Commonwealth Edison Company Quad Cities Generating Station 22710 206th Avenue North Cordova, IL 61242-9740 Tel 309-654-2241

SVP-00-018

March 23, 2000

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, D C 20555

Quad Cities Nuclear Power Station, Unit 1 and Unit 2 Facility Operating License Nos. DPR-29 and DPR-30 NRC Docket Nos. 50-254 and 50-265

Subject:

Quad Cities Nuclear Power Station's Radioactive Effluent Report

for January through December 1999

Reference:

Letter from R. M. Krich (ComEd) to USNRC, "Offsite Dose Calculation

Manual Changes for 1999," dated March 21, 2000.

In accordance with the Quad Cities Technical Specifications Section 6.9.4 and 10 CFR 50.36a, we are submitting the Quad Cities Nuclear Power Station's Radioactive Effluent Report for January through December 1999. A copy of procedure RW-AA-10, "Process Control Program for Radioactive Wastes," Revision 1, dated 07/15/99, is also included as required by the Offsite Dose Calculation Manual (ODCM) Section 12.6.1, "Radioactive Effluent Release Report."

ODCM Section 12.6.3.3. requires that a new revision of the ODCM be submitted as part of or concurrent with the Radioactive Effluent Report. The referenced letter, dated March 22, 1999, submitted the required ODCM revision.

IB48

March 23, 2000 U.S. Nuclear Regulatory Commission Page 2

Should you have any questions concerning this letter, please contact Mr. C.C. Peterson at (309) 654-2241, extension 3609.

Respectfully,

Joel P. Dimmette, Jr. Site Vice President

Quad Cities Nuclear Power Station

Attachments:

- A. Effluent and Waste Disposal Semiannual Report Supplemental Information, Quad Cities Nuclear Power Station, January–June 1999
- B. Effluent and Waste Disposal Semiannual Report Supplemental Information, Quad Cities Nuclear Power Station, July-December 1999
- C. Quad Cities Station Meteorological Site Quarterly Joint-Frequency Wind Rose Tables for 1999
- D. Solid Waste Disposition Summary
- E. RW-AA-10, Revision 1, Process Control Program for Radioactive Wastes at Quad Cities Nuclear Power Station
- cc: Regional Administrator NRC Region III
 NRC Senior Resident Inspector Quad Cities Nuclear Power Station

Attachment A

Effluent and Waste Disposal Semiannual Report Supplemental Information, Quad
Cities Nuclear Power Station, January—June 1999
SVP-00-018

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

Supplemental Information

Facility: Quad Cities Nuclear Power Station January - June 1999

Licensee: Commonwealth Edison Company

- 1. Regulatory Limits
 - a. For Noble Gases: (per unit)

Dose Rate

- 1. Less than 500 mrem/year to the whole body.
- 2. Less than 3000 mrem/year to the skin.

Dose Gamma Radiation

- 1. Less than or equal to 5 mrad/quarter.
- 2. Less than or equal to 10 mrad/year.

Beta Radiation

- 1. Less than or equal to 10 mrad/quarter.
- 2. Less than or equal to 20 mrad/year.
- b.,c. For Iodine-131, for I-133, and for all radionuclides in particulate form with half-lives greater than 8 days.

Dose Rate

1. Less than 1500 mrem/year.

Dose

- 1. Less than or equal to 7.5 mrem/quarter.
- 2. Less than or equal to 15 mrem/year.
- d. For Liquid: (per site)

Less than or equal to 3 mrem to the whole body during any calendar quarter. Less than or equal to 10 mrem to any organ during any calendar quarter. Less than or equal to 6 mrem to the whole body during any calendar year. Less than or equal to 20 mrem to any organ during any calendar year.

2. Maximum Permissible Concentration

- a.,b.,c., For fission and activation gases, iodines, and particulates with half-lives greater than 8 days, allowable release limits are calculated by solving equations 10.1 and 10.2 from the Offsite Dose Calculation Manual. The alarm setpoint is conservatively set at 10% of the 10CFR20 limit.
- d. For liquid effluents allowable release limits are calculated by solving equations 10.3 and 10.4 from the Offsite Dose Calculations Manual. The MPC values used for the monitors were as follows:

Radwaste Discharge 4.96E-05 uCi/ml Service Water 1.0 E-05 uCi/ml

3. Average Energy

The average gamma energy used to calculate the alarm setpoints for the noble gas monitors was 0.368 MeV for the first quarter, and 0.357 MeV for the second quarter.

- 4. Measurements and Approximations of Total Radioactivity
 - a. Fission and Activation Gases:
 - b. Iodines:
 - c. Particulates:

The main chimney and reactor building ventilation exhaust systems are continually monitored for iodines and particulates. These samples are collected every 7 days and analyzed by gamma isotopic. The particulate filter papers are composited every 31 days and sent to a vendor for Sr-89/90 and gross alpha analysis. Noble gas grab samples are collected and analyzed by gamma isotopic weekly. Tritium samples are collected and analyzed every month.

The reported Sr-89/90 and gross alpha curies released values are actual. The portion of the "percent of applicable limit" for these contributors is based on projections that are used in the monthly ODCM calculations. The actual results are not available when the ODCM calculations are performed.

The continuous strip chart recorders for the monitors on the release points are reviewed monthly for spikes and the activity released is calculated. An additional calculated activity for noble gases is added to the Main Chimney release each month. This calculation is performed because most of the grab samples show less than the lower limit of detection due to the low amount of activity and the large dilution flow at the sample point.

The calculation takes into account the normal offgas train and the gland steam contribution to the release.

The average flow at the release points is used to calculate the curies released.

d. Liquid Effluents

The River Discharge Tanks are analyzed by gamma isotopic before discharge. A composite representative portion of this sample is saved. This is composited with other discharges that occurred every 31 days and is analyzed for tritium and gross alpha. The monthly composites are composited quarterly and sent to a vendor for Sr-89/90 and Fe-55. The discharge bay is sampled every 31 days and analyzed by gamma isotopic for tritium and gross alpha. It is sampled quarterly and sent to a vendor for Sr-89/90 and Fe-55 analysis.

The tank volumes and activities are used to calculate the curies released for the River Discharge Tank. The total water released during the quarter and the activity are used to calculate the diluted activity released at the discharge bay, from batch discharges.

e. Estimated Total Error Percent

The estimated total error percents were calculated by taking the square root of the sum of the squares of errors for sampling and measurement parameters. The estimated total error percent for the solid waste radwaste curies is 12.3%.

f. Less than the lower limit of detection (<LLD)

Samples are analyzed such that the Technical Specification LLD requirements are met. When a nuclide is not detected during the quarter, <LLD is reported.

5. Batch Releases

a. Liquid

1. Number of releases: 12

2. Total time: 12,413 minutes

3. Maximum time: 1,236 minutes

4. Average time: 1,034 minutes

5. Minimum time: 405 minutes

6. Average stream flow: 46.5 gpm (discharge)

2.93E+05 gpm (dilution)

b. Gaseous

NONE

- 6. Abnormal releases
 - a. Gaseous

NONE

b. Liquid

NONE

ATTACHMENT A (Page 1 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

Period:	Januar
remou.	Januar

January through June

1999

		FIRST	SECOND	Est.Total
A. FISSION & ACTIVATION GASES	UNIT	QUARTER	QUARTER	Error %
1. Total Release	Ci	1.51E+01	1.74E+01	12.4
2. Average release rate for the period	μCi/sec	1.94E+00	2.21E+00	
3. *Percent of ODCM limit Chimney &	%	5.65E-03	6.66E-03	
Stack				
		2.86E-04	3.13E-04	
B. IODINE				
1. Total Iodine-131	Ci	3.81E-04	4.38E-04	40.0
2. Average release rate for the period	μCi/sec	4.90E-05	5.57E-05	
C. PARTICULATES				
1. Particulates with half-lives >8 days	Ci	5.75E-04	5.73E-04	30.1
2. Average release rate for the period	μCi/sec	7.39E-05	7.29E-05	
3. Gross alpha radioactivity	Ci	3.96E-06	2.96E-06	
				•
				
D. TRITIUM				
1. Total Release	Ci	1.96E+01	2.50E+01	8.0
2. Average release rate for the period	μCi/sec	2.52E+00	3.18E+00	
E.Iodine 131 & 133,Tritium & Particulate				-
Percent of ODCM limit Chimney & Stack	%	7.00E-02	2.64E-01	

^{*}NOBLE GAS GAMMA/NOBLE GAS BETA DOSE LIMITS

ATTACHMENT A (Page 2 of 5) EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT MAIN CHIMNEY GASEOUS EFFLUENTS CONTUNIOUS MODE

CONTINUOUS MODE BATCH MODE

NUCLIDES RELEASED		FIRST	SECOND	FIRST	SECOND
1. Fission gases	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Kr-85	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-85m	Ci	3.74E-01	3.65E-01	NA	NA
Kr-87	Ci	6.54E-01	5.55E-01	NA	NA
Kr-88	Ci	4.63E-01	7.75E-01	NA	NA
Xe-133	Ci	6.13E-01	5.53E-01	NA	NA
Xe-135	Ci	2.09E+00	5.81E-01	NA	NA
Xe-135m	Ci	2.19E+00	4.22E+00	NA	NA
Xe-138	Ci	8.21E+00	1.02E+01	NA	NA
Ar-41		4.90E-01	1.78E-01	NA	NA
Total for Period	Ci	1.51E+01	1.74E+01	NA	NA
NUCLIDES RELEASED 2. Iodines	UNIT	FIRST QUARTER	SECOND QUARTER	FIRST QUARTER	SECOND QUARTER
I-131	Ci	3.81E-04	4.38E-04	NA	NA
I-133	Ci	2.17E-03	2.73E-03	NA	NA
I-135	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for period	Ci	2.55E-03	3.17E-03	NA	NA
NUCLIDES RELEASED		FIRST	SECOND	FIRST	SECOND
3. Particulates	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Sr-89	Ci	6.35E-05	8.25E-05	NA	NA
Sr-90	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-134	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-137	Ci	<lld< td=""><td>2.68E-05</td><td>NA</td><td>NA</td></lld<>	2.68E-05	NA	NA
Ba-140	Ci	2.85E-05	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
La-140	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cr-51	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Mn-54	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Co-58	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Co-60	Ci	9.09E-05	6.13-05	NA	NA
Mo-99	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for Period	Ci	1.83E-04	1.71E-04	NA	NA

ATTACHMENT A (Page 3 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

REACTOR VENTILATION GASEOUS EFFLUENTS
CONTINUOUS MODE

BATCH MODE

COI			OS MODE	D211	CITIAODE
NUCLIDES RELEASED 1. Fission gases	UNIT	FIRST QUARTER	SECOND QUARTER	FIRST QUARTER	SECOND QUARTER
Kr-85	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-85m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-87	Ci	<lld< td=""><td>2.10E-02</td><td>NA</td><td>NA</td></lld<>	2.10E-02	NA	NA
Kr-88	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-133	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-135	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-135m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-138	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
AR-41		<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for Period	Ci	<lld< td=""><td>2.10E-02</td><td>NA</td><td>NA</td></lld<>	2.10E-02	NA	NA
NUCLIDES RELEASED 2. Iodines	UNIT	FIRST QUARTER	SECOND QUARTER	FIRST QUARTER	SECOND QUARTER
I-131	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
I-133	Ci	<lld< td=""><td>2.27E-05</td><td>NA</td><td>NA</td></lld<>	2.27E-05	NA	NA
I-135	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for period	Ci	<lld< td=""><td>2.27E-05</td><td>NA</td><td>NA</td></lld<>	2.27E-05	NA	NA
NUCLIDES RELEASED	<u> </u>	FIRST	SECOND	FIRST	SECOND
3. Particulates	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Sr-89	Ci	<lld< td=""><td>1.55E-06</td><td>NA</td><td>NA</td></lld<>	1.55E-06	NA	NA
Sr-90	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-134	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-137	Ci	8.62E-06	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ba-140	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
La-140	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cr-51	Ci	4.92E-06	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Mn-54	Ci	5.49E-06	1.34E-05	NA	NA
Co-58	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Co-60	Ci	3.73E-04	3.87E-04	NA	NA
Mo-99	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for Period	Ci	3.92E-04	4.02E-04	NA	NA

ATTACHMENT A (Page 4 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

UNIT Ci uCi/mL WB % O %	QUARTER 1.79E-03 2.58E-10 2.46E-03 1.04E-03	QUARTER 1.31E-02 1.79E-09 7.42E-03	<u>Error %</u> 5.6
WB %	2.46E-03		
1		7.42E-03	
	1.04E-03	3.25E-03	
uCi/mL	6.27E-10	9.00E-10	
Ci	7.06E+00	5.76E+00	4.0
uCi/mL	1.02E-06	7.85E-07	
%	3.39E-02	2.62E-02	
	Ci µCi/mL	Ci 7.06E+00 uCi/mL 1.02E-06	Ci 7.06E+00 5.76E+00 uCi/mL 1.02E-06 7.85E-07

C. DISSOLVED & ENTRAINED GASES				
1. Total Release	Ci	5.97E-05	2.09E-04	5.6
2. Average diluted concentration during	μCi/mL	8.59E-12	2.85E-11	
batch discharges for the period				
3. Percent of applicable limit	%	4.30E-06	1.43E-05	
D. GROSS ALPHA ACTIVITY				
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td>14.5</td></lld<></td></lld<>	<lld< td=""><td>14.5</td></lld<>	14.5
2. Average diluted concentration during	μCi/mL	<lld< td=""><td><lld< td=""><td></td></lld<></td></lld<>	<lld< td=""><td></td></lld<>	
batch discharges for the period				=
E. VOLUME OF WASTE RELEASED (prior to	Liters	1.32E+06	8.59E+05	
dilution)				
F. VOLUME OF DILUTION WATER USED	Liters	6.95E+09	7.34E+09	
DURING BATCH DISCHARGES				
G. TOTAL VOLUME OF DILUTION	Liters	3.22E+11	4.27E+11	
WATER USED DURING PERIOD (quarter)				

