NRC FORM 658 (9-1999)	\mathbf{N}		U.S. NUCLEAR REGULATORY COMMISSION				
	·						
TRANSMITTAL OF MEETING HANDOUT MATERIALS FOR							
IMMEDIATE PLACEMENT IN THE PUBLIC DOMAIN							
	1						
			the person who announced the meeting (i.e., the				
			ed form, and the attached copy of meeting handout on the same day of the meeting; under no				
	will this be done later than the wo	orking	day after the meeting.				
	e proprietary materials.						
DATE OF MEETING	1		·				
	The attached document(s), which was/were handed out in this meeting, is/are to be placed						
06/08/2000	in the public domain as soon as possible. The minutes of the meeting will be issued in the near future. Following are administrative details regarding this meeting:						
l							
	Docket Number(s)	50-3	50-368				
	Plant/Facility Name	Ark	Arkansas Nuclear One, Unit 2 (ANO-2)				
	TAC Number(s) (if available)	MA	MA1951 and MA8418				
	Reference Meeting Notice	Mee	Meeting Notice Dated May 24, 2000				
	Purpose of Meeting (copy from meeting notice)	To f	To facilitate review of EOI's February 11, 2000, deterministic				
		operational assessment and March 9, 2000, risk-informed					
		proposed license change regarding steam generator tubing.					
NAME OF PERSON WHO ISSUED MEETING NOTICE TITLE							
T. Alexion			Project Manager				
OFFICE							
Nuclear Reactor	Regulation						
	nsing Project Management						
BRANCH Project Director	ate IV & Decommissioning						
		-					
Distribution of this Docket File/Centr	s form and attachments:						
PUBLIC							
NRC FORM 658 (9-1999)	20		N RECYCLED PAPER This form was designed using InForms				
(* 1000)							
			DFO				

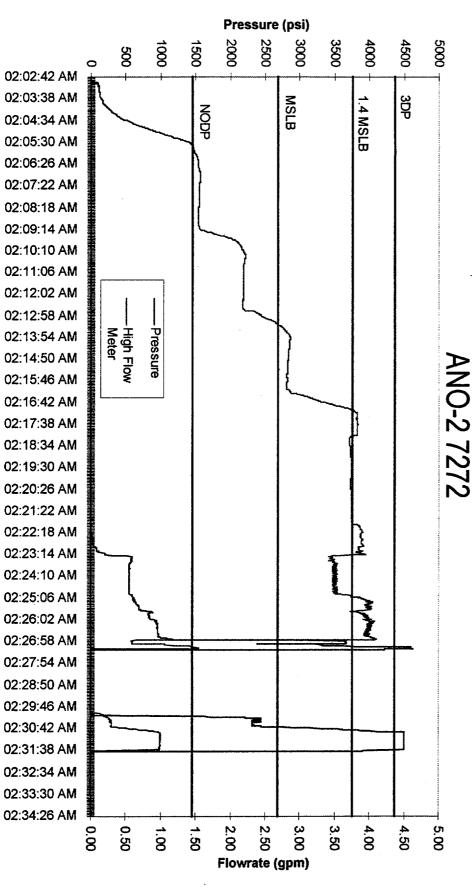
ANO Unit 2 Steam Generator Evaluation

June 8, 2000

Introduction

Craig Anderson Vice-President Operations, ANO

ANO-2 Steam Generator Evaluation


Introduction..... Craig Anderson Safety and Operational Assessment Overview..... Robert Bement Operational Assessment (OA)..... Darol Harrison Background Continued Testing Deterministic OA Risk Assessment...... Mark Smith ConclusionsCraig Anderson

Safety and Operational Assessment Overview

Robert Bement General Manager, ANO

Safety Perspective

- All in-situ pressure tested tubes exceeded MSLB pressures
- Low probability of tube failure under MSLB pressure for remainder of current cycle
- Limiting eggcrate flaws in-situ tested during last four outages
 - No leakage at MSLB pressure
 - I One failure to meet 3∆P
 - I Corrective action taken

Time

Safety Perspective (Continued)

