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1. PURPOSE

The purpose of this Analysis/Model Report (AMR) is to document the development of the
Mountain-Scale Thermal-Hydrologic (TH) Model and evaluate the effects of coupled TH
processes on mountain-scale conditions at Yucca Mountain. Nevada. This is in accordance with
the AMR Development Plan for U0105, Mountain-Scale Coupled Processes (TH) Models
(CRWMS M&O 1999a). This model and its submodels provides the necessary framework to test
conceptual hypotheses of heat and fluid flow and predict flow behavior in response to radioactive
decay heat release from a potential nuclear waste repository at the Yucca Mountain site. This
AMR provides input for Performance Assessment (PA) and the unsaturated zone (UZ) Flow and
Transport Process Model Report (PMR). In this AMR any reference to "repository” means the
potential nuclear waste repository at Yucca Mountain and any reference to "drifts” means the
potential emplacement drifts at the repository horizon.

The Mountain-Scale TH Model numerically simulates the impact of nuclear waste heat release
on the natural hydrogeological system, including a representation of heat-driven processes
occurring in the far field. The simulations provide predictions for thermally affected liquid
saturation, gas- and liquid-phase flux, and water and rock temperature (together referred to as
flow fields). Of particular interest is the impact of thermal loading imposed by waste
emplacement on percolation at and near the repository host rock and the potential flow barrier
effects in the basal vitrophyre underlying the repository horizon.

The mountain-scale TH flow fields are developed using the UZ Flow and Transport Model (UZ
Model)  with  input  parameters based on  the calibrated  property  set
(DTN: LB997141233129.001). The flow fields are developed with a spatially varying mean
infiltration rate and also with varying climates during the thermal-loading period. The
simulations were performed using the average thermal load of 72.7 kW/acre and a ventilation
efficiency of 70% for 50 years (DTN: SN9907T0872799.001). The flow fields have been
submitted to the Technical Data Management System (TDMS) for input to Total System
Performance Assessment (TSPA) activities.

Predictions of thermal-loading effects in such models in turn require establishment and
acceptance of mathematical models that accurately represent the physics of heat and fluid
transport in the UZ. In this AMR the mathematical formulation employed in the TOUGH2
family of codes (Pruess 1987, pp. 2-11, 1991), the continuum models, and the van Genuchten
capillary pressure and relative permeability relationships are relied upon to adequately describe
the behavior of the UZ under thermal-loading conditions. This formulation is based on the
traditional energy and mass conservation relationships, together with appropriate constitutive
equations.

Model validation is documented within this AMR. During the development of the UZ TH flow
submodels, the accuracy and validity of the model results were evaluated based on scientific
principles and current understanding of fracture-matrix interactions, heat transport, and two-
phase flow in unsaturated subsurface systems. Calibration of model temperature provides a basis
for assessing the effectiveness of the model to capture mountain-scale processes. The analyses
conducted in this AMR are intended to evaluate the mountain-scale response to thermal load
under the proposed design conditions. The numerical models are used to determine the effect of
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thermal loading on mountain-scale liquid and gas flux, temperature, and moisture distribution in
the UZ.
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2. QUALITY ASSURANCE

The activities documented in this AMR were evaluated with other related activities in
accordance with QAP-2-0 Rev.5, Conduct of Activities, and were determined to be quality
affecting and subject to the requirements of the U.S. DOE Office of Civilian Radioactive Waste
Management (OCRWM) Quality Assurance Requirements and Description (QARD) (DOE
1998). This evaluation is documented in Activity Evaluation of M&QO Site Investigations
(CRWMS M&O 1999b, 1999c; and Wemheuer 1999). Accordingly, the modeling activities
documented in this AMR have been conducted in accordance with the CRWMS M&O quality
assurance program, using OCRWM Administrative Procedures (APs) and YMP-LBNL Quality
Implementing Procedures (QIPs) identified in the AMR Development Plan for U0105, Mountain-
Scale Coupled Processes (TH) Models (CRWMS M&O 1999a). This AMR has been developed
in accordance with procedure AP-3.10Q, Rev. 1, ICN 1, Analyses and Models.

MDL-NBS-HS-000007 REV00 15 March 2000
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3. COMPUTER SOFTWARE AND MODEL USAGE

The software codes and routines used in this study are listed in Table 1. These were appropriate
for the intended application, were used only within the range of their software validation, and
were obtained from configuration management in accordance with AP-SL.1Q, Rev. 2, ICN2,
Software Management.

Table 1. Computer Software

Software Name E Version | Software Tracking Number Computer Platform :
f (STN):
TOUGH2 V1.4 1 1.4 10007-1.4-01 Sun or DEC Workstation w/
i Unix OS
EXT V1.0 1.0 10047-1.0-00 { Sun Workstation w/ Unix OS
Infil2grid V1.6 16 10077-1.6-00 Sun Workstation w/ Unix OS
Wingridder 1.0 10024-1.0-00 PC
Routines:
thbcgen-vO.f 1.0 10219-1.0-00 | Sun Workstation w/ Unix 0S8
gen-incon-vQ.f 1.0 10220-1.0-00 ! Sun Workstation w/ Unix OS
i getTa_layer_VO.f 1.0 10221-1.0-00 Sun Workstation w/ Unix OS
| get_temp_vO.f 1.0 10222-1.0-00 Sun Workstation w/ Unix 0S
add_rep_vO.f 1.0 10223-1.0-00 Sun Workstation w/ Unix OS
toptemp_vO.f 1.0 10224-1.0-00 Sun Waorkstation w/ Unix OS
hsource_vO0.f 1.0 10225-1.0-00 Sun Workstation w/ Unix OS
! dk2ecm_mat_vO0.f 1.0 10226-1.0-00 Sun Workstation w/ Unix OS

To model the nonisothermal effects of thermal loading on the UZ, we used the program
TOUGH?2 V1.4 with equation of state module EOS3. This program has been qualified under AP-
SL.1Q. The use of TOUGH2 V1.4 prior to obtaining it from configuration management is being
evaluated under AP-3.17Q, Impact Reviews, but no impact is anticipated. To process the
TOUGH?2 output for plotting, we use the code EXT V1.0 a postprocessor for TOUGH2 codes
that was reverified under AP-SL.1Q. Infil2grid V1.6 is used to map the infiltration flux from the
infiltration maps onto the numerical grid. This code is being qualified under AP-SL.1Q, Rev. 2,
ICN 4, and a Software Activity Plan for use of unqualified software and copy of the code have
been submitted to configuration management per AP-S1.1Q. The code Wingridder V1.0 was
used to generate numerical grids used here and is documented in a separate AMR. We used this
code to develop an additional refined North-South for detailed evaluation of thermal-loading
effects. The code is also being qualified under AP-SI 1Q, Rev. 2, ICN 4, Software Activity Plan
for use of unqualified software and copy of the code have been submitted to configuration
management per AP-SL.1Q. '
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The documentation for the routines is provided in the Software Routine Reports (SRR) submitted
under the STN in Table 1. These were used for pre- and post-processing of files for TOUGH2
V14,

Standard spreadsheet and graphics software programs (TecPLOT V7.0 and EXCEL 97 SR-1)
were also used but are not subject to software quality assurance requirements, because these are
commercially available software products.

This AMR documents the Mountain-Scale TH Model. Input and output files for the model
simulations documented in this AMR are listed and discussed under each modeled scenario in
Section 6.
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4. INPUTS

4.1 DATA AND PARAMETERS

Key input data used in the TH model development are listed in Table 2 and include the

following:

Fracture properties (frequency, permeability, van Genuchten parameters, and
aperture, porosity, and interface area) for each UZ model layer.

Matrix properties (porosity, permeability, van Genuchten o and m ) for each UZ
model layer.

Thermal properties (grain density, wet and dry thermal conductivity, grain specific
heat, and tortuosity coefficients) for each model layer.

Fault properties (matrix and fracture) for each hydrogeologic unit.
Repository thermal-load and ventilation efficiency.

Infiltration rates and changes with climate

The calibrated parameter sets also include estimates of active-fracture parameters, ¥, (Liu et al.
1998) for each model layer that accounts for the reduction in interaction between matrix and
fracture flow resulting from flow fingering and channeling. Specific input data sets, associated
Data Tracking Numbers (DTNs) and Input Tracking Numbers (ITN) are provided in Table 2.
The QA status of these data is provided in the Document Input Reference System (DIRS)
included as Attachment 1. Complete References are also presented in Section 8.3.
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Table 2. Input Data Source and Data Tracking Numbers

Data Description

DTN or ITN

Current climate infiltration maps — average,
low and high

GS000399991221.002

Future climate {(monsoon) infiltration maps—
average, low and high

GS000399991221.002

Future climate (glacial transition) infiitration
maps — average, low and high

GS000399991221.002

3-D UZ Model Grid, properties calibration LB990501233129.004
3-D UZ Model Grid LB990701233129.001
Repository thermal load and decay data SN9907T0872799.001

Thermal properties for model layers

LB991091233129.006

Calibrated fracture and matrix properties
sets (base case)

LB997141233129.001

In situ gas pressure and temperature data—
Uz#4, UZ#5, NRG-6, NRG-7a, SD-12, UZ-
7a

(G5960308312232.001

In situ gas pressure and temperature data—
NRG-6, NRG-7a

(GS950208312232.003

IN situ gas pressure and temperature data
UZ#4 and UZ#4

GS951108312232.008

In situ borehole instrumentation and
monitoring NRG-7a, NRG-6, UZ#4, UZ#5,
UZ-7a and SD-12 — temperature, pressure,
and water potential

(GS970108312232.002

In situ borehole instrumentation and
monitoring-NRG-7a, UZ#4, UZ#5, UZ-7a,
SD-12 - temperature, pressure, and water
potential

GS$970808312232.005

In situ borehole instrumentation and
monitoring NRG-7a, UZ#4, UZ#5, UZ-7a
and SD-12-temperature, pressure, and
water potential

(GS971108312232.007

In situ borehole instrumentation and
monitoring NRG-6, NRG-7a, UZ#4, UZ#5,
UZ-7a and SD-12-temperature, pressure,
and water potential

GS980408312232.001

Geologic Framework Model, GFM 3.1 or
borehole logs -list

MO09901MWDGFM31.000

Matrix hydrologic property data

GS960908312231.004

2nput transmittal per AP-3.14Q, (CRWMS M&O, 1999d)
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4.2 CRITERIA

This AMR complies with the DOE interim guidance (Dyer 1999). Subparts of the interim
guidance that apply to this analysis or modeling activity are those pertaining to the
characterization of the Yucca Mountain site (Subpart B, Section 15). The compilation of
information regarding geology of the site is in support of the License Application (Subpart B,
Section 21(c)(1)(ii)) and the definition of geologic parameters and conceptual models used in
performance assessment (Subpart E, Section 114(a)). The compilation of information regarding
hydrology of the site is in support of the License Application (Subpart B, Section 21(c)(1)(11))
and the definition of hydrologic parameters and conceptual models used in performance
assessment (Subpart E, Section 114(a)).

4.3 CODES AND STANDARDS

No specific formally established standards have been identified as applying to this modeling
activity.
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5. ASSUMPTIONS

The assumptions documented below are required to develop the UZ Mountain-Scale TH Model
discussed in this AMR. This section presents the rationale and justification for using these
assumptions and references the sections in the AMR where these assumptions are used. The
assumptions are in the numerical representation of thermal load conditions at the repository, the
model boundary conditions, the effect of TH process on flow properties, and the influence of
perched water on TH processes. The assumptions below apply to all the TH models discussed in
Sections 6.7—6.11. Further confirmation of these assumptions is not required for the intended use
of these model results. Detailed discussion of the implementation of these assumptions in the TH
models is presented in Sections 6.1-6.6.

5.1 ASSUMPTIONS REGARDING BOUNDARY CONDITIONS MODEL AND
THERMAL LOADING

Treatment of boundary conditions can be directly incorporated in the numerical grid generation
scheme, since model boundaries can coincide with numerical grid boundaries. In TOUGH2,
boundary conditions are generally specified by means of appropriately chosen volume elements
and flow connections. Boundary conditions can be of two basic types. Dirichlet conditions
prescribe thermodynamic conditions, such as pressure or temperature on the boundary, while
Neumann conditions prescribe fluxes of mass or heat crossing boundary surfaces (Pruess 1991,
p. 33-37). A special case of Neumann boundary conditions is the no-flux boundary. In the
Integral Finite Difference Method (IFDM) used in TOUGH?2, this case is handled by not
specifying any flow conditions across the boundary. Dirichlet-type boundary conditions, such as
constant pressures or temperatures, can be specified by introducing appropriate boundary
elements and connections. Specific assumptions under this category are as follows:

I.  Thermal conditions at the top and bottom boundaries are represented using fixed
temperatures. This is equivalent to using an infinite heat sink/source term. In
addition, top and bottom model boundaries are also subject to constant pressure
and saturation conditions.