ATTACHMENT A (Page 5 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

LIQUID EFFLUENTS

CONTINUOUS MODE BATCH MODE

	1	FIRST	SECOND	FIRST	SECOND
NUCLIDES RELEASED	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Sr-89	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td>4.41E-04</td><td>1.73E-03</td></lld<></td></lld<>	<lld< td=""><td>4.41E-04</td><td>1.73E-03</td></lld<>	4.41E-04	1.73E-03
I-131	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ci	<lld< td=""><td><lld< td=""><td>9.13E-04</td><td>1.00E-03</td></lld<></td></lld<>	<lld< td=""><td>9.13E-04</td><td>1.00E-03</td></lld<>	9.13E-04	1.00E-03
Co-58	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>1.10E-04</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>1.10E-04</td></lld<></td></lld<>	<lld< td=""><td>1.10E-04</td></lld<>	1.10E-04
Fe-59	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td><lld< td=""><td>1.79E-05</td><td>4.88E-04</td></lld<></td></lld<>	<lld< td=""><td>1.79E-05</td><td>4.88E-04</td></lld<>	1.79E-05	4.88E-04
Cr-51	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zr-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nb-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mo-99	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td>1.22E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.22E-05</td><td><lld< td=""></lld<></td></lld<>	1.22E-05	<lld< td=""></lld<>
Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-55	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>9.79E-03</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>9.79E-03</td></lld<></td></lld<>	<lld< td=""><td>9.79E-03</td></lld<>	9.79E-03
Sb-124	Ci	<lld< td=""><td><lld< td=""><td>2.91E-04</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>2.91E-04</td><td><lld< td=""></lld<></td></lld<>	2.91E-04	<lld< td=""></lld<>
Sb-125	Ci	<lld< td=""><td><lld< td=""><td>1.13E-04</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>1.13E-04</td><td><lld< td=""></lld<></td></lld<>	1.13E-04	<lld< td=""></lld<>
Zn-69m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>2.48E-05</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>2.48E-05</td></lld<></td></lld<>	<lld< td=""><td>2.48E-05</td></lld<>	2.48E-05
Total for Period	Ci	<lld< td=""><td><lld< td=""><td>1.79E-03</td><td>1.31E-02</td></lld<></td></lld<>	<lld< td=""><td>1.79E-03</td><td>1.31E-02</td></lld<>	1.79E-03	1.31E-02
(above)		<pfd< td=""><td><lld< td=""><td>1./715-03</td><td>1.3112-02</td></lld<></td></pfd<>	<lld< td=""><td>1./715-03</td><td>1.3112-02</td></lld<>	1./715-03	1.3112-02
Xe-133	Ci	<lld< td=""><td><lld< td=""><td>4.84E-05</td><td>1.35E-04</td></lld<></td></lld<>	<lld< td=""><td>4.84E-05</td><td>1.35E-04</td></lld<>	4.84E-05	1.35E-04
Xe-135	Ci	<lld< td=""><td><lld< td=""><td>1.13E-05</td><td>7.39E-05</td></lld<></td></lld<>	<lld< td=""><td>1.13E-05</td><td>7.39E-05</td></lld<>	1.13E-05	7.39E-05

Prepared by:	and the second	Date: 03-16-00
Approved by:	Mulana	Date: 3 1600
11 7	N N	

Attachment B
Effluent and Waste Disposal Semiannual Report Supplemental Information, Quad
Cities Nuclear Power Station, July-December 1999
SVP-00-018

EFFLUENT AND WASTE DISPOSAL SEMIANNUAL REPORT

Supplemental Information

Facility: Quad Cities Nuclear Power Station July - December 1999

Licensee: Commonwealth Edison Company

- 1. Regulatory Limits
 - a. For Noble Gases: (per unit)

Dose Rate

- 1. Less than 500 mrem/year to the whole body.
- 2. Less than 3000 mrem/year to the skin.

Dose Gamma Radiation

- 1. Less than or equal to 5 mrad/quarter.
- 2. Less than or equal to 10 mrad/year.

Beta Radiation

- 1. Less than or equal to 10 mrad/quarter.
- 2. Less than or equal to 20 mrad/year.
- b.,c. For Iodine-131, for I-133, and for all radionuclides in particulate form with half-lives greater than 8 days.

Dose Rate

1. Less than 1500 mrem/year.

Dose

- 1. Less than or equal to 7.5 mrem/quarter.
- 2. Less than or equal to 15 mrem/year.
- d. For Liquid: (per site)

Less than or equal to 3 mrem to the whole body during any calendar quarter. Less than or equal to 10 mrem to any organ during any calendar quarter. Less than or equal to 6 mrem to the whole body during any calendar year. Less than or equal to 20 mrem to any organ during any calendar year.

2. Maximum Permissible Concentration

- a.,b.,c., For fission and activation gases, iodines, and particulates with half-lives greater than 8 days, allowable release limits are calculated by solving equations 10.1 and 10.2 from the Offsite Dose Calculation Manual. The alarm setpoint is conservatively set at 10% of the 10CFR20 limit.
- d. For liquid effluents allowable release limits are calculated by solving equations 10.3 and 10.4 from the Offsite Dose Calculations Manual. The MPC values used for the monitors were as follows:

Radwaste Discharge 1.18E-05 uCi/ml Service Water 1.0 E-05 uCi/ml

3. Average Energy

The average gamma energy used to calculate the alarm setpoints for the noble gas monitors was 0.355 MeV for the third quarter, and 0.642 MeV for the fourth quarter.

- 4. Measurements and Approximations of Total Radioactivity
 - a. Fission and Activation Gases:
 - b. Iodines:
 - c. Particulates:

The main chimney and reactor building ventilation exhaust systems are continually monitored for iodines and particulates. These samples are collected every 7 days and analyzed by gamma isotopic. The particulate filter papers are composited every 31 days and sent to a vendor for Sr-89/90 and gross alpha analysis. Noble gas grab samples are collected and analyzed by gamma isotopic weekly. Tritium samples are collected and analyzed every month.

The reported Sr-89/90 and gross alpha curies released values are actual. The portion of the "percent of applicable limit" for these contributors is based on projections that are used in the monthly ODCM calculations. The actual results are not available when the ODCM calculations are performed.

The continuous strip chart recorders for the monitors on the release points are reviewed monthly for spikes and the activity released is calculated. An additional calculated activity for noble gases is added to the Main Chimney release each month. This calculation is performed because most of the grab samples show less than the lower limit of detection due to the low amount of activity and the large dilution flow at the sample point.

The calculation takes into account the normal offgas train and the gland steam contribution to the release.

The average flow at the release points is used to calculate the curies released.

d. Liquid Effluents

The River Discharge Tanks are analyzed by gamma isotopic before discharge. A composite representative portion of this sample is saved. This is composited with other discharges that occurred every 31 days and is analyzed for tritium and gross alpha. The monthly composites are composited quarterly and sent to a vendor for Sr-89/90 and Fe-55. The discharge bay is sampled every 31 days and analyzed by gamma isotopic for tritium and gross alpha. It is sampled quarterly and sent to a vendor for Sr-89/90 and Fe-55 analysis.

The tank volumes and activities are used to calculate the curies released for the River Discharge Tank. The total water released during the quarter and the activity are used to calculate the diluted activity released at the discharge bay, from batch discharges.

e. Estimated Total Error Percent

The estimated total error percents were calculated by taking the square root of the sum of the squares of errors for sampling and measurement parameters. The estimated total error percent for the solid waste radwaste curies is 12.2%.

f. Less than the lower limit of detection (<LLD)

Samples are analyzed such that the Technical Specification LLD requirements are met. When a nuclide is not detected during the quarter, <LLD is reported.

5. Batch Releases

a. Liquid

1. Number of releases: 14

2. Total time: 15,437 minutes

3. Maximum time: 1.205 minutes

4. Average time: 1,103 minutes

5. Minimum time: 905 minutes

6. Average stream flow: 47.4 gpm (discharge)

4.17E+05 gpm (dilution)

b. Gaseous

NONE

- 6. Abnormal releases
 - a. Gaseous
 - 1. On 11/8/99 a small reactor fuel leak developed in Unit Two. Initially, recombiner offgas activity increased by a factor of 2. Flux tilt monitoring was successful in identifying which fuel bundle was leaking and suppression techniques were utilized to reduce recombiner offgas activity levels to near normal conditions. Unit Two continued to run until its refuel outage began in January 2000. Grab samples were obtained at the gaseous effluent release points immediately following identification of the fuel leak. The small amounts of activity identified in these samples were added to the normal monthly effluents for Unit Two.
 - b. Liquid

NONE

ATTACHMENT A (Page 1 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

GASEOUS EFFLUENTS - SUMMATION OF ALL RELEASES

_				
Pе	mi	\sim	. ~	
			и	

July through December

1999

		THIRD	FOURTH	Est.Total
A. FISSION & ACTIVATION GASES	UNIT	QUARTER	QUARTER	Error %
1. Total Release	Ci	2.28E+01	4.15E+01	12.3
		2.87E+00	5.22E+00	12.5
2. Average release rate for the period	μCi/sec	8.74E-03	1.32E-02	
3. *Percent of ODCM limit Chimney &	%	8.74E-03	1.32E-02	
Stack		4.055.04	((CE 04	
		4.05E-04	6.65E-04	
D TODINE	Ħ			
B. IODINE	- C:	7.750.04	1.140.02	40.0
1. Total Iodine-131	Ci	7.75E-04	1.14E-03	40.0
2. Average release rate for the period	μCi/sec	9.75E-05	1.43E-04	
	=			
C. PARTICULATES				
1. Particulates with half-lives >8 days	Ci	1.26E-03	7.23E-04	30.0
2. Average release rate for the period	μCi/sec	1.59E-04	9.10E-05	
3. Gross alpha radioactivity	Ci	2.91E-06	6.27E-06	
The state of the s				
D. TRITIUM				
1. Total Release	Ci	3.27E+01	2.77E+01	8.1
			3.48E+00	0.1
2. Average release rate for the period	μCi/sec	4.11E+00	3.48E+00	
E.Iodine 131 & 133,Tritium & Particulate				
1. Percent of ODCM limit Chimney & Stack	%	4.04E-01	1.11E-01	

^{*}NOBLE GAS GAMMA/NOBLE GAS BETA DOSE LIMITS

ATTACHMENT A (Page 2 of 5) EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT MAIN CHIMNEY GASEOUS EFFLUENTS CONTINUOUS MODE

BATCH MODE

NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
1. Fission gases	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Kr-85	Ci	<lld< td=""><td>4.09E+00</td><td>NA</td><td>NA</td></lld<>	4.09E+00	NA	NA
Kr-85m	Ci	7.61E-01	8.61E-01	NA	NA
Kr-87	Ci	6.59E-01	1.04E+00	NA	NA
Kr-88	Ci	7.83E-01	8.91E-01	NA	NA
Xe-133	Ci	1.79E+00	4.48E+00	NA	NA
Xe-135	Ci	9.41E-01	1.35E+00	NA	NA
Xe-135m	Ci	3.93E+00	7.53E+00	NA	NA
Xe-138	Ci	1.37E+01	2.10E+01	NA	NA
Ar-41	Ci	2.70E-01	1.34E-01	NA	NA
Xe-131m	Ci	<lld< td=""><td>1.51E-01</td><td>NA</td><td>NA</td></lld<>	1.51E-01	NA	NA
Xe-133m	Ci	<lld< td=""><td>6.58E-03</td><td>NA</td><td>NA</td></lld<>	6.58E-03	NA	NA
Total for Period	Ci	2.28E+01	4.15E+01	NA	NA
NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
2. Iodines	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
I-131	Ci	7.75E-04	1.14E-03	NA	NA
I-133	Ci	4.56E-03	5.81E-03	NA	NA
I-135	Ci	<lld< td=""><td>2.60E-03</td><td>NA</td><td>NA</td></lld<>	2.60E-03	NA	NA
Total for period	Ci	5.34E-03	9.55E-03	NA	NA
NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
3. Particulates	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Sr-89	Ci	2.32E-04	1.09E-04	NA	NA
Sr-90	Ci	7.39E-07	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-134	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-137	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ba-140	Ci	3.45E-04	5.25E-05	NA	NA
La-140	Ci	1.68E-04	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cr-51	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Mn-54	Ci	<lld< td=""><td>2.47E-05</td><td>NA</td><td>NA</td></lld<>	2.47E-05	NA	NA
Co-58	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Co-60	Ci	1.10E-04	1.75E-04	NA	NA
Mo-99	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for Period	Ci	8.56E-04	3.61E-04	NA	NA

15

ATTACHMENT A (Page 3 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

REACTOR VENTILATION GASEOUS EFFLUENTS
CONTINUOUS MODE

BATCH MODE

NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
1. Fission gases	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Kr-85	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-85m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-87	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Kr-88	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-133	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-135	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-135m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Xe-138	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
AR-41		<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for Period	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
2. Iodines	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
I-131	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
I-133	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
I-135	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Total for period	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
NUCLIDES RELEASED		THIRD	FOURTH	THIRD	FOURTH
3. Particulates	UNIT	QUARTER	QUARTER	QUARTER	QUARTER
Sr-89	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Sr-90	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-134	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cs-137	Ci	5.93E-06	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Ba-140	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
La-140	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Cr-51	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Mn-54	Ci	<lld< td=""><td>5.77E-06</td><td>NA</td><td>NA</td></lld<>	5.77E-06	NA	NA
Co-58	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
Co-60	Ci	3.99E-04	3.19E-04	NA	NA
Mo-99	Ci	<lld< td=""><td>2.49E-05</td><td>NA</td><td>NA</td></lld<>	2.49E-05	NA	NA
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td>NA</td><td>NA</td></lld<></td></lld<>	<lld< td=""><td>NA</td><td>NA</td></lld<>	NA	NA
~	Ci	<lld< td=""><td>1.25E-05</td><td>NA</td><td>NA</td></lld<>	1.25E-05	NA	NA
Sb-125		\	1.202 00		