- Low level and diverse leakage detection capability
- Operators trained on mitigating actions
- Administrative limit established
 - | 25 GPD verified leakage
- Insights from risk evaluation (severe accident)
 - I Compensating actions already taken to further reduce risk
 - Steps to maintain secondary pressure
 - Compensating actions to be taken to further reduce risk
 - Depressurize primary side

ANO-2 Operational Assessment Overview

2P99 In-situ Test Results

- Tested a total of 6 indications
 - I All met MSLB pressure with zero leakage
 - I All six met 1.43 MSLB
 - I Five met 4650 psi (3∆P plus additional margin)
- I flaw (72-72) taken to 4147 psi due to leakage in excess of pump capacity
 - I Bladder could not be installed
 - I Further analysis required to determine tube structural integrity

ANO-2 Operational Assessment Overview

2P99 In-situ Test Results (continued)

- I NEI 97-06 provides for the completion of tube structural integrity by analysis
- Analysis supported by additional lab testing of notched tubes concludes that 72-72 did meet structural integrity requirements with margin

ANO-2 Operational Assessment Overview

 ANO-2 is safe to operate until 2R14
 Analysis demonstrated the unit can operate until the mid-September SG replacement outage in full compliance with our operating license and commitment to NEI 97-06

Operational Assessment

Darol Harrison Supervisor, Engineering Programs

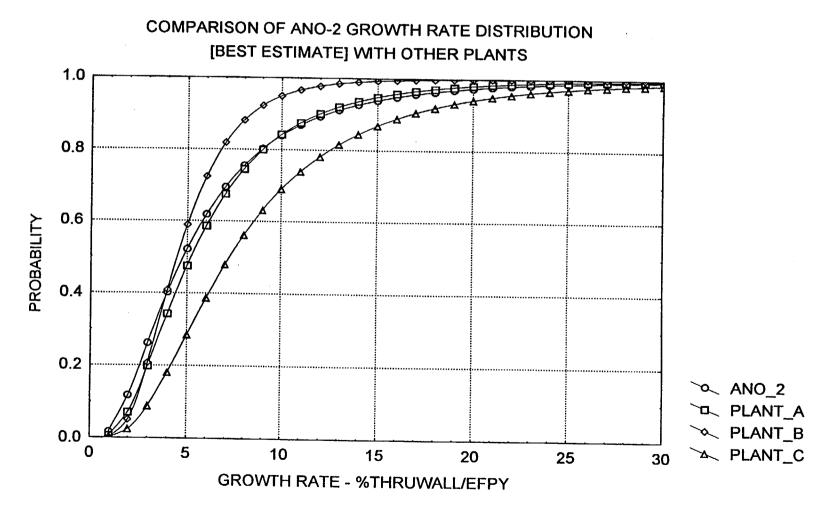
ANO-2 Deterministic Operational Assessment

Deterministic Operational Assessment

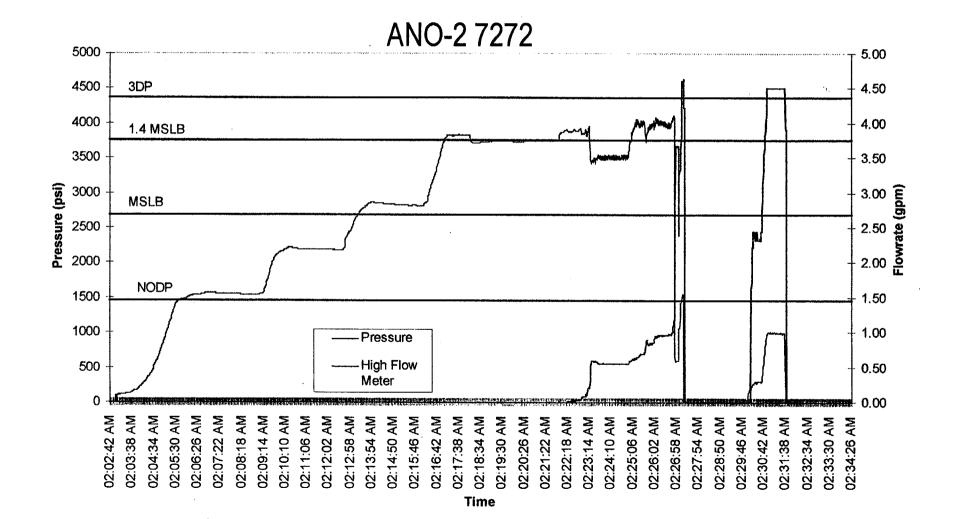
- Background
- Review of previous data
 - I Limited to eggcrate axial indications
 - I In-situ results
- Discuss continued testing
- I Original analysis still bounding

