF 3, CA App A EPG Step SP/L-3		
DATE USED:	RO SRO <u>Both</u>	CFR 41.7
REFERENCE MATERIAL	EP-3	
REQUIRED:		

QUESTION 16

An ATWS has occurred. Actions of EP-2A are being taken.

Which one of the following describes an allowance to terminate injection of Standby Liquid Control?

- A. Control rods have been inserted to the equivalent of the first banked position with RPV temperature at $< 200^{\circ}$ F making the reactor subcritical.
- B. All control rods are inserted to the Maximum Subcritical Banked Withdrawal Position, which assures the reactor will remain subcritical under all conditions.
- C. RPV temperature has been reduced to $< 200~^{\circ}F$ and indicated reactor power on all IRMs is downscale on range 1, which indicates a subcritical reactor.
- D. Standby Liquid Control has been injected such that Hot Shutdown Boron Weight (HSBW) has been injected and confirmed by chemical analysis.

QUESTION	RO 16	NRC RECORD	# WRI 216
ANSWER:. B	SYSTEM # C41;	K/A 295037	EA1.04: 4/4.5
	C11; C71		EK1.04: 3.4/3.6
			EK1.05: 3.4/3.6
LP# GG-1-LP	-RO-EP02A.03]	EA2.03: 4.3/4.4
OBJ.	2, 3, 5 SRO TIER 1 GROU	JP 1 / RO TIER	1 GROUP 1
REFERENC	05-S-01-EP-2A	<u>NEW</u>	CLASS
E :			
	step 2 & 4	MODIFIED	BANK
DIFF 3, CA	GGNS PSTG App B RC/Q-		
•	1		
DATE USED:		RO SRO BOTI	H CFR 41.1/41.2/
REFERENCE	MATERIAL EI	P-2A	41.6/43.6
REQUIRED:			

QUESTION 17

REQUIRED:

Which one of the following describes basis for tripping the Reactor Recirculation Pumps on High Reactor Pressure?

- A. Excessive reactor pressure above a scram setpoint results in the collapse of voids adding positive reactivity.
- B. Excessive reactor pressure could result in damage to both seals in both Recirculation Pumps resulting in an uncontrolled loss of coolant accident.
- C. Excessive reactor pressure results in reduced core flow, which causes the margin to the MCPR limits to be reduced.
- D. Excessive reactor pressure could result in the unwanted operation of the Safety Relief Valves causing undesired voiding of the core.

QUESTION RO 17 NRC RECORD # WRI 217 ANSWER:. A. SYSTEM # B33 K/A 295025 EK3.02: 3.9/4.1 LP# GG-1-LP-RO-B3300.00 OBJ. SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 **26** $\underline{NE}W$ REFERENC **GGNS Tech Spec Bases CLASS E**: **MODIFIED BANK** 3.3.4.2 DIFF 2, M ARI 04-1-02-H13-P680 2A-E15 RO SRO **BOTH** CFR 41.5/43.2 **DATE USED:** REFERENCE MATERIAL None

QUESTION 18

Which one of the following describes basis for Emergency Depressurizing the Reactor on low Suppression Pool Level?

Excessively low Suppression Pool Level will:

- A. result in the SRV Tailpipes being exposed and transmitting the heat of steam inside the pipes to the Containment atmosphere.
- B. cause Suppression Pool Level to become undetermined from uncovering the variable leg to the level transmitters.
- C. result in inadequate submergence of horizontal vents which could allow Containment pressure limits to be challenged.
- D. result in loss of the Net Positive Suction Head requirements for the ECCS Pumps causing chugging of the flow from systems such as LPCS and HPCS.

OUESTION RO 18 NRC RECORD # WRI 218 K/A 295030 ANSWER: C. SYSTEM # M41; EK3.01: 3.8/4.1 **B21** 2.4.18: 2.7/3.6 LP# GG-1-LP-RO-EP03.00 OBJ. SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 2 REFERENC GGNS PSTG App A & B **CLASS** <u>NEW</u> Step SP/L-2 MODIFIED BANK 05-S-01-EP-3 step 42/43 DIFF 2, M **DATE USED:** RO SRO BOTH **CFR 41.9** None REFERENCE MATERIAL **REQUIRED:**

QUESTION 19

A LOCA has occurred. The Plant Supervisor has ordered the Hydrogen Recombiners started for Hydrogen removal in Containment.

Determine the final Hydrogen Recombiner Power Setting and the time to final Recombiner power.

Pre-LOCA Containment Temperature was 85 °F. Post LOCA Containment Pressure +1.0 psig.

- A. 47.73 kw after 20 minutes
- В. 47.73 kw after 25 minutes
- C. 49.02 kw after 20 minutes
- D. 49.02 kw after 25 minutes

NRC RECORD # WRI 219 **QUESTION RO 19** ANSWER: B. SYSTEM # E61 K/A 500000 EA1.03: 3.4/3.2 2.4.20: 4.3/4.2

LP# GG-1-LP-RO-E61.01

OBJ. SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 13 04-1-01-E61-1 sec. 5.4.2 REFERENC NEW**CLASS**

E:

Figure 1 MODIFIED **BANK**

DIFF 3, CA **DATE USED:**

RO SRO **BOTH** CFR 41.10/43.5

REFERENCE MATERIAL 04-1-01-E61-1 & Calculator **REQUIRED:**

QUESTION 20

Which one of the following describes the reason for isolating the Main Steam Isolation Valves on a Low Main Condenser Vacuum?

- A. Prevent erosion damage to the Main Steam Isolation Valve and Main Steam Bypass Valve seats due to steam condensation in the Main Steam Lines that would prevent their complete isolation in an emergency.
- B. Prevent erosion damage to turbine blading in the Low Pressure Turbine due to steam condensation in the Main Steam Lines.
- C. Prevent over-pressurization of low pressure piping on the suction of the Condensate pumps that could result in a rupture introducing steam outside Secondary Containment.
- D. Prevent rupture of the turbine rupture diaphragms or damage to the turbine exhaust hood that could lead to leakage of radiation to the environment.

OUESTION RO 20 NRC RECORD # WRI 220 K/A 295002 ANSWER: D. SYSTEM # B21; AK3.05: 3.4/3.4 N11; N62 AA1.04: 3.3/3.4 LP# GG-1-LP-RO-B13.00 OBJ. SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 REFERENC **GGNS Tech Spec Bases CLASS** <u>NEW</u> 3.3.6.1-1d MODIFIED BANK DIFF 2, M

RO SRO **BOTH**

CFR 41.4/43.2/43.4

DATE USED: REFERENCE MATERIAL REQUIRED:

QUESTION 21

The plant is operating at rated conditions.

A crane moving down heavy haul road turns over causing a complete loss of power to the Radial Wells.

Which one of the following describes the affect on the Reactor Water Cleanup System? (ASSUME NO OPERATOR ACTION)

- A. RWCU will operate normally due to the minimal heat load from the RWCU Non-Regenerative Heat Exchangers.
- B. RWCU F/Ds will automatically go into hold and bypass the filter demineralizers upon receipt of any high temperature signals.
- C. Component Cooling Water temperature will rise and eventually the RWCU system will isolate and trip the RWCU pumps.
- D. Standby Service Water will automatically start on the loss of power and align for supplying cooling water to CCW allowing RWCU to operate normally.

LP# GG-1-LP-RO-P4447.00

OBJ. 11, 25, 27

12,

LP# GG-1-LP-RO-P4200.00

OBJ. 9, 10, 15, 19 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 REFERENC 05-1-02-V-1 <u>NEW</u> CLASS

E:

05-1-02-V-11 MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.4

REFERENCE MATERIAL None

QUESTION 22

The plant was operating at rated conditions when a valve on the Main Steam Lines had a packing rupture in the Auxiliary Building Steam Tunnel.

Security has reported the blowout shaft open on the Auxiliary Building Steam Tunnel and steam is coming out of the top of the Auxiliary Building.

Indicated radiation levels are below alarm setpoints.

The Main Steam Isolation Valves have been isolated, however Steam Tunnel temperatures are not lowering.

Which one of the following describes how this release of steam is being monitored? (NO OTHER OPERATOR ACTIONS HAVE BEEN TAKEN.)

- A. The only way to monitor the radioactive release is to perform manual monitoring by chemistry and health physics personnel.
- B. A combination of Standby Gas Treatment Radiation Monitors and manual personnel monitoring give an estimate of the radioactive release.
- C. Fuel Handling Exhaust System Radiation Monitors will provide a complete monitoring of any radioactive release.
- D. Fuel Handling Exhaust System and Standby Gas Treatment Radiation Monitors will provide a complete monitoring of any radioactive release.

QUESTION	RO 22	NRC RECORD #	WRI 222
ANSWER: A.	SYSTEM # T48 ;	K/A 295017 Al	K2.04: 3.1/3.3
	T42		
LP#			
OBJ.	SRO TIER 1 GR	OUP 1 / RO TIER 1	GROUP 2
REFERENC	M-1102A E-1 1102B E-2	\underline{NEW}	CLASS
E :			
	M-1104B E-3/4	MODIFIED	BANK
DIFF 2, CA	10-S-01-12 sect 6.1.4.a		
DATE USED:		RO SRO <u>Both</u>	CFR 41.11
REFERENCE I	MATERIAL	None	
REQUIRED:			

QUESTION 23

The plant is operating at rated conditions.

Bus 11DB DC Bus has a ground fault resulting in the supply circuit breakers from the Battery and both Battery Chargers tripping.

Electricians and Operators have attempted to reset and close the breakers and have not been able to get the breakers to close.

Which one of the following describes status of ECCS Systems?

- A. All ECCS will function normally.
- B. Division I and III ECCS will function normally. Division II must be manually started and aligned from the Control Room for any ECCS operations.
- C. Division III ECCS will function normally. Division I and II logics will NOT function to initiate ECCS, the systems can be operated manually locally.
- D. Division I and III ECCS will function normally. Division II logics will NOT function to initiate ECCS, the systems can be operated manually locally.

QUESTION NRC RECORD # WRI 223 RO 23 ANSWER: D. SYSTEM # L11; K/A 295004 AA2.04: 3.2/3.3 E12; E21; E22 LP# GG-1-RO-LP-E2200.00 OBJ. 6, 13, 16 LP# GG-1-RO-LP-E2100.00 OBJ. 6, 13, 16 LP# GG-1-RO-LP-L1100.00 OBJ. 13 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 **CLASS** REFERENC E-1181-65; E-1182-23 NEW E: **MODIFIED** E-1183-21 **BANK** 04-1-02-H13-P601 DIFF 2, CA 17A-H2 & H3 **DATE USED:** RO SRO **BOTH CFR 41.7** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 24

The plant was operating at power.

A transient caused the Recirculation Pump B trip to OFF.

Electricians are investigating the cause of the Recirculation Pump B trip.

The following parameters are indicated:

Reactor power 65 %

Core Flow 54 Mlbm/hr
Recirc A Flow 40,000 gpm
Recirc B Flow 0 gpm

Which one of the following describes the actions to be taken for present plant conditions?

- A. Immediately Scram the Reactor.
- B. Monitor core power for thermal hydraulic instability and scram the reactor if any is noted.
- C. Immediately reduce thermal power by only inserting control rods to exit the region.
- D. Immediately exit the region by reducing thermal power by inserting control rods, or raising core flow by opening Recirc FCV A.

QUESTION	RO 24	NRC RECORD	# WRI 224
ANSWER: D.	SYSTEM # B3	33 K/A 295001	AA2.01: 3.5/3.8
			2.4.1: 4.3/4.6
LP# GG-1-RO	-LP-B3300.00		2.4.11: 3.4/3.6
OBJ. 45, 4	7, 49 SRO TIER 1	GROUP 2 / RO TIER	1 GROUP 2
46,			
REFERENC	05-1-02-III-3 sect	NEW	CLASS
E :			
	Figure 1	<u>MODIFIED</u>	BANK
DIFF 3, CA	03-1-01-2 sect 2.26.1	NRC 3/98 q 26	
DATE USED:	March 1998	RO SRO <u>Boti</u>	<u>H</u> CFR 41.10/41.5/
REFERENCE I	MATERIAL	05-1-02-III-3 w/o	43.5
REQUIRED:		Immediate actions	

dãäZZ

QUESTION 25

The power was lost to bus 15AA.

The Division I Diesel Generator restored power.

All systems responded as normal, however upon re-sequencing loads on 15BA3 the LCC tripped and is NOT able to be restored.

The following are plant parameters:

Reactor power 70 %
Reactor level + 36 inches
Drywell Pressure 0.5 psig

Which one of the following identifies a system capable of being placed in operation?

- A. Drywell Chilled Water
- **B.** Plant Service Water
- C. Residual Heat Removal 'A'
- **D.** Fire Protection

QUESTION RO 25 NRC RECORD # WRI 225 ANSWER: A. SYSTEM # P72; K/A 295020 AA1.01: 3.6/3.6 P44; E12; P64 LP# GG-1-RO-LP-M5100.00 OBJ. 7, 14, 21, 22 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2

OBJ. 7, 14, 21, 22 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2

REFERENC 05-1-02-III-5 <u>NEW</u> CLASS
E:

05-1-02-V-9 MODIFIED BANK DIFF 3, CA M0035E, M1119A, M1072B

M0035E, M1119A, M1072B & E

DATE USED: RO SRO BOTH CFR 41.9

REFERENCE MATERIAL 04-1-01-R21-15 **REQUIRED:** Attachment I 15BA3, 15B31, 15P31 Load Lists

QUESTION 26

The plant is in mode 5 for RF11. Core Alterations in progress.

RHR 'A' is operating in Shutdown Cooling. HPCS and LPCS are the ECCS pumps available.

RHR 'B' is tagged out with a motor winding phase to phase short. RHR 'C' injection valve E12-F042C is disassembled for valve disc replacement.

The power is lost to bus 15AA. Reactor coolant temperature is 150 °F and rising.

Which one of the following identifies an allowable decay heat removal method?

- A. HPCS injection with at least two (2) Safety Relief Valves open
- B. Alternate Decay Heat Removal using both pumps.
- C. CRD makeup to the RPV with both pumps and RWCU draining the RPV to radwaste.
- D. HPCS injection with the Division II SPMU valves open after tags removed.

QUESTION RO 26 NRC RECORD # WRI 226 ANSWER: D. SYSTEM # B21 K/A 295021 AA1.04: 3.7/3.7 Decay Heat Removal

LP#

OBJ. SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 3

REFERENC 05-1-02-III-1 <u>NEW</u> CLASS

E:

Section 3.2.3e MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO <u>BOTH</u> CFR 41.5/43.5

REFERENCE MATERIAL None

QUESTION 27

The plant has experienced a LOCA (Drywell Pressure 2.8 psig) in the Drywell. The reactor is shutdown and systems functioned as normal. A transient on the 500 KV distribution system resulted in a complete loss of the offsite power grid (This included the 115 KV Port Gibson line.).

The diesel generators responded and are supplying power to the ESF buses.

No operator actions have been taken.

Which one of the following identifies the method of heat removal from the Drywell under the present plant conditions?

- A. The 'A' Drywell Cooler fans are circulating air but the coolers are without cooling water flow.
- B. The 'B' Drywell Cooler fans are circulating air but the coolers are without cooling water flow.
- C. Heat removal from the Drywell is from ambient losses without air circulation.
- D. Drywell Coolers and Drywell Chilled Water System 'B' are operating on SSW 'B'.

