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Agenda

Purpose of Meeting 
Obtain a detailed list of the specific open issues / unfavorable review 
comments from the NRC review of RETRAN-3D. This list will be used to 
focus on closure of open issues and lead to near-term conclusion of the NRC 
review.  

Discussion of Review Status and Plan for Closure 
1. RETRAN Maintenance Group comments on the review process 

- Our approach was based on past experiences with submitting the 
EPRI RETRAN and VIPRE codes and licensee topical reports for 
NRC review 

- RETRAN-3D is viewed as a better code that will improve safety 
- We admit to the two errors and documentation problems that were 

discovered.  
- We have responded to the RAIs and have provided what we 

thought was requested.  
- We do not have a good idea of the specifics of the remaining 

issues. That is why we asked for this meeting.  
2. Review responses to RAI #1 dated 5/21/99 
3. Review responses to RAI #2 dated 10/26/99 
4. Discussion of NRC reaction to supplemental information letter dated 

3/6/2000 
- Is the NRC planning a response or followup questions? 

5. NRC to provide current status of the review / expected SER conclusions 
6. Discussion of response to ACRS T-H Phenomena Subcommittee 

comments 
7. Discussion of how to move forward to conclusion of the review 
8. NRC comments on the review process



Scalar Macroscopic Momentum Balances for 

Multi-dimensional Fluid Flow 

T. A. Porsching 

April 18, 2000 

Notation 
Q2: Three dimensional control volume 

VQ: Volume of £ 

&£2: Boundary of Q2 

N: Unit exterior normal vector to 8£2 

q: Fluid velocity vector 

p: Fluid density 

p: Fluid pressure 

f: Body force vector 

Si, i = 0, 1, 2: Plane sections of Q2 

A&: Area of S, 

ni: Unit normal vectors to Si 

£2, i = 1,2: Parts of Q2 lying on either side of So 

49Qi: Boundary of £2i 

Owi: Part of O£2i disjoint from So 

E,: Surface area of awi 

ai: Sidewall of Q, 
P/, i = 1, 2: Average pressure over X, 

1i5, i= 1,2: Average pressure over S, 

L0 : Length of £2 with respect to So 

W0 : Mass flow rate a point in £2 in the direction of no 

Wt, i = 1,2: Mass flow rate at a point on Si in the direction of ni 

W, ,o, i = 1,2: Mass flow rate at a point on S, in the direction of no 

q, i = 1,2: Fluid velocity vector at a point on S, 

0, i = 1,2: Angle between q, and n, 

Oi,o, i = 1,2: Angle between q, and no 

y,,0, i = 1,2: Angle between ni and no
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1 Introduction

The purpose of this note is to give a systematic and rational derivation of several scalar 
momentum balances from the basic vector form of the multi-dimensional equations of 
motion of an inviscid fluid. Since no use is made of the continuity equation, the derivation 
is applicable to both compressible and incompressible flows. Furthermore, while it has not 
been done here for the sake of simplicity, it appears possible to use an analogous approach 
to include viscous effects by starting with the Navier-Stokes instead of the Euler equations.  

The regularity assumption made about the fluid variables is that they are continuously 
differentiable functions of time and space. Thus, we have in mind classical solutions of 
the equations of motion instead of the more theoretically convenient weak or generalized 
solutions [2].  

It is important to note that the mass flow rates appearing in the scalar momentum 
balances hold at particular (and in general unknown) points in a control volume at each 
instant of time. No assertion is made that these quantities are averages over specified 
control volume surfaces. The only averages introduced in the sequel axe the pressures Pi 
and ji defined by (22) and (27) respectively.  

The remainder of this note is as follows. In Section 2 we derive equations (24) and (25), 
two forms of a scalar momentum balance that are consistent with the Euler equations. In 
Section 3 we make some remarks about how to close the computational models implied 
by (24) and (25). Any such modifications necessarily lead to approximations of these 
equations, and we present two such approximations as (36) and (37). Finally, in the 
Appendix we list some basic mathematical results that are used in our earlier development.  

2 Scalar Momentum Models 

n. Vn2
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Consider the control volume Q shown in the above figure. We assign unit normal vectors 

ni to the plane sections S, i = 0, 1,2. The sections S and S2 are part of OQ, the boundary 

of Q2, whereas So is in the interior of Q2. That part of &2 not corresponding to S1 and S2 

is assumed to be a rigid no-slip wall.  