Eggcrate Axial Cracking

- 1st detected in 1991 (2R8)
- Leaker in 1996 (2F96)
- Began plug on detection in 1997 (2R12)
- 1998 (2R13) eliminated resolution analysis from leaving flaws in service
- 1999 (2P99) calibration standard improvement


1998 Extensive SSPD Performed

- Utilized pulled tube data
- Performed under same conditions as during outage
 - I Replicated 2R13 issue
 - I Allowed quantification of POD in the field
- Results showed POD improvement above 50% TW of about 20 points
 - I Information incorporated in analyst training and testing program


- 1999 Calibration Standard Change
 - Flaw voltages increased
 - Increased number of flaws detected due to this improvement

Growth Rate Evaluations

- Several growth rate studies conducted
 - I Over different operating intervals
 - I Compared to other CE plant data
- Result is growth behavior is known
 - I Growth rate has not changed in this operating period

· · · · ·

1

Margin of 3 to burst during normal operation

- $3\Delta P = 4050$ (4369 psid at room temperature)
 - I ASME design code required $S_m < S_u/3$
 - Basis for repair limit
 - I NEI 97-06 performance criteria
- **I** Design Basis Accident ΔP
 - | 2500 psid for MSLB
 - Probability of MSLB very low

ANO-2 Operational Assessment 2P99 Condition Monitoring

Conclusions From Initial Work

■ 72-72 did not burst

- I Post in-situ condition equivalent to ligament tearing to permit significant leakage
- No crack extension (required for a burst)
- Evaluation based upon Argonne National Lab (ANL) ligament tearing and Westinghouse burst pressure models

1 Objective to predict ΔP between ligament tearing and burst

Based on results, ~500 psi pressure increase above 4147

EDM Testing

Ŧ

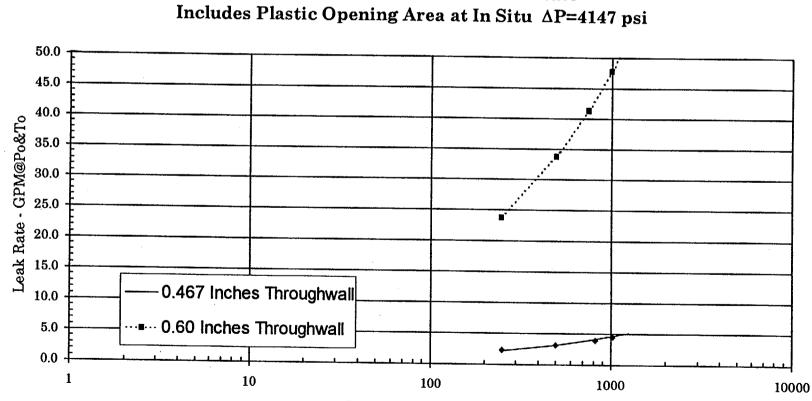
I Based on $\triangle P$ between complete and incomplete burst tests