QUESTION NRC RECORD # WRI 227 RO 27 ANSWER: B. SYSTEM # R21; K/A 295012 AA1.02: 3.8/3.8 M51; P72; P41 AA1.01: 3.5/3.6 LP# GG-1-LP-RO-M5100.00 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 OBJ. 13, 14, 19, 21 04-1-01-R21-1 Table 1 REFERENC **NEW CLASS E**: 04-1-01-R21-16 Att I **MODIFIED** BANK DIFF 3, CA M-1101, E1120-04, E1225-02 **DATE USED:** RO SRO **BOTH CFR 41.9** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 28

The plant is in RF11. Spent fuel is being moved in the Spent Fuel Pool.

A spent fuel bundle is dropped on top of several other spent fuel bundles. Large gas bubbles are emanating from the spent fuel bundles. All of the 208 ft elevation radiation monitors are in alarm and Fuel Handling Area and Fuel Pool Sweep Ventilation have shutdown and Standby Gas Treatment has started.

The Control Room Radiation Monitors are reading 7 mr/hr.

Which one of the following describes the response of the Control Room Ventilation System?

- A. The Control Room Ventilation System will operate to maintain a negative pressure in the Control Room envelope and Standby Fresh Air Filter Trains will start to filter the Control Room Atmosphere.
- B. The Control Room Ventilation System will operate to maintain a positive pressure in the Control Room envelope and Standby Fresh Air Filter Trains will start to filter the Control Room Atmosphere.
- C. The Control Room Ventilation System will shift to the isolate mode and the Control Room Air Conditioning System and Standby Fresh Air Units will operate to maintain a habitable environment.
- D. The Control Room Ventilation System will shift to the isolate mode and the Control Building Purge System will purge the Control Room Atmosphere through the Standby Fresh Air Units to maintain a habitable environment.

QUESTION RO	28	NRC RECORI	O# WRI 228
ANSWER: C.	SYSTEM # Z51 ;	K/A 295038	EK3.03: 3.7/3.9
	D17		
LP# GG-1-LP-RO-Z	Z5100.00		
OBJ. 6, 7, 15	SRO TIER 1 GRO	OUP 2 / RO TIEI	R 1 GROUP 2
13			
REFERENC 04-S	-02-H13-P855	<u>NEW</u>	CLASS
E:			
1A-A	A5; 2A-A5	MODIFIED	BANK
DIFF 3, M 04-1	-02-H13-P601		
19A	-A10; 19A-A11		
Tech	1 Spec 3.3.7.1		
FSA	R 9.4.1.2		
DATE USED:		RO SRO BO	<i>TH</i> CFR 41.7/43.4
REFERENCE MAT	ERIAL	None	
REQUIRED:			

QUESTION 29

The plant is operating at rated conditions.

The following indications of Secondary Containment temperatures were just obtained by the Roving Nuclear Operator 'A':

Main Steam Tunnel	150 °F	RWCU Pump Room A150 °F	
RHR A Pump Room	170 °F	RWCU Pump Room B140 °F	
RHR A HX Room	130 °F	RCIC Pump Room	130 °F
RHR B Pump Room	150 °F		
RHR B HX Room	100 °F		

Which one of the following describes the systems that will receive an isolation signal?

- A. RHR A ONLY.
- B. RHR A & RCIC.
- C. RHR A & B.
- D. RHR A & B & RCIC.

QUESTION F	RO 29	NRC RECORI	O# WRI 229
ANSWER: B.	SYSTEM # E31;	K/A 295032	EA1.05: 3.7/3.9
	E12; E51		
LP# GG-1-LP-RO	D-E5100.00		
OBJ. 14			
LP# GG-1-LP-RO	D-M7101.00		
OBJ. 7, 1	7 SRO TIER 1 GR	OUP 2 / RO TIEI	R 1 GROUP 3
REFERENC 04	4-1-02-H13-P601	<u>NEW</u>	CLASS
E :			
20	0A-B1	MODIFIED	BANK
DIFF 2, M 05	5-1-02-III-5		
Is	solation Checklist		
DATE USED:		RO SRO <u>Bo</u>	<i>TH</i> CFR 41.4/41.9/
REFERENCE MA	ATERIAL	None	41.10/43.5
REQUIRED:			

QUESTION 30

The plant is in RF11.

The following are the indications of plant radiation levels:

Containment Vent	1.0 mr/hr	Control Building Vent	0.1 mr/hr
Fuel Handling Area Vent	3.2 mr/hr	Turbine Building Vent	4.0 mr/hr
Fuel Pool Sweep Vent	32 mr/hr	Radwaste Building Vent	0.2 mr/hr

Which one of the following describes the <u>Ventilation Systems</u> configuration? (ASSUME ALL CHANNELS OF THE SAME INSTRUMENTS ARE READING THE SAME.)

ANS.	CTMT	AUX BLDG	FHA	FPS	SBGT	TURB	RW	CR
Α.	RUN	ISOL	ISOL	RUN	STBY	RUN	RUN	ISOL
В.	ISOL	ISOL	ISOL	ISOL	RUN	RUN	RUN	RUN
С.	RUN	ISOL	RUN	ISOL	RUN	ISOL	ISOL	ISOL
D.	ISOL	RUN	RUN	RUN	STBY	ISOL	RUN	RUN

QUESTION RO 30 NRC RECORD # WRI 230 ANSWER: B. SYSTEM # D17; K/A 295033 EK3.03: 3.8/3.9

M41; T41; T42; T48;

U41; V41

LP# GG-1-LP-RO-D1721.00

OBJ. 13 SRO TIER 1 GROUP 2 / RO TIER 1 GROUP 2 REFERENC 04-1-02-H13-P601 NEW CLASS

E:

18A-D6; **19A-A8**; **A10**; **B9**; MODIFIED BANK

C10; F11

04-1-02-H13-P870 2A-A3; 8A-A3

DIFF 3, M 05-1-02-III-5

Isolation Checklist

DATE USED: RO SRO *BOTH* **CFR 41.11/41.12/**

REFERENCE MATERIAL None 43.4

QUESTION 31

The plant is operating at rated conditions.

Auxiliary Building pressure has become the same as outside air pressure.

Which one of the following describes a possible cause of this and the corrective action to be taken?

- A. More Fuel Handling Area Exhaust Fans operating than Fuel Handling Area Supply Fans, requiring securing of at least one Fuel Handling Area Exhaust Fan.
- B. More Fuel Pool Sweep Exhaust Fans operating than Fuel Pool Sweep Supply Fans, requiring securing of at least one Fuel Pool Sweep Exhaust Fans.
- C. Failure of controller T42-PDK-R600, closing T42-F021, Fuel Handling Area Pressure Control Valve, requiring manual control of T42-PDK-R600 to open T42-F021.
- D. Failure of controller T42-PDK-R600, opening T42-F021, Fuel Handling Area Pressure Control Valve, requiring manual control of T42-PDK-R600 to close T42-F021.

QUESTION	RO 31	NRC RECORD	# WRI 231
ANSWER: D.	SYSTEM # T42	K/A 295035	EK3.02: 3.3/3.5
LP#			
OBJ.	SRO TIER 1 GR	OUP 2 / RO TIER	1 GROUP 3
REFERENC	04-1-01-T42-1 sect 3.1	<u>NEW</u>	CLASS
E :			
	04-1-02-H13-P842 1A-E3	MODIFIED	BANK
DIFF 3, M	FSAR 9.4.2 & 7.7.1.9.3.1		
	M-1104A		
DATE USED:		RO SRO BOT	H CFR 41.7/41.13/
REFERENCE I	MATERIAL	None	43.4
REQUIRED:			

QUESTION 32

The plant is in mode 2 after a normal refueling outage.

The following parameters are indicated in the Main Control Room:

IRMs (range/reading)

A	В	С	D	E	F	G	H
D2/100	D2/20	D2/20	D2/20	D2/00	D2/15	D2/10	D2/26
R2/100	R3/30	R2/39	R3/ 39	R2/80	R3/ 15	R3/ 18	R3/ 36

SRMs (cps)

A	В	С	D	E	F
2.0×10^3	3.0×10^{2}	2.5×10^4	Bypassed	2.5×10^4	3.0×10^2

With present plant conditions, which one of the following is correct with regard to the status of the Reactor?

- A. No RPS actuation and no Control Rod Blocks
- B. Control Rod Block only.
- C. Half scram and Control Rod Block.
- D. Full scram and Control Rod Block.

RO 32 **QUESTION** NRC RECORD # WRI 232 ANSWER: C. SYSTEM # C51; K/A 215003 K3.01: 3.9/4.0 C71; C11-2 K3.03: 3.7/3.7 LP# GG-1-LP-RO-C5102.00 A1.03: 3.6/3.7 OBJ. A1.04: 3.4/3.6 LP# OP-LO-SYS-LP-C51-1-05 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 1 OBJ. REFERENC 04-1-02-H13-P680 **NEW CLASS E**: 7A-A9; B8; B9; B10 MODIFIED **BANK** DIFF 2, CA **DATE USED:** RO SRO **BOTH CFR 41.6** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 33

The plant is operating at rated conditions.

The following indications are present in the Main Control Room:

Reactor Power stable Reactor Level stable

Reactor Pressure stable

OTTECHTON

Annunciator HCU TROUBLE (P680-4A2-D4) is illuminated.

Pushbutton HCU FAULT is back lit amber.

The white light for group 3A is extinguished in section 5 of H13-P680.

When the HCU FAULT pushbutton is depressed HCU 28-05 red led blinks.

An operator reports a red led at 28-05 is illuminated.

Which one of the following is correct with regard to the status of the Reactor?

A. HCU 28-05 has water in the instrument block.

DO 33

- B. HCU 28-05 is the monitored HCU for RPS power that has been lost to half of the RPS solenoids for a group of control rods.
- C. HCU 28-05 has scrammed and is past the full inserted position and HCU accumulator pressure is less than 1600 psig.

NDC DECODD // MDI 444

D. HCU 28-05 is low on nitrogen pressure in its accumulator, but is above 1520 psig.

QUESTION	RO 33	NRC RECOR	D# WRI 233
ANSWER: B	. SYSTEM # C71;	K/A 212000	A2.19: 3.8/3.9
	C11-2		2.1.31: 4.2/3.9
LP# GG-1-LP	P-RO-C1102.02		2.4.48: 3.5/3.8
OBJ.	22		
LP# GG-1-LP	P-RO-C7100.00		
OBJ.	11, 18 SRO TIER 2 GRO	UP 1 / RO TIE	R 2 GROUP 1
REFERENC	04-1-02-H13-P680	<u>NEW</u>	CLASS
E :			
	4A2-D4	MODIFIED	BANK
DIFF 3, CA	04-1-01-C11-2 section 4.7.2f	•	
	E-1173-020		
DATE USED:		RO SRO <u>Bo</u>	<u>TH</u> CFR 41.6
REFERENCE	MATERIAL N	Vone	
REQUIRED:			

QUESTION 34

A plant startup is in progress. The Operator at the Controls has just withdrawn a gang of control rods to position 48.

The following indications have been received in the Main Control Room:

Reactor Power 8 % and lowering

Reactor Pressure stable Reactor Level stable

Annunciator CONT ROD DRIFT (P680-4A2-E4) is illuminated.

Pushbutton ROD DRIFT; is back lit red.

Status lights INSERT BLOCK; WITHDRAW BLOCK; INSERT INHIBIT; WITHDRAW

INHIBIT are illuminated.

Which one of the following is correct with regard to the status of the Reactor? (No other alarms or indicating lights have been received.)

- A. A control rod has scrammed individually.
- B. The Operator at the Controls has utilized the IN TIMER SKIP pushbutton to insert a control rod.
- C. An out of sequence control rod has drifted inward.
- D. The last withdrawn control rod when it reached full out (position 48) picked up the over-travel reed switch.

QUESTION ANSWER: C	SYSTEM # C11-2	NRC RECORD # WI K/A 201005 A2.13	
	P-RO-C1102.02		
OBJ. 6, 7,	11, 22 SRO TIER 2 GRO	OUP 1 / ROTIER 2 G	ROUP 1
10			
REFERENC	04-1-02-H13-P680	NEW	CLASS
E :			
	4A2-E4	MODIFIED	BANK
DIFF 3, CA	04-1-01-C11-2 section		
	4.7.2j; 4.9.2a&b 4.10.2a&l)	
DATE USED:		RO SRO <u>BOTH</u>	CFR 41.6
REFERENCE	MATERIAL	None	
REQUIRED:			

QUESTION 35

A plant startup is in progress.

The Operator at the Controls has just shifted the 'A' Recirculation Pump to fast speed. The 'B' Recirculation pump is running in slow speed with its flow control valve at 100% open.

The following indications have been received in the Main Control Room:

Reactor Power 34 % and stable.

Reactor level dropped to + 32 inches.

Annunciator RECIRC FCV A PARTIAL CLOSE/RFP TRIP (P680-3A-D1) is illuminated.

Which one of the following would be the expected response of the Recirculation System? (No other alarms or indicating lights have been received.)

- A. The 'A' Recirc Flow Control Valve will remain at present position and will require resetting via the RECIRC PUMP A CAV INTLK RESET pushbutton.
- B. The 'A' Recirc Flow Control Valve Hydraulic Power Unit will require resetting from the Control Room Back Panels and then the valve opened to 15 20 % valve position.
- C. The 'A' Recirc Flow Control Valve runback to 0 % valve position and 'B' Recirc Flow Control valve will runback to 15 20 % valve position and then both valves will be reset via the RECIRC PUMP A CAV INTLK RESET pushbutton.
- D. The 'A' Recirc Flow Control Valve will remain at present position and 'B' Recirc Flow Control Valve will runback to 15 20 % valve position and then both valves will be reset via the RECIRC PUMP A CAV INTLK RESET pushbutton

QUESTION RO 35	NRC RECORD # WF	RI 235
ANSWER: A. SYSTEM # B33	K/A 202002 A3.01	: 3.6/3.4
LP# GG-1-LP-RO-B3300.00		
OBJ. 10, 18, 20, 33, 51 SRO TIER 2	GROUP 1 / ROTIER 2	GROUP 1
REFERENC 04-1-02-H13-P680	<u>NEW</u>	CLASS
E :		
3A-D1	MODIFIED	BANK
DIFF 3, M 04-1-01-B33-1 section 6.	6	
DATE USED:	RO SRO <u>BOTH</u>	CFR 41.6
REFERENCE MATERIAL	None	
REQUIRED:		

QUESTION 36

REQUIRED:

A DBA LOCA has occurred.

ECCS systems are injecting into the reactor.

Suppression Pool Level is at 14.8 feet and lowering. Suppression Pool Makeup has failed to actuate.

Which one of the following would be the expected response of the Low Pressure Coolant Injection (RHR)?

- A. The RHR pumps will ALL trip when Suppression Pool Level drops to 14.5 feet which is the vortexing limit.
- B. The RHR pumps will sequentially trip starting with the 'C' RHR pump on low discharge flow as a result of cavitation.
- C. The RHR pumps will ALL close their Suppression Pool Suction valves and trip the pumps due to NO suction flowpath.
- D. The RHR pumps will continue to operate regardless of Suppression Pool Level until the pumps trip on motor overload.

QUESTION RO 36 NRC RECORD # WRI 236 ANSWER: D. SYSTEM # E12 K/A 203000 K1.02: 3.9/3.9 LP# K6.06: 3.8/3.9 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 OBJ. 04-1-01-E12-1 REFERENC NEW **CLASS E**: **Section 3.2.6 MODIFIED BANK** DIFF 3, M E-1181-043,44,45,67,68 **DATE USED:** RO SRO **BOTH CFR 41.7** REFERENCE MATERIAL None

QUESTION 37

A LOCA has occurred.

