500-338 339 Innstruct Technica com Glor And Arrendez

IRGINIA POWER

2001

Certified Mail Return Receipt Requested

March 31, 2000

Dr. Janardan R. Pandey, P.E. Valley Regional Office P.O. Box 1129 Harrisonburg, Va. 22801-1129

Re: **Application for Reissuance** VPDES Permit No. VA0052451 North Anna Power Station

Dear Dr. Pandey:

Enclosed is the original application for reissuance of VPDES Permit No. VA0052451 submitted for your review prior to the regulatory deadline of April 5, 2000. Four additional copies are also being sent with this original. The application fee of \$8000 was previously submitted June 22, 1999 (see enclosure).

As we previously discussed, the waivers granted by the DEQ for the last VPDES permit reissuance continue to apply provided there have been no significant changes at the power station. Attached is our written request for waivers, and the requests previously approved are formally restated in accordance with Forms 2C, 2E and 2F instructions.

We have carefully reviewed the existing permit and request that DEQ consider the following changes:

- Outfalls 101 & 102, Units 1 & 2, Flash Evaporators. The flash evaporator systems have been abandoned and we request these outfalls be deleted from the permit. There are no plans to reinstate this equipment or reactivate these discharges.
- Outfall 107 Bearing Cooling System Discharge Lake to Lake Operation. The ٠ proposed increase in flow would be intermittent, comprised of lake water only. This system may require the use of a zinc and/or phosphate corrosion inhibitor. Material safety data sheets are attached to this application.

Dr. Janardan R. Pandey, P.E. March 31, 2000 Page 2 of 5

- Outfall 114 New Outfall Service Water Tie-In Vault Drain. This new outfall will be used when leakage accumulates in the Pipe Vault adjacent to the Service Water Reservoir. It is not currently in use, and would not discharge unless a seal or valve failed or possibly during maintenance. Outfall 108 (Service Water Overboard) was sampled to represent this outfall.
- Outfall 115 New Outfall Service Water System Blowdown. This outfall is identical to Outfall 108, the Service Water Overboard and is represented by data from Outfall 108 samples.
- Outfall 019 Domestic Water Overflow. This outfall is entirely composed of groundwater used for the potable water supply. No pollutants are added to this water, and a discharge would occur only if the holding tank overflowed. We request that this outfall be deleted from the permit.
- In the table and discussion that follows below, we have requested reductions and relief from certain monitoring requirements, in most cases justified by our analyses based on the 4/19/96 EPA memorandum titled "Interim Guidance for Performance-Based Reductions of NPDES Permit Monitoring Frequencies" and the 5/4/98 DEQ "Guidance Memorandum #98-2005 Reduced Monitoring". The results of our analyses are attached to this cover letter for your review and additional justifications are offered in the discussion that follows the table.

NORTH ANNA - VPDES M	onitoring Reduction Red	quests	
Outfall	Permit Requirement	Current Permit	Requested change
Outfall 009. Settling Pond	TSS	2/month	1/quarter
Outfall 020, Reverse Osmosis Reject	TSS	2/month	1/quarter
Outfall 103, Process Waste Clarifier	pH, TSS and O&G	2/month	1/quarter or none
Outfall 104, Oil/Water Separator & Storm Water	pH, TSS and O&G	2/month	1/quarter
Outfall 109. Hot Well Drain Unit 1	pH, TSS and O&G	1/month	1/6 months
Outrall 110. Hot Well Drain Unit 2	pH, TSS and O&G	l/month	1/6 months
Outfall 111. Main Sewage Treatment Plant	BOD ₅ , TSS, pH	1/month	1/6 months
Outfall 112. Steam Generator Blowdown Unit 1	pH, TSS and O&G	1/month	1/6 months or none
Outfall 113, Steam Generator Blowdown Unit 2	pH, TSS and O&G	1/month	1/6 months or none

Dr. Janardan R. Pandey, P.E. March 31, 2000 Page 3 of 5

Outfall 009, Settling Pond - We request that the TSS monitoring frequency requirement be reduced from 2/month to 1/quarter. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 020, Reverse Osmosis Reject - We request that the TSS monitoring frequency requirement be reduced from 2/month to 1/quarter. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 103, Process Waste Clarifier - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 2/month to 1/quarter. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 104, Oil/Water Separator & Storm Water - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 2/month to 1/quarter. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 109, Hot Well Drain Unit 1 - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 1/month to 1/6 months. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 110, Hot Well Drain Unit 2 - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 1/month to 1/6 months. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 111, Main Sewage Treatment Plant - We request that the BOD₅, TSS and pH monitoring frequency requirement be reduced from 1/month to 1/6 months. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 112, Steam Generator Blowdown Unit 1 - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 1/month to 1/6 months. We had no permit violations for these parameters during the three-year period from 1997-1999.

Outfall 113, Steam Generator Blowdown Unit 2 - We request that the pH, TSS and O&G monitoring frequency requirement be reduced from 1/month to 1/6 months. We had no permit violations for these parameters during the three-year period from 1997-1999.

Lake Level Contingency Plan – As we discussed with you and Keith Fowler, a bill that will require the inclusion of a "Lake Level Contingency Plan" in the VPDES permit for North Anna was passed by both the House and Senate during this year's General Assembly session. We have been taking an independent and proactive approach to addressing this matter, and anticipate working with you to ensure that this condition is developed in a manner that will support the timely reissuance of the permit.

Dr. Janardan R. Pandey, P.E. March 31, 2000 Page 4 of 5

Condition 7, Current VPDES Permit – As we discussed, we request a DEQ review of the 401 and 21(b) certificates referenced in Special Condition #7 of the current VPDES permit. We believe that portions of this condition may be obsolete but we would like to clarify any requirements that may still be applicable.

If you have any questions concerning this application, please direct your call to Joyce Livingstone at (804) 273-2985.

Sincerely,

Pamela F. Faggert Vice President and Chief Environmental Officer

Attachments

- *DEQ application notification letter 10/13/99*
- Basis for Monitoring Reduction Requests Data Analysis
- Submittal of Application Fee 6/22/99
 - Pink copy of Permit Application Fee Form
 - Copy of Permit Fee Check, \$8000
- Request for Waivers from Sampling and Testing Parameters, 6/21/99
- VPDES Outfall Descriptions and Sampling Points
- EPA Form 3510-1
- Topographic Map required by EPA Form 3510-1, Section XI
- VPDES Outfall Location Map required by EPA Form 3510-1, Section XI
- One Line Diagram required by EPA Form 3510-2C, Section II.A
- EPA Form 3510-2C
- Addendum to Form 3510-2C
- Virginia Power Detection Levels For EPA Form 3510-2C Data
- Routinely Used Chemicals to support EPA Form 3510-2C, Section V
- Material Safety Data Sheets
- Outfall 001 Toxicity Data Summary to support EPA Form 3510-2C, Section VII
- EPA Form 3510-2E
- Treatment System Component Description (to support EPA Form 3510-2E, Section VI),
- VPDES Sewage Sludge Permit Application Form
- Topographic Map required by Sewage Sludge Permit Application, Section A.5
- Flow Diagram WWTP required by Sewage Sludge Permit Application, Section A.6
- Sludge Management Plan for North Anna Power Station 10/20/97
- EPA Form 3510-2F
- Storm Water Drainage Area Description (to support EPA Form 3510-2F, Section IV-B)

Dr. Janardan R. Pandey, P.E. March 31, 2000 Page 5 of 5

cc: U.S. Nuclear Regulatory Commission Region II Atlanta Federal Center
61 Forsyth Street, SW, Suite 23T85 Atlanta, Georgia 30303 RE: North Anna Units 1 & 2

License Nos. NPF-4/NPF-7

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 RE: North Anna Units 1 & 2 Docket Nos. 50-338/50-339

License Nos. NPF-4/NPF-7

Department of Environmental Quality Valley Regional Office (4 copies of complete application) P.O. Box 1129 Harrisonburg, Va. 22801-1129

Mr. M. J. Morgan NRC Senior Resident Inspector North Anna Power Station

DEQ Application Notification Letter 10/13/99

Cory Carter Cooke

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

Valley Regional Office

James S. Gilmore, III Governor

Street address: 4411 Early Road, Harrisonburg, Virginia 22801 Mailing address: P.O. Box 1129, Harrisonburg, VA 22801-1129 Telephone (540) 574-7800 Fax (540) 574-7878 http://www.deq.state.va.us Dennis H. Treacy Director

R. Bradley Chewning, P.E. Valley Regional Director

John Paul Woodley, Jr. Secretary of Natural Resources

October 13, 1999

Ms. Pamela Faggert Virginia Power 5000 Dominion Boulevard Glen Allen, VA 23060

Re: Reissuance of VPDES Permit No. VA0052451 Virginia Power - North Anna

Dear Ms. Faggert:

This letter is to remind you that your referenced permit will expire on October 02, 2000. If you wish to continue discharging from the wastewater treatment facilities, you must reapply for the permit. The State Water Control Board's VPDES Permit Regulation requires that we receive a complete application at least 180 days before the existing permit expires. The deadline for submitting the application is **April 05, 2000**. Early submissions are encouraged to resolve any application discrepancies prior to the deadline, and to provide you with earlier notice of any expected permit changes. The application forms and instructions are enclosed.

In addition, per State Law and our Permit Fee Regulation, we must receive the appropriate permit fee before we can process your application for permit reissuance. The permit fees are listed on the back of the permit fee form. Please follow the instructions on the front of the form concerning the payment of the fee.

If you have any questions concerning the requirements for your permit, please let me know.

