

TXU Electric Comanche Peak Steam Electric Station P.O. Box 1002 Glen Rose, TX 76043 Tel: 254 897 8920 Fax: 254 897 6652 Iterry1@txu.com C. Lance Terry Senior Vice President & Principal Nuclear Officer

Log # TXX-00055 File # 10010.1 905.2 (clo) Ref. # 10CFR50.55a(g)

May 2, 2000

U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555

- SUBJECT: COMANCHE PEAK STEAM ELECTRIC STATION (CPSES)-UNIT 1 DOCKET NOS. 50-445 SUBMITTAL OF UNIT 1 SEVENTH REFUELING OUTAGE (1RF07) GL 95-05 REPORT
- REF: TXU letter logged TXX-00036 from C. L. Terry to the NRC dated February 4, 2000

Via the above referenced letter TXU Electric submitted the 90-day report pursuant to the guidance of Attachment 1 to the Generic Letter (GL) 95-05 "Voltage-Based Repair Criteria for Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking".

TXU Electric noted that the section 3 of the report titled, "Comanche Peak Unit-1 2000 Pulled Tube Data for TSP Locations", was not available at that time. TXU Electric has subsequently received the information to complete section 3. The remainder of the report and associated tables are unchanged from the referenced letter. The enclosed report is provided in accordance with the guidance by GL 95-05.

TXU Electric P.O. Box 1002 Glen Rose, TX 76043

TXX-00055 Page 2 of 2

This communication contains no new licensing basis commitments regarding CPSES Unit 1. If you have any questions, please contact Mr. Obaid Bhatty at (254) 897-5839.

Sincerely,

G. G. Terry C. L. Terry ---- Roger & Walker

Regulatory Affairs Manager

OAB/oab Enclosure

E. W. Merschoff, Region IV CC: J. I. Tapia, Region IV D. H. Jaffe, NRR **Resident Inspectors, CPSES** **ENCLOSURE TO TXX-00055**

COMANCHE PEAK UNIT - 1

CYCLE 8 VOLTAGE-BASED REPAIR CRITERIA REPORT

February 2000

Table of Contents

		Page No.	
1.0	Introduction	1-1	
2.0	Summary and Conclusions	2-1	
3.0	 Comanche Peak Unit-1 1999 Pulled Tube Data for TSP Locations 3-1 3.1 Comanche Peak Unit-1 Pulled Tube Examination Results 3.2 Comanche Peak Unit-1 Pulled Tube Evaluation for Voltage- Based Repair Criteria Applications 	3-1 3-4	
	3.3 Comparison of Comanche Peak Unit-1 Data with the EPRI Database	3-6	
4.0	 EOC-7 Inspection Results and Voltage Growth Rates 4.1 EOC-7 Inspection Results 4.2 Voltage Growth Rates 4.3 NDE Uncertainties 4.4 Probability of Prior Cycle Detection (POPCD) 4.5 Probe Wear criteria 	4-1 4-2 4-3 4-4 4-4	
5.0	Database Applied for Leak and Burst Correlations	5-1	
6.0	SLB Analysis Methods		
7.0	 Bobbin Voltage Distributions 7.1 Calculation of Voltage Distributions 7.2 Probability of Detection (POD) 7.3 Limiting Growth Rate Distribution 7.4 Cycle Operating Period 7.5 Projected EOC-8 Voltage Distributions 	7-1 7-1 7-2 7-2 7-2 7-3	
8.0	 SLB Leak Rate and Tube Burst Probability Analyses 8.1 Leak Rate and Tube Burst Probability for EOC-7 8.2 Leak Rate and Tube Burst Probability for EOC-8 	8-1 8-1 8-1	
9.0	References	9-1	

Comanche Peak Unit - 1

Cycle 8 Voltage-Based Repair Criteria Report

1.0 Introduction

This report provides a summary of the Comanche Peak Unit-1 steam generator (SG) bobbin and rotating pancake coil (RPC) probe inspection at tube support plate (TSP) intersections, together with leak rate and tube burst probability analysis results for a postulated steam line break (SLB) accident. The results support implementation of the voltage-based repair criteria as outlined in the NRC Generic Letter 95-05 (Reference 9-1). A 1.0-volt repair criterion for outside diameter stress corrosion cracking (ODSCC) indications at the TSP intersections has been approved for implementation starting with the current cycle (Cycle 8, Reference 9-2). Information requested by the Generic Letter to support a 1-volt repair criterionis provided in this report.

A relatively small number of ODSCC indications were detected during the EOC-7 inspection (a total of 104 indications from all 4 SGs combined), and a majority of those indications (65) was found in SG-4. Therefore, leak and burst analysis based on the actual bobbin voltage distribution (condition monitoring analysis) was carried only for SG-4 as it clearly bounds the other 3 SGs. Westinghouse generic methodology based on Monte Carlo simulations presented in Reference 9-3 was used, and this methodology has been utilized for all leak and burst analyses performed todate by the industry in support of Generic Letter 95-05.

Analyses were also performed to project leak rates and tube burst probabilities for a postulated SLB condition at the end of the ongoing cycle (Cycle 8) applying the 1.0 volt repair criteria. Because of the relatively small indication population detected during the recent (EOC-7) inspection, adequate data is not yet available to define a reliable growth distribution for Comanche Peak Unit-1. Therefore, a bounding growth distribution based on growth data for ³/₄" tube plants during cycles that utilized a 1-volt repair criterion was applied for the EOC-8 projections.

Two tube segments (R31C81 and R25C81) in SG-4 each with 2 TSP intersections were pulled during this inspection for detailed laboratory examination. Results from leak and burst tests and metallurgical examination are presented in Section 3. Eddy current and repair data for EOC-7 TSP indications are provided in Section 4. The leak and burst database applied and the Monte Carlo analysis used to estimate leak rate and tube burst probabilities are briefly described in Sections 5 and 6. The EOC-8 voltage distributions projected using the bounding growth distribution are presented in Section 7. Leak rates and burst probabilities for the actual EOC-7 voltage distributions and projected EOC-8 voltage distributions are reported in Section 8 and compared with allowable limits.

2.0 Summary and Conclusions

Only a total of 104 indications were found in the EOC-7 inspection, a majority of which (65) was in SG-4. All indications detected were on the hot leg side. Only one indication over 1 volt was detected in all 4 SGs combined. It was found in SG-4 and was inspected with a RPC probe. The indication was confirmed as a flaw, and the tube containing it was pulled for detailed laboratory examination. No ID or circumferential indications at the TSP intersections or indications extending outside the TSP were found in this inspection. Only one mixed residual signal at a TSP intersection that could potentially mask a 1.0 volt bobbin indication (residual signal voltage 1.5 volts or greater) was detected in this inspection (in SG-3); it was inspected with a RPC probe and no degradation was detected.

SLB leak rate and tube burst probability analyses were performed for the actual EOC-7 bobbin voltage distributions as well as the projected EOC-8 bobbin voltage distributions. Since about 63% of the combined EOC-7 TSP ODSCC population from all 4 SGs (65 out of a total of 104) was found in SG-4, the leak and burst analysis results based on the actual bobbin voltage distribution for SG-4 should bound those for the other 3 SGs. Therefore, condition monitoring analysis was carried only for SG-4. The limiting SLB leak rate (1.4×10^{-4}) and tube burst probability (1.2×10^{-5}) values obtained using the actual measured EOC-7 voltages for SG-4 are relatively small, and they are 3 to 5 orders of magnitude below the corresponding acceptance limits (27.79 gpm at room temperature and 10^2).

The leak rate and tube burst probability projections at the EOC conditions for the current cycle (Cycle 8) are also well within their acceptable limits. The limiting EOC-8 SLB leak rate projected using the standard analysis methodology (Reference 9-3) and a constant POD of 0.6 is 0.14 gpm. This value is predicted for SG-4, which had the largest number of indications among the 4 SGs in the EOC-7 inspection. Because the ODSCC indication population observed thus far in Comanche Peak Unit-1 SGs is relatively small, a meaningful plant-specific growth distribution is not yet available. Therefore, in accordance with GL 95-05 a bounding growth distribution based on growth data for $\frac{3}{4}$ " tube plants during cycles that utilized a 1-volt repair criterion was applied. The bounding growth distribution utilized is very conservative, and the actual growth during Cycle 8 is expected to be substantially below the bounding distribution applied. Even with this conservative growth distribution, the limiting EOC-8 leak rate projected (0.14 gpm, in SG-4) is more than 2 orders of magnitude below the allowable EOC-8 leakage limit of 27.79 gpm (room temperature). The corresponding tube burst probability, 1.9×10^3 , is about $1/5^{th}$ of the NRC reporting guideline of 10^{-2} . Thus, the GL 95-05 requirements for continued plant operation for the projected duration of Cycle 8 are met.

The results of the non-destructive examination, leak and burst testing, and destructive examination of the TSP regions in 2 tube segments pulled during the EOC-7 inspection are summarized in this report. These TSP crevice regions had OD axially oriented intergranular corrosion and the corrosion was confined to the TSP intersection. The intergranular corrosion present is typical of that in the EPRI database gathered in support of voltage-based repair criteria. Data from leak and burst tests are compared to the EPRI database for 3/4" outside diameter steam generator tubes, and the effect of including the new test data in the reference database is evaluated. The review of the data indicates that the correlations of the burst pressure, probability of leak and leak rate to the common logarithm of the bobbin amplitude are not substantially changed by the inclusion of the new data.

3.0 Comanche Peak Unit-1 1999 Pulled Tube Data for TSP Locations

3.1. Comanche Peak Unit-1 Pulled Tube Examination Results

3.1.1. Introduction

Two tube segments removed from Comanche Peak Unit 1 steam generator 4 (R31C81 and R25C81) were examined at the Westinghouse Science and Technology Center in support of implementation of the voltage-based repair criteria per Generic Letter 95-05. The following TSP regions on the hot leg side in both tubes were examined: flow distribution baffle (FDB), and first hot leg tube support plate (TSP-H3) and second hot leg tube support plate (TSP-H5). Prior to tube removal, field eddy current inspection showed potential indications (PI) by the bobbin probe at both TSPs 3 and 5 of Tube R31C81 and at TSP-H5 of Tube R25C81. Field NDE in the FDB regions of tubes both and TSP-H3 location of Tube R25C81 found no degradation. Field +Point inspection showed a single axial indication (SAI) at the TSP-H3 location of Tube R25C81 only, and no degradation was detected at the other TSP locations indicated above.

Nondestructive laboratory examinations were performed by visual, eddy current, ultrasonic testing and radiographic examinations. Subsequently, dimensional characterization and room temperature leak and burst testing were performed on all specimens. Burst tests were performed on the TSP-H3 and TSP-H5 segments of both tubes as well as control specimens from the free span region of the tubes. In addition, tensile tests were also conducted on samples from the free span sections of the tubes. Following burst testing, the specimens were examined using SEM fractography and metallographic techniques to characterize the fracture surfaces and to determine the extent to which corrosion was present.

3.1.2 Nondestructive Examinations

The tube sections were inspected in the laboratory using eddy current techniques similar to those used during the field inspection. These inspections utilized a 0.610-inch diameter differential bobbin coil probe, and a Zetec +Point probe. The data were collected using a R/D Tech TC 6700 and recorded on optical disks. Analysis of the data was conducted using the Westinghouse ANSER system.

A review of the field eddy current data for the TSP-H3 and TSP-H5 locations in tube R25C81 and R31C81 yielded qualitatively similar results to the original field analyses. Additional small amplitude indications were, however, identified in the bobbin signal for the TSP-H3 location of tube R25C81 and in the +Point data for the TSP-H3 and TSP-H5 locations of tube R31C81. No degradation was detected at the FDB locations of both tubes in the field data as well as in the laboratory data. No destructive examination was performed for the FDB intersections.

Table 3-1 summarizes the eddy current results for the areas of interest. The +Point results shown are from the 300kHz channel and the bobbin coil results are from the 550/130 kHz MIX channel. The laboratory review of the field bobbin coil signals for the TSP-H3 and TSP-H5 locations are in qualitative agreement with the field results with the exception of a 0.36 volt signal found at TSP-H3 of Tube R25C81 in the laboratory review (which was called NDD in the field). The laboratory data from the bobbin coil for Tube R31C81 were distorted by tube noise so that quantitative comparison with the field data was not possible. The laboratory results for tube R25C81 showed a slight increase in voltage for the bobbin response at the TSP-H5 location (1.35 versus 1.19 volts), but this increase is negligible and

likely due to tube pulling effects. The laboratory +Point probe results for the TSP locations of R31C81 and R25C81 identified indications at both TSP-H3 and TSP-H5 locations of Tube R31C81 and at TSP-H5 of Tube R25C81. These results are consistent with the laboratory review of the field data.

After completing the eddy current inspections, ultrasonic and X-ray radiographic examinations of the tube sections were conducted. Review of the laboratory ultrasonic data indicated the presence of indications at both TSP-H3 and TSP-H5 locations of R31C81 and R25C81. These indications are axially oriented, with the TSP-H5 region of R25C81 showing the greatest extent (axially and circumferentially) of all the tube support plate locations. The circumferential extents reported for the UT results in Table 3-1 represent the angular range of axial indications in the UT data.

3.1.3 Leak, Burst and Tensile Data

Following NDE testing, room temperature leak testing was performed on all specimens at three pressures: normal operating pressure 1500 psi, steam line break conditions 2560 psi, and an intermediate pressure 2250 psi. Tube extensions were welded to each end of the specimen to provide a corrosion-free surface to assure leak-free attachment of Swagelok fittings. No leaks were detected on any of the specimens.

After leak testing, the TSP-H3 and TSP-H5 sections of Tubes R25C81 and R31C81 were burst tested at room temperature using the Westinghouse standard burst testing procedure. A bladder and lubricated foil reinforcement were used. In addition to the TSP regions, control free span (FS) sections of each tube without NDE indications were also burst tested. All of the burst openings were axially oriented. Figures 3-1 through 3-4 provide sketches of the burst openings and of the secondary corrosion observed on the four TSP specimens. Table 3-2 presents a summary of the burst data. All burst pressures are well above the burst margin guidelines of the draft R.G. 1.121. Free span burst pressures varied little for the two tubes with values of 10,600 and 10,700 psig. The burst pressures for the tube support plate locations (TSPs H3 and H5) ranged from 9,169 to 10,400 psig. Table 3-2 also includes room temperature tensile test data obtained on additional FS sections from both tubes. The tensile properties appear typical of MA Alloy 600 steam generator tubing of this vintage.