ECCS systems injected into the reactor.

Reactor level was restored to normal level and ECCS pumps were secured.

Drywell pressure is 3.5 psig.

REQUIRED:

Subsequently, Reactor level dropped to the top of active fuel.

Which one of the following describes the operation of the Low Pressure Core Spray (LPCS) pump?

- A. The LPCS pump will automatically restart and inject into the core to raise level.
- B. The LPCS pump will automatically restart on minimum flow, however the LPCS injection valve will require manual opening from the control room.
- C. The LPCS system will require manual restarting of the pump and realignment of the LPCS injection valve.
- D. The LPCS system will require re-initiation from the Division I Manual Initiation pushbutton.

QUESTION RO 37 NRC RECORD # WRI 237 ANSWER: C. SYSTEM # E21 K/A 209001 A4.01: 3.8/3.6 A4.03: 3.7/3.6 LP# GG-1-LP-RO-E2100.01 A4.05: 3.8/3.6 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 OBJ. 14 **REFERENC** 04-1-01-E21-1 **CLASS NEW E**: Section 3.3 **MODIFIED BANK** DIFF 2, CA E-1182-006, 026 CFR 41.7/41.8 **DATE USED:** RO SRO **BOTH** REFERENCE MATERIAL None

QUESTION 38

A LOCA has occurred.

Drywell pressure is 1.84 psig.

Reactor water level is -11.6" and stable.

High Pressure Core Spray Pump has been overridden to STOP.

High Pressure Core Spray initiation logic was reset.

Offsite power was lost and the ESF buses re-energized by their respective Diesel Generators.

Which one of the following describes the condition of the HPCS?

- A. HPCS will immediately re-initiate on High Drywell Pressure signal.
- B. HPCS will align the system for injection, but require a manual pump start.
- C. HPCS will require manual operation to inject to the vessel in any condition.
- D. HPCS will initiate on a Low Reactor Water Level or Manual initiation only.

QUESTION	RO 38	NRC RECORD # WI	RI 238
ANSWER: D	SYSTEM # E22	K/A 209002 K2.03	3: 2.8/2.9
LP# GG-1-LI	P-RO-E2201.00	K2.01	: 3.3/3.2
OBJ.	6, 13, 16 SRO TIER 2	GROUP 1 / ROTIER 2	GROUP 1
REFERENC	04-1-01-E22-1	NEW	CLASS
E :			
	Section 3.7, 3.10 Elect lu	<u>MODIFIED</u>	BANK
DIFF 3, M	E-1183-023; E-1188-019	NRC 3/98 WRI 19	
DATE USED:	March 1998	RO SRO <u>BOTH</u>	CFR 41.7/41.8
REFERENCE	MATERIAL	None	
REQUIRED:			

QUESTION 39

The plant was operating at 100 % power.

A Standby Liquid Control (SLC) surveillance was being lined up to the SLC Test Tank. (Boron Tank isolated. The operator evacuated Containment with the SLC Test Tank outlet valve C41-F031 50 % open.)

A transient occurred causing a reactor scram. Multiple control rods failed to fully insert resulting in Reactor power of 45 %.

Standby Liquid Control injection was ordered.

Which one of the following describes the response of SLC for initiation?

- A. Both trains of SLC will NOT start.
- B. Both trains of SLC will align the SLC Boron Tank and inject to the reactor.
- C. Both trains of SLC will inject the contents of the SLC Test Tank to the reactor.
- D. Both trains of SLC will align to the SLC Boron Tank and start drawing contents from both the Boron Tank and Test Tank.

QUESTION	RO 39	NRC RECORD # W	/RI 239
ANSWER: A	SYSTEM # C41	K/A 211000 K4.0	2: 3.0/3.2
		A2.0	06: 3.1/3.3
LP# GG-1-LI	P-RO-C4100.00	A2.0	7: 2.9/3.2
OBJ.	8, 19, 21 SRO TIER 2	GROUP 1 / RO TIER	2 GROUP 1
REFERENC	04-1-01-C41-1 section 3.5	\underline{NEW}	CLASS
E :			
	06-OP-1C41-Q-0001	MODIFIED	BANK
DIFF 3, M	Section 2.2		
DATE USED:		RO SRO <u>Both</u>	CFR 41.6/41.7
REFERENCE	MATERIAL	None	
REQUIRED:			

QUESTION 40

The plant is in mode 2.

The following parameters are indicated in the Main Control Room:

IRMs are all high on range 2.

SRMs (cps)

A	В	C	D	E	F
			INOP		
2.0×10^3	3.0×10^{2}	2.5×10^4	Bypassed	2.5×10^4	3.0×10^5

Reactor period has dropped to 400 seconds.

The Reactor Engineer has requested additional control rods be withdrawn to raising power toward the point of adding heat.

With present plant conditions, which one of the following is correct with regard to the status of the Reactor?

- A. Control rods may be withdrawn in single notch motion using individual control rods.
- B. Control rod motion is allowed in gang as limited by the Rod Pattern Controller.
- C. Control rod motion is allowed after the Division II SRM 'F' has been bypassed.
- D. Control rods have a rod block signal from RCIS which is unable to be bypassed at this time.

QUESTION RO 40 NRC RECORD # WRI 240 ANSWER: D. **SYSTEM # C51-1**; K/A 215004 A2.02: 3.4/3.7 A2.03: 3.0/3.3 C11-2 LP# OP-LO-SYS-LP-C51-1-00 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 OBJ. 7, 9 REFERENC 04-1-01-C51-1 section 3.8 <u>NEW</u> **CLASS** 04-1-02-H13-P680-MODIFIED **BANK** DIFF 3, M 7A-B10 RO SRO BOTH **DATE USED: CFR 41.6** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 41

Which one of the following describes the withdrawal sequence of a single control rod? (Hydraulic Control Unit Schematic is attached,)

- A. One stabilizing valve closes as F423 opens to divert flow from the Drive Water Header to the CRD while F421 opens to exhaust water to the Exhaust Water header, then F423 and F421 close and F422 and F420 open to withdraw the control rod. When at its desired position F422 closes and the stabilizing valve opens then F420 closes once the control rod has settled into position.
- B. Two stabilizing valves close as F423 opens to divert flow from the Drive Water Header to the CRD while F421 opens to exhaust water to the Exhaust Water header, then one stabilizing valve opens and F423 and F421 close and F422 and F420 open to withdraw the control rod. When at its desired position F422 closes and the stabilizing valve opens then F420 closes once the control rod has settled into position.
- C. Two stabilizing valves close as F423 opens to divert flow from the Drive Water Header to the CRD while F421 opens to exhaust water to the Exhaust Water header. When at its desired position F423 and F421 close and the stabilizing valves open then F420opens and then closes once the control rod has settled into position.
- D. One stabilizing valve closes as F422 opens to divert flow from the Drive Water Header while F420 opens to exhaust water to the Exhaust Water header. When at its desired position F422 closes and the stabilizing valve opens then F420 closes once the control rod has settled into position.

QUESTION RO 41 NRC RECORD # WRI 241 **SYSTEM # C11-1** ANSWER: B. K/A 201001 A1.03: 2.9/2.8 LP# GG-1-LP-RO-C111A.00 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 1 OBJ. 14, 18 FSAR 4.6.1.1.2.5.2 REFERENC NEW **CLASS** E: **MODIFIED** 4.6.1.1.2.4.3 **BANK** DIFF 3, M M-1081B **DATE USED:** RO SRO **BOTH CFR 41.6**

REFERENCE MATERIAL HCU Schematic REQUIRED:

QUESTION 42

The plant is in mode 2 at 12 % of rated power.

APRM G is bypassed due to failed power supply.

The following is the present status of the APRMs versus LPRM inputs and indicated power:

APRM	A	В	С	D	E	F	G	Н
LPRM LVL D	5	5	5	2	3	2	4	5
LPRM LVL C	5	4	3	5	4	4	3	4
LPRM LVL B	3	2	2	4	4	3	3	3
LPRM LVL A	2	4	4	4	4	4	5	3
INDICATED POWER	12%	13%	14%	10%	10%	11%	0% byp	14%

LPRM 42-43B has failed downscale and must be bypassed to allow troubleshooting.

With present conditions would this action be allowed? Attached is the LPRM vs APRM assignments table.

- A. Yes, conditions are satisfactory.
- B. Yes, however the associated APRM would have to be left bypassed.
- C. No, this action would result in a half scram and LCO requirements NOT to be met.
- D. No, this action would result in a full reactor scram.

QUESTION	RO 42	NRC RECORD # WI	RI 242
ANSWER: D.	SYSTEM # C51-2 ;	K/A 215005 A2.04	1: 3.8/3.9; A1.02:
	C71	3.9/4.	0
		A1.03	3: 3.6/3.6; A1.04:
		4.1/4.	1
LP# GG-1-LP-	-RO-C5104.00	A2.03	3: 3.6/3.8
OBJ. 4, 9,	10, 11 SRO TIER 2	GROUP 1 / ROTIER 2	2 GROUP 1
REFERENC	17-S-02-40 sect 6.3	NEW	CLASS
E :			
	Att. V	<u>MODIFIED</u>	BANK
DIFF 3, CA	Tech Spec Bases B3.3.1.1	NRC 3/98 – WRI15	
	04-1-01-C51-1 sect 3.3		
DATE USED:	March 1998	RO SRO <u>Both</u>	CFR 41.6
REFERENCE	MATERIAL	17-S-02-40 Att. V	
REQUIRED:			

QUESTION 43

The plant was operating at full power when a failure of the Reactor Feedwater System caused a reactor scram due to lowering reactor water level.

During the transient, workers in Containment caused the reference leg of condensing pot D004B to rupture.

Which one of the following describes the response of the ECCS Systems as reactor water level drops?

Answer:	Division I	Division II	Division III	RCIC
Α.	Will initiate	Manual initiation	Will initiate	Will initiate
В.	Will initiate	Will initiate	Will initiate	Will initiate
C.	Manual initiation	Manual initiation	Will initiate	Manual initiation
D.	Will initiate	Manual initiation	Manual initiation	Will initiate

QUESTION RO 43 NRC RECORD # WRI 243 ANSWER: A. SYSTEM # E12; K/A 216000 K4.05: 3.9/4.1

E21; E22; E51

LP# GG-1-LP-RO-B2101.00

OBJ. 5, 8, 14, 15

LP# GG-1-LP-RO-E2201.00

OBJ. 9, 16

LP# GG-1-LP-RO-E2100.00

OBJ. 9,16 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1

REFERENC E-1181-68, 82; M-1077B <u>NEW</u> CLASS

E:

E-1182-26, 29 MODIFIED BANK

DIFF 3, M E-1183-23, 27

E-1185-34, 42, 44

DATE USED: RO SRO <u>BOTH</u> CFR 41.7

REFERENCE MATERIAL None

REQUIRED:

QUESTION 44

The plant is operating at 45% power.

An incident at the Front Standard of the Main Turbine resulted in a local manual trip of the Main Turbine.

Which one of the following describes the response of the plant?

- A. The reactor will scram on Turbine Valve position and the Turbine Bypass Valves will open.
- B. The reactor will scram on high reactor flux and the Turbine Bypass Valves will open.
- C. The reactor will scram on Turbine Valve position, the Turbine Bypass Valves will open, and 9 Safety Relief Valves will open.
- D. The reactor will scram on high reactor flux, the Turbine Bypass Valves will open, and Safety Relief Valves will open.

QUESTION RO) 44	NRC RECORI)# WRI 244
ANSWER: A.	SYSTEM # N32;	K/A 241000	K6.11: 3.4/3.4
	C71		A1.01: 3.9/3.8
			A1.02: 4.1/3.9
LP# GG-1-LP-RO-	C7100.00		A1.07: 3.8/3.7
OBJ. 9, 13,	SRO TIER 2	GROUP 1 / ROT	TIER 2 GROUP 1
REFERENC FSA	AR 15.2.3.2.2.1	<u>NEW</u>	CLASS
E :			
,	Table 15.2-4	MODIFIED	BANK
DIFF 3, CA Tec	ch Spec 3.1.1 and bases		
DATE USED:		RO SRO <u>Bo</u>	<u>TH</u> CFR 41.5
REFERENCE MAT	ΓERIAL	None	
REQUIRED:			

QUESTION 45

Maintenance in the H13-P628 panel resulted in a short circuit causing a loss of DC power to the Division I SRVs.

Which one of the following describes the functionality of the Safety Relief Valves?

- A. The ADS SRVs are disabled for the Division I system, but will actuate in Relief and Low –Low Set mode from both divisions.
- B. The ADS SRVs are disabled for automatic operation from both divisions, but will operate manually and actuate in the Relief and Low-Low Set mode.
- C. The SRVs will actuate in ADS, Relief and Low-Low Set modes only from the Division II system, Division I is completely disabled.
- D. The SRVs will actuate in ADS, Relief and Low-Low Set modes from the Division II system, and Low-Low Set valves can be manually actuated from the Division I Remote Shutdown Panel.

QUESTION RO 45 NRC RECORD # WRI 245 ANSWER: D. SYSTEM # B21; K/A 239002 K2.01: 2.8/3.2 E22-2 LP# GG-1-LP-RO-E2202.00 7, 18, 21 OBJ. SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 REFERENC 04-1-01-B21-1 Att. III <u>NEW</u> **CLASS** E: **MODIFIED** E-1161-11 & 14 & 04 BANK DIFF 3, M E-1023 **DATE USED:** RO SRO BOTH **CFR 41.3** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 46

(Question deleted as a result of licensee postexamination review comments)

A LOCA has occurred twenty minutes ago.

The following Containment Parameters exist:

Reactor Level - 30 inches rising

Suppression Pool Temperature105°FSuppression Pool Level17.5 feetContainment Temperature180°FContainment Pressure2.8 psigContainment Hydrogen Concentration0.8 %Drywell Hydrogen Concentration0.4 %

Which one of the following describes the allowances for the use of Containment Spray and its expected effects, if used?

- A. Containment Spray is NOT allowed because initiation of spray would result in an extreme negative pressure in Containment.
- B. Containment Spray may be initiated. Suppression Pool Temperature, Level and Containment Temperature are expected to drop due to heat removed from Containment.
- C. Containment Spray may be initiated. Suppression Pool and Containment Temperatures are expected to drop and Suppression Pool Level should rise due to heat absorbed in the Suppression Pool.
- D. Containment Spray may be initiated. Containment Temperature should drop and Suppression Pool Temperature and Level should rise due to heat absorbed in the Suppression Pool.

QUESTION	RO 46	NRC RECORD	# WRI 246
ANSWER: B.	SYSTEM # E12;	K/A 226001	A1.02: 3.4/3.5
	M41		A1.04: 3.3/3.6
LP# GG-1-LP	-RO-EP03.00		A1.08: 3.1/3.4
OBJ.	2, 6 SRO TIER 2	GROUP 1 / ROT	TER 2 GROUP 2
REFERENC	05-1-01-EP-3 steps 6 & 32	<u>NEW</u>	CLASS
E:			
	PSTG App B third PC	MODIFIED	BANK
DIFF 3, CA	override		
DATE USED:		RO SRO <u>Bot</u>	<u>CFR 41.9</u>
REFERENCE	MATERIAL	05-1-01-EP-3	

REQUIRED:

QUESTION 47

REQUIRED:

RCIC was operating following an initiation when a RCIC turbine trip was received.

