

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

April 4, 2000

Templure-NPR-NKK-111 FileCenter

LICENSEE: Entergy Operations, Inc.

FACILITY: Arkansas Nuclear One, Unit 2

SUBJECT: SUMMARY OF FEBRUARY 17, 2000, MEETING TO DISCUSS THE LICENSEE'S STEAM GENERATOR OPERATIONAL ASSESSMENT

On February 17, 2000, the Nuclear Regulatory Commission (NRC) met with the licensee and the licensee's contractors to discuss the licensee's operational assessment of the steam generators (SGs) for the remainder of Cycle 14. A formal submittal of this deterministic assessment was made by the licensee on February 11, 1999. Enclosure 1 is a list of meeting attendees. Enclosure 2 is the licensee's handout used during the meeting.

The licensee is currently in Cycle 14. Cycle 14 began in February 1999 and a "mid-cycle" SG inspection outage was conducted in November 1999. During the November outage, six indications were in-situ tested. Five met 4650 psi ($3\Delta P$, three times the differential pressure between the primary and secondary systems, plus additional margin). One flaw was only taken to 4147 psi due to leakage in excess of the pump capacity. The licensee focused its presentation on their subsequent evaluation of the flaw in tube R72L72 and their rationale for determining that the tube would have met $3\Delta P$ if the test pump had a higher capacity. The licensee believes that the correction of about 500 psi is supported by the difference between burst and ligament tearing models, as well as the difference between incomplete and complete burst test results. The licensee considered the above information, accounted for the increase in hot-leg temperature and projected operating interval, and concluded that the results of their deterministic operational assessment demonstrate that Arkansas Nuclear One, Unit 2 (ANO-2) can safely operate until the September 2000 2R14 refueling (and SG replacement) outage with adequate margin.

The NRC provided the following feedback. The NRC does not believe that there is an immediate safety concern with the SG tubes. However, the NRC does have additional questions associated with continued operation until the September 2000 outage, and with the licensee's calculated burst pressure of tube R72L72 and the growth rate of indications in the SG tubes in general. The NRC noted that operation until the September 2000 outage will represent an increase in hot-leg temperature and projected operating interval as compared to the previous "half cycle" of operation. The NRC also noted that the licensee had not yet

submitted a risk-informed SG operational assessment. Subsequent to the meeting, the licensee informed the staff that it will submit a risk-informed assessment soon. The NRC expects that it will be engaging the licensee in requests for additional information on both their deterministic and risk-informed SG operational assessments and resolving the outstanding questions in the near future.

/RA/

Thomas W. Alexion, Project Manager, Section 1 Project Directorate IV & Decommissioning Division of Licensing Project Management Office of Nuclear Reactor Regulation

Docket No. 50-368

Enclosures: As stated (2)

cc w/encls: See next page

DISTRIBUTION:

HARD COPY File Center PUBLIC PD#IV-1Reading OGC ACRS

EMAIL JZwolinski/SBlack SRichards (clo) BBateman SLong CNolan BGramm EMurphy JTsao LLund SCoffin ESullivan JMuscara DLange, RIV PHarrell, RIV

To receive a copy of this document, indicate "C" in the box				
OFFICE	PDIV-1/PM	PDIV-1/LA	EMCB/SC	PDIV-1/SC C
NAME	T.Alexion:	D.Johnsondly	E.Sullivan	R.Gramm
DATE	63 02/0	3/2/00	3/31/00	4/4/00

DOCUMENT NAME: G:\PDIV-1\ANO2\MTS021700.wpd OFFICIAL RECORD COPY submitted a risk-informed SG operational assessment. Subsequent to the meeting, the licensee informed the staff that it will submit a risk-informed assessment soon. The NRC expects that it will be engaging the licensee in requests for additional information on both their deterministic and risk-informed SG operational assessments and resolving the outstanding questions in the near future.

Thomas W. alexin

Thomas W. Alexion, Project Manager, Section 1 Project Directorate IV & Decommissioning Division of Licensing Project Management Office of Nuclear Reactor Regulation

Docket No. 50-368

Enclosures: As stated (2)

cc w/encls: See next page

Arkansas Nuclear One

cc:

Executive Vice President & Chief Operating Officer Entergy Operations, Inc. P. O. Box 31995 Jackson, MS 39286-1995

Director, Division of Radiation Control and Emergency Management Arkansas Department of Health 4815 West Markham Street, Slot 30 Little Rock, AR 72205-3867

Winston & Strawn 1400 L Street, N.W. Washington, DC 20005-3502

Manager, Rockville Nuclear Licensing Framatone Technologies 1700 Rockville Pike, Suite 525 Rockville, MD 20852

Senior Resident Inspector U.S. Nuclear Regulatory Commission P. O. Box 310 London, AR 72847

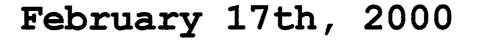
Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 400 Arlington, TX 76011-8064

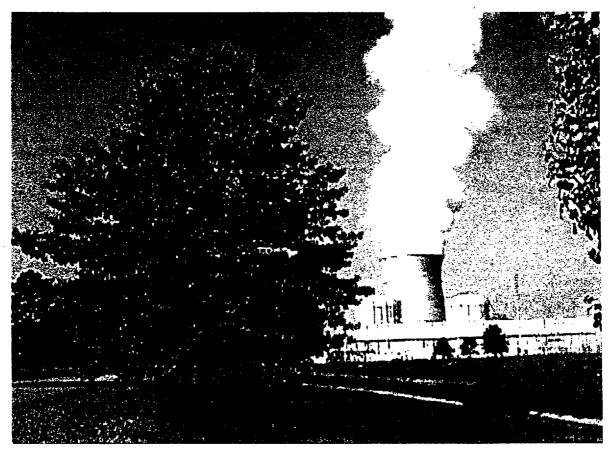
County Judge of Pope County Pope County Courthouse Russellville, AR 72801 Vice President, Operations Support Entergy Operations, Inc. P. O. Box 31995 Jackson, MS 39286-1995

Wise, Carter, Child & Caraway P. O. Box 651 Jackson, MS 39205

Mr. Craig G. Anderson Vice President Operations, ANO Entergy Operations, Inc. 1448 S. R. 333 Russellville, AR 72801