ATTACHMENT A (Page 4 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

LIQUID EFFLUENTS - SUMMATION OF ALL RELEASES

A PIGGIONI & ACTIVIATIONI CAGES	LINITE	THIRD	FOURTH QUARTER	Est.Total Error %
A. FISSION & ACTIVATION GASES 1. Total Release (not including tritium, gases & alpha)	UNIT Ci	QUARTER 6.92E-03	2.53E-03	5.2
2. Average diluted concentration during batch discharges for the period	μCi/mL	5.01E-10	2.46E-10	
3. Percent of applicable limit*	WB % O %	1.25E-02 5.54E-03	1.52E-03 6.39E-04	
4. Maximum diluted concentration during batch discharges	μCi/mL	1.18E-09	4.59E-10	
B. TRITIUM				
1. Total Release	Ci	8.04E+00	5.70E+00	4.1
2. Average diluted concentration during batch discharges for the period	μCi/mL	5.83E-07	5.53E-07	
3. Percent of applicable limit	%	1.94E-02	1.84E-02	

C. DISSOLVED & ENTRAINED GASES]			
1. Total Release	Ci	9.35E-04	<lld< td=""><td>5.2</td></lld<>	5.2
2. Average diluted concentration during batch discharges for the period	μCi/mL	6.78E-11	<lld< td=""><td></td></lld<>	
3. Percent of applicable limit	%	3.39E-05	NA	
D. GROSS ALPHA ACTIVITY				
1. Total Release	Ci	<lld< td=""><td><lld< td=""><td>14.8</td></lld<></td></lld<>	<lld< td=""><td>14.8</td></lld<>	14.8
2. Average diluted concentration during batch discharges for the period	μCi/mL	<lld< td=""><td><lld< td=""><td>_</td></lld<></td></lld<>	<lld< td=""><td>_</td></lld<>	_
E. VOLUME OF WASTE RELEASED (prior to dilution)	Liters	1.32E+06	1.44E+06	
F. VOLUME OF DILUTION WATER USED DURING BATCH DISCHARGES	Liters	1.38E+10	1.03E+10	
G. TOTAL VOLUME OF DILUTION WATER USED DURING PERIOD (quarter)	Liters	4.94E+11	3.75E+11	

^{*}Whole Body/Organ (ODCM)

ATTACHMENT A (Page 5 of 5)

EFFLUENT & WASTE DISPOSABLE SEMI-ANNUAL REPORT

LIQUID EFFLUENTS

CONTINUOUS MODE BATCH MODE

NUCLIDES RELEASED	UNIT	THIRD QUARTER	FOURTH QUARTER	THIRD QUARTER	FOURTH QUARTER
Sr-89	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Sr-90	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-134	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Cs-137	Ci	<lld< td=""><td><lld< td=""><td>2.96E-03</td><td>2.34E-04</td></lld<></td></lld<>	<lld< td=""><td>2.96E-03</td><td>2.34E-04</td></lld<>	2.96E-03	2.34E-04
I-131	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Co-60	Ci	<lld< td=""><td><lld< td=""><td>2.91E-03</td><td>1.79E-03</td></lld<></td></lld<>	<lld< td=""><td>2.91E-03</td><td>1.79E-03</td></lld<>	2.91E-03	1.79E-03
Co-58	Ci	<lld< td=""><td><lld< td=""><td>7.16E-05</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>7.16E-05</td><td><lld< td=""></lld<></td></lld<>	7.16E-05	<lld< td=""></lld<>
Fe-59	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zn-65	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mn-54	Ci	<lld< td=""><td><lld< td=""><td>8.48E-04</td><td>4.27E-04</td></lld<></td></lld<>	<lld< td=""><td>8.48E-04</td><td>4.27E-04</td></lld<>	8.48E-04	4.27E-04
Cr-51	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Zr-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Nb-95	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Mo-99	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ag-110m	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Ba-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
La-140	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""></lld<></td></lld<>	<lld< td=""></lld<>
Fe-55	Ci	<lld< td=""><td><lld< td=""><td>1.17E-04</td><td>7.21E-05</td></lld<></td></lld<>	<lld< td=""><td>1.17E-04</td><td>7.21E-05</td></lld<>	1.17E-04	7.21E-05
Sb-124	Ci	<lld< td=""><td><lld< td=""><td>9.88E-06</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>9.88E-06</td><td><lld< td=""></lld<></td></lld<>	9.88E-06	<lld< td=""></lld<>
Sb-122	Ci	<lld< td=""><td><lld< td=""><td><lld< td=""><td>6.91E-06</td></lld<></td></lld<></td></lld<>	<lld< td=""><td><lld< td=""><td>6.91E-06</td></lld<></td></lld<>	<lld< td=""><td>6.91E-06</td></lld<>	6.91E-06
Total for Period (above)	Ci	<lld< td=""><td><lld< td=""><td>6.92E-03</td><td>2.53E-03</td></lld<></td></lld<>	<lld< td=""><td>6.92E-03</td><td>2.53E-03</td></lld<>	6.92E-03	2.53E-03
Xe-133	Ci	<lld< td=""><td><lld< td=""><td>7.11E-04</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>7.11E-04</td><td><lld< td=""></lld<></td></lld<>	7.11E-04	<lld< td=""></lld<>
Xe-135	Ci	<lld< td=""><td><lld< td=""><td>2.24E-04</td><td><lld< td=""></lld<></td></lld<></td></lld<>	<lld< td=""><td>2.24E-04</td><td><lld< td=""></lld<></td></lld<>	2.24E-04	<lld< td=""></lld<>

Prepared by:	Associated	7) /	Date: 03-16-00	
Approved by:	- wellas	Bach-	Date: 3-16-00	

Attachment C
Quad Cities Station Meteorological Site Quarterly Joint-Frequency
Wind Rose Tables for 1999
SVP-00-018

Comed QUAD CITIES STATION 33 ft. WIND SPEED and WIND DIRECTION

January-March 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2153 VALUES ARE PERCENT OCCURRENCE

SPEED							. WIND	DIRECT	TION (1	455F5										START?	I ITY (TASSES			
CLASS	N	MKE	NE	ENE	E	ESE	SE	SSE	\$	SSM	SM	MSM	¥	MAKK		W	TOTAL	EU	M	SU	H	SS	MS	ES	TOTAL
EU MU & SU A N L SS M MS ES	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. .00. .00. .00. .00.	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.05	.00	.05
EU MU 1 SU - N 3 SS MS ES	.00 .00 .00 .37 .33 .28	.00 .05 .00 .33 .23 .62	.00 .00 .05 .33 .70 .14	.00 .00 .00 .33 .79 .57	.00 .00 .14 .33 .70 .57	.00 .05 .60 .65 1.04	.00 .00 .70 .75 .76	.09 .00 .05 .51 .56 .38	.00 .00 .00 .19 .47 .28	.00 .00 .00 .28 .42 .05	.00 .00 .00 .14 .51 .24	.00 .00 .09 .60 .47 .28	.00 .00 .05 .60 .65 .38	.00 .00 .33 .47 .33	.00 .00 .09 .42 .47	.00 .00 .00 .19 .42 .38	.09 .05 .42 5.90 8.55 6.78 4.27	.09	.05	.42	5.90	8.55	6.78	4.27	26.06
EU MU 4 SU - N 7 SS MS ES	.33 .19 .19 .65 .74 .05	.51 .05 .19 .65 .70 .05	.09 .09 .33 1.81 1.30 .14	.28 .23 .14 1.95 .79 .37	.05 .05 .23 1.58 .56 .23	.23 .23 .33 .60 .98 .42	.05 .05 .23 .79 .33 .33	.23 .05 .28 .79 .51 .23	.05 .00 .56 .98 .42	.23 .00 .05 .46 .60 .23	.28 .00 .09 .37 .70 .00	.09 .09 .14 .79 .70	.51 .14 .33 2.37 .93 .05	.28 .09 .05 2.65 1.02 .00	.33 .09 .19 1.16 1.02 .00	.09 .05 .14 .60 1.07 .00	3.62 1.39 2.88 17.79 12.91 2.55 .51	3.62	1.39	2.88	17.79	12.91	2.55	.51	41.66
EU MU 8 SU - N 1 SS 2 MS ES	.14 .05 .19 .60 .00	.14 .00 .05 .93 .05 .00	.19 .09 .23 1.25 .28 .00	.05 .05 .37 1.44 .88 .00	.09 .05 .14 1.44 .28 .00	.09 .05 .05 1.16 .28 .00	.42 .09 .23 .46 .05 .00	.14 .00 .00 .28 .33 .00	.33 .00 .09 .42 .37 .00	.74 .09 .00 .19 .51 .05	.00 .00 .05 .23 .42 .00	.05 .09 .00 .84 .05 .00	.46 .14 .09 2.42 .05 .00	.46 .28 .42 4.04 .09 .00	.93 .05 .23 1.53 .28 .00	.28 .05 .00 .56 .00	4.51 1.07 2.14 17.79 3.90 .05	4.51	1.07	2.14	1 7.79	3.90	.05	.00.	29.45
EU 1 MU 3 SU - N 1 SS 8 MS ES	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .05 .00	.00 .00 .00 .33 .00 .00	.00 .00 .00 .33 .00 .00	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .05 .00	.00 .05 .14 .84 .00	.00 .05 .05 .79 .00	.00 .00 .00 .05 .00	.00. .00. .00. .00. .00.	.00 .09 .19 2.51 .00 .00	.00	.09	.19	2.51	.00	.00	.00	2.79

ComEd QUAD CITIES STATION 33 ft. WIND SPEED and WIND DIRECTION

January-March 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							WIND	DIREC	TION (LASSES	·									STAB	ILITY	CLASSES	;		
CLASS	N	ME	NE	ENE	E	ESE	SE	SSE	\$	SSN	S¥	ASA	¥	W	M	W	TOTAL	EU	W	SU	N	SS	MS	ES	TOTAL
EU 1 MJ 9 SU - N 2 SS 4 MS ES	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.00	.00	.00
EU G MU T SU N 2 SS 4 MS ES	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00	00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.00	.00	.00
TOT	4.24	4.52	7.07	8.43	7.75	8.26	5.70	4.71	4.33	4.00	3.17	4.42	10.52	11.96	6.93	4.01	100.00	8.22	2.60	5.62	43.99	25.36	9.43	4.78	100.00
Wind	Direc	tion b	y Stal	rility																					
	N	HNE	NE	ENE	E	ESE	SE	SSE	S	SSH	SH	MSM	¥	MM	NW		TOTAL	-\$1	ABILIT	Y CLAS	SSES-				
	.46 .23 .37 1.72 1.07 .33 .05	.65 .09 .23 1.90 .98 .66	.28 .19 .60 3.39 2.28 .28 .05	.33 .28 .51 3.76 2.47 .94 .14		.33 .28 .42 2.69 1.91 1.46 1.18	.46 .14 .46 1.95 1.12 1.08 .47	.46 .05 .33 1.58 1.40 .61	.37 .00 .09 1.16 1.81 .70	.98 .09 .05 .93 1.54 .33	.28 .00 .14 .74 1.63 .24 .14	.14 .19 .23 2.28 1.21 .33 .05	.98 .33 .60 6.22 1.63 .43	.74 .42 .51 7.80 1.58 .33 .57	1.25 .14 .42 2.83 1.72 .47	.37 .09 .14 1.35 1.49 .43	8.22 2.60 5.62 43.99 25.36 9.43 4.78	Mod Sli Neu Sli Mod	remely eratel ghtly tral ghtly eratel remely	y Unsi Unstal Stable y Stal	table ile ile				
Wind	Direc	tion b	y Wind	Speed	†																				
	H	ME	NE	ENE	Е	ESE	SE	SSE	S	SSN	SĦ	MSM	¥	WHW	W		TOTAL	- ⊌ I	ND SPE	ED CL	ISSES-				
	.00 1.03 2.14 .98 .09 .00		3.76	.00 1.83 3.76 2.79 .05 .00			.00 2.63 1.81 1.25 .00 .00	.00 1.83 2.14 .74 .00 .00	.00 1.08 2.04 1.21 .00 .00	.00 .84 1.58 1.58 .00 .00	.00 1.03 1.44 .70 .00 .00	.00 1.50 1.86 1.02 .05 .00	4.32 3.16		.00 1.08 2.79 3.02 .05 .00	.05 1.13 1.95 .88 .00 .00	.05 26.06 41.66 29.45 2.79 .00	1	CAL 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 m 7.5 m 12.5 m 18.5 m	oph oph oph				

January-March 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2139 Values are percent occurrence