Supported >500 psi pressure increase

Continued testing to support deterministic Operational Assessment

- I Test objectives
 - I Match 72-72 leakage

I Determine ΔP between ligament tearing and burst

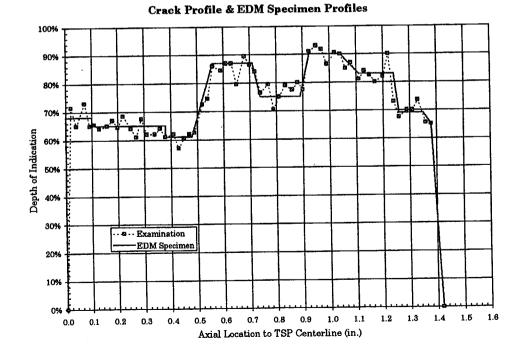

More complex EDM samples

I Leakage and burst

- Analytical model
 - I ANL model
 - I WCAP

ANO-2 R72C72 Post In Situ Leak Rate

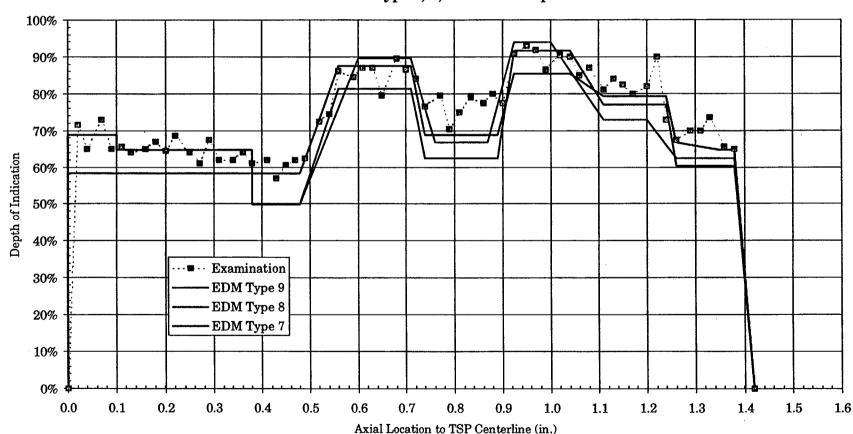
1



Pressure Difference - psi

EDM Samples

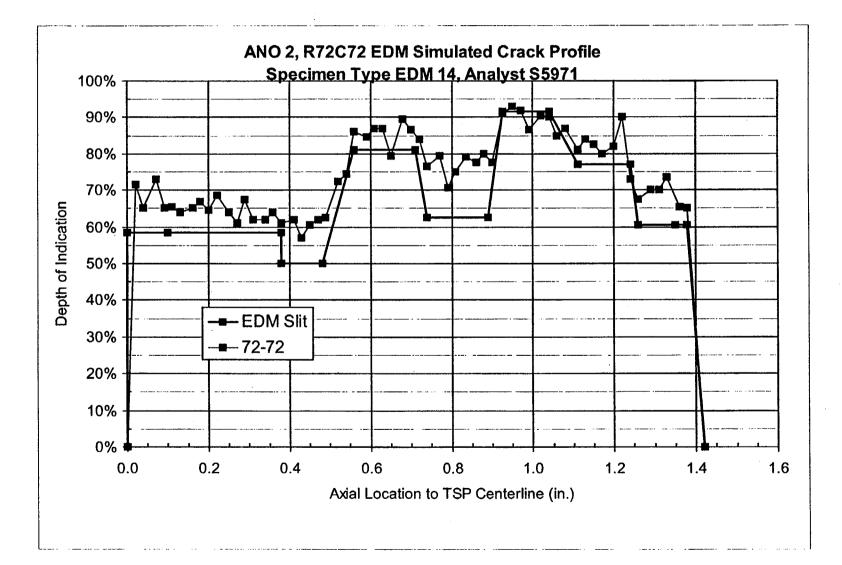
Ŧ


First developed complex EDM to mimic tube 72-72 ECT profile

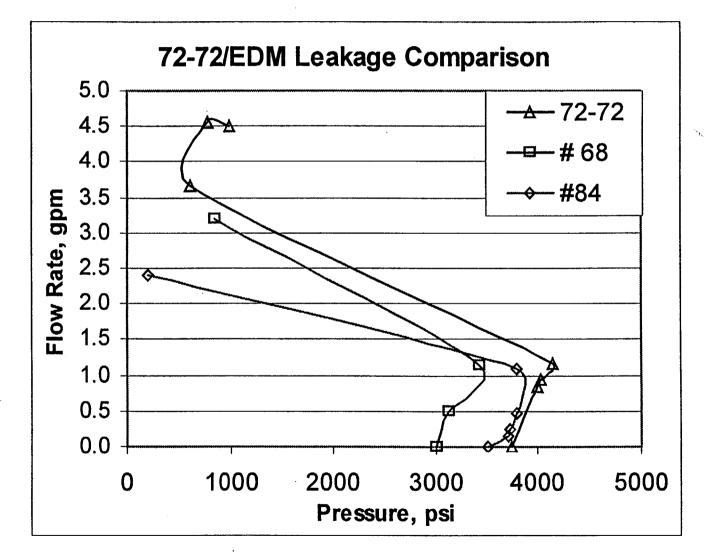
- Produced very low ligament tearing values (~2500 psi)
 - I No leakage prior to tearing
 - I Could not repressurize post ligament tearing
- Concluded that the ECT profile was giving overly conservative estimates for depth
 - I Supported by pulled tube results