The Control Room Operator attempts a RCIC turbine reset by closing the RCIC TURB TRIP/THROT VLV actuator (motor) then placing the handswitch to OPEN.

The following are the indications of RCIC:

RCIC TURB TRIP/THROT SUPV	green light on	red light off
RCIC TURB TRIP/THROT VLV	green light on	red light off
RCIC TURB GOV VLV	green light on	red light on

Which one of the following describes the operation of RCIC?

- A. RCIC should be operating at a speed based on governor demand.
- B. RCIC is reset awaiting opening of the E51-F045, RCIC Steam Supply to RCIC Turbine.
- C. RCIC is tripped requiring local mechanical linkage to be reset.
- D. RCIC is tripped requiring the RCIC Division I and II Isolation Reset pushbuttons to be depressed.

QUESTION	RO 47	NRC RECORD # WR	RI 247
ANSWER: (C. SYSTEM # E51	K/A 217000 K5.06	: 2.7/2.7
		A2.02	: 3.8/3.7
LP# GG-1-L	P-RO-E5100.00	A4.02	: 3.9/3.9
OBJ. 13,	15, 21 SRO TIER 2	GROUP 1 / RO TIER 2	GROUP 1
14,			
REFERENC	041-01-E51-1	\underline{NEW}	CLASS
E :			
	Section 3.6 & 4.1.2c	MODIFIED	BANK
DIFF 2, M			
DATE USED:	:	RO SRO <u>BOTH</u>	CFR 41.7/41.10
REFERENCE	E MATERIAL	None	

QUESTION 48

A LOCA has occurred. High Pressure Core Spray is inoperable.

ADS Inhibit Switches are in INHIBIT.

Drywell pressure is 1.05 psig.

Reactor pressure is 890 psig and falling.

Reactor water level is - 160 inches on Fuel Zone indication.

RCIC and RFPTs are operating and injecting into the Reactor.

Which one of the following describes the operation of the Automatic Depressurization System (ADS) valves?

- A. ADS valves can ONLY be opened using their handswitches.
- B. ADS will automatically initiate after the ADS 105 second timer has timed out.
- C. ADS can be manually initiated using the ADS Manual Initiation pushbuttons.
- D. ADS will automatically initiate after both the 9.2 minute and 105 second timers have timed out.

QUESTION	RO 48		NRC RECOR	D# WRI 248
ANSWER: A	A. SY	STEM # E22-2	K/A 218000	K5.01: 3.8/3.8
				K4.02: 3.8/4.0
LP# GG-1-L	P-RO-E2202.	00		K4.03: 3.8/4.0
OBJ.	10, 21	SRO TIER 2	GROUP 1 / RO	TIER 2 GROUP 1
REFERENC	041-02-H	I13-P601-18A	<u>NEW</u>	CLASS
E :				
	A1, A2, B2	2, C2, E2, H2	MODIFIED	BANK
DIFF 2, CA	E-1161-00	5		
DATE USED:	•		RO SRO <u>Bo</u>	<u>TH</u> CFR 41.7/41.8
REFERENCE	E MATERIA	L	None	
REQUIRED:				

QUESTION 49

The Electrical line up is normal.

A steam leak in the Drywell caused Drywell pressure to rise to 1.23 psig.

A switching error causes 500 KV voltage to decrease.

The voltage to ALL ESF busses drop to 3000 volts.

The voltage transient duration is 7 seconds and then voltage returns to normal.

Which one of the following statements is the condition of the ESF busses after this transient?

- A. 15AA is being supplied from ESF 11; D/G 11 NOT operating. 16AB is being supplied from ESF 21; D/G 12 NOT operating. 17AC is being supplied from ESF 21; D/G 13 NOT operating.
- B. 15AA is being supplied from D/G 11.
 16AB is being supplied from D/G 12.
 17AC is being supplied from D/G 13.

REQUIRED:

- C. 15AA is being supplied from ESF 11; D/G 11 NOT operating. 16AB is being supplied from ESF 21; D/G 12 NOT operating. 17AC is being supplied from D/G 13.
- D. 15AA is being supplied from D/G 11.
 16AB is being supplied from D/G 12.
 17AC is being supplied from ESF 21; D/G 13 operating unloaded.

RO 49 NRC RECORD # WRI 249 **QUESTION** ANSWER: C. K/A 264000 **SYSTEM # R21-1**; A3.01: 3.0/3.1 P75; P81 LP# GG-1-LP-RO-R2100.00 OBJ. 11, 20, 22, 28 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 12. REFERENC 04--1-01-P81-1 sect 3.22.1 <u>NEW</u> **CLASS** E: 04-1-01-R21-1 sect 5.1.1 **MODIFIED** BANK DIFF 4, CA DATE USED: RO SRO BOTH **CFR 41.8** REFERENCE MATERIAL None

QUESTION 50

The plant was operating at 60 % power when a transient on the power grid caused the Main Generator to trip.

Which one of the following describes the response of the Recirculation System?

- A. The Recirculation Pumps will downshift to slow speed by opening CB-5, and starting the LFMG, the Recirc Flow Control Valves will close to minimum valve position.
- B. The Recirculation Pumps will downshift to slow speed by opening CB-3 and CB-4, and starting the LFMG, the Recirc Flow Control Valves will remain at present positions.
- C. The Recirculation Pumps will trip to OFF by opening CB-3 and CB-4, placing the Reactor on natural circulation because the LFMG is unable to start with CB-5 closed.
- D. The Recirculation Pumps will trip to OFF by opening CB-5 and CB-1 and 2 cannot close because the Recirc Flow Control Valves are greater than minimum valve position.

QUESTION	QUESTION RO 50		# WRI 250
ANSWER:	SYSTEM#	K/A I	X5.05 : 3.0/3.1
В.	В33	20200	
		1	
LP# GG-1-L	P-RO-		
B3300.00			
OBJ	24, SRO TIER 2	GROUP 2 / RO TII	ER 2 GROUP 2
•	25,		
16,	51		
17			
REFE	041-02-H13-P680	<u>NEW</u>	CLASS
REN			
CE:			
	3A-D4; D10	MODIFIED	BANK
DIFF	04-1-01-B33-1 sect		
3, CA	4.3.2		
DATE		RO SRO	CFR
USED		<u>BOTH</u>	41.5/41.6/
:			
REFERENCI	E MATERIAL	None	43.6
REQUIRED:			

QUESTION 51

An ATWS has occurred.

Standby Liquid Control Pump 'A' is tagged out.

The Control Room Operator Starts Standby Liquid Control Pump 'B'.

Which one of the following describes the response of the Reactor Water Cleanup System?

- A. RWCU will isolate the Filter Demineralizers and open G33-F044, RWCU F/D Byp to continue circulation of reactor water for level control and sampling purposes.
- B. RWCU will isolate G33-F004, RWCU Pmp Suct Isol causing both RWCU pumps to trip and the Filter Demineralizers to lock in hold.
- C. RWCU will isolate G33-F001, RWCU Pmp Suct Isol and G33-F251, RWCU Sply to RWCU Hxs causing both RWCU pumps to trip and the Filter Demineralizers to lock in hold.
- D. RWCU will isolate G33-F004 and G33-F001, RWCU Pmp Suct Isol and G33-F251, RWCU Sply to RWCU Hxs causing both RWCU pumps to trip and the Filter Demineralizers to lock in hold.

QUESTION	RO 51	NRC RECORD # WRI 251	
ANSWER:	SYSTEM #	K/A K6	.07: 3.3/3.5
C.	G33; C41	20400	
		0	
LP# GG-1-L	P-RO-		
G3336.01			
OBJ	10, SRO TIER 2	GROUP 2 / ROTIER	2 GROUP 2
. 8,	16,		
9,	21		
REFE	041-01-C41-1	<u>NEW</u>	CLASS
REN			
CE:			
	Sect 5.3.2b4	MODIFIED	BANK
DIFF			
2, M			
DATE		RO SRO	CFR 41.6
USED		ВОТН	
:			
REFERENCI	E MATERIAL	None	
REQUIRED:			
- ·			

QUESTION 52

The plant is in mode 4 with RHR 'A' in Shutdown Cooling.

A leak in the Drywell causes Reactor water level to begin to lower. The Control Room Operator begins to lineup RHR 'A' for LPCI injection. As E12-F006A begins to stroke closed power is lost to the valve. The operator closes E12-F008 and F009 to isolate the Reactor.

Which one of the following describes the ability to inject with RHR 'A' in LPCI mode?

- A. RHR 'A' is unable to be aligned to inject to the Reactor through E12-F053A, SDC 'A' Rtn to Feedwater.
- B. RHR 'A' can be aligned from the Control Room with a suction from the Suppression Pool and inject to the Reactor through E12-F042A, LPCI 'A' Injection Valve.
- C. RHR 'A' can be aligned for LPCI injection by depressing the Division I LPCS\LPCI 'A' Manual Initiation pushbutton.
- D. RHR 'A' is unable to be aligned because E12-F004A, RHR Pmp 'A' Suct fm Supp Pool will NOT open.

QUESTION	RO 52	NRC RECOR	RD # WRI 252
ANSWER:	SYSTEM #	K/A	K2.02: 3.2.5/2.7
D.	E12	20500	A2.10: 2.9/2.9
		0	A3.01: 3.2/3.1
LP#			K6.01: 3.3/3.4
OBJ	SRO TIER 2	GROUP 2 / RO	TIER 2 GROUP 2
· DEFE	T 1101 01 0 04	ALEUN	OT A GG
REFE	E-1181-01 & 04	<u>NEW</u>	CLASS
REN			
CE:			
	04-1-01-E12-1 sect	MODIFIED	BANK
	3.6.2		
DIFF			
3, CA			
DATE		RO SRO	CFR 41.7
USED		BOTH	
:			
REFERENCE	MATERIAL	None	
REQUIRED:			

QUESTION 53

The plant is operating at rated conditions.

Which one of the following conditions will result in an automatic Main Generator Trip?

- A. Generator Primary Water Tank Level 83 %.
- B. Generator Stator Primary Water Flow 480 gpm.
- C. Generator Hydrogen Gas Pressure 54 psig.
- D. Generator Hydrogen Gas Purity 89 %.

REFERENCE MATERIAL

REQUIRED:

QUESTION	RO 53	NRC RECORD# W	/RI 253
ANSWER:	SYSTEM#	K/A K6.0)5: 2.9/2.9
В.	N41; N43;	24500 K6.0)4: 2.6/2.7
	N44	0	
LP# GG-1-L	P-RO-		
N4300.00			
OBJ	7		
•			
LP# GG-1-L	P-RO-		
N4400.00			
OBJ	16 SRO TIE	ER 2 GROUP 2 / ROTIER	2 GROUP 2
•			
REFE	04-1-02-H22-P148-	\underline{NEW}	CLASS
REN	2A		
CE:			
	B3; B4; C6; C7	MODIFIED	BANK
DIFF	04-1-02-H13-P680		
3, M	9A-A11; B14		
ŕ	CR 1998-1076		
DATE		RO SRO	CFR 41.4
USED		<u>BOTH</u>	
•			

None

QUESTION 54

DC Control Power is lost to Bus 15AA (4160 volt).

Which one of the following describes the operation of circuit breakers supplying loads from 15AA?

- A. The circuit breakers can be closed from the Main Control Room but opened only at the local cubicle.
- B. The circuit breakers can only be manually closed and opened at the local cubicle.
 - C. The circuit breakers can only be closed locally however, all circuit breaker trips are available local and remote.
 - D. The circuit breakers can be closed and opened from the Main Control Room however, all automatic breaker closures and trips are disabled.

QUESTION RO 54 NRC RECORD # WRI 254 ANSWER: B. SYSTEM # L11; K/A 263000 K3.02: 3.5/3.8

R21

LP# GG-1-LP-RO-L1100.00

OBJ. 4, 10, 13

LP# GG-1-LP-RO-R2700.00

OBJ. 14 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 2

REFERENC E-0111-01 <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 2, M

DATE USED: RO SRO BOTH CFR 41.4

REFERENCE MATERIAL None

REQUIRED:

QUESTION 55

The plant is operating at 100% power.

Containment Recirc Filter Train 'B' is being operating.

The Auxiliary Building Operator reports smoke coming from the 'B' Containment Recirc Filter Train and the filter train case is glowing red.

Which one of the following describes the method to combat a fire in the Containment Recirc Filter Train?

- A. The Fire Protection System will initiate the automatic deluge system and fill the filter train with water.
- B. The Fire Protection System at the filter train must be manually valved into the deluge system, then the Deluge Valve will automatically open admitting water to the filter train.
- C. The Fire Protection System Deluge Valve is manually initiated using the local pull station to admit water to the filter train.
- D. The Fire Protection System at the filter train must be manually valved into the deluge system, then the Deluge Valve opened using the local pull station to admit water to the filter train.

QUESTION	RO 55	NRC RECORD# W	RI 255
ANSWER: D.	SYSTEM # P64 ;	K/A 286000 A3.0	1: 3.2/3.3
	M41	2.1.3	0: 3.9/3.4
		2.4.2	5: 2.9/3.4
LP#		2.4.2	7: 3.0/3.5
OBJ.	SRO TIER 2	GROUP 2 / RO TIER	2 GROUP 2
REFERENC	E-0231-34	\underline{NEW}	CLASS
E :			
	M-0035B	MODIFIED	BANK
DIFF 2, M	04-S-01-P64-1 Att I		
	04-1-02-H13-P842-1A-B9		
DATE USED:		RO SRO <u>BOTH</u>	CFR 41.4
REFERENCE I	MATERIAL	None	
REQUIRED:			

QUESTION 56

REQUIRED:

The plant is operating at 100% power.

Hydrogen Water Chemistry is in service.

Personnel in the plant inadvertantly cause the HWC SHUTDOWN pushbutton on H13-P845 to become depressed and remain depressed.

Which one of the following describes the affects of this action on the plant?

Hydrogen Water Chemistry will under go a(n):

- A. normal shutdown allowing for the, excessive amounts of residual Hydrogen to be purged from the plant systems through Offgas.
- B. immediate Hydrogen Trip with a normal Oxygen shutdown allowing for the excessive amounts of Hydrogen to be purged from the plant systems through Offgas.
- C. immediate Oxygen Trip with a normal Hydrogen shutdown preventing the buildup of Oxygen in the Reactor which promotes oxidation of Reactor components.
- D. Emergency Trip of the system, allowing excessive amounts of Hydrogen to buildup in Offgas creating a fire hazard.

QUESTION RO 56 NRC RECORD # WRI 256 ANSWER: D. SYSTEM # P73 K/A 271000 K4.04: 3.3/3.6 A2.07: 2.7/3.3 A1.14: 2.7/3.0 LP# GG-1-LP-RO-P7300.01 K6.06: 2.5/2.5 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 2 OBJ. 13, 16, 17 REFERENC 04-1-01-P73-1 sect 3.9 NEW**CLASS** E: MODIFIED **BANK** DIFF 2, M **DATE USED:** RO SRO BOTH CFR 41.7/41.13 REFERENCE MATERIAL None

QUESTION 57

The plant is operating at 100 % power in a preferred alignment on the electrical buses.

Division II Diesel Generator is in Maintenance for repairs.

ESF Transformer 21 trips due to a sudden pressure fault on the transformer.

Which one of the following describes the method of power restoration to Bus 16AB?