Sincerely,

Janardan R. Pandey, P.E. Environmental Engineer Senior

Enclosure

Basis for Monitoring Reduction Requests Data Analysis

٠

NORTH ANNA DMR DATA SUMMARY, 1996 THROUGH 1999 VALUES BELOW DETECTION ARE TREATED AS ZERO CAMDIDATES FOR MONITORING REDUCTION

DISCHARGE	PARAMETER	TYPE	NUMBER OF MONTHS WITH FLOW	THREE-YEAR MEAN	PERHIT LINIT	ACTUAL PERFORMANCE/PERMIT LIMIT PERCENT	BASELINE MONITORING	REQUESTED Frequency
9	122	AVERAGE CONCENTRATION	35	2.3676	30	7.8922	2/HONTH	1/ QUARTER
		HAXIMUM CONCENTRATION	35	2.8912	100	2.8912	2/MONTH	1/ QUARTER
20	221	AVERAGE CONCENTRATION	36	0.4086	30	1.3619	2/MONTH	1/ QUARTER
		MAXIMUM CONCENTRATION	36	0.7200	100	θ.7200	2/HONTH	1/ QUARTER
103	OIL & GR	AVERAGE CONCENTRATION	35	0.0000	15	0.0000	2/HONTH	1/ QUARTER
		MAXIMUM CONCENTRATION	35	0.3441	20	1.7206	2/KONTH	1/ QUARTER
103	T S S	AVERAGE CONCENTRATION	35	1.6618	30	5.5392	2/KONTH	1/ QUARTER
		HAXIMUM CONCENTRATION	35	2.4382	100	2.4382	2/MONTH	1/ QUARTER
194	OIL & GR	AVERAGE CONCENTRATION	35	0.9324	15	6.2157	2/MONTH	1/ QUARTER
		MAXIMUM CONCENTRATION	35	2.8559	20	14.2794	2/MONTH	1/ QUARTER
104	221	AVERAGE CONCENTRATION	35	4.8515	30	16.1716	2/MONTH	1/ QUARTER
		HAXINUH CONCENTRATION	35	6.1235	100	6.1235	2/MONTH	1/ QUARTER
109	OIL & GR	AVERAGE CONCENTRATION	25	0.0000	15	0.0000	1/HONTH	1/ 6 HONTHS
		HAXIMUN CONCENTRATION	25	0.0000	20	0.0000	1./MONTH	1.7 6 MONTHS
109	221	AVERAGE CONCENTRATION	27	0.1750	30	0.5833	1/KONTH	1/ 6 NONTHS
		MAXIMUM CONCENTRATION	27	0.1750	100	0.1750	1/HONTH	1/ 6 MONTHS
110	OIL & GR	AVERAGE CONCENTRATION	27	0.0000	15	0.0000	1/MONTH	1/ 6 HONTHS
		MAXIMUM CONCENTRATION	27	0.0000	20	0.0000	1/HONTH	1/ 6 MONTHS
110	122	AVERAGE CONCENTRATION	28	0.0714	30	0.2381	1/MONTH	17 6 HONTHS
		HAXIMUM CONCENTRATION	28	0.0714	100	0.0714	1/MONTH	17 6 MONTHS
111	BOD5	AVERAGE CONCENTRATION	35	5.7429	30	19.1429	1/MONTH	1/ 6 MONTHS
		MAXIMUM CONCENTRATION	35	5.7429	45	12.7619	1/MONTH	1/ 6 MONTHS

NORTH ANNA DHR DATA SUMMARY, 1996 THROUGH 1999 VALUES BELOW DETECTION ARE TREATED AS ZERO CANDIDATES FOR MONITORING REDUCTION

•

			NUMBER OF					
			MONTHS	THREE-YEAR	PERMIT	ACTUAL PERFORMANCE/PERMIT LIMIT	BASELINE	REQUESTED
DISCHARGE	PARAMETER	TYPE	WITH FLOW	HEAN	LIMIT	PERCENT	MONITORING	FREQUENCY
111	227	AVERAGE CONCENTRATION	35	10.7943	30	35.9810	1/HONTH	1/ QUARTER
		MAXIMUM CONCENTRATION	35	10.7943	45	23.9873	1/MONTH	1/ 6 MONTHS
112	OIL & GR	AVERAGE CONCENTRATION	35	0.0000	15	0.0000	1/HONTH	1/ 6 MONTHS
		MAXIMUM CONCENTRATION	35	0.0000	20	0.0000	1/MONTH	1/ 6 MONTHS
112	221	AVERAGE CONCENTRATION	35	0.3286	30	1.0952	1/MONTH	17 6 MONTHS
		MAXIMUM CONCENTRATION	35	θ.3286	100	0.3286	1/HONTH	1/ 6 MONTHS
113	OIL & GR	AVERAGE CONCENTRATION	35	0.0000	15	0.0000	1/MONTH	17 6 MONTHS
		MAXIMUM CONCENTRATION	35	0.0000	20	0.0000	1/MONTH	1/ 6 MONTHS
113	221	AVERAGE CONCENTRATION	35	0.9500	30	3.1667	1/MONTH	17 6 MONTHS
		MAXIMUM CONCENTRATION	35	1.3800	100	1.3800	1/MONTH	1/ 6 MONTHS

*

.

NORTH ANNA PH MONITORING RESULTS

				×			×	
			LOWER	INDICATES			INDICATES	UPPER
OUTFALL			LIMIT	AN	MINIMUM	MAXIMUM	AN	LIMIT
NUMBER	YEAR	MONTH	+ .5	EXCEEDENCE	PH	PH	EXCEEDENCE	- 0.5
_		_						. r
005	1997	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		0.5
		3	6.5		NO FLOW	•	•	0.5
		5	6.5		NO FLOW	•		0.5
	•	6	6.5		NO FLOW	•		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
007	1997	1	65		NO FLOW	-		8.5
007	2777	2	6.5		NO FLOW			8.5
		3	6 5		NO FLOW	-		8.5
		5	6.5		NO FLOW	•		8.5
		5	0.5		NO FLOW	•		8 5
		0	0.5		NO FLOW	•		8 5
		/	6.5		NU FLUW	•	•	0.5
		8	6.5		NU FLUW	•		0.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
009	1997	1	6.5		7.76	7.86		8.5
		2	6.5		7.44	7.48		8.5
		3	6.5		6.88	7.45		8.5
		5	6 5	¥	6.4	8.85	×	8.5
		4	4 5	~	6 77	6.85		8.5
		7	6.5		7 . 77	7 30		8 5
			0.5		7.07	7.30		8 5
		8	6.5			7.24		0.5
		9	6.5		7.11	7.24		0.5
		10	6.5		NO FLOW	_•		8.5
		11	6.5		7.18	7.56		8.5
		12	6.5		7.29	7.29		8.5
000	1008	1	6 6		7 19	7.20		8.5
009	1990	2	4 E		7 48	7 62		8.5
		7	6.5 4 E		7 26	7 53		8 5
		3	0.5		7.67	7.55		8 5
			0.5		/.00	7.40		0.5
		5	6.5		6.98	7.09		0.5
		6	6.5		6.85	7.09		0.5
		7	6.5		7.03	7.31		8.5
		8	6.5		6.97	7.48		8.5
		9	6.5		6.94	7.26		8.5
		10	6.5		6.95	7.70		8.5
		11	6.5		7.11	7.44		8.5
		12	6.5		6.7	6.98		8.5
009	1999	1	6.5		6.82	7.01		8.5
		2	6.5		6.8	7.70		8.5
		-	6 5		6 98	7.06		8.5
		4	6 5		6 75	6 90		8.5
			6.5 4 E		7 33	7 68		8.5
		5	6.5		4 05	7.90		9.5
		-	0.5		0.75	7.00		0.5
		/	0.5		0.75	7.02		0.5
		8	6.5		7.21	7.80		8.5
		9	6.5		7.28	7.70		8.5
		10	6.5		7	7.10		8.5
		11	6.5		6.97	7.11		8.5
		12	6.5		7.06	7.46		8.5
013	1997	1	6.5		NO FLOW			8.5
	-///	5	6.5		NO FLOW	-		8.5
			2.5 2 E		NO FLOW	•		8 5
		5	0.5		NO FLOW	•		0.5 9 E
		5	0.5		NU FLUW	•		0.5
		6	0.5		NU FLUW	•		0.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5

				. *			×	
			LOWER	INDICATES			INDICATES	UPPER
OUTFALL			LIMIT	AN	MINIMUM	MAXIMUM	AN	LIMIT
NUMBER	YEAR	MONTH	+ .5	EXCEEDENCE	PH	PH	EXCEEDENCE	- 0.5
013	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW			8.5
		3	6.5		NO FLOW			8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW			8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW			8.5
		9	6.5		NO FLOW			8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW			8.5
		12	6.5		NO FLOW	•		8.5
013	1999	1	6.5		NO FLOW			8.5
		2	6.5		NO FLOW			8.5
		4	6.5		NO FLOW			8.5
		5	6.5		NO FLOW			8.5
		8	6.5		NO FLOW			8.5
		9	6.5		NO FLOW			8.5
		11	6 5		NO FLOW	•		8.5
		12	6.5		NO FLOW			8.5
07.6	1007	,	4 E		NO ELON			о г
014	1777	2	6.5 4 E		NO FLOW	•		0.5
		2	0.5		NO FLOW	•		0.5
		5	0.5		NO FLOW	•		0.5
		5	0.5		NO FLOW	•		0.5
		° 7	0.5		NO FLOW	•		0.5
			0.5		NU FLUW	•		0.5
		0	0.5		NU FLOW	•		0.5
			0.5		NU FLUW	•		0.5
		10	6.5		NU FLOW	•		8.5
		11	6.5		NU FLUW	•		8.5
		12	6.5		NU FLOW	•		8.5
014	1998	1	6.5		NO FLOW			8.5
		2	6.5		NO FLOW			8.5
		3	6.5		NO FLOW			8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8 5
		6	6.5		NO FLOW	• •		8 5
		7	6 5		NO FLOW	•		8 5
		, 8	6.5		NO FLOW	•		8 5
		6	6.5 4 E		NO FLOW	•		0.5
		7	- 6.5 		NO FLOW	•		0.5
		10	0.5 (F		NO FLOW	•		0.5
		11	6.5 4 F		NO FLOW	•		0.5
		12	0.5		NO PLOW	• .		0.5
014	1999	1	6.5		NO FLOW	•		8.5
		. 2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW			8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW			8.5
		11	6.5		NO FLOW			8.5
		12	6.5		NO FLOW	•		8.5
019	1997	1	65					8 5
• • •		2	6.5		NO FLOW	•		8 E
		7	6 5		NO FLOW	•		9.9 9 E
		5 E	4 E		NO FLOW	•		0.5 6 E
		<i>⊐</i> ∠	4 E		NO FLOW	•		0.5
		0 7	0.5 ∠ F		NO FLUW	•		0.5
		/	0.5		NO FLOW	•,		0.5
		ð	0.5		NU FLUW	•		ö.5
		7	0.5		NU FLUW	•		ö.5
		TU	0.5		NU FLUW	•		Ø.5
		11	0.5 4 F		NU FLUW	•		ö.5 ° r
		12	0.5		NU FLUW	•		0.5
019	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW			8.5