The use of constant temperature, pressure, and saturation boundaries has been
discussed extensively (e.g., Wu et al. 1999a). The fixed temperature condition at
the top and bottom boundaries is a simplified representation of the heat exchange
on the boundary “surfaces” between the model domain and the atmosphere or the
water table. The top boundary of the model, made up of the land surface and tuff-
alluvial contact, is controlled mainly by the atmosphere, while temperatures at the
water table are determined by the ambient geothermal gradients and infiltration
flux. The two boundaries are both far away from the potential repository horizon:
therefore, the effects of specified temperatures on thermal behavior at or near the
repository are expected to be small. As a result, constant temperatures, estimated
from field-measured values along these boundaries, will provide a good
approximation of the TH system to be simulated.
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9

An equivalent heat load is evenly distributed within potential emplacement drifts
and released from time zero after waste emplacement, according to the predicted
heat load history (thermal decay curve).

Actual thermal load at the repository will be discretely distributed in both space
and time. The assumption of an evenly distributed thermal source over all the
drifts will have little effect on far-field TH processes on the mountain-scale
model, because detailed thermal load distributions affect only drift-scale
processes and are limited to the first few years of thermal load.

3. Potential waste emplacement drifts are assigned matrix and fracture properties of
the hydrogeological unit in which they are located.

Excavation and backfill of the drifts will substantially affect only the near-field
environment. Mountain-scale TH models are designed to evaluate the TH
processes primarily on the large scale of the UZ system as well as averaged
behavior near the drifts over tens of thousands of years. Over this period, the
material used in drifts will have little impact on mountain-scale TH processes.

4. Ventilation removes thermal energy only. The amount of water vapor and air
removed by ventilation can be ignored.

When ventilation is used to remove some of the heat generated earlier by the
emplaced waste, it is assumed that 70% of the heat generated is removed by
ventilation for the first 50 years. In the model, ventilation is assumed to remove
the heat only, and the effects of ventilation and associated air circulation on water
vapor and air at the repository are ignored. Although ventilation may remove
some water vapor from the drifts, the amount removed is negligible because for
most of the ventilated period, the drift walls will be completely dry.

5.2 ASSUMPTIONS REGARDING EFFECTS OF THERMAL LOAD ON FLOW
PROPERTIES

Flow and transport properties can be affected by changes in temperature through thermal-
mechanical (TM) effects. Similarly, dissolution, precipitation, adsorption as well as other
geochemical reactions resulting from thermal-hydrologic-chemical (THC) coupling can alter
flow and transport properties. Many of the temperature-dependent properties, such as fluid
density, viscosity, and specific enthalpy, are incorporated in the formulation of the TOUGH2
V1.4 (STN: 10007-1.4 01, V1.4) code. However, the effects of TM and THC on rock properties,
such as permeability, relative permeability and the relationship between capillary pressure and
liquid saturation, have not been implemented in TOUGH?2, V1.4 as used in this study. In this
AMR, we assume:
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1. Effects of TM and THC on rock properties as a result of thermal load can be
ignored.

THC and TM effects may have a significant impact on TH processes only at or
near drifts during the first few years of the thermal-loading period. On the
mountain-scale domain and long-term analyses, the effects of TM and THC on
flow and transport properties are expected to be small.

1

Hysteresis effects are negligible.

In addition to TM and THC effects, the thermal load will create significant dry-
out and rewetting phenomena in the nearby regions of tuffs. Hysteresis effects
will accompany these drying (drainage) and rewetting (imbibition) processes.
This leads to different curves of relative permeability and capillary pressures for
describing drainage and imbibing processes, respectively. In this work. we ignore
hysteresis effects because they are small compared to the uncertainty inherent to
the development of the capillary pressure and relative permeability relationships.

Use of the two assumptions regarding TM/THC coupling and hysteresis effects results partially
from the limitations of available field data and constitutive relations to describe these
phenomena. However, these effects are considered negligible when compared with the
uncertainty of the rock properties existing in the collected data.

5.3 ASSUMPTION REGARDING EFFECT OF PERCHED WATER ON TH
PROCESSES

Perched water effects are ignored.,

The occurrence of perched water and its effects on the UZ flow fields are
discussed in a separate AMR. Perched water conditions are confined mainly to
the lower units of the Topopah Springs welded (TSw) hydrogeological unit and
on top of the Calico Hills nonwelded unit (CHn). Over the repository domain,
perched water locations are typically 100-150 m below the repository horizon
(Wu et al 1999b). Because the dominant heat-transfer mechanism at these
locations is heat conduction (boiling conditions not attained), the effect of
repository thermal load on perched water bodies is ignored.
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6. ANALYSIS/MODEL

As discussed in Section 1, this AMR documents the development and the results of the
Mountain-Scale TH Model. This section describes the conceptual model of UZ flow at Yucca
Mountain, the numerical models developed, the numerical grids used, and the modeling
parameters used in the TH submodels. It consists of the following sections:

. Conceptual model

. Numerical grids

. Thermal load

. Boundary and ambient conditions

. Thermal properties

. Infiltration

. Results of the TH models, submodels, and simulations

Key scientific notebooks used to document modeling activities described in this AMR are listed
in Table 3.

Table 3. Scientific Notebooks

LBNL Scientific M&O Scientific Page Numbers Accession Numbers
Notebook ID Notebook ID (ACC)
YMP-LBNL-GSB-1.6.3 SN-LBNL-SI-085-VI. pp. 81-135 MOL.19991217.0514
YMP-LBNL-YSW-2 SN-LBNL-SI-120-VI pp. 168-172 MOL19991217.0515
YMP-LBNL-GSB-LP-2 SN-LBNL-SI-103-V! pp. 79-81 MOL19991217.0516
YMP-LBNL-GSB-1.1.2 SN-LBNL-SI-003-VI pp. 148-151 MOL.19991223.0175

6.1 CONCEPTUAL MODEL

To model unsaturated flow under thermal loading, the selected conceptual model for UZ flow
must be consistent with field observations. Detailed discussion of the conceptual models of UZ
flow at Yucca Mountain and the validity of the numerical methods are documented in separate
AMRSs. '

These conceptual models are based on the current understanding of the Yucca Mountain geology
and the UZ hydrology and incorporate previous models of UZ flow (Montazer and Wilson
1984). Field studies, lithological evaluation of boreholes, and detailed evaluation of the exposed
subsurface within the recently completed Exploratory Studies Facility (ESF) drift and the east-
west cross drift (ECRB) were used to validate the flow and transport conceptual models. These
findings are further supported by conceptual experiments of flow in exposed rocks, in the ESF
and ECRB, as well as by laboratory measurements. The major elements of the conceptual models
also include numerical approaches of the volume averaged, continuum concept for modeling
fluid and heat flow and fracture-matrix interactions. Note that in the TH submodels of this AMR,
we ignore thermal-mechanical (TM) and thermal-hydrologic-chemical (THC) coupling.
Therefore, the input flow properties are treated as constants for the modeled period.
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6.1.1 Numerical Methods for Modeling Fluid and Heat Flow

The physical laws and empirical relationships that govern the flow of heat and fluids through
porous media lead to equations that describe the balances of mass, momentum, and energy. The
partial differential equations describe the variation of fluid phase saturation and composition as
well as pressure and temperature as functions of continuous space and time coordinates in the
subsurface. The relevant numerical formulation for multicomponent mass and heat transport are
applied (Pruess 1987, pp. 2-11) to the equations of flow.

The TOUGH2 V1.4 (STN: 10007-1.4-0.1, Version 1.4) code implements the Integral Finite
Difference Method (IFDM) numerical method to model multiphase, multicomponent flow of
mass (liquid, vapor and air) and heat. The validity and accuracy of the numerical methods used
have been extensively investigated particularly for the limitations and assumptions in
mathematical formulations of the discretized form (Pruess, et. al., 1987, pp. 2-11, 1991 pp. 5-
52). The equation-of-state (EOS3: water, air and heat) module of the TOUGH2 V1.4 code,
providing the thermophysical properties for two-phase fluid mixtures of water and gas phases, is
used in this study.

In this AMR, the relationships between saturation and relative permeability and between
saturation and capillary pressure for unsaturated rock are estimated using documented equations
from Brooks and Corey (1966), and van Genuchten (1980). The base-case properties set (DTN:
LB997141233129.001) used in this AMR was developed by calibration of moisture potential
data using these relationships. In developing these properties, a modified Brooks and Corey
relationship (implemented in TOUGH2 v1.4) is used to estimate the gas relative permeability.
The van Genuchten relationship is used to estimate the relationship between liquid saturation and
relative permeability and the capillary pressure.

6.1.2 Continuum Approach and Fracture-Matrix Interactions

Numerical models generally use large computational gridblocks to represent a hydrogeological
system. For example, the UZ site-scale model consists of gridblocks with a dimension range of 5
to 300 m. In the physical domain, these large-size blocks may contain tens to hundreds of
fractures. For modeling flow in fractured porous media, the key issue is how to evaluate fluid
and heat exchange between fractures and matrix. Several conceptual formulations of the dual-
continua approaches can be used to model flow in such media. These include (1) the explicit
discrete fracture and matrix treatment; (2) the effective-continuum method (ECM); (3) the double-
porosity method; (4) the dual-permeability (dual-k) method; and (5) the multiple-interacting-
continua (MINC) method (Pruess and Narasimhan '1985). A discussion of these different model
concepts is presented in Doughty (1999, pp. 69-106). In this AMR, we use the following
continuum approaches:

I.  The ambient heat and fluid flow is modeled by both the ECM (Klavetter and
Peters 1986) and dual-k numerical models. The generalized form of the ECM
method has been implemented into the TOUGH2 V1.4 code, as described in
detail by Wu (1996).
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5 The dual-k formulation, with a single fracture continuum and single matrix
continuum representing each discrete block, is used for thermal-loading studies.
This model allows matrix-to-matrix and fracture-to-fracture flow as well as
fracture-matrix interactions.

3. The active fracture concept (Liu et al. 1998) is used to modify liquid tlow
between fractures and matrix.

6.2 NUMERICAL GRIDS

The numerical model grids used for simulating the of effects of heat are: (1) a 3-D submodel grid
of the UZ 3-D model grid and (2) two 2-D cross section model grids (NS#1 and NS#2). The first
2-D grid (NS#1) is directly extracted from the UZ 3-D grid. The second grid (NS#2) is a refined
north-south cross section also based on the Geological Framework Model, GFM 3.1
(DTN: MO9901/MWDGFM31.000). The grids were generated using Wingridder V1.0. Figure 1
shows a plan view of the UZ 3-D model and the location of the submodel domain and the 2-D
Cross sections.

In all the grids, a 5 m thick grid layer is used to represent the repository horizon. This repository
layer is bounded immediately above and below also by 5 m thick layers. In the 3-D grid. the
lateral spacing over the repository domain is equal to the spacing between the drifts (81 m), and
about 270 m along the drifts. This coarse grid is used in a separate AMR to generate the UZ
flow fields for TSPA. '

Because both the 3-D submodel grid and the 2-D NS#1 grid are directly extracted from the 3-D
UZ grid, the lateral spacing over the potential repository is the same as the drift spacing (i.e., 81
m). This type of grid, although sufficient to resolve mountain-scale UZ flux, may not provide
enough resolution for detailed evaluation of flow around and between drifts. Because liquid flux
in the UZ at Yucca Mountain is predominantly vertical, and drifts are widely spaced. the
potential exists for flow between the drifts. Modifications of the numerical grids to allow for
drift-by-drift models are documented in Scientific Notebook YMP-LBNL-GSB-1.6.3
(pp. 109°113). There may also be significant ditferences in temperature and saturation laterally
between the heated drift and the middle portion of the rock between the drifts. particularly during
carlier times of thermal load. Such processes cannot be modeled by the UZ 3-D grid or any
submodel extracted from it, because there are no numerical grid nodes between the drifts. In this
AMR. we use the following approaches to model near-drift UZ TH processes:

. Use local refinement at the repository to resolve temperature, saturation, and flux
changes only at and near this horizon.

2. Use local refinement at the repository together with lateral refincment over the
entire grid so that both the ambient infiltration and the repository TH processes
can be resolved.
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6.2.1 3-D Numerical Grid for Potential Repository Submodel

The repository submodel domain is bounded by the Solitario Canyon fault to the west, the
Pagany Wash fault to the north, the Imbricate fault to the east, and the 3-D UZ model boundary
to the south. It consists of 62,884 elements and 249,813 connections in a dual-k formulation. The
3-D repository submodel was extracted from the 3-D UZ numerical grid
(DTN: LB990701233129.001). This grid does not include perched water zones, which are
assumed to have little impact on TH processes (see Section 5.3). The development of the 3-D UZ
numerical grid is described in a separate AMR. A 3-D repository submodel is used to reduce the
computational intensity required in terms of memory and CPU time for the TH simulations. In
addition, we are primarily interested in the TH processes in the immediate vicinity of the
repository. The predominantly vertical percolation fluxes in the UZ system also makes it
unnecessary to use a larger modeling domain, such as the entire UZ Model grid. -

6.2.2  2-D North-South Grids

Two north-south 2-D grids of the UZ Model are used in this AMR, with'the locations shown in
Figure 1. The first cross section (NS#1, Figure 2) is directly extracted from the UZ 3-D grid for
TSPA (DTN: LB990701233129.001), which excludes formulations for perched water. The
second cross section (NS#2, Figure 3) is a refined north-south grid located at 170,700 east, in
which the lateral grid spacing is equal to 1/4 of the drift spacing. This grid was specifically
developed for detailed study of TH processes and is also based on the GFM 3.1 geological
model. We use WinGridder V1.0 (STN:10024-1.0-00), Version 1.0. WinGridder Version 1.0,
and its development is documented in Scientific Notebook YMP-LBNL-GSB-LP-2 (pp. 79-81).
This refined NS#2 grid also ignores the effects of perched water.