- A. The LSS panel will automatically energize the bus from ESF Transformer 11 since the Diesel Generator is in Maintenance and unavailable.
- B. The breaker control switch for either ESF Transformer 11 or 12 can be taken to close to reenergize the bus.
- C. The bus must be manually paralleled to ESF 11 or 12 by taking the Sync Switch for the Transformer Breaker to ON, then the breaker may be closed from the Control Room.
- D. The Bus Lockout for 16AB must be reset, then the Sync Switch for either ESF Transformer 11 or 12 is taken to ON, then the LSS panel will automatically energize the bus from the selected Transformer.

QUESTION	RO 57		NRC RE	CORD# W	RI 257
ANSWER: E	3. SY	YSTEM # R21	K/A 2620	001 A2.0	7: 3.0/3.2
				2.1.3	30: 3.9/3.4
LP# GG-1-LI	P-RO-R2100	0.00		2.1.3	31: 4.2/3.9
OBJ.	7, 8, 10	SRO TIER 2	GROUP 1 /	RO TIER	2 GROUP 2
REFERENC	04-1-01-F	R21-16 sect 5.2.2	NEW		CLASS
E :					
	E-1109-0	5	MODIFIE	ED .	BANK
DIFF 3, M			LOT Re-	exam C4	Question 27
DATE USED:	May 1999)	RO SRO	BOTH	CFR 41.4
REFERENCE	E MATERIA	L	None		
REQUIRED:					

QUESTION 58

Drywell pressure has risen to 3.6 psig as a result of a LOCA.

Which one of the following identifies the significance of this pressure?

- A. The Drywell to Containment Suppression Pool vents have cleared relieving pressure to the Containment.
- B. The Safety Relief Valve Tailpipe check valves are unable to open due to excessive disc differential pressure.
- C. The internal pressure on the Drywell Airlock door is such that the door is unable to be opened.
- D. The differential pressure is above the limit for opening the Post-LOCA Vacuum Relief Valves.

QUESTION RO 58 NRC RECORD # WRI 258 ANSWER: A.&D. SYSTEM # M41 K/A 295010 AK1.02: 2.8/3.1 LP# GG-1-LP-RO-M4101.00

OBJ. 6 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1
REFERENC FSAR Table 6.2-1 NEW CLASS

E:

MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO <u>BOTH</u> CFR 41.4/41.9

REFERENCE MATERIAL None

REQUIRED:

There are two correct answers. Accept answers "A" and "D" as correct in accordance with licensee postexamination comments

QUESTION 59

Which one of the following identifies the significance of exceeding the maximum Drywell pressure?

- A. The Drywell Purge Compressor discharge valve differential pressure limit would be exceeded preventing the operation of the Drywell Purge Compressors and the combustible gas control function.
- B. The Drywell structure could be breached resulting in the loss of the pressure suppression function resulting in the direct pressurization of Containment in a DBA that would result in a failure of Containment.
- C. The resultant Suppression Pool surge upon depressurization of the Drywell would cause the structures inside the Drywell to exceed the maximum loading and could result in a compounded failure.
- D. The Suppression Pool surge upon depressurization of the Drywell would result in the overflowing of the Weir Wall and the degradation of equipment in the lower elevation of the Drywell required for accident mitigation.

OUESTION RO 59 NRC RECORD # WRI 259 ANSWER: B. SYSTEM # M41 K/A 295024 EK1.01: 4.1/4.2 LP# GG-1-LP-RO-M4101.00 OBJ. 4, 5 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1 FSAR sect 3.8; 6.2.1.1.1j REFERENC <u>NEW</u> **CLASS** E: **Table 6.2-1 MODIFIED BANK** DIFF 3, M RO SRO **BOTH DATE USED: CFR 41.9** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 60

The plant is in a reactor startup. The following parameters exist:

Reactor Water Level + 36 inches

Reactor Power 3 % Reactor Pressure 500 psig

Reactor Pressure is being controlled on the Turbine Bypass Valves set at 500 psig. Reactor Water Level is being controlled on the Startup Level Control Valve in Automatic with the 'A' RFPT in service 'B' RFPT in standby.

Personnel in the plant inadvertently trip the 'A' RFPT.

Which one of the following describes the response of the Reactor? (ASSUME NO OPERATOR ACTION.)

- A. The Reactor Water Level will slowly lower causing a Scram followed by HPCS and RCIC initiation to recover water level.
- B. The Reactor Water Level will slowly lower causing Reactor Pressure to lower resulting in the Turbine Bypass Valves closing stabilizing water level at a lower level above the scram.
- C. The Reactor Water Level will remain constant with the Condensate and Condensate Booster Pumps supplying water through the 'B' RFPT.
- D. The Reactor Water Level will remain constant due to the heat up of the moderator causing expansion which overcomes any inventory lost through the Turbine Bypass Valves intermittently opening.

QUESTION RO 60 NRC RECORD # WRI 260 ANSWER: C. SYSTEM # N21; K/A 259001 K3.01: 3.9/3.9

N19; C34

LP#

OBJ. SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 1

REFERENC 04-1-01-N21-1 <u>NEW</u> CLASS

E:

Section 4.3 & 4.4 MODIFIED BANK

DIFF 3, CA 03-1-01-1 sect 6.2.4; 6.2.5;

6.2.12b & d

DATE USED: RO SRO BOTH CFR 41.4

REFERENCE MATERIAL None

REQUIRED:

QUESTION 61

The plant is performing the Reactor Vessel In-Service Leak Test after 14 EFPY of operation. The following parameters existed during the test:

Time	Rx Pressure	Rx Metal Temp
1000	100 psig	160 °F
1030	200 psig	158 °F
1100	250 psig	158 °F
1130	500 psig	157 °F
1200	600 psig	150 °F
1230	800 psig	140 °F
1300	1025 psig	140 °F
1330	1025 psig	135 °F
1400	1025 psig	135 °F
1430	1025 psig	130 °F
1500	1025 psig	130 °F

Which one of the following statements is correct concerning the Reactor Coolant System?

- A. RPV pressure vs temperature limits are within specifications.
- B. RPV pressure vs. temperature limits are satisfied, but the reactor requires heatup to complete the test.
- C. RPV pressure vs. temperature limits have been violated and the reactor requires pressure reduction within 30 minutes.
- D. RPV pressure vs. temperature limits have been violated and the reactor requires pressure reduction immediately.

QUESTION	RO 61	NRC RECORD # W	RI 261
ANSWER: D.	SYSTEM # B13	K/A 290002 K5.0	5: 3.1/3.3
LP#		2.1.2	5: 2.8/3.1
OBJ.	SRO TIER 2	GROUP 3 / RO TIER	2 GROUP 3
REFERENC	Tech Spec 3.4.11 Cond C	\underline{NEW}	CLASS
E :			
	Figure 3.4.11-1 curve A	MODIFIED	BANK
DIFF 3, CA	03-1-01-6 Note		
DATE USED:		RO SRO <u>BOTH</u>	CFR 41.3/41.14/
REFERENCE I	MATERIAL	Tech Spec 3.4.11 & curve:	43.2
REQUIRED:			

QUESTION 62

A discharge of the Equipment Drain Sample Tank is in progress to the River.

Which one of the following conditions will allow the discharge to continue? Assume no operator action.

- A. The effluent radiation monitor HI radiation setpoint is reached.
- B. The Circ Water Blowdown flow rate LO setpoint is reached.
- C. The Equipment Drain Sample flow rate HI setpoint is reached.
- D. Instrument Air pressure to the Radwaste Building is lost.

QUESTION RO 62 NRC RECORD # WRI 262 ANSWER: A. SYSTEM # G17 K/A 268000 A1.02: 2.6/3.6 2.4.21: 3.7/4.3 LP# GG-1-LP-RO-G1718.00 OBJ. 6, 10 11, 15 SRO TIER 2 GROUP 3 / RO TIER 2 GROUP 3 REFERENC 04-1-02-H13-P870-6A-F3 **CLASS** <u>NEW</u> **E**: 04-1-02-H13-P601 MODIFIED **BANK** DIFF 2, M 19A-H7 & H8 04-S-02-H22-P089 1B-D9 05-1-02-V-9 sect 5.27 & 5.45

DATE USED: REFERENCE MATERIAL REQUIRED: RO SRO <u>BOTH</u>

CFR 41.13/43.4

QUESTION 63

REQUIRED:

A Loss of Offsite Power occurs with the Reactor in Mode 3.

A Spent Fuel Pool temperature is 120 °F and rising slowly from decay heat.

Which one of the following should be used for Spent Fuel Pool decay heat removal?

- A. Align SSW 'A' or 'B' to the Fuel Pool Heat Exchangers and operate Fuel Pool Cooling.
- B. Draining the Spent Fuel Pool to the Refueling Water Storage Tank with makeup from the Condensate Transfer Pumps.
- C. RHR 'A' in Spent Fuel Pool Cooling Backup mode operation.
- D. Use Fire Water makeup to the Spent Fuel Pool while draining the Spent Fuel Pool through G41-F032 and F033, Cask Storage Pool Drain Valve.

QUESTION RO 63 NRC RECORD # WRI 263 ANSWER: A. SYSTEM # G41 K5.01: 2.5/2.7 K/A 233000 LP# GG-1-LP-RO-G4146.00 K6.01: 2.5/2.7 SRO TIER 2 GROUP 3 / RO TIER 2 GROUP 3 OBJ. 8, 9, 10, 19 04-1-01-G41-1 sect 6.1 REFERENC <u>NEW</u> **CLASS E**: 05-1-02-III-1 sect 3.3.1 **MODIFIED BANK** DIFF 2, M **DATE USED:** RO SRO **BOTH** CFR 41.4/41.10 REFERENCE MATERIAL None

QUESTION 64

A station blackout has occurred.

A fire has broken out in the Division II ESF Switchgear Room on 119 ft elevation area 10.

Which one of the following describes the ability to combat the fire?

- A. Fire fighting will be limited to the use of portable fire extinguishers.
- B. The CO2 fire suppression system can be overridden open and the Auxiliary Building Isolation Valves opened using the Aux Bldg Isolation Bypass Switch.
- C. The Fire Water System Auxiliary Building Isolation Valves can be opened using the Aux Bldg Iso Bypass Switch to provide fire water to hoses.
- D. The Fire Water System Auxiliary Building Isolation Valves can be bypassed by manually opening the motor operated bypass valves.

QUESTION	RO 64	NRC RECORD # WR	ZI 264
ANSWER: D	SYSTEM # T10;	K/A 290001 K6.09	: 3.4/3.6
	P64; M71; R21	A2.06	3.7/4.0
LP# GG-1-LI	P-RO-M7101.00	286000 A2.09	2.7/2.8
OBJ.	11, 12, 17 SRO TIER 2	GROUP 1 / RO TIER 2	GROUP 2
REFERENC	05-1-02-V-9 5.47	NEW	CLASS
E :			
	Sect 3.13 & 5.47	MODIFIED	BANK
DIFF 3, M	05-1-02-III-5		
	sect 3.4.3 Note		
	M-0035E		
DATE USED:		RO SRO <u>BOTH</u>	CFR 41.9
REFERENCE	MATERIAL	None	
REQUIRED:			

QUESTION 65

Standby Gas Treatment Trains 'A' and 'B' have received an initiation signal on Reactor Water Level.

Which one of the following describes the response of the Radiation Monitoring System?

- A. The SBGT Radiation Monitors are in standby until a High Radiation signal is received by SBGT logic.
- B. The SBGT Radiation Monitors are in service continuously requiring NO further action.
- C. The SBGT Radiation Monitor Sample Pumps will automatically start on SBGT initiation.
- D. The SBGT Radiation Monitor Sample Pumps require an operator to be dispatched to start the pumps locally.

QUESTION RO 65 NRC RECORD # WRI 265 ANSWER: C. SYSTEM # T48; K/A 261000 K1.08: 2.8/3.1 D17 K4.01: 3.7/3.8

LP# GG-1-LP-RO-D1721.00

 OBJ.
 18, 22
 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1

 REFERENC
 04-1-01-T48-1 sect 5.2.2d
 NEW
 CLASS

E:

04-1-01-D17-1 MODIFIED BANK

DIFF 2, M Sect 3.4, 4.5, Att V

DATE USED: RO SRO <u>BOTH</u> **CFR 41.7/41.11**

REFERENCE MATERIAL None

REQUIRED:

QUESTION 66

A rupture of the Instrument Air header in the Water Treatment Building has resulted in a complete loss of Instrument Air.

The plant has been manually scrammed from 100 % power. All control rods fully inserted.

Which one of the following describes the ability to inject water into the Reactor using the Condensate and Feedwater System?

- A. Feeding of the Reactor is NOT available with Condensate and Feedwater due to the Startup Level Control Valve failing closed.
- B. Feeding of the Reactor is NOT available due to all of the Condensate and Feedwater Minimum Flow Valves failing open diverting all flow to the Condenser.
- C. Feeding of the Reactor is available from the Feedwater system while steam is available to the RFPTs and afterwards at lower reactor pressures using the Condensate system.
- D. Feeding of the Reactor is available, as long as reactor pressure is immediately reduced to < 200 psig to allow the Condensate Pumps to inject through the Condensate Cleanup Bypass valves.

QUESTION RO 66 NRC RECORD # WRI 266
ANSWER: C. SYSTEM # N19; K/A 300000 K3.02: 3.3/3.4
N21; N22; P53

LP#

OBJ. SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 2 REFERENC 05-1-02-V-9 NEW CLASS

E:

Sect 5.22, 5.23, 5.24 *MODIFIED* BANK

DIFF 2, CA NRC 3/98 WRI 42

DATE USED: March 1998 RO SRO <u>BOTH</u> CFR 41.4

REFERENCE MATERIAL None

REQUIRED:

QUESTION 67

The plant is operating at rated conditions.

Control Room HVAC 'A' is operating with 'B' in Standby.

The Control Room receives an alarm on H13-P855 "Cont Rm HVAC Freon HI".

Which one of the following describes the alignment/operation of the Control Room HVAC System?

- A. Control Room Air Conditioner 'A' will trip.
 Control Room HVAC will isolate.
 Control Room Standby Fresh Air Units will initiate.
- B. Control Room Air Conditioner 'A' will trip.
 Control Room Air Conditioner 'B' will start on low flow.
 Control Building Purge System will initiate.
- C. Control Room Air Conditioner 'A' will trip.
 Control Room Air Conditioner 'B' will start on low flow
 Control Room Standby Fresh Air Units will initiate.
- D. Control Room Air Conditioner 'B' will auto start.
 Control Room Standby Fresh Air Units will initiate.
 Control Building Purge System will initiate.

OUESTION NRC RECORD # WRI 267 RO 67 SYSTEM # Z51 ANSWER: B. K/A 290003 A4.01: 3.2/3.2 LP# GG-1-LP-RO-Z5100.00 A3.01: 3.3/3.5 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 2 OBJ. 6, 8, 10, 15 9, **REFERENC** 04-S-01-Z51-1 sect 3.2 **NEW CLASS** E: **MODIFIED BANK** 04-S-02-H13-P855 DIFF 3, M 1A-B4; 1A-A5; 1A-C3 **DATE USED:** RO SRO **BOTH CFR 41.4** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 68

REQUIRED:

The plant is operating at rated conditions.

A rupture of the Plant Service Water header at Radial Well 5 has resulted in all Radial Well pumps tripping.

Which one of the following describes the actions to be taken in the plant with regard to Component Cooling Water?