Examination with the scanning electron microscope of the TSP-H3 burst from tube R25C81 revealed the presence of intergranular corrosion (SCC) on the OD surface of the tube, thus confirming the field bobbin reevaluation at this location, see Table 3-1. The corrosion observed on the TSP regions was entirely confined to the TSP crevice region.

3.1.4 Destructive Examinations

SEM fractography was performed at all fracture locations for the TSP specimens of tubes R25C81 and R31C81 after the specimens were burst tested. Tables 3-3 through 3-6 contain the length and depth (relative to the wall thickness) measurements as well as ligament areas for the bursts at TSP-H3 and TSP-H5 for tubes R25C81 and R31C81, respectively.

Each axial burst fracture faces had OD origin intergranular corrosion that occurred as a macrocrack composed of a number of OD intergranular microcracks joined together by ligaments. Most of these ligaments had only or mostly intergranular features, indicating that these particular ligaments grew together during plant operation. Each of the four burst corrosion macrocracks also had ligaments with predominantly ductile features, indicating that

these particular ligaments formed (tore) during either tube pulling, leak testing, burst testing, or subsequent laboratory handling.

The longest corrosion macrocrack was the crack network for the TSP-H5 region of Tube R31C81. It was 0.485 inch long, averaged 24% deep and had a maximum depth of 41%. The TSP-H3 region of Tube R31C81 was 0.380 inch long, averaged 20.3% deep and had a maximum depth of 56%. The TSP-H5 region of Tube R25C81 was 0.240 inch long, had a maximum depth of 49% throughwall and averaged 36% throughwall. The TSP-H3 region of Tube R25C81 was 0.123 inch long averaged 19.7% deep and had a maximum depth of 44%.

In addition to visual examination of the burst areas of TSP-H3 and TSP-H5 of tubes R31C81 and R25C81, transverse and radial metallographic analyses were performed on the specimens. The data are shown in Table 3-7. Shallow cellular corrosion comprised of short axial and oblique cracks was identified by the radial grinds, with the oblique cracks being less than 30% deep.

Based on the appearance of the cracks examined by SEM, the corrosion morphology was composed primarily of axial intergranular stress corrosion cracking (IGSCC) with some shallow intergranular cellular corrosion (ICC) also present. ICC is a crack structure composed of a mixture of axial, circumferential and oblique angled IGSCC. The OD intergranular corrosion present is typical of that in the EPRI database gathered in support of voltage-based repair criteria.

3.1.5 Summary

The TSP crevice regions of Tubes R25C81 and R31C81 had OD intergranular corrosion. The FDB (TSP-H1) regions did not have corrosion. Laboratory NDE examinations confirmed the field inspection data; however, additional small amplitude indications were identified in the bobbin signal for the TSP-H3 location of tube R25C81 and in the +Point data for the TSP-H3 and TSP-H5 locations of tube R31C81. No leakage was observed for any of the specimens for pressures up to the steam line break value 2560 psig. Burst testing showed that the corroded TSP regions all had strength properties exceeding the draft R.G. 1.121 guidelines. All burst opening were axial.

3.2 Comanche Peak Unit-1 Pulled Tube Evaluation for Voltage Based Repair Criteria Applications

The pulled tube examination results were evaluated for application to the EPRI database for voltage based repair criteria applications. The eddy current data were reviewed, including reevaluation of the field data, to finalize the voltages assigned to the indications and to assess the field NDD calls for detectability under laboratory conditions. The data for incorporation into the EPRI database were then defined and reviewed against the EPRI data exclusion criteria to provide acceptability for the database.

3.2.1 Eddy Current Data Review

Table 3-8 provides a summary of the eddy current data evaluations for the Comanche Peak-1 pulled tubes. These NDE data results have been discussed in the above Section 3.1.2. The reevaluation of the field bobbin data shows an indication at TSP-H3 of R25C81 and differs in magnitude for the R31C81 TSP-H3 indication. The bobbin reevaluation for R25C81 TSP-H3 is shown in Figure 3-5. The signal shows a 0.35 volt (0.36 corrected to laboratory standard) signal with zero percent depth. The signal was likely not called in the field inspection due to the zero percent depth and some distortion of the signal. The reevaluation is appropriate for consideration of the indication in the EPRI database. The reevaluation of the bobbin voltage for R31C81 TSP-H3 is shown in Figure 3-6. The highly distorted signal shows two potential flaw components separated by a noise signal such as from probe rattle. A voltage of 0.3 volt is assigned to this indication to reflect the two flaw components. The field evaluation conservatively assigned 0.57 volt to the indication, which encompasses the flaw and noise response. The lower 0.3 volt response for the flaw only is the more appropriate voltage for consideration in the EPRI database. The reevaluated field bobbin voltages, including the adjustment for cross calibration of the field ASME standard to the laboratory standard, are used for the EPRI leak and burst database. The reevaluation was performed by the same analyst that performed a large part of the EPRI pulled tube database and the use of these voltages minimizes analyst variability in the database, which is separately accounted for in voltage based repair criteria applications as an NDE uncertainty.

The post-pull laboratory inspection results show no significant changes in the bobbin or RPC voltages. This result indicates negligible damage to the TSP indications as a result of the tube removal operations.

3.2.2 Comanche Peak Unit-1 Data for Voltage Based Repair Criteria Applications

The pulled tube leak test, burst test and destructive examination results are summarized in Table 3-9. No leakage was found in room temperature leak tests of the TSP indications up to the SLB pressure differential of 2560 psi.

The Comanche Peak-1 pulled tube results were evaluated against the EPRI data exclusion criteria for potential exclusions from the database. Criteria 1a to 1e apply primarily to unacceptable voltage, burst or leak rate measurements and indications without leak test measurements. The indications have very high burst pressures for their voltage magnitudes and the burst pressures tend to be higher for the higher voltage indications. Calculations of the burst pressures from the destructive exam profiles indicate burst pressures of 8560 to 8700 psi for R25C81 TSP-H5 and R31C81 TSP-H5 compared to the measured values of 10000 and 9877 psi, respectively. Typically, these calculations agree with the measured burst pressures within a few hundred psi. Based on these observations, the burst test data were reviewed but the testing was found to correctly follow procedures with no identifiable errors in the measurements or recording of the results. Therefore, Criteria 1a to 1e are not applicable to the Comanche Peak-1 indications. Criterion 3 applies to potential errors in the leakage measurements and is not applicable to the Comanche Peak-1 indications since there are no known errors in the measurements and no leakage was found for the indications.

EPRI Criterion 2a applies to atypical ligament morphology for indications having high burst pressures relative to the burst/voltage correlation and states that high burst pressure indications with ≤ 2 uncorroded ligaments in shallow cracks < 60% deep shall be excluded from the database. Table 3-9 identifies the number of remaining ligaments and the maximum depths for the indications. Three indications have maximum depths < 60% but have more than 2 ligaments and Criterion 2a is not applicable. However, the R25C81, TSP-H3 indication has a 44% maximum depth with 2 ligaments and a high burst pressure. Therefore, this indication satisfies Criterion 2a and is excluded from the EPRI leak and burst database. The burst pressure for R25C81 TSP-H5 is particularly high (above upper 95% confidence on the burst correlation) but has more than 2 ligaments and cannot be excluded from the database.

As shown in the last column of Table 3-9, the TSP-H3 indication of R25C81 is to be excluded from the EPRI database and not included in the probability of leakage and burst correlations. The indications at R25C81 TSP-H5 and R31C81, TSPs-H3 and H5 are included in the burst and probability of leakage correlations. The impact of the indications on the leak and burst correlations is further discussed in the section below.

3.3 Comparison of Comanche Peak Unit-1 Data with EPRI Database

This section provides evaluations of the results obtained from leak rate and burst testing of the TSP-H3 and TSP-H5 regions of Tubes R25C81 and R31C81 removed from Comanche Peak Unit-1 SGs. The results of the destructive examination of the tube are discussed in Section 3.1. The data germane to the leak and burst correlations for voltage-based repair criteria applications are given in Table 3-8. The results of the destructive examinations, e.g., leak and burst tests, are compared to the database of similar test results for ³/₄" outside diameter steam generator tubes. In addition, the effect of including the new test data in the latest database available for ³/₄" tubes (Addendum-H3 database documented in Reference 9-6) was evaluated. In summary, the test data are consistent with the database relative to the burst pressures and the probability of leak as a function of the bobbin amplitude. The leak rate correlation as function of bobbin amplitude was not affected, as no new leakage data is available from this pulled tube examination.

3.3.1 Suitability for Inclusion in the Database

The reported information on the destructive examinations of the R25C81 and R31C81 tube sections was reviewed in Section 3.2 relative to the EPRI guidelines for inclusion/exclusion of tube specimen data in the leak and burst database. This review revealed that data for one of the TSP segments (TSP-H3 in Tube R25C81) should be excluded from the reference database. Therefore, only the leak and burst test results for the remaining 3 TSP segments were added to the database. The resulting correlations should be considered applicable to the use ofvoltage-based repair criteria for indications in ³/₄" diameter tubes in Westinghouse SGs.

3.3.2 Burst Pressure

The burst test results for the three TSP locations, with a non-zero bobbin amplitudes, that did not meet the EPRI exclusion criteria were considered for evaluation. These burst pressures are plotted on Figures 3-7 and 3-8 together with the data from the EPRI Addendum 3 database (Reference 9-6).

- 1. A visual examination of the data relative to the Addendum 3 database indicates that two of the measured burst pressures fall within the scatter band of the reference data. The third appears to have a higher burst pressure than would be expected by inspection. Figure 3-7 shows that one of the burst pressures corresponds to the regression mean prediction line, the second is on the upper 95% confidence, two-sided tolerance bound for a 90% portion of the underlying population (5% in each tail), and the third is about 1000 psi above the upper tolerance bound.
- 2. There are too few additional data to suggest some sort of significant statistical anomaly relative to the existing database.

In summary, the visual examination of the data does not indicate that any significant departures from the reference database should be strongly suspected.

Since the burst pressure data from the Comanche Peak Unit-1 tube specimens were not indicated to be from a separate population from the reference data, the regression analysis of the burst pressure on the common logarithm of the bobbin amplitude was repeated with the additional data included. A comparison of the regression results obtained by including these data in the regression analysis is provided in Table 3-10. Regression predictions obtained by including these data in the regression analysis are also shown on Figure 3-8. A summary of the changes is as follows:

- 1) The intercept of the burst pressure, P_B , as a linear function of the common logarithm of the bobbin amplitude regression line is increased by 0.75%, or about 18 psi. Because of the logarithmic scale, the intercept corresponds to bobbin amplitude of 1 volt. The change has the effect of uniformly increasing the predicted burst pressure as a function of the bobbin amplitude by a miniscule amount. This change is expected because the specimen bobbin voltages are less than the mean of the database and two of the burst pressures are greater than the regression predictions.
- 2) The absolute slope of the regression line is increased by 1.4%, i.e., the slope is more steep. This has the effect of decreasing, albeit very slightly, the calculated burst pressure as a function of bobbin amplitude for large indications, i.e., for those indications with a log-amplitude greater than the mean log-amplitude (about 2.5 V).
- 3) The standard error of the residuals is increased by 4.1%. This would be expected to more than offset the effect of the changes in the intercept and slope and lead to a reduction in the lower 95th percentile prediction values for significant voltage levels, say, above 1 V.

The net effect of the changes on the $1.43 \times \Delta_{SLB}$ structural limit, using 95%/95% lower tolerance limit material properties, is to decrease it by 0.11 V, i.e., from 4.70 to 4.59 V. For a SLB differential pressure of 2405 psi, the structural limit decreases from 5.69 to 5.54 V. This results from the increase in the standard error of the regression predictions. Based on the relatively small change in the structural limit, the change in the probability of burst (PoB) would also be expected to be small. The effects of the changes on the PoB are illustrated on Figure 3-9. As expected the PoB is slightly increased for the entire range of possible amplitudes.

3.3.3 **Probability of Leak**

The data of Table 3-8 were examined relative to the Addendum 3 correlation for the probability of leak (PoL) as a function of the common logarithm of the bobbin amplitude. Figure 3-10 illustrates the Comanche Peak Unit-1 data relative to the reference correlation. All of the specimens exhibited expected leak behavior relative to the predicted probabilities of leak, i.e., the indications had calculated low probabilities of leak and did not leak. The largest of the three had an expected PoL of about 0.02. The test results are not statistically different from the expectations. Based on the examination of the data, there is no significant evidence of irregular results, i.e., outlying behavior is not indicated.

In order to assess the quantitative effect of the new data on the correlation curve, the database was expanded to include the Comanche Peak Unit-1 data points and a *Generalized Linear Model* regression of the PoL on the common logarithm of the bobbin amplitude was repeated. A comparison of the correlation parameters with those for the reference database is shown in Table 3-11. These results indicate:

- 1) An 0.4% decrease in the *logistic* intercept parameter from -4.81 to -4.83.
- 2) A 0.3% increase in the *logistic* slope parameter from 8.42 to 8.45.
- 3) The absolute values of the variance and covariance of the parameters changed by less than 1%. Examination of Figure 3-10 indicates that the probability of leak for all voltages is not meaningfully changed by the inclusion of the Comanche Peak Unit-1 data. The PoL equation generally has a small effect on the total estimated leak rate and it would be expected that there would be no significant impact on the 95% confidence bound on the total estimated leak rate from a single SG.
- 4) The deviance of the regression errors increased by 0.1%. An increase is expected when additional data is added because the deviance is akin to the sum of squares of the errors. The Pearson standard error decreased by 0.6% from 0.97 to 0.96 indicating no significant change in the model's predictions.

In order to further examine the changes to the PoL, the ratio of the new to reference correlation was plotted on Figure 3-11. Examination of the figure indicates an decrease in the PoL for all indications up to about 4 V. However, the ratio is not really significant. So, the effect of the changes in the parameter values and variances would be expected to be small relative to the calculation of the 95% confidence bound of the total leak rate from a SG.

3.3.4 Free Span SLB Leak Rate vs. Bobbin Voltage Amplitude

As previously noted, none of the removed tube specimens exhibited leakage under SLB conditions. Therefore there were no changes to the leak rate correlations from those presented in Reference 9-6.