ATTENDANCE LIST


PUBLIC MEETING HELD ON FEBRUARY 17, 2000


Name	Organization
M. Whitt R. Lane B. Bement M. Smith D. James D. Harrison D. Harrison D. Meatheany M. Lloyd B. Keating T. Pitterle P. Jackson B. Woodman D. Stellfox T. Alexion B. Bateman S. Long C. Nolan B. Gramm E. Murphy J. Tsao L. Lund S. Coffin	EOI EOI EOI EOI EOI EOI EOI EOI EOI EOI
E. Sullivan J. Muscara	NRC NRC

Enclosure 1

ARKANSAS NUCLEAR ONE UNIT TWO

NRC Presentation on the Operational Assessment for the Remainder of Cycle 14

- 2P99 Results
 - Inspection and Repair
 - In-Situ Testing
- Evaluation of R72L72
- Deterministic Operational Assessment

Introduction

- Previous operational assessment still valid based on 2P99 results
- TTS examination confirmed original assumptions are still correct
- Steam generator replacement outage September 2000 (2R14)
- Operation until 2R14 is acceptable

2P99 Scope

- 100 % bobbin from TEH to 07 Hot
- 503 tube sample of TTS with MRPC
- Rotated all bobbin indications
- Used independent production and resolution analysts
 - Did not use resolution on lower eggcrate indications
- Repaired all indications identified (210 tubes)

2P99 Results

Eggcrate Axial TTS Circ's Freespan Axial Sludgepile Axial

Indications		
SGA	<u>SGB</u>	
49	184	
9	NA	
5	0	
2	0	

To dia Li

3∆P Value

- Primary side design pressure (2250)
- Secondary side design pressure (900)
- Differential = 1350
- $3\Delta P = 3*1350 = 4050$ (operating temperature)
- Temperature correction (7.3%)
 - = 4050/.927 = 4369 psi (room temperature)

2P99 In-Situ Test Results

- Tested a total of 6 indications
 - All six met MSLB pressure with zero leakage All six met 1.43 MSLB

Five met 4650 psi (3 Δ P plus additional margin)

- 1 flaw (R72L72) only taken to 4147 psi due to leakage in excess of pump capacity
 - Further analysis required to determine tube integrity

- Operational Assessment Strategy
 - Due to limited time frame parallel paths

Deterministic

Evaluation of R72L72

Probabilistic/Risk Assessment

2P99 Condition Monitoring

- Review of Tube R72L72 by Westinghouse
- Leakage
 - Based on In-situ Testing Zero Leakage @ MSLB Based on Probabilistic Analysis - <0.01 gpm

Assessment of Burst Pressure for ANO-2 SG B, R72C72

NRC/Entergy Meeting February 17, 2000

Prepared By:

T. A. Pitterle

R. F. Keating

Westinghouse Electric Company LLC

Assessment of Burst Pressure for ANO-2 R72C72

Objectives

- Assess post in situ test condition of R72C72 relative to complete or incomplete burst
 - Compare RPC response of R72C72 with responses for EDM notches, incomplete and complete bursts
- Estimate true burst pressure increase above R72C72 in situ pressure
 - Comparison of calculated pressures for burst and for ligament tearing
 - Comparisons of measured burst pressures for tests found to have incomplete and complete bursts

Burst Pressure Requirements

- $3\Delta P_{NO}$ freespan burst margin requirement
 - 4050 psi requirement at operating conditions based upon primary to secondary pressure differential of 1350 psi
- $3\Delta P_{NO} = 4369$ psi room temperature burst margin requirement
 - Based upon flow stress adjustment to room temperature