The refined NS#2 numerical grid provides a better resolution than NS#1 for the heat distribution
and detailed evaluation of the effect drift scale processes on mountain-scale TH. It also provides
a method of estimating the TH conditions and flow within the pillars. Evaluation of the extent of
this bypass flow is important for TSPA because the fluid displaced by heat at the drifts may
condense and drain between the drifts.
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6.3 POTENTIAL REPOSITORY THERMAL LOAD

For the TH submodels, we use mountain-scale thermal-loading data obtained from the TDMS
(DTN: SN9907T0872799.001). The data were developed by Waste Package Operations (WPO)
using a QAP-3-12 Transmittal of Design Input, request (PA-WP-99184.Ta) and documented
under the QAP-3-15 Calculations.

The thermal load and the resulting temperature field may have a large influence on many TH
related processes. These processes can directly impact the performance of the potential
repository. For example, emplacement of heat-generating high level waste (HLW) will elevate
the temperature and cause the redistribution of the in situ moisture at the repository as well as in
the unsaturated zone. As heat is released from the waste unit and transferred to the surrounding host
rock, the temperature near the waste packages will approach or exceed the boiling point of water
(approximately 97°C at ambient pressure). Boiling of formation water will then take place, with the
associated increase in vapor pressure and overall gas-phase pressure. This will result in forced
convection of the gas phase, with a redistribution of water, accompanied by large latent heat effects.
With favorable conditions, this may result in "heat-pipe" conditions, the steady counter-current flow
of liquid towards the repository and vapor-phase away from the repository. The liquid-phase and
gas-phase flow will perturb the in sizu fluid saturation in both fractures and matrix, and may result in
a large two-phase zone above the repository and may increase the potential for changes in the flow
properties within the condensation zones. The impact of heat on the TH processes will depend on
the thermal load and its distribution at the repository.

6.3.1 Base-Case Mountain-Scale Thermal Load

The total thermal load for the “base-case” TSPA-SR Rev0 scenario is 72.72 kW/acre, based on a
repository area of 1,050 acres. This thermal load is used in all the thermal load modeling studies.
The thermal load was input as a tabulated lookup of time versus thermal load data, following the
decay curve, using the heat GENER card incorporated into the input file for TOUGH2 V1.4. The
“GENER” block in the TOUGH2 V1.4 input is used to specify mass or heat sources/sinks in
individual elements of the model (Pruess 1987, p. 29).

6.3.2 Thermal Load with Repository Ventilation

Information on the effective mountain-scale thermal load under ventilation is also given in
DTN: SN9909T0872799.001. The base-case repository thermal-load design with ventilation
provides that 70% of the generated heat can be removed by ventilation for the preclosure period
of 50 years. After 50 years, the thermal load reverts to the “no-ventilation” rate. To account for
heat removal by ventilation during the first 50 years, we multiply the “no-ventilation” thermal
load, heat source term, by the ventilation factor (30%) for the 50-year period.

6.3.3 Heat Distribution at the Repository

In all models, each repository drift is represented by a single element (with both matrix and
fracture continua for a dual-k formulation) and is modeled with the properties of the UZ Model
layer in which the element is located. Thermal load is applied directly only to the matrix
continuum of the repository node, because it forms more that 99% of continua and the thermal
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load is computed using the column areas (combined matrix and fracture continua). The
distribution of the heat source at the potential repository horizon depends on the discrete
representation of the drifts within the repository nodes and the grid spacing.

6.3.3.1 Continuous Heat Source

If the grid spacing within the repository is equal to the drift spacing, then the entire repository
node is used to represent the drift. This results in a continuous and smeared heat source across
the repository laterally. This approach cannot provide detailed resolution to studies of TH
processes in terms of temperature, saturation, and flux for the intervening space between the
drifts. While not allowing these phenomena to be modeled near the drifts, this coarse-grid model
allows for simple and fast estimation of the long-term, average response to thermal load (after
500 years, according to this AMR). Beyond this time, heat distribution is sufficiently diffused at
the repository that such a model presents a good approximation of the heat-source distribution.
This type of modeling approach is only used in the repository submodel and the NS#1 numerical
grids, which are directly extracted from the 3-D TSPA grid. The major advantage of this
modeling approach is that it allows for direct comparison of fluid, temperature, and flux
distribution between the 3-D ambient TSPA flow field models and the TH model over the
repository domain. The impact of TH on flow and transport can then be directly estimated using
flow-fields extracted from the TH model.

6.3.3.2 Discrete Heat Source

Although the repository thermal load is computed based on the total acreage of the repository,
the heat-generating radioactive waste will be stored in the drifts within the repository at a
discrete spacing. The current repository design has drifts of 5.5 m diameter, spaced 81 m apart in
a WNW-ESE direction (Figure 1). Because of the large spacing between the drifts and the
disparity in infiltration across the model, a potential for large differences or gradients in
temperature, saturation, and flux exists between the heated drifts. The discrete (drift-by-drift)
model attempts to provide a refined-grid model that accounts for such phenomena to investigate
their importance and effect on mountain-scale TH processes.
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Figure 4. Representation of Drifts at the Potential Repository in Grid NS#1.

If the lateral grid spacing is several times smaller than the drift spacing, then a drift-by-drift
distribution of the heat source can be simulated. We can also subdivide the repository nodes in
such a grid to explicitly include an element that approximates the dimensions of the drift. To
model a more physically accurate heat distribution at the repository horizon, we performed local
refinement on the NS#1 grid by inserting a 5.0 m drift element for every 81 m lateral spacing
along the repository. We use a 5.0 m drift element (close to the 5.5 m drift diameter), because 5.0
m layers are used in the numerical grid. This drift element is bordered laterally by two equal
subelements of the original repository element. Figure 4 shows the connections between
elements in the modified grid. In this cross section, the drifts are separated by two 38.0 m wide
elements. Above and below the repository, the three elements in each repository element are
connected to the overlying and underlying elements within the same column and laterally
between themselves and the laterally adjacent elements. This locally refined grid allows for flow
between drifts. However, since the refinement is limited to the potential repository level, the
applied surface infiltration is based on the original, coarse grid spacing of 81 meters between the
drifts. The thermal loads computed based on the lateral spacing between the drifts is then applied
only to the matrix continua of the discrete drift elements.

We also used local refinement on the refined north-south NS#2 grid. In this case there are three
elements over a lateral grid spacing of 85.6 m between two drifts, each 21.39 m wide (owing to
the difference in the orientation of the drifts relative to the orientation of this cross section).
Within each drift element at the repository level, we again insert a 5.0 m wide locally refined
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element to represent the drift and two equal subelements each 8.145 m wide, and use the grid
connection scheme described above. In this refined grid, each drift element is laterally separated
by five elements between the drifts. Figure 5 shows the resulting connections in the modified
grid. The thermal load is again computed using the drift spacing (thermal load for drift column
multiplied by four) and applied to the matrix continuum of the drift element.
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MDL-NBS-HS-0000

potential
repository drift

P ‘ - S et
AN ENENEN T Er R TSI A B SR ST M TETERTEN W LR ST aaes

234800 235000 235200 235400 235600 235800
Nevada Coordinate (N-S) (m) (Scale xty =20:3)

Based on modeling results submitted with this AMR under DTN: LB991201233129.001

07 REV00 36

March 2000



Title: Mountain-Scale Coupled Processes (TH) Modet U0105

6.4 BOUNDARY AND INITIAL CONDITIONS

For TH studies, the steady-state, ambient mountain-scale temperature and saturation conditions
serve as initial conditions for the various thermal-load and infiltration scenarios. Liquid
saturation, water potential, and pneumatic pressure data are used to calibrate the flow and
transport properties, while temperature data, which are not directly used in parameter calibration
for flow and transport properties, are required to describe the geothermal conditions of the UZ
model. A steady-state ambient moisture, pressure, and temperature distribution in the mountain
can be obtained using the TOUGH2 V1.4 simulation under fixed top and bottom temperature,
pressure, and saturation boundary conditions.

6.4.1 Top Boundary .

The top of the Mountain-Scale TH Model is the ground surface, except in areas with thick
alluvium cover, where the top of the model is the alluvium-Tiva Canyon (TCw) contact. The top
boundary provides for heat, liquid and gas exchange between the modeled domain and the
atmosphere. At this boundary, the gas saturation is fixed at 0.99 (to ensure two-phase conditions
and avoid switching of primary variables), and the gas pressure is determined by the gas-static
conditions based on the fixed pressure at the bottom boundary. This is obtained directly using the
TOUGH?2 simulation results at the equilibrium state with a fixed bottom pressure. The surface
temperature 7, at any elevation Zis computed as constant according to the following equation

s

(Wu et al. 1999a, p. 195-196):

T,=T,~MZ-Z,) (Eq. 1)

S

where T, is the mean surface temperature at reference elevation Z,, and A is the dry adiabatic

atmospheric lapse rate in °C/m. This lapse is 0.01°C/m (Driscoll 1986, pp. 49-51). In this model,
the reference temperature is 18.23°C at an elevation of 1231.0 m. This surface temperature is
determined from the mean surface temperature in boreholes NRG-6 and NRG-7a
(DTN: GS950208312232.003), which had several years of continuous temperature monitoring.

6.4.2 Bottom Boundary

The water table is used as the flow boundary (in some of the submodels, it is also used as the
temperature boundary). In the numerical models, elements with the first two characters “BT”
represent the conditions at the water table. To specify fixed conditions at this level, these
elements are assigned a very large volume and thermal capacity so that their assigned initial
conditions are invariant throughout the simulations. To allow for sufficient gas mobility across
the water-table boundary, we assign a fixed liquid saturation of 0.99 (to ensure two-phase
conditions) to the elements representing the water table. The gas pressure is fixed at 0.92 bar,
representing estimated gas pressure at the water table, derived from the reference barometric
pressure at Yucca Mountain.

Calibrated temperature, described in a separate AMR, was used to specify the temperature at the
water table boundary. This is sufficient if temperature changes at the water table resulting from
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thermal load are not significant. This boundary temperature is used in the 3-D TH model
(Section 6.8, Case #1). To model changes in temperature at the water table arising from thermal
load, the boundary must be located away from it. In this AMR, we model temperature changes at
the water table by extending the bottom temperature boundary to 1,000 m below the water table.
The extended temperature boundary is used in the 3-D model case 2 (Section 6.8) and in all the
2-D TH models (Section 6.9-6.11). For the extended boundary, thermal conductivity of the
boundary elements at the water table was set to zero to cut off conductive heat flow into these
large-volume elements. The temperature at the extended boundary was fixed at 65°C by
specifying a large volume and thermal capacity for the bottom elements in the extended
boundary. This in effect nullifies any predetermined temperatures at the water table because the
only fixed temperature conditions are at the top and the extended bottom boundaries. The
permeability of the extended domain is set to zero, and therefore the entire fluid mass exchange
is limited to the water-table boundary. Below the water table, only heat conduction 1s modeled.

Extending the model bottom boundary to a fixed temperature of 65°C at -270 masl (1,000 m
below water table) is based on an average geothermal gradient of 35°C/km at the water table. We
use this uniform temperature at this boundary and allow the re-estimation of the water-table
temperatures using the prescribed boundary conditions. Steady-state simulations using extended
temperature boundary conditions show that the temperature distribution at the water table is
within# 2°C of the calibrated temperature distribution and is primarily controlled by the ambient
infiltration and geothermal gradients. Figure 6 shows the contour plot of model temperature at
the water table. This temperature distribution was used in all the simulations in which the model
temperature boundary is fixed at the water table. Over the repository domain, average
temperature at the water table (730 masl) is between 30 and 33°C.

6.4.3 Initial Conditions

The calibrated temperature boundary distributions, together with the specified pressure and
saturation boundary conditions, were used to obtain steady-state initial conditions in each of the
numerical models used. The initial conditions developed will be further discussed for the
relevant models.
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6.5 THERMAL PROPERTIES

The thermal properties used for the different formation units for the UZ were obtained from the
TDMS (DTN: LB991091233129.006) (Francis et al. 1997; Ho and Francis 1997). Table 4
summarizes the properties used in all the numerical models described in this AMR. The
processes used to obtain layer-specific properties for the UZ Model grids are documented in the
DTN.