3.3.5 Conclusions

The review of the effect of the Comanche Peak Unit-1 data indicates that the correlations of the burst pressure and the probability of leak to the common logarithm of the bobbin amplitude are not substantially changed by the inclusion of the data. It is judged that the conclusions relative to EOC probability of burst and EOC total leak rate based on the use of the reference database would not be significantly changed relative to results obtained from

correlations developed after adding the Comanche Peak Unit-1 data to the Addendum 3 database.

The database correlations were not significantly affected by the addition of new data for 3/4" nominal diameter, Alloy 600 MA, SG tubes. Thus, the results of condition monitoring and operational assessment evaluations would not be expected to be changed significantly by the inclusion of the Comanche Peak Unit-1 data.

		Field Edd	dy Current	Field Data	Review	Lab. Eddy	/ Current		
		Bobbin	+Point	Bobbin	+Point	Bobbin	+Point	X-Ray	
Tube	Locatio	Coil ¹	300 kHz	Coil ¹	300 kHz	Coil	300 kHz		Lab UT
	n	Volts	Volts/I	Volts	Volts	Volts/%	Volts/%/I (in.)		
			(in.)						
	FDB	NDD	NDD	NDD	NDD	NDD	NDD	N/A	N/A
	TSP-	0.57 V	NDD	0.30 V	PI	DI	0.11V/51%/0.39	NDD	MAI
R31C81	H3				0.12 V		in.		
:							Circ. Extent 107		
							deg.		
	TSP-	0.74 V	NDD	0.69 V	PI	DI	0.26V/27%/0.36	NDD	MAI
	H5				0.19 V	0.55 V			
							Circ. Extent110		
							aeg.		
	FDB	NDD	NDD	NDD	NDD	NDD	NDD	N/A	N/A
	TSP-	NDD	NDD	0.36V	NDD	NDD	NDD	NDD	MAI
R25C81	H3								
	TSP-	1.17 V	SAI	DSI.	0.27V	1.35 V	0.41 V/38%/0.3	NDD	MAI
	H5		0.64V/0.2	1.19 V			in.		
			in.				Circ. Extent 116		
							deg.		
R7C84	FDB	NDD	NDD	NDD	NDD	NDD	NDD	N/A	N/A
R22C89	FDB	NDD	NDD	NDD	NDD	NDD	NDD	N/A	N/A

Table 3-1.Summary of NDE Data for Comanche Peak Unit-1 Tubes

1. Bobbin voltages include cross calibration to ARC preference calibration standard.

NDD - No Detectable Degradation N/A - Not Applicable

SAI - Single Axial Indication DI - Distorted Indication PI - Possible Indication MAI - Multiple Axial Indication

Table 3-2.Room Temperature Burst and Tensile Test Data for Comanche Peak Unit 1 SG Tubes

Location	Burst Pressure, (psig)	Burst Length, (Inches)	Burst Width, (Inches)	Tensile Test Ultimate Load (lbs.)	0.2% Offset Yield Strength,	Tensile Strength,	Tensile Elongation
Tube R31C81							
Free Span	10700	1.6636	0.3555	9500	49	100	54.0%
TSP H3	9169 ²	1.5176	0.5305				
TSP H5	9877	1. 1123	0.3395				
Tube R25C81							
Free Span	10600	1.6659	0.3846	9600	49	100	53.8%
TSP H3	10400	1.3131	0.4007				
TSP H5	10000	1.4271	0.5121				

¹Leakage occurred at 9130 psig

Table 3-3.SEM Fractographic Data for Intergranular Macrocracks,Tube R25C81, TSP-H3 Burst Specimen

Length vs. Depth & Ligament	
Location	Positional and Ductile Ligament Data ^a
	Crock bottom located 0.227 inches at our TOD bottom
(0.002/11)	Clack bollom localed 0.237 inches above TSP bollom.
(0.003/11)	
(0.008/13)	
(0.009/00) Ligament 1	Ligament 1: Area = 0.16, Minor Axis @ 90°, Major Axis @ 15°
(0.013/32)	
(0.018/40)	
(0.023/41)	
(0.028/44)	
(0.033/00) Ligament 2	Ligament 2: Area = 0.49, Minor Axis @ 60°, Major Axis @ 15°
(0.034/41)	
(0.038/11)	
(0.043/31)	
(0.048/28)	
(0.053/26)	
(0.058/23)	
(0.063/18)	
(0.068/18)	
(0.073/14)	
(0.078/14)	
(0.083/14)	· · · · · · · · · · · · · · · · · · ·
(0.088/17)	
(0.093/18)	
(0.098/3)	
(0.103/6)	
(0.108/0)	
(0.113/12)	
(0.118/14)	
(0.123/0)	Crack Top at 0.360 inches above TSP bottom.

a -Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Length vs. Depth & Ligament Location (inches/% throughwall)	Positional and Ductile Ligament Data ^a
0.0/00	Crack bottom located 0.360 inches above TSP bottom.
(0.005/18)	
(0.010/27)	
(0.015/31)	
(0.020/33)	
(0.024/00)	Ligament 1: Area = 0.92, Minor Axis @ 90°, Major Axis @ 0°
(0.025/33)	
(0.030/26)	
(0.035/29)	
(0.040/42)	
(0.045/44)	
(0.050/44)	
(0.055/42)	
(0.060/42)	
(0.065/49)	
(0.070/49)	
(0.075/46)	
(0.080/42)	
(0.085/00)	Ligament 2: Area = 0.54, Minor Axis @ 90°, Major Axis @ 0°
(0.090/42)	
(0.095/48)	
(0.100/48)	
(0.105/48)	
(0.110/49)	
(0.115/48)	
(0.120/46)	
(0.125/44)	· ·
(0.130/42)	
(0.135/48)	
(0.140/48)	
(0.145/46)	
(0.150/38)	
(0.155/42)	

Table 3-4SEM Fractographic Data for Intergranular MacrocracksTube R25C81 – TSP-H5 Burst Specimen

Table 3-4 (Continued) SEM Fractographic Data for Intergranular Macrocracks, Tube R25C81 – TSP-H5 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data ^a
(inches/% throughwall)	
(0.160/40)	
(0.165/37)	
(0.169/00)	Ligament 3: Area = 0.24, Minor Axis @ 90°, Major Axis @ 30°
(0.170/33)	
(0.175/22)	
(0.180/27)	
(0.185/26)	
(0.190/29)	
(0.195/33)	
(0.200/33)	
(0.205/31)	
(0.210/26)	
(0.215/27)	
(0.220/27)	
(0.225/27)	
(0.226/00)	Ligament 4: Area = 0.56, Minor Axis @ 90°, Major Axis @ 15°
(0.230/26)	
(0.235/13)	
(0.240/00)	Crack Top at 0.600 inches above TSP bottom.

a - Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Table 3-5SEM Fractographic Data for Intergranular Macrocracks,Tube R31C81 – TSP-H3 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data ^a
(inches/% throughwall)	Oreally bettern leasted 0.070 inches above TCD bettern
(0.0/00)	
(0.005/26)	
(0.010/10)	
(0.015/11)	
(0.020/11)	
(0.025/33)	
(0.030/26)	
(0.035/29)	
(0.040/25)	
(0.045/00)	Ligament 1: Area = 1.00, Minor Axis @ 60°, Major Axis @ 15°
(0.046/43)	
(0.050/50)	
(0.055/56)	
(0.060/55)	
(0.070/54)	
(0.075/32)	
(0.080/41)	
(0.085/41)	
(0.090/45)	
(0.095/49)	
(0.100/53)	
(0.105/52)	
(0.110/49)	
(0.115/48)	· · · · · · · · · · · · · · · · · · ·
(0.120/46)	
(0.125/43)	
(0.130/21)	
(0.133/00)	Ligament 2: Area = 1.90, Minor Axis @ 60°, Major Axis @ 15°
(0.135/00)	
(0.140/00)	
(0.145/07)	
(0.150/16)	
(0.155/31)	
(0.160/29)	
(0.165/25)	
(0.170/11)	
(0.175/08)	

Table 3-5 (Continued).SEM Fractographic Data for Intergranular MacrocracksTube R31C81 – TSP-H3 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data ^a
(inches/% throughwall)	
(0.180/05)	
(0.184/00)	Ligament 3: Area = 0.27, Minor Axis @ 90°, Major Axis @ 0°
(0.185/00)	
(0.190/14)	
(0.193/00)	Ligament 4: Area = 0.40, Minor Axis @ 90°, Major Axis @ 0°
(0.195/18)	
(0.200/16)	
(0.205/00)	
(0.210/00)	
(0.215/00)	
(0.220/09)	
(0.225/18)	
(0.230/25)	
(0.235/27)	
(0.240/00)	Ligament 5: Area = 0.36, Minor Axis @ 90°, Major Axis @ 0°
(0.245/23)	
(0.250/18)	
(0.255/07)	
(0.260/07)	
(0.265/07)	
(0.270/14)	
(0.275/16)	
(0.280/17)	
(0.283/00)	Ligament 6: Area = 0.33, Minor Axis @ 90°, Major Axis @ 0°
(0.285/16)	
(0.290/14)	
(0.295/02)	
(0.300/03)	
(0.305/06)	
(0.309/00)	Ligament 7: Area = 0.93, Minor Axis @ 90°, Major Axis @ 15°
(0.310/29)	
(0.315/29)	

a - Area≃inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Table 3-5 (Continued)SEM Fractographic Data for Intergranular Macrocracks,Tube R31C81 – TSP-H3 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data ^a
(inches/% throughwall)	
(0.320/21)	
(0.325/21)	
(0.330/21)	
(0.334/00)	Ligament 8: Area = 1.21, Minor Axis @ 90°, Major Axis @ 0°
(0.335/16)	
(0.340/13)	
(0.345/00)	
(0.350/00)	
(0.355/00)	
(0.360/00)	
(0.365/08)	
(0.370/14)	
(0.375/11)	
(0.380/00)	Crack Top at 0.450 inches above TSP bottom.

a - Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Table 3-6SEM Fractographic Data for Intergranular MacrocracksTube R31C81 – TSP-H5 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data ^a
(inches/% throughwall)	
0.0/00	Grack bottom located 0.140 inches above TSP bottom.
(0.005/05)	
(0.010/09)	
(0.015/05)	
(0.019/21)	Ligament 1: Area = 0. 59, Minor Axis @ 90°, Major Axis @ 0°
(0.020/00)	
(0.025/09)	
(0.030/16)	
(0.035/21)	
(0.040/23)	
(0.050/29)	Ligament 2: Area = 0.32, Minor Axis @ 90°, Major Axis @ 0°
(0.055/24)	
(0.060/16)	
(0.065/19)	
(0.070/18)	
(0.075/16)	
(0.080/14)	
(0.085/14)	
(0.090/14)	
(0.095/14)	
(0.100/00)	Ligament 3: Area = 0.96, Minor Axis @ 75°, Major Axis @ 0°
(0.105/14)	
(0.110/25)	
(0.115/17)	
(0.120/15)	
(0.125/16)	
(0.130/18)	
(0.135/25)	
(0.140/32)	
(0.145/33)	
(0.150/32)	
(0.155/32)	
(0.160/27)	
(0.165/27)	
(0.170/30)	
(0.175/33)	
(0.180/33)	

a -Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Table 3-6 (Continued)SEM Fractographic Data for Intergranular Macrocracks,Tube R31C81 – TSP-H5 Burst Specimen

Length Vs. Depth & Ligament	
Location (inches/%	Positional and Ductile Ligament Data ^a
throughwall)	
(0.185/34)	
(0.190/39)	
(0.200/39)	
(0.205/39)	
(0.210/41)	
(0.215/39)	
(0.220/39)	
(0.225/32)	
(0.230/34)	
(0.235/37)	
(0.240/39)	
(0.245/39)	
(0.250/37)	
(0.255/37)	
(0.260/34)	
(0.265/32)	
(0.270/33)	
(0.275/33)	
(0.280/32)	
(0.281/00)	Ligament 4: Area = 5.29, Minor Axis @ 60°, Major Axis @ 0°
(0.285/34)	
(0.290/32)	
(0.295/16)	
(0.300/37)	
(0.305/39)	
(0.310/35)	
(0.315/35)	
(0.320/35)	
(0.325/37)	
(0.330/34)	
(0.335/34)	
(0.340/33)	
(0.345/34)	
(0.350/37)	

a -Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

Table 3-6 (Continued)SEM Fractographic Data for Intergranular Macrocracks,Tube R31C81 – TSP-H5 Burst Specimen

Length vs. Depth &	
Ligament Location	Positional and Ductile Ligament Data [®]
(Inches/% Inroughwaii)	
(0.360/32)	
(0.365/31)	
(0.366/00)	Ligement 5: Area - 0.79 Minor Avia @ 00° Major Avia @ 0°
(0.370/21)	
(0.376/21)	
(0.375/21)	
(0.380/34)	
(0.385/34)	
(0.390/32)	
(0.395/23)	
(0.310/35)	
(0.400/18)	
(0.405/00)	Ligament 6: Area = 1.56, Minor Axis @ 90°, Major Axis @ 0°
(0.410/16)	
(0.415/14)	
(0.417/00)	Ligament 7: Area = 1.00, Minor Axis @ 90°, Major Axis @ 30°
(0.420/05)	1
(0.425/00)	
(0.430/00)	
(0.435/00)	
(0.440/05)	
(0.445/14)	
(0.450/07)	
(0.455/02)	
(0.460/11)	
(0.465/16)	
(0.470/14)	
(0.475/14)	
(0.480/16)	
(0.485/00)	Crack Top at 0.625 inches above TSP bottom.

a -Area=inches² x 10⁻⁴; Orientation of Ligament Minor Axis relative to Macrocrack Major Axis in degrees; Orientation of Ligament Major Axis relative to Tube Radius in degrees

TABLE 3-7Summary of Metallographic and Visual ExaminationsPerformed at TSP-H3 and TSP-H5 for Tubes R25C81 and R31C81

Specimen location	Sectio n type	# Cracks in circumferential length	Circumferential length	Cracks/ circumfe- rential inch	Estimated # of cracks at Mid- crevice location	Depth (% through wall)	Max. depth of ICC Oblique Components (% through wall in radial section)
R25C81 Pc 3B2C Top half of TSP-H3	Radial	5	0.28 in.	18	10	60% of axial cracks are >23% through wall	100% of oblique sections are less than 28% through wall
R31C81 Pc 3B2C TSP-H3	Radial	8	0.24 in.	33	16	60% of axial cracks are >23% through wall	90% of oblique sections are less than 23% through wall
R25C81 Pc 4B2C TSP-H5	Radial	9	0.28 in.	32	18	50% of axial cracks are >23% through wall	80% of oblique sections are less than 23% through wall

All oblique crack sections are relatively short and probably would turn toward the axial direction or intersect axial cracks before extensive growth

Table 3-8 Summary of Comanche Peak-1 1999 Pulled Tube Eddy Current Results											
Tube	TSP	Field Call		Lab. Ree Data	valuation	of Field	Post Pull	Data			
		Bobbin Volts ⁽¹⁾	+ Point Volts	Bobbin Volts ⁽¹⁾	Depth	+ Point Volts	Bobbin Volts	+ Point Volts			
R25C81	H3	NDD	NDD	0.36	DI	NDD	NDD	NDD			
SG 4	H5	1.17	0.64	1.19	81%	0.27	1.35	0.41			
R31C81	H3	0.57	NDD	0.30	DI	0.12	DI	0.11			
SG 4	H5	0.74	NDD	0.69	89%	0.19	0.55	0.26			
Notes: 1. Bobbin vo Cross cal	oltage da	ata include o normalizatio	cross calibration voltage wa	tion of ASME as 2.80 volts	Estandard for SG 4 t	to the refere ubes (Standa	nce laborato ard ADVB-03	ery standard. 33-97).			