- In situ test requirement

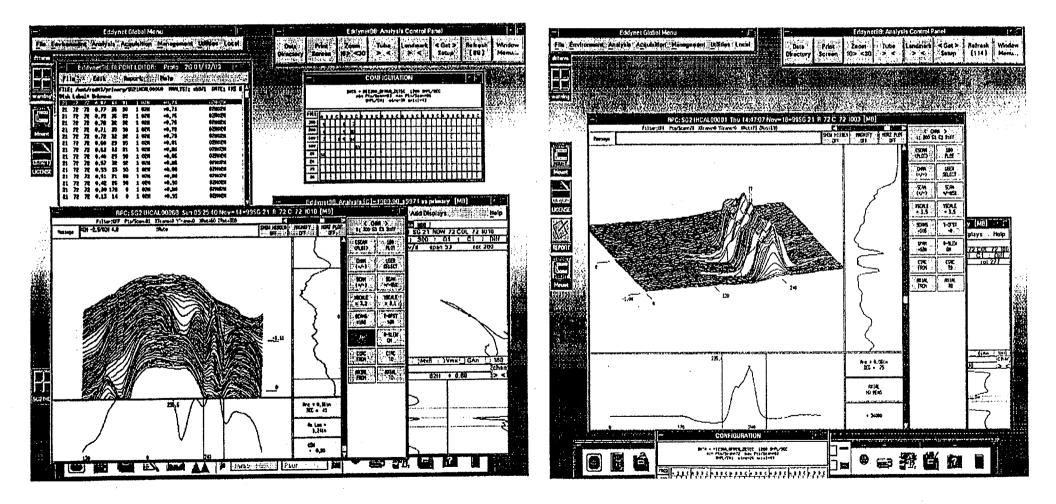
Definition of a Burst

R72C72 In Situ Test Results and RPC Response

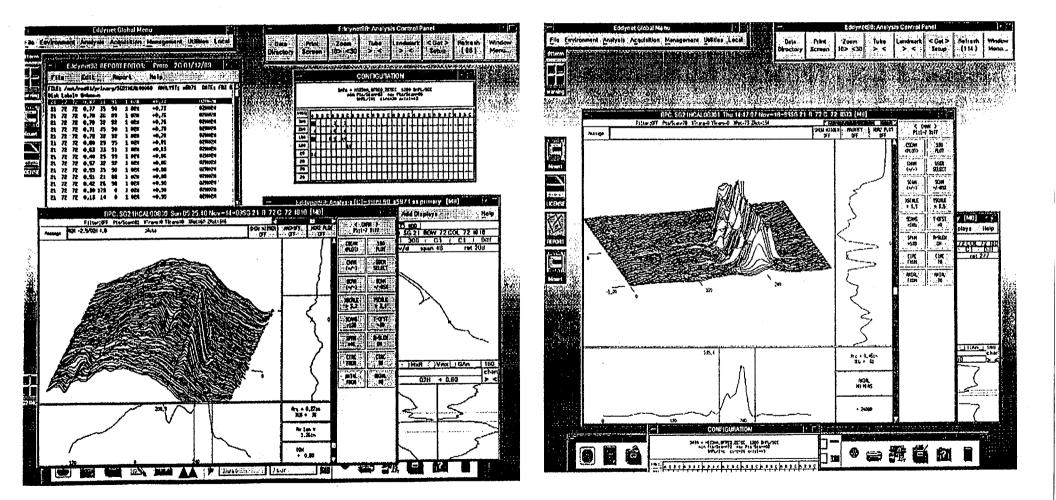
In Situ Test Results

- 4147 psi maximum test pressure attained as limited by leakage capacity of test equipment
- Leak rate of 1.16 gpm at 4147 psi
 - Increased to > 4 gpm test system limit at next attempt to increase pressure
- Initial leakage at 3737 psi and leakage of 0.02 gpm measured at 3774 psi

Post In Situ RPC Response

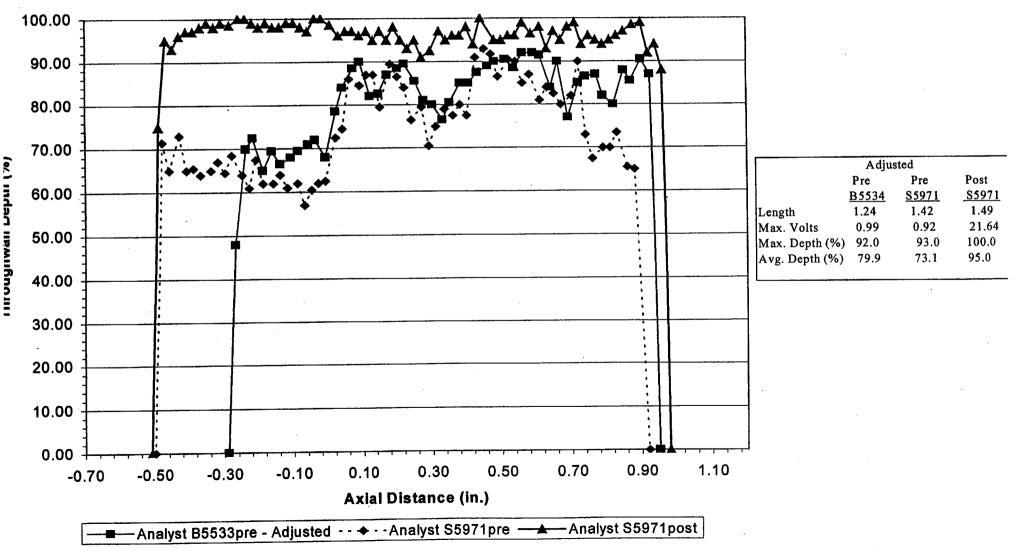

- Post in situ response characterized by uniform axial width, angular response wider than pre in situ, 'dips' in direction of probe rotation
- Response typical of crack opening compared to pre in situ, but without features of a burst indication

115 Pancake Coil Sizing


- Pre in situ (2 analyses): 1.24" to 1.42", 93% max. depth, 73% to 80% avg. depth, 0.72" to 0.9" deep segment with about 85% avg. depth
- Post in situ (1 analysis): 1.49" long, throughwall, about 95% avg. depth
 - Crack potentially opened over pre in situ detectable length

In Situ Test Results for SG B, R72C72 at 2P99 Outage				
Test Pressure (psi)	Test Results			
1568	No leakage for 2 minute hold time. Simulates normal operating pressure differential.			
2232	No leakage for a 2-minute hold time.			
2882	No leakage for a 2 minute hold time. Simulates MSLB pressure differential.			
3737	Leakage detected			
3774	Leakage $= 0.02$ gpm measured over 5 minute interval.			
3971	Step increases in leakage with associated test pressure drop.			
3573	Leakage = 0.56 gpm			
4132	Leakage = 0.92 gpm			
4147	Leakage = 1.16 gpm. Maximum test pressure obtained as corrected for test equipment pressure drop due to leakage flow and for instrument error.			

ANO-2 R72C72 Pre and Post In Situ 115 Pancake Coil 300 kHz Response



ANO-2 R72C72 Pre and Post In Situ 115 Pancake Coil 300/100 kHz Mix Response

ANO-2 R72C72 Pre and Post In Situ Depth Profiles

B5534 - Pre InSitu Test, 400/100 kHz Mix S5971 - Post InSitu Test, 200 kHz

Comparisons of R72C72 RPC Responses With EDM Notches and Burst Specimens

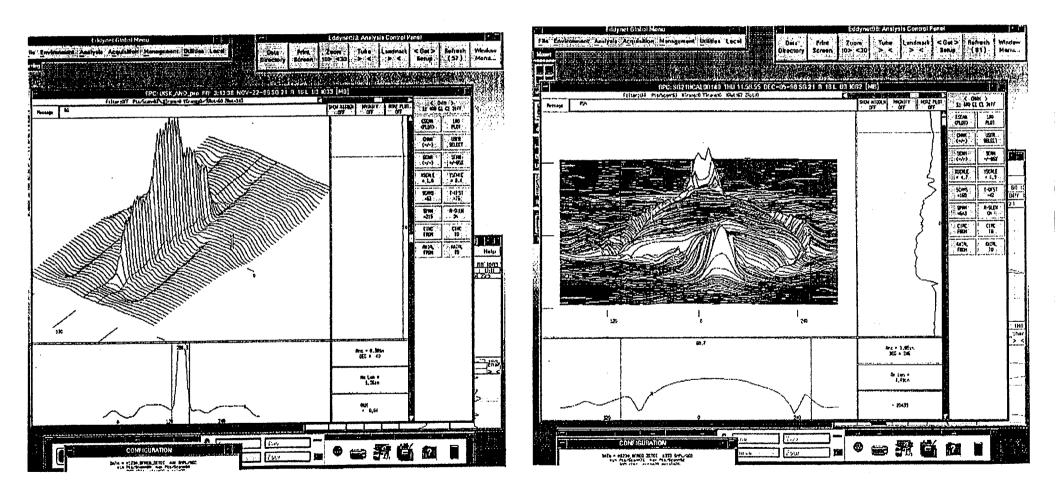
Comparison of R72C72 with TW EDM Notch RPC Responses