Table 4. Thermal Properties for UZ Thermal Hydrology Modeling

Stratigraphic Unit Grain Thermal conductivity Heat
Dual-k ECM denSi? Kwet WmK | Kdry W/mK capacity
Kg/m J/kgK
tewM1 tew11 2550.0 2.000 1.600 823.06
tcwM2 tew12 2512.5 1.806 1.239 850.88
tewM3 tcw13 2470.0 0.980 0.540 857.00
ptnM1 ptn21 2380.0 1.070 ~ |o.500 1037.0
ptnM2 ptn22 2340.0 0.500 0.350 1077.0
ptnM3 ptn23 2400.0 0.970 0.440 849.00
ptnM4 ptn24 2370.0 1.020 0.460 1016.0
ptnM5 ptn25 2260.0 0.820 0.350 1330.0
ptnMé ptn 26 2370.0 0.670 0.230 1224.0
tswM1 tsw31 2510.0 . 1.000 0.370 834.00
tswM2 tsw32 2550.0 1.620 1.060 866.00
tswM3 tsw33 2510.0 1.683 0.790 882.50
tswM4 tsw34 2530.0 2.330 1.560 948.00
tswM5 tsw35 2540.0 2.020 1.200 900.00
tswM6 tsw36 2560.0 1.840 1.420 865.00
tswM7 tsw37 2560.0 1.840 1.420 865.00
tswM8 tsw38 2360.0 2.080 1.690 984.00
tswM9 tsw39 2360.0 2.080 1.690 984.00
chiMv ch1 2310.0 1.310 0.700 1057.0
chiMz chi 2310.0 1.310 0.700 1057.0
ch1Mt cht 2310.0 1.310 0.700 1057.0
ch[2345]Mv {ch[2345] |2240.0 1.170 0.580 1201.0
ch[2345}Mz |ch[2345] |2350.0 1.200 0.610 1154.0
ch[2345]Mt [ch[2345] {2295.0 1.185 0.595 1177.0
ch6Mv ché 2440.0 1.350 0.730 1174.0

DTN: LB991091233129.006
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Table 4. Thermal Properties for UZ Thermal Hydrology Modeling (Cont.)

Stratigraphic Unit Grain Thermal conductivity Heat.
Dual-k ECM densnay Kwet W/mK | Kdry W/mK capacity
Kg/m J/kgK
chéMz ché 2440.0 1.350 0.730 1174.0
ch&Mt ché 2440.0 1.350 0.730 1174.0
pp4Mz pp4 2410.0 1.210 0.620 577.00
pp3Mv pp3 2580.0 1.260 0.660 841.00
pp2Mv pp2 2580.0 1.260 0.660 841.00
pp1Mz pp1 2465.0 1.330 0.719 634.85
bf3Mv bf3 2570.0 1.830 1.410 763.00
bf2Mz bf2 2410.0 1.360 0.740 633.00
towMf ! towf ! 2510.8 1.446 0.914 843.47
ptnMf ' ptnf ' 2353.3 0.783 0.363 1086.4
tswMf tswf ' 2497.8 1.736 1.002 901.89
chnMf ' chnf ' 23217 1.230 0.630 1156.9

DTN: LB991091233129.006

Note:

' Thermal properties used for faults are slightly different from those
submitted under the DTN. Simulations were run to confirm that these

differences do not impact the TH results. This is because faults are treated

as boundaries in the 3-D submodel or are defined as small thickness and
are far from the potential repository. These simulations are documented in
SN YMP-LBNL-GSB-1.6.3, p. 117.

The thermal properties initially assigned to the bottom boundary elements are also applied to the
extended boundary zone below the water table. The thermal conductivity of the water table
boundary elements is then set to zero to turn off heat conduction into this boundary. For the
fracture continuum, we use a very small thermal conductivity (four orders of magnitude smaller
than matrix thermal conductivity) to turmn off the fracture-matrix thermal conduction. This is
because the large fracture-matrix interface areas specified in the dual-k grids are for fluid flow
and do not apply to heat conduction. In addition, heat conduction in global fracture-fracture
connections is much smaller than matrix-matrix connections or advection through fractures in the
same domain, because of the small areas of fracture-to-fracture connections in the UZ system.
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6.6 INFILTRATION

The infiltration maps used for calculation of the input water recharge are documented in
Scientific Notebook (DTN: GS000399991221.002) YMP-LBNL-GSB-1.1.2 (pp. 148-150). For
TH modeling, we use the following climate types, which give infiltration in mm/year on Nevada
State Coordinates (CRWMS M&O 1999d):

Present Day: Present-day climate, mean; This is used in the 3-D and 2-D NS#1 models, and for
0-600 years in the refined NS#2 cross section models.

Monsoon: Monsoon climate, mean; for 600-2000 years in the NS#2 cross section models.

Glacial Transition: Glacial transition climate, mean, for 2000+ years in the NS#2 cross section
models. :

Infiltration maps corresponding to these climates are used, together with the Infil2grid V1.6 code
and the input MESH files for each numerical grid, to compute the mass source terms in
“GENER,” block of the TOUGH2 V1.4 input files. The mapping of the infiltration flux onto the
numerical grids is documented in Scientific Notebook YMP-LBNL-GSB-1.6.3 (p.121-122)

The infiltration flux in all these GENER files is applied as a constant mass injection of water to
the fracture continuum at the top boundary of the models. For the nonisothermal numerical
simulations performed here, we use a constant enthalpy of 75.6 klJ/kg corresponding to pure
water at 15°C (EOS.3 Module, TOUGH2 V1.4, STN: 10007-1.4-01, Version 1.4). Note that
because of proximity of the infiltration nodes to the top boundary at which temperature is held
constant, the temperature in the infiltration nodes is controlled by the boundary temperature and
not by temperature of the infiltrating fluid.

The accuracy with which the infiltration data is mapped onto the numerical grid depends on the
grid resolution at the top boundary. The higher grid resolution used in the 2-D NS#2 grid better
resolves the infiltration patterns than the coarse 3-D and 2-D NS#1 grids.
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6.7 TH MODELS

Table 5 summarizes the numerical simulation scenarios performed to characterize the TH
processes of mountain-scale UZ flow fields under thermal loading. The simulations employ
numerical concepts, boundary conditions, and properties described in the previous sections, to
model nonisothermal heat and mass transport in the UZ. In the following sections, we discuss the
modeling approaches used and briefly discuss the results of each case.

Table 5. Summary of Numerical Models for Mountain-Scale TH

Model No. | Case name | Numerical Grid® Infiltration Thermal Load Temperature
Boundary
1 3-D Case 1 3-D Submodel, Mean present 72.7 kW/acre; 1,000 m below
no drifts day no ventilation the water table
2 3-DCase 2 3-D Submodel, Mean present 72.7 kW/acre; At the water
no drifts day no ventilation table
3 NS#1 Case 1 | 2-D Cross Section | Mean present 72.7 kW/acre; 1,000 m below
(NS#1), no drifts day no ventilation water table
4 NS#1 Case 2 | 2-D Cross Section | Mean present 72.7 kW/acre; 1,000 m below
(NS#1) with day no ventilation water table
locally refined
drifts
5 NS#2 Case 1 | 2-D Cross Section | 0-600 years, 72.7 kW/acre; 1,000 m below
(NS#2) with mean present no ventilation water table
locally refined day; 600-2000
drifts years, mean
monsoon,;
2000+ years,
glacial
transition
6 NS#2 Case 2 | 2-D Cross Section | 0-600 years, 72.7 kW/acre; - | 1,000 m below
(NS#2) with mean present ventilation, 70% | water table
locally refined day; 600-2000 | for 50 years
drifts years, mean
monsoon;
2000+ years,
glacial
transition
NOTE: ®DTN: LB991201233129.001
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6.8 3-D UNSATURATED-ZONE POTENTIAL REPOSITORY TH SUBMODEL

6.8.1 Modeling Approach

We used the 3-D dual-k submodel to conduct two numerical studies of the effect of thermal load
on the mountain-scale UZ system. The rationale for selecting this submodel has been discussed
in Section 6.2 (numerical grids) and Section 6.3 (repository thermal load). The modeled cases
using the 3-D submodel are 3-D Case 1 and 3-D Case 2. The only difference between these two
cases is in the specification of the temperature at the bottom boundary. In the first 3-D
simulation, 3-D Case 1 (base-case 3-D TH model), the temperature boundary is located at -270
masl (i.e., 1,000 m below the water table), but the bottom flow boundary is located at the water
table. In the second simulation, 3-D Case 2, both the bottom temperature boundary and the
bottom flow boundary are located at the water table. Both cases use a thermal load of 72.7
kW/acre, no ventilation, present-day mean infiltration and a smeared heat-source at the
repository (i.e., no locally refined elements for the emplacement drifts). The simulations of the
nonisothermal fluid and heat flow were conducted for a total thermal-loading period of 100,000
years. The simulation starts at time zero using steady-state initial conditions. The initial
conditions were obtained by a nonisothermal EOS3 run (Pruess 1991, pp. 21-23) to steady state,
using the boundary conditions defined in Section 6.4 and the present-day mean infiltration rate.

6.8.2 Results of the 3-D TH Simulations

In this section, we present and discuss the evolution of temperature, saturation, and percolation
flux for the 3-D TH cases. The results of simulations are discussed using 2-D contour plots of the
temperature, saturation and flux. We also present plots of the evolution of temperature, saturation
and flux for the entire column at the center of the repository (location #1). For this mountain-
scale model, we are interested in the extent of the thermally disturbed zone and the predicted
mountain-scale changes in the temperature, saturation, and flux.

6.8.2.1 Model 1; 3-D Case 1

We present the results of this model by using plots along the NS#1 cross section and plots at
selected locations. For this base-case model, we use these plots to present and discuss the
changes of temperature, saturation, and flux. We also present 2-D plots of the evolution of flux at
the repository horizon and at the top of the CHn unit.

Temperature

Figures 7-10 show the effects of the emplaced nuclear waste on temperature. The temperatures
along cross section NS#1 at 500 and 1,000 years after emplacement are shown in Figures 7 and 8
respectively. Figures 9 show the temperatures in the column at the center of the repository
(location #1). Figure 10 shows the temperatures at the repository horizon along the cross section
NS#1. These plots show that extensive boiling is predicted only in the area immediately above
and at the repository horizon. The 3-D model predicts that temperatures at the repository horizon
will rise to boiling conditions (97°C) in about 10 years. The boiling may take place in localized
horizons, with heat-pipe conditions developing and being maintained for over 100 years. Beyond
100 years, the temperatures at the repository are predicted to decline. For example, at the center
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of location #1, the temperature declines from 97°C to 77°C after 2,000 years (Figure 9). The
predicted temperature contours (Figures 7 and 8) show limited lateral extension of the boiling
zone. In areas that are 100 m or more outside the repository, no boiling is predicted. For
example, the predicted maximum temperature is 37°C 100 m outside the northern boundary and
about 40°C about 100 m outside the eastern boundary. This response confirms the convection
dominated processes, driven by both boiling and high fracture permeability. The ambient
infiltration flux (predominantly vertical) controls the temperature outside the repository
boundaries. On top of the CHn, 907 masl, the predicted maximum temperature is 70°C (see
Figure 9). The 3-D model predicts little potential for temperature-induced mineralogical changes
to occur within the CHn.

Saturation

Changes in saturation are important for several reasons. They determine the period during which
the repository remains dry. They are also used to assess the potential desaturation-induced
changes in porosity and hydraulic conductivity (for example, in the zeolitic units). Finally, they
also help identify the onset of rewetting processes and the subsequent potential for possible
waste-package corrosion at the repository horizon.

Because of the coarse gridblocks used and because no explicit representation of the drifts is
present, the 3-D model predicts very little change in saturation under this thermal-load scenario.
Therefore, no large local mobilization of liquid and vapor exists even in those gridblocks with
heat generated from the emplaced waste, except in a few columns where local ambient
infiltration is low (less than 1.0 mm/year). Figures 11 through 14 show the plots of matrix liquid
saturation corresponding to the temperature plots discussed above. The contour plots of the
matrix liquid saturation at 500 and 1,000 years of thermal load are shown in Figures 11 and 12.
Figures 13 and 14 show the corresponding matrix liquid saturation in Location #1 and at the
repository horizon, respectively. The model predicts changes in matrix liquid saturation only in
the vicinity of the repository horizon and only in areas of low infiltration rates. Maximum
saturation changes occur within the first 100 years after thermal loading in low infiltration
washes (for example, near the Drillhole Wash fault). The 3-D numerical model consequently
does not predict extensive dry-out zones or zero saturation at any location within the 3-D model
domain.
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Figure 7. Temperature Distribution along NS#1 Cross Section at 500 Years, Model 1.

T, °C
120
115
110
105
100
95
90
85.
80
75
70,
65.
60.
55.
50.
45,
40,
35
30.
25,
20,

Base case thermalload, APD=72.7 kW/acre, 3D sub-model #2
Temperature, time =1000 years
Infiltration : mean present day

1600

Drillhele wash faull
Pagany wash fault
Sever wash fault

1400

1200

Elevation (m)

1000

the 3Dswb-modal domatn

o north of Pagany
Waeh fault ks oulside

IFIII'IIII]IIIII]IJI}

800

coDoDoDoOCCCooDDDDoODOOOn

I I | BV i 1 R 1 v |

232000 234000 236000 238000

Nevada Coordinate (N-S8) (m)

Based on modeling results submitted with this AMR under DTN: LB991201233129.001

Figure 8. Temperature Distribution along NS#1 Cross Section at 1,000 Years, Model 1.
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Figure 8. Temperature at Location #1, Model 1,
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Figure 10. Temperature along the Potential Repository at Cross Section NS#1, Model 1,
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Figure 11. Matrix Liquid Saturation (SL), along Cross Section NS#1, 500 Years, Model 1.
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Figure 12. Matrix Liquid Saturation (SL), along Cross Section NS#1, 1,000 Years, Model 1.
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Figure 13. Matrix Liquid Saturation at Location #1, Model 1.
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Figure 14. Matrix Liguid Saturation along the Potential Repository, at Cross Section NS#1. Model 1.
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Flux

As noted above, temperature near the repository is increased significantly as a result of heat
generated by the emplaced waste. As the repository temperature reaches boiling conditions
(about 97°C), rapid vaporization and strong gas flow occur at the repository, which lowers liquid
saturation. The lower saturation at the repository creates a sufficient capillary gradient that
promotes liquid back flow towards the repository and therefore may enhance percolation fluxes
in those areas.