~

NORTH ANNA PH MONITORING RESULTS

-

-

•

				×			×	
			LOWER	INDICATES			INDICATES	UPPER
OUTFALL			LIMIT	AN	MINIMUM	MAXIMUM	AN	LIMIT
NUMBER	YEAR	MONTH	+ .5	EXCEEDENCE	PH	PH	EXCEEDENCE	- 0.5
		~	/ -					9 F
019	1998	5.	6.5		NO FLOW	•		0.5
		6	6.5		NU FLUW	•		0.5
		7	6.5		NO FLOW	•		0.5
		8	6.5		NU FLUW	•		0.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
019	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
020	1997	1	6.5		6.88	7.28		8.5
020	- / / ·	2	6 5		7.22	7.56		8.5
		ž	6.5		7.32	7.35		8.5
		5	6.5		7.32	7 57		8.5
		5	0.5		7.20	7 16		8 5
			6.5		7.12	7.14		0.5
			6.5			7.51		0.5
		8	6.5		7.25	7.35		8.5
•		9	6.5		7.02	7.39		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5	•	7.41	7.50		8.5
		12	6.5	*	6.47	7.32		8.5
020	1998	1	6.5		7.28	7.58		8.5
		2	6.5		7.14	7.28		8.5
		3	6.5		7.33	7.40		8.5
		4	6.5		7.45	7.61		8.5
		5	6.5		7.25	7.27		8.5
		4	4 E		7 22	7 24		8.5
			6.5		7.22	7 20		8 5
		1	0.5		7.10	7.20		9 6
		8	6.5		7.19	7.34		0.9
		. 9	6.5		7.3	7.35		0.5
		10	6.5		7.1	7.22		8.5
		11	6.5		6.73	7.04		8.5
		12	6.5		7	7.06		8.5
020	1999	1	6.5		6.96	7.03		8.5
		2	6.5		6.93	6.99		8.5
		3	6.5		7.09	7.25		8.5
		4	6.5		6.56	7.47		8.5
		5	6.5		6.9	7.00		8.5
		6	6.5		7	7.02		8.5
		7	6.5		6.92	7.20		8.5
		. 8	6.5		7.47	7.50		8.5
		, a	6.5		7.4	7.62		8.5
		лó	6 5		7 15	7 33		8.5
		10	6.5		7.19	7.00		8 5
		11	0.5		7.00	7.20		0.5
		11	6.5		7.08	7.08		8.5
021	1999	4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
101	1997	1	6.5		NO FLOW			8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW			8.5
		Ę	6.5		NO FLOW	-		8.5
			6.5		NO FLOW	-		8.5
		7	۵.5 ۲		NO FLOW	•		8.5
		<i>'</i>	2 E		NO ELON	•		8 5
		0	0.9 4 F		NO FLOW	•		0.5 8 E
		7	0.5		NO FLOW	•		0.5
		10	0.5		NU FLUW	•		0.5 0 F
		11	6.5		NU FLUW	•		0.5

......

.

٠

				¥			×	
OUTFALL NUMBER	YEAR	MONTH	LOWER LIMIT + .5	INDICATES AN EXCEEDENCE	MINIMUM PH	MAXIMUM PH	INDICATES AN Exceedence	UPPER LIMIT - 0.5
101	1997	12	6.5		NO FLOW	•		8.5
			<i>.</i> -					
101	1998	1	6.5 6 E		NU FLUW	•		85
		2 3	6.5 4 E		NO FLOW	•		8.5
			6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW			8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
101	1999	1	6.5 4 5		NO FLOW	•		8.5 8.5
		<u>د</u>	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW			8.5
		12	6.5		NO FLOW	•		8.5
102	1997	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NU FLOW	•		0.5
		2	0.5 4 E		NO FLOW	•		85
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW			8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
102	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5 9 F
		6	6.5 4 E		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
	•	9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
102	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NU FLUW	•		0.5 g E
		0	6.5 4 E		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
103	1997	1	6.5		7.29	7.36		8.5
		2	6.5		7.16	7.18		8.5
		3	6.5		7.35	7.52		8.5
		5	6.5		7.48	7.55		8.5
		6	6.5		7.15	7.34		8.5
		7	6.5		7.17	7.19		8.5
		8	6.5		7.08	7.24		ö.5 0 F
		9	6.5 4 F		7.31 NO 51 011	1.52		0.5 p E
		11	0.5 4 E		NU FLUW 7 17	7 74		8 F
		12	6.5		7.02	7.29		8.5
103	1998	1	6.5		7.2	7.38		8.5
		2	6.5		7.17	7.60		8.5
		3	6.5		7.24	7.44		8.5
		4	6.5		7.13	7.27		8.5

•

NORTH ANNA PH MONITORING RESULTS

-

			LOWER	* INDICATES				* INDICATES	UPPER
OUTFALL NUMBER	YEAR	MONTH	LIMIT + .5	AN EXCEEDENCE	MININ PH	SUM	MAXIMUM PH	AN EXCEEDENCE	LIMIT - 0.5
103	1998	5	6.5		6	.84	6.93		85
		6	6.5		6.	.78	6.81		85
		7	6.5		6.	.82	6.89		8.5
		8	6.5		6.	.87	6.89		8.5
		9	6.5		6.	.96	6.98		8.5
		10	6.5		4	5.8	6.84		8 5
		11	6.5	•	6	86	6.95		8 5
		12	6.5		6.	.84	6.87		8.5
103	1999	1	6.5		6.	.84	6.93		8.5
		2	6.5		6.	.88	6.92		8.5
		3	6.5		6.	.84	6.99		8.5
		4	6.5		6	5.8	6.90		8.5
		5	6.5		6.	. 91	6.92		8.5
		6	6.5		6.	.81	6.86		8.5
		7	6.5		6.	.82	7.13		8.5
		8	6.5		7.	.14	7.33		8.5
		9	6.5		7.	.12	7.14		8.5
		10	6.5			7	7.12		8.5
		11	6.5		6.	.89	7.05		8.5
		12	6.5	•	7.	. 06	7.45		8.5
104	1997	1	6.5		7.	.29	7.36		8.5
		2	6.5		7.	.16	7.18		8.5
		3	6.5		7.	.35	7.52		8.5
		5	6.5		7.	.48	7.55		8.5
		6	6.5 ·		7.	.15	7.34		8.5
		7	6.5		7.	.17	7.19		8.5
		8	6.5		7.	. 08	7.24		8.5
		9	6.5		7.	.31	7.52		8.5
		10	6.5		NO FL	.OW	•		8.5
		11	6.5		7.	.17	7.36		8.5
		12	6.5		7.	02	7.29		8.5
104	1998	1	6.5		7	7.2	7.38		8.5
		2	6.5		7.	.17	7.60		8.5
		3	6.5		7.	.24	7.44		8.5
		4	6.5		7.	13	7.27		8.5
		5	6.5		6.	.84	6.93		8.5
		6	6.5		6.	.78	6.81		8.5
		7	6.5		6.	82	6.89		8.5
		8	6.5		6.	87	6.89		8.5
		9	6.5		6.	.96	6.98		8.5
		10	6.5		6	5.8	6.84		8.5
		11	6.5		6.	.86	6.95		8.5
		12	6.5		6.	84	6.87		8.5
104	1999	1	6.5		6.	84	6.93		8.5
		2	6.5 / F		6.	88	6.92		8.5
		5	6.5		6.	84	6.99		8.5
		4	6.5 (F	•	6	.8	6.90		8.5
		5	6.5		6.	.91	6.92		8.5
		5	6.5		6.	81	6.86		8.5
		/	6.5		6.	82	7.13		8.5
			6.5		<u>′</u> .	14	7.33		8.5
		10	6.5		7.	12	7.14		8.5
		10	6.5			7	7.12		8.5
		11	6.5 6.5		6. 7.	.89 .06	7.05 7.45		8.5 8.5
105	1007	-	4 =			04			
103	1771	2	ь.5 6.5		NO FL	.UW .OW	•		8.5 8.5
		3	6.5		NO FL	WO.	•		8.5
		5	6.5		NO FI	OW.	-		8.5
		6	6.5		NO FI	.OW	-		8.5
		7	6.5		NO FL	WO			8.5
		8	6.5		NO FL	.OW	•		8.5
		9	6.5		NO FL	OW	-		8.5
		10	6.5		NO FI	.OW	-		8.5
		11	6.5		NO FL	.OW			8.5
		12	6.5		NO FL	.OW	•		8.5

.