- TW EDM notch response shows slight 'dips" in direction of rotation, uniform angular response of about 51°
- R72C72 response shows larger 'dips" and uniform angular response of about 61° (increase from about 36° before in situ)

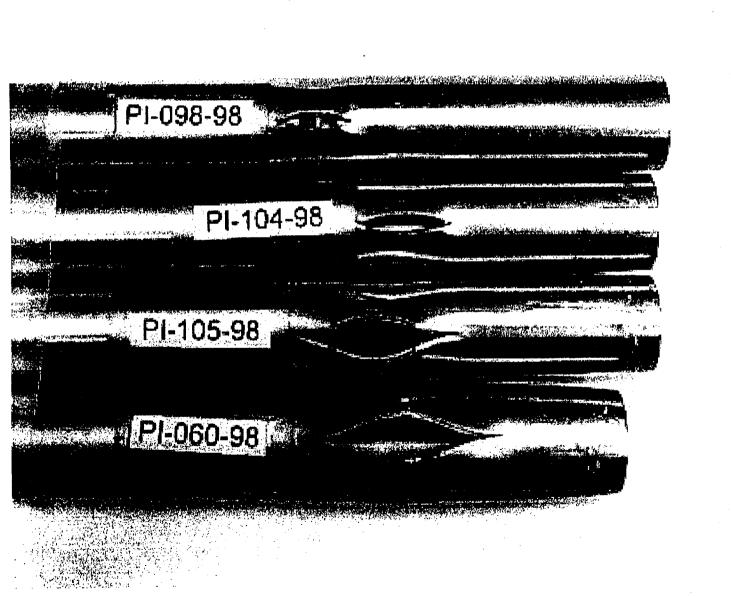
RPC Response of ANO-2 1996 R16C60 Post In Situ

• Complete burst obvious from RPC response - wide opening, flat response across gap, 'dips' at ends of crack (closely spaced crack faces)

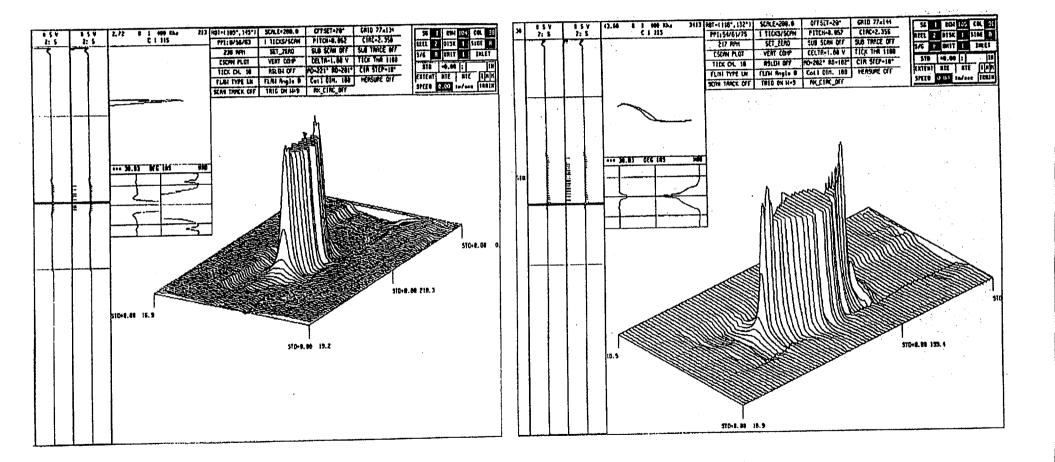
RPC Responses of Incomplete and Complete Bursts

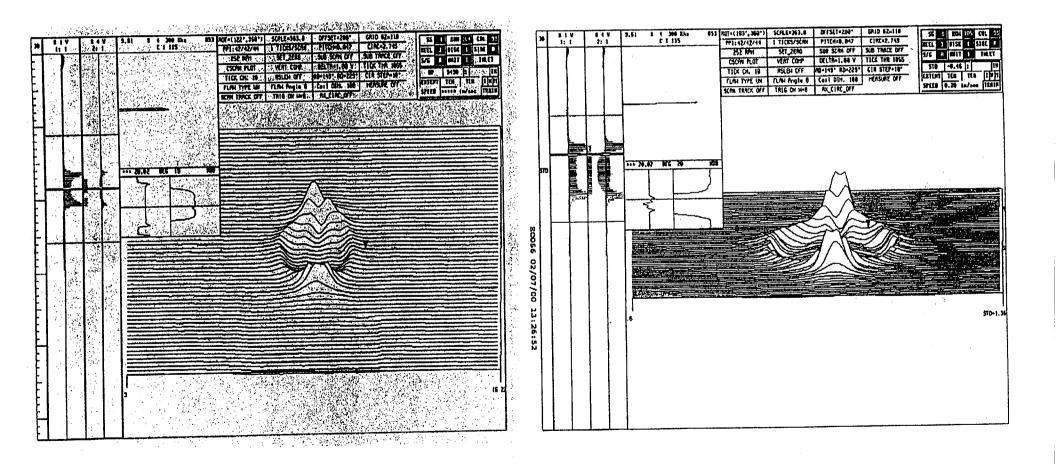

- Specimens taped to force coil on uniform ID to obtain responses typical of axially non-uniform EDM notches of varying width
 - 115 pancake coil responses show increased separation at center of crack, flat response across gap, 'dips' at ends of crack
- Specimens without tape to ride surface of opened crack flanks
 - 115 pancake coil responses very similar to that for R16C60
- RPC responses of incomplete bursts same as complete bursts except for extent of crack opening

