Review of Scientech Calculation 17080-M-04, Control Room, EAB and LPZ Doses Following a CRDA

 Attachment 1 to NEDC 99-034, Revision 1

 Attachment 1 to NEDC 99-034, Revision 1}
(29 pages plus 6 page NEDC cover)

Title: Review of Scientech Calculation 17080-M-04, Control Room, EAB, and LPZ Doses Following a CRDA System/Structure: HVAC, CRD

Component: N/A
Classification: [X] Essential; [] Non-Essential

Calculation No: NEDC 99-034
Task identification No: N/A
Design Change No: N/A
Discipline: Mechanical Design

Calc. Description:
PURPOSE:
This calculation incorporates by attachment Scientech Engineering Calculation No. 17080-M-04, Rev. 1, prepared under Task Agreement 99A-C20, in accordance with CNS Engineering Procedure 3.4.7, Section 4. The calculation determines the doses to a Control Room operator and to a person at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) following a postulated design basis Control Rod Drop Accident (CRDA). This calculation has been prepared as a Status 2 calculation for NRC review and will be as-built upon NRC approval. Revision 1 incorporates responses to NRC questions regarding release path isolation (Section 3.2) and Control Room isolation (Section 6.16). (See NLS2000029 dated 3/20/00) Dispersion factors from the Turbine Building to the Control Room were updated to reflect a revision to calculation NEDC 99-031.

RESULTS:

The results are tabulated in Section 10, Table 6 of Scientech's calculation for each of the three (3) receptor locations: 1. Control Room, 2. Exclusion Area Boundary (EAB), and 3. Low Population Zone (LPZ).

All calculated doses are less than the corresponding regulatory limits.

ATTACHMENTS:

1. Scientech Engineering Calculation No. 17080-M-04, Rev. 1 (including attachments thereto).
2. Reviewer Comments and Resolutions
3. GE Letters REK:99-152 and REK:99-161 (References 5.18 and 5.15 of Scientech calculation)

1	2	Incorporate NRC Comments	Scientech, Inc. $3 / 20 / 00$	J. J. Drasler $3 / 21 / 00$	N/A	M.J.Friedman $m^{3 / 23 / 00}$ $3 \longdiv { 2 3 1 0 0 }$
0	2	Original Issue	Scientech, Inc. $12 / 3 / 99$	J. J. Drasler 12/8/99	N/A	M.J.Friedman $12 / 10 / 99$
Rev. No.	Status	Revision Description	Prepared By/Date	Reviewed By/Date	Independent Design Verification/Date	Approved By/Date

Status Codes

1. As - Built
2. For Construction
3. Information Only
4. Superseded or Deleted

Page_ 2 of 6
Nebraska Public Power District

DESIGN CALCULATION CROSS REFERENCE INDEX

NEDC: 99-034 Preparer: Scientech, Inc. Reviewer: J. J. Draslerg

Rev. No: _ 1 Date: \qquad Date: \qquad

Item No.	DESIGN INPUTS	Rev. No.	PENDING CHANGES TO DESIGN INPUTS
1	NEDC 99-031	1	none
2	NEDC 99-036	0	none
3	Burns and Roe Dwg 2009	N22	DCNs 99-0754, 99-0910, 99-0911
4	Burns and Roe Dwg 2019	N35	none
5	Burns and Roe Dwg 2051	N16	DCN 00-0183
6	Burns and Roe Dwg 2052	N14	DCNs 98-0071, 98-0994, 98-1043
7	Burns and Roe Dwg 4506	N06	none
8	TS 1.1	178	none
9	TS 3.7.4	178	OLCR 99-007, 2000-001
10	TS 5.5.7	178	none
11	STP 94-199	0	none
12	STP 94-199-1	0	none
13	SP 6.HV.101	4	none
14	USAR Section XI-4.3.1.2	$6 / 10 / 98$	none
15	USAR Section IX-4.4.2	$7 / 22 / 83$	none
16	Burns and Row Dwg 2037	N54	none
17	Jelco Dwg 2703-3	N01	none
18	Jelco Dwg 2701-4	9	none