.

NORTH ANNA PH MONITORING RESULTS

			LOWER	* INDICATES			* INDICATES	UPPER
OUTFALL NUMBER	YEAR	MONTH	LIMIT + .5	AN EXCEEDENCE	MINIMUM PH	MAXIMUH Ph	AN EXCEEDENCE	LIMIT - 0.5
105	1998	1	6.5		NO FLOW			8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		4	6.5		7.13	7.27		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW	•		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
105	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		7	6.5		6.82	7.13		8.5
		8	6.5	•	NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		7	7.12		8.5
		11	6.5		6.89	7.05		8.5
		12	6.5		7.06	7.45		8.5
106	1997	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW	•		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
107	1998	4	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
107	1999	4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•	•	8.5
		12	6.5		NO FLOW	•		8.5
108	1997	1	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW	•		8.5
		/	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•		8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		ND FLOW	•		8.5
		12	0.5		NO FLOW	•		0.9
108	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		ND FLOW	•		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NU FLOW	•		8.5
		7	6.5 / F		NU FLOW	•		8.5
		10	0.5		NU FLOW	•		8.5
		11	0.5 ∠ F		NU FLOW	•		8.5
		12	0.5		NU FLUW	•		ö.5
108	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NU FLOW	· •		8.5
		4	6.5		NU FLOW	•		8.5

			LOWER	* INDICATES			* INDICATES	UPPER
OUTFALL NUMBER	YEAR	MONTH	LIMIT + .5	AN EXCEEDENCE	MINIMUM PH	MAXIMUM PH	AN EXCEEDENCE	LIMIT - 0.5
108	1999	5	6.5		NO FLOW			8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW	•	•	8.5
		10	6.5		7	7.12		8.5
	·	12	6.5		7.06	7.45		8.5
109	1997	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW			8.5
		5	6.5 4 F		7.48	7.55		0.5
		7	6.5			7.34		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		NO FLOW			8.5
		10	6.5		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•	•	8.5
109	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		4 5	6.5 4 E		NO FLOW	•		8.5 9 E
		5	6.5		NO FLOW	•		0.5 8 E
		7	6.5			•		8.5
		8	6.5		NO FLOW	•		8.5
		9	6.5		6.96	6.98		8.5
		10	6.5		6.8	6.84		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		NO FLOW	•		8.5
109	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		9	6.5 4 E		NO FLOW	•		0.5 2 E
		12	6.5		NO FLOW	•		8.5
110	1997	1	6.5		NO FLOW			8.5
		2	6.5		NO FLOW	•		8.5
		3	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		6	6.5		NO FLOW	•		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	•		8.5
		10	6.5 4 E		NO FLOW	•		8.5
		11	6.5		NO FLOW	•		8.5
		12	6.5		7.02	7.29		8.5
110	1998	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW			8.5
		3	6.5		NO FLOW	•		8.5
		4	6.5		7.13	7.27		8.5
		5	6.5		6.84	6.93		8.5
		7	6.5		NO FLOW	•		8.5
		8	6.5 4 F		NO FLOW	·		8.5
		7	0.5 2 F		6.96 No El Ou	6.98		ö.5
		10	6.5		NO FLOW	•		0.5 9 E
		12	6.5		NO FLOW	•		8.5
110	1999	1	6.5		NO FLOW	•		8.5
		2	6.5		NO FLOW	•		8.5
		4	6.5		NO FLOW	•		8.5
		5	6.5		NO FLOW	•		8.5
		8	6.5		NO FLOW	_•		8.5
		.9	6.5		7.12	7.14		8.5
		10	6.5 4 F		7	7.12		8.5
		12	0.5 6 E		6.87 No 5100	7.05		0.5 0 r
		16	0.9		NO FLOW	•		0.2

and the second se

••·

OUTFALL NUMBER	YEAR	MONTH	LOWER LIMIT + .5	* INDICATES AN EXCEEDENCE	MINIMUM PH	MAXIMUM PH	* INDICATES AN EXCEEDENCE	UPPER LIMIT - 0.5
111	1997	1	6.5		7.34	7.34		8.5
		2	6.5		7	7.00		8.5
		3	6.5		7.32	7.32		8.5
		5	6.5		7.17	7.17		8.5
		6	6.5		7.11	7.11		8.5
		7	6.5		7.23	7.23		8.5
		8	6.5		7.51	7.51		8.5
		9	6.5		6.88	6.88		8.5
		10	6.5	¥	6.37	6.37		8.5
		11	6.5		6.95	6.95		8.5
		12	6.5		6.81	6.81		8.5
111	1998	1	6.5		7.81	7.81		8.5
		2	0.5		7.12	7.12		0.5
		5	0.5		7 15	7.20		0.5
			6.5 4 E		4 9	4 00		0.5
		5	6.5 4 E		7 07	7 07		8.5
		7	6.5 4 E		7.07	7 23		8 5
		, 8	6.5		7.23	7 14		8.5
		9	6.5		6 9	6 90		8.5
		7 6	6.5		7 15	7 15		8 5
		11	6.5		6.8	6 80		8.5
		12	6.5		7.24	7.24		8.5
111	1999	1	6.5		6.61	6.61		8.5
		2	6.5		6.82	6.82		8.5
		3	6.5		6.51	6.51		8.5
		4	6.5		6.77	6.77		8.5
		5	6.5		6.5	6.50		8.5
		6	6.5		7.14	7.14		8.5
		7	6.5	•	6.97	6.97		8.5
		8	6.5		7.21	7.21		8.5
		9	6.5		7.15	7.15		8.5
		10	6.5		7.14	7.14		8.5
		11 12	6.5 6.5		7.27 7.23	7.27 7.23		8.5 8.5
112	1997	1	6.5		7.29	7.36		8.5
		2	6.5		7.16	7.18		8.5
		3	6.5		7.35	7.52		8.5
		5	6.5		7.48	7.55		8.5
		6	6.5		7.15	7.34		8.5
		7	6.5		7.17	7.19		8.5
		8	6.5		7.08	7.24		8.5
		9	6.5		7.31	7.52		8.5
		10	6.5		7.22	7.26		8.5
		11	6.5		7.17	7.36		8.5
		· 12	6.5		7.02	7.29		8.5
112	1998	1	6.5		7.2 7 17	7.38 7.60		8.5 8 5
		ר. ד	6.5		7 24	7 44		8 5
		4	6.5		7.24	7 27		8 5
		5	6.5		6 84	6 93		85
		6	6.5		6.78	6.81		85
		7	6.5		6.82	6.89		85
		8	6.5		6 87	6.89		85
		9	6.5		6 96	6 98		85
		10	6.5		6.8	6.84		8.5
		11	6.5		6.86	6.95		8.5
		12	6.5		6.84	6.87		8.5
112	1999	1	6.5		6.84	6.93		8.5
		2	6.5		6.88	6.92		8.5
		3	6.5		6.84	6.99		8.5
		4	6.5		6.8	6.90		8.5
		5	6.5		6.91	6.92		8.5
		6	6.5		6.81	6.86		8.5
		7	6.5		6.82	7.13		8.5
		8	6.5		7.14	7.33		8.5
		9	6.5		7.12	7.14		8.5

_

.

.

				×			×	
			LOWER	INDICATES			INDICATES	UPPER
OUTFALL			LIMIT	AN	MINIMUM	MAXIMUM	AN	LIMIT
NUMBER	YEAR	MONTH	+ .5	EXCEEDENCE	PH	PH	EXCEEDENCE	- 0.5
112	1999	10	6.5		7	7.12		8.5
		11	6.5		6.89	7.05		8.5
		12	6.5		7.06	7.45		8.5
113	1997	1	6.5		7.29	7.36		8.5
		2	6.5		7.16	7.18		8.5
		3	6.5		7.35	7.52		8.5
		5	6.5		7.48	7.55		8.5
		6	6.5		7.15	7.34		8.5
		7	6.5		7.17	7.19		8.5
		8	6.5		7.08	7.24		8.5
		9	6.5		7.01	7.52		8.5
		10	6.5		7.22	7.26		8.5
		11	6.5		7.17	7.17		8.5
		12	6.5		7.02	7.29		8.5
113	1998	1	6.5		7.2	7.38		8.5
		2	6.5		7.17	7.60		8.5
		3	6.5		7.24	7.44		8.5
		4	6.5		7.13	7.27		8.5
		5	6.5		6.84	6.93		8.5
		6	6.5		6.78	6.81		8.5
		7	6.5		6.82	6.89		8.5
		8	6.5		6.87	6.89		8.5
		9	6.5		6.96	6.98		~8.5
		10	6.5		6.8	6.84		8.5
		11	6.5	•	6.86	6.95		8.5
		12	6.5		6.84	6.87		8.5
113	1999	1	6.5		6.84	6.93		8.5
		2	6.5		6.88	6.92		8.5
		3	6.5		6.84	6.99		8.5
		4	6.5		6.8	6.90		8.5
		5	6.5		6.91	6.92		8.5
		6	6.5		6.81	6.86		8.5
		7	6.5		6.82	7.13		8.5
		8	6.5		7.14	7.33		8.5
		9	6.5		7.12	7.14		8.5
		10	6.5		7	7.12		8.5
		11	6.5		6.89	7.05		8.5
		12	6.5		7.06	7.45		8.5

Submittal of Application Fee 6/22/99

<u>Certified Mail</u> Return Receipt Requested

June 22, 1999

Department of Environmental Quality Receipts Control P. O. Box 10150 Richmond, Virginia 23240

Re: Submittal of Application Fee - VPDES Permit No. VA0052451 Virginia Power North Anna Power Station

Dear Sir or Madam:

Please find enclosed a check in the amount of \$8000.00 to be applied to VPDES Permit reissuance application fee for the above-mentioned facility. The white and yellow copies of the DEQ application fee form are also included and the pink copy will be attached to the application in accordance with the instructions.