SPEED							. WIND	DIRECT	TON C	ASSES										STABI	LITY (LASSES			
CLASS	N	ME	NE	ENE	E	ESE	SE	SSE	S	SSN	SV	MSM	H	***	W		TOTAL	EU	梸	SU	N	SS	MS	ES	TOTAL
EU MU C SU A N L SS M MS	00. 00. 00. 00.	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00.	.00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - # 3 SS MS ES	.00 .00 .00 .00 .00	.00 .00 .00 .00 .05 .00	.00 .00 .00 .05 .00	.00 .00 .00 .14 .00 .00	.00 .00 .00 .19 .05 .00	.00 .00 .00 .09 .05 .00	.00 .00 .00 .19 .00	.00 .00 .00 .09 .00	.00 .00 .05 .05	.00 .00 .00 .14 .05 .00	.00 .00 .00 .14 .00	.00 .00 .00 .14 .05 .00	.00 .00 .00 .09 .05	.00 .00 .00 .00 .00	.00 .00 .00 .09 .05 .00	.00 .00 .05 .05 .05	.00 .00 .00 1.54 .37 .09	.00	.00	.00	1.54	.37	.09	.23	2.24
EU MU 4 SU - N 7 SS MS ES	.00 .09 .00 .23 .23 .14	.00 .09 .09 .37 .09	.00 .00 .14 .51 .00 .00	.00 .00 .05 .51 .42 .33	.00 .00 .00 .98 .47 .19	.00 .09 .00 .56 .56	.00 .09 .05 .94 .23 .09	.00 .00 .14 .70 .00	.00 .00 .00 .23 .23 .05	.00 .00 .05 .23 .00 .00	.00 .00 .00 .14 .14 .00	.00 .00 .14 .51 .05 .05	.00 .05 .09 .37 .37	.00 .05 .00 .09 .14 .05	.00 .05 .05 .09 .09	.00 .00 .23 .14 .14 .14	.00 .51 1.03 6.64 3.18 1.17	.00	.51	1.03	6.64	3.18	1.17	.70	13.23
EU MU 8 SU - N 1 SS 2 MS ES	.00 .14 .23 .56 .47 .00	.05 .23 .37 .61 .56 .19	.00 .14 .23 1.36 .42 .33	.00 .05 .19 .84 .75 .23	.00 .00 .05 .61 .65 .28	.00 .00 .05 .65 .42 .33	.00 .00 .19 .47 .65 .23	.00 .05 .14 .56 .47 .33	.00 .00 .00 .09 .37 .37	.09 .00 .00 .09 .56 .09	.14 .09 .00 .05 .33 .09	.00 .05 .19 .42 .33 .09	.14 .23 .23 .89 .28 .05	.09 .14 .09 1.08 .14 .09	.05 .09 .14 .33 .47 .05	.09 .23 .09 .19 .09 .00	.65 1.45 2.20 8.79 6.97 2.76 1.22	.65	1.45	2.20	8.79	6.97	2.76	1.22	24.03
ES ES	.00 .00 .19 .37 .79 .14	.51 .09	.00 .23 1.59 .98	.00 .19	.00 .00 .19 1.40 .42 .05	.00 .00 .05 .42 .37 .09	.00 .19		.00 .00 .51 1.22 .70	.14 .09 .00 .37 .61 .47	.00 .00 .14 .28 .47 .14	.05 .09	.19 .28 .19 1.73 .56 .05	.09 .05 .33 3.55 .61 .28	.14 .23	.05 .00 .79 .47	1.36 .65 2.10 17.11 10.33 3.51 .94	1.36	.65	2.10	17.11	10.33	3.51	.94	36.00

COMED QUAD CITIES STATION 296 ft. NIND SPEED and WIND DIRECTION

January-Narch 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							- WIND	DIREC	TION C	I ASSES										STAR	II ITY	CLASSES			
CLASS	N	NNE	NE	ENE	E	ESE	SE	SSE	S	SSN	SH	WSW	¥	WAN!	W	W	TOTAL	EU	MU	SU		\$\$	MS	ES	TOTAL
EU 1 Mu 9 Su	.00 .00 .00	.00 .00 .00	.00 .00 .05	.00 .00 .00	.00 .00 .00	.00. 00. 00.	.05 .05 .05	.00 .00 .05	.09 .14 .05	.33 .05 .05	.00 .00 .05	.00 .00 .00	.05 .00 .05 1.50	.00 .05 .19 2.06	.37 .09 .14 1.45	.09 .05 .05	.98 .42 .70 10.85	.98	.42	.70	10.85				
- N 2 SS 4 MS ES	.00 .00 .00	.23 .00 .00 .00	.84 .19 .05 .00	.65 .09 .00	.42 .09 .00 .05	.89 .47 .05 .09	.23 .05 .09	.42 .23 .09 .00	.94 .00 .05	.84 .05 .05	.56 .05 .00	.19 .00 .00	.00 .00 .00	.05 .00 .00	.09 .00 .00	.00 .00 .00	4.53 .42 .33				10.03	4.53	.42	.33	18.23
EU G MU T SU N 2 SS 4 MS	.00 .00 .05 .00	00. 00. 00. 00. 00.	.00 .00 .00 .00	.00 .00 .00 .28 .05	.00	.00 .00 .00 .05 .00	00. 00. 00. 00.	.00 .00 .00 .05 .14	.00 .05 .33 .33	.23 .00 .05 .09 .28	.00	.00 .00 .00 .28 .00	.00 .09 1.50 .00	.00 .00 .09 1.78 .00	.00 .00 .00 .33 .00	.00 .00 .00 .00 .00 .00 .00 .00	.23 .00 .28 4.91 .84	.23	.00	.28	4.91	.84	.00	ΔÛ	
ES	3.93	.00	.00 7.57	.00 8.42	.00	.00 5.61	.00	.00 5.61	.00	.00 5.66	.00 3.13	.00	.00 9.16	.00 11.13	.00 7.53	3.55	.00 100.00	3.23	3.04	6.31	49.84	26.23	7.95	.00 3.41	6.26 100.00
Kind	Direc	tion b	y Stab	ility																					
	K	MME	NE	ENE	E	ESE	SE	SSE	Ş	SSM	SM	MSM	¥	WY	W	HAN	TOTAL	-\$T	ABILIT	Y CLA	SSES-				
	.00 .23 .42 1.45 1.50 .28 .05	.05 .33 .47 2.06 1.22 .33 .28	.05 .14 .65 4.35 1.64 .47 .28	.00 .05 .42 4.16 2.85 .79 .14	.00 .00 .23 3.65 1.68 .51	.00 .09 .09 2.66 1.87 .56 .33	.28 .14 .47 2.76 1.59 1.03 .37	1.36	.23 .14 .09 1.73 3.13 1.12 .42	.79 .14 .14 1.17 2.34 .61 .47	.14 .09 .19 .84 1.50 .28 .09	.05 .09 .42 2.34 1.03 .23 .14	.37 .56 .65 6.08 1.26 .09 .14	.19 .28 .70 8.56 .94 .47	.75 .37 .56 3.97 1.64 .09	.19 .33 .37 1.68 .70 .19	3.23 3.04 6.31 49.84 26.23 7.95 3.41	Mod Sli Neu Sli Mod	remely eratel ghtly tral ghtly eratel remely	y Uns Unsta Stabl y Sta	table ble e ble				
Wind	Direc	tion b	y Wind	Speed																					
	N	MME	NE	ENE	E	ESE	Æ	SSE	\$	SSM	SW.	MSM	¥		M		TOTAL	-VI	ND SPE	ED CL	ASSES-				
	.00 .09 .75 1.40 1.50 .14	1.45	2.66	2.06 2.90	.00 .28 1.64 1.59 2.06 .56	1.50		2.06	.00 .09 .51 1.08 2.71 1.78 .70		.00 .14 .28 .75 1.08 .84 .05	.75 1.17 1.31 .61		4.91 2.34	.00 .14 .28 1.12 3.51 2.15 .33		24.03 36.00	1	C A L 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 7.5 12.5 18.5	nph nph nph				

COMED QUAD CITIES STATION 33 ft. WIND SPEED and WIND DIRECTION

April-June 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2171 Values are percent occurrence

SPEED							_ NINN	DIDEC	เเพาะเ	23224										STARI	HTTV (I ASSES			
CLASS	N	MME	KE	ENE	E	ESE	SE MILIT	SSE	\$ \$	SSM	SH	MSM	Ĭ	MMM	NW	MM	TOTAL	EU	MU	SU	¥	SS	MS	ES	TOTAL
EU MU C SU A N L SS M MS	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - N 3 SS MS ES	.00 .00 .00 .28 .32 .75	.00 .00 .00 .18 .32 .24	.00 .00 .00 .18 .74 .38	.00 .00 .00 .28 .51 .71	.00 .00 .28 1.06 1.65 1.80	.00 .00 .09 .14 .28 I.23 1.21	.00 .00 .23 1.06 1.04	.00 .00 .09 .09 1.02 .61	.00 .00 .00 .18 .46 .24	.00 .00 .18 .28 .47	.00 .00 .60 .51 .38	.00 .00 .05 .37 .60 .14	.00 .00 .09 .32 .51 .38	.00 .00 .00 .14 .56 .66	.00 .00 .09 .09 .97 .33	.00 .00 .00 .00 .37 .47	.00 .00 .41 3.55 9.58 9.67 7.23	.00	.00	.41	3.55	9.58	9.67	7.23	30.45
EU MU 4 SU - N 7 SS MS ES	.14 .05 .32 .37 .51 .00	.14 .05 .05 .41 .37 .00	.46 .09 .41 .41 .74 .09	.32 .23 .92 1.93 .05	.28 .00 .41 1.24 1.52 .14 .05	.18 .09 .28 I.43 I.43 .97 .32	.92 .28 .60 1.57 1.57 .37	.46 .28 .32 I.20 .74 .05	.23 .05 .32 .41 1.01 .00	.88 .05 .64 .78 .78 .05	.51 .00 .41 1.43 .74 .23	.32 .14 .23 .74 .64 .00	.32 .05 .23 1.11 .97 .00	.41 .05 .23 1.75 .51 .00	.32 .00 .14 1.24 .74 .05	.14 .00 .09 .37 .46 .00	6.03 1.38 4.93 15.38 14.65 1.98 .46	6.03	1.38	4.93	15.38	14.65	1.98	.46	44.82
EU MU 8 SU - N 1 SS 2 MS ES	.18 .00 .09 .28 .05 .00	.28 .00 .05 .23 .09 .00	.37 .05 .32 1.75 .32 .00	.51 .09 .18 1.70 .41 .00	.14 .09 .05 1.24 .32 .00	.74 .05 .09 .37 .18 .00	.41 .09 .09 .32 .23 .00	.46 .00 .00 .14 .14 .00	.18 .00 .00 .18 .00 .00	.41 .14 .18 .28 .28 .00	.28 .00 .00 1.29 .28 .00	.00 .05 .00 .37 .05 .00	.09 .05 .14 .69 .09	.69 .05 .09 .83 .23 .00	.64 .18 .18 .88 .23 .00	.14 .00 .05 .46 .23 .00	5.53 .83 1.52 11.01 3.13 .00	5.53	.83	1.52	I 1.0 I	3.13	.00	.00	22.02
EU 1 MU 3 SU - N 1 SS 8 MS ES	00. 00. 00. 00. 00.	.05 .00 .00 .09 .00	.05 .00 .00 .18 .00	.18 .00 .00 .00 .05 .00	.00 .00 .05 .09 .14 .00	.14 .00 .00 .28 .05 .05	.05 .00 .05 .09 .00	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.05 .00 .00 .00 .00	.00 .00 .05 .14 .00 .00	.00 .00 .00 .18 .00 .00	.05 .05 .14 .14 .00	.05 .05 .00 .18 .00 .00	.05 .00 .00 .00 .00	.00. 00. 00. 00. 00.	.64 .09 .28 1.38 .23 .05	.64	.09	.28	1.38	.23	.05	.00	2.67

Comed QUAD CITIES STATION 33 ft. WIND SPEED and WIND DIRECTION

April-June 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							VINC	DIRFO	TION (LASSES	;									STAE	ILITY	CLAS	SES			
CLASS	K	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSM	2M	WSW	¥		W		TOTAL	EU	N	ĸ			SS	MS	ES	TOTAL
EU I MU 9 SU - H	00. 00. 00.	00. 00. 00.	00. 00. 00.	00. 00. 00. 00.	.00 .00	.05 .00 .00	00. 00. 00.	00. 00. 00.	00. 00. 00.	00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00.	00. 00. 00.	00. 00. 00.	00. 00. 00. 00.	.05 .00 .00	.05	.00	.00	.0		.00			
2 SS 4 MS ES	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00		.00 .00 .00	00. 00. 00.	.00 .00 .00	00. 00. 00.	.00 .00 .00	.00 .00 .00	.00 .00 .00	00. 00. 00.	00. 00. 00.	.00 .00 .00	.00 .00 .00	00. 00. 00.					•	ŲΨ	.00	.00	.05
EU G MU T SU N 2 SS	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	.00	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	.00	.00	.00	.0		.00			
4 MS ES	.00	.00	.00.	.00. 00.		.00.	.00.	.00.	.00.	.00.	.00.	.00	.00	.00	.00.	.00.	.00 .00 .00					•	v	.00	.00	.00
TOT	3.48	3.07	6.89	9.09	10.55	9.63	9.40	5.69	3.33	5.50	7.21	4.22	5.64	6.90	6.38	3.02	100.00	12.25	2.30	7.14	31.3	2 27.	59 1	1.70	7.69	100.00
Wind	Direc	tion b	y Stah	ility																						
	N	MME	NE	ENE	E	ESE	SE	SSE	Ş	SSN	SW	HSH	¥	WW	W	WY	TOTAL	-\$1	ABILIT	Y CLA	SSES-					
	.32 .05 .41 .92 .88 .75	.46 .05 .09 .92 .78 .24	.88 .14 .74 2.53 1.80 .47 .34	1.01 .32 .41 2.90 2.90 .75	3.05	1.11 .14 .46 2.21 1.94 2.24 1.54	1.38 .37 .74 2.21 2.86 1.41 .44	.92 .28 .32 1.43 1.89 .66	.41 .05 .32 .78 1.48 .24	1.34 .18 .83 1.24 1.34 .52 .05	.78 .00 .55 3.45 1.52 .61 .29	.32 .18 .28 1.66 1.29 .14	.46 .14 .60 2.26 1.57 .38 .24	1.15 .14 .32 2.90 1.29 .66 .43	1.01 .18 .41 2.21 1.94 .38 .24	.28 .00 .14 .83 1.06 .47 .24	2.30 7.14 31.32	Mod Sli Neu Sli Mod	remely eratel ghtly tral ghtly eratel remely	y Uns Unsta Stabl y Sta	table ble e ble					
Wind	Direc	tion b	y Wind	Spee	d																					
	N	ME	NE	ENE	E	ESE	SE	SSE	S	SSW	SM	NSH	¥	WW	NN	MM	TOTAL	-NI	ND SPE	ED CL	ASSES	-				
	.00 1.50 1.38 .60 .00	.00 1.28 1.01 .64 .14 .00	2.21	3.68	4.79 3.64 1.84 .28	.51 .05	5.30	.00 1.92 3.04 .74 .00 .00	.00 .93 2.03 .37 .00 .00	.00 .98 3.18 1.29 .05 .00	3.32	2.07	.00 1.54 2.67 1.06 .37 .00	.00 1.69 3.04 1.89 .28 .00	2.49	.00 1.08 1.06 .88 .00 .00	44.82	1	C A L 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 7.5 12.5 18.5	nph nph nph nph					