At steady-state ambient conditions, the percolation-flux pattern at the repository is almost the
same as the surface-infiltration distribution. This is because lateral flow in the Paintbrush non-
welded (PTn) hydrogeologic unit that overlies the potential repository is not significant except at
low infiltration areas. Analysis of the thermally induced flux evolution is performed to provide
an estimate of the flux that will directly seep towards the waste package (near-field) environment
under different thermal-loading and infiltration scenarios.

Figures 15 and 16 show the fracture flux after 1,000 years, at the repository horizon and at the
top of the CHn, respectively. We present the flux as mass rate, converted to the same unit
(mm/year) as the commonly used infiltration map at Yucca Mountain. Because of the continuous
heat source used here, the figures show that the repository acts as a barrier to downward liquid
flow, except in areas with large infiltration flux, on the Yucca Crest. Figures 17 and 18 show the
evolution of flux at the center of the repository and at the repository horizon. In these figures,
“positive” flow is downwards and “negative” flow is upwards. In the 2-D cross section, each
column has an ambient flux determined by the infiltration map used.

The vertical flux profile through fractures at location #1 is shown in Figure 17. The percolation
fluxes above the repository along the NS#1 cross section is shown in Figure 18. These flux plots
can be examined in conjunction with the saturation profiles at the same locations (Figures 13 and
14). The figures show that the fracture liquid percolation flux is increased significantly at both
the repository horizon and the formations below the PTn, because of changes in fracture
saturation from boiling and condensation. At the center of the repository, the model predicts a
maximum flux of 75 mm/year (20 times higher than the ambient flux) at 50 years. However, the
flux decreases to less than 10 mm/year at 500 years and to near-ambient conditions at 1,000
years. With the coarse grid, the model cannot evaluate detailed flow towards and away from the
individual drifts. Outside the repository, no significant changes in the percolation flux are
predicted (Figures 15 and 16).
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Figure 15. Fracture Liquid Flux, at 1,000 Years, at the Potential Repository (mm/year), Model 1.
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Figure 16. Fracture Liquid Flux, at 1,000 Years, at the Top of the CHn (mm/year), Model 1

MDL-NBS-HS-000007 REV00

52

U0105
1
0.5
0
c o

March 2000




Title: Mountain-Scale Coupled Processes (TH) Model Uo10s
1600 -
Base case thermal load, APD =72.7 kW/acre, from 30 model 2
Infittration : mean present day
L s Biria % 10 years
—— T W !ﬂy.lﬂ
Pt fime = 100 years
e M0 & 200 yaRry
1400
- I
E
= 1200 -
=} L
3 I
@
]
1000
1
.
800F
|
S TR T ST S AT I ST AT A AT I IR LR T |

0.0 50.0 100.0 150.0 200.0

Liquid Flux {(mm/year)
Based on modeling results submitted with this AMR under DTN: LBS91201233129.001

Figure 17. Fracture Liquid Flux, at Location #1, Model 1.
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Figure 18. Fracture Liquid Flux along the Potential Repository at Cross Section NS#1, Model 1.
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6.8.2.2 Model 2, 3-D Case 2

The only difference between this case and the previous case is in the location of the bottom
temperature boundary. In this model, the temperature boundary is fixed at the water table.
Temperature distribution at this boundary is determined from the calibrated temperature
distribution for the UZ 3-D model domain at ambient conditions. The rest of the modeling
approach is the same as discussed above. We present the results of the 3-D model using 2-D and
1-D plots of the evolution of temperature and saturation. Because there is little difference in
saturation between this case and the previous one, there are no significant differences in
predicted percolation flux.

Temperature

Figure 19 shows the predicted temperature contours along the NS#1 Cross Section after 1,000
years of thermal load. The predicted temperature contours above the repository are nearly the
same as in the previous case. Below the repository, the temperature contours are strongly
influenced by the fixed temperature boundary at the water table. Figures 20 and 21 show the
same vertical profile at the center of the repository and temperature at the repository horizon,
respectively. The figures again show that major differences occur only below the repository.

Saturation

Figure 22 shows the corresponding contour plot of liquid saturation along the same cross section.
Because most of the changes in liquid saturation are occurring near the repository, the figure is
nearly identical to the saturation plots shown in Figure 12.

Flux

Changes in saturations lead to changes in capillary pressure gradients, which will change liquid
percolation flux. On the other hand, percolation flux is not significantly affected by local
variation of temperature if boiling does not take place. Based on the results of this model, the
location of the temperature boundary at the water table has little influence on the TH behavior
near the repository. This is because boiling zones generated at the repository are small and far
away from the bottom temperature boundary.
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Figure 19. Temperature Distribution along NS#1 Cross Section at 1 000 Years, Model 2.
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Figure 20. Temperature at Location #1, Model 2.
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Figure 21. Temperature along the Potential Repository Horizon at Cross Section NS#1, Model 2.
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Figure 22. Matrix Liquid Saturation along Cross Section NS#1, 1,000 Years, Model 2.
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6.9 2-D UNSATURATED ZONE TH SIMULATIONS

6.9.1 Modeling Approach

We use the 2-D dual-k models to conduct four studies of the effect of repository thermal load on
the near- and far-field repository environment. Simulations with these 2-D models are easier to
perform computationally compared to full 3-D simulation. We use these models to determine if
the mountain-scale 3-D TH processes can be quickly and efficiently predicted by representative
2-D submodel cross sections, which are directly extracted from the 3-D model. We also use the
2-D models to investigate the sensitivity of the TH predictions to the numerical grid resolution
using a refined grid model.

Table 5 (in Section 6.7) includes a summary the studies conducted using the 2-D cross section
submodels. We use Cross Sections NS#1 and NS#2 (Section 6.3), to conduct these studies.

6.9.2 2-D Ambient Conditions

For each of the 2-D models, steady-state mode] ambient conditions were generated and used as
initial conditions for the TH calculations. Since the initial conditions for all the models are
identical, we show the results only for the 2-D refined grid model. Figure 23 shows the ambient
matrix saturation using the refined NS#2 grid. The mean present-day infiltration (in mm/year) is
superimposed on the plot of ambient saturation. The figure shows a large variability in
infiltration, from 0 mm/year to over 100 mm/year along this section. The distribution of
saturation is controlled by the formation properties as well as by this distribution of infiltration
rate. Figure 24 shows the corresponding initial temperature distribution. The temperature
distribution is strongly related to the infiltration and the specified boundary temperatures. The
definition of the boundary conditions used in these models was discussed in Section 6.4
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Figure 23. Ambient Matrix Liquid Saturation along Cross Section NS#2. Dotted lines show the distribution
of infiltration (mm/year) along the cross section.
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Figure 24. Ambient Temperature (deg C) along Cross Section NS#2.

C\5

MDL-NBS-HS-000007 REV00 58 March 2000




Title: Mountain-Scale Coupled Processes (TH) Model U0105

6.10 RESULTS OF THE 2-D TH SIMULATIONS AT CROSS SECTTION NS#1

We conducted two studies using the NS#1 grid that was directly extracted from the 3-D UZ grid.
The results of 2-D models can be compared with the 3-D results discussed in the previous section
to examine the significance 3-D effects and the need local refinement at the repository. Both
cases use an extended bottom temperature boundary 1,000 m below the water table. For Case 1,
we use the mean present-day infiltration rate, 72.7 kW/acre thermal load, no ventilation and a
smeared heat source. The simulation was conducted primarily to evaluate 3-D effects by
comparing the results of the 2-D TH models with those for the 3-D TH model, as discussed in
Section 6.8.1. The second model (NS#1 Case 2) uses the same thermal load, infiltration, and
boundary conditions, but also uses a modified locally refined numerical grid described in Section
6.3.3 (Figure 4) to model discrete heat sources at the drifts.

6.10.1 Model 3, NS#1 Case 1

The 2-D grid used for this model is a relatively coarse grid, with the lateral grid spacing equal to
the drift spacing (81 m) over the repository horizon. The thermal load is described as a smeared
heat source because there is no explicit representation of drifts (i.e., no local refinement).

Temperature

The temperatures along the entire cross section at 1,000 years after waste emplacement are
shown in Figure 25. Figure 26 shows the temperatures at location #1 at the center of the
repository. Figure 27 shows the temperatures along the repository horizon of the cross section.
The plots show that extensive boiling is predicted only in the area at and immediately above the
repository horizon, with boiling conditions (97°C) occurring in about 10 years. This 2-D model
predicts the same maximum temperature at the repository horizon as the 3-D model. However,
because there is no lateral heat conduction across the model into a third dimension, the model
predicts less cooling and a larger heat-pipe zone (Figures 25 and 26). The thermally affected
zone extends to the base of the PTn (see Figure 2 for the location of the repository and the PTn
unit). Beyond 100 years, the modeled temperatures at the repository begin to decline. After 2,000
years, the predicted temperature at the repository is 92°C, compared to 77°C from the 3-D model.
The predicted temperature contours (Figure 25) show limited lateral expansion of the boiling
zone outside the repository domain. This result confirms the convection-dominated processes, as
predicted using the 3-D model. The percolation flux (predominantly vertical) controls the
temperature outside the repository boundaries. On top of the CHn, (elevation 900 m, Figure 26)
we predict a maximum temperature of about 70°C. These temperature changes in the CHn units
make it unlikely that significant thermal-mineralogical alterations of rock properties occur within
the CHn unit.

Saturation

Figures 28 to 30 show the plots of matrix liquid saturation corresponding to the temperature plots
for the same locations, respectively, as discussed above. The contour plot of the matrix liquid
saturation after 1,000 years of thermal loading is shown in Figure 28. The plot shows significant
changes in matrix liquid saturation only at or near the repository. Figures 29 and 30 show the
corresponding matrix liquid saturation in Column #1 and at the repository horizon, respectively.
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The model predicts larger changes in matrix liquid saturation in the vicinity of the repository
horizon than those in the 3-D model. Again, however, no complete dry-out regions are predicted
(Figure 30). At several locations along the repository, the predicted liquid saturation declines to
less than 30%. Under the low-infiltration zones, maximum saturation changes occur during the
first 200 years of thermal loading. Beyond 200 years, the saturation recovers. Near-ambient
liquid-saturation conditions are re-established after 2,000 years.

Flux

Figures 31 and 32 show distributions of the simulated flux at the center of the repository and at
the repository horizon. Although the figures show a little larger variability in flux than that
predicted by the 3-D model, the magnitude and pattern of the fluxes, as indicated by the two
models, are similar. The figures show that under thermal load, the repository acts as a barrier to
downward liquid flow except in areas under large surface infiltration. The vertical flux profile
(Figure 31) shows the maximum flux is still about 75 mm/year after 50 years, which declines to
near ambient conditions at 1,000 years. Using the 2-D model, we predict significant increases in
percolation flux predominantly in the region between the PTn unit and the repository.
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Figure 25. Temperature Distribution along NS#1 Cross Section of Grid at 1,000 Years, Model 3.
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Figure 26. Temperature at Location #1, Model 3.
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Figure 27. Temperature along the Potential Repaository Herizon, Model 3.
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Figure 28. Matrix Liquid Saturation along NS#1 Grid at 1,000 Years, Model 3
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Figure 29. Matrix Liguid Saturation at Location #1, Model 3.
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Figure 30. Matrix Liquid Saturation along the Potential Repository, Model 3
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Figure 31. Fracture Liquid Flux at Location #1, Model 3
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Figure 32. Fracture Liquid Flux along the Potential Repository, Madel 3.

6.10.2 Model 4, NS#1 Case 2

This case is almost the same as NS#1 Case 1, except that the grid is modified to model a discrete
heat source (drift-by-drift model). This model uses the coarse grid NS#1 with a locally refined 5
m drift element at the repository within each drift column. This provides a model for estimating
temperature, saturation, and flux at the repository because it has two elements between the drift
elements in the numerical grid. This simple model provides an assessment of the adequacy of
such a scheme for resolving the near-drift conditions under thermal loading. We discuss the
results of this model using 2-D and 1-D plots of temperature, saturation, and flux.

Temperature

Figures 33 and 34 show the predicted temperature contours along the entire NS#1 cross section
after 500 and 1,000 years of thermal load, respectively. The figures show that boiling conditions
occur mainly above the repository. The predicted temperature contours above the repository at
later times are nearly the same as in the previous case. Figure 35 shows the profiles of
location #1 at the center of the repository. Within this column, the predicted temperatures at the
repository exceed 103°C after 50 years compared to 97°C for the model without explicit
representation of the drifts. At the repository (Figure 36), we predict local peaks where
temperatures exceed 150°C in completely dried-out zones. Once boiling is established, the
resulting temperature variation is the same as for the nonrefined case except for local peaks at the
repository. Beyond 500 years, temperatures begin to decline. Temperatures at the repository
decline to 90°C after 2,000 years. Temperatures at a lateral distance of 100 m or more outside
the repository remain at near ambient conditions. However, because there is no lateral heat
conduction of the model into a third dimension, this 2-D model may also overestimate thermal
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buildup compared to the 3-D case. At the water table, the predicted maximum temperature is
about 70°C.