					- HINK		Table	3-9						<u> </u>	
Summary of Comanche Peak-1 1999 Pulled Tube Data for ARC Applications															
Tube	T	Bobbin Data		RPC	Destructive Exam Results				Leak Rate I/hr			Burst Pressure Data - ksi			
	P	Volts	Depth	Volts	Max. Depth	Avg. Depth	Crack Length (inch)	No. Lig. ⁽¹⁾	N.O. 150 0 psid	SLB 256 0 psid	Meas. Burst Press.	σ _y	σ	Adj. Burst Press. ⁽²⁾	ARC Corr. Use
R25C81	H3	0.36	DI	NDD	44%	19 %	0.123	2	0.0	0.0	10.4			9.991	None Note 3
SG 4	H5	1.19	81%	0.27	49%	35 %	0.240	4	0.0	0.0	10.0			9.607	POL, B
	FS	-	-	-	-	-	-	-	-	-	10.6	49.0	100.0	10.183	
	H3	0.30	DI	0.12	49%	20 %	0.380	8	0.0	0.0	9.169			8.808	POL, B
R31C81	H5	0.69	89%	0.19	41%	24 %	0.485	7	0.0	0.0	9.877			9.489	POL, B
5G 4	FS	-	-	-	-	-	-	-	-	-	10.7	49.0	100.0	10.279	
Notes: 1. Numbe 2. Measu 3. Indicati on EPF	er of un red bui on exc RI data	corrodec rst press cluded fro exclusio	l ligaments ure adjuste om use in t on criterion	s reporte ed to nor he EPRI 2a.	d in lengt ninal, hot leak and	h versus flow stre burst da	depth prof ss of 71.57 tabase and	ile. 7 ksi for : 1 associa	3/4" dia ated cor	meter to	ubing. is based			• 	

	Table	3-10									
E	ffect of Comanche Pe	eak Unit-1 Tube Dat	а								
on	the Addendum-3 Cor	relations for ¾" Tub	Des								
Burs	t Pressure vs. Bobbi	n Amplitude Correla	ation								
	$P_{B} = a_{0} + a_{1}\log(Volts)$										
Parameter	Addendum 3	Database with	New / Old								
i arameter	Database Value	Added Data	Ratio								
a ₀	7.40278	7.45800	1.0075								
a ₁	-2.91382	-2.95399	1.0138								
r ²	81.88%	81.10%	0.9905								
Error	0.86077	0.89631	1.0413								
Mean log(V)	0.407375	0.388884									
SS log(V)	37.06576	38.33062									
<i>N</i> (data pairs)	96	99									
Str. Limit (2560 psi)	4.70 V	4.59 V	0.9766								
Str. Limit (2405 psi)	5.69 V	5.54 V	0.9736								
p Value for a ₂	6.2·10 ⁻³⁷	3.6·10 ⁻³⁷									

71.565 ksi

Reference of

Table 3-11Effect of Comanche Peak Unit-1 Tube Dataon the Addendum-3 Correlations for ¾" TubesProbability of Leak CorrelationPr(Leak) = $\frac{1}{1 + e^{-[b_1 + b_2 \log(Volts)]}}$										
Parameter	Addendum 3 Database Value	Database with Added Data	New / Old Ratio							
Logistic Intercept, b ₁	-4.80824	-4.82706	1.0039							
Logistic Slope, <i>b</i> ₂	8.42151	8.44890	1.0033							
V ₁₁ ⁽¹⁾	1.17118	1.16216	0.9923							
V ₁₂	-1.72177	-1.70918	0.9927							
V ₂₂	2.89170	2.87522	0.9943							
No. of Data, <i>N</i>	123	126								
Deviance	45.90	45.90								
MSE	0.379	0.370	0.976							
Pearson SD	0.970	0.960	0.994							
Notes: (1) Parameter b _i , of the r	rs <i>V_{ij}</i> are elements of t regression equation.	he covariance matrix c	of the coefficients,							

Figure 3-1 Sketch of Burst Opening – Tube R25C81 – TSP-H3 Location

Figure 3-2. Sketch of Burst Opening – Tube R25C81 – TSP-H5 Location

Figure 3-3 Sketch of Burst Opening – Tube R31C81 – TSP-H3 Location

Figure 3-4 Sketch of Burst Opening – Tube R31C81 – TSP-H5 Location

Figure 3-6 Comanche Peak Unit-1 R31C81 TSP 3H Bobbin Signal Reevaluation

Figure 3-8

3-29

Figure 3-9

Figure 3-10

Probability of Leak for 3/4" SG Tubes @ 650° F, $\Delta P = 2560$ psi Comparison of New Data with Addendum 3 Reference Database

Figure 3-11

4.0 EOC-7 Inspection Results and Voltage Growth Rates

4.1 EOC-7 Inspection Results

According to the guidance provided by the NRC Generic Letter 95-05, the EOC-7 inspection of the Comanche Peak Unit-1 SGs consisted of a complete, 100% eddy current (EC) bobbin probe full length examination of the tube bundles in all four SGs. A 0.610 inch diameter probe was used for hot and cold leg TSPs where a voltage-based repair criterion was applied. RPC examination was performed for all indications with amplitude above 1 volt. Only one indication in the combined population from all 4 SGs exceeded 1 volt. It was confirmed as a flaw, and the tube containing it was pulled for detailed laboratory examination. All ODSCC indications detected at TSPs were on the hot leg side and no indication was detected on the cold leg side.

No ID, circumferential indications at the TSP intersections or indications extending outside the TSP were found in this inspection. Only one mixed residual signal at TSP intersection that could potentially mask a 1.0 volt bobbin indication (residual signal voltage 1.5 volts or greater) was detected in this inspection (in SG-3); it was inspected with a RPC probe and no degradation was detected. No signal interference was found from copper deposits. All dents over 5 volts identified in the last (EOC-6) inspection were also RPC inspected in present inspection, and no degradation was detected.

A summary of EC indications for all four SGs is shown on Table 4-1, which tabulates the number of field bobbin indications, the number of those indications that were RPC inspected, the number of RPC confirmed indications, and the number of indications removed from service due to tube repairs. The indications that remain active for Cycle 8 operation is the difference between the observed and the ones removed from service. Only one indication needed repairs per the GL 95-05 requirements. Two more indications, both under 1 volt, were also removed from service as they were present in tubes pulled for laboratory examination per GL 95-05 requirements. Figure 4-1 shows the actual bobbin voltage distribution determined from the EOC-7 EC inspection. Since only a total 3 ODSCC indications were removed from service because of tube repairs for all causes, the distribution in Figure 4-1 also approximates the distribution for indications returned to service for Cycle 8.

A review of Table 4-1 indicates that SG-4 had the highest number of indications returned to service for Cycle 8 operation (62 indications, none above 1.0 volt). Therefore, SG-4 is likely to be the limiting SG at EOC-8 from the standpoint of SLB leak rate and tube burst probability.

The distribution of EOC-7 indications as a function of support plate location is summarized in Table 4-2 and plotted in Figure 4-2. The data show a strong predisposition of ODSCC to occur in the first few hot leg TSPs (99 out of 104 indications occurred at the hot leg intersections in the two TSPs above the flow distribution baffle plate), although the mechanism extended to higher TSPs. No ODSCC indications were found on the cold leg side. In summary, the distribution of indication population at TSPs in Comanche Peak Unit-1 show the predominant temperature dependence of ODSCC, similar to that observed at other plants.

The TSP ODSCC mechanism at Comanche Peak Unit-1 is still benign. As a comparison, a plant with Model E2 steam generators reported 2262 indications, with 17 indications over 3 volts, and another plant with Model D4 steam generators reported 5719 indications, with 7 indications over 3 volts, after 7 cycles of operation. The application of chemical cleaning at

Comanche Peak Unit-1 1RF05 outage appears to have had a significant beneficial impact upon ODSCC initiation and growth rates.

4.2 Voltage Growth Rates

Voltage growth rates during Cycle 7 were developed from EOC-7 (September 1999) inspection data and a reevaluation of the EOC-6 (April 1998) inspection EC signals for the same indications. Table 4-3 shows the cumulative probability distribution (CPDF) for growth rate in each Comanche Peak Unit-1 steam generator during Cycle 7 on an EFPY basis, and they are also plotted in Figure 4-3. The curve labeled 'cumulative' in Figure 4-3 represents composite growth data from all four SGs. No growth rate evaluation was performed for prior cycles because a voltage-based criterion was not used prior to the current cycle.

Average growth rates for each SG during Cycle 7 are summarized in Table 4-4. It is evident that the magnitude of average voltage growth in all SGs is relatively small (about 0.1 volt or less). In terms of growth as a percent of the BOC voltage, the data for SG-3 stands out (21.1%); but this value is based on data from only 9 indications and, thus, does not indicate a trend.

The NRC guidelines in Generic Letter 95-05 stipulate that the growth rate distribution(s) used in the SLB leak rate and tube probability analyses to support voltage-based repair criteria must contain at least 200 data points that are established using bobbin voltages measured in two consecutive inspections. Since the composite growth data in Table 4-3 is based on only 104 indications, the Cycle 7 growth data do not meet the above NRC requirement. In the absence of an acceptable plant-specific growth database, the Generic Letter 95-05 requires the use of a bounding growth rate distribution established based on data available from similarly designed and operated plants. Therefore, a bounding growth distribution was developed using available growth data for plants with ³/₄ inch diameter tubes and applied to the Comanche Peak Unit-1 EOC-8 projections.

Prior to Comanche Peak Unit-1, voltage-based repair criteria for ODSCC indications have been applied to five units with ³/₄ inch diameter tubes. Growth data from these 5 units were used to develop a bounding growth distribution for ³/₄" tube plants. Only the growth data for operating periods during which a 1-volt repair criterion was in effect were included. The growth data from different plants were expressed as growth rates per EFPY to account for different plant operating periods. The largest growth rates for each of these 5 units in a cycle when a 1-volt repair criterion was in effect, expressed as a cumulative probability distribution, are shown in Table 4-5; they are also plotted in Figure 4-4. The plant codes used in Table 4-5 and Figure 4-4 are same as those in the EPRI database documented in Reference 9-4. All of the bobbin voltage data used in the growth data considered have been evaluated using the inspection guidelines employed since 1992 to support voltage-based repair criteria. It is evident that the largest growth rates for the individual units vary significantly.

Using the growth distributions for the 5 units, a bounding growth distribution for plants with 3/4 inch diameter tubes was obtained so as to envelope all five growth rate distributions considered; it is shown in Table 4-5 as well as plotted in Figure 4-4. This bounding distribution follows the growth rates observed during the first half of Cycle 5 for Plant AA, but it also includes the highest growth value in the 5 distributions, which occurred in Plant-AB. The bounding growth distribution thus obtained is also compared with the CPDF distribution for the Comanche Peak Unit-1 last cycle growth data in Table 4-5 and Figure 4-4, and it is

clearly evident that the Comanche Peak Unit-1 growth rates are significantly smaller than the bounding values. The CPDF values defining the bounding distribution are utilized to predict the EOC-8 voltage distributions used in the SLB leak rate and tube burst analyses.

4.3 NDE Uncertainties

The NDE uncertainties applied for the Cycle 7 voltage distributions in the Monte Carlo analyses for leak rate and burst probabilities are consistent with the requirements of the NRC Generic Letter 95-05 (Reference 9-1). They are presented in Table 4-6 as well as graphically illustrated in Figure 4-5. The probe wear uncertainty has a standard deviation of 7.0 % about a mean of zero and has a cutoff at 15 % based on implementation of the probe wear standard. The analyst variability uncertainty has a standard deviation of 10.3% about a mean of zero with no cutoff. These NDE uncertainty distributions are included in the Monte Carlo analyses for SLB leak rates and tube burst probabilities based on the EOC-7 actual voltage distributions as well as for the EOC-8 projections.

4.4 Probability of Prior Cycle Detection (POPCD)

Since the ODSCC indication population in Comanche Peak Unit-1 is relatively small, adequate data does not exist to establish a POPCD distribution. If a significantly larger number of indications are detected in future inspections, then a POPCD evaluation may be performed.

4.5 **Probe Wear Criteria**

An alternate probe wear criteria approved by the NRC (Reference 9-5) was applied during the EOC-7 inspection. When a probe does not pass the 15% wear limit, this alternate criteria requires that only tubes with indications above 75% of the repair limit since the last successful probe wear check be reinspected. As the repair limit is 1 volt, all tubes containing indications for which worn probe voltage was above 0.75 volt require reinspection. Only 11 indications detected had a field bobbin voltage over 0.75 volts and none of those indications were inspected with a worn probe. Therefore, no reinspection was required.

The alternate probe wear criteria used in the EOC-7 inspection is consistent with the NRC guidance provided in Reference 9-5.