Nebraska Public Power District

DESIGN CALCULATION CROSS REFERENCE INDEX

Rev. No: 1 Date: $3 / 20 / 00$ Date:___ 3/21/00

Item No.	Affected Documents	Rev. No.	CHANGE Required	Action Item Tracking Number (If change is required)
	none			

Nebraska Public Power District

DESIGN CALCULATIONS SHEET

PURPOSE

This calculation incorporates by attachment Scientech Engineering Calculation No. 17080-M-04, Rev. 1, prepared under Task Agreement 99A-C20, in accordance with CNS Engineering Procedure 3.4.7, Section 4. The calculation determines the doses to a Control Room operator and to a person at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) following a postulated design basis Control Rod Drop Accident (CRDA).

EXTENT OF REVIEW

Scientech's calculation was performed under their own QA program, which included an independent technical review. Therefore, the NPPD review does not include in-depth checks of mathematical calculations, but rather focuses on general acceptability of design inputs, assumptions, methodology, and conclusions. Any significant comments or concerns identified during the review have been resolved with Scientech and incorporated.

REVIEW SUMMARY

Scientech's calculation is organized into a single main portion and Attachments 1 through 4 , which include the computer code input and output.

1. Purpose - The purpose of the calculation is as given above and as stated in Section 1 of Scientech's calculation. This section was reviewed and found to be acceptable.
2. Design Inputs - Design Inputs are identified throughout the text and particularly in Section 4 of Scientech's calculation with the references for the design inputs listed in Section 5. The source term considers worst case of 8X8 NB (GE9B) and 10X10 (GE14) fuel and is conservatively based on an entire core load of the GE14 fuel design since the calculations performed in Section 8.1 indicate that the GE14 source term is higher due to the increased power level multiplier (radial peaking factor). Atmospheric dispersion factors for the Control Room were taken from Reference 5.13 (NEDC 99-031) and from Reference 5.14 (NEDC 99-036) for the LPZ and EAB.

The design inputs were reviewed and found to be acceptable.
Documents comprising CNS-controlled source documents whose revision could impact input used in this calculation are identified on the Cross Reference Index in the front of this calculation. Non-status 1 inputs were verified using additional information and were found to be acceptable for use in this calculation.

Page 5 _of 6
Nebraska Public Power District
DESIGN CALCULATIONS SHEET
NEDC: 99-034
Rev. No: \qquad Preparer: Scientech, Inc.

Reviewer: J. J. Drasler
Date: 3/20/99
Date: 3/21/99
3. Assumptions - Major assumptions are identified in Section 6 of Scientech's calculation. Additional assumptions are inferred in the input documents used and identified throughout Scientech's calculation by inference according to context and use. The assumptions were reviewed and found to be acceptable.
4. Methodology - The methodology is described in Section 3, Technical Approach. In general, the Scientech-NUS computer code AXIDENT is used to predict the radiological dose consequences of the postulated Control Rod Drop Accident at the 3 receptor locations:

1. Control Room,
2. Exclusion Area Boundary (EAB), and
3. Low Population Zone (LPZ).

The AXIDENT code models the transport of radioactivity to the environment and to the control room. This code accounts for HVAC recirculation, filtration, atmospheric dispersion, and natural decay. The CRDA release is modeled as a single release path from the Turbine Building which is modeled as a diffuse ground level release. The condenser leakage is assumed to be 1% per day with no mixing or holdup in the Turbine Building. Control Room doses were calculated for a 30 day period to account for any residual activity which remains in the Control Room envelope after the 24 hour CRDA release duration.