If you have any questions, please do not hesitate to contact me at (804) 273-2985.

Sincerely,

loyce Fivingstone

Joyce Livingstone Environmental Specialist

Enclosures: Application fee form, check for \$8000

cc: Dr. Janardan R. Pandey – Valley Regional Office
 P. O. Box 1129
 Harrisonburg, Virginia 22801-1129

ebc:

Robert Asplund Carter Cooke Kenneth Roller

DEPARTMENT OF ENVIRONMENTAL QUALITY WATER DIVISION PERMIT APPLICATION FEE

INSTRUCTIONS

Applicants for individual Virginia Pollutant Discharge Elimination System (VPDES), Virginia Pollution Abatement (VPA), Virginia Water Protection (VWP), Surface Water Withdrawal (SWW), and Ground Water Withdrawal (GWW) Permits for facilities and activities other than agricultural operations engaged in production for market are required to pay permit application fees. Fees are also required for registration for coverage under General Permits except for the general permits for sewage treatment systems with discharges of 1,000 gallons per day (GPD) or less and for Corrective Action Plans for leaking underground storage tanks. Except for VWP permits, fees must be paid when applications for permit issuance, reissuance or modification are submitted. Applicants for VWP permits will be notified by the DEQ Water Division VWP Permit Office of the fee due. Applications will be considered incomplete if the proper fee is not paid and will not be processed until the fee is received.

The permit fee schedule can be found on the back of this form. Fees for permit issuance/reissuance and for permit modification are included. Once you have determined the fee for the type of application you are submitting, complete this form. The white and yellow copies of the form and your check or money order payable to "Commonwealth of Virginia--DEQ" should be mailed to the Department of Environmental Quality, Receipts Control, P.O. Box 10150, Richmond, VA 23240 in the attached stamped, addressed envelope. The pink copy of the form and a copy of your check or money order should accompany the permit application. The gold copy is for your records. Please direct any questions regarding this form or fee payment to the DEQ Water Division Office to which you are submitting your application.

APPLICANT NAME: VICGIALA PINO- SSN/FIN:							
ADDRESS: 5000 Dominion Blyd DAYTIME PHONE: (804)273-2985							
Glen Allen Virginia 23060 Area Code							
FACILITY/ACTIVITY NAME/LOCATION: North Anna Power Station							
Rt. 100 N, (Louisa) Mineral Virginia 23117							
TYPE OF PERMIT APPLIED VPDES Industrial Majur							
TYPE OF ACTION: New Issuance Reissuance Modification							
AMOUNT OF FEE SUBMITTED # 8000,00							
EXISTING PERMIT NUMBER (if applicable): $VA005245i$.							
WATER DIVISION OFFICE TO WHICH APPLICATION SUBMITTED (check one)							
Abingdon/SWRO Bridgewater/VRO Prince William/NRO Richmond/PRO Richmond/Headquarters Roanoke/WCRO Virginia Beach/TRO							
FOR DEQ USE ONLY White and Yellow Copies - DEQ Accounting Office							
Date: Pink Copy - DEQ Regional or Permit Program Office Gold Copy - Applicant							

DC #:

Request for Waivers from Sampling and Testing Parameters 6/21/99

June 21, 1999

Dr. Janardan R. Pandey Valley Regional Office P.O. Box 1129 Harrisonburg, Virginia 22801-1129

Re: Request for Waivers from Sampling and Testing Parameters Reissuance of VPDES Permit No. VA0052451 Virginia Power - North Anna Power Station

Dear Dr. Pandey :

The attached document identifies our sampling and testing obligations for the above-mentioned VPDES permit reissuance application, and details our requests for sampling and testing waivers. While some of the waivers have been previously approved, the requests are formally restated in accordance with Forms 2C, 2E and 2F instructions.

Outfall 019, Domestic Water Overflow is entirely composed of groundwater used for the potable water supply. No pollutants are added to this water, and a discharge would occur only if the holding tank overflowed. We request that this outfall be deleted from the permit.

Outfalls 101 and 102 are not in use. The flash evaporator systems have been dismantled and we would like to delete these outfalls from the permit. There are no plans to reinstall this equipment or reactivate these discharges.

Outfall 114 is a new proposed outfall, Service Water Pipe Vault Drain. This new outfall will be used when leakage accumulates in the Pipe Vault adjacent to the Service Water Reservoir. Outfall 108 will be sampled to represent this outfall.

If you have any questions, please contact me at (804) 273-2985.

Sincerely,

opeB. Swingstone

Joyce B. Livingstone Senior Environmental Specialist Environmental Policy and Compliance

Attachment

Outfall 001 Discharge of Condenser Cooling Water from WHTF at Dike 3

This outfall continuously discharges condenser cooling water from the Waste Heat Treatment Facility (WHTF) to Lake Anna at Dike 3. The retention time in the WHTF is greater than 24 hours.

BOD5, COD and TOC, Total Suspended Solids, Ammonia, Temperature (summer):

We will submit data from a grab sample in accordance with Form 2C instructions (retention period of greater than 24 hours). A waiver for the off-season winter temperature is requested because it is regularly submitted in quarterly reports to DEQ.

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (1/month, calculated).

<u>pH</u> Existing data for 1998 will be submitted consistent with sampling required by the current permit (1/year, grab, at Dike 3 before subsurface discharge to the Lake).

Part B and C parameters: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, Dioxin, Fecal coliforms, sulfite, surfactants, color, volatiles and acid/base/neutral organics are believed absent based on previous data and will not be sampled.

Outfall 009 Settling Pond

This intermittent discharge is from ground water, backwash cleaning from sand filters and reverse osmosis units with the majority of the discharge consisting of storm water runoff. The retention time > 24 hours.

BOD₅, **COD**, **TOC**, **Ammonia**, **Temperature** (summer): We will submit data from a single grab sample in accordance with Form 2C instructions. A waiver for the off-season winter temperature is requested.

<u>Total Suspended Solids:</u> Existing TSS data for 1998 will be submitted consistent with reporting required by the current permit ($\frac{1}{month}$, grab).

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (2/month, estimated).

1/month

pH: Existing data for 1998 will be submitted consistent with sampling required by the current permit ($\frac{1}{\text{month}}$, grab). Form 2C specifies that grab samples be used for pH and oil and grease.

<u>Part B and C parameters</u>: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms and sulfite are believed absent based on previous data and will not be sampled.

Dr. Janardan R. Pandey June 21, 1999 Page 2 of 14

<u>REQUEST FOR WAIVERS FROM SAMPLING AND TESTING PARAMETERS</u> <u>VPDES PERMIT NO. VA0052451 – NORTH ANNA POWER STATION</u> <u>LIST OF VPDES OUTFALLS</u>

EXTERNAL OUTFALLS

Discharge of Condenser Cooling Water from WHTF at Dike 3
Settling Pond
Turbine Bldg Sump #1 and Common Sump & Storm Water only
Turbine Bldg Sump #2 & Storm Water only
Intake Screen Wash Water
Domestic Water Overflow
Reverse Osmosis Reject
Reverse Osmosis Drain Line
Drainage Area #2A (storm water only)
Drainage Area #2B (storm water only)
Drainage Area #3 (storm water only)
Drainage Area #18 (storm water only)
Drainage Area #25 (storm water only)

INTERNAL OUTFALLS

Outfall 101	Flash Evaporator - Unit 1
Outfall 102	Flash Evaporator - Unit 2
Outfall 103	Process Waste Clarifier
Outfall 104	Oil/Water Separator & Storm Water
Outfall 105	Bearing Cooling Tower Blowdown
Outfall 107	Bearing Cooling System Discharge - Lake to Lake Operation
Outfall 108	Service Water Overflow
Outfall 109	Hot Well Drain Unit 1
Outfall 110	Hot Well Drain Unit 2
Outfall 111	Main Sewage Treatment Plant
Outfall 112	Steam Generator Blowdown Unit 1
Outfall 112	Steam Generator Blowdown Unit 2
Outfall 114	Service Water Pipe Vault Drain (NEW OUTFALL)
	MARINA CONTRACTOR (C

WT 92 4

Outfall 013 Turbine Bldg Sump #1 & Common Sump & Storm Water only

This intermittent outfall is an alternate discharge route for the effluent making up the majority of the flow at Outfall 104. Outfall 104 will be sampled to represent this outfall.

Outfall 014 Turbine Bldg Sump #2 & Storm Water only

This intermittent outfall is an alternate discharge route for the effluent making up the majority of the flow at Outfall 104. Outfall 104 will be sampled to represent this outfall.

Outfall 016 Intake Screen Wash Water

This outfall is a low volume, non-process discharge that consists entirely of lake water. This outfall is represented by intake data.

Outfall 019 Domestic Water Overflow

We request that this outfall be deleted from the permit. This infrequent intermittent discharge is composed entirely of groundwater that is used for the potable water supply. No pollutants are added and no treatment occurs. A discharge would occur only if the holding tank overflowed. The retention time of the holding tank is < 24 hours. To support our request that this outfall be deleted, the following data will be submitted from a sample collected from a tap inside the Domestic Water Pump House building.

BOD_{5.} **COD**, **TOC**, **Total Suspended Solids**, **Ammonia**, **Temperature (summer)**: We request a waiver from the 4 hourly grab sampling requirement to be substituted with results from a single grab sample, and a waiver for the off-season winter temperature is requested.