April-June 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2056 VALUES ARE PERCENT OCCURRENCE

SPEED							- WIND	DIRECT	TION CL	.ASSES										STABI	LITY C	LASSES			
CLASS	N	ME	NE	ENE	E	ESE	SE	SSE	\$	SSM	SM	MSM	¥	MM	W		TOTAL	EU	MU	SU	N	\$\$	MS	ES	TOTAL
EU MU C SU A N L SS M MS ES	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00.00.00.00.00.00.00.00.00.00.00.00.00.	.00. .00. .00. .00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. .00. .00. .00. .00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - N 3 SS MS ES	.00 .00 .00 .00 .05 .10	.00 .00 .00 .10 .00 .05	.00 .00 .00 .10 .05 .10	.00 .00 .05 .05 .05	.00 .00 .00 .15 .00 .00	.00 .00 .00 .00 .05 .05	.00 .00 .00 .05 .00 .00	.00 .00 .00 .05 .00 .00	.00 .00 .00 .15 .00	.00 .00 .05 .10 .05 .05	.00 .00 .00 .15 .05 .00	.00 .00 .00 .05 .00 .10	.00 .00 .05 .10 .05 .00	00. 00. 00. 00. 00.	.00 .00 .00 .00 .05	.00 .00 .05 .05 .05	.00 .00 .10 1.07 .34 .54	.00	.00	.10	1.07	.34	.54	.63	2.68
EU MU 4 SU - N 7 SS MS ES	.00 .19 .19 .24 .19 .10	.05 .19 .00 .10 .10	.10 .15 .05 .29 .15 .00	.05 .10 .10 .39 .19 .10	.00 .05 .29 .49 .24 .19	.00 .10 .19 .29 .05	.05 .24 .05 .39 .19 .05	.10 .10 .10 .10 .10 .24	.00 .15 .10 .24 .05 .00	.05 .34 .34 .49 .15 .00	.00 .10 .34 .15 .15	.10 .05 .05 .34 .29 .10	.10 .15 .15 .15 .00	.05 .15 .15 .05 .19 .05	.24 .10 .10 .19 .05 .10	.05 .00 .05 .15 .39 .19	.92 2.09 2.24 4.04 2.87 1.41 .68	.92	2.09	2.24	4.04	2.87	1.41	.68	14.25
EU MU 8 SU - N 1 SS 2 MS ES	.10 .10 .00 .15 .34 .10	.00 .10 .10 .49 .49 .15	.29 .24 .10 .44 .54 .24	.39 .19 .10 .29 .19 .19	.24 .24 .29 .78 .63 .19	.10 .05 .05 .92 .78 .58	.49 .63 .15 .78 .24 .29	.19 .49 .19 .92 1.26 .88 .19	.05 .24 .10 .39 .44 .44	.49 .15 .19 .29 .49 .34	.39 .15 .10 .39 .29 .10	.05 .15 .10 .29 .49 .10	.34 .05 .00 .29 .34 .05	.10 .19 .10 .68 .15 .00			3.50 3.02 1.65 8.32 7.49 4.09 1.61	3.50	3.02	1.65	8.32	7.49	4.09	1.61	29.67
EU 1 MU 3 SU - N 1 SS 8 MS ES	.05 .05 .00 .24 .49 .00	.15 .05 .00 .44 .15 .05	.00 .15 .88 .24 .05	.00 .10 .15 1.02 1.46 .24		.15 .10 .15 .68 2.09 .78 .15	.24 .15 .97 .73 1.36	.19 .19 .73 1.07 1.41	.39 .15 .15 .83 1.90 .39 .05	.58 .19 .29 .44 .83 .10	.00 .00 .05 .73 .54 .24	.10 .10 .15 .73 .34 .24	.00 .05 .10 .68 .49 .05	.15 .19 .00 1.90 .24 .10	.15 .05 .15 .92 .34 .00	.00 .10 .73 .24	1.80 13.23 11.62 5.16	2.92	1.56	1.80	13.23	11.62	5.16	.78	37.06

Coned QUAD CITIES STATION 296 ft. Wind Speed and WIND DIRECTION

April-June 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							WIN) DIREC	CTION (LASSES	,									STAR	ILITY	CL ASSE	···- 2		
CLASS		MME	NE	ENE	E	ESE	SE	SSE	\$	SSN	21	AZA	Ħ	W	N		TOTAL	EU	梸	SU		SS		ES	TOTAL
EU 1 MU 9 SU - N 2 SS 4 MS ES	.00 .10 .00 .10 .00	.00 .00 .00 .39 .00	.05 .10 .15 1.41 .29 .00	.29 .10 .15 1.02 .19 .00	.00 .00 .29 .00	.15 .00 .00 .49 .34 .05	.00 .00 .05 .19 .05	.24 .15 .10 .15 .15 .05	.05 .00 .00 .15 .05 .00	.15 .19 .39 .19 .00	.00 .00 .10 1.02 .05 .00	.00 .00 .00 .19 .00 .00	.00 .05 .05 .73 .00 .00	.24 .05 .05 .15 .00	.34 .34 .19 1.17 .05 .00	.00 .00 .00 .39 .00	1.51 1.02 .97 8.07 1.51 .15	1.51	1.02	.97	8.07	1.51	.15	.00	13.23
EU G MU T SU N 2 SS 4 MS ES	.00. 00. 00. 00. 00.	.00 .00 .00 .05 .00 .00	.00 .00 .00 .24 .00 .00	.00. 00. 00. 00. 00.	.00. 00. 00.	.05 .05 .05 .19 .05 .00	.00 .05 .00 .19 .10 .00	.05 .00 .00 .39 .00 .00	.00 .00 .05 .24 .00 .00	.05 .10 .10 .15 .00 .00	.00 .05 .05 .05 .00	.00 .05 .05 .00 .00	00. 00. 00. 00. 00.	.15 .00 .05 .24 .00 .00	.05 .00 .00 .24 .00 .00	.00. 00. 00. 00. 00.	.34 .24 .34 2.04 .15 .00	.34	.24	.34	2.04	.15	.00	.00	3.1 I
TOT	3.02	3.50	6.71	7.20	6.27	9.39	8.85	10.17	6.96	7.78	5.40	4.28	4.33	5.45	6.76	3.94	100.00	9.19	7.93	7.10	36.77	23.98	11.33	3.70	100.00
Wind	Direc	tion b	ıv Stal	ility																					
	H	ME	, NE	ENE	E	ESE	SE	SSE	S	SSH	SW	WSH	¥	WH	W	MAN	TOTAL	-\$T	ABILIT	Y CLA:	SSES-				
	.15 .44 .19 .73 1.07 .29	.19 .34 .10 1.56 .73 .44	.58 .49 .44 3.36 1.26 .39 .19	.73 .49 .49 2.77 2.09 .54	.24 .39 .63 3.02 1.36 .39 .24	.44 .29 .44 2.58 3.60 1.51	1.22 1.17 .34 2.43 1.46 1.75 .49	.78 .92 .58 2.33 2.58 2.58 2.58	.49 .54 .39 1.99 2.43 .83 .29	1.31 .92 1.17 1.85 1.70 .49	.39 .29 .63 2.48 1.07 .39	.24 .29 .34 1.65 1.12 .54	.44 .24 .34 1.95 1.02 .10	.68 .58 .34 3.02 .58 .15	.88 .54 .54 3.55 .83 .34	.44 .00 .15 1.51 1.07 .63	9.19 7.93 7.10 36.77 23.98 11.33 3.70	Mod Sli Neu Sli Mod	remely eratel ghtly tral ghtly eratel remely	y Uns Unstal Stabli y Stal	table ole e ble				
Wind	Direc	tion b	y Wind	Speed	j																				
	H	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSM	2#	NSN	Ķ		NV	MAN	TOTAL	-11	ND SPE	ED CL	ASSES-				
	.00 .19 .97 .83 .83 .19		.00 .29 .73 1.90 1.56 1.99 .24	2.97	.15 1.36	2.72		.00 .15 .73 4.13 3.89 .83	1.90 3.84	.00 .29 1.41 2.14 2.48 1.07	.00 .19 .83 1.41 1.65 1.17		.00 .24 .63 1.26 1.36 .83	.00 .63 1.26 2.63 .49		.97 1.07 1.41	.00 2.68 14.25 29.67 37.06 13.23 3.11	1	CALI 0.9 - 3.6 - 7.6 - 2.6 - 1 8.6 - 1	3.5 r 1.5 r 12.5 r 18.5 r	nph nph nph nph				

July-September 1999 196-33 ft. differential Tenperature

NUMBER OF OBSERVATIONS = 2204 VALUES ARE PERCENT OCCURRENCE

S S N N N N N N N N N N N N N N N N N N	S	7 - 4 5 - 8 - 2 - E	3 - L 3 - L 2 - S - S - E - E		SPEED
	#887888 #888			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	==
8888888	288888	£ 2 % % % & 8 8		283838	熏
888888	888888	222233233	S	888888	*
888888	ដន់នងនាន	######################################	888 X 4 5 8 8	888888	2
888888	::::::::::::::::::::::::::::::::::::::	8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.	2.99	888888	m
8888888	828828	88 # F 88 8	2.58 £ 88 8 2.78	888888	Æ
888888			S S S S S S	888888	e e
888888	8888888	28822288	88.51.4. 88.51.4.	888888	DIRECTION CLASSES SSE S SSN
888888	8884888	81.22.1 81.22.1 81.32.1	.32	222222	S CO
8888888	4844388		888228 5	888888	ASSES
8888888	% & & & & & & & & & & & & & & & & & & &	82.1.1 82.1.2 82.1.2 82.1.3 8 82.1.3 8 82.1.3 8 82.1.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	888% E 8 K	888888	≅
8888888	::::::::::::::::::::::::::::::::::::::	£. £. £. £. £. £. £. £. £. £. £. £. £. £	5888888 888888	888888	2
	*****	1.55 1.56 1.66	1.08	888888	38E
		32388888	11.16	888888	E
888888	# & & & & & & & & & & & & & & & & & & &		8885535	::::::::::::::::::::::::::::::::::::::	2
				288888	.
	3.18 2.54 1.23	6.67 2.81 5.72 14.88 18.33 1.50	13.56 13.56 13.70	.2.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	TOTAL
	3. 100	6.67	.00	.8	=
.05	.64	2.81	.8	.00	=
. 8	9	5.72	.36	8	STABILITY CLASSES SU N SS
.00	2.54	88		.9	3 17 0
.95	1.23	₩ .33		.00	ASSES
.00	. 56	1.50	13.61	.9	35
.00	.00	.9	13.70	.27	E
S	8. 21	50.06	41.42	.27	TOTAL
	•		. •	-	r ·

COMED QUAD CITIES STATION 33 ft. WIND SPEED and WIND DIRECTION

July-September 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							- WIND	DIRFC	TION C	I ASSES		- -								STAB	ILITY :	CLASSE	S		
CLASS	N	NNE	NE	ENE	Ε	ESE	SE	SSE	\$	SSW	SW	MSM	¥	WW	HV	NNN	TOTAL	EU	MU	SU	N	SS		ES	TOTAL
EU 1 MU 9 SU - N 2 SS 4 MS ES	90. 90. 90. 90.	90. 90. 90. 90.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00 .00	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.00	.00	.00
EU G NU T SU N 2 SS 4 MS ES	.00 .00 .00 .00 .00	.00. .00. .00. .00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.90	.00	.00
TOT	4.86	3.23	3.84	3.63	6.01	6.10	4.61	5.45	5.79	8.85	9.75	7.86	9.66	7.50	6.66	6.20	100.00	9.85	3.49	6.72	21.73	29.04	15.11	14.07	100.00
Wind	Direc	tion b	y Stah	ility																					
	N	NNE	NE	ENE	Ε	ESE	SE	SSE	Ş	SS#	SW	MSM	¥	W	NV	WW	TOTAL	-\$1	ABILIT	Y CLA:	SSES-				
	.64 .14 .32 1.86 1.63 .28	.68 .14 .36 .91 .36 .46	.32 .18 .27 .73 1.00 .60	.41 .18 .27 .77 1.05 .42 .53	.05 .05 .09 .59 .86 1.34 3.03	.05 .18 .18 1.18 .82 .93 2.76	.32 .09 .23 .59 1.32 1.01	.59 .36 .50 1.00 1.09 1.48 .43	.18 .19 .09 1.18 2.36 1.48 .32	1.54 .27 .91 2.09 2.41 1.20 .43	.68 .27 .87 2.50 3.95 .74 .75	.54 .45 .73 2.27 2.50 .74 .63		1.04 .32 .36 1.32 2.05 1.25 1.17	.64 .09 .36 1.54 2.91 .69	1.04 .23 .32 .95 2.86 .37 .43	9.85 3.49 6.72 21.73 29.04 15.11 14.07	Mod Sli Neu Sli Mod	renely lerated ightly tral ightly lerated irenely	y Unsi Unstal Stable y Stal	table ble e ole				
Wind	Direc	tion b	y Wind	Speed																					
	H	NNE	NE	ENE	E	ESE	SE	SSE	\$	SSW	S#	MSM	¥	WW	W		TOTAL	-WI	ND SPE	ED CL	ASSES-				
	.00 .60 3.40 .86 .00	.00 .83 2.09 .32 .00 .00	.05 1.52 2.09 .18 .00 .00		.05 4.87 1.09 .00 .00	.05 4.51 1.36 .18 .00 .00	.00 2.66 1.81 .14 .00 .00	.00 2.54 2.77 .14 .00 .00	.00 2.30 3.27 .23 .00 .00		.00 2.72 5.81 1.23 .00 .00		.05 5.03 3.49 1.09 .00 .00		.00 1.89 4.31 .45 .00 .00	.00 1.44 3.77 .95 .05 .00	.27 41.42 50.00 8.21 .09 .00	1	C A L 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 t 7.5 t 12.5 t 18.5 t	nph aph aph aph				

July-September 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2203 Values are percent occurrence