Saturation

Figures 37 to 40 show the plots of matrix liquid saturation corresponding to the temperature plots
for the same locations as discussed above. The contour plots of the matrix liquid saturation at
500 and 1,000 years of thermal loading are shown in Figures 37 and 38. The plots show
significant changes in matrix liquid saturation only near the repository. Figures 39 and 40 show
the corresponding matrix liquid saturation at location #1 and at the repository horizon,
respectively. Significant decreases in matrix liquid saturation are simulated in the vicinity of the
drifts. However, only a few matrix elements in the drifts become completely dry (Figure 40)
between 100 and 500 years. Note that all fractures at the repository are completely dry within the
first few years of thermal loading.

Flux

Figures 41 to 43 show the simulated fluxes through the fracture continua at the center of the
repository and along the repository horizon respectively. Because of high capillary suction forces
created within the dry zones, the models predict much higher fluxes in the vicinity of the drifts
than predicted by the nondiscrete heat-source models discussed above. The vertical-flux profile
(Figure 41) shows that the maximum flux exceeds 200 mm/year after five years and declines to
less than 30 mm/year after 100 years. The liquid flux at repository horizon (Figure 42) indicates
that liquid flux from fractures towards drifts quickly rises to 1,000-1,250 mm/year after 10
years, but drops to zero as the fractures become completely dry. This large flux is confined to the
near-field environment and results from the large capillary pressure gradient between the nearly
dry drift and the surrounding layers. This liquid flux does not seep into the drifts because the
intense heat within the drifts, during this early period of thermal loading, vaporizes all the liquid.
Figure 43 shows the matrix liquid flux at the repository for the same period. The matrix liquid
flux rises to a maximum of 100-200 mm/year at the drifts, but stays at ambient conditions in the
regions between the drifts.
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Figure 33. Temperature Distribution along NS#1 Grid at 500 Years, Model 4.
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Figure 34. Temperature Distribution along NS#1 Grid at 1,000 Years, Model 4.
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Figure 35. Temperature at Location #1, Model 4.
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Figure 36. Temperature along the Potential Repository Horizon, Model 4.
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Figure 37. Matrix Liquid Saturation (SL) along NS#1 Grid at 500 Years, Model 4.
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Figure 38. Matrix Liquid Saturation (SL) along NS#1 Grid at 1,000 Years, Model 4.
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Figure 39. Matrix Liquid Saturation at Location #1, Model 4.
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Figure 40. Matrix Liquid Saturation along the Potential Repository Horizon, Model 4.
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Figure 41. Fracture Liquid Flux at Location #1, Model 4.
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Figure 42. Fracture Liquid Flux along the Potential Repository Horizon, Model 4.
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Figure 43. Matrix Liquid Flux along the Potential Repository Horizon, Model 4.

6.11 RESULTS OF THE 2-D TH SIMULATIONS AT CROSS SECTION NS#2

In this section, we present and discuss the results of two simulations using the refined north-
south numerical grid at Cross Section NS#2. All the simulations with this grid use a locally
refined node at the repository to represent the drift (discrete heat source), and the temperature
boundary is set at 1,000 m below the water table. In the two models, we also implement changes
in infiltration resulting from possible variation in climate over the thermal-loading period. We
use mean present-day infiltration for 0-600 years, then mean monsoon climate infiltration for
600-2,000 years, and finally mean glacial transition climate infiltration for the rest of the thermal
load period (2,000-100,000 years). The first model, NS#2 Case 1, uses 72.7 k'W/acre thermal
load, with no ventilation. The second model, NS#2 Case 2, uses the same model parameters as
the NS#2 Case 1, but implements a 70% reduction in repository heat. This is the proportion of
heat that is removed by ventilation for 50 years.

6.11.1 Model 5, NS#2 Case 1

This model uses a refined 2-D numerical grid, with lateral grid spacing at Cross Section NS#2
equal to one-fourth of the drift spacing. The grid has a locally refined 5 m wide drift element
within each drift column (Section 6.3). Thermal loading is 72.7 kW/acre with no ventilation, and
we supply the TOUGH2 code with a three-step infiltration rate using the three climates over the
thermal-load period as mentioned above.

¢y
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Temperature

Figures 44 and 45 show temperature contours after 500 and 1,000 years along the entire cross
section. The predicted temperature contours show limited lateral extension of the boiling zone
outside the repository domain. The results of the two figures again show that the TH processes at
and near the repository are convection dominated. Surface infiltration rates have a large impact
on temperature outside the repository domain. Figure 46 shows the evolution of temperature
within a drift-column (Location #1) at the center of the repository. Temperature in an adjacent
column (Location #2) is shown in Figure 47. Location #2 is at a distance of about 21.4 m from
Location #1, but separated from it by an §.2 m locally refined element of the drift column (refer
to Section 6.3). The model predicts that local temperature within the drift could rise to over
250°C as both the matrix and the fracture elements of the drift become completely dry. A two-
phase boiling zone at 97°C develops and expands to about 50 m above the repository after 500
years. This zone expands to 200 m above the repository between 1,000 to 2,000 years. At the
pillars between the drifts, temperatures rise only to boiling conditions.

Figure 48 shows the temperature distribution along the repository horizon of this cross section.
The temperatures at the repository horizon rise to above boiling conditions (97°C) between 10
and 50 years. Although most of the drifts are at 100°C at ten years, the temperatures rise to over
260°C in the completely dry drifts at the north end of the repository, where the surface
infiltration rate is nearly zero. At 50 years, the temperatures in all the drifts reach 210-235°C. At
this period, the minimum temperature between the drifts is only 80-85°C. Beyond 50 years, the
temperatures at the repository decline rapidly as a result of strong rewetting by strong capillary
suction in the near-field environment. After 100 years, temperatures within the drifts are still
160—180°C, and temperatures at the entire repository horizon (except at the ends) remain at or
above boiling conditions. After 400 years, the temperature range of the drifts is 120-135°C over
the entire repository horizon. However, as discussed in the previous models, use of a 2-D model
may overestimate elevated temperature compared with a 3-D model, which may partly account
for the higher predicted temperatures.

Saturation

Figures 49 to 52 show the plots of matrix liquid saturation corresponding to the temperature plots
discussed above. Contour plots of the matrix liquid saturation at 500 and 1,000 years of thermal
loading are shown in Figures 49 and 50 respectively. The plots show large changes in matrix
liquid saturation only near the repository. Note that a]l fractures at the repository are completely
dry within the first few years of thermal loading. Figures 51 and 52 show the matrix liquid
saturation in Column #1 and at the repository horizon, respectively, for the same periods.
Similarly, significant changes in matrix liquid saturation occur only near the drifts. The model
predicts completely dry conditions (Figures 51 and 52) for all the drifts between 10 and 50 years.
Both the matrix and the fracture continuum at the drifts remain dry as the repository heat
immediately vaporizes any liquid flowing towards the drifts. The matrix liquid saturation
between the drifts drops to a minimum of 40% after 400 years. Liquid saturation outside the
repository remains at near-ambient conditions.
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Flux

Figures 53 to 57 show the fluxes simulated at the center of the repository and along the
repository horizon. Because of an extensive drying zone developed at the repository, the model
predicts much higher percolation fluxes in the vicinity of the drifts than predicted by the 3-D
coarse grid and the 2-D NS#1 grid models. The vertical flux profile at Location #1 (Figure 53)
shows that the maximum flux towards the drifts exceeds 400 mm/year at 5 years, but declines to
less than 30 mm/year at 400 years. Note that flux at Location #1 is calculated based on the entire
column area. At the repository, a drift (see Section 6.3) represents each column. To get the
apparent flux towards the drift, we need to multiply the drift flux by the ratio of column area to
drift area (21.39/5.0 = 4.3). This is the liquid flux pattern at the top of the repository horizon
plotted in Figures 54 through 57. The figures show that liquid flux through the fractures towards
the drifts rises to between 1250-1600 mm/year after 10 years, but drops to zero as the fracture
continua at and above the drifts become completely dry. The fracture liquid flux in the pillars
between the drifts also increases during this period because of the decrease in liquid saturation
within the fracture continua at the repository horizon. After 500 years, the average fracture liquid
flux between drifts is about 20 mm/year, about 5 times higher than the ambient flux. Figures 56
and 57 show the corresponding matrix liquid flux at the top of the repository horizon at the same
times. The matrix liquid flux rises to a maximum of 400-450 mm/year at the drifts, but stays at
ambient conditions between the drifts. As the matrix continuum of the drifts becomes completely
dry, this liquid flux also drops to zero (Figure 57).
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Figure 44. Temperature Distribution along NS#2 Grid at 500 Years, Model 5.
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Figure 45. Temperature Distribution along NS#2 Grid at 1,000 Years, Model 5.
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Figure 46. Temperature at Location #1, NS#2 Grid, Model 5.
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Figure 47. Temperature at Location #2, NS#2 Grid, Model 5.
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Figure 48. Temperature along the Potential Repository Horizon NS#2 Grid, Model 5.
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Figure 49. Matrix Liquid Saturation (SL) along NS#2 Grid at 500 Years, Model 5.
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Figure 50. Matrix Liquid Saturation (SL) along NS#2 Grid at 1,000 Years, Model 5.
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Figure 51. Matrix Liquid Saturation Location #1, Model 5.
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Figure 52. Matrix Liquid Saturation along the Potential Repository Horizon, NS#2 Grid, Mode! 5.
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Figure 53. Fracture Liquid Flux at Location #1, NS#2 Grid, Model 5.
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Figure 54. Fracture Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 5.
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Figure 55. Repository Fracture Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 5
(detail plot).
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Figure 56. Matrix Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 5.
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Figure 57. Fracture Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 5 (detail plot).

6.11.2 Model 6, NS#2 Case 2

This case is the same as Case 1 above, except that 70% of the heat is removed by ventilation for
50 years. This is the design base-case thermal load scenario. In this section, we discuss the
effects of ventilation and variation in climate on the predicted TH conditions. In this discussion
we highlight the differences between the model predictions for this case, and all the previous,
cases over the thermal-loading period.

Temperature

Figures 58 and 59 show the temperature after 500 and 1,000 years of thermal loading,
respectively. Even with ventilation, a two-phase heat-pipe region is developed at the repository
horizon. However, it is limited to within a few meters above the repository. The model predicts
much lower elevated temperatures resulting from ventilation cooling. Zones at about 100 m from
the northern and southern ends of the repository have a maximum temperature rise of only 10-
15°C during the thermal-loading period. Areas more than 200 m from the edges of the repository
remain at near-ambient thermal conditions throughout the thermal-loading period. After the 50
years of ventilation ends, the temperatures within the central part of the repository are predicted
to rise. The average temperature within the drifts rises to boiling conditions (97°C), although in a
few locations temperatures rise to above 110°C (Figure 62). Figures 60 and 61 show the
temperature profiles within a drift-column (Location #1) at the center of the repository and in an
adjacent column (Location #2) as discussed in the previous section, The model predicts that
although local temperature within the drift will rise to a boiling point, temperatures in the
adjacent column rise to only 90°C, and the temperature in the pillars will only rise to 80-85 °C.

C 32
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Saturation

Figures 63 to 66 present the plots and contours of matrix liquid saturation. The contour plots of
the matrix liquid saturation after 500 and 1,000 years of thermal load are shown in Figures 63
and 64, respectively. The plots again show that significant drying or a decrease in matrix liquid
saturation occurs only at or near the repository. Figures 65 and 66 show the matrix liquid
saturation profiles in Column #1 and at the repository horizon, respectively. We predict
completely dry conditions to occur only in a few matrix elements of the drifts where local
surface infiltration rate is low. The matrix liquid saturation in several drifts with high ambient
infiltration is above 90% after 1,000 years (note that this is within the monsoon climate). After
5,000 years, matrix liquid saturation recovers to ambient conditions (of the glacial infiltration
climate).

Flux

Figures 67 to 71 show that the modeled percolation fluxes are much lower than those for the no-
ventilation scenario. The vertical flux profile (Figure 67) shows the average liquid flux towards
the drifts rises to a maximum of only 50 mm/year at 5 years. At the repository (Figures 68-69)
this fracture liquid flux rises to a maximum of 270-300 mm/year at 10 years, but drops to less
than 10 mm/year after 100 years. The flux recovers to over 150 mm/year at 500 years as a result
of increased heating at the end of ventilation. After 1,000 years, the fracture flux declines to rates
primarily controlied by the prevailing ambient climate. The fracture liquid flux in the pillars
remains above ambient conditions throughout the thermal-loading period. This flux may rise to
15-20 mm (about 2 to 3 times the ambient flux) at 500 years because of condensate drainage.
Beyond 500 years, the flux rises because of the high ambient infiltration during the monsoon and
glacial transition climates. Figures 70 and 71 show the matrix liquid flux during thermal load.
The matrix liquid flux rises to a maximum of 20-30 mm/year at the drifts after 500 years, but
remains at ambient conditions between the drifts throughout the thermal-loading period (Figure
71).