 - I Calculations estimate 8% TW correction would result in comparable pressures that 72-72 exhibited

- Next Produced flaws that were reduced in depth by 7% and 10%
- Resulted in increased ligament tearing pressures
 - I No leakage prior to ligament tearing
 - I Could not repressurize
 - I Flaw lengths were ~ 1 inch
- Leakage still in excess of 72-72
- Modified profile in an attempt to get more accurate leakage profiles

- Adjusted peak depths to get a correct pressure/leakage response
- Adjusted ligament depth to obtain the flaw length matching the test results
- Ligament failure pressure close to predicted
 Length of the opening and leakage still not similar

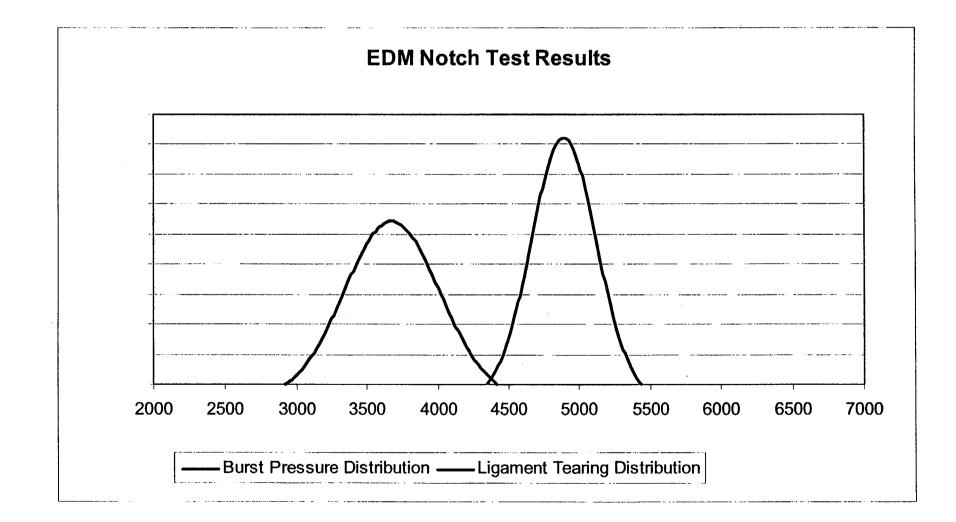


Crack Profile S5971 and Type 7, 8, and 9 EDM Specimen Profiles


1

- Next Altered the angle of the peak depths
 - Resulted in a shorter flaw opening
 - I Leakage response representative of 72-72
 - Able to repressurize two samples similar to 72-72