SPEED					-		- WIND	DIREC	TION C	LASSES										STABI	LITY (LASSES			
CLASS	N	HNE	NE	ENE	Ε	ESE	ŞE	SSE	\$	SSN	SĦ	NSW	¥	WWW	NH		TOTAL	EU	N	SU	N	\$\$	MS	ES	TOTAL
EU HU C SU A N L SS M MS ES	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00.	90. 90. 90. 90.	.00 .00 .00 .00 .00 .00	.00	.00	.00	.00	.00	.00	.00	.00
EU NU 1 SU - N 3 SS NS ES	.00 .00 .00 .09 .00	.00 .00 .00 .00 .14 .09	.00 .00 .00 .00 .05 .05	.00 .00 .05 .05 .06	.00 .00 .00 .00 .00	.00 .00 .00 .05 .00	.00 .00 .00 .14 .05 .00	.00 .00 .05 .00 .00	.00 .00 .00 .00 .05 .14	.00 .00 .05 .00 .05	.00 .00 .00 .00 .00	.00 .05 .00 .00 .00	.00 .05 .05 .09 .00	.00 .05 .05 .00 .00	.00 .00 .00 .18 .00 .09	.00 .00 .00 .00	.00 .14 .18 .59 .36 .64	.00	.14	.18	.59	.36	.64	.77	2.68
EU MU 4 SU - N 7 SS MS ES	.05 .05 .05 .14 .18 .18	.05 .14 .05 .05 .18 .18	.05 .09 .09 .05 .14 .14	.00 .14 .14 .05 .09 .14	.00 .14 .23 .27 .05 .18	.00 .05 .09 .41 .14 .05	.00 .00 .14 .18 .09 .00	.00 .14 .14 .32 .09 .18	.00 .05 .14 .32 .05 .23	.09 .36 .18 .14 .23 .09	.05 .50 .41 .36 .32 .05	.32 .45 .18 .36 .41 .05	.32 .41 .27 .32 .27 .23 .14	.32 .36 .27 .36 .09 .23	.18 .18 .23 .27 .32 .23 .14	.14 .23 .90 .23 .32 .18 .36	1.54 3.27 2.59 3.81 2.95 2.32 3.09	1.54	3.27	2.59	3.81	2.95	2.32	3.09	19.56
EU MU 8 SU - N 1 SS 2 MS ES	.45 .32 .05 .82 .59 .32 .27	.54 .41 .09 .68 .41 .09	.18 .36 .23 .36 .14 .18	.09 .05 .09 .45 .23 .23	.00 .05 .05 .45 .27 .09	.09 .05 .05 .32 .23 .36	.09 .18 .05 .32 .23 .50	.59 .54 .23 .41 .68 .64	.23 .18 .14 .27 .54 .50	.59 .23 .05 .59 .68 .36	.36 .23 .14 .73 .95 .54	.59 .41 .36 .36 .64 .64	.32 .23 .14 .32 .77 .14	.41 .09 .14 .45 .27 .41	.45 .23 .09 .36 .82 .41	.64 .27 .18 .50 .82 .32	5.63 3.81 2.04 7.40 8.26 5.72 4.18	5.63	3.81	2.04	7.40	8.26	5.72	4.18	37.04
	.05 .05 .05 1.32 1.04 .27	.05 .05 .09 .50 .50	.05 .09 .00 .41 .64 .05	.18 .09 .09 .09 .23 .18	.00 .00 .00 .00 .23 .00	.00 .09 .05 .05 .18 .68	.00 .09 .00 .27 .32 .41	.18 .09 .14 .27 .59 .54	.27 .14 .09 .59 1.04 .86	1.00 .32 .23 .95 2.18 .64 .18	.32 .32 .23 .54 1.59 .32	.18 .05 .14 .41 1.13 .18	.41 .18 .23 .91 .82 .18	.36 .23 .05 .54 .50 .18	.36 .09 .14 .77 .59 .68	.36 .18 .00 .54 1.32 .27	3.77 2.04 1.50 8.17 12.89 5.54 1.77	3.77	2.04	1.50	8.17	12.89	5.54	1.77	35.68

COMED QUAD CITIES STATION 296 ft. WIND SPEED and WIND DIRECTION

July-September 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							- NIND	ntrec	TION C	LASSES										STAR	HITY	CLASSE	S		
CLASS	N	NNE	Æ	ENE	Ε	ESE	SE	SSE	\$	SSM	SW	HZH	¥	MNA	NH	HHH	TOTAL	EU	MU	SU		\$\$		ES	TOTAL
EU 1 Mu 9 Su	.00 .00 .00	.00. 00. 00.	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00 .00 .00	.00. .00. .00.	.00. 00. 00.	.00 .00 .05	.14 .05 .27	.05 .05 .00	.00 .00 .00	.14 .00 .09	.23 .00	.00 .00 .05	.00. 00. 00.	.54 .09 .45	.54	.09	.45					
- N 2 SS 4 MS ES	.05 .00 .00	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00.	00. 00. 00.	.00 .00 .05 .00	.00 .05 .00	.09 .18 .05	.23 .36 .09	.45 .50 .00	.18 .45 .14	.09 .00 .00	.00 .05 .05	.23 .05 .05	.00 .05 .00 .00	.14 .09 .00	1.45 1.77 .41 .09				1.45	1.77	.41	.09	4.01
EU G MU T SU	.00 .00 .00	.00.	.00.	.00. 00. 00.	.00.	.00. 00. 00.	00. 00. 00.	.00. 00. 00.	.00. 00. 00.	.00. 00. 00.	.00. 00. 00.	.00 .05 .00	.00. 00. 00.	.00 .00 .00	00. 00. 00.	.00. 00. 00.	.00 .05 .00	.00	.05	.00					4.81
2 SS 4 MS ES	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00.	00. 00. 00. 00.	.00. 00. 00.	.00 .14 .00	.05 .00 .00	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00.	.00. 00. 00.	00. 00. 00.	00. 00. 00.	.05 .14 .00			.40	.05	.14	.00	.00	
LV	100		100	100	104	100	100	100	100	100	,,,	•••	.,,		•••	•••								,,,,	.23
TOT	6.72	4.95	3.45	2.91	2.27	3.31	4.63	7.76	7.63	11.03	9.58	7.49	7.49	6.54	7.04	7.22	100.00	11.48	9.40	6.76	21.47	26.37	14.62	9.90	100.00
Wind	Direc	tion b	y Stab	ility																					
	N	NNE	NE	ENE	£	ESE	SE	SSE	\$	SSW	SH	NSH	¥	WHW	HM	棴	TOTAL	-\$1	ABILIT	Y CLA	SSES-				
	.54 .41 .14	.64 .59 .23	.27 .54 .32	.27 .27 .32	.00 .18 .27	.09 .18 .18	.09 .27 .18	.77 .77 .54	.50 .36 .41	1.82 .95 .77	.77 1.09 .77	1.09 1.00 .68	1.18 .86 .77	1.32 .73 .50	1.00 .50 .50	1.13 .68 .18	9.40 6.76	Mod Sli	remely leratel ghtly	y Uns	table				
	2.41 1.82 .77 .64	1.23 1.23 .45 .59	.82 .95 .41 .14	.64 .59 .54 .27	.73 .54 .32 .23	.82 .54 1.13 .36	.91 .73 .91 1.54	1.41	1.41 2.18 1.82 .95	2.18 3.63 1.09 .59	1.82 3.31 1.09 .73	1.23 2.18 .91 .41	1.63 1.91 .64 .50	1.59 .91 .95 .54	1.59 1.77 1.41 .27	1.41 2.54 .77 .50	21.47 26.37 14.62 9.90	S1i Mod	itral ghtly leratel remely	y Sta	ble				
Wind	Direc	tion b	y Wind	Speed	j																				
	Ņ	MNE	NE	ENE	E	ESE	\$E	SSE	\$	SSW	SW	WSW	¥	***		HAN	TOTAL	-\	IND SPE	ED CL	ASSES-				
	.00 .18 .86 2.81 2.81 .05	.00 .23 1.04 2.41 1.27 .00	.00 .09 .54 1.59 1.23 .00	.00 .23 .59 1.23 .86 .00	.00 .05 .91 1.09 .23 .00	.00 .14 .95 1.13 1.04 .05	.00 .18 .68 2.04 1.68 .05	3.95	.00 .27 1.00 2.32 3.18 .73	2.68 5.49	.00 .05 1.86 3.40 3.40 .86		.00 .41 1.95 2.09 2.72 .32 .00	.00 .18 2.04 1.86 1.91 .54	1.54 2.45	.00 .05 1.45 2.81 2.68 .23	2.68 19.56 37.04 35.68	l	CAL 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 7.5 12.5 18.5	nph nph nph nph				

October-December 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2184 Values are percent occurrence

I.42	19.41	44.37	34.66	Parameter Agency	TOTAL
.00	.00	1.92	10.39	.9	23
.00	.8	4.35	9.52 1	.05	35
:3	3.71	17.35	8.42	.00	STABILITY CLASSES SU N SS
.92	9.25	13.69 1	5.82	.8	N III (I
.00	1.83	3.21 1	.32	.00	SIABIL
8	::	.92	.09	.00	a
- 	3.89	2.93	.09	.00	₽
# 88 25 28 38 38 38 38 38 38 38 38 38 38 38 38 38	3.89 1.83 9.25 3.71	2.93 .92 3.21 13.69 17.35 4.35 1.92	16.39 16.39 16.39		TOTAL
888888	8. E. S.	1.05 1.28 1.28 1	288888	888888	
8888888			8668444	2223333	牵
20.5 1. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	42.11.12 42.22.23 43.23.23	.23 .14 .27 .13 .14	.00 .00 .32 .50	5288888	差
8288888			1.50.00.00		•
828888		28181888	8 8 8 8 E E	:	SE.
888888	E 2 2 5 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5	1.55 55 55 55 55 55 55 55 55 55 55 55 55	8884758	888888	≆ 2
888888	825 K 82 8			888888	ASSES VA
888888	*****	1.50	8883336 8883386		S CE
888888		1.42.63	88.88.88	888888	DIRECTION CLASSES SSE S SSW
888888		8 8 8 7 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		888888	£ 1
888888	882838	1.37 5.65 1.37 5.65 1.37 5.65	.00 .00 .00 .46 46	8888888	22
::::::::::::::::::::::::::::::::::::::	888888	22.56.56.52.56.52.56.52.56.56.56.56.56.56.56.56.56.56.56.56.56.	.90 .90 .90 .51 1.05 2.24	888888	
888888	888888	882 6 28	888882	888888	R
	888%888	00.05.27.05	888888	888888	75
888888	8888888	8845888	8888475	588888	熏
888888	25.5.5.5.5.5.5	2888±888	888844	888888	Æ
8 1 - 3 1 E	2	7 - 4 SEE	3 - 1 3 - 1 2 5 8 2 5 2	SSSSSS	SPEED

COMED QUAD CITIES STATION 33 ft. MIND SPEED and WIND DIRECTION

October-December 1999 196-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							- WIND	DIREC	TION C	LASSES										- STAB	ILITY	CLASSE	S		
CLASS	N	MME	NE	ENE	£	ESE	SE	SSE	S	22M	SI	NS1	¥	AWA	N		TOTAL	EU	MU	SU	N	22	MS	ES	TOTAL
EU 1 MU 9 SU - N 2 SS 4 MS	00. 00. 00. 00.	.00 .00 .00 .00 .00	90. 90. 90.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	90. 90. 90.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	.00	.00	.00	.00.	.00	.00		
ES	.00	M.	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00							.00	.00
EU G MU T SU N 2 SS 4 MS ES	.00 .00 .00 .00 .00	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00	.00.	.00	.00	.00	.00	.00	
LJ	.00	100	100	.00	.00	,00	.00	.00	.00	100	,,,,	.00	.00	100	.00	.,,,	.00							.00	.00
TOT	3.17	2.35	3.83	3.37	6.15	7.18	7.75	5.59	5.07	7.62	6.97	5.70	11.68	10.80	7.71	5.06	100.00	7.05	1.79	5.45	29.67	29.72	13.92	12.41	100.00
Wind	Direc	tion b	y Stab	ility																					
	N	MNE	NE	ENE	Ε	ESE	SE	SSE	S	SSH	SH	NSH	¥	WHE	NW		TOTAL	-\$1	TABILI'	TY CLA	SSES-				
	.09 .05 .18 1.97 .60 .14	.00 .00 .23 1.42 .23 .27 .20	.09 .05 .32 1.56 1.10 .41 .29	.00 .00 .27 .92 1.01 .78 .39	.05 .00 .18 1.11 .78 1.51 2.52	.14 .18 .87 1.20 1.51 3.15	.41 .09 .27 .83 2.25 2.15 1.74	.60 .09 .09 .83 1.88 1.28 .83	.55 .05 .09 .92 2.20 .78 .49	1.60 .09 .50 1.61 2.61 1.10 .10	.60 .14 .64 2.25 2.89 .41	.41 .14 .27 2.62 1.75 .41	1.01 .23 .64 4.72 3.59 1.05	.41 .14 .32 3.44 3.72 1.37	.46 .41 .82 2.93 2.29 .55 .24	.64 .18 .41 1.69 1.61 .18	7.05 1.79 5.45 29.67 29.72 13.92 12.41	Mod Sli Ned Sli Mod	remeli lerate ightly itral ightly lerate remeli	ly Uns Unsta Stabl ly Sta	table ble e ble				
Hind	Direc	tion b	y Wind	Speed	j																				
	K	WE	NE	ENE	E	ESE	SE	SSE	\$	SSW	SM	MSM	K	WHI	NW	HIL	TOTAL	-17	IND SPI	EED CL	ASSES:				
	.00 .56 1.51 1.10 .00 .00	.00 .75 1.01 .60 .00	.00 1.58 1.92 .32 .00 .00	.09 2.05 1.24 .00 .00	.00 4.59 1.47 .09 .00	.00 4.07 2.66 .46 .00 .00	.00 3.76 3.21 .78 .00 .00	.05 2.25 2.75 .55 .00 .00	.00 .00	.00 1.53 3.94 2.15 .00 .00	3.48	.00 2.04 2.06 1.60 .00	.00 3.12 5.36 2.93 .27 .00	4.44 2.29 .73	.00 1.49 3.98 1.83 .41 .00	.00 .75 2.79 1.51 .00 .00	.14 34.66 44.37 19.41 1.42 .00]	C.A.L. 0.9 - 3.6 - 7.6 - 12.6 - 18.6 -	3.5 7.5 12.5 18.5	mph mph mph				