Q:Tubeint\ANO-2\2000\NRC\NRCCR72C72Pres.ppt


道言 101101 **1** 11 11 Na. Environne No Hop 욄용 **A Nalyah** 111er:01 TRYPOLODIS MENU RPC: \$621HCAL00001 The 14:30:20 Nov-18-0056 21 8:009 C 009 1002 [M8] ΠÌ Maranches, CONFIGURATION littin) 2 Granis Management Utilities Cocal 4 3 4 4 4 × 1970 5 67a) 92 SUM HIDDA ĕ HICKIPY OFF Delectory Fuck 1.11 Date Rec = 0,245 File 92 LAN T 0.561n - 44726 muto 7 12 20 DIT 10/2 PL01 \$621HCAL00001 The 14:38:28 Nov-18-08 \$6.21 ACM AND COL IND 1002 Screan **Print** Anelysia System Toola Eddynet80: Analysis [C]= 1980,80 +597 fat primary [M9] d2 ž. **4**3 -3.5 <u>.</u> 19.5 ÷9 ₹ luba tan Zoum 10× <30 Eddynot88: Analysis Control Panel 6 Pue 2 240 1/-B3 SP.RC1 æ cat. 1-053 NAN E 100 011 YZ 1 ~ Laying Add Displays i 1 1 What () Week () Alway 2.48 v/d Y A 300 - 01 8 ≺ Got > 20. 10 volte 21 deg B span 689 + 44728 Nahresh (84) C1 1 011 0.25 rox 273 Window Menu... ි 180 digit ٦ V A A

Throughwall Slot 115 Pancake Coil 300 kHz Response


ANO-2 R16C60 1996 Pre and Post In Situ 115 Pancake Coil 400 kHz Response


Post Burst Test Photo of Four Burst Openings with Varying Length and Width

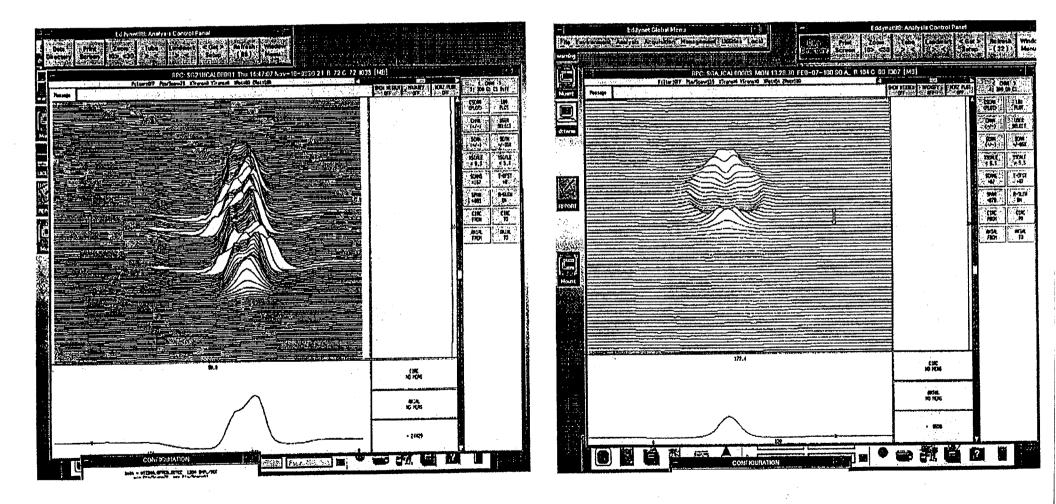
Specimens PI-104-98 and PI-105-98 Post Burst Test 115 Pancake Coil Response (Taped Opening)

Specimens PI-104-98 and PI-105-98 Post Burst Test 115 Pancake Coil 300 kHz Response

Conclusions on Post Test Condition of R72C72

In situ test pressure of 4147 psi for R72C72 does not represent a burst and the true burst pressure would exceed the test pressure

• Crack opening much less than expected for a burst


RPC response for a burst characterized by:

- Flat voltage response over widest part of the opening
- Dips in the response at the ends of the opening (closer crack faces)
 Only burst characteristic seen for R72C72 response
- Varying angular response from end to end of the opening
- Largest angular response at center of the fish mouth burst opening

Post in situ condition for R72C72

- Equivalent to tearing of remaining wall thickness ligament to permit significant leakage but without crack extension required for a burst
 - Common test result in performing burst tests without a bladder
- Typical of condition predicted by ligament tearing models as contrasted to models for predicting burst pressure

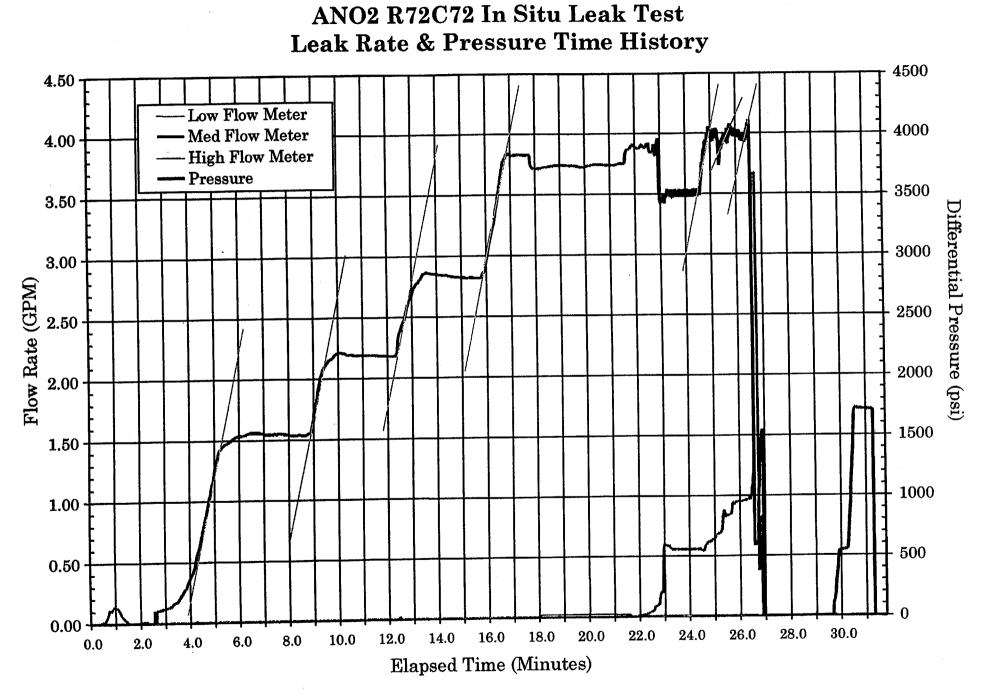
Comparison of R72C72 and Specimen PI-104-98 Pancake Coil Responses with EDDYNET95 and Same Scale Settings