1

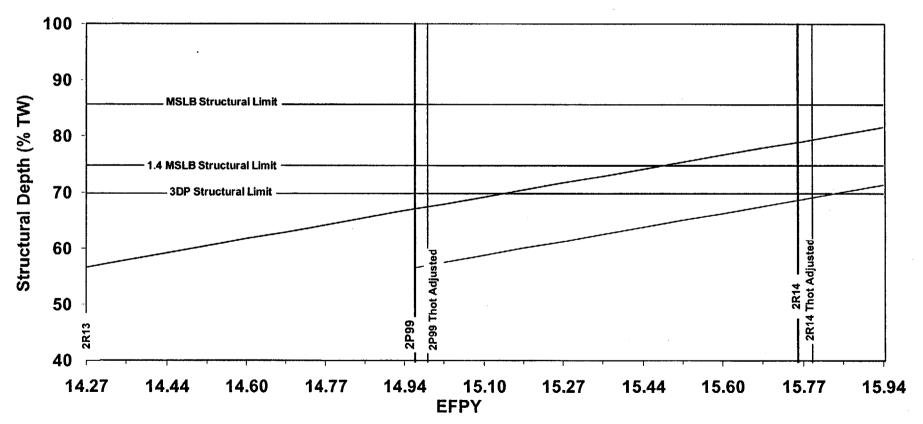


1

	Type 14	I Test Re	sults	
		Ligament		
	Specimen	Tearing	Specimen	Burst
	#	Pressure	#	Pressure
	66	4010	75	5238
	67	4350	77	5140
	68	3956	87	4791
	69	3350	88	4654
	74	3855	93	4865
	76	3488	94	4865
	83	3442	95	4570
	84	3488	96	5011
	85	3689		
	Average	3736		4892
Standard				
Deviation		331		229
	Avg + 1 SD	4067	Avg - 1 SD	4663
Delta Press	ure at 1SD	4663 - 4	 067 = 595	

1

EDM Sample Test Conclusions 72-72 ECT profile over concernations


- 72-72 ECT profile over conservative
- Post in-situ opening ~1/2" long
 - < critical crack length</pre>
- Refined profiles based on model and test results
 - I Able to produce flaw profile with a leak response that behaved like 72-72
- I Objective was to match leakage and estimate ΔP
 - I Leakage results very similar
 - I ΔP confirms analytical model result of ~500 psi above 4147 is conservative

PARAMETER	SGTI Guidelines	
POD Value	95%	
Structural Depth Equivalent	56.6%	
Growth Rate	95% Struct. Depth	
Growth Equivalent	15%	
Length Value	90% (2P99 data)	
Length Equivalent	0.98	
Burst Correlation	90% Value	
Material Properties	125,900	
Material Equivalent	90%	

1

Deterministic Analysis for Eggcrate Hot Leg Axials

Ŧ

Summary of Deterministic Analysis
 The original 500 psi delta is still valid
 Tube 72-72 met 3∆P with margin
 Operation until September 2000 remains justified

Risk Assessment

Mark Smith Manager, Engineering Programs

ANO-2 SGTR Risk Assessment Objective and Scope

Objective

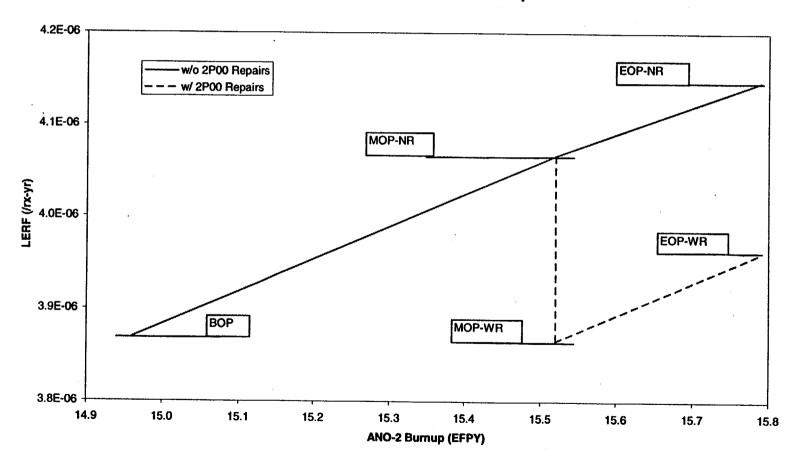
- Evaluate the effect of continued operation to 2R14 on both Core Damage Frequency (CDF) and Large Early Release Frequency (LERF)
- Scope of risk assessment consistent with NUREG-1570
 - Spontaneous Steam Generator Tube Rupture (SGTR)
 - | Pressure Induced (PI) SGTRs
 - Temperature Induced (TI) SGTRs

ANO-2 SGTR Risk Assessment Pressure Induced SGTR Risk

Dominant PI SGTR Risk Contributors:

 MSL Break-Induced SGTRs
 ATWS-Induced SGTRs

 PI SGTR Risk Results:


 ΔCDF = 4E-9/rx-yr
 ΔLERF = 4E-9/rx-yr

ANO-2 SGTR Risk Assessment Severe Accident Risk

 Important Factors Affecting TI-SGTR Risk:
 RCS Pressure
 SG Inventory
 SG Pressure
 TI-SGTR Risk Results
 ΔCDF = 0/rx-yr

 $\Delta \text{LERF} = 1.9\text{E}-7/\text{rx-yr}$

ANO-2 SGTR Risk Assessment Overall SGTR Risk Results

Ţ.