- A. Trip both Reactor Recirculation pumps within 5 minutes and isolate the Reactor Water Cleanup Filter Demineralizers because of the complete loss of CCW cooling.
- B. Low PSW header pressure will automatically initiate Standby Service Water 'B' and align cooling to the CCW heat exchangers and Drywell Chillers.
- C. Standby Service Water 'B' will require manual initiation and alignment to the CCW heat exchangers and Drywell Chillers.
- D. Low PSW header pressure will automatically initiate Standby Service Water 'B', however the CCW heat exchangers and Drywell Chillers will require manual realignment.

NRC RECORD # WRI 268 **QUESTION RO 68** ANSWER: C. SYSTEM # P44; K/A 400000 A1.02: 2.8/2.8 P41; P42 K1.01: 3.2/3.3 LP# GG-1-LP-RO-P4447.00 12, 26, 27 SRO TIER 2 GROUP 2 / RO TIER 2 GROUP 2 OBJ. 05-1-02-V-11 sect 3.2 REFERENC **CLASS** NEW E: 05-1-02-V-1 sect 2.0 & 3.0 **MODIFIED BANK** DIFF 2, CA RO SRO BOTH **DATE USED: CFR 41.4** REFERENCE MATERIAL None

QUESTION 69

The plant has scrammed.

Main Condenser Vacuum is 15 inches Hg.

Which one of the following identifies the status of the Main and Reheat Steam System? (ASSUME NO OPERATOR ACTION.)

	RFP High Press Steam	RFP Low Press Steam	Main Steam Bypass Valves	Combined Main Stop & Control Valves
A.	Closed	Closed	Open	Closed
В.	Open	Open	Closed	Open
C.	Open	Closed	Open	Closed
D.	Closed	Open	Closed	Open

QUESTION	RO 69		NRC RE	CORD# WR	I 269
ANSWER: A	A. SY	YSTEM # N11;	K/A 2390	001 A3.01:	4.2/4.1
	N6	52			
LP# GG-1-L	P-RO-N6200	.00			
OBJ.	7, 17	SRO TIER 2	GROUP 3 /	RO TIER 2	GROUP 2
REFERENC	05-1-02-V	-8 sect 5.0	<u>NEW</u>		CLASS
E :					
			MODIFIE	ED .	BANK
DIFF 2, M					

CFR 41.4

DATE USED:REFERENCE MATERIAL
RO SRO BOTH
None

REQUIRED:

QUESTION 70

The plant was operating at 27 % power when a loss of the Baxter Wilson and Franklin 500 KV transmission lines occurs.

The following are the present plant parameters:

Reactor water level -50 inches wide range

Reactor pressure 880 psig
Main Condenser Vacuum 13 inches Hg

Main Steam Line Radiation Monitors are all reading upscale.

Reactor Mode switch is in RUN.

The Roving Operator has restored the Containment and Auxiliary Building isolations per the Automatic Isolations ONEP, and reset EPA Breakers and transferred RPS 'A' (Division I) to Alternate power.

Which one of the following identifies the status of the Group I isolation valves? (ASSUME NO FURTHER OPERATOR ACTIONS OCCUR.)

	Inboard I	solation Valves	Outboard Isolation	Valves	
Α.	(Closed	Open		
В.		Open	Closed		
C.		Open	Open		
D.	(Closed	Closed		
QUEST	TION RO	70	NRC RECO	RD# WRI	270
-	ER: C.	SYSTEM # B21	; K/A 223002	A1.01:	3.5/3.5
		M71; C71		A2.01:	3.2/3.5
				A3.01:	4.2/4.1
				2.4.46:	3.5/3.6
				2.4.48:	3.5/3.8
LP# G	G-1-LP-RO-	·C7100.00		2.4.49:	4.0/4.0
OBJ.	8, 18	SRO TIER	2 GROUP 1 / RO	TIER 2	GROUP 1
REFER	RENC 04-	1-01-B21-1 Att III	<u>NEW</u>	(CLASS
E :					
	04-	1-02-H13-P601	MODIFIED]	BANK
DIFF 4	, CA 19A	A-E4			
DATE	USED:		RO SRO <u>B</u>	<u>OTH</u>	CFR 41.7/41.9/
REFE	RENCE MAT	ΓERIAL	None		43.5
REQUI	RED:				

QUESTION 71

The following are the present plant parameters:

Reactor water level - 140 inches
Reactor pressure 880 psig
Drywell pressure 1.75 psig
Containment pressure 2.95 psig
2 minutes after the LOCA occurred.

Which one of the following describes the operation of the Drywell Vacuum Relief System? (ASSUME NO FURTHER OPERATOR ACTIONS OCCUR.)

- A. Post-LOCA Vacuum Relief Valves will be open; they will close when Drywell pressure rises to greater than 0.86 psid above Containment Pressure.
- B. Post-LOCA Vacuum Relief Valves will be open; they will close when Drywell pressure rises to within 0.86 psid of Containment Pressure.
- C. Post-LOCA Vacuum Relief Valves will be closed; they will open when Containment pressure drops to within 0.87 psid of Drywell Pressure.
- D. Post-LOCA Vacuum Relief Valves will be closed; and will remain closed until LOCA signals are reset.

QUESTION RO 71		NRC RECORD # WRI 271		
ANSWER: B	3. SYSTEM # E61	K/A 223001 A4.	07: 4.2/4.1	
		A4. 0	06: 4.0/4.0	
LP# GG-1-LI	P-RO-E6100.00	A3.	02: 3.4/3.4	
OBJ.	7, 13 SRO TIER 2	GROUP 1 / RO TIER	2 GROUP 1	
REFERENC	04-1-01-E61-1 sect 5.1.2	NEW	CLASS	
E:				
	E-1186-08 & 13	<u>MODIFIED</u>	BANK	
DIFF 4, CA	J-1237-19 & 22	LOT 9/99 ESF Ex.	Q 10	
DATE USED:	November 1998	RO SRO <u>BOTH</u>	CFR 41.7	
REFERENCE	E MATERIAL	None		
REQUIRED:				

QUESTION 72

The plant is in RF11.

RHR 'A' is in Shutdown Cooling.

Refueling operations were in progress when damage occurred to the Reactor Bottom Head Drain line. Water level in the Reactor cavity area is lowering.

Which one of the following describes the operation needed to align RHR 'A' for LPCI injection?

- A. Arm and depress the Division I LPCS/LPCI 'A' Manual Initiation Pushbutton and allow RHR 'A' to automatically align itself for LPCI injection.
- B. RHR 'A' is NOT allowed to be aligned in the LPCI injection mode with Reactor Cavity water level less than the High Water Level during Refueling operations.
- C. RHR 'A' pump is to be secured, close E12-F006A, RHR PMP A SUCT FM SHUTDN CLG, then open E12-F004A, RHR PMP A SUCT FM SUPP POOL, then arm and depress the Division I LPCS/LPCI 'A' Manual Initiation Pushbutton and allow RHR 'A' to automatically align itself for LPCI injection.
- D. Arm and depress the Division I LPCS/LPCI 'A' Manual Initiation Pushbutton and allow RHR 'A' to automatically align itself for LPCI injection, while RHR 'A' pump is secured quickly close E12-F006A, RHR PMP A SUCT FM SHUTDN CLG, then open E12-F004A, RHR PMP A SUCT FM SUPP POOL.

QUESTION	RO 72 NRC RECORD # WRI 272		
ANSWER: C.	SYSTEM # E12	K/A 203000 A3.01	: 3.8/3.7
		A3.08	3: 4.1/4.1
		A4.02	2: 4.1/4.1
LP#		K4.0 1	1: 4.2/4.2
OBJ.	SRO TIER 2	GROUP 1 / ROTIER 2	GROUP 1
REFERENC	04-1-01-E12-1	NEW	CLASS
E :			
	Sect 3.6.2 & 4.3.2	MODIFIED	BANK
DIFF 3, CA	M-1085B		
DATE USED:		RO SRO <i>BOTH</i>	CFR 41.10
REFERENCE I	MATERIAL	None	
REQUIRED:			

QUESTION 73

The plant is operating at 80 % power.

Feedwater Level Control is selected for "Three Element Control".

Feedwater Flow 'A' indicates 6.8 mlbm/hr Feedwater Flow 'B' indicates 6.5 mlbm/hr

The sensing line for the 'A' Feedwater Flow Transmitter has broken loose.

Which one of the following describes the reaction of the Feedwater Level Control System?

- A. A "hard" failure would be registered de-selecting "3-element" control, "3-element" control can be manually reselected that will use an Estimated Flow.
- B. A "hard" failure would be registered causing the Feedwater Level Control System to automatically input an Estimated Flow maintaining "3-element" control
- C. A "soft" failure would be registered de-selecting "3-element" control and disabling the use of "3-element" control.
- D. A "soft" failure would be registered de-selecting "3-element" control, "3-element" control can be manually reselected that will use an Estimated Flow.

QUESTION **RO 73** NRC RECORD # WRI 273 ANSWER: A. SYSTEM # C34 K/A 259002 K4.10: 3.4/3.4 LP# GG-1-LP-RO-C3401.00 K6.04: 3.1/3.1 OBJ. 1.9, 1.10; 5.2.2 SRO TIER 2 GROUP 1 / RO TIER 2 GROUP 1 REFERENC 04-1-02-H13-P680-2A-C9 NEW **CLASS** E:

MODIFIED BANK

DIFF 3, M

DATE USED: RO SRO **BOTH** CFR 41.5

REFERENCE MATERIAL None

REQUIRED:

QUESTION 74

The plant was operating at 80 % power when a Power Grid fluctuation caused the reactor to scram.

The following subsequent events occurred at the times indicated:

<u>Time</u>	Event/Manipulation
09:05:56	Reactor Scram reactor level immediately drops to + 8 inches
09:06:12	Actual reactor level bottom peaks at + 2.5 inches
09:06:20	Actual reactor level is + 10.4 inches

Which one of the following is the setpoint of the Master Level Control System at Time 09:06:20?

- A. + 12.4 inches
- B. + 18.0 inches
- C. + 36.0 inches
- **D.** + **54.0** inches

 QUESTION
 RO 74
 NRC RECORD # WRI 274

 ANSWER: B.
 SYSTEM # C34
 K/A 295006
 AK2.02: 3.8/3.8

 LP# GG-1-LP-RO-C3401.00
 259002
 K4.04: 2.9/2.9

 A3.06: 3.0/3.0

OBJ. 1.8 SRO TIER 1 GROUP 1 / RO TIER 1 GROUP 1
REFERENC Digital computer logic NEW CLASS

E:

MODIFIED <u>BANK</u>

DIFF 2, M Lesson Plan question

DATE USED: RO SRO <u>BOTH</u> CFR 41.5/41.14

REFERENCE MATERIAL None

REQUIRED:

QUESTION 75

The plant was operating at 80 % power.

Reactor Narrow Range Water Level transmitter C34-N004B has failed downscale and brought in annunciator "RX WTR LVL SIG FAIL HI/LO".

The Operator at the Controls notices the Reactor Narrow Range Level indicator C34-LI-R606A indicates + 63.75 inches and annunciator "RFPT/MN TURB LVL 8 TRIP" is in.

Reactor Narrow Range Water Level indicator R606C is reading + 36 inches.

Reactor Upset Range Water Level indicator is reading + 38 inches.

Reactor Wide Range Water Level indicator on P680 is reading + 40 inches.

Reactor Wide Range Water Level indicators A & B on P601 are reading + 40 inches.

Which one of the following describes the actions to be taken? (NO OTHER ALARMS ARE PRESENT.)

- A. Immediately initiate a Reactor Scram and trip the Main Turbine and the Reactor Feed Pump Turbines because they failed to trip.
- B. De-select AUTO Level Selection and manually select Reactor Water Level Narrow Range Level C.
- C. Select the Master Level Controller to MANUAL to lock the level signals at the present setting to prevent any level perturbations and establish stable level control.
- D. Monitor Reactor Water Level on P680 and compare with other indications on P601 and the PDS computer and contact I&C.

QUESTION RO 75	NRC RECORD # WR	RI 275
ANSWER: D. SYSTEM # C34;	K/A 295008 AK1.0	1: 3.0/3.2
N21; N30	245000 A3.0	1: 3.6/3.6
LP# GG-1-LP-RO-C3401.00	259001 K6.0	7: 3.8/3.8
OBJ. 1.4, 1.5, 1.7 SRO TIER 1	GROUP 2 / ROTIER 1	GROUP 2
REFERENC 04-1-02-H13-P680	NEW	CLASS
E :		
4A2-A2 & D1	MODIFIED	BANK
DIFF 3, CA		
DATE USED:	RO SRO <u>BOTH</u>	CFR 41.4/41.5
REFERENCE MATERIAL	None	
REOUIRED:		

QUESTION 76

The plant has undergone a transient that resulted in a Main Turbine trip from 50 % power. Which one of the following describes the operation of the Recirculation System and the reason for this operation?

- A. The Recirc pumps are tripped to off to reduce the voiding in the core thus preventing exceeding the MCPR Safety Limit at the end of core life.
- В. The Recirc pumps are shifted to slow speed to cause more voiding in the core thus causing the margin to the MCPR Safety Limit to be raised at the end of core life.
- C. The Recirc pumps are tripped to off to cause more voiding in the core thus preventing exceeding the APLHGR Thermal Limit at the end of core life.
- D. The Recirc pumps are shifted to slow speed to reduce the voiding in the core thus causing the margin to the APLHGR Thermal Limit to be raised at the end of core life.

QUESTION RO 76 NRC RECORD # WRI 276 K/A 295005 ANSWER:. B. SYSTEM # B33 AK302: 3.4 LP# GG-1-LP-RO-B3300.00 202001 K4.13: 3.7 OBJ. 53b SRO TIER GROUP / RO TIER 1 GROUP 1 Tech Spec 3.3.4.1 bases REFERENC <u>NEW</u> **CLASS** E:

MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.4/41.5/

None

41.6

REFERENCE MATERIAL

REQUIRED:

QUESTION 77

A Radwaste Contractor is needed for a job in a Very High Radiation Area.

The dose rate in the area of the job is 1.2 Rem/hr.

The job is expected to take 1 hour and 45 minutes.

The contractor's exposure history to date for the year is 3000 mRem.

Can the contractor be utilized for this job and WHY?

- A. Yes, the contractor will NOT exceed his administrative limits.
- B. Yes, however the contractor must have an approved extension on dose limits before the job.
- C. No, the contractor will exceed his federal dose limits.
- D. No, the contractor will exceed administrative dose limits which are NOT allowed to be extended.

QUESTION RO 77 NRC RECORD # WRI 277
ANSWER:. C. SYSTEM # Rad K/A 2.3.4: 2.5
Con – Exposure Limits

NRC RECORD # WRI 277
K/A 2.3.4: 2.5

LP# EOI-S-LP-GET-

RWT01.09

OBJ. RWT 30 – 33 SRO TIER GROUP / RO TIER 3 GROUP REFERENC 01-S-08-2 NEW CLASS

E:

Sect 6.3 <u>MODIFIED</u> BANK

DIFF 2, CA NRC 3/98 Q75

DATE USED: March 1998 **RO** SRO BOTH CFR 41.10/43.4

REFERENCE MATERIAL REQUIRED: None

QUESTION 78

Which of the following describes when a Control Rod Drop Accident (CRDA) is most severe and what limits the transient?

- A. Most severe during reactor startup (< 10 %) and is limited by CRD mechanism seal clearances.
- B. Most severe during high power operations (100 %) and is limited by CRD mechanism seal clearances.
- C. Most severe during reactor startup (< 10 %) and is limited by the velocity limiter.
- D. Most severe during high power operations (100 %) and is limited by the velocity limiter.