Time History Review of R72C72 In Situ Test

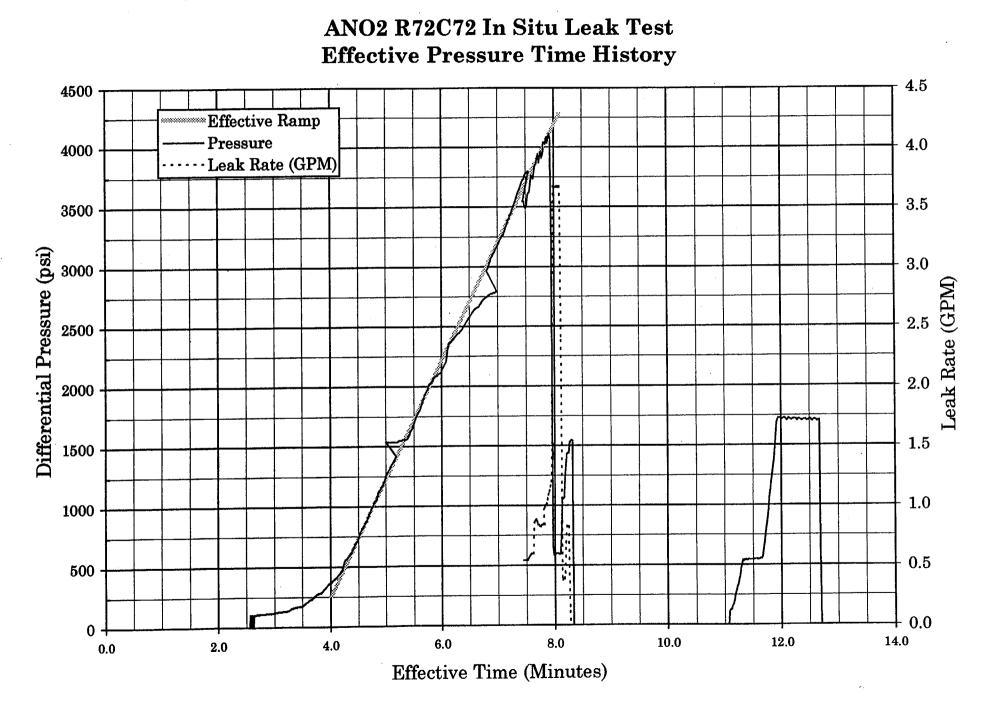
Pressurization rates constant for first 5 step increases up to about 4025 psi

• Indicates no likely deformation of crack faces

Next 2 steps to 4147 psi show slightly smaller pressurization rates than previous rates


- Implies some deformation of flanks of crack with tearing of ligaments to increase the leak rate
- Leak rate increased to 1 gpm at next to last step and exceeded system capacity of about 4 gpm after last step

Time values of test history adjusted to uniformly increasing pressure as a function of time


• Pressure time history remained linear until final surge in leak rate

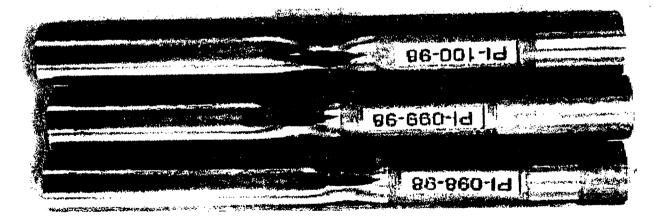
Conclusions

- Time history supports test termination at point of ligament tearing similar to conclusion from review of RPC data
- True burst pressure cannot be estimated from time history data

Q:Tubeint\ANO-2\2000\NRC\NRCCR72C72Pres.ppt

Increase in Burst Pressure Above Onset of Leakage

Evaluation based upon ligament tearing and burst pressure models


- Objective to predict pressure difference required between ligament tearing and burst
- Westinghouse burst model and ANL ligament tearing model applied to NDE profile
 - Flow stress for R72C72 not known and 80 ksi assumed similar to prior ANO pulled tubes with similar row material properties as row 72
- Predicted burst pressure of 4311 psi and ligament tearing pressure of 3752 for a pressure difference of 559 psi for correction to R72C72 in situ test pressure
 - Pressure difference of 519 psi for second NDE profile

Evaluation based on pressure differences between complete and incomplete burst tests

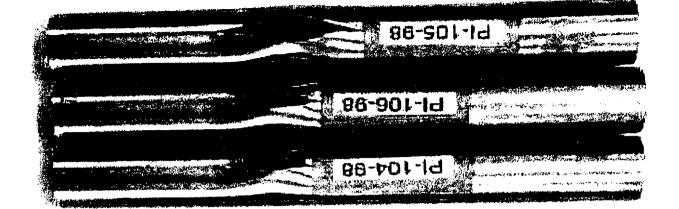

- 80% deep EDM notches three 0.7" long and three 0.5" long with closely controlled notch tolerances
- Differences of 400 to 600 psi between 0.7" specimen #104 with incomplete burst and specimens #105 and #106 with complete burst
 - Supports analytical prediction of about 500 psi for pressure difference
 - RPC response shows specimen #104 crack more open than R72C72
- Shorter 0.5" specimens show larger pressure differences between incomplete and complete bursts