Total LERF vs. ANO-2 Burnup

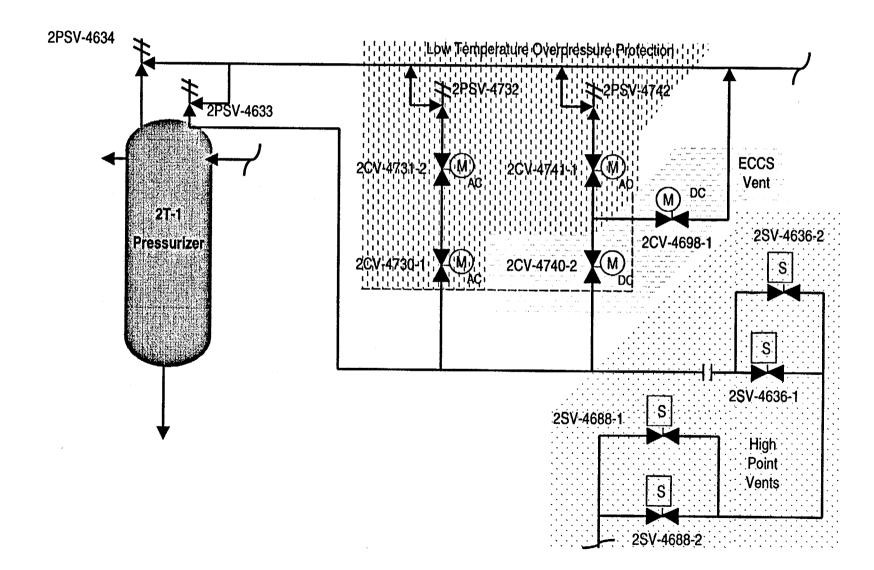
ANO-2 SGTR Risk Assessment Overall SGTR Risk Results

ANO-2 2P99-2P00 Delta LERF Due to PI-SGTR and TI-SGTR (dLERF Between w/ and w/o 2P00 SG Repair, Averaged over 2P00-2R14 Interval) 1.E-05 Average Delta LERF Due to PI-SGTR and TI-SGTR 1.E-06 **REGION I REGION II** 1.E-07 ANO-2 Delta LERF due to PI- & TI-SGTR Difference between w/ 2P00 SG Inspection/Repair (WR) and w/ no 2P00 SG Inspection/Repair (NR) Cases Averaged over 2P00-2R14 Interval **REGION III** 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04

1

1.E-03

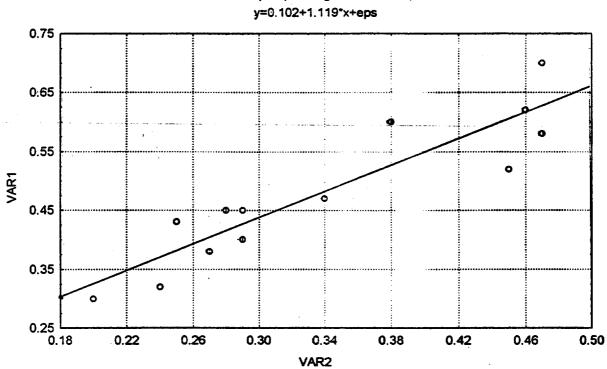
ANO-2 SGTR Risk Assessment Analysis Features