ComEd QUAD CITIES STATION 296 ft. WIND SPEED and WIND DIRECTION

October-December 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

NUMBER OF OBSERVATIONS = 2201 Values are percent occurrence

SPEED							- WIND	NIDEC	TION C	LASSES										- STAR	i iiv i	1 #CCEC			
CLASS	N	NN E	NE	ENE	E	ESE	SE	SSE	\$	SSW	SH	AZA	¥	W	N	W	TOTAL	EU	W	SU	M .	SS	MS	ES	TOTAL
EU MU C SU A N L SS M MS ES	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	90. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00.	.00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00.	00. 00. 00. 00. 00.	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00	.00	.00	.00	.00	.00	.00	.00
EU MU 1 SU - N 3 SS MS ES	.00 .00 .00 .00 .05 .00	.00 .00 .00 .05 .00	.00 .00 .00 .05 .00	.00 .00 .00 .18 .05 .05	.00 .00 .00 .18 .14 .00	.00 .00 .00 .09 .05	.00 .00 .00 .18 .00 .05	.00 .00 .00 .23 .14 .05	.00 .00 .00 .09 .18	.00 .00 .00 .05 .14 .00	.00 .00 .00 .18 .05 .00	.00 .00 .00 .14 .05 .00	.00 .00 .00 .14 .00 .05	.00 .00 .00 .00 .09	.00 .00 .00 .27 .00 .00	.00 .00 .00 .00 .05	.00 .00 .00 1.91 .82 .36	.00	.00	.00	1.91	.82	.36	.64	3.73
EU MU 4 SU - N 7 SS MS ES	.00 .05 .09 .23 .18 .14	.00 .00 .14 .14 .00 .18	.00 .00 .14 .41 .00 .14	.00 .14 .23 .27 .14 .18	.00 .00 .09 .45 .09	.00 .09 .00 .50 .23 .00	.00 .00 .00 .14 .18 .09	.00 .00 .00 .18 .23 .14	.00 .00 .00 .14 .09 .14	.00 .00 .14 .23 .00 .05	.00 .00 .32 .55 .18 .05	.05 .09 .09 .45 .14 .05	.09 .09 .27 .64 .18 .05	.05 .09 .23 .32 .18 .00	.00 .09 .50 .45 .14 .05	.00 .14 .23 .27 .05 .23	.18 .77 2.45 5.36 2.00 1.45 1.59	.18	.17	2.45	5.36	2.00	1.45	1.59	13.81
EU MU 8 SU - N 1 SS 2 MS ES	.00 .05 .05 .82 .32 .50	.00 .00 .00 .41 .18 .32	.05 .05 .05 .36 .45 .32	.00 .00 .05 .41 .27 .18	.00 .00 .09 .09 .32 .36	.05 .05 .09 .18 .32 .23	.00 .09 .05 .32 .36 .09	.05 .09 .18 .41 .50 .59	.00 .05 .00 .14 .36 .23	.14 .14 .09 .45 .27 .36	.14 .27 .14 .91 .41 .27	.00 .14 .05 .36 .18 .18	.45 .18 .14 .64 .45 .05	.14 .09 .27 .77 .50 .14	.14 .09 .09 .86 .55 .27	.14 .00 .05 .50 .55 .95	1.27 1.27 1.36 7.63 6.00 5.04 2.82	1.27	1.27	1.36	7.63	6.00	5.04	2.82	25.40
EU 1 MU 3 SU - N 1 SS 8 MS ES	.05 .00 .09 I.04 .55 .32	.00 .00 .00 .91 .32 .09	.00 .00 .00 .45 .23 .18	.00 .00 .30 .32 .23 .00	.00 .00 .00 .00 .18 .27	.00 .00 .09 .00 .27 .23	.05 .14 .05 .18 .86 .73	.36 .14 .05 .18 1.23 1.00 .45	.32 .00 .09 .59 1.68 1.27 .45	.45 .09 .14 .45 1.09	.23 .27 .23 .45 1.54 .09	.18 .14 .14 .68 .27 .05	.09 .14 .18 1.18 .36 .18	.05 .00 .18 I.09 I.41 .14	.18 .18 .18 1.54 1.64 .50	.41 .32 .41 1.18 1.36 .18	2.36 1.41 1.82 10.27 13.22 6.36 2.82	2.36	1.41	1.82	10.27	13.22	6.36	2.82	38.26

COMED QUAD CITIES STATION 296 ft. WIND SPEED and WIND DIRECTION

October-December 1999 296-33 ft. DIFFERENTIAL TEMPERATURE

SPEED							- WIND	ntre(TION (LASSES	`									STAR	II TTY	CLASSE	S		
CLASS	H	NNE	NE	ENE	E	ESE	SE	SSE	S	SSM	SM	MZM	¥	XXX	NV	HH	TOTAL	EU	MU	SU		\$\$		ES	TOTAL
EU 1 MU 9 SU - N 2 SS 4 MS ES	.00 .00 .05 .09 .05	.00 .00 .00 .14 .00 .00	.00 .00 .00 .05 .05 .00	.00 .00 .00 .00 .05 .00	.00 .00 .00 .05 .00	.00 .00 .00 .00 .14 .14	.14 .00 .05 .14 .14 .23	.00 .00 .09 .14 .45 .05	.18 .09 .18 .50 1.54 .09	.41 .18 .18 1.00 1.32 .18	.00 .09 .00 .41 1.09 .05	.00 .05 .50 .18 .00	.00 .14 .09 .95 .27 .05	.00 .00 .00 I.18 .09 .05	.05 .05 .27 .68 .32 .05	.00 .00 .14 .23 .09 .00	.77 .55 1.09 6.00 5.82 .86	.77	.55	1.09	6.00	5.82	.86	.23	15.31
EU G MU T SU N 2 SS 4 MS ES	00. 00. 00. 00. 00.	.00. 00. 00. 00.	00. 00. 00. 00. 00.	.00 .00 .00 .00 .00 .00	00. 00. 00. 00. 00.	.00. 00. 00. 00. 00.	.00 .00 .00 .00 .05 .00	.00 .00 .00 .09 .05 .00	.00 .00 .00 .09 .27 .00	.00 .00 .09 .09 .00	.00 .00 .00 .09 .09	.00 .00 .00 .09 .09	.00 .05 .18 .32 .05 .00	.00 .00 .00 .50 .09	.00 .09 .05 1.09 .00 .00	00. 00. 00. 00. 00.	.00 .14 .23 2.36 .77 .00	.00	.14	.23	2.36	.77	.00	.00	3.50
TOT	5.59	3.18	3.13	2.86	2.59	3.09	4.95	7.59	9.22	10.59	8.86	4.50	7.86	7.81	10.45	7.72	100.00	4.59	4.13	6.95	33.53	28.62	14.08	8.09	100.00
Hind	Direc	tion b	y Stab	ility																					
	N	MME	NE	ENE	E	ESE	SE	SSE	\$	SSM	SM.	MSM	V	MANA	W		TOTAL	-\$T	ABILIT	Y CLA	SSES-				
	.05 .09 .27 2.18 1.14 .95 .91	.00 .00 .14 1.64 .50 .59	.05 .05 .18 1.32 .73 .68 .14	.00 .14 .27 1.18 .73 .41 .14	.00 .00 .18 .73 .77 .64	.05 .14 .18 .77 1.00 .59	.18 .23 .14 .95 1.59 1.18 .68	1.82	1.73	1.00 .41 .55 2.27 2.91 1.73 1.73	.36 .64 .68 2.59 3.36 .45	.23 .36 .32 2.23 .91 .27 .18	.64 .59 .86 3.86 1.32 .36 .23	.23 .18 .68 3.95 2.27 .41	.36 .50 1.09 4.91 2.64 .86	.55 .45 .82 2.18 2.04 1.41 .27	4.59 4.13 6.95 33.53 28.62 14.08 8.09	Mod Sli Neu Sli Mod	remely eratel ghtly tral ghtly eratel remely	y Uns Unsta Stabl y Sta	table ble e ble				
Wind	Direc	tion b	y Wind	Speed	l																				
	N	MNE	NE	ENE	£	ESE	SE	\$SE	S	SSN	SW	WSW	¥	WHW	H		TOTAL	- W I	ND SPE	ED CL	ASSES-				
	.00 .14 .82 2.18 2.23 .23 .00	.00 .09 .50 1.09 1.36 .14	.00 .09 .77 1.32 .86 .09	.00 .27 1.09 .91 .55 .05	.36 .77 .95 .45	.95 .64 .32	2.18	3.41	.50 1.09 4.41 2.59	1.86	3.13	.18 .91 1.00 1.50	.27 1.41 1.95	1.91 2.86 1.32	1.27 2.04 4.23	2.36 3.86 .45	.00 3.73 13.81 25.40 38.26 15.31 3.50	1	CAL 0.9 - 3.6 - 7.6 - 2.6 - 8.6 -	3.5 7.5 12.5 18.5	rph rph rph rph				

Attachment D
Solid Waste Disposition Summary
SVP-00-018

- *** Solid Waste Disposition Summary ***

 During Period From 01/01/99 through 12/31/99
- (1) Annual total quantity of solid radwaste 5.14E+02 cubic meters

 Annual total radioactivity of solid waste 2.44E+04 Ci
- (2) Obtain an estimate of major radionuclide composition of solid waste:

Mn-54	5.59E+05 mCi
Fe-55	1.26E+07 mCi
Ni-59	4.29E+03 mCi
Fe-59	5.26E+03 mCi
Co-60	1.02E+07 mCi
Ni-63	8.76E+05 mCl
Cs-137	2.73E+04 mCl

- (3) Disposition of solid waste shipments
 - a) Shipments to Barnwell SC 4
 - b) Shipments to Memphis TN 2
 - c) Shipments to Oak Ridge TN 13
 - d) Shipments to Richland WA 12
- (4) Disposition of irradiated fuel shipments

None

Submitted By:

Reviewed By:

Attachment E RW-AA-10, Revision 1, Process Control Program for Radioactive Wastes, Quad Cities Nuclear Power Station SVP-00-018

PROCESS CONTROL PROGRAM FOR RADIOACTIVE WASTES

1. PURPOSE

- 1.1. The purpose of the Process Control Program (PCP) is to establish the process parameters which will provide a reasonable assurance all Low Level Radioactive Wastes (LLRW) processed by the in-plant waste process systems, or vendor supplied waste process systems, or off-site vendor processing are used as applicable to meet or exceed any and all acceptance criteria for processing, packaging, on-site storage, shipment or disposal at a Licensed Burial Facility as required by Technical Specifications.
- 1.2. The PCP delineates the limitations on the process to the extent necessary to:
- 1.2.1. Provide reasonable assurance to a reviewer that the process will be operated as necessary to meet the technical requirements, and provide an inspector an appropriate basis for assessing the adequacy of the procedures, even though the inspector may not be a qualified Radwaste specialist.
- 1.2.2. The criteria for the ComEd NGG PCP include all NRC, Department of Transportation (DOT), State, and Licensed Burial Facility's rules and regulations for the processing, packaging, on-site storage, and shipping of Low level radioactive waste.

2. TERMS AND DEFINITIONS

- 2.1. Process Control Program (PCP): The program which contains the current formulas, sampling, analysis, tests and determination to be made to ensure that processing and packaging of solid radioactive waste based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10CFR Parts 20,61 and 71, state regulations, burial ground requirements, and other requirements governing the disposal of solid radioactive waste.
- 2.2. **Solidification:** Liquid waste processed to form either a stable or unstable freestanding monolith.
- 2.2.1. Currently all solidification is performed by vendors. The vendor process control procedures contain the formulas, sampling, analysis, test and documentation required to be made to ensure that processing and packaging of waste is accomplished to assure compliance with the required regulations.
- 2.3. **Dewatering:** The removal of liquids from liquid waste streams to produce a waste form that meets the requirements of 10CFR Part 61 and applicable burial site criteria.

- 2.4. High Integrity Container: (HIC): A disposable container which can be utilized to package dewatered liquid wastes, filter cartridges or dry active waste requiring stability for disposal. The use of HICs is an alternative to solidification or encapsulation for burial stability.
- 2.5. **Encapsulation:** The process of placing cartridge filters or mechanical components into a special purpose disposable container and then completely surrounding the waste material with an approved stabilization media, such as cement.
- 2.6. Liquid Waste Processing Systems: In plant or vendor supplied processing systems consisting of equipment utilized for evaporation, filtration, demineralization, dewatering, solidification or reverse osmosis (RO) for the treatment of liquid wastes. (such as Floor Drains, Chemical Drains and Equipment Drain inputs.)

2.7. Waste Streams:

- 2.7.1. Filter media (powdered, bead resin and fiber), filter cartridges, pre-coat body feed material, and contaminated charcoal. Fuel pool activated hardware, sump sludge's, tank residue, high activity filter cartridges, concentrated liquids, contaminated waste oil, dried sewage or wastewater treatment plant waste, and other waste from cleanup of inadvertent contamination's.
- 2.7.2. Dry Active Waste (DAW): Waste such as filters, low activity cartridge filters, paper, wood, glass, plastic, cardboard, hoses, cloth, and metals, etc, which have become contaminated as a consequence of normal operating, housekeeping and maintenance activities.

3. **RESPONSIBILITIES – None.**

4. MAIN BODY

- 4.1. Changes to Radioactive Waste Treatment Systems may be made provided that the change is reported in the Annual Operating Report for the period in which the evaluation was reviewed by the Plant Operations Review Committee (PORC).
- 4.2. Changes to the PCP shall be documented and records of reviews performed shall be retained for the duration of the unit-operating license. This documentation shall contain:
- 4.2.1. Sufficient information to support the change together with the appropriate analyses or evaluations justifying the change.
- 4.2.2. A determination that the change will maintain the overall conformance of the solidified waste product to existing requirements of Federal, State, or other applicable regulations.