			Steam G	enerator 1			Steam Generator 2						
	In-	Service D	uring Cycl	e 7	RTS for Cyc	cle 8	In-	Service Du	ring Cycle	e 7	RTS for	Cycle 8	
Voltage Bin	Field Bobbin Indications	RPC Inspected	RPC Confirmed	Indications Repaired	All Indications	Confirmed & Not Inspected Indications Only	Field Bobbin Indications	RPC Inspected	RPC Confirmed	Indications Repaired	All Indications	Confirmed & Not Inspected Indications Only	
0.2	2	0	0	0	2	2	1	0	0	0	1	1	
0.3	1	0	0	0	1	1	3	0	0	0	3	3	
0.4	5	0	0	0	5	5	3	0	0	0	3	3	
0.5	1	0	0	0	1	1	5	0	0	0	5	5	
0.6	1	0	0	0	1	1	2	0	0	0	2	2	
0.7	1	0	0	0	1	1	4	0	0	0	4	4	
0.8	0	0	0	0	0	0	0	0	0	0	0	0	
0.9	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	1	1	
1.2	0	0	0	0	0	0	0	0	0	0	0	0	
Total	11	0	0	0	11	11	19	0	0	0	19	19	
>1v	0	0	0	0	0	0	0	0	0	0	0	0	
			Steam G	enerator 3	8				Steam Ge	enerator 4			
	In-	Service D	Steam G uring Cycl	enerator 3 e 7	RTS for Cy	cle 8	In-	-Service Du	Steam Ge uring Cycle	enerator 4	RTS for	Cycle 8	
Voltage Bin	In- Field Bobbin Indications	Service D RPC Inspected	Steam G aring Cycle RPC Confirmed	enerator 3 e 7 Indications Repaired	RTS for Cyo All Indications	cle 8 Confirmed & Not Inspected Indications Only	In- Field Bobbin Indications	Service Du RPC Inspected	Steam Ge tring Cycle RPC Confirmed	enerator 4 7 Indications Repaired	RTS for All Indications	Cycle 8 Confirmed & Not Inspected Indications Only	
Voltage Bin 0.2	In- Field Bobbin Indications 1	Service D RPC Inspected	Steam G uring Cycl RPC Confirmed	enerator 3 e 7 Indications Repaired 0	RTS for Cyo All Indications	cle 8 Confirmed & Not Inspected Indications Only 1	In- Field Bobbin Indications 1	Service Du RPC Inspected	Steam Ge uring Cycle RPC Confirmed	enerator 4 7 Indications Repaired 0	RTS for All Indications	Cycle 8 Confirmed & Not Inspected Indications Only 1	
Voltage Bin 0.2 0.3	In- Field Bobbin Indications 1 1	Service D RPC Inspected 0 0	Steam G uring Cycl RPC Confirmed 0 0	enerator 3 e 7 Indications Repaired 0 0	RTS for Cy All Indications	cle 8 Confirmed & Not Inspected Indications Only 1 1	In- Field Bobbin Indications 1 14	Service Du RPC Inspected 0 0	Steam Ge rring Cycle RPC Confirmed 0 0	enerator 4	RTS for All Indications	Cycle 8 Confirmed & Not Inspected Indications Only 1 14	
Voltage Bin 0.2 0.3 0.4	In- Field Bobbin Indications 1 1 2	Service Do RPC Inspected 0 0	Steam G uring Cycle RPC Confirmed 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0	RTS for Cy All Indications 1 1 2	cle 8 Confirmed & Not Inspected Indications Only 1 1 2	In- Field Bobbin Indications 1 14 7	Service Du RPC Inspected 0 0	Steam Ge rring Cycle RPC Confirmed 0 0 0	enerator 4	RTS for All Indications 1 14 7	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7	
Voltage Bin 0.2 0.3 0.4 0.5	Field Bobbin Indications 1 1 2 2 2	RPC Inspected 0 0 0 0	Steam G uring Cycle RPC Confirmed 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0	RTS for Cy All Indications 1 1 2 2	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2	In- Field Bobbin Indications 1 14 7 5	Service Du RPC Inspected 0 0 0	Steam Ge rring Cycle RPC Confirmed 0 0 0 0	enerator 4 7 Indications Repaired 0 0 0 0	RTS for All Indications 1 14 7 5	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5	
Voltage Bin 0.2 0.3 0.4 0.5 0.6	Field Bobbin Indications 1 1 2 2 1	RPC Inspected 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0	RTS for Cyo All Indications 1 2 2 1	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2 1	In- Field Bobbin Indications 1 14 7 5 14	Service Du RPC Inspected 0 0 0 0 0	Steam Ge rring Cycle RPC Confirmed 0 0 0 0 0 0	Indications Repaired 0 0 0 0 0	RTS for All Indications 1 14 7 5 14	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7	Field Bobbin Indications 1 1 2 2 1 1 1	Service Dr RPC Inspected 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 1 1 1	In- Field Bobbin Indications 1 14 7 5 14 13	Service Du RPC Inspected 0 0 0 0 0 2	Steam Ge rring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0	Indications Repaired 0 0 0 0 0 2	RTS for All Indications 1 14 7 5 14 11	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 14 11	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8	Field Bobbin Indications 1 1 2 2 1 1 1 1 1	Service Dr RPC Inspected 0 0 0 0 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1 1 1	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 1 1 1 1 1 1	In- Field Bobbin Indications 1 14 7 5 14 13 4	Service Du RPC Inspected 0 0 0 0 0 2 0	Steam Ge RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0	Indications Repaired 0 0 0 0 0 0 2 0	RTS for All Indications 1 14 7 5 14 11 4	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 11 4	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	Field Bobbin Indications 1 1 2 2 1 1 1 1 0	Service Dr RPC Inspected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1 1 1 0	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2 1 1 1 1 0	In- Field Bobbin Indications 1 14 7 5 14 13 4 3	Service Du RPC Inspected 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	Steam Ge RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 4 7 Indications Repaired 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for All Indications 1 14 7 5 14 11 4 3	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 11 4 3	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	Field Bobbin Indications 1 1 2 2 1 1 1 1 0 0 0	Service Dr RPC Inspected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1 1 1 0 0 0	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2 1 1 1 0 0 0	In- Field Bobbin Indications 1 14 7 5 14 13 4 3 3 3	Service Du RPC Inspected 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0	Steam Ge RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for All Indications 1 14 7 5 14 11 4 3 3	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 11 4 3 3	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2	Field Bobbin Indications 1 1 2 2 1 1 1 1 0 0 0 0 0	Service Dr RPC Inspected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1 1 0 0 0 0	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2 1 1 1 0 0 0 0	In- Field Bobbin Indications 1 14 7 5 14 13 4 3 3 1	Service Du RPC Inspected 0 0 0 0 0 2 0 0 0 0 1	Steam Ge RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 4 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for All Indications 1 14 7 5 14 11 4 3 3 0	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 11 4 3 3 0	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 Total	In- Field Bobbin Indications 1 2 1 2 1 0 0 0 9	Service Dr RPC Inspected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Steam G Iring Cycle RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 3 e 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for Cya All Indications 1 2 2 1 1 1 0 0 0 0 9	cle 8 Confirmed & Not Inspected Indications Only 1 1 2 2 2 1 1 1 0 0 0 9	In- Field Bobbin Indications 1 14 7 5 14 13 4 3 3 1 3 1 65	Service Du RPC Inspected 0 0 0 0 2 0 0 2 0 0 1 3	Steam Ge RPC Confirmed 0 0 0 0 0 0 0 0 0 0 0 0 0	enerator 4 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	RTS for All Indications 1 14 7 5 14 11 4 3 3 0 62	Cycle 8 Confirmed & Not Inspected Indications Only 1 14 7 5 14 11 4 3 0 62	

Table 4-1Comanche Peak Unit 1 September 99 OutageSummary of Inspection and Repair For Tubes in Service During Cycle 7

Table 4-2	
Comanche Peak Unit 1 September 1999	
TSP ODSCC Indication Distributions for Tubes in Service During Cycle 7	

		Stea	m Genera	tor 1		Steam Generator 2				
	Number					Number				
Tube	of	Maximum	Average	Largest	Average	of	Maximum	Average	Largest	Average
Support	Indication	Voltage	Voltage	Growth	Growth	Indication	Voltage	Voltage	Growth	Growth
Plate	S					S				
H3	7	0.59	0.32	0.04	-0.03	13	0.92	0.54	0.13	-0.01
H5	4	0.62	0.42	0.07	0.01	5	0.38	0.32	0.02	0.00
H7	0 ·	-	-	-	-	0	-	-	-	-
H10	0	-	-	-	-	1	0.44	0.44	0.15	0.15
Total	11					19				·
		Stea	m Genera	tor 3			Stea	m Genera	tor 4	
	Number	Stea	m Genera	tor 3		Number	Stea	m Genera	tor 4	
Tube	Number of	Stea Maximum	m Genera Average	tor 3 Largest	Average	Number of	Stea Maximum	m Genera Average	tor 4 Largest	Average
Tube Support	Number of Indication	Stea Maximum Voltage	m Genera Average Voltage	tor 3 Largest Growth	Average Growth	Number of Indication	Stear Maximum Voltage	m Genera Average Voltage	tor 4 Largest Growth	Average Growth
Tube Support Plate	Number of Indication s	Stea Maximum Voltage	m Genera Average Voltage	tor 3 Largest Growth	Average Growth	Number of Indication s	Stear Maximum Voltage	m Genera Average Voltage	tor 4 Largest Growth	Average Growth
Tube Support Plate H3	Number of Indication s 9	Stea Maximum Voltage 0.75	m Genera Average Voltage 0.44	tor 3 Largest Growth 0.38	Average Growth 0.10	Number of Indication s 43	Stear Maximum Voltage 0.97	m Genera Average Voltage 0.54	tor 4 Largest Growth 0.22	Average Growth -0.01
Tube Support Plate H3 H5	Number of Indication s 9 0	Stea Maximum Voltage 0.75 -	m Genera Average Voltage 0.44 -	tor 3 Largest Growth 0.38 -	Average Growth 0.10	Number of Indication s 43 18	Stear Maximum Voltage 0.97 1.20	M Genera Average Voltage 0.54 0.53	tor 4 Largest Growth 0.22 0.13	Average Growth -0.01 0.01
Tube Support Plate H3 H5 H7	Number of Indication s 9 0 0	Stea Maximum Voltage 0.75 - -	m Genera Average Voltage 0.44 - -	tor 3 Largest Growth 0.38 - -	Average Growth 0.10 -	Number of Indication s 43 18 4	Stear Maximum Voltage 0.97 1.20 0.62	Average Voltage 0.54 0.53 0.38	tor 4 Largest Growth 0.22 0.13 0.03	Average Growth -0.01 0.01 0.01
Tube Support Plate H3 H5 H7 H10	Number of Indication s 9 0 0 0 0	Stea Maximum Voltage 0.75 - - -	m Genera Average Voltage 0.44 - - -	tor 3 Largest Growth 0.38 - - -	Average Growth 0.10 - -	Number of Indication s 43 18 4 0	Stear Maximum Voltage 0.97 1.20 0.62 -	Average Voltage 0.54 0.53 0.38	tor 4 Largest Growth 0.22 0.13 0.03 -	Average Growth -0.01 0.01 -

Table 4-3
Comanche Peak Unit 1 September 99
Signal Growth Statistics For Cycle 7 on an EFPY Basis

Delta	Steam Generator 1		Steam Generator 2		Steam Generator 3		Steam Generator 4		Cumulative	
Volts	No. of Inds	CPDF	No. of Inds	CPDF						
-0.4	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
-0.2	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
-0.1	0	0.0	0	0.0	0	0.0	1	0.015	1	0.01
0	7	0.636	10	0.526	1	0.111	38	0.6	56	0.548
0.1	4	1.0	8	0.947	7	0.889	22	0.938	41	0.942
0.2	0		1	1.0	0	0.889	4	1.0	5	0.99
0.3	0		0		1	1.0	0		1	1.0
0.8	0		0		0		0		0	
Total	11		19		9		65		104	

Table 4-4Comanche Peak Unit 1 - September 1999Outage Growth During Cycle 7

Voltage	Number of	Average Voltage	Average Volt	age Growth	Percent	Growth
Range	Indications	BOC	Entire Cycle	Per EFPY #	Entire Cycle	Per EFPY #
		Compos	site of All Steam	Generator Da	ta	
Entire Voltage Range	104	0.49	0.003	0.002	0.6%	0.4%
V BOC < .75 Volts	90	0.43	0.012	0.009	2.8%	2.0%
> .75 Volts	14	0.89	-0.056	-0.040	-6.4%	-4.6%
			Steam Gene	erator 1		
Entire Voltage Range	11	0.38	-0.019	-0.014	-5.1%	-3.6%
V BOC < .75 Volts	11	0.38	-0.019	-0.014	-5.1%	-3.6%
> .75 Volts	0	0.00	0.000	0.000	-	-
			Steam Gene	erator 2		
Entire Voltage Range	19	0.48	-0.002	-0.001	-0.3%	-0.2%
V BOC < .75 Volts	16	0.41	0.018	0.013	4.3%	3.1%
> .75 Volts	3	0.84	-0.103	-0.074	-12.3%	-8.8%
			Steam Gene	erator 3		
Entire Voltage Range	9	0.34	0.101	0.072	29.5%	21.1%
V BOC < .75 Volts	9	0.34	0.101	0.072	29.5%	21.1%
> .75 Volts	0	0.00	0.000	0.000	_	-
			Steam Gene	erator 4		
Entire Voltage Range	65	0.53	-0.006	-0.004	-1.1%	-0.8%
V BOC < .75 Volts	54	0.46	0.002	0.001	0.4%	0.3%
>.75 Volts	11	0.90	-0.044	-0.031	-4.9%	-3.5%

Based on Cycle 7 duration of 510.4 EFPD (1.397 EFPY)