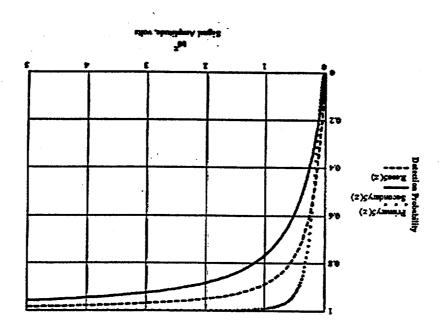

- Flaw Population Based on Realistic POD
- ANL Flawed Tube Failure Model (NUREG/CR-6575):
 - Creep Analysis of Ligament Failure as in NUREG-1570
 - I Flow Stress Model to Predict Failure Mode

ANO-2 SGTR Risk Assessment Sensitivity Analysis

- Assume Ligament Failure Leads to Rupture -∆ LERF Remains in Region II
- Credit for RCS Depressurization △ LERF Drops to Region III

ANO-2 SGTR Risk Assessment ANO-2 Pressurizer

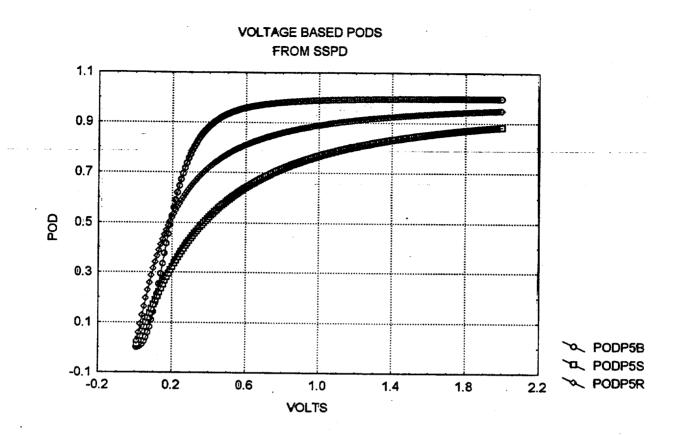

1

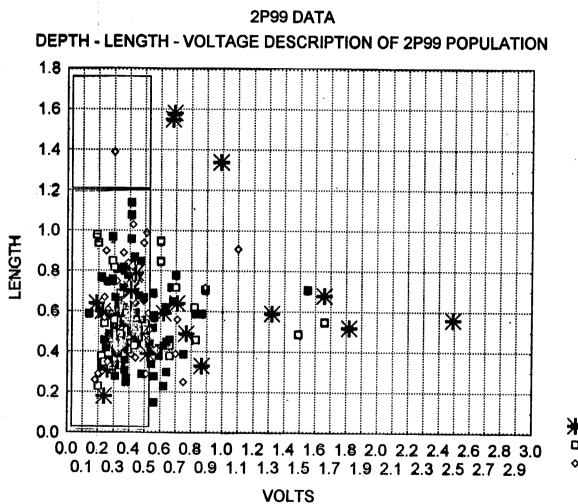

ANO-2 SGTR Risk Assessment Conclusions

Continued Plant Operation to 2R14 is Safe
 Design basis events
 Severe accidents
 Actions Being Taken to Further Improve Safety

- I Maintain Secondary Pressure
 - I EOP and SAMG Changes
- Depressurize Primary Side
 - I Hardware and SAMG Changes

Scatterplot (calchng.STA 10v*14c)




$$geo2(z) := \frac{1 + exp(K2p p p q_0 + K2b p p q_1 \cdot z)}{exp(K2p p q_0 + K2b p p q_1 \cdot z)}$$

 $\frac{(z \cdot {}^{1}bo_{1}^{-}o_{2}^{0} + 22p_{1}^{-}o_{3}^{0} + 22p_{1}^{-}o_{1}^{0} + 22p_{1}^{-}o_{3}^{1} + 2p_{1}^{-}o_{3}^{1} + 2p_{$

$$\frac{1 + \exp(P5b_0g_0 + P5b_0g_1 \cdot z)}{\exp(P5b_0g_0 + P5b_0g_1 \cdot z)} = \frac{1}{2}$$

001 - 1'1'0 =: (z)801

₩ V1>90
 □ V1>80 AND V1<90.01
 ◊ V1>70 AND V1<80.01

11

• •

Conclusions

Craig Anderson Vice-President, ANO