The AXIDENT computer code version and computer used are listed in Section 7. Additional supporting calculations are performed in Section 8 to determine the source term, control room volume, and condenser release rate. Control Room isolation and filtration were conservatively neglected in the analysis. Attachment 1 lists the dose conversion factors (DCFs) from ICRP Publication 30 which were used in the AXIDENT model. Computer output for the unfiltered and filtered modes of Control Room ventilation are listed in Attachments 3 and 4 respectively. The total Control Room operator dose is the sum of the doses accumulated during unfiltered and filtered modes. The LPZ results are included in Attachment 3 and the EAB results in Attachment 4.

The methodology was reviewed and found to be acceptable.

Nebraska Public Power District

DESIGN CALCULATIONS SHEET

NEDC: 99-034
Rev. No: \qquad 1
\qquad Preparer: Scientech. Inc.
Date: \qquad 3/20/99

5. Results / Conclusions - Results and conclusions are given in Sections 10 and 11, respectively, of Scientech's calculation. Table 6 gives the calculated dose consequences at the Control Room, EAB, and LPZ. These results are summarized in the following table. The regulatory dose limits are from Table 1 of the Scientech calculation.

TABLE 1: SUMMARY OF CRDA ACCIDENT DOSES

	Control Room (30 days)			EAB (2 hours)		LPZ (30 days)	
	Thyroid	Whole Body	Beta	Thyroid	Whole Body	Thyroid	Whole Body
Dose (rem)	5.22	0.01	0.25	0.63	0.13	1.65	0.15
Limit (rem)	30	5	30	75	6	75	6

The results and conclusions sections were reviewed and found to be acceptable. All calculated doses are below the corresponding regulatory limits, without control room isolation (worst case). The calculation gives acceptable results based on a radial peaking factor of 1.7 , which is valid through at least Cycle 23 per assumption 6.6 (Reference 5.26).

SCIENTECH.

ENGINEERING CALCULATION

Page 1 of 19 Pages Plus Attachments 1-4

CLIENT/PROJECT NPPD/Cooper
CALC. NO. 17080 -M-04
REV. \qquad
TITLE Control Room, EAB, and LPZ Doses Following a CRDA

The purpose of this calculation is to determine the doses to the Control Room operator and to a person at the Exclusion Area Boundary (EAB) and at the Low Population Zone (LPZ) of the Cooper Nuclear Station following a design basis Control Rod Drop Accident (CRDA).
Revision 1 incorporates responses to NRC questions regarding release path isolation (§3.2) and Control Room isolation (§6.16). Dispersion factors from the Turbine Building to the Control Room were updated to reflect a revision to the reference calculation.

Summary of Results

The total activity released from GE14 fuel is shown to exceed that from GE9B fuel when the power level multiplier specified by SRP 15.4.9 is increased to 1.7 for the GE14 fuel, the maximum radial peaking factor through Cycle 23

The AXIDENT code predicted doses following a design basis CRDA at CNS are given in Table 6. These doses are below the regulatory limits given in Table 1.

SUPERSEDED BY	QUALITY CLASS	DISTRIBUTION	VERIFICATION METHOD
Rev.	\square SAFETY-RELATED	- PROJECT	- REVIEW
SUPPLEMENTED BY	\square NON-SR	- DCC	\square ALT. ANALYSIS
CALC. NO.:	\square OTHER	- OTHER	NEDC 99.034 - 1 ATTACH 1