Figures 72 to 73 show the evolution of mountain-scale gas flux through the fracture continuum
after 500 and 1,000 years of thermal load. The increase in gas flux is confined to the repository
horizon for the duration of boiling (up to 2000 years). Much smaller gas flux is expected in the
matrix continuum because of the lower permeability. The simulations of mountain-scale TH
with ventilation, therefore, predict no large-scale thermally driven gas movement in the
mountain.
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Figure 58. Temperature Distribution along NS#2 Grid at 500 Years, Model 6.

" Base case thermal load, APD=72.7 kW/acre
" Temperature, time=1000 years

~ Infiltration : mean monsaoon, 600-2000 years
-~ Ventilation : 70% heat removal for 50 years

1600

Pegary wash fault

Drlihols wash fault

m)

£ 1400

’I]I][]

1200 |

ELEVATION

1000

800

SRR
230000

L I L i il L l b 1 il L l L
232000 234000 236000

Nevada Coordinate (N-S) (m)
Based on modeling results submitted with this AMR under DTN: L.B991201233129.001

Il L L L L I 5 Il
238000

Figure 59. Temperature Distribution along NS#2 Grid at 1,000 Years, Model 6.
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Figure 60. Temperature at Location #1 (see Figures 1 and 3), NS#2 Grid, Model 8.
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Figure 61. Temperature at Location #2 (see Figures 1 and 3), NS#2 Grid, Model 6.
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Figure 62. Temperature along the Potential Repository Horizon NS#2 Grid, Model 6.

~ Base case thermal load, APD=72.7 kW/acre
"~ Matrix liquid saturation, time= 500 years

* Infiltration : mean present day

"~ Ventilation : 70% heat removal for 50 years

1600

Pagany warh feult

Dirifncde wesh el

L
s
(=]
]

]l]IJII

1200

ELEVATION (m)

1000

800

STSEN ITRUT AT FUE TN NNRT SISSTTIRNE UNPURNS] AR (HANE TRION SO WL RS VI

L L l ]
230000 232000 234000 236000 238000

Nevada Coordinate (N-S) (m)

Based on modeling results submitted with this AMR under DTN: LBS81201233129.001

Figure 63. Matrix Liquid Saturation (SL) along NS#2 Grid at 500 Years, Model 6.
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Figure 64. Matrix Liquid Saturation (SL) along NS#2 Grid at 1,000 Years, Model 6.
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Figure 65. Matrix Liquid Saturation at Location #1, Model 6.
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Figure 66. Matrix Liquid Saturation along the Potential Repository NS#2 Grid, Model 6.
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Figure 87. Fracture Liquid Flux at Location #1, Model 6.
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Figure 68. Fracture Liquid Flux along the Potential Repository Horizon NS#2 Grid, Mode! 6.
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Figure 69. Fracture Liquid Flux along the Potential Repository NS#2 Grid. Model 6 (detall plot).
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Figure 70. Matrix Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 6.

50

[ o——me w1 years
| s e @ 1 yanes
| s e = 10 ywars
s e« 50 yerrs
40 time w 100 yeuri
[ s i = 500 years.
[ S Gme o 1000 years
i 8 = 5000 years

30 -

Liquid Fiux (mm/yr)

[ Infiltration : 0-600 years mean present day

L 600-2000 years mean monscon

=10 = 2000+ years mean glacial ransition - -
[ Ventilation : 70% :

I Base caseihelrmal load, APD =1?2.? kW/acre, 2? grid NS#2
] o J RS RN TR SRS TSR T T E S BI00 N ST R S NS A A A

233000 233100 233200 233300 233400
Nevada Coordinate (N-S) (m)
Based on modeling results submitted with this AMR under DTN: LB991201233129.001

Figure 71. Matrix Liquid Flux along the Potential Repository Horizon NS#2 Grid, Model 6 (detail plot).
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Figure 72. Fracture Gas Flux along the NS#2 Cross Section at 500 Years, Model 6. Purple lines show
gas flux vectors at the interfaces of connected elements, red lines show streamiine traces and direction of
gas flow. The contour floods show liquid saturation in the matrix.
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Figure 73. Fracture Gas Flux along the NS#2 Cross Section at 1,000 Years, Model 6. Purple lines show
gas flux vectors at the interfaces of connected elements, red lines show streamline traces and direction of
gas flow. The contour floods show liquid saturation in the matrix.

| 1

H I

J R
238000

MDL-NBS-HS-000007 REV00 89 March 2000




Title: Mountain-Scale Coupled Processes (TH) Model U0105

6.12 MODEL VALIDATION

Numerical modeling of mountain-scale thermal hydrology (TH) can provide insight into the
performance of the repository under thermal loading. The intended use for the TH model has
been discussed in Section 6.1. This discussion includes an estimation of the qualitative and
quantitative impact of heat generated by the high-level nuclear waste emplaced within the drifts
on ambient conditions. Criteria include:

e The extent of the thermally affected zone and the two-phase zone within the UZ

o The temperature of the drifts, pillars, CHn zeolites, and water table

e The moisture redistribution in the UZ and formation of dry-out and condensation zones

e The liquid and gas flux in the UZ, drainage towards the drifts and between the pillars

o The potential for temperature and precipitation induced changes in flow and transport
properties of the PTn and the CHn zeolites

e The impact of climate and ventilation on the predicted TH response.

Prediction of the range of the TH conditions during thermal loading allows for an evaluation of
the adequacy of the design repository environment to safely store heat-generating nuclear waste
over a period of up to 100.000 years.

The problem to be modeled here is essentially that of coupled two-phase fluid and heat flow in a
fractured geological medium. Approaches to developing the numerical models to simulate two-
phase processes, are (in such systems) generally based on geothermal and petroleum reservoir
simulation methods. Numerical models of geothermal and petroleum systems can be validated
from a wealth of field-scale tests and production data. Validation of a TH model requires field
data on a mountain scale, which can only be available when the repository is fully operational.
Because no such data is available, we demonstrate the validity of model predictions and
modeling approach using corroborative work in this field and the previously published UZ
numerical modeling studies and small-scale tests.

Experiments to determine the near-field (repository) scale process under thermal loading have
been designed and are being conducted (Tsang and Birkholzer 1999, pp. 385-425). For example,
the Single Heater Test (SHT), after a nine-month heating period, is now in a cooling phase. The
larger Drift Scale Test (DST) will last up to 10 years (with a heating period of 4 years).
However, because both.the repository drift and the waste packages are on a much smaller scale
compared to the UZ Mountain-Scale Model, the thermal tests will provide only limited data for
calibration and validation of the numerical models. The small spatial and temporal scales limit
validation of the mountain-scale submodels, based on SHT and DST tests. The validation is also
limited by the uncertainties arising from parameter estimates in a geologically complex system
and the upscaling of drift-scale results to the UZ Mountain-Scale Model.

Therefore, numerical modeling of mountain-scale TH will play a crucial role in understanding
the impact of thermal loading on the performance of the UZ. Validations of such models,
although incorporating results of SHT and DST tests, will rely mainly on the conceptual and
 mathematical validity of the models and the associated numerical grids as documented in this
AMR. Performance-assessment models based on numerical simulation of fluid and heat flow can
include all important physical and chemical processes affecting repository and host rock
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behavior. In these models, we can explicitly represent relevant thermal-hydrologic conditions at
the potential repository over the applicable time and space scale. The analyses conducted in this
AMR are intended to provide the mountain-scale response to thermal loading under the proposed
design conditions. The numerical models are used to determine the effect of thermal loading on
mountain-scale liquid and gas flux, temperature, and moisture distribution in the UZ. The
formulation of simulation code TOUGH2 V 1.4 allows numerical modeling of such processes.

Versions of TOUGH?2 have been used in a number of numerical models for evaluating the
thermal-hydrologic effects of thermal loading at Yucca Mountain (Pruess and Tsang 1994;
Buscheck et al. 1994: Haukwa et al. 1999, pp. 217-255). Model conceptualizations have focused
mainly on large-scale average behavior or on local simplified domains of two-dimensional
representations. Both the ECM and dual-k methods have been used.

These previous versions have also been used in sensitivity studies on thermal-hydrological
conditions near an infinite linear string of waste packages. as reported by Pruess and Wang
(1984). They modeled fluid and heat flow (including phase change effects) in a one-dimensional
cylindrical geometry. They found that strong two-phase vapor-liquid counter flow (heat pipe)
occurred in some cases. Tsang and Pruess (1987, pp. 1958-1966) conducted repository-scale
simulations with an emphasis on thermally driven natural convection. Nitao (1988) considered
details of temperature, saturation, and gas-phase composition in the hydrothermally disturbed
zone. This was modeled using a 3 km diameter, disk-shaped repository to examine the thermal-
hydrological responses. Pruess et al. (1990a, 1990b) used a previous. version of TOUGH2 to
perform a comprehensive modeling study of simultaneous transport of heat, liquid water, vapor,
and air in a partially saturated fractured porous rock. They used a two-dimensional idealized
model and included an explicit consideration of fracture effects. Their model included most of
the physical effects that are important in multiphase fluid and heat flow. They demonstrated the
capability of modeling multiphase, nonisothermal flow of water and air with phase changes in a
fractured medium.

Many simulations have been conducted at Lawrence Livermore National Laboratory (LLNL) to
predict the thermal-hydrologic conditions at the repository (Nitao 1988; Ramspott 1991;
Buscheck and Nitao 1991, 1992, 1993a, 1993b, 1993c; Buscheck et al. 1993, 1994; and
Buscheck and Nitao 1994). Pruess and Tsang (1994) provide detailed investigations into strongly
heat-driven flow processes at small scales to look at heterogeneity effects. They concluded
through these studies that for a highly heterogeneous fractured-porous hydrogeologic system at
Yucca Mountain, water infiltration across the unsaturated zone might be dominated by highly
localized phenomena. The phenomena include "fast” channeled flow along preferential paths in
fractures and frequent local ponding. The active fracture concept used in this AMR is intended to
capture such effects.

The TOUGH2 family of codes has also been used in several numerical models of the natural
state of geothermal systems (Bodvarsson et al. 1984a, 1986, 1988; Hanano 1992; Ingebritsen et
al. 1988: O'Sullivan et al. 1990) and in the predictions of their performance under exploitation
(Bodvarsson et al. 1984b, 1987a, 1987b, 1990, 1993; Garg et al. 1990; Hunt et al. 1990; Lam et
al. 1988; Menzies et al. 1991). Mathematical models of the two-phase flow in such systems are
identical to numerical modeling of TH response to thermal loading described in this AMR.
Major differences exist, mainly in equations correlating flow and saturation and the existence of
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preferential flow paths in UZ flow even for fairly heterogeneous media (e.g., fingering and flow
channeling). The other major difference is in the time scale of modeled behavior. For example
evolution of the natural state of geothermal systems is typically modeled over a period of a few
hundred to several hundred thousand years. The exploitation prediction is over a period of 30-50
years, the economic life of such systems, based measured field response. On the other hand,
modeling of the mountain-scale TH response requires numerical prediction for tens of thousands
of years in a system where little field data exist. In many ways, however, the process for setting
up the conceptual model, building the numerical grid, specifying boundary conditions,
developing the natural state, and conducting numerical model predictions is the same and is
documented in the cited references as well as in this AMR.

The modeling efforts described above demonstrate the capability of TOUGH2 to model TH
processes on a mountain scale, in addition to the validity of process models and the assumptions
used. The numerical grids employed are sufficiently simplified to allow for models consistent
with the distribution of measured field data. On the other hand, the grids are detailed enough to
adequately resolve key ambient hydrology parameters, €.g., fluid saturation and percolation flux
at the repository. Numerical models in this AMR therefore use several grids to provide a range of
sensitivity in the predicted mountain-scale TH response

The TOUGH? TH models that are developed in this AMR match closely the observed conditions
from the SHT and DST heater tests. Both the results of the heater tests and the TH models
suggest no major adverse conditions in terms of temperature changes, moisture redistribution
near the drifts, or liquid drainage towards the drifts and within the pillars. The TH models in
addition show no major moisture redistribution in the UZ except near the heated drifts. The
models also show only a moderate temperature increase within the zeolites and at the water table.
We consider the TH models developed here validated because of this good agreement with the
heater test models, the validity of the geothermal analog models, and the documented theoretical
and physical validity of similar unsaturated flow studies with and without heat.
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7. DISCUSSION AND CONCLUSIONS

In this AMR, we conduct a systematic modeling study to investigate the effects of thermal
loading on the TH processes in the UZ of Yucca Mountain. This study uses several 3-D and 2-D
dual-permeability submodels of the 3-D UZ Model and incorporates material properties
developed using the Calibrated Properties Model (documented in separate AMRs). The 2-D
models employ different refined lateral grids as well as explicit drift representation at the
repository.