Note that So partitions Q into two subvolumes, Q, and Q2 lying on opposite sides of 

So. The boundary of Qj, i = 1, 2, which we denote by OQj, consists of So and owi, where 

awl and aw2 are those portions of 9Q on opposite sides of So. Furthermore, &wi = Si U oai, 
where aj is the sidewall of Qi.  

To obtain a scalar form of the momentum balance we start with the multi-dimensional 

Euler equations written in vector form as 

(pq)t +, v (pqqT) + vp = f, (1) 

where qqT is a dyadic product. We take the dot product of (1) with no and integrate the 

result over Q2 to get 

j(pq. no)tdV + •7. [pq(q. no))dV + v . (pno)dV= f nodV. (2) 

Since no is a constant vector, the operations of differentiation and projection (i.e., "dot

ting") can be interchanged. Thus equation (2) is exact but, unlike the vector equation (1), 

it is a scalar equation.  

Let us denote the four terms of (2) respectively by I7, i = 1,..., 4.  

For the first term the operations of space integration and time differentiation may be 

interchanged so that 

A - (pq"no)tdV = [f (pq no)dV] 

Next we apply the three dimensional version of the Mean Value Theorem for Integrals (see 

Appendix A) with f(x) = (pq)(x) - no and g(x) = 1 to the integral. This gives 

dt 

where x0 is some (generally unknown) point in QŽ. If we define the mass flow rate 

Wo = (pq)(x0)" noAo, 

then we can write (3) in the form 

11 = LO dWo (4) 
dt ( 

where Lo = VQ/Ao can be interpreted as the "length" of Q with respect to the cross section 

So.
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The last term of (2) is handled in the same way. That is, we apply the Mean Value 
Theorem to 

14 j f. no dV 

with f(x) = f(x) • no, g(x) = 1. In view of the definition of L0 this allows us to write 

14 = f0 " n0 LoA 0 , (5) 

where f0 denotes f(x*) for some point x* E Q.  
Regarding the second term of (2), by the Divergence Theorem we have 

1'2 j f . [pq(q" no)] dV /(pq" N)(q-no) dS.  '(p-no S (6) 

Now qlag = 0 except possibly on S1 or S2 . So the domain of integration reduces to S, U S2 .  
Moreover, N = ±nj on Si, the + or - sign holding as ni is an exterior unit normal or not.  
Throughout the rest of this note we assume that these vectors are oriented as shown in 
the figure. In this case 

N-f -n 1  on1 
N ni on S (7) 
n2 on S2.  

Therefore, 

joa (pq" N)(q" no) dS = js(pq" n 2 )(q, no) dS- j (pq. n1 )(q no)dS. (8) 

If we apply the Mean Value Theorem of the Appendix to the integral 

"j(pq" n2)(q- no) dS 

with f(x) = ((pq)(x) - n 2)(q(x)- no), g(x) = 1, we obtain 

j(pq" n2)(q- no) dS = ((pq)(x 2)" n2)(q(x 2)- no)A-2 

for some point x 2 C S 2. Now define 

W,2  - (pq)(x 2 ).n 2A2, 

W,: z0 -(pq)(x 2)-n0A•, 

P2 p(x 2 ).  
Then 

JThn(pq- 
n-)(q- no)dS = ,4.p. (-P 9.)
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A similar argument applied to the integral 

j(pq- n)(q, no)dS 

leads to 

s(pq nl)(q, no)dS = 1 (10) S Alp, 

Combining (8), (9) and (10), we see that (6) can be written as 

12-= W 2 .o WlWlo (11) 

A2p 2  Alp1 

To treat the third term in (2), we start with the Divergence Theorem and use the fact 

that 19Q = aw l U aw. to write 

13 j .(pno) dV j n.N dS j -nNdS+jpno -N dS. (12) 

We distinguish two options.  

Option 1 
We assume that S0 can be chosen so that no " N does not change sign on each of awl and 

9w 2. (It will then necessarily be of opposite sign on these two surfaces.) For definiteness, 

suppose that as shown in the figure no - N < 0 on awl and no - N > 0 on aw.. We apply 

the Mean Value Theorem to the integral 

>no . NdS (13) 

with f(x) = p(x), g(x) = -no" N(x) to get 

19 pno" NdS = -P() f -no" INdS (14) 

for some point ýj E 9wl. Following a suggestion of S. Clerc, we note that since no is a 

constant vector, 7 - no 0. Therefore, the Divergence Theorem shows that 

0=v .nodV=o no.NdS+f no-NdS.  