TABLE OF CONTENTS

Section Page
LIST OF TABLES 3
1.0 PURPOSE OF ANALYSIS4
2.0 INTENDED USE OF ANALYSIS RESULTS 4
3.0 TECHNICAL APPROACH 4
3.1 BACKGROUND INFORMATION.4
3.2 Release Path Model5
3.3 CONTROL ROOM MODEL 6
3.4 SOURCE TERM MODEL 6
3.5 ATMOSPHERIC DISPERSION FACTORS (X/QS). 7
3.6 ICRP 30 DCFs 7
3.7 MODELING APPROACH FOR AXIDENT CODE 7
4.0 DESIGN INPUT 8
5.0 REFERENCES 11
6.0 MAJOR ASSUMPTIONS 12
7.0 COMPUTER CODES AND COMPUTER USED 14
8.0 DETAILED CALCULATIONS 15
8.1 SOURCE TERM DEVELOPMENT 15
8.2 Control Room Volume 17
8.3 X/Q Values 18
8.4 Other Parameters Required by AXIDENT 18
8.4.1 Activity Release Rate from Condenser. 18
8.4.2 Activity Release Rate From the Turbine Building 18
8.4.3 Spray Removal 18
8.4.4 Secondary Removal Rate 18
9.0 COMPUTER INPUT AND OUTPUT 19
10.0 SUMMARY OF RESULTS 19
11.0 CONCLUSIONS 19
\qquad

Attachment 1. ICRP 30 Change to AXIDENT Library File Attachment 2. AXIDENT Output: Source Term Run for 2429 MWt (102 \%) Attachment 3. AXIDENT Output: LPZ and Control Room Doses Attachment 4. AXIDENT Output: EAB Doses

List of Tables

Table 1. Regulatory Dose Limits (Rem) 4
Table 2. Comparison of Different Dose Conversion Factors for Iodine Isotopes 7
Table 3. Design-Input9
Table 4: Determination of Activity Released from Damaged Fuel. 16
Table 5. Determination of CRDA Source Term 17
Table 6. AXIDENT Predictions for LPZ, Control Room, and EAB Doses at Cooper following a Design Basis CRDA 19
FILE NO:: $17080-\mathrm{M}-04$
RI ${ }^{\text {BY }}$
${ }^{\text {ChE }}$ R. F. Ely
KEUBY:

1.0 PURPOSE OF ANALYSIS

The purpose of this calculation is to determine the doses to the Control Room operator and to a person at the Exclusion Area Boundary (EAB) and at the Low Population Zone (LPZ) of the Cooper Nuclear Station (CNS) following a design basis Control Rod Drop Accident (CRDA).

Revision 1 incorporates responses to NRC questions regarding release path isolation (§3.2) and Control Room isolation ($\S 6.16$). Dispersion factors from the Turbine Building to the Control Room were updated to reflect a revision to the reference calculation (Ref. 5.8).

2.0 INTENDED USE OF ANALYSIS RESULTS

This analysis is intended to confirm that the calculated doses resulting from a design basis CRDA for the Control Room operator, a person at the EAB, and a person at the LPZ are less than the regulatory dose limits as given in Table 1.

Table 1. Regulatory Dose Limits (Rem)

Dose Type	Control Room	EAB and LPZ
Thyroid Dose	30^{a}	75^{b}
Whole Body Dose	5^{a}	6^{b}
Beta Skin Dose	30^{a}	-

Notes: ${ }^{2}$ SRP, Section 6.4, Acceptance Criteria-6 [5.1]
${ }^{6}$ SRP 15.4.9 [5.1]

3.0 TECHNICAL APPROACH

This section provides a general discussion of the analysis methodology. The detailed input parameters and associated references are developed in more detail in subsequent sections.

3.1 Background Information

GE utilizing methodology that predated the regulatory guidance prepared the original radiological consequences of the limiting design basis accidents, for both CNS and other BWRs licensed in the early 70s. The objective of the analyses that were summarized in the PSARs and FSARs was to demonstrate in a conservative manner that the plant met the reactor siting criteria of 10 CFR Part 100. [5.2] The NRC's confirmatory analyses, as described in the SERs, were in general performed in accordance with the more conservative Regulatory Guides that were being developed at that time (as a note, the Regulatory Guide on CRDAs, Regulatory Guide 1.77, was issued in 1974). [5.3]

${ }^{\text {CLIENT: }}$ NPPD/Cooper	FLLE NO:: $17080-\mathrm{M}-04{ }_{\mathrm{Rl}}$	${ }^{\text {BY: R. F. Ely, J. }}$	$5 \text { of } 19$
SUBJECT: ${ }_{\text {Control Room, }}$ EAB,	oses Following a CRDA	CHECREDBY: HHAW	$3 / 20 / 00$

As a result of NUREG-0737, plants with existing licenses were required to assess the habitability of the Control Room following the spectrum of design basis accidents using the methodology contained in the Standard Review Plans. In regards to the CRDA, there was no detailed analysis performed in response to NUREG-0737, Action Item III.D.3.4.