QUESTION RO 78 NRC RECORD # WRI 278 K/A 201003 ANSWER:. C. SYSTEM # C11 K4.01: 2.9 LP# GG-1-LP-RO-C111B.00 SRO TIER GROUP / RO TIER 2 GROUP 2 OBJ. 31 REFERENC Tech Spec 3.1.6. bases <u>NEW</u> **CLASS E**: FSAR 4.1.3.2 MODIFIED BANK DIFF 2, M **RO** SRO BOTH CFR 41.2 **DATE USED:** REFERENCE MATERIAL REQUIRED: None

QUESTION 79

Due to a loss of both 6.9KV buses, the operating crew has manually inserted a scram.

The reactor failed to achieve subcriticallity and the following indications are noted after entering EP-2A (ATWS):

Power 8%

Reactor Water Level -130 inches Reactor Pressure 755 psig

(Maximum pressure during event was 1227 psig)

Suppression Pool Temperature 110°F
Drywell Pressure 1.21 psig

SLC is injecting.
ARI was initiated.
RCIC is Out of Service.

The operating crew has just terminated and prevented injection into the RPV except CRD and SLC.

Based on the above conditions, determine if any safety limit violation has occurred.

- A. A safety limit was violated due to reactor pressure exceeding 1225 psig.
- B. A safety limit was violated because reactor power is > 5% with core flow < 10% and pressure < 785 psig.
- C. A safety limit was violated since core submergence is NOT assured.
- D. Safety limits are all within specifications.

REFERENCE MATERIAL REQUIRED:

QUESTION	RO 79	NRC RECORD)# WRI 279
ANSWER:. D.	SYSTEM # Equip.	K/A Generic	2.2.22: 3.4
	Control – Safety Limits		2.1.10: 2.7
			2.1.11: 3.7
LP#			2.1.33: 3.4
OBJ.	SRO TIER GROUP	/ RO TIER	3 GROUP
REFERENC	Tech Spec Section 2.0	<u>NEW</u>	CLASS
E :			
		MODIFIED	BANK
DIFF 2, CA			
DATE USED:		RO SRO BOT	H CFR 41.10/43.2/

None

43.6

QUESTION 80

An electrician has just performed the weekly battery cell surveillance (SR 3.8.6.1) and reports the following for the Div. 1 battery:

A. Electrolyte levels: all greater than minimum level and greater than $\frac{1}{4}$ "

above maximum

B. Float voltages: 2.14 volts – 2.16 volts

C. Specific gravities: 1.190 – 1.200

The plant is currently shutdown (mode switch in SHUTDOWN). Reactor coolant temperature is 198°F, all reactor vessel head closure bolts are fully tensioned and fuel assemblies are being loaded into the cask. No battery charge is in progress.

What are the required actions, if any, per Technical Specifications regarding the on-shift electricians report?

- A. Restore the battery to operable status within two (2) hours.
- B. No action is required, the Division I battery is operable.
- C. Verify pilot cells electrolyte levels and float voltages meet Category C limits within 1 hour and all battery cell parameters meet Category C limits within 24 hours and once per seven days thereafter. Restore battery cell parameters to Category A and B limits within 31 days.
- D. Declare affected required feature(s) inoperable immediately or suspend fuel movements, suspend OPDRV's, and initiate action to restore to operable status immediately.

QUESTION RO 80 NRC RECORD # WRI 280 ANSWER:. C. SYSTEM # L11 K/A Generic 2.1.12: 2.9

LP#

OBJ. SRO TIER GROUP / RO TIER 2 GROUP 2 REFERENC Tech Spec 3.8.6 <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.10/43.2

REFERENCE MATERIAL REQUIRED: Tech Specs 3.8.4, 3.8.5,

3.8.6

QUESTION 81

The following work hours were noted for a licensed operator at the controls (ACRO):

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Commenc ed Turnover	6:45 a.m.	6:00 a.m.	6:05 a.m.	2:01 a.m.	Day Off	6:10 a.m.	7:15 a.m.
Assumed Watch	7:00 a.m.	6:22 a.m.	6:27 a.m.	2:27 a.m.		6:40 a.m.	7:42 a.m.
Commenc ed Turnover	6:58 p.m.	6:24 p.m.	6:00 p.m.	6:39 a.m.		6:16 p.m.	7:58 p.m.
Relieved	7:15 p.m.	6:45 p.m.	6:26 p.m.	6:56 a.m.	Ť	6:35 p.m.	8:10 p.m.

Concerning the ACROs work hours, select the correct statement from the following:

- A. No work hour limitations have been exceeded. However, the ACRO shall periodically be relieved of primary duties so that periods of duty do not exceed approximately four (4) hours during the period in excess of eight (8) hours.
- B. Work hour limitations have been exceeded. The ACRO exceeded 24 hours in a 48 hour period. No other violations occurred.
- C. Work hour limitations have been exceeded. The ACRO exceeded 16 hours in a 24 hour work period and did not have an 8 hour break between work periods.
- D. Work hour limitations have been exceeded. The ACRO did not have an 8 hour break between work periods. No other violations occurred.

QUESTION RO 81 NRC RECORD # WRI 281 ANSWER:. D SYSTEM # K/A Generic 2.1.2: 3.0

LP#

OBJ. SRO TIER GROUP / RO TIER 3 GROUP REFERENC Tech Spec 5.2.2e3 NEW CLASS

E:

01-S-06-2 sect 6.6.1 MODIFIED BANK

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.10

REFERENCE MATERIAL REQUIRED: None

QUESTION 82

Which of the following statements accurately depicts the required operation of E12-F003A(B) RHR Heat Exchanger Outlet Valve and E12-F048A(B) RHR Heat Exchanger Bypass Valve while in shutdown cooling?

- A. Maintain flow greater than 4000 gpm. If the F048A(B) is less than full open, avoid using F003A(B) to throttle flow for extended periods (30 minutes) in the 0% to 15% open range.
- B. Maintain flow greater than 4000 gpm. If the F048A(B) is less than full <u>closed</u>, avoid using F003A(B) to throttle flow for extended periods (60 minutes) in the 0% to 15% open range.
- C. Maintain heat exchanger flow less than 8600 gpm. If the F048A(B) is less than full open, avoid using F003A(B) to throttle flow for extended periods (30 minutes) in the 0% to 15% open range.
- D. Maintain heat exchanger flow less than 8600 gpm. If the F048A(B) is less than full closed, avoid using F003A(B) to throttle flow for extended periods (60 minutes) in the 0% to 15% open range.

QUESTION RO 82 NRC RECORD # WRI 282 ANSWER:. A SYSTEM # E12 219000 K3.01: 3.9 LP# 2.1.32: 3.4 OBJ. SRO TIER GROUP / RO TIER 2 GROUP 2 **REFERENC** 04-1-01-E12-1 <u>NEW</u> **CLASS** E: Sect 3.2.3 & 3.6.3 **MODIFIED** BANK DIFF 3, M **DATE USED: RO** SRO BOTH CFR 41.9 REFERENCE MATERIAL REQUIRED: None

QUESTION 83

Jumpers installed as a part of a Temporary Alteration are required to be made of:

- A. Purple wire
- B. Black wire.
- C. Purple wire with a white stripe.
- D. White wire with purple stripe.

QUESTION RO 83 NRC RECORD # WRI 283 ANSWER:. A. SYSTEM # Equip Control – Temp Alts

LP#

OBJ. SRO TIER GROUP / RO TIER 3 GROUP REFERENC 01-S-06-3 sect 6.2.2 <u>NEW</u> CLASS E:

Ľ.

MODIFIED BANK

DIFF 2, M

DATE USED: *RO* SRO BOTH CFR 41.10

REFERENCE MATERIAL REQUIRED: None

Note: The distracters are all plausible. Probability is high that the jumper may be confused with the Temporary Alteration tag, which is white with purple lettering. Jumpers for EOP Attachments are Black.

QUESTION 84

The Refueling Platform is over the west end of the Upper Containment Pool (near the temporary fuel storage area).

Which one of the following will **NOT** prevent the movement of the Refueling Platform over the reactor vessel core?

- A. Two rods at notch 02 with the Reactor Mode Switch in REFUEL.
- B. "Gang Drive" on RC&IS is selected with the Reactor Mode switch in REFUEL.
- C. Reactor Mode Switch in STARTUP with the main hoist unloaded.
- D. Main hoist unloaded, one control rod at 02, and the Reactor Mode Switch in REFUEL.

QUESTION RO 84 NRC RECORD # WRI 284 ANSWER: D. SYSTEM # F11 K/A 234000 K1.06: 3.0 LP# GG-1-LP-RF-F1101.05 SRO TIER GROUP / RO TIER 2 GROUP 3 29, 36 REFERENC 04-1-01-F11-1 Att V #8 **CLASS NEW E**: **MODIFIED BANK**

DIFF 3, M

DATE USED: *RO* SRO BOTH CFR 41.4/43.7

REFERENCE MATERIAL REQUIRED: None

QUESTION 85

The plant was operating at 100% power when a complete loss of offsite power occurs. The following plant conditions are noted:

Reactor water level	50 inches and slowly lowering
Reactor pressure	. 830 psig and steady
Drywell pressure	. 0.4 psig and slowly rising
Drywell temperature	. 138°F and rising
Suppression Pool level	. 20 ft. 5 inches and steady
Suppression Pool temperature	. 94°F and steady
Division I Diesel Generator failed to start an	d power its respective bus.

Subsequently a RCIC EQUIP AREA TEMP HI alarm annunciates and an operator notes that RCIC room temperature is 190°F and slowly rising.

Based on these conditions, select the statement that describes the status of RCIC. (ASSUME NO OPERATOR ACTIONS.)

- A. RCIC is taking suction from the CST and injecting into the reactor vessel at rated flow, however, a RCIC trip is imminent due to the high temperature in the RCIC room.
- B. RCIC is taking suction from the Suppression Pool and injecting into the reactor vessel at rated flow, however, a RCIC trip is imminent due to the high temperature in the RCIC room.
- C. RCIC is tripped and a RCIC isolation signal has resulted in the Division 2 valves all closing and a Division 1 isolation signal without complete valve closure.
- D. RCIC has tripped and a complete RCIC isolation (Division 1 and 2) has occurred.

QUESTION	RO 8	5	I	NR(C RECORD	# WR	I 285
ANSWER:.	C.	SYSTEM # E	51 l	K/A	264000	K3.01:	4.2
LP# GG-1-LF	P-RO-E51	00.00					
OBJ. 12,	21	SRO TIER	GROUP	/	RO TIER	2 GR	OUP 1
14,							
REFERENC	05-1-02	2-III-5 Group	4 <u>1</u>	VE V	<u>V</u>		CLASS
E :							
	04-1-01	1-E51-1 Att II	I I	MOl	DIFIED		BANK
DIFF 3, CA	04-1-02	2-H13-P601					
	21A-G	3					
DATE USED:	:		<u>1</u>	RO	SRO BOT	TH	CFR 41.8
REFERENCE	MATERI	AL REOUIRE	D: None	e			

QUESTION 86

Given t	he foll	owing	plant	conditions:
---------	---------	-------	-------	-------------

	Reactor Power	100%
	Reactor Level	+36 inches
	Reactor Pressure	1025 psig
	Containment Temperature	85 °F
	Containment Pressure	0.03 psig
	Suppression Pool Temperature	81 °F
	Drywell Pressure	1.1 psig
	Drywell Temperature	110 °F
	Drywell Area Sumps show no uni	usual changes in
level, flow, or temperature.		
	Drywell Atmosphere radiation me	onitor show no
changes.		

The Roving NOA has noted that Drywell Pressure is rising slowly.

Drywell atmosphere radiation levels are steady.

Which one of the following describes a possible cause of the conditions as noted above?

- A. Small leak on the Main Steam Line Flow Elbows Instrument Line.
- B. Small leak on the RWCU suction from the Reactor Bottom Head.
- C. Small leak on the Instrument Air header inside the Drywell.
- D. Small leak on Recirc Pump Seals.

QUESTION		RO 86		NR(RECORD	# WRI 286
ANSWER:.	C.		SYSTEM#	K/A	Generic	2.4.21: 3.7
			Emergency Plan -			
			Diagnostics			
I P#						

LP#

SRO TIER GROUP / RO TIER 3 GROUP OBJ.

REFERENCE: GGNS 1998 event NEW**CLASS** CR 1998-0952 MODIFIED **BANK**

DIFF 3, CA

DATE USED: RO SRO BOTH CFR 41.5

REFERENCE MATERIAL REQUIRED: None

QUESTION 87

Residual Heat Removal 'A' is being lined up to operate in Suppression Pool Cooling.

The Plant Supervisor has requested you contact Health Physics.

Which one of the following describes the purpose of this phone notification?

- A. Allows Health Physics personnel to evacuate any personnel from the Containment.
- B. Allows Health Physics personnel to perform surveys of the RHR rooms and Containment for elevated radiation levels.
- C. Informs Health Physics of elevated heat and noise levels in the vicinity of the RHR Rooms such that personnel entering the areas may be informed.
- D. Informs Health Physics that the transient High Radiation areas for the RHR loop are now in effect.

None

OUESTION NRC RECORD # WRI 287 **RO 87** ANSWER:. B. SYSTEM # Rad Con K/A Generic 2.3.2: 2.5 - ALARA 2.1.32: 3.4 LP# SRO TIER GROUP / RO TIER 3 GROUP OBJ. REFERENC 04-1-01-E12-1 sect 3.1 **NEW CLASS** E: MODIFIED BANK DIFF 2, M **RO** SRO BOTH **DATE USED:** CFR 41.10/43.4

REFERENCE MATERIAL REQUIRED:

QUESTION 88

The plant is operating at rated conditions.

A large leak on the discharge header of the Turbine Building Cooling Water (TBCW) Pumps has been reported.

The Turbine Building Operator has opened the makeup manual bypass valve to attempt to maintain level in the TBCW Head Tank. Level in the head tank is still dropping.

Which one of the following describes an action that is NOT required for this event?

- A. Manually scram the reactor.
- B. Initiate Reactor Core Isolation Cooling System and inject to the reactor.
- C. Trip the Main Turbine and verify the generator trips on reverse power.
- D. Manually initiate Standby Service Water 'A' and align to the Service and Instrument Air Compressors.

QUESTION	RO 88	NRC RECORD	# WR	I 288
ANSWER:. D.	SYSTEM #	K/A Generic	2.4.24:	3.3
	Emergency		2.4.11:	3.4
	Procedures – TBCW ONEP		2.4.49:	4.0
LP#				
OBJ.	SRO TIER GROUI	P / RO TIER	3 GR	OUP
REFERENC	05-1-02-V-2	<u>NEW</u>		CLASS
E :				
	Sect 2.1 & 3.5	MODIFIED		BANK
DIFF 2, M				
DATE USED:		RO SRO BOT	Ή	CFR 41.10/43.5
REFERENCE M	ATERIAL REQUIRED: No	ne		

QUESTION 89

The plant is operating at rated conditions.

System Engineering has just completed a flow balance on Standby Service Water 'A'.

Several valves have been throttled for permanent positions for the test.

Which one of the following is required to be used to maintain these throttled valves in their proper position?