That is, 

j0oI -nNdS=j no-NdS. (15) 

Furthermore, N = no on So so that 

jno.NdS=j dS =Ao, (16)
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the area of So. In view of (14), (15) and (16) we have

jl pno NdS = -p(ý 1 )Ao. (17) 

Proceeding in an entirely similar manner, we also find that 

pno N dS = p(2)Ao (18) 

for some point ý2 C aw 2.  
Finally, we define pi - p(s,), i = 1,2 and substitute (17) and (18) into (12) to obtain 

-3 = (p2 - pl)Ao. (19) 

Option 2 
We assume that the pressure is nonnegative over a•2. Then we can apply the Mean Value 
Theorem to (13) with f(x) = no N(x), g(x) = p(x) to deduce that there is a point 

cl C awl such that 

J pn0 NdS = no N(ýI)fo pdS. (20) 

Similarly, 

pno N'dS= n N(• 2) k2 pdS (21) 

for some 2 E 8w 2. If we define the average pressure over awi as 

i p dS, (22) 

where Ej denotes the surface area of awi, and let the angle -yi be the angle between no and 
N(ýL). Then cos-/i = no - N(•i) and it follows from (12), (20) and (21) that 

13 =(E Ccos 1 )P1 + (E2 cos-Y2)P•. (23) 

We can now replace the terms in (2), by their respective equivalent forms (4), (11), (19) 
or (23), and (5) to obtain a scalar momentum balance for the control volume Q. We have 

L dW- + W ._ p .• W. + Ao(pP2 - Pl) = fo • noLoAo, (24) 
dt A2P2  Alp, 

under Option 1, and 
LdWo W.2W2.0o W1 W1.0 

Lo--i+ A2 2p Alp[ 0 (I Ccos yi)P 1 + (E2 cos-. 2 )P2 = fo noLoAo, (25) 

under Option 2.
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3 Remarks

1. The validity of (24) obtained under Option 1 depends on the assumption that SO can 
be oriented in Q) so that no - N does not change sign on each of the two surfaces &9W 
and w•2. Since no - N = cosTy, where -y is the angle between the constant vector 
no and the surface normal N, this assumption is satisfied if at each point on awi no 
tangent line is parallel to no. (At points where the tangent line has a jump, we also 
need to include the directions of all "intermediate tangent" lines.) Thus, while one 
can verify the assumption for some surfaces (e.g., if Owi is any surface that is cut in 
exactly one point by a line parallel to no), there are other simple surfaces for which 
it is not obvious how to choose So so that it holds (e.g., if (9wi is a portion of a torus, 
i.e., an elbow).  

This drawback is not present with (25) which results from Option 2. However, there 
is a practical difficulty with (25), namely, the presence of the (generally) unknown 
angles -yr. One way to deal with this problem is to recall that since cwi = Si U aj, we 
can write 

fo pno'NdS=fs pno.N dS+ pno.NdS. (26) 

Utilizing (7), we see that 

fs pno -NdS= -Is pn -ni dS = -no -ni Ls p dS.  

However, no • ni = cos71i.o, where yi•o is the known angle between ni and no. There
fore, if we define the average pressure over S as 

Pi - I pdS, (27) 

then (26) becomes 

fo pno - N dS = -Alfi cos-yto +1 pno . N dS. (28) 

The integral over the sidewall al in (28) will be small if either of the following condi
tions hold.  

(a) The sidewall oi is nearly parallel to the vector no. Indeed, if at is a cylinder 
whose generators are parallel to no, then the integral vanishes.  

(b) The area of al is small. This condition can be met by creating control volumes 
whose lengths L0 are sufficiently small.
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In either of these cases we can neglect the second term on the right side of (28) to 

obtain the approximation 

j pno N dS - cos- fi. (29) 

A similar line of reasoning leads to 

pn0 N dS ; A 2p2 cos 72.0- (30) 

Combining (29) and (30) with (12), we see that 

13 ; A2152 cos 7210 - AIP,1 cos 71,0 - (31) 

2. A second issue that must be addressed before (24) and (25) become suitable for 

computation is the need to relate the mass flow rates W0, W1 , W2, Wl 0 , and W4,0. In 

this connection let us observe that by definition' 

Wi = [(pq)(xj)jAjcosOi 
Wi.o = [(pq)(xj)jAjcos~j~o, i= 1,2, 

where Oi is the angle between q(xi) and ni and Oi.0O is the angle between q(x1 ) and no.  

