STONE & WEBSTER ENGINEERING CORPORATION CALCULATION TITLE PAGE

÷

.

.

CLIENT & PROJECT Private Fue	el Storage L. L. C./Pr	ivate Fue	l Storage	Facility	PAGE 1 OF 6		
CALCULATION TITLE					QA CAT	EGORY	´ I
	CALCULATION IDENTIFI	CATION NUM	/BER	· · · · · · · · · · · · · · · · · · ·		* <u>.</u>	
J.O. OR W.O. NO.	DIVISION & GROUP		RENT C. NO.	OPTIONAL TASK CODE	OPTIONAL WORK PACKAGE NO.).
05996.02	Mechanical	P-	007	NA	NA		
APPROVALS - SIGNA	L		REV. NO.	CONFIRM. SUPERSEDES REQUIRE			
PREPARER(S)/DATE	E(S) REVIEWER(S)/DATE(S)	INDEP REVIEWER	ENDENT R(S)/DATE(S)	OR NEW CALC. NO	SUPERSEDES CALC. NO. OR REV. NO.	YES	NO
K. Dungan (Risk Technologie 740	R. Rudy (Risk Technologies) Ref 12-1-00		.ewis & W) 4-10-00	0	NA		×
			-				
		DISTR	IBUTION				
GROUP	NAME & LOCATION	COPY SENT (X)	GROUI	P	NAME & LOCATION		COPY SENT (X)
RECORDS MGT. FILES (OR FIRE FILE IF NONE)	JOB BOOK R4.2 FIRE FILE	ORIG. X					

STONE & WEBSTER ENGINEERING CORPORATION

- -----

- ---

ĩ

.

•

CALCULATION SHEET

	CALC	CULATION IDENTIFICAT	ION NUMBER						
J.O. OR W.O. NO. 05996.02	DIVISION & GROUP P	CALCULATION NO. 007	OPTIONAL TASK CODE 	PAGE_2					
	RE	CORD OF REVISIO	NS						
Revision 0 - Original Issue									
		-							

OBJECTIVE OF CALCULATION The objective of this calcular given off by a set of burning shipping cask and tires on a	J.O.W.O./CALCULATION NO. 0599601-P-007 s for Canister Transfer Building H ation is to determine the peak ra- ing tires to see what affect it we	diant heat flux tha	le Tire Fire
Private Fuel Storage L.L.C. SUBJECT / TITLE Radiant Heat Flux Calculations OBJECTIVE OF CALCULATION The objective of this calcula given off by a set of burning shipping cask and tires on a	ation is to determine the peak raining tires to see what affect it we	QA Category I Heavy Haul Vehic diant heat flux tha	le Tire Fire
Radiant Heat Flux Calculations OBJECTIVE OF CALCULATION The objective of this calcula given off by a set of burni shipping cask and tires on a	ation is to determine the peak raining tires to see what affect it we	leavy Haul Vehic diant heat flux tha	le Tire Fire
The objective of this calcular given off by a set of burni shipping cask and tires on a	ing tires to see what affect it we		
given off by a set of burn shipping cask and tires on a	ing tires to see what affect it we		t would be
2. The affect of the hea	x from the flame of 8 burning tires at flux on the shipping cask. at flux on an adjacent axle of tires	will determine: 3.	
CALCULATION METHOD / ASSUMPTION	19		<u> </u>
	vill utilize typical radiant heat tra	nsfer formulas to	determine
 Radials. These tires are dual tires will be approx 2. Use heat release rate of similar fuels listed in Tal 3. Assume closest set of a Ref. 1, scale 12 ft (3.7 m) 	neavy haul trailer), use trailer tire e 10 in. wide x 36.5 in. high. The imately 1m high x 1 m wide x 3 m f 1500 kW/m ² for burning tires. The ble 5-5.2(a) of Reference 3. xles on trailer to shipping cask but n) from closest axle to nearest educes etween sets of axle tires is 12 ft (3	erefore, a double l long. his is conservative urn to calculate pa ge of shipping cas	axle set of based on rt 2. From
SOURCES OF DATA / EQUATIONS			
1. Trail King Drawing No. 9) 62620, TK300 Trailer System, 5/	24/96.	
	n Engineers Handbook, NFPA, 2'		
	noke and Heat Venting, 1991.		
	beak radiant heat flux given off t		
kW/m ² to the shipping cask cask is qualified in accordan	is less than the radiant heat flux ice with 10 CFR 71, which yields (t from the fire for 68 kW/m ² .	which the
	the peak radiant heat flux given		essary to
kW/m ² to the adjacent set ignite vulcanized rubber (Si	milar materials shown in Section Ibber power cables as 20-23 k	3/Chapter 4 of F	Reference
kW/m ² to the adjacent set ignite vulcanized rubber (Si 2 as ethylene/propylene ru rubber conveyor belts as 20	milar materials shown in Section Ibber power cables as 20-23 k	3/Chapter 4 of F	Reference loroprene
kW/m ² to the adjacent set ignite vulcanized rubber (Si 2 as ethylene/propylene ru	milar materials shown in Section obber power cables as 20-23 k ¹ kW/m ²).	a 3/Chapter 4 of F W/m ² and for ch	Reference loroprene

;

2

.