<u>pH</u>: A single grab sample will be collected and analyzed in accordance with Form 2C instructions.

<u>Part B and C parameters</u>: We request a waiver from the 4 hourly grab sampling requirement to be substituted with results from a single grab sample. All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms, sulfite and surfactants are believed absent based on previous data and will not be sampled.

Outfall 020 Reverse Osmosis Reject

This outfall is designed to discharge continuously, but there are times, which are rare, normally during outages when no make-up water is needed and all tanks are full, when it does not discharge. It consists of reverse osmosis reject water that contains only a 3.3x concentration of constituents of lake water, and a potential residual of 0-1 ppm free chlorine from sodium hypochlorite used in the Ionics system. No process waste waters or pollutants from other sources are added. Also, this outfall discharges into the incoming cooling water flow just outside the intakes. The retention time < 24 hours.

BOD₅, **COD**, **TOC**, **Ammonia**, **Temperature** (summer): We request a waiver from the 24-hour composite sample requirement to be substituted with results from a single grab sample, and a waiver for the off-season winter temperature is requested.

Total Suspended Solids: Existing TSS data for 1998 will be submitted consistent with sampling required by the current permit (2/month, grab).

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (2/month, estimated).

<u>pH, Total Residual Chlorine:</u> Existing data for 1998 will be submitted consistent with sampling required by the current permit (2/month, grab).

Part B and C parameters: We request a waiver from the 24-hour composite sample requirement to be substituted with results from a single grab sample. All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms and sulfite are believed absent and will not be sampled.

Outfall 021 Reverse Osmosis Drain Line

This outfall intermittently and infrequently discharges pure lake water from the reverse osmosis system. Intake water will be used to characterize this outfall.

This outfall has never been used and is in the permit for emergency use only in the case where the whole ionic system is down and the line needs to be drained.

Outfall 022 Drainage Area #2A (storm water only)

This is an area of approximately 52 acres, with approximately 7.1 acres of impervious area. Storm water collected in the higher portion to the south, contractor shops, parking lots and the switch yard, flows into a drop grating to a culvert near the northeast corner of the switch yard and discharges into Lake Anna at Outfall 022. The lower, more level portion includes a vehicle maintenance shop, a paint shop and part of an outdoor equipment lay down area. Storm water runoff from the grassed portions of this area adjacent to the lakeshore is generally sheet flow. Form 2F will be submitted.

Oil and Grease, pH, Total Residual Chlorine, Fecal Coliforms: Grab samples will be collected and analyzed.

BOD₅, **COD**, **TSS**, **TKN**, **Nitrate plus Nitrite**, **Total Phosphorus**: Grab and flow-weighted composite samples will be collected. Samples will not be analyzed for sulfite or radioactivity.

Bromide, Color, Fluoride, Sulfate, Sulfide, Surfactants, Aluminum, Barium, Boron, Cobalt, Iron, Magnesium, Molybdenum, Manganese, Tin, Titanium: Grab and flow-weighted composite samples will be collected and analyzed.

Antimony, Arsenic, Beryllium, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium, Silver, Thallium and Zinc: Grab and flow-weighted composite samples will be collected and analyzed. Samples will not be analyzed for cyanide, phenols, volatiles, acids, base/neutrals and pesticides. Based on previous analytical results these pollutants are not believed to be present.

Outfall 023 Drainage Area #2B (storm water only)

This is a small area of approximately 6 acres. The only impervious area is the 0.09 acre storage building which is used for hazardous waste accumulation, with other miscellaneous storage. This storage building is constructed with a curbed foundation to contain any spillage and prevent any discharge outside the structure. Storm water collected in the higher portion to the south flows into a culvert under this storage building then discharged into Lake Anna at Outfall 023. Storm water runoff from the grassed portions of this area adjacent to the lake shore is generally sheet flow.

Same Monitoring as Outfall 022

Outfall 024 Drainage Area #3 (storm water only)

A small drainage area of 9 acres with primarily sheet flow runoff of stormwater to Lake Anna. About 0.08 acre is paved impervious areas. A portion of the laydown area, shared with Area 2A has runoff through a drop culvert under the roadway and into Lake Anna at Outfall 024.

Same Monitoring as Outfall 022

Outfall 025 Drainage Area #18 (storm water only)

This 56 acre drainage area, with 4 acres of impervious area, includes a portion of the warehouse facilities, an outdoor laydown area and some small utility buildings. Storm water from the northern portion of this drainage area is conveyed under the paved roadway via two culverts. The culvert to the west carries the smaller amount of storm water flow which drains from open, grassed fields with no industrial activity. The culvert to the east was chosen as the sample point from Area 18 because it carries the collected drainage from the larger portion of the area, from the warehouse and laydown facilities, and would be more likely to contain any contaminants. Outfall 025 discharges storm water from this drainage into the Waste Heat Treatment Facility.

Same Monitoring as Outfall 022

Outfall 026 Drainage Area #25 (storm water only)

A 61 acre drainage area with no impervious surface area. In the northern portion of Area 25, there is a site used for temporary exposed storage of discarded miscellaneous material such as large concrete "dead weight" blocks for crane weight testing, small movable buildings, etc. This portion of the drainage area has runoff through a culvert under the roadway and into Lake Anna at Outfall 026. This culvert was selected as the sample point for Area 25; no industrial activities occur downstream. As with other lakeside areas, sections adjacent to the shoreline, north of the graveled roadway have sheet flow runoff of storm water.

Same Monitoring as Outfall 022

Outfall 101 Flash Evaporator - Unit 1

We request that this outfall be deleted from the permit.

Outfall 102 Flash Evaporator - Unit 2

We request that this outfall be deleted from the permit.

Outfall 103 Process Waste Clarifier

This intermittent discharge now includes intermittent lower volumes of steam generator blowdown, also package boiler blowdown (not currently in use) and mat sump system discharge and ion exchanger waste. We would like to initiate continuous blowdown of the Service Water Reservoir through this outfall with this new permit. Engineering data will be submitted to characterize this additional flow which will be substantially identical to Outfall 108. There is a holding tank at the end of this system with a retention time > 24 hours.

BOD_{5.}**COD**, **TOC**, **Total Suspended Solids**, **Ammonia**, **Temperature** (summer): We will submit data from 1 individual grab sample in accordance with Form 2C instructions, and a waiver for the off-season winter temperature is requested.

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (2/month, estimated).

<u>pH, Oil & Grease:</u> We request a waiver from the single grab sample to be substituted with existing data for 1998 submitted consistent with sampling required by the current permit (2/month, grab).

<u>Part B and C parameters</u>: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms, bromide, fluoride, sulfate, sulfide and sulfite are believed absent and will not be sampled.

Outfall 104 Oil/Water Separator & Storm Water

This discharge was previously approved to represent Outfalls 013 and 014 (Turbine Building Sump #1,Common Sump and Turbine Building Sumps #2). The flow is intermittent, and the retention time is < 24 hours.

BOD_{5,}**COD**, **TOC**, **Ammonia**, **Temperature** (summer): We request a waiver from the 4 hourly grab sample requirement to be substituted with results from a single grab sample, and a waiver for the off-season winter temperature is requested.

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (2/month, estimated).

Total Suspended Solids, pH, Oil and Grease: Existing data for 1998 will be submitted consistent with sampling required by the current permit (2/month, grab). Form 2C specifies that grab samples be used for pH and oil and grease.

<u>Part B and C parameters</u>: All Part B parameters and Part C metals will be sampled with the following exceptions. We request a waiver from the 4 hourly grab sampling requirement to be substituted with results from a single grab sample. Pesticides, PCBs, dioxin, fecal coliforms, sulfite, volatiles and acid/base/neutral organics are believed absent and will not be sampled.

Outfall 105 Bearing Cooling Tower Blowdown

This outfall was previously intermittent but used very infrequently. To control the water chemistry in the system, it will become a continuous discharge when either of the units is operating. The retention time will be < 24 hours. Engineering data has been previously submitted to characterize the treatment chemicals that will be used in this system and will be included with this application. A grab sample will also be collected from the Bearing Cooling Tower reservoir.

BOD5, COD, TOC, Total Suspended Solids, Ammonia, Temperature (summer), pH, Oil and Grease: We request a waiver from the 24-hour composite sampling requirement and request approval to submit data from 1 individual grab sample, and a waiver for the off-season winter temperature is requested.

Flow: Flow data will be estimated based on projected operations. .

<u>Part B and C parameters:</u> We request a waiver from the 24-hour composite sampling requirement and request approval to submit data from 1 individual grab sample. All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms and sulfite are believed absent and will not be sampled.

Outfall 107 Bearing Cooling System Discharge - Lake to Lake Operation

This outfall is not currently in use. If a discharge were to occur, it would be temporary when the bearing cooling tower is valved off for maintenance work, and this is likely to occur within the next five years. Lake water would pass through the bearing cooling system, bypass the cooling tower and go straight to the WHTF. No treatment chemicals are used. There is no retention time. Intake data will be submitted to represent this outfall. October Free Cl₂ and flow data are available.

Dr. Janardan R. Pandey June 21, 1999 Page 10 of 14

Outfall 108 Service Water Overflow

This outfall is manually operated with a valve, and is intermittently used to control the level of the Service Water Reservoir as necessary. The retention time of the service water reservoir is > 24 hours. A sample can be collected from the bank of the Service Water Reservoir near the intake structure. Outfall 108 is substantially identical to the proposed new Outfall 114, the Service Water Pipe Vault Drain and we request approval to sample Outfall 108 as the representative outfall. Outfall 108 will also characterize the additional new flows from the Service Water Reservoir to the Process Waste Clarifier.