Photo of Burst Test Openings for Incomplete and Complete Bursts

doolf %408 y 871 0210 - young iverit

Burst Pressure Differences Between Incomplete and Complete Bursts					
Specimen	EDM Notch	Test Pressure (psi)	Burst Characterization	Comments	
PI-104-98	0.7" by 80% deep	3600	Incomplete Burst	Supports difference of 400 to 600 psi between incomplete and complete burst for flaw size comparable to that of the deeper part of R72C72	
PI-105-98	0.7" by 80% deep	4200	Complete Burst		
PI-106-98	0.7" by 80% deep	4000	Complete Burst		
PI-98-98	0.5" by 80% deep	4200	Incomplete Burst	Indicates larger pressure differences between complete and incomplete burst for flaws shorter than R72C72	
PI-99-98	0.5" by 80% deep	5400	Complete Burst		
PI-100-98	0.5" by 80% deep	6200	Complete Burst		

Overall Conclusions on Burst Pressure of R72C72

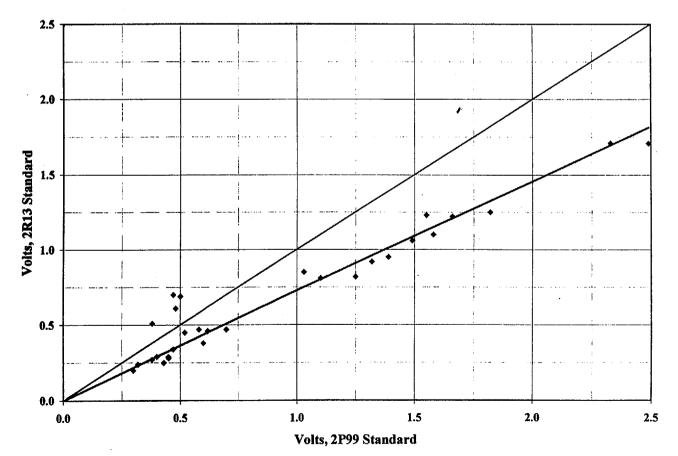
Estimated burst pressure for R72C72 of about 4650 psi exceeds room temperature 3∆P_{NO} burst margin requirement of 4369 psi

- In situ test pressure of 4147 psi increased by about 500 psi for limited crack opening resulting from test
- Correction of about 500 psi supported by difference between burst and ligament tearing models as well as difference between incomplete and complete burst test results

R72C72 post in situ test condition equivalent to that following tearing of wall thickness ligament, but without crack width and extension required for a burst

• Correction to a true burst can be estimated as calculated difference between burst and ligament tearing pressures

RPC responses can readily determine difference between limited crack opening of R72C72 and an incomplete or complete burst

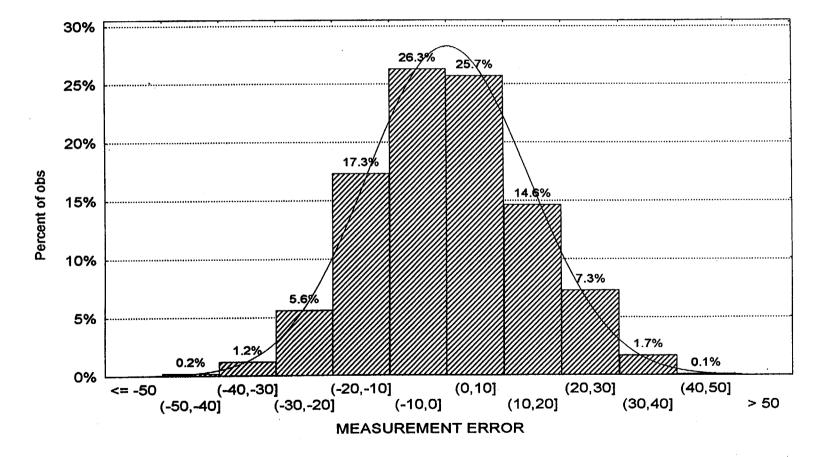

• Differences between incomplete and complete burst are more difficult to determine by RPC since differences are only extent of crack opening

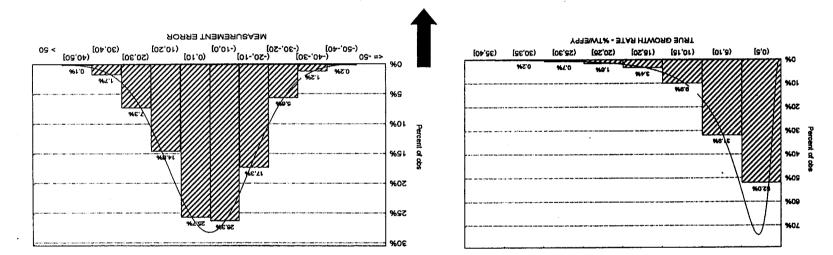
- Probability of Detection (POD)
 - Performed Site Specific Performance Demonstration (SSPD) Testing following 2R13
 - POD curves developed and used following 2R13 and 2P99

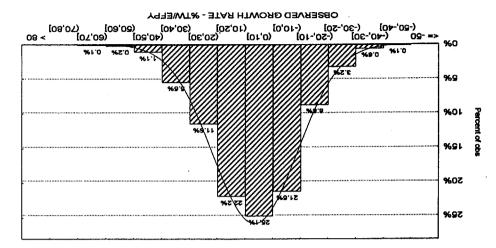
Improvements to POD

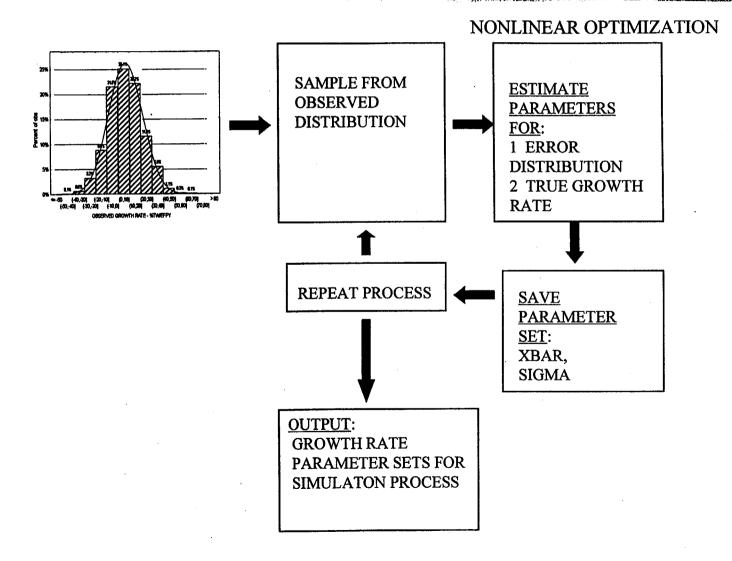
- Training of the analysts
- Localized testing
- New calibration standards