0599602-P-007 P.4

Description: 8 - 255/70R 22.5 IbpR Radial times peraxle (10" wide, 36.5" high) Separation: 12' (3.7m) from time to next double ayle 12' (3.7 n) from closest tire to cask edge Burning characteristics: Assume beat release vate of 1500 Kw/mz floor area for tires, 1 m high, 1 m wide, 3 m long Q7 = (3×1) 1500 = 4500 KW Rodiating Fraction X-5.35 so maximum radiatin heat release $Q_{R} = \chi Q_{T} = .35 \times 4500 = 1575 kW$ Flame emissive flux: E = OR/AP Af = Flame area envelope = Hex Pf Hr= Flame height Pr= flame perineter = 3+1+3+1 = 8m Flame Hught (per Hestestad egie-1 NEPA 204) $H_{f} = -1.02D + .235Q_{T}^{2/5}$ $= -1.02(3-) + .235(4500)^{7} = 3.74 m$ CLIENT Stone & webster Radiant Heat Flux Celc. DATE PROJECT PFSF PREPARED 4-5 KWD TASK TIRE FIRE CHECKED 1 ISSUED BY APPROVED DATE-4-5-0 REVISIONS BY 4 NUMBER 6 DATE

0599602-P-007 P.5

Af = 3.74 × 8n = 30m² $E = Q_R / A_P = \frac{1575}{30} = 52.5 \, kw / m^2$ Exposure Calculations: gr = Fiz E, Fiz = view Factor Case 1 Tire Fire exposing shipping cask. At closest point cask will be 3.7m from edge of Flame; greatest point flux will be on portion of cask centered on flame $F_{12} = \frac{2}{77} \left[\frac{\chi}{\sqrt{1+y^2}} \tan \frac{\gamma}{\sqrt{1+y^2}} + \frac{\gamma}{\sqrt{1+y^2}} \tan \frac{\chi}{\sqrt{1+y^2}} \right]$ $X = \frac{1}{2}$ Flame height / distance to target = $\frac{1.87}{3.7} = .5054$ $Y = \frac{1.5}{3.7} = .4054$ $F_{12} = \frac{2}{\pi} \frac{.5054}{\sqrt{1+.5054^2}} \frac{+054}{\sqrt{1+.5054^2}} + \frac{.4054}{\sqrt{1+.4054^2}} \frac{+0.5054}{\sqrt{1+.4054^2}}$ $= \frac{2}{\pi} \left[.15674.1646 \right] = .2045$ 8r = 52.2 ×. 2045 = 10.7 kW/mz peak CLIENT Stone & Wabster BY DATE PROJECT PFSF PREPARED KUD 4-5 TASK TIRE FILE CHECKED RR 1 ISSUED BY-APPROVED DATE 4-5-00 NUMBER Zof 3 **REVISIONS BY** 2 3 4 6 DATE

0599602 - P-007 P.6

33-3

Case 2 Tire file exposing adjacent axle At closest point tire edge will be 3.7m from edge of flame, tire will be at base of flame, worst asse is center base. $F_{12} = \frac{1}{7} \left[\frac{X}{1+Y^2} + \frac{1}{\sqrt{1+Y^2}} + \frac{1}{\sqrt{1+Y^2}} + \frac{1}{\sqrt{1+Y^2}} \right]$ X = flave height / separation distance = 3.74 = 1.011 Y = 1/2 flame width (Sepowatin distance = 1.5 = . 4054 $F_{12} = \frac{1}{\pi} \left[\frac{1.01}{1.002} \tan \frac{1.054}{1.002} + \frac{1.054}{\sqrt{1+.4054^2}} \tan \frac{1.011}{\sqrt{1+.4054^2}} \right]$ = + [.1975 + .283] = .153 9 = 52.2 ×.153 = 8 kW/mz peak CLIENT Stone & webster BY DATE PROJECT FSF PREPARED 4-5 KWD TASK TIRE FIRE CHECKED RR 4-6 **1 ISSUED BY** APPROVED DATE 4-5-00 **REVISIONS BY** 2 3 5 NUMBER 4 6

DATE