- 4.3. The changes shall become effective upon review and acceptance by the PORC.
- 4.4. The changes may be made by submitting this information as part of the semiannual or annual radioactive effluent release report, NUREG 1301.
- 4.5. Waste sent directly to burial will comply with the following 10 CFR criteria through the Chemical Control Program, procedures and/or processing.
- 4.5.1. No waste sent to burial may be packaged in a cardboard or fiberboard box.
 - 4.5.2. Liquid waste must be solidified, dried or processed to a solid form.
 - 1. Waste containers shall be controlled to contain <1% free standing liquid when stability is provided by the container or <0.5% when stability is provided by the waste form.
 - 2. Waste will not be capable of detonation or explosive decomposition/reaction.
 - 3. Non-gaseous waste will be controlled such that no waste container contains or is capable of generating toxic gases, vapors or fumes harmful to people.
 - 4. Waste will be non flammable.
 - 5. Gaseous waste will not exceed 1.5 atmosphere pressure at 20 degrees centigrade or 100 Curies per container.
 - 6. Waste containing hazardous, biological, pathogenic, or infectious material will be treated using vendor processes to reduce the potential hazard from non-radiological materials.
 - 4.6. All shipping containers will be inspected for compliance with DOT, station, on-site storage, and/or burial site requirements prior to and during use per the following:
 - 4.6.1. When applicable, containers of concentrated waste, spent resin and sludge's will be inspected for quality of solidification and/or dewatering requirements.
 - 4.6.2. Adherence to the station/burial site dewatering requirements.
 - 4.6.3. If free standing water or poor solidification is observed, **then** samples of the particular series of batches will be taken for root cause determination.
 - 4.6.4. Additional samples will be taken, as warranted, to ensure freestanding water and solidification requirements are maintained.
 - 4.6.5. Process parameters in use during the production of these containers will be investigated and corrective actions taken as warranted.

- 4.7. All wastes shipped off site will be packaged in DOT approved shipping containers per the following:
 - 4.7.1. All transport vehicles must meet the appropriate DOT and NRC requirements prior to shipping.
 - 4.7.2. Packages will be inspected and shipments (vehicles) will be inspected for compliance with DOT, and NRC regulations prior to leaving the site.
 - 4.7.3. Shipments that are being sent to an burial will be inspected to ensure that the burial site criterion is adhered to.
 - 4.7.4. Shipments that are being sent to off site processor will be inspected to ensure that the vendor waste acceptance criteria and license is adhered to.
 - 4.8. On-site vendors will be required to meet the following:
 - 4.8.1. All the on-site vendor procedures require onsite review prior to initial implementation.
 - 4.8.2. If onsite vendor does solidification/stabilization, then the licensed burial sites must approve encapsulation media.
 - 4.8.3. If a burial site is not open, then the ComEd Radwaste Management Department must approve the solidification media.
 - 4.8.4. If liquids are to be solidified for stability then ComEd requires that all vendors used to process liquid LLRW at NGG or at a vendor off-site liquid LLRW processing facility must meet all applicable ComEd augmented quality standards and shall have submitted a Process System Topical Report to the NRC.
 - 4.9. Vendor Process System(s) are controlled per the following:
 - 4.9.1. ComEd NGG may use commercial, vendor supplied, processing systems for the processing of the primary LLRW streams generated by the station for disposal.
 - 4.9.2. All vendors used to process liquid LLRW at ComEd NGG must meet applicable Commonwealth Edison Co. Augmented Quality Standards and shall be approved by the ComEd Radwaste Management Department.
 - Vendor procedures and procedure changes shall be reviewed and approved per NGG procedure, Review and Approval process of Non-Station Work Group Procedures.
 - 4.10. Vendor's Process System(s) operations at ComEd NGG will be performed and controlled in accordance with vendor approved procedures.
 - 4.11. Liquid Radwaste processing will consist of the following types of processing:

- 4.11.1. De-watering,
- 4.11.2. Solidification,
- 4.11.3. Vendor supplied filter/process system,
- 4.11.4. Evaporation or filtration process to treat the following waste streams:
 - 1. Spent resin,
 - 2. Concentrated liquids,
 - 3. Sludge's,
 - 4. Filter media,
 - 5. Filter cartridges,
 - 6. Contaminated Oil.
- 4.12. Spent resin may originate from any one of the following systems:
- 4.12.1. Condensate/Blowdown.
- 4.12.2. Fuel Pool.
- 4.12.3. Reactor Water Clean Up, Chemical and Volume Control System, Boric Acid Recycling System.
- 4.12.4. Floor Drain Processing Systems.
- 4.12.5. Equipment Drain Processing Systems.
- 4.12.6. Vendor Liquid Radwaste Processing Systems.
- 4.13. Resins will be allowed to settle in the Spent Resin Tank or directly discharged to the Vendor Processing System via resin water slurry or vacuumed out of the resin vessel into approved containers.
- 4.14. Vendor resin beds may be used for decontamination of plant systems such as the Spent Fuel Pool, RWCU (reactor water cleanup), and SDC (Shut Down Cooling). These resins are then handled by the Vendor Processing System.
- 4.15. Various drains and sump discharges will be collected in tanks for treatment.
- 4.15.1. Water from these tanks can be sent through a filter or demineralizer or a concentrator or vendor supplied processing systems.

- 4.15.2. Process waste will be periodically discharged to the vendor processing system for onsite waste treatment or packaged in containers for shipment to offsite vendor for volume reduction processing.
- 4.15.3. Process water may be sent to the waste process systems for further filtration, demineralization for plant re-use or discharged.
- 4.16. All de-watering and solidification/stabilization will be performed by NGG, on-site vendors or at a vendor off-site liquid LLRW processing facility.

The Process Control Procedures contain the formulas, sampling, analysis, tests and determinations required to ensure that processing and packaging of waste is accomplished assuring compliance with the required regulations, current operating burial site license and burial site criteria. Vendors' procedures are reviewed and approved per the station's Non-Station Work Group Procedures meeting the requirements of the ComEd Quality Assurance Program - Topical Report (Quality Assurance Manual). The Vendor Process Control program must be in accordance with and approved by the Office of Nuclear Material Safety and Safeguards (NMSS) topical reports.

- 4.17. Dry Active Waste (DAW) will be handled and processed per the following:
- 4.17.1. DAW will be collected and surveyed and may be sorted for compactible and non-compactible wastes.
- 4.17.2. DAW may be packaged in containers to facilitate on-site pre-compaction and/or off-site super-compaction, incineration, or offsite volume reduction processes.
- 4.17.3. DAW items may be surveyed for release onsite or offsite when applicable.
- 4.18. Contaminated filter cartridges will be placed into a High Integrity Container(s) (HIC) or will be encapsulated in an In-situ liner for disposal or shipped to an off site waste processor in drums, boxes or steel liners per the vendor site criteria for processing and disposal.
- 4.19. Filtering devices using pre-coat media may be used at ComEd NGG in a variety of Process streams as follows:
- 4.19.1. These devices are used primarily for the removal of suspended solids from the liquid waste streams.
- 4.19.2. The pre-coat material from these devices may be routinely removed from the filter vessel and discharged to a Filter Sludge Tank or Liner/HIC.
- 4.19.3. Periodically, the filter sludge may be discharged to the Vendor Processing System for waste treatment onsite or packaged in containers for shipment to offsite vendor for volume reduction processing.

- 4.20. Activated hardware stored in the Spent Fuel Pools will be handled as follows:
- 4.20.1. These items may be processed periodically using remote underwater handling equipment.
- 4.20.2. The waste may then be put into a container for shipment and/or storage.
- 4.21. Vendors who supply HIC's to the station must provide a copy of the HIC Certificate of Compliance, which details specific limitations on use of the HIC.
- Vendors who supply HIC's to the station must provide a handling procedure, which provides guidelines for the utilization of the HIC. These guidelines serve to protect the integrity of the HIC and ensure the HIC is handled in accordance with the requirements of the Certificate of Compliance.
 - 4.23. All waste streams processed for burial or long term on-site storage shall be classified and meet the waste characteristics as required by 10CFR Part 61.55, Part 61.56, currently operating burial site license and burial site criteria.
 - 4.24. Lubricants and oils contaminated as a consequence of normal operating and maintenance activities will be processed for treatment on an as needed basis using a vendor or sent to an off site processor.
 - 4.25. All references to use of the GE or Stock in-plant Solidification System for waste processing have been deleted from the PCP, except for the use of the drum transfer cart and drum storage lines, which may be used for higher dose DAW storage at Quad Cities, Braidwood and Byron and the use of the Decanting Tank at LaSalle station. The use of contract vendor services proved to be cost effective over use of the GE or Stock in-plant cement system and additionally provided means for reduced personnel radiation expose during waste processing and waste container handling.
 - 4.26. The Station procedures for processing, radiological controls, waste classification, manifesting and shipping are contained in the following series of procedures:
 - 4.26.1. (BYRON) BOP WX-103 series, Radwaste Operating Procedures.
 - 4.26.2. (BYRON) BRP 5600 series, Radiation Protection Procedures.
 - 4.26.3. (Braidwood) BwOP WX-103 series, Radwaste Operating Procedures.
 - 4.26.4. (Braidwood) BwRP 5600 series, Radiation Protection Procedures.
 - 4.26.5. (LaSalle) LAP-100-16, Radioactive Waste/Material Shipment.
 - 4.26.6. (LaSalle) LAP-100-27, Guidelines for Radioactive Waste/Material Shipments.
 - 4.26.7. (LaSalle) LAP-900-25, Solid Radioactive Waste (DAW) Volume Reduction Program.

(LaSalle) LAP-1600-12, Waste Oil Program. 4.26.8. (LaSalle) LAP- 1700-14, Radioactive Waste Shipment Inspection and 4.26.9. Documentation. 4.26.10. (LaSalle) LRP series, Radiation Protection Procedures. 4.26.11. (Dresden) DOP 2000 series, Radwaste Operating Procedures. 4.26.12. (Dresden) DRP 5600 series, Radiation Protection Procedures. 4.26.13. (Quad Cities) QOP and QCOP 2000 series, Radwaste Operating Procedures. 4.26.14. (Quad Cities) QCRP 5600 series, Radiation Protection Procedures. 5. **DOCUMENTATION - None** 6. REFERENCES Technical Specifications(Braidwood & Byron): 6.1. ITS 5.6.3 Radioactive Effluent Release Report. 6.1.1. (Byron) ITS TRM 3.11.j Solid Radioactive Waste System. 6.1.2. (Braidwood) ITS TRM 5.2.a Process Control Program. 1 6.1.3. Technical Specifications(Dresden & Quad Cities): 6.2. 6.2.1. TS Section 1.0, Definitions. TS Section 6.8.A.5, Procedures and Programs. 6.2.2. TS Section 6.9.A.4, Radioactive Effluent Release Report. 6.2.3. 6.2.4. TS Section 6.13, Process Control Program. Technical Specifications(LaSalle): 6.3. TS Section 1.33, Process Control Program. 6.3.1. TS Section 6.6.A.4, Radioactive Effluent Release Report 6.3.2.

TS Section 6.2.A.e, Procedures and Programs.

TS Section 6.7.1, Process Control Program.

6.3.3.

6.3.4.

- 6.3.5. Offsite dose calculation manual (ODCM) (LaSalle), section 12.62.
- 6.4. <u>Commitments</u> None.

7. ATTACHMENTS

- 7.1. Attachment A, Lasalle County Station Solid Radioactive Waste System Limiting Condition For Operation.
- 7.2. Attachment B, LaSalle County Station Surveillance Program.

Attachment A

LaSalle County Station Solid

Radioactive Waste System

Limiting Condition for Operation

The Solid Radwaste System shall be operable and used, for the solidification and packaging of radioactive wastes to ensure meeting the requirements of 10 CFR Part 20 and 10 CFR Part 71 prior to shipment of radioactive wastes from the site.

Applicability

At all times

Actions

- 1. With the packaging requirements of 10 CFR Part 20 and/or 10 CFR Part 71 not satisfied, suspend shipments of defectively packaged solid radioactive wastes from the site.
- 2. With the solid Radwaste Handling System inoperable for more than 31 days, in lieu of any other report required by Technical Specifications 6.6 A. Prepare and submit to the commission within 30 days, pursuant to Technical Specifications 6.6 C., a special report which includes the following information:
 - A. Identification of the inoperable equipment or subsystems and the reason inoperable,
 - B. action(s) taken to restore the inoperable equipment to operable status,
 - C. a description of the alternative used for solidification and packaging of radioactive wastes, and
 - D. summary description of actions(s) taken to prevent a recurrence.
- 3. The provisions of Technical Specifications 3.03 and 3.04 are not applicable.

Attachment B

LaSalle County Station

Surveillance Requirements

- 1. The Solid Radwaste Handling System shall be demonstrated operable at least once per 92 days by:
 - A. Operating the solid Radwaste system at least once in the previous 92 days in accordance with the Process Control Program, or
 - B. verification of the existence of a valid contract for solidification to be performed by a contractor in accordance with a Process Control Program.
 - 2. The Process Control Program shall be used to verify the solidification of at least one representative test specimen from at least every tenth batch of each type of wet radioactive waste (e.g., filter sludge's, RWCU phase separators powdered resins, spent resins, and evaporator bottoms.
 - A. If any specimen fails to verify solidification, then the solidification of the batch under test shall be suspended until such time as additional test specimens can be obtained, alternative solidification parameters can be determined in accordance with the lab test solidification and the PCP, and a subsequent test verifies solidification. Solidification of the batch may then be resumed using the alternative solidification parameters determined by the Lab Test Solidification Procedure.
 - B. If the additional test specimen from a batch of waste fails to verify solidification, then the PCP shall provide for the collection and testing of representative test specimens from each consecutive batch of the same type of wet waste until at least 3 consecutive initial test specimens demonstrate solidification. The Process Control Program shall be modified as required, as provided in Technical Specifications 6.7, to assure solidification of subsequent batches of waste.