BOD₅, **COD**, **TOC**, **Total Suspended Solids**, **Ammonia**, **Temperature (summer)**, **Flow:** We will submit data from a grab sample in accordance with Form 2C instructions, and a waiver for the off-season winter temperature is requested.

<u>pH</u>, **<u>Oil and Grease:</u>** A single grab sample will be collected and analyzed for pH and oil and grease in accordance with Form 2C instructions.

Part B and C parameters: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms and sulfite are believed absent and will not be sampled.

Outfall 109 Hot Well Drain #1

This intermittent outfall was previously approved to represent Outfall 110 (Hot Well Drain #2), relatively high-purity condensate water, with small concentrations of corrosion chemicals. The drains are normally used once per 18 months, on alternating schedules, during maintenance shutdowns of the respective units. To obtain a representative sample, this must be sampled during outages (Unit 2 - Hot Well #2, September 1999; Unit 1- Hot Well #1, March 2000). The retention time > 24 hours.

BOD₅, **COD**, **TOC**, **Ammonia**, **Temperature** (summer): We will submit data from a single grab sample in accordance with Form 2C instructions, and a waiver for the off-season winter temperature is requested.

Total Suspended Solids: Existing TSS data for 1998 will be submitted consistent with reporting required by the current permit (1/month, grab).

Flow: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (1/month, estimated).

<u>pH, Oil & Grease:</u> Existing data for 1998 will be submitted consistent with sampling required by the current permit (1/month, grab). Form 2C specifies that grab samples be used for pH and oil and grease.

<u>Part B and C parameters</u>: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms, bromide, fluoride, sulfite, sulfate, surfactants, volatiles and acid/base/neutral organics are believed absent and will not be sampled.

Dr. Janardan R. Pandey June 21, 1999 Page 11 of 14

Outfall 110 Hot Well Drain #2

Outfall 109 will be sampled to represent this outfall.

Outfall 111 Main Sewage Treatment Plant

All domestic sewage is routed to the main sewage treatment plant. The plant is equipped with two equalization basins, each with a capacity of 18,700 gallons. During normal operation only one side is used but during periods of high demand (outages) both sides are used.

BOD, TSS, pH, Total Residual Chlorine, Flow: We request a waiver from the 24-hour composite sample as required by Form 2E and request approval to submit existing data for 1998 consistent with reporting required by the current permit for these parameters.

<u>Ammonia</u>: We request a waiver from the 24-hour composite sample as required by Form 2E and request approval to submit data from a single grab sample to be taken for ammonia.

Temperature (summer), Oil & Grease, Fecal Coliform: Existing data from 1998 grab samples collected in accordance with the current permit will be submitted for these parameters, and a waiver for the off-season winter temperature is requested.

<u>COD, TOC:</u> Not required, per instructions on form (non-contact cooling water is not discharged).

Outfall 112 Steam Generator Blowdown Unit 1

This outfall was previously approved to represent Outfall 113 (Steam Generator Blowdown Unit 2), and discharges relatively high-purity condensate water from a closed system with small concentrations of corrosion chemicals continuously while Unit 1 is operating. It is only shut off during outages (every 18 months) for maintenance. The retention time < 24 hours.

BOD₅, **COD**, **TOC**, **Ammonia**, **Temperature** (summer): We request a waiver from the 24-hour composite sampling requirement and request approval to submit data from a single grab sample. A waiver for the off-season winter temperature is requested.

<u>Total Suspended Solids:</u> Existing TSS data for 1998 will be submitted consistent with reporting required by the current permit (1/month, grab).

Flow, pH, Oil & Grease: Existing flow data for 1998 will be submitted consistent with reporting required by the current permit (Flow - 1/month, estimated; pH, Oil & Grease 1/month, grab). Form 2C specifies that grab samples be used for pH and oil and grease.

Part B and C parameters: All Part B parameters and Part C metals will be sampled with the following exceptions. Pesticides, PCBs, dioxin, fecal coliforms and sulfite are believed absent and will not be sampled.

Outfall 113Steam Generator Blowdown Unit 2Outfall 112 will be sampled to represent this outfall.

Outfall 114Service Water Pipe Vault Drain (NEW OUTFALL)This new outfall will be used when leakage accumulates in the Pipe Vault adjacent to the Service WateReservoir. We request approval to represent this discharge with data from Outfall 108, the Service Water Overflow.

ATTACH

Dr. Janardan R. Pandey June 21, 1999 Page 13 of 14

cc: (w/attach.) U. S. Nuclear Regulatory Commission Region II Atlanta Federal Center 61 Forsyth St., SW, Suite 23T85 Atlanta, GA 30303 RE: North Anna Units 1 and 2 Docket Nos. 50-338/50-339 License Nos. NPF-4/NPF-7

U. S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555 RE: North Anna Units 1 and 2 Docket Nos. 50-338/50-339 License Nos. NPF-4/NPF-7

Mr. M.J. Morgan NRC Senior Resident Inspector North Anna Power Station VPDES Outfall Descriptions and Sampling Points

VPDES OUTFALL DESCRIPTIONS AND SAMPLING POINTS NORTH ANNA POWER STATION

##	External Outfalls	Sample Point	Discharge To:			
001	Discharge of Condenser Cooling	Dike 3	Lake Anna			
(formerly 010)	Water from WHTF at Dike 3					
009	Settling Pond	End of pipe	Lake Anna			
013	Turbine Bldg Sump #1 & Storm Water only	At overflow weir	Lake Anna			
014	Turbine Bldg Sump #2 & Storm Water only	At overflow weir	Lake Anna			
016	Intake Screen Wash Water	Discharge into basket	Lake Anna			
019	Domestic Water Overflow	DELETE	Lake Anna			
020	Reverse Osmosis Reject	End of small pipe, where it empties into larger pipe	Lake Anna			
021	Reverse Osmosis Drain Line	Middle of pipe at valve	Lake Anna			
022	Drainage Area #2A (storm water only)	End of pipe, deep gully	Lake Anna			
023	Drainage Area #2B (storm water only)	End of culvert	Lake Anna			
024	Drainage Area #3 (storm water only)	End of culvert, in rip rap	Lake Anna			
025	Drainage Area #18 (storm water only)	End of culvert, down the hill	WHTF			
026	Drainage Area #25 (storm water only)	End of culvert, weedy area	Lake Anna			
##	Internal Outfalls	-				
101 (formerly 001)	Flash Evaporator - Unit 1	DELETE	Discharge Canal			
102 (formerly 002)	Flash Evaporator - Unit 2	DELETE	Discharge Canal			
103 (formerly 003)	Process Waste Clarifier	Clarifier building sink	Discharge Canal			
104 (formerly 004)	Oil/Water Separator & Storm Water	At overflow weir	Discharge Canal			
105 (formerly 015)	Bearing Cooling Tower Blowdown	Sample tap in Turbine Building Basement	Discharge Canal			
107 (formerly 017)	Bearing Cooling System Discharge	Sample tap in Turbine Building Basement	Discharge Canal			
108 (formerly 018)	Service Water Overboard	Sample tap in Turbine Building Basement	Discharge Canal			
109 (formerly 222)	Hot Well Drain – Unit 1	Hotwell drain pipe valve; Turbine Building Basement.	Discharge Canal			
110 (formerly 223	Hot Well Drain – Unit 2	Hotwell drain pipe valve; Turbine Building Basement	Discharge Canal			
111 (formerly 011)	Main Sewage Treatment Plant	At the weir	Discharge Canal			
(formerly 224)	Steam Generator Blowdown - Unit 1	Unit 1 sample sink; Turbine Building Basement	Discharge Canal			
113	Steam Generator Blowdown - Unit 2	Unit 2 sample sink;	Discharge Canal			
(formerly 225) 114	Service Water Tie-In Vault Drain	End of pipe on walkway	Discharge Canal			
NEW	Convice Mater System Plaudeum	End of concrete drainage ditch	Discharge Canal			
NEM	Service water System Blowdown	adjacent to the Warehouse 5 fire	Discharge Ganal			
		pump house, midway down the				
		discharge canal.				

EPA Form 3510-1

Please print or type in the unshaded areas only (fill-in areas are spaced for elite type, i.e., 12 characters/inch).

Form Approved. OMB No. 2040-0086. Approval expires 5-31-92.