· · · · · · · · · · · · · · · · · · ·		1		1		Bounding	Comanche Peak
Delta	Plant AA	Plant AB	Plant AC-1	Plant AC-2	Plant R	Distribution	Unit-1 Cycle 7
Dena						Distribution	Chic-1, Cycle /
Volts			Cum	ulative Proba	bility Distric	outions	
-0.5	0.0000	0.0003	0.0000	0.0000	0.0049	0.0000	
-0.4	0.0015	0.0010	0.0000	0.0009	0.0101	0.0000	
-0.3	0.0064	0.0052	0.0006	0.0010	0.0182	0.0000	
-0.2	0.0193	0.0237	0.0052	0.0018	0.0327	0.0000	0.0000
-0.1	0.0659	0.0598	0.0354	0.0133	0.0683	0.0000	0.0096
0.0	0.2109	0.1285	0.3041	0.1026	0.1778	0.1026	0.5481
0.1	0.3648	0.2927	0.7964	0.4439	0.4115	0.2927	0.9423
0.2	0.5100	0.4761	0.9343	0.7573	0.6436	0.4761	0.9904
0.3	0.6290	0.6332	0.9774	0.8687	0.7978	0.6290	1.0000
0.4	0.7225	0.7551	0.9897	0.9218	0.8842	0.7225	
0.5	0.7902	0.8449	0.9929	0.9450	0.9341	0.7902	
0.0	0.8401	0.9021	0.9955	0.9580	0.9611	0.8401	
0.7	0.8836	0.9398	0.9968	0.9008	0.9746	0.8836	
0.8	0.9099	0.9616	0.9968	0.9095	0.9842	0.9099	
0.9	0.9264	0.9763	0.9974	0.9735	0.9909	0.9264	
1.0	0.9408	0.9828	0.9987	0.9770	0.9933	0.9408	
1.1	0.9534	0.9850	0.9987	0.9792	0.9953	0.9534	
1.2	0.9616	0.9883	0.9987	0.9801	0.9971	0.9616	
1.3	0.9694	0.9896	0.9987	0.9819	0.9977	0.9694	
1.4	0.9758	0.9919	0.9987	0.9832	0.9979	0.9758	
1.5	0.9802	0.9935	0.9987	0.9803	0.9982	0.9802	
1.0	0.9817	0.9948	0.9987	0.9001	0.9984	0.9817	
1./	0.9848	0.9954	0.9987	0.9009	0.9990	0.9848	
1.0	0.9858	0.9964	0.9987	0.9696	0.9990	0.9858	
1.9	0.9884	0.9964	0.9987	0.9907	0.9990	0.9884	
2.0	0.9889	0.9967	0.9987	0.9907	0.9990	0.9889	
2.1	0.9902	0.9967	0.9994	0.9910	0.9995	0.9902	
2.2	0.9915	0.9967	1.0	0.9929	0.9995	0.9915	
2.5	0.9925	0.9974		0.9934	0.9995	0.9925	
2.4	0.9938	0.9980		0.9934	0.9995	0.9934	
2.5	0.9949	0.9980		0.9938	0.9995	0.9934	
2.0	0.9954	0.9980		0.9958	0.9997	0.9938	
2.7	0.9961	0.9980		0.9945	0.9997	0.9938	
2.0	0.9967	0.9980		0.9950	0.9997	0.9956	
3.0	0.9977	0.9984		0.9909	0.9997	0.9969	
31	0.9977	0.9987		0.9978	0.9997	0.9977	
	0.9982	0.9987	· · · · · · · · ·	0.9978	0.9997	0.9978	
	0.9987	0.9987		0.9978	0.9997	0.9978	
-34	0.9990	0.9987		0.9987	0.9997	0.9978	
38	0.9992	0.9987		0.9991	0.9997	0.9978	
4.0	0.9999	0.9987		0.9991	0.9997	0.9987	
4.1	0.9997	0.9987		1.0	0.9997	0.9987	
4.3	0.9997	0.9907			0.9997	0.0007	
4.7	0.0007	0.9990			1.0	0.0007	
5.3	0.0007	0.9993			1.0	0.0007	
5.7	10.3337	0.3331				0.0007	
7.8	1.0	1.0				1.0	

Table 4-5Distribution of Highest Growth Rates in 3/4" Tube PlantsWhile a 1 volt Repair Criterion was in Effect

Std. $Dev = 10.3\%$ Mean = 0.0% Std. $Dev = 7.0\%$ Mean = 0.0% No CutoffCutoff at +/- 15%ValueCumul. Prob40.0%0.00005-38.0%0.00011-15.0%0.01606-36.0%0.00024-14.0%0.02275-34.0%0.00095-12.0%0.003165-32.0%0.00095-12.0%0.04324-30.0%0.00179-11.0%0.05804-28.0%0.00328-10.0%0.07656-26.0%0.00580-9.0%0.09927-24.0%0.00990-8.0%0.12655-22.0%0.01634-7.0%0.15866-20.0%0.02608-6.0%0.19568-18.0%0.04027-5.0%0.23753-16.0%0.06016-4.0%0.28385-14.0%0.28011-12.0%0.12607-0.0%0.38755-10.0%0.12867-0.0%0.34122-2.0%0.28011-2.0%0.57698-2.0%0.57698-2.0%0.57698-2.0%0.781338.0%0.781338.0%0.781338.0%0.9957313.0%0.968352.0%0.9597313.0%0.968352.0%0.9982130.0%0.99952	Analyst Var	riability	Probe Wear	Variability		
No CutoffCutoff at +/- 15%ValueCumul. Prob.ValueCumul. Prob40.0%0.00005 $< -15.0\%$ 0.00000-38.0%0.00011 -15.0% 0.01606-36.0%0.00024 -14.0% 0.02275-34.0%0.00048 -13.0% 0.03165-32.0%0.00095 -12.0% 0.04324-30.0%0.00179 -11.0% 0.05804-28.0%0.00328 -10.0% 0.07656-26.0%0.00580 -9.0% 0.09927-24.0%0.00990 -8.0% 0.12655-22.0%0.01634 -7.0% 0.15866-20.0%0.02608 -6.0% 0.19568-18.0%0.04027 -5.0% 0.23753-16.0%0.06016 -4.0% 0.28385-14.0%0.08704 -3.0% 0.38755-10.0%0.12670.0%0.50000-6.0%0.218670.0%0.50000-6.0%0.280111.0%0.55680-4.0%0.348882.0%0.665880.0%0.500004.0%0.716152.0%0.576985.0%0.762474.0%0.834199.0%0.9007312.0%0.8780010.0%0.9234414.0%0.9129611.0%0.943222.0%0.9597313.0%0.968352.0%0.9597313.0%0.968352.0%0.9597313.0%0.968352.0%0.9982130.0%0.99952 <td colspan="2">Std. Dev = 10.3% Mean = 0.0%</td> <td colspan="4">Std. Dev = 7.0% Mean = 0.0%</td>	Std. Dev = 10.3% Mean = 0.0%		Std. Dev = 7.0% Mean = 0.0%			
ValueCumul. Prob.ValueCumul. Prob. -40.0% 0.00005<-15.0%	No Cut	off	Cutoff at +/- 15%			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Value	Cumul. Prob.	Value	Cumul. Prob.		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-40.0%	0.00005	<-15.0%	0.00000		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-38.0%	0.00011	-15.0%	0.01606		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-36.0%	0.00024	-14.0%	0.02275		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-34.0%	0.00048	-13.0%	0.03165		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-32.0%	0.00095	-12.0%	0.04324		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-30.0%	0.00179	-11.0%	0.05804		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-28.0%	0.00328	-10.0%	0.07656		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-26.0%	0.00580	-9.0%	0.09927		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-24.0%	0.00990	-8.0%	0.12655		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-22.0%	0.01634	-7.0%	0.15866		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-20.0%	0.02608	-6.0%	0.19568		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-18.0%	0.04027	-5.0%	0.23753		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-16.0%	0.06016	-4.0%	0.28385		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-14.0%	0.08704	-3.0%	0.33412		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-12.0%	0.12200	-2.0%	0.38755		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-10.0%	0.16581	-1.0%	0.44320		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-8.0%	0.21867	0.0%	0.50000		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-6.0%	0.28011	1.0%	0.55680		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-4.0%	0.34888	2.0%	0.61245		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-2.0%	0.42302	3.0%	0.66588		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0%	0.50000	4.0%	0.71615		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.0%	0.57698	5.0%	0.76247		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.0%	0.65112	6.0%	0.80432		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.0%	0.71989	7.0%	0.84134		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8.0%	0.78133	8.0%	0.87345		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.0%	0.83419	9.0%	0.90073		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12.0%	0.87800	10.0%	0.92344		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	14.0%	0.91296	11.0%	0.94196		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16.0%	0.93984	12.0%	0.95676		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	18.0%	0.95973	13.0%	0.96835		
22.0% 0.98366 15.0% 0.98394 24.0% 0.99010 >15.0% 1.00000 26.0% 0.99420 28.0% 0.99672 30.0% 0.99821 32.0% 0.99905 34.0% 0.99952	20.0%	0.97392	14.0%	0.97725		
24.0% 0.99010 > 15.0% 1.00000 26.0% 0.99420	22.0%	0.98366	15.0%	0.98394		
26.0% 0.99420 28.0% 0.99672 30.0% 0.99821 32.0% 0.99905 34.0% 0.99952	24.0%	0.99010	>15.0%	1.00000		
28.0% 0.99672 30.0% 0.99821 32.0% 0.99905 34.0% 0.99952	26.0%	0.99420				
30.0% 0.99821 32.0% 0.99905 34.0% 0.99952	28.0%	0.99672				
<u>32.0%</u> 0.99905 34.0% 0.99952	30.0%	0.99821				
34.0% 0.99952	32.0%	0.99905				
	34.0%	0.99952				
36.0% 0.99976	36.0%	0.99976				
38.0% 0.99989	38.0%	0.99989				
40.0% 0.99995	40.0%	0.99995				

Table 4-6Probe Wear and Analyst Variability - Tabulated Values

Figure 4-1 Comanche Peak Unit 1 September 1999 Outage Bobbin Voltage Distributions at EOC-7 for Tubes in Service During Cycle 7

Figure 4-3

5.0 Database Applied for Leak and Burst Correlations

Leak and burst correlations based on the latest available database for ¾" tubes are applied in the analyses presented in this report, and these correlations are documented in Reference 9-6. This database does not include leak and burst data for tubes pulled recently from Comanche Peak Unit-1. An evaluation of the effects of adding the Comanche Peak Unit-1data to the reference database in Reference 9-6 (described earlier in Section 3.3) indicates that the burst pressure, leak rate and the probability of leak correlations to the common logarithm of the bobbin amplitude are not be significantly changed. Therefore, SLB leak rates and burst probability analyses were carried out using the reference database presented in Reference 9-6. As a sensitivity study, EOC-8 projection for the limiting SG (SG-4) was also performed using the leak and burst correlation based on an updated base that included the Comanche Peak Unit-1 data, and those results are also presented in Section 8.

The reference database presented in Reference 9-6 meets the NRC requirement that the p value obtained from the regression analysis of leak rate be less than or equal to 5%. Therefore, a SLB leak rate versus voltage correlation is applied for the leak rate analyses. The following are the correlations for burst pressure, probability of leakage and leak rate used in this report (Reference 9-6).

Burst Pressure (*ksi*) = 7.40278 - 2.91382 × log (*volts*)
Probability of Leak =
$$\frac{1}{1 + e^{(4.8082 - 8.4215 \times \log(volts))}}$$

Leak Rate (*l/hr*) = $10^{(-1.63838 + 2.94093 \times \log(volts))}$

The upper voltage repair limit applied at the EOC-7 inspection, documented in Reference 9-7, was developed using the database presented in Reference 9-4. Since a more recent database is available now, the upper voltage repair limit data is revised below. The structural limit $\langle V_{sl} \rangle$ for the TSP indications established using 1.43 times the SLB \Box P of 2560 psid is 4.70 volts, and V_{sl} for the FDB intersections using 3 times normal operation \Box P value (3810 psid) is 4.20 volts. Using the minimum growth rate specified in the Generic Letter 95-05 (30%/EFPY)and a expected duration of 1.36 EFPY (496 EFPD) for Cycle 8, the growth allowance becomes 41%. The allowance for NDE uncertainty is 20% per Generic Letter 95-05. The upper voltage repair limits then become 2.92 volts for TSP indications and 2.61 volts for FDB indications. The bobbin voltage for the largest ODSCC indication found during the EOC-7 inspection (1.2 volts) is substantially below the revised upper repair limits.

6.0 SLB Analysis Methods

Monte Carlo analyses are used to calculate the SLB leak rates and tube burst probabilities for both actual EOC-7 and projected EOC-8 voltage distributions. The Monte Carlo analyses account for parameter uncertainty. The analysis methodology is described in the Westinghouse generic methods report of Reference 9-3, and it is consistent with the guidelines provided in the Generic Letter 95-05 (Reference 9-1)

In general, the methodology involves application of correlations for burst pressure, probability of leak and leak rate to a measured or calculated EOC distribution to estimate the likelihood of tube burst and primary-to-secondary leakage during a postulated SLB event. NDE uncertainties and uncertainties associated with burst pressure, leak rate probability and leak rate correlations are explicitly included by considering many thousands of voltage distributions through a Monte Carlo sampling process. The voltage distributions used in the projection analyses for the next operating cycle are obtained by applying growth data to the BOC distribution. The BOC voltage distributions include an adjustment for detection uncertainties. Comparisons of projected EOC voltage distributions with actual distributions after a cycle of operation have shown that the Monte Carlo analysis technique yields conservative estimates for EOC voltage distributions; therefore, leak and burst results based on those distributions are also conservative. Equation 3.5 in Reference 9-3 was used to determine the true BOC voltage.

7.0 Bobbin Voltage Distributions

This section describes the salient input data used to calculate EOC bobbin voltage distributions and presents results of calculations to project EOC-8 voltage distributions. Since a voltage-based repair criterion was not applied during the last cycle (Cycle 7), EOC-7 projections are not available and therefore a comparison of the actual measured and projected EOC-7 voltages cannot be made.

7.1 Calculation of Voltage Distributions

The analysis for EOC voltage distribution starts with a cycle initial voltage distribution, which is projected, to the end of cycle conditions applying growth appropriate for the anticipated cycle operating period. The number of indications assumed in the analysis to project EOC voltage distributions, and to perform tube leak rate and burst probability analyses, is obtained by adjusting the number of reported indications to account for detection uncertainty and initiation of new indications over the projection period. This is accomplished by using a POD factor, which is defined as the ratio of the actual number of indications detected to total number of indications present. A conservative value is assigned to POD based on historic data, and the value used herein is discussed in Section 7-2. The calculation of projected bobbin voltage frequency distribution is based on a net total number of indications returned to service, defined as follows.

$$N_{\text{Tot RTS}} = N_i / POD - N_{\text{repaired}} + N_{\text{deplugged}}$$

where,

N _{Tot RTS}		 Number of bobbin indications being returned to service
		for the next cycle,
Ni		 Number of bobbin indications (in tubes in service)
		identified after the previous cycle,
POD	=	Probability of detection,
N _{repaired}	=	Number of N _i which are repaired (plugged) after the last cycle,
Ndeplugged	=	Number of indications in tubes deplugged after the last cycle and returned to service in accordance with voltage-based repair criteria.