- A. Blue tie wraps.
- B. Red tie wraps.
- C. Yellow seal strips
- D. Information Tag with the number of turns open

QUESTION RO 89 NRC RECORD # WRI 289 ANSWER:. B. SYSTEM # Conduct K/A Generic 2.1.1: 3.7

> of Ops – Locked Components

LP#

OBJ. SRO TIER GROUP / RO TIER 3 GROUP

REFERENC 01-S-06-2 Section 6.10 <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 2, M

DATE USED: RO SRO BOTH CFR 41.10

REFERENCE MATERIAL REQUIRED: None

QUESTION 90

The plant is operating at rated conditions.

The Roving NOA has reported the Offgas Charcoal Adsorber temperatures are increasing rapidly.

The Turbine Building Operator has reported hearing loud banging noises and a rumbling sound in the Offgas piping.

The Plant Supervisor has determined there must be a fire in the Offgas System.

All other plant parameters are stable.

Which one of the following actions should be taken to mitigate the situation?

- A. Immediately scram the reactor, trip the Main Turbine, and break the vacuum in the Main Condenser.
- B. Isolate the affected adsorber train. If temperatures continue to rise, initiate a nitrogen purge.
- C. Connect a fire hose to a test connection upstream of the Charcoal Adsorbers and inject fire water to extinguish any fire.
- D. Connect a hose to the Carbon Dioxide Fire Suppression System and establish a pressure of 20 psig of CO2 in the Offgas Charcoal Adsorbers.

QUESTION RO 90 NRC RECORD # WRI 290 ANSWER:. B. SYSTEM # K/A Generic 2.4.25: 2.9

Emergency Ops – Offgas Fire

LP#

OBJ. SRO TIER GROUP / RO TIER 3 GROUP

REFERENC 05-1-02-V-13 sect 3.6 <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 2, M

DATE USED: RO SRO BOTH CFR 41.10/41.13/

REFERENCE MATERIAL REQUIRED: None 43.4/43.5

QUESTION 91

A given side effect of utilizing Hydrogen Water Chemistry is elevated radiation levels.

Which one of the following describes the major contributor to the elevated radiation levels outside of the Drywell?

- A. Elevated carryover of Nitrogen-16 into steam related areas.
- B. Elevated carryover of Cobalt-60 gathering in valve bodies.
- C. Excess Hydrogen forming Tritium and carrying over to the condenser and offgas.
- D. Elevated production of Iodine 131 gas carrying over into the steam lines.

QUESTION RO 91 NRC RECORD # WRI 291 ANSWER:. A. SYSTEM # D21; K/A 272000 K5.01: 3.2 D17

LP# GG-1-LP-RO-P7300.01

OBJ. 15, 17 SRO TIER GROUP / RO TIER 2 GROUP 2 REFERENC ER-96/0936 <u>NEW</u> CLASS

E:

MODIFIED BANK

DIFF 2, M

DATE USED: RO SRO BOTH CFR 41.7/41.13

REFERENCE MATERIAL REQUIRED: None

QUESTION 92

The plant is operating normally at full power rated conditions.

The Feedwater Level Control System is controlled utilizing an INFI-90 Control System.

The output breaker of inverter 1Y99 tripped and the static switch failed to transfer.

Which one of the following describes the reaction of the Feedwater System to the loss of power?

- A. The Reactor Feed Pumps' Speed Control will lockup at the present speed and shift to emergency manual control.
- B. The Feedwater Level Controls will shift to Manual on the Master Controller and lock the signals to the Reactor Feed Pumps at the present settings.
- C. The INFI-90 controls in H13-P612 will transfer to the backup power supply leaving the Feedwater Level Control System unaffected.
- D. The INFI-90 controls in H13-P612 will shift to the internal battery backup power supply and shift the Master Level Controller to Manual at its present On-Track Setting.

OUESTION RO 92 NRC RECORD # WRI 292 ANSWER:. C. SYSTEM # L62; K/A 262002 K1.01: 2.8 K1.02: 2.8 **C34** LP# GG-1-LP-RO-C3401.00 6.2 & 6.3 **SRO TIER** GROUP / RO TIER 2 GROUP 2 E-0035 REFERENC **CLASS NEW** E: 04-1-01-N21-1 Att III **MODIFIED BANK**

DATE USED: *RO* SRO BOTH CFR 41.4

REFERENCE MATERIAL REQUIRED: None

DIFF 3, M

QUESTION 93

The plant is operating normally at full power rated conditions.

The Feedwater Level Control System INFI-90 (Master) Control signal to the Reactor Feed Pump M/A Bias Controllers is lost.

Which one of the following describes the reaction of the Reactor Feed Pumps System?

- A. The Reactor Feed Pumps' M/A Bias Controllers will lose the input from the Master Level Controller and automatically remain at the present setting and shift to Feed Water Auto on the individual Feed Pump M/A Bias controllers.
- B. The Reactor Feed Pumps' Speed Control will lockup at the present speed and shift the Reactor Feed Pump Speed Controllers to Emergency Manual.
- C. The Reactor Feed Pumps' will rise in speed until the RFPT M/A Bias controls sense a deviation resulting in the Controllers for each Feed Pump shifting to Manual Control.
- D. The Reactor Feed Pumps' will lower the speed of the RFPTs until the RFPT M/A Bias controls sense a deviation resulting in the Controllers for each Feed Pump shifting to Manual Control.

QUESTION RO 93 NRC RECORD # WRI 293 ANSWER:. A. SYSTEM # N21; K/A 259001 K6.07: 3.8 **C34** 259002 K3.02: 3.7 LP# GG-1-LP-RO-C3401.00 **SRO TIER** GROUP / RO TIER 2 GROUP 1 OBJ. 6.3 & 6.4 REFERENC 04-1-02-H13-P680 <u>NEW</u> **CLASS E**: **MODIFIED BANK** 2A-C9 DIFF 3, CA **<u>RO</u>** SRO BOTH CFR 41.4 **DATE USED:** REFERENCE MATERIAL REQUIRED: None

QUESTION 94

The plant is operating normally at full power rated conditions.

A rupture of tubes in the 3A Low Pressure Feedwater Heater resulted in an automatic isolation of the Feedwater Heater String.

Which one of the following describes the limitations on plant operations?

- A. Power is limited to a maximum of 50% rated thermal power utilizing Condensate and Heater Drain pumps to a limit of 250 psid differential pressure across the LP Feedwater Heaters due to 1/3 Condensate System capacity.
- B. Power is limited to a maximum of 75% rated thermal power without restrictions on the use of Condensate and Heater Drain pumps.
- C. Power is limited to a maximum of 100% rated thermal power without restrictions on the use of Condensate and Heater Drain pumps opening the LP Feedwater Heater Bypass valve as necessary to reduce differential pressure.
- D. Power is limited as necessary to maintain the turbine parameters within limits without restrictions on the operation of the Condensate and Heater Drain Pumps.

QUESTION	RO 94	NRC RECORD	# WRI 294
ANSWER:. D.	SYSTEM # N23 ;	K/A 256000	A3.07: 2.9
	N19		A3.04: 3.0
			A3.01: 2.7
LP# GG-1-LP-I	RO-N2335.00		A2.08: 3.1
OBJ. 15	SRO TIER GRO	UP / RO TIER	2 GROUP 2
REFERENC	04-1-01-N23-1 sect 3.10	<u>NEW</u>	CLASS
E :			
	03-1-01-2 sect 2.10	MODIFIED	BANK
DIFF 2, M			
DATE USED:		<u>ro</u> sro bot	TH CFR 41.4
REFERENCE M	IATERIAL REQUIRED: 1	None	

QUESTION 95

The plant is in a refueling outage.

The SRO is controlling operations per IOI-5 (03-1-01-5, Refueling).

Which one of the following describes evolutions that could be performed concurrently?

- A. Core Verification per step 6.2 and Steam Separator installation per step 6.10.
- B. Steam line plug removal per step 6.12 and CRD venting per step 6.5.
- C. Subcritical demonstration surveillance per step 6.4 and CRD coupling checks and timing demonstration per step 6.6.
- D. Steam Separator installation per step 6.10 and Portable Shielding (Cattle Chute) removal per step 6.13.

QUESTION	RO 95	NRC RECOR	D# WRI 295
ANSWER:. B.	SYSTEM # Conduct	K/A	2.1.23: 3.9
	of Ops. – Procedure	Generics	2.1.20: 4.3
	Usage		2.2.1: 3.7
LP#			
OBJ.	SRO TIER GROUI	P / ROTIEF	R 3 GROUP
REFERENC	02-S-01-2 sect 6.9.5d	<u>NEW</u>	CLASS
E :			
	03-1-01-5 sect 6.0	MODIFIED	BANK
DIFF 2, CA	Caution		
DATE USED:		<u>RO</u> SRO BO	OTH CFR 41.10
REFERENCE M	IATERIAL REQUIRED: No	one	

QUESTION 96

A LOCA has occurred. All rods have inserted. The MSIVs have closed. The following parameters exist:

Reactor Pressure 700 psig

Reactor Level - 170 inches Fuel Zone

Suppression Pool Level 16.5 feet Suppression Pool Temperature 150 °F Drywell Pressure + 1.0 psig

Main Condenser Vacuum 10 inches Hg Vac

Which one of the following identifies systems that will inject to the Reactor with present plant conditions and are allowed by Emergency Procedures?

A. Condensate and Feedwater System

B. Low Pressure Coolant Injection System

C. Low Pressure Core Spray System

D. Standby Liquid Control System

QUESTION RO 96 NRC RECORD # WRI 296 ANSWER:. D. SYSTEM # Conduct K/A 2.4.20: 3.3

of Ops – Emergency Generics

Ops Procedure

LP# GG-1-LP-RO-EP002

OBJ. 13, 14 SRO TIER GROUP / RO TIER 3 GROUP

REFERENC 05-S-01-EP2 NEW CLASS

E:

Steps 54 & 55 MODIFIED BANK

DIFF 2, CA

DATE USED: RO SRO BOTH **CFR 41.10/43.5**

REFERENCE MATERIAL 05-1-01-EP-2

REQUIRED:

QUESTION 97

A LOCA has occurred. All rods have inserted. The MSIVs have closed. The following parameters exist:

Reactor Pressure 700 psig

Reactor Level - 170 inches Fuel Zone

Suppression Pool Level 16.5 feet
Suppression Pool Temperature 150 °F
Drywell Pressure + 4.5 psig
ADS Air Pressure 0 psig

Air Compressors are unavailable.

Which one of the following describes the use of the ADS Valves for Reactor Pressure control?

- A. When air in the Buffalo tanks is depleted, Nitrogen bottles must be manually connected and valved in to the ADS air system to allow operation of the valves.
- B. ADS Valves may be operated utilizing both A and B solenoids together along with spring pressure to operate the valves for short durations.
- C. At 30 psig, ADS Air pressure the Buffalo Tanks admit air to repressurize the ADS Accumulators allowing normal operation of ADS valves for 10 cycles.
- D. ADS Valves will open using solenoid and spring pressure, but will be unable to be closed until reactor pressure is less than 165 psig.

QUESTION	RO 97	NRC RECOR	RD# WRI 297
ANSWER:. A	. SYSTEM# F	P53; K/A 218000	A2.03: 3.4
	E22-2		A1.03: 3.2
			K4.04: 3.5
LP# GG-1-LP-	-RO-E2202.00		K6.04: 3.6
OBJ.	5 SRO TIER	GROUP / RO TIEI	R 2 GROUP 1
REFERENC	05-1-02-V- 9 sect 3.9	<u>NEW</u>	CLASS
E :			
		MODIFIED	BANK
DIFF 2, CA			
DATE USED:		<u>ro</u> sro bo	OTH CFR 41.7
REFERENCE	MATERIAL	None	
REQUIRED:			

OUESTION 98

An ATWS has occurred. The MSIVs have closed. RPV level is unable to be determined.

The following parameters exist:

70 psig and lowering. **Reactor Pressure**

Suppression Pool Level 16.5 feet **Suppression Pool Temperature** 150 °F **Drywell Pressure** + 1.0 psig

8 Safety Relief Valves are OPEN. LPCI A is injecting through Shutdown Cooling at 5000 GPM.

HPCS, LPCS, and RHR B & C are unavailable for injection.

Which one of the following identifies the actions to be taken?

A. Continue injection as long as water is available from any source to restore pressure above Minimum Alternative RPV Flooding Pressure.

- В. Exit the Emergency Procedures and enter Severe Accident Procedure 4.
- C. Exit the Emergency Procedures and enter Severe Accident Procedure 5.
- D. Exit the Emergency Procedures and enter Severe Accident Procedure 6.

QUESTION RO 98 NRC RECORD # WRI 298 ANSWER:. B. 2.4.4: 4.0 SYSTEM # Conduct K/A of Ops – EOP and Generics

SAP

LP#

OBJ. **SRO TIER** GROUP / RO TIER 3 GROUP

REFERENC 05-S-01-EP2A **NEW CLASS**

E:

Steps 94 & 96 **MODIFIED BANK**

SAP – 4 step 4 MDRIR DIFF 2, CA

DATE USED: RO SRO BOTH CFR 41.10/43.5

REFERENCE MATERIAL **05-1-01-EP-2A** and **SAPs**

REQUIRED:

QUESTION 99

HPCS has automatically initiated and is injecting into the RPV with suction from the suppression pool due to a high suppression Pool level signal.

Select from the statements below, the action required to restore the HPCS suction to the CST.

- A. Take the CST suction valve control switch to the OPEN position, then take the Suppression Pool suction valve control switch to the CLOSE position.
- B. Take the Suppression Pool suction valve control switch to the CLOSE position, then take the CST suction valve control switch to the OPEN position.
- C. Implement an Emergency Procedure Attachment to bypass the high Suppression Pool level signal and the valves will automatically reposition.
- D. The CST is unable to be restored as HPCS suction source until the High Suppression Pool level signal clears.

QUESTION RO 99 NRC RECORD # WRI 299 SYSTEM # E22 ANSWER:. B. K/A 209002 A4.02: 3.6 LP# GG-1-LP-RO-E2201.00 OBJ. SRO TIER GROUP / ROTIER 2 GROUP 1 8 REFERENC 04-1-02-H13-P680 **CLASS NEW** E: 16A-E5 **MODIFIED BANK** DIFF 2, M **DATE USED: RO** SRO BOTH **CFR 41.7** REFERENCE MATERIAL None **REQUIRED:**

QUESTION 100

When reactor power is above the High Power Setpoint, what is the rod withdrawal limit, and why is there a limit?

- A. Rod withdrawal is limited to two (2) notches to prevent a continuous Rod Withdrawal Error from violating the MCPR Safety Limit or the LHGR limit for the fuel.
- B. Rod withdrawal is limited to two (2) notches to minimize the peak energy deposition of 280 cal/gram during a control rod drop accident
- C. Rod withdrawal is limited to four (4) notches to minimize the peak energy deposition of 280 cal/gram during a control rod drop accident.
- D. Rod withdrawal is limited to four (4) notches to minimize the maximum incremental control rod worths without being overly restrictive during control rod operation.

QUESTION RO 100 NRC RECORD # WRI300 ANSWER:. A. **SYSTEM # C11-2** K/A 201005 K4.03: 3.5 K4.05: 3.5 2.2.25: 2.5 LP# GG-1-LP-RO-C1102.02 2.2.2: 4.0 OBJ. **SRO TIER** GROUP / RO TIER 2 GROUP 1 REFERENC **Tech Spec Bases NEW CLASS** E: 3.3.2.1 & 3.2.3 **MODIFIED BANK** DIFF 2, M DATE USED: **RO** SRO BOTH CFR 41.7 REFERENCE MATERIAL REQUIRED: None