Eliminating the quantity j(pq)(xj)lAj between these relationships and substituting 
the result for W,.0 into (24) and (25) gives 

dWo +4.2 cos 02.0  12 cosO1 :0 + Ao(P2 -PI) = noLoAo (32) 

dt A2p.2 cos0 2  Alp, cos9 1 

and 

dWo W2 c C W+2  COS f0  A o 

dt A2p2 cos0 2  Alp 1 cos 1

respectively.  

Consider first the case where Q2 is a cylindrical region whose sidewall is parallel to no.  

If we choose S1 and S2 parallel to So, then Option 1 is valid. Also no = nl = n2 so 
that the ratio of cosines in (32) and (33) is unity. Therefore, (32) reduces to the more 

familiar "one dimensional" momentum balance 
rdWo 14/'2 Wi2 

Lo-- + -+ Ao(p2 -PI) = fo noLoAo. (34) 
dt A2p2 Alp 1
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We get a similar result under Option 2 because in this special case (31) is an equality, 
A0 = A, = A2 , and 7/1.0 = -y2o = 0. The resulting equation is 

dWo W2 W2 

o +- +Ao(2 -t5 1) = fo" noLoAo. (35) 
dt A2p2 Alp, 

In the general case if we assume that qj is parallel to ni, i = 1,2 (i.e., the fluid velocity 
on Si is essentially the normal velocity), then Oi = kir and 0i,0 = 7i.0 + ki~r, where the 
(known) angle 7i.o has been previously defined and ki is 0 if q, is in the same direction 
as ni and 1 if it is in the opposite direction. It follows that 

cos 0 j~o cos(yio + kiwr) = COS-Y 0.  

cos 0- cos(ki)or) 

So in place of (32) we obtain the approximate balance equation 
SdWo W W2 

L0 o coso + 1 coso 71,0 + Ao(p 2 - pi) ; f0 - n0 LoA 0 . (36) dt A 2P2  Alp 1 

We can proceed in the same way with (33) and in addition replace its fourth and fifth 
terms by the right side of (31). This gives us the approximation 

dWo W2 W2 
Lo--t + A cos 720 --- 1 cos - 1 0o + A 2 P2 cos 72:0 - A1l, cos-y1 .o f- noLoAo. (37) dt •p2 Alp 1 

While (32) and (33) are exact, they are not very useful computationally. On the other 
hand the approximations (36) and (37) can be incorporated into larger computational 
algorithms. A common approach is to supplement the set of "momentum" control 
volumes Q2 with a second set of interlaced "continuity" control volumes over which 

mass is conserved. The continuity control volumes typically have as part of their 
surfaces the interior cross sections of the momentum control volumes (e.g., SO). This 
allows the mass flow rates W1 and W-2 appearing in (36) and (37) to be expressed 
(say by averaging or interpolation) in terms of W0 and the analogous flow rates of the 
momentum control volumes contiguous to Q. With this understanding, the discrete 
flow variables of the overall system are then W0 and its analogs.  

A Basic Mathematical Results 

In Section 2 we have made use of certain fundamental mathematical results. For complete
ness, we include formal statements of these in this Appendix. Proofs may be found in any 
reasonably complete text on mathematical analysis, for example [1].
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Divergence Theorem: Let F be a continuously differentiable, vector valued function 
in a three dimensional, closed, bounded region Q2 whose boundary surface aQ is such that 
its exterior unit normal N is sectionally continuous. Then 

V -FdV= F NdS, 

where dV and dS are respectively volume and surfaces differentials.  

Mean Value Theorem for Integrals: Let D be a closed, bounded, corinected, two 
dimensional region. Let f and g be continuous, scalar functions in D with g(x) > 0 there.  
Then there is a point x* E D such that 

JI fidA=(x*)JoDgdA, 
where dA is an area differential.  

We observe that since surface integrals are special kinds of two dimensional integrals, the 
theorem also applies to them (with obvious modifications to the notation). Furthermore, 
the Theorem is valid for three dimensional regions.  
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