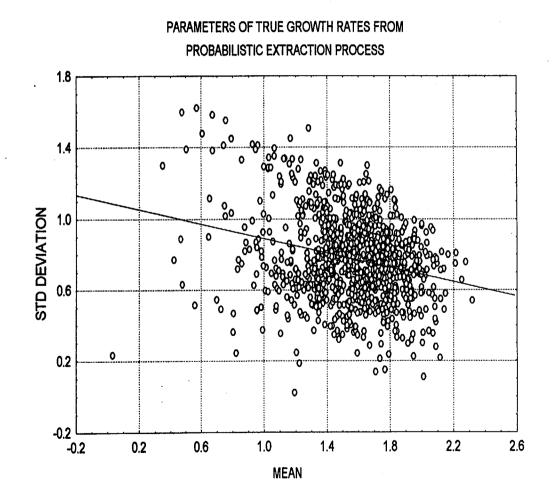
Effect of the calibration standard

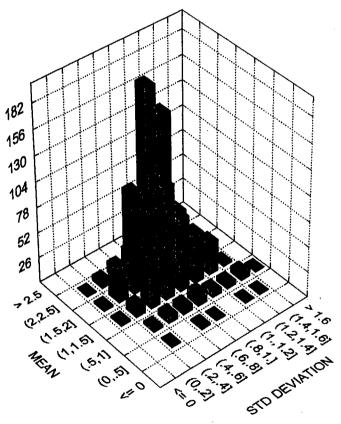

Growth Rate

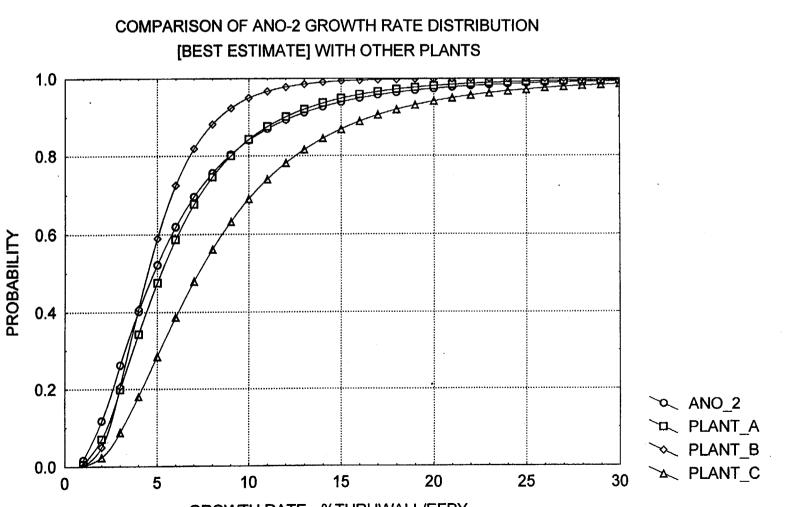

- First performed during 1996-1997 era
- Repeated study using 1998-1999 data
- Results are consistent with those used in the past and other CE Plants


Observed growth rates consist of:


- Measurement errors
- Underlying true growth rates
- Probabilistic extraction process required for realistic assessment


70% 60% \$2.0% 50% Percent of obs 40% .9% 30% 20% 9.9% 10% 3.4% 1.6% 0.7% 0.2% 0% (10,15] (15, 20](20,25] (25, 30](30,35] (35,40] (5,10] (0,5] TRUE GROWTH RATE - %TW/EFPY





Sec. 34

DISTRIBUTION OF TRUE GROW RATE PARAMETERS

-

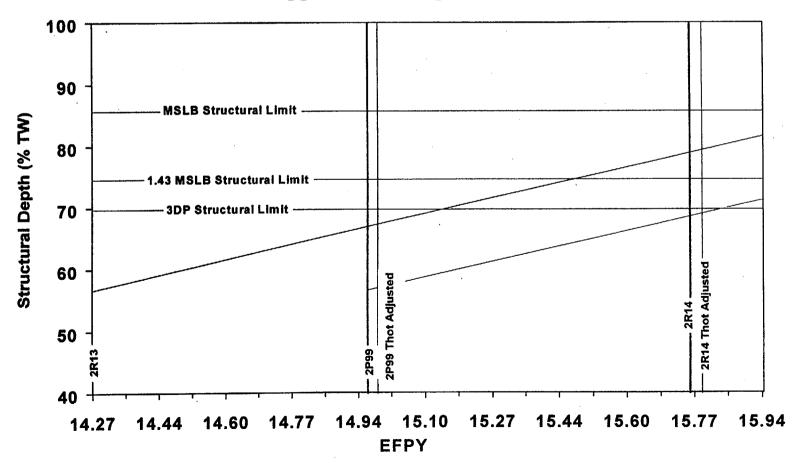
GROWTH RATE - %THRUWALL/EFPY

Deterministic for Eggcrate Axial Cracks - Previous Analysis

Deterministic Analysis for Eggcrate Axials 90 80 **3DP Structural Limit MSLB Structural Limit** BOC Structural flaw of 46% 70 WT % 60 Additional Run time 2P99 to account for Thot 50 increase. 40 12 14 16 10 8 6 4 2 0 **EFPM**

and the second

32


ANO2 Operational Assessment

and the second second

PARAMETER	SGTI Guidelines
POD Value	95%
Structural Depth Equivalent	56.6%
Growth Rate	95% Struct. Depth
Growth Equivalent	15%
Length Value	90% (2P99 data)
Length Equivalent	0.98
Burst Correlation	90% Value
Material Properties	125,900
Material Equivalent	90%

DETERMINISTIC EVALUATION HL EGGCRATE AXIAL

Deterministic Analysis for Eggcrate Hot Leg Axials

ANO2 Operational Assessment

C. C. Starten

Summary