init-in aleas are spaced for enterly	pe, i.e., iz characters/inch).	<u> </u>							. <u> </u>			· · · · · · · · · · · · · · · · · · ·
FORM				NFOR	MATION	Y	1.	EPA I.D NUMBER				
		onsolia	lated	l Permits I	Program		F	VA0052451			17.	
GENERAL	(Read the	"Gene	ral In	structions	" before starting)		1	2			13 14	4 15
LABEL ITEMS	4 .							GENERAL INST	RUCT	IONS		
SPA I.D. NUMBER	and the second						lf th	a preprinted label has be	en prov	vided,	affix il	t in
								arefully; if any of it is inco	rect. c	ross t	rougl	h it
							a	nd enter the correct data	in the a	approp	riate f	fill-
FACILITY							l IN	area below. Also, it any absent <i>(the area to the</i>)	of the p left of t	reprin he lah	ited da el soa	ata
V. MAILING ADDRESS	PLEASE PL	ACE	LA	BEL IN	THIS SPACE	I	lis	sts the information that sh	ould a	ppear), plea	ise
						•	p p	rovide it in the proper fill-in) area (s)belo	ow. If t	he
								omplete Items I, III, V,	and VI	(exc	eeu n eot VI-	-B
FACILITY							W	hich must be completed r	əgardle	ess). C	ompl	ete
VI. LOCATION					(* 16) (* 16)		a l	l items if no label has be einstructions for detailed	en prov item de	vided. escript	Heter	t0 nd
							fo	or the legal authorizations	under	which	this da	ata
			· .				is	collected.				
II. POLLUTANT CHARACTE	RISTICS	. · ·										
INSTRUCTIONS: Complete	A through J to determine whet	her you	unee	ed to subm	it any permit app	lication for	ms to th	ne EPA. If you answer "ye	es" to a	ıny qu	estion	s,
you must submit this form an	d the supplemental form listed	in the	pare	nthesis fo	llowing the quest	ion. Mark *	X" in th	ne box in the third column	if the	suppl	ement	al
form is attached. If you answ	ver "no" to each question, you	need	not s	submit any	y of these forms.	You may	answer	r "no" if your activity is e	clude	d from	perm	nit
requirements, see Section C	of the instructions. See also, s	Section			uctions for definit	ions of bo	Id-face	ed terms.			12. 8528	
SPECIFIC C	QUESTIONS	YES		FORM		SPECIFIC	QUE	STIONS			<u>K "X"</u> FOR	M
A is this facility a publicit	v owned treatment werke			ATTACHED	B. Does or w	ill this faci	litv <i>(eit</i>	her existing or proposer	0		ATTAC	HED
which results in a discha	arge to waters of the U.S.?				include a c	oncentrat	ed anir	mal feeding operation of	ír			
(FORM 2A)	•		X		aquatic an	imal prod	of the	facility which results in	a 📃	X		
C. Is this a facility which curr	ently results in discharges to	16	17	18	D. Is this a pr	oposed fac	cility (or	ther than those describe	$\frac{19}{d}$	20	21	
waters of the U.S. other t	than those described in A or B	x		x	in A or Ba	bove) whi	ich will	result in a discharge t	õ	x		
above? (FORM 2C)		22	23	24	E Do you or	the U.S.? ((FORM	2D) this facility industrial c	25	26	27	
E. Does or will this facility	r treat, store, or dispose of				municipal	effluent	below	the lowermost stratur	n			
hazardous wastes? (FO	RM 3)		X		containing	, within on	ie quar	ter mile of the well bore	,	x		
G. Do you or will you inject at t	his facility any produced water	28	29	30	undergrour	to sources	orann	king water? (FORM 4)	31	32	33	·
or other fluids which ar	e brought to the surface in				H. Do you or	will you i	inject a	at this facility fluids fo	r			
connection with convention inject fluids used for enha	nationatural gas production,				Frasch pro	ocess, solu	ution m	ining of minerals, in sit	u			
gas, or inject fluids for sto	brage of liquid hydrocarbons?		x		combustion	n of fossil	fuel, o	or recovery of geotherma	1	x		
(FORM 4)	stationary course which in	34	35	36	energy: (1			Alement course which !	37	38	39	
one of the 28 industri	al categories listed in the				NOT one of	of the 28 i	sea sta ndustri	al categories listed in th	s e			
instructions and which wil	Il potentially emit 100 tons per				instructions	and which	n will po	otentially emit 250 tons pe	ŗ			
Act and may affect or be lo	cated in an attainment area ?		x		Actand ma	air poliuta vaffect or b	nt regu be locat	ed in an attainment area	2	Y		
(FORM 5)		40	41	42	(FORM 5)				43	44	45	j
III. NAME OF FACILITY				·/								
	OWER - NORTH ANNA	NUC	LE		VER STATIO	N						
15 16 - 29 30	•								69			
IV.FACILITYCONTACT												
	A. NAME & TITLE (last, fir.	st, & til	le)				B. PHC	DNE (area code & no.)				
2 FAGGERT, PAMELA	- VICE PRESIDENT & C	HIEF	EN	VIRONM	ENTAL OFFIC	CER 80	4	273 3467				
						45 46	- 48	49 - 51 52 -	55			
V. FACILITY MAILING ADDR						· · ·				<u></u>		
С	A. STREET UR P.U. E	50.8										
3 5000 DOMINION	BLVD											
15 16	B. CITY OR TOWN				IC. STATE	451 D. ZIP C	ODF					
4 GLEN ALLEN						23060						
VI. FACILITY LOCATION												
A. STREE	T, ROUTE NO. OR OTHER S	PECI	FIC	DENTIFI	ER			· · · · · · · · · · · · · · · · · · ·				
	BIVE											
15 16						45						
	B. COUNTY NAME											
LOUISA												
······					70	F 7/6 -		F OOLUTY COOK				
	U. CHT OR TOWN				D. STATE	E. ZIP CI	ODE	F.COUNIYCODE				:
						00117						ĺ
						2311/		52 54				
EPA Form 2510 1 (9.00)					TV 1 141 42			194 - 941				

CONTINUED FROM THE FRONT								
VII. SIC CODE	S (4 digit in order of priority)	·						
	A. FIRST					B. SECOND		
7 4911	(specify)		7		(specity)			
15 16 - 19	ELECTRIC POWER		15 1	5 · 19	l			
	C. THIRD	····	c i		(specify)	D.FOURTH		
7	(5)20137		7		(Specify)			
15 16 - 19			15 1	5 - 19	1			
VIII. OPERATO	RINFORMATION	A NIAM	E		<u>0</u> 0		P to the part of listed in	
		A. NAW	<u> </u>				Item VIII-A also the	
	ELECTRIC AND POWER C	0					owner?	
15 16	ELECTRIC AND FOULH C	· · ·					YES [NO	
C.STAT	US OF OPERATOR (Enter the app	ropriate letter into th	he answer box;	if "Other,"	specify.)	D. PHC	NE (area code & no.)	
F = FEDERA	L M = PUBLIC (other than fe	deral or state)	(specify)			C I		
S = STATE	O = OTHER (specify)		P			A 804	273 3467	
P=PRIVATE	E STREET OF		56			15 16 - 18	19 - 21 22 - 25	
	E.STREET OF	IF.U. DUX						
5000 DOMIN								
26	F. CITY OR TOWN	ļ		G. STATE	H. ZIP CODE	IX. INDIAN LAI	NDI	
C						Is the facility loo	cated on Indian lands?	
B GLEN AL	LEN				23060	YES	X NO	
15 16			40	41 42	47 · 51	52		
X. EXISTING E	NVIRONMENTAL PERMITS					· · ·		
A. NPDES	(Discharges to Surface Water)	D. PSD (Air En	nissions from P	roposed Sc	ources)			
9 N VA0	052451	9 P					-	
15 16 17 18	- 31	15 16 17 18		- 16 - 1	30			
	naerground injection of Fluids)		UTHER (spe	спу)	(snec	ufu)		
9 U		9			10000	··· ·y /		
C. RC	RA (Hazardous Wastes)	<u> 15 16 17 18</u> E	OTHER (spe	cify)	301			
				<i></i>	(spec	:ify)		
9 R	- 30	9			30			
XI. MAP						······		
Attach to this a facility, the loca and each well	application a topographic map of the ation of each of its existing and propo where it injects fluids underground.	e area extending to sed intake and discl Include all springs	at least one mi harge structure , rivers and oth	e beyond s, each of i er surface	property boundar its hazardous wa water bodies in	ries. The map mu ste treatment, sto the map area. S	ist show the outline of the prage, or disposal facilities, ee instructions for precise	
Tequitements.								
XII. NATURE O	F BUSINESS (provide a brief descr	iption)	·					
GENE	RATION OF ELECTRICITY	WITH STEAM	PRODUCED	BY TH	E			
FISSIC	N OF NUCLEAR MATERIA	IS						
XIII. CERTIFICA	ATION (see instructions)							
I certify under	penalty of law that I have personal	lly examined and a	ım familiar with	the inform	ation submitted	in this application	n and all attachments and	
that, based on	my inquiry of those persons immed	liately responsible f	or obtaining the	informatic	on contained in th	he application, I b	elieve that the information	
is true, accura	ate and complete. I am aware tha	t there are signific	ant penaities i	orsubmitt	ing talse inform	ation, including	the possibility of fine and	
							LO DATE MOVES	
A. NAME & OF	FIGIAL IIILE (type or print)	B. :	SIGNATURE				U. DATE SIGNED	
W.R.	MATTHEWS		• •	1 -	R		3/2-1	
VICE	PRESIDENT - STATION M	ANAGER 1	IKU	al	cherry		3/30/00	
COMMENTS F	OR OFFICIAL USE ONLY			· · · · · ·				
C C	······································					·····		
15 16		······································					55	
EPA Form 3510-1	(8-90)							

Topographic Map (required by EPA Form 3510-1, Section XI)

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED:

LAKE ANNA WEST & EAST QUADRANGLE, VIRGINIA 7.5 MINUTE SERIES (TOPOGRAPHIC)

WITHIN THIS PACKAGE...OR, BY SEARCHING USING THE DOCUMENT/REPORT NUMBER: NONE

NOTE: Because of this page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

mL003702210

VPDES Outfall Location Map (required by EPA Form 3510-1, Section XI)

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: N-2646-3-C-001, Rev. 1: VPDES OUTFALL LOCATION MAP/SITE DRAINAGE ENVIRONMENTAL COMPLIANCE NORTH ANNA POWER STATION

WITHIN THIS PACKAGE...OR, BY SEARCHING USING THE DOCUMENT/REPORT NUMBER: N-2646-3-C-001, Rev. 1

NOTE: Because of this page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

ML003702241

One Line Diagram (required by EPA Form 3510-2C, Section II.A)

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE,

THAT CAN BE VIEWED AT THE RECORD TITLED: NA-VPDES-083199-001, REV. 1, ONE LINE DIAGRAM STATION WATER FLOW NORTH ANNA POWER STATION

WITHIN THIS PACKAGE...OR, BY SEARCHING USING THE DOCUMENT/REPORT NUMBER: NA-VPDES-083199-001, Rev. 1

NOTE: Because of this page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

mL003702260