These models provide the mountain-scale TH response and the sensitivity to thermal loading
distribution, based on surface infiltration rate, numerical grid discretization, and the effects of
ventilation. The models allow for the temperature to vary at the water table. This is achieved by
shifting the UZ-model bottom boundary with a fixed temperature condition to 1,000 m below the
water table. The numerical model grids used in this study are still relatively coarse for resolving
the drift-scale phenomena expected near the waste packages. However, the models provide
sufficient resolution for determining mountain-scale, long-term TH behavior resulting from
thermal load within the drifts. This is because the detailed TH processes and descriptions at the
drifts affect only a small distance (tens of meters and at early times less than 100 years) relative
to the mountain-scale mode! domain. The far-field. mountain-scale TH behavior of the UZ
system is determined mainly by a long-term average heat source at the repository.

Three-dimensional effects of TH processes are investigated by comparing the simulation results
of the 3-D models with the 2-D model (NS#1 Case 1 Sections 6.8 and 6.9). In both models, the
thermal load is applied to the entire drift column (continuous/smeared heat source over the
repository block). Except for a few locations, the 2-D and 3-D models predict very similar
temperature contours for the simulated domain. Significant differences in the modeled
temperature profiles between the two models occur only at the center of the repository along the
repository horizon. With the 3-D model, we predict more rapid cooling at the end of the boiling
period than the 2-D models, because of lateral heat conduction into a third dimension. After
2.000 years, the predicted temperature at the repository is 77°C from the 3-D model compared to
92°C from the 2-D model. The predicted maximum temperature at the water table is 70°C in both
cases for the current thermal-loading, scenario using the mean present-day infiltration and no
ventilation.

In addition to the surface infiltration rates and the actual thermal load to be emplaced into the
drifts, the model-predicted TH processes also depend on other factors. These factors include how
the waste distribution is represented in the model, whether ventilation is used, and the resolution
of numerical grids. This study indicates that the available heat and ambient infiltration flux are
the determining factors for boiling and rewetting processes at the repository. The average
infiltration rate for the modeled cases is 4.8 mm/year for the mean present-day infiltration rate,
11.3 mm/year for the mean monsoon-climate average infiltration, and 16.9 mm/year for the mean
glacial-transition climate. With both the 2-D coarse and refined grid models without ventilation,
heat-pipe conditions are developed in a region above the repository during 10-100 years.
Complete dry-out conditions are predicted near the drifts, mainly within fracture elements, with
drift temperatures exceeding 100°C for hundreds of years.
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In the rock mass between the drifts, temperatures may rise to boiling conditions and saturation
may be slightly reduced. No complete dry-out conditions are predicted except in zones under low
surface infiltration rates. The liquid flux towards the drifts may exceed 1.200 mm/year,
particularly in the low infiltration areas. This is because of drier conditions and consequentially
high capillary pressure gradients. However, the high percolation fluxes occur only at early times
(less than 100 years) and do not represent liquid seepage into the drifts because it is vaporized by
the heat within the drifts. The refined 2-D model predicts that although vertical flow crossing the
interval between the drifts continues at a rate close to the ambient percolation fluxes for most of
the thermal-loading period, this flux may be enhanced by condensate drainage for the first 1,000
years of thermal load. The results also show that major changes to flow occur mainly above the
potential repository horizon. The increase in flow here is associated with boiling, lowering of
liquid saturation (high capillary suction), or increase in saturation through condensation
(increased relative permeability). Only small increases in liquid flux are predicted below the
repository horizon.

Thermal loading at the repository results in significant changes in the temperature conditions and
moisture distribution, both at the repository and at the zone directly above and below the
repository. Without ventilation, strong liquid and gas flow fields are developed. These flow
fields are several orders of magnitude higher than the ambient conditions at the repository drifts
and at earlier times. Two-phase heat-pipe conditions occur only in a region above the repository,
a region extending up to 200 m above the repository to the base of the PTn hydrogeologic unit.
These conditions occur between 500-1,000 years. Complete dry-out of both the fracture and
matrix continua at the repository develops over the first 100 years. Return to the ambient
saturation occurs during 500-5,000 years. Localized dry-out of the matrix at the repository and
in areas with low infiltration rates is predicted even with ventilation. Temperatures may be
elevated to approximately 250°C within the completely dry drifts, when no ventilation is
implemented. However, most of the repository remains at boiling temperature (about 97°C) for
nearly 1,000 years. When ventilation is employed, only localized boiling at the drifts is
predicted. The maximum temperature at the repository in this case is 97°C, which is the boiling
temperature at repository.

Without ventilation and with the present-day mean infiltration for the entire thermal load period,
the models predict a nearly 30 to 35°C temperature increase at the water table to an average of
70°C. With ventilation and change in infiltration owing to changes in the climate, the predicted
maximum temperature at the water table drops to about 65°C. This indicates that the models
with a fixed temperature boundary applied at the water table may overestimate the cooling rate
of the repository, because it imposes a higher temperature gradient between the repository and
the water table.

At the top of the CHn hydrogeologic unit, the predicted maximum temperature rises to 75-80°C
for a period between 2,000 and 7,000 years. The predicted near surface temperatures (top of the
TCw hydrogeologic unit) are dominated by the top temperature condition, as specified in the
models, and may not correctly represent the evolution of near-surface temperature conditions
under thermal loading.

Even with ventilation, the models predict a zone with substantial changes in matrix liquid
saturation that extends about 50 m below and above the potential repository horizon. From the
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2D models, we predict surface infiltration rates resulting from simulated monsoon and glacial
climates have little impact on the duration and extent of boiling zones at the repository.
However, higher liquid recharge rates from these two climates during the cooling phase speed up
the processes of cooling and re-saturation beyond 2.000 years, and elevate the ambient
percolation flux.

The 2-D models used here show good agreement with the results of 3-D models showing that
3D effects do not adversely impact the conclusions derived using the detailed NS#2 grid.
Because there is no heat-transfer in the 3™ dimension. the 2-D models provide an upper bound
estimate of TH impact heat on the UZ environment compared to the 3-D models. Furthermore,
because the predicted thermally affected zone does not laterally extend more than 100 m outside
the repository, the predicted TH response can apply to an E-W or any cross section through the
repository over which similar flow properties, thermal load distribution, and infiltration pattern

apply.
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from Boreholes USW NRG-6 and USW NRG-7a from Instrumentation through March 31, 1995.
Submittal date: 02/13/1995.

GS951108312232.008. Data, Including Water Potential, Pressure and Temperature, Collected
from Boreholes UE-25 UZ#4 & UZ#5 from Instrumentation through September 30, 1995, and
from USW NRG-6 & NRG-7A from April 1 through September 30, 1995. Submittal date:
11/21/1995.

GS960308312232.001. Deep Unsaturated Zone Surface-Based Borehole Instrumentation
Program Data from Boreholes USW NRG-7A, USW NRG-6, UE-25 UZ#4, UE-25 UZ#5, USW
UZ-7A, and USW SD-12 for the Time Period 10/01/95 through 3/31/96. Submittal date:
04/04/1996.

GS970108312232.002. Deep Unsaturated Zone, Surface-Based Borehole Instrumentation
Program - Raw Data Submittal for Boreholes USW NRG-7A, USW NRG-6, UE-25 UZ#4, UE-
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25 UZ#5, USW UZ-7A, and USW SD-12, for the Period 8/16/96 through 12/31/96. Submittal
date: 01/22/1997.

GS970808312232.005. Deep Unsaturated Zone Surface-Based Borehole Instrumentation
Program Data from Boreholes USW NRG-7A, UE-2 5 UZ#4, UE-25 UZ#5, USW UZ-7A and
USW SD-12 for the Time Period 1/1/97 — 6/30/97. Submittal date: 08/28/1997.

GS971108312232.007. Deep Unsaturated Zone Surface-Based Borehole Instrumentation
Program Data from Boreholes USW NRG-7A, UE-2 5 UZ #4, UE-25 UZ #5, USW UZ-7A and
USW SD-12 for the Time Period 7/1/97 - 9/30/97. Submittal date: 11/18/1997.

GS980408312232.001. Deep Unsaturated Zone Surface-Based Borehole Instrumentation
Program Data from Boreholes USW NRG-7A, UE-2 5 UZ #4, USW NRG-6, UE-25 UZ #5,
USW UZ-7A and USW SD-12 for the Time Period 10/01/97 - 03/31/98. Submittal date:
04/16/1998.

LB990501233129.004. 3-D UZ Model Calibration Grids for AMR U0000, "Development of
Numerical Grids of UZ Flow and Transport Modeling.” Submittal date: 09/24/1999.

LB990701233129.001. 3-D UZ Model Grids for Calculation of Flow Fields for PA for AMR
U0000, "Development of Numerical Grids For UZ Flow and Transport Modeling."
Submittal date: 09/24/1999

LB991091233129.006. Thermal Properties and Tortuosity Factor for the UZ Model Layers.
Submittal date: 10/15/1999. Initial use.

1L.LB997141233129.001. Calibrated Base case Infiltration 1-D Parameter Set for the UZ Flow and
Transport Model, FY99. Submittal date: 07/21/1999.

MO9901 MWDGFM31.000. Geologic Framework Model. Submittal date: 01/06/ 1999.
SN9907T0872799.001. Heat Decay Data and Repository Footprint for Thermal-Hydrologic and

Conduction-Only Models for TSPA-SR (Total System Performance Assessment-Site
Recommendation). Submittal date: 07/27/1999.

8.4 OUTPUT DATA, LISTED BY DATA TRACKING NUMBER

LB991201233129.001. The Mountain-Scale Thermal-Hydrologic Model Simulations for AMR
U0105, "Mountain-Scale Coupled Processes (TH) Models
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9. ATTACHMENTS

Attachment I — Document Input Reference System

Attachment II — List of Model Input and Output Files
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ATTACHMENT I
DOCUMENT INPUT REFERENCE SYSTEM

These are the Q-status as of the effective date of this AMR. The current status can be found

in the DIRS database.
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Attachment II
List of Model Input and Output Files

Model input and output files submitted under DTN: LB991201233129.001 with this AMR.

Folder names identify cases described in Table 6 in Section 6 of this AMR.

FOLDERS

FILES

\3D_Casel, Part 1
\3D_Casel, Part 1
\3D_Casel, Part 1
\3D_Casel, Part 1
\3D_Casel. Part 1
\3D_Casel, Part 2
\3D_Case2, Part 1
\3D_Case2, Part 1
\3D_Case2, Part 2
\3D_Case2, Part 3
\NS\NS#1_Casel
\NS\NS#1_Casel
\NS\NS#1_Casel
\ANS\NS#1_Casel
\NS\NS#1_Case2
\ANS\NS#1_Case?
\NS\NS#1_Case2
\NS\NS#1_Case2
\NS\NS#1_Case2
\NS\NS#2_Casel
\NS\NS#2_CaseI\GASOBS
\NS\NS#2_Case1I\GASOBS
\NS\NS#2_Case1\GASOBS
\NS\NS#2_CaseI\GASOBS
\ANS\NS#2_Case N\GASOBS
\NS\NS#2_CaseI\GASOBS
\NS\NS#2_Case1\GASOBS
\NS\NS#2_Case1\GASOBS
\NS\NS#2_Casel\Input
ANS\NS#2_Casel\NSR_OUT
ANS\NS#2_Case\WNSR_OUT
\NS\NS#2_Case1\NSR_OUT
\ANS\NS#2_Case]1\NSR_OUT
\NS\NS#2_Casel\NSR_OUT
\NS\NS#2_Case2\GASOBS
\NS\NS#2_Case2\GASOBS
ANS\NS#2_Case2\GASOBS
\NS\NS#2_Case2\GASOBS
\NS\NS#2_Case2\GASOBS
\NS\NS#2_Case2\GASOBS
\NS\NS#2_Case2\Input
\NS\NS#2_Case2\NSR_OUT
ANS\NS#2_Case2\NSR_OUT
\NSINS#2_Case2\NSR_OUT
\NS\NS#2_Case2\NSR_OUT

MDL-NBS-HS-000007 REV 00

INCON_thm_s32.dat
MESH_rep.V1.gz
MESH _rep.VF.gz

thm_s32.dat
thm_s32.dat_tram.out.gz
thm_s32.out
thm_usz.dat
thm_usz.out_1
thm_usz.out_2
thm_usz.out_3
heat_nsl.dat_v2.gz
heat_nsl.out2
MESH_ns.V1_sz.gz
MESH_ns.VF.gz
bs_v2.out.gz
drft_bs_v2.dat
drft_bs_v2.out.gz
GASOBS.DAT revl.gz
MESH_REV1.gz
MESH_2k.sz.gz
GASOBS.DAT
GASOBS.DAT_2000y
GASOBS.DAT_212y.gz
GASOBS.DAT_2130y
GASOBS.DAT_221y.gz
GASOBS.DAT_258v.gz
GASOBS.DAT_560y.gz
GASOBS.DAT_600y.gz
bs_nsr_v2.dat
nsr_l.out.gz

nsr_2.out

nsr_3.out

nsr_4.out

nsr_5.out
GASOBS.DAT_100ky.gz
GASOBS.DAT_2000y.gz
GASOBS.DAT_516y.¢z
GASOBS.DAT_6000y.gz
GASOBS.DAT_600y.gz
GASOBS.DAT_815y.gz
vt_nsr_v2.dat.gz
vi_nsr_l.out.gz
vt_nsr_2.out.gz
vt_nsr_3.out.gz
vt_nsr_4.out.gz
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