There are no deplugged tubes returned to service at BOC-8; therefore, $N_{deplugged} = 0$.

The methodology used in the projection of bobbin voltage frequency predictions is described in Reference 9-3. Salient input data used for projecting EOC-8 bobbin voltage frequency are further discussed below.

7.2 Probability of Detection (POD)

The Generic Letter 95-05 (Reference 9-1) requires the application of a constant POD value of 0.6 to define the BOC distribution for EOC voltage projections, unless an alternate POD is approved by the NRC. A POD value of 1.0 represents the ideal situation where all indications are detected. A voltage-dependent POD would yield a more accurate prediction of voltage distributions consistent with voltage-based repair criteria experience. In this report both NRC mandated constant POD of 0.6 as well as a voltage-dependent POD developed for EPRI

(POPCD) are used. The EPRI POPCD is developed by analyses of 18 inspections in 10 plants and is presented in Table 7-4 of Reference 9-4. The POPCD values represent a lower 95% confidence bound, and their distribution is presented in Table 7-1 and graphically illustrated in Figure 7-1.

7.3 Limiting Growth Rate Distribution

As discussed in Section 4.2, the NRC guidelines in Generic Letter 95-05 stipulate that the growth rate distribution(s) used in the SLB leak rate and tube probability analyses must contain at least 200 data points that are established using bobbin voltages measured in two consecutive inspections. Since Cycle 7 growth distribution is based on data from only 104 indications, it does not meet the above NRC requirement. In the absence of an acceptable plant-specific growth database, Generic Letter 95-05 requires the use of a bounding growth distribution established based on data available from similarly designed and operated plants. Prior to Comanche Peak Unit-1, a 1-volt repair criterion has been applied to 5 units with ³/₄" diameter tubes, and the growth data for these 5 units were used to establish a bounding growth distribution is shown in Table 4-5. The CPDF values defining the bounding distribution are utilized to predict EOC-8 voltage distributions that are used in the SLB leak rate and tube burst analyses.

7.4 Cycle Operating Period

The operating periods used in the growth rate/EFPY calculations and voltage projections are as follows.

Cycle 7 - BOC-7 to EOC-7 - 510.4 EFPD or 1.40 EFPY (actual) Cycle 8 - BOC-8 to EOC-8 - 496 EFPD or 1.36 EFPY (estimated)

7.5 Projected EOC-8 Voltage Distribution

Calculations for EOC-8 bobbin voltage projections were performed for all four SGs based on the EOC-7 voltage distributions. The BOC distributions were adjusted to account for probability of detection as described above, and the adjusted number of indications at BOC-8 are also shown in Table 7-2. Calculations were performed using a constant POD of 0.6 as well as the EPRI POPCD distribution (presented in Table 7-1). As discussed in Section 7-2, a bounding growth distribution for ³/₄" tube plants, shown in Table 4-5, was applied. The EOC-8 voltage distributions thus projected for all four SGs are summarized on Table 7-3. These results are also shown graphically on Figures 7-2 to 7-5. For the limiting SG, SG-4, the results based on a constant POD of 0.6 are more conservative than those using the voltage-dependent EPRI POPCD.

As discussed in Section 4.2, the growth rates utilized to project EOC-8 voltages are substantially higher than those observed during Cycle 7 (see Table 4-5 and Figure 4-4). There is no apparent reason to expect a substantially higher growth rate during Cycle 8 than during Cycle 7. Therefore, the peak voltages in the EOC-8 voltage distributions shown in Figures 7-2 to 7-5 are believed to be substantially overestimated.

Table 7-1
EPRI POPCD Distribution
Based on Data from 18 Inspections in 10 Plants

· ·	
Voltage Bin	EPRI POPCD [#]
0.1	0.26
0.2	0.36
0.3	0.46
0.4	0.54
0.5	0.63
0.6	0.68
0.7	0.74
0.8	0.78
0.9	0.81
1	0.84
1.2	0.87
1.4	0.90
1.6	0.91
1.8	0.92
2	0.93
3	0.98
3.5	1.0

Data from Table 7-4 in Reference 9-4.

Table 7-2Comanche Peak Unit 1 September 1999EOC-7 Bobbin and Assumed BOC-8 Bobbin Distributions in
SLB Leak Rate and Tube Burst Analyses

	Steam Generator 1				Steam Generator 2				
Voltage	EOC	2 - 7	BO	C - 8	EOC - 7		BO	BOC - 8	
Bin	Field Bobbin Indications	Indications Repaired	POD 0.6	POPCD	Field Bobbin Indications	Indications Repaired	POD 0.6	POPCD	
0.2	2	0	3.33	5.56	1	0	1.67	2.78	
0.3	1	0	1.67	2.17	3	0	5.00	6.52	
0.4	5	0	8.33	9.26	3	0	5.00	5.56	
0.5	1	0	1.67	1.59	5	0	8.33	7.94	
0.6	1	0	1.67	1.45	2	0	3.33	2.90	
0.7	1	0	1.67	1.33	4	0	6.67	5.33	
0.8	0	0	0.00	0.00	0	0	0.00	0.00	
0.9	0	0	0	0	0	0	0.00	0.00	
1	0	0	0	0	1	0	1.67	1.19	
1.2	0	0	0	0	0	0	0.00	0.00	
Total	11	0	18.33	21.36	19	0	31.67	32.21	
> 1V	0	0	0	0	0	0	0	0	
	2	Steam Gen	erator 3		Steam Generator 4				
			BOC - 8		EOC - 7			0 0	
Voltage	EOC	: - 7	BO	C-8	EOC	C-7	BO	L-8	
Voltage Bin	EOC Field Bobbin Indications	- 7 Indications Repaired	POD 0.6	POPCD	EOC Field Bobbin Indications	C - 7 Indications Repaired	POD 0.6	POPCD	
Voltage Bin 0.2	EOC Field Bobbin Indications	- 7 Indications Repaired O	BO POD 0.6 1.67	POPCD 2.78	EOC Field Bobbin Indications	C - 7 Indications Repaired O	BO0 POD 0.6 1.67	рорср 2.78	
Voltage Bin 0.2 0.3	EOC Field Bobbin Indications 1 1	- 7 Indications Repaired 0 0	BO POD 0.6 1.67 1.67	рорсо 2.78 2.17	EOC Field Bobbin Indications 1 14	C - 7 Indications Repaired O O	POD 0.6 1.67 23.33	рорср 2.78 30.43	
Voltage Bin 0.2 0.3 0.4	EOC Field Bobbin Indications 1 1 2	- 7 Indications Repaired 0 0 0	POD 0.6 1.67 1.67 3.33	POPCD 2.78 2.17 3.70	EOC Field Bobbin Indications 1 14 7	Indications Repaired 0 0 0	POD 0.6 1.67 23.33 11.67	POPCD 2.78 30.43 12.96	
Voltage Bin 0.2 0.3 0.4 0.5	EOC Field Bobbin Indications	- 7 Indications Repaired 0 0 0 0	POD 0.6 1.67 1.67 3.33 3.33	POPCD 2.78 2.17 3.70 3.17	EOC Field Bobbin Indications 1 14 7 5	Indications Repaired 0 0 0 0	POD 0.6 1.67 23.33 11.67 8.33	POPCD 2.78 30.43 12.96 7.94	
Voltage Bin 0.2 0.3 0.4 0.5 0.6	EOC Field Bobbin Indications 1 1 2 2 2 1	- 7 Indications Repaired 0 0 0 0 0 0	POD 0.6 1.67 1.67 3.33 3.33 1.67 1.67	POPCD 2.78 2.17 3.70 3.17 1.45	EOC Field Bobbin Indications 1 14 7 5 14	Indications Repaired 0 0 0 0 0 0	POD 0.6 1.67 23.33 11.67 8.33 23.33 23.33	POPCD 2.78 30.43 12.96 7.94 20.29	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7	EOC Field Bobbin Indications 1 1 2 2 2 1 1 1	- 7 Indications Repaired 0 0 0 0 0 0 0	POD 0.6 1.67 1.67 3.33 3.33 1.67 1.67	POPCD 2.78 2.17 3.70 3.17 1.45 1.33	EOC Field Bobbin Indications	Indications Repaired 0 0 0 0 0 0 2	BOO 0.6 1.67 23.33 11.67 8.33 23.33 19.67	POPCD 2.78 30.43 12.96 7.94 20.29 15.33	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8	EOC Field Bobbin Indications 1 1 2 2 2 1 1 1 1 1	- 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	BO0 0.6 1.67 1.67 3.33 3.33 1.67 1.67 1.67	POPCD 2.78 2.17 3.70 3.17 1.45 1.33 1.27	EOC Field Bobbin Indications 1 14 7 5 14 13 4	Indications Repaired 0 0 0 0 0 0 2 0	POD 0.6 1.67 23.33 11.67 8.33 23.33 19.67 6.67 10.67	POPCD 2.78 30.43 12.96 7.94 20.29 15.33 5.06	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	EOC Field Bobbin Indications	- 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	POD 0.6 1.67 1.67 3.33 3.33 1.67 1.67 1.67 0	POPCD 2.78 2.17 3.70 3.17 1.45 1.33 1.27 0	EOC Field Bobbin Indications	Indications Repaired00000002000	POD 0.6 1.67 23.33 11.67 8.33 23.33 19.67 6.67 5.00	POPCD 2.78 30.43 12.96 7.94 20.29 15.33 5.06 3.66	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	EOC Field Bobbin Indications 1 1 2 2 2 1 1 1 1 1 0 0 0	- 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	BO0 0.6 1.67 1.67 3.33 1.67 1.67 1.67 0 0	POPCD 2.78 2.17 3.70 3.17 1.45 1.33 1.27 0 0	EOC Field Bobbin Indications 1 14 7 5 14 13 4 3 3	Indications Repaired00000000000000000000	BOO 0.6 1.67 23.33 11.67 8.33 23.33 19.67 6.67 5.00	POPCD 2.78 30.43 12.96 7.94 20.29 15.33 5.06 3.66 3.57	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2	EOC Field Bobbin Indications	- 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	BO0 0.6 1.67 1.67 3.33 3.33 1.67 1.67 0 0 0 0	POPCD 2.78 2.17 3.70 3.17 1.45 1.33 1.27 0 0 0	EOC Field Bobbin Indications	Indications Repaired 0 1	BOO 0.6 1.67 23.33 11.67 8.33 23.33 19.67 6.67 5.00 0.67	POPCD 2.78 30.43 12.96 7.94 20.29 15.33 5.06 3.66 3.57 0.15	
Voltage Bin 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.2 Total	EOC Field Bobbin Indications	- 7 Indications Repaired 0 0 0 0 0 0 0 0 0 0 0 0 0	BO0 0.6 1.67 1.67 3.33 3.33 1.67 1.67 0 0 0 0 0 0 0 0 0 0	POPCD 2.78 2.17 3.70 3.17 1.45 1.33 1.27 0 0 0 0 15.88	EOC Field Bobbin Indications 1 14 7 5 14 13 4 3 3 1 65	Indications Repaired 0 1 3	BOO 0.6 1.67 23.33 11.67 8.33 23.33 19.67 6.67 5.00 5.00 0.67 105.33	POPCD 2.78 30.43 12.96 7.94 20.29 15.33 5.06 3.66 3.57 0.15	

Table 7-3Comanche Peak Unit 1 September 1999Voltage Distribution Projection for EOC - 8

Steam Generator 2		Steam Generator 3		Steam Generator 4		
Projected Number of Indications at EOC - 8						
POD 0.6	POPCD	POD 0.6	POPCD	POD 0.6	POPCD	
0.01	0.01	0.00	0.00	0.01	0.01	
0.20	0.31	0.19	0.34	0.38	0.54	
0.69	0.96	0.31	0.51	2.22	2.95	
1.38	1.75	0.72	1.09	4.30	5.46	
2.15	2.53	1.15	1.58	5.79	6.90	
2.95	3.26	1.33	1.64	7.94	8.80	
3.38	3.51	1.55	1.76	10.00	10.36	
3.38	3.36	1.66	1.82	10.42	10.10	
3.12	3.02	1.50	1.59	10.17	9.42	
2.69	2.56	1.25	1.28	9.53	8.64	
2.23	2.10	1.04	1.04	8.32	7.40	
1.81	1.69	0.87	0.91	6.87	6.04	
1.47	1.37	0.65	0.67	5.59	4.89	
1.18	1.10	0.51	0.51	4.50	3.90	
0.93	0.86	0.42	0.42	3.59	3.07	
0.73	0.67	0.33	0.34	2.86	2.43	
0.57	0.53	0.25	0.26	2.26	1.93	
0.45	0.43	0.20	0.20	1.80	1.57	
0.37	0.34	0.06	0.12	1.41	1.22	
0.30	0.28	0.00	0.00	1.14	0.99	
0.25	0.24	0.00	0.00	0.96	0.85	
0.22	0.21	0.70	0.70	0.81	0.72	
0.18	0.16	0.00	0.00	0.67	0.59	
0.04	0.00	0.00	0.00	0.54	0.47	
0.00	0.00	0.00	0.00	0.44	0.37	
0.00	0.00	0.00	0.00	0.39	0.34	
0.70	0.70	0.00	0.00	0.29	0.25	
0.00	0.00	0.30	0.30	0.23	0.20	
0.00	0.00			0.21	0.19	
0.00	0.00			0.16	0.14	
0.00	0.00			0.14	0.12	
0.00	0.00			0.13	0.12	
0.00	0.00			0.11	0.11	
0.00	0.00			0.10	0.09	
0.00	0.00			0.07	0.00	
0.30	0.30			0.00	0.00	
				0.00	0.70	
				0.70	0.00	
31.68	32.25	14.00	17.00	105.25	102.10	
11 73	10.02	5 22	5.47	105.55	30.00	
1.69	1.61	1 00	1.00	6.25	5 56	
	Steam Gen Projected 0.6 0.01 0.20 0.69 1.38 2.15 2.95 3.38 3.12 2.69 2.23 1.81 1.47 1.18 0.93 0.73 0.57 0.45 0.30 0.25 0.22 0.18 0.00<	Steam Generator 2 Projected Number of In POD POPCD 0.6 POPCD 0.1 0.01 0.20 0.31 0.69 0.96 1.38 1.75 2.15 2.53 2.95 3.26 3.38 3.51 3.38 3.36 3.12 3.02 2.69 2.56 2.23 2.10 1.81 1.69 1.47 1.37 1.18 1.10 0.93 0.86 0.73 0.67 0.57 0.53 0.45 0.43 0.30 0.28 0.22 0.21 0.18 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>Steam Generator 2 Steam Generator 3 Steam Generator 3 Projected Number of Indications at POD 0.6 POPCD POD 0.6 0.01 0.01 0.00 0.20 0.31 0.19 0.69 0.96 0.31 1.19 0.69 0.96 0.31 1.38 1.75 0.72 2.15 2.53 1.15 2.95 3.26 1.33 3.38 3.51 1.55 3.38 3.36 1.666 3.12 3.02 1.50 2.23 2.10 1.04 1.81 1.69 0.87 1.47 1.37 0.655 1.18 1.10 0.51 0.93 0.86 0.42 0.73 0.67 0.33 0.25 0.44 0.00 0.30 0.28 0.00 0.25 0.24 0.00 0.00 0.25 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <t< td=""><td>Steam Generator 2 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POD 0.6 POPCD 0.01 0.01 0.00 0.00 0.20 0.31 0.19 0.34 0.69 0.96 0.31 0.51 1.38 1.75 0.72 1.09 2.15 2.53 1.15 1.58 2.95 3.26 1.33 1.64 3.38 3.51 1.55 1.76 3.12 3.02 1.50 1.59 2.69 2.56 1.25 1.28 2.23 2.10 1.04 1.04 1.81 1.69 0.87 0.91 1.47 1.37 0.65 0.67 1.18 1.10 0.51 0.51 0.93 0.86 0.42 0.42 0.73 0.67 0.33 0.34 0.51 0.51 0.51 0.51 0.30 0.</td><td>Steam Generator 2 Steam Generator 3 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 0.01 0.01 0.00 0.00 0.01 0.20 0.31 0.19 0.34 0.38 0.69 0.96 0.31 0.51 2.22 1.38 1.75 0.72 1.09 4.30 2.15 2.63 1.15 1.58 5.79 2.95 3.26 1.33 1.64 7.94 3.38 3.51 1.55 1.76 10.00 3.38 3.51 1.55 1.76 10.01 3.38 3.51 1.55 1.28 9.53 2.23 2.10 1.04 1.04 8.32 1.81 1.69 0.87 0.91 6.87 1.47 1.37 0.65 0.67 5.59 1.18 1.10 0.51 4.50 <</td></t<></td></td<>	Steam Generator 2 Steam Generator 3 Steam Generator 3 Projected Number of Indications at POD 0.6 POPCD POD 0.6 0.01 0.01 0.00 0.20 0.31 0.19 0.69 0.96 0.31 1.19 0.69 0.96 0.31 1.38 1.75 0.72 2.15 2.53 1.15 2.95 3.26 1.33 3.38 3.51 1.55 3.38 3.36 1.666 3.12 3.02 1.50 2.23 2.10 1.04 1.81 1.69 0.87 1.47 1.37 0.655 1.18 1.10 0.51 0.93 0.86 0.42 0.73 0.67 0.33 0.25 0.44 0.00 0.30 0.28 0.00 0.25 0.24 0.00 0.00 0.25 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <t< td=""><td>Steam Generator 2 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POD 0.6 POPCD 0.01 0.01 0.00 0.00 0.20 0.31 0.19 0.34 0.69 0.96 0.31 0.51 1.38 1.75 0.72 1.09 2.15 2.53 1.15 1.58 2.95 3.26 1.33 1.64 3.38 3.51 1.55 1.76 3.12 3.02 1.50 1.59 2.69 2.56 1.25 1.28 2.23 2.10 1.04 1.04 1.81 1.69 0.87 0.91 1.47 1.37 0.65 0.67 1.18 1.10 0.51 0.51 0.93 0.86 0.42 0.42 0.73 0.67 0.33 0.34 0.51 0.51 0.51 0.51 0.30 0.</td><td>Steam Generator 2 Steam Generator 3 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 0.01 0.01 0.00 0.00 0.01 0.20 0.31 0.19 0.34 0.38 0.69 0.96 0.31 0.51 2.22 1.38 1.75 0.72 1.09 4.30 2.15 2.63 1.15 1.58 5.79 2.95 3.26 1.33 1.64 7.94 3.38 3.51 1.55 1.76 10.00 3.38 3.51 1.55 1.76 10.01 3.38 3.51 1.55 1.28 9.53 2.23 2.10 1.04 1.04 8.32 1.81 1.69 0.87 0.91 6.87 1.47 1.37 0.65 0.67 5.59 1.18 1.10 0.51 4.50 <</td></t<>	Steam Generator 2 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POD 0.6 POPCD 0.01 0.01 0.00 0.00 0.20 0.31 0.19 0.34 0.69 0.96 0.31 0.51 1.38 1.75 0.72 1.09 2.15 2.53 1.15 1.58 2.95 3.26 1.33 1.64 3.38 3.51 1.55 1.76 3.12 3.02 1.50 1.59 2.69 2.56 1.25 1.28 2.23 2.10 1.04 1.04 1.81 1.69 0.87 0.91 1.47 1.37 0.65 0.67 1.18 1.10 0.51 0.51 0.93 0.86 0.42 0.42 0.73 0.67 0.33 0.34 0.51 0.51 0.51 0.51 0.30 0.	Steam Generator 2 Steam Generator 3 Steam Generator 3 Projected Number of Indications at EOC - 8 POD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 POPCD 0.6 0.01 0.01 0.00 0.00 0.01 0.20 0.31 0.19 0.34 0.38 0.69 0.96 0.31 0.51 2.22 1.38 1.75 0.72 1.09 4.30 2.15 2.63 1.15 1.58 5.79 2.95 3.26 1.33 1.64 7.94 3.38 3.51 1.55 1.76 10.00 3.38 3.51 1.55 1.76 10.01 3.38 3.51 1.55 1.28 9.53 2.23 2.10 1.04 1.04 8.32 1.81 1.69 0.87 0.91 6.87 1.47 1.37 0.65 0.67 5.59 1.18 1.10 0.51 4.50 <	

Figure 7-1 Generic POPCD Distribution Based on 18 Inspections in 10 Plants

Figure 7-2 Comanche Peak Unit 1 SG-1 Predicted Bobbin Voltage Distribution for Cycle 8

Figure 7-3 Comanche Peak Unit 1 SG-2 Predicted Bobbin Voltage Distribution for Cycle 8

Figure 7-4 Comanche Peak Unit 1 SG-3 <u>Predicted Bobbin Voltage Distribution for Cycle 8</u>

Figure 7-5 Comanche Peak Unit 1 SG-4 Predicted Bobbin Voltage Distribution for Cycle 8

8.0 SLB Leak Rate and Tube Burst Probability Analyses

This section presents the results of the analyses carried out to predict leak rates and tube burst probabilities for postulated SLB conditions using the actual voltage distributions from EOC-7 inspection (condition monitoring analysis) as well as the projected EOC-8 voltage distributions (operational assessment evaluation). The methodology used in these analyses is described in Section 6.0. SG-4 with the largest total number of indications is expected to yield the limiting SLB leak rate and burst probability for Cycle 8.

8.1 Leak Rate and Tube Burst Probability for EOC-7

About 63% of all the TSP ODSCC indications found in all 4 SGs (65 out of a total of 104) during the EOC-7 inspection were in SG-4, and hence the leak and burst analysis results based on the actual bobbin voltage distribution for SG-4 should bound those for the other 3 SGs. Therefore, the condition monitoring analysis was carried only for SG-4. The limiting SLB leak rate (1.4×10^{-4}) and tube burst probability (1.2×10^{-5}) values obtained using the actual EOC-7 conditions for SG-4 are relatively small, and they are 3 to 5 orders of magnitude below the corresponding acceptance limits (27.79 gpm at room temperature and 10^2).

In summary, the condition monitoring analysis results meet the requirements of the Generic Letter 95-05.

8.2 Leak Rate and Tube Burst Probability for EOC-8

Calculations to predict SLB leak rates and tube burst probabilities for all 4 SGs in Comanche Peak Unit-1 at the EOC-8 conditions (operational assessment) were carried out using two values for POD: 1) NRC required constant value of 0.6, 2) voltage dependent EPRI POPCD distribution. The projected results for the EOC-8 conditions are summarized in Table 8-1. With the standard calculation methodology presented in Reference 9-3 and a constant POD of 0.6, the largest EOC-8 SLB leak rate projected is 0.14gpm (room temperature), and it is predicted for SG-4 which had the largest number of indications returned to service for Cycle 8 operation. This limiting SLB leak rate value is 2 orders of magnitude below the allowable SLB leakage limit for Cycle 8 of 27.79 gpm (room temperature). The highest tube burst probability, also predicted for SG-4, is 1.9×10^{-3} , and it is about $1/5^{th}$ of the NRC reporting guideline of 10^{2} .

When the EPRI POPCD distribution is used for POD, the total number of indications predicted are slightly higher than those for POD = 0.6 for SGs 1 to 3. The reason for this is that below about 0.5 volt the detection probability calculated from the EC inspection data could be significantly below 0.6 as shown by the EPRI POPCD distribution in Table 7-1 and Figure 7-1. Nearly 40 to 60% percent of the indications returned to service for Cycle 8 operations in SGs 1 to 3 are below 0.5 volt. The SLB leak rate and burst probability values based on EPRI POPCD for these SGs (with the exception of SG-2 leak rate and SG-3 burst probability) are also slightly higher those for POD=0.6.

As noted in Section 4.2, a bounding growth distribution based on the highest growth rates observed in 5 units with ³/₄" diameter tubes during cycles that utilized a 1 volt repair criterion was applied to project EOC-8 conditions. This bounding growth data is substantially higher than the

actual growth during Cycle 7 (see Figure 4-4), and therefore the EOC-8 leak rate and burst probability estimates shown in Table 8-1 are believed to be very conservative.

Additional leak rate and tube burst pressure data are available from the tube specimens pulled during the recent inspection. An evaluation of the impact of the new data on the leak and burst correlations, described in Section 3.3, indicated that the new data do not significantly affect SLB tube burst probability and leak rate. In accordance with the NRC-NEI protocol for determining whether the voltage-based repair criteria leak and burst database should be updated to include the latest data, EOC-8 leak rate and tube burst probability calculations for the limiting SG (SG-4) were repeated using the correlations developed in Section 3.3 including the new data, and these results are also included in Table 8.1. While the SLB leak rate essentially remains the same, inclusion of the recent Comanche Peak Unit-1 pulled tube data in the leak and burst database increases tube burst probability from 1.9×10^{-3} to 2.3×10^{-3} . This increase in tube burst probability is negligible in comparison to the margin to the NRC reporting guideline of 10^{-2} . Thus, there is no immediate need to update the $\frac{3}{4}$ " tube leak and burst database to include Comanche Peak Unit-1 pulled tube data.

In summary, SLB leak rates and tube burst probabilities predicted for EOC-8 are well below their respective limits.

{PRIVATE }Table 8-1 Comanche Peak Unit-1 September 1999 Outage Summary of Projected Tube Leak Rate and Burst Probability for EOC-8 - 250k Simulations

Steam Generator	POD	No. of M Indic- V ations ⁽¹⁾	Max. Volts ⁽²⁾	Burst Probability		SLB Leak Rate	Comments			
				1 Tube	1 or More Tubes	(gpm) ⁽³⁾				
EOC - 8 PROJECTIONS										
		(Based or	n a projec	cted Cycle	8 duration	of 496 EFPI	D)			
1		18.3	2.9	3.5×10 ⁻⁴	3.5×10 ⁻⁴	1.5×10 ⁻²	Standard leak rate d tube burst			
2	0.6	31.7	3.6	5.5×10 ⁻⁴	5.5×10 ⁻⁴	3.4×10 ⁻²	obability methodology			
3		15.0	2.8	3.5×10 ⁻⁴	3.5×10 ⁻⁴	1.2×10 ⁻²	Addendum-3 tabase			
4		105.3	4.7	1.9×10 ⁻³	1.9×10 ⁻³	0.14				
4		105.3	4.7	2.3×10 ⁻³	2.3×10 ⁻³	0.14	Updated database with the present pulled tube data included			
1		23	3.1	4.2×10 ⁻⁴	4.2×10 ⁻⁴	1.9×10 ⁻²	Standard leak rate d tube burst			
2	POPCD	32.2	3.6	5.6×10 ⁻⁴	5.6×10 ⁻⁴	3.3×10 ⁻²	obability methodology			
3		17.1	2.8	3.3×10 ^{-₄}	3.3×10⁻⁴	1.4×10 ⁻²	Addendum-3 database			
4		102.2	4.7	1.61×10 ⁻³	1.6×10 ⁻³	0.13				

Notes

(1) Number of indications adjusted for POD.

(2) Voltages include NDE uncertainties from Monte Carlo analyses and exceed measured voltages.

(3) Equivalent volumetric rate at room temperature.

9.0 References

- 9-1 NRC Generic Letter 95-05, "Voltage-Based Repair Criteria for the Repair of Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking," USNRC Office of Nuclear Reactor Regulation, August 3, 1995.
- 9-2 NRC Letter "Comanche Peak Steam Electric Station (CPSES), Unit-1 Issuance of Amendments Re: Implementation of the 1.0 Volt Steam Generator Tube Criteria (TAC Nos. MA 4843 and MA 4844," September 22, 1999.
- 9-3 WCAP-14277, Revision 1, "SLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Intersections", Westinghouse Nuclear Services Division, December.1996.
- 9-4 EPRI Report NP 7480-L, Addendum 2, "Steam Generator Tubing Outside Diameter Stress Corrosion Cracking at Tube Support Plates Database for Alternate Repair Limits," Electric Power Research Institute, April 1998.
- 9-5 Letter from B. W. Sheron, Nuclear Regulatory Commission, to A. Marion, Nuclear Energy Institute, dated February 9, 1996.
- 9-6 EPRI Report NP 7480-L, Addendum 3, "Steam Generator Tubing Outside Diameter Stress Corrosion Cracking at Tube Support Plates Database for Alternate repair Limits," Electric Power Research Institute, May 1999.
- 9-7 SG-99-08-006, "Comanche Peak Steam Electric Station Unit 1, Steam Generator Degradation Assessment 1RF07 Refueling Outage," Westinghouse Electric Company, August 1999.