The CRDA was re-evaluated in support of the project to remove the automatic isolation function of the Main Steam Line Radiation Monitors. [5.4] In the 1991 time frame, the BWR Owner's Group requested permission from the NRC to eliminate Main Steam Isolation Valve (MSIV) automatic closure function and scram function by the Main Steam Line Radiation Monitors (MSLRM). The MSLRM provided protection from a CRDA by isolating the MSIVs and minimizing the quantity of activity released.

General Electric documented the generic safety evaluation of eliminating the MSIV action on high radiation alarm in NEDO-31400A, which has been accepted by the NRC for reference in licensing applications and has been implemented at CNS. [5.5] The bounding source term presented in NEDO-31400A is based on 8×8 fuel. Data specific to the fuel designs used at CNS (GE9B, an 8×8 fuel, and GE14) are used.

This calculation will use the requirements and guidance found in the SRP Section 15.4.9 (Ref. 5.1) as a basis for the evaluation. [5.1]

3.2 Release Path Model

CRDA release path is modeled as a single release path that occurs as a result of the leakage from the condenser to the turbine building. The condenser will conservatively be assumed to instantaneously leak to the environment at the start of the CRDA. This leakage will be assumed to leak at a rate of 1% per day to the Turbine Building from which it will conservatively be assumed to pass directly to the environment with no mixing or holdup in the Turbine Building volume. This leakage will occur for 24 hours in accordance with the guidance of Standard Review Plan 15.4.9 Appendix A; after 24 hours, the leakage will end. [5.1] Per SRP $15.4 .9,100 \%$ of the activity released from the failed fuel is assumed to reach the condenser; credit is not taken for closure of the MSIVs to limit the activity reaching the condenser.

This approach is very conservative since the condenser leakage will enter the Turbine Building in the Condenser Bay area. This activity will be distributed throughout the Turbine Building. The activity will be released to the environment as a low-level release via the Turbine Bldg. exhaust.

The release from the Turbine Building is considered diffuse ground level release.
\qquad of 29

CLIENT: NPPD/Cooper	FILE NO.: $17080-\mathrm{M}-04$	${ }^{\text {BY}}$ R. F. Ely, Jr.	$6 \text { of } 19$
BJect:	wing a	CHECRED y	$3 / 20 / 00$

The CRDA source term will not reach the environment via the offgas treatment system flow paths. At low reactor power levels, when Steam Jet Air Ejectors (SJAEs) are not in service and the mechanical vacuum pumps are used to remove noncondensables from the condenser, a Main Steam Line high radiation signal resulting from the CRDA would immediately trip the mechanical vacuum pumps and close the mechanical vacuum pump inlet and outlet valves (Ref. 5.21). Thus, there would be no mechanical motive force to draw the noncondensables from the condenser into the offgas system at low power levels.

When the SJAEs are in service, a 30 -minute hold-up line downstream of the SJAE exhaust provides for decay of fission gases (Ref. 5.22). The 30-minute hold-up line does not have a bypass (Ref. 5.23). A CRDA would cause a SJAE off-gas radiation monitor high radiation signal to initiate a 15 minute timer which, after 15 minutes, will isolate the off-gas system downstream of the 30 minute hold-up line (Ref. 5.22 and 5.24). Thus, the fission gas released from the CRDA will be isolated prior to exiting the 30 -minute holdup line.

3.3 Control Room Model

It was conservatively assumed that the radioactive release concentration at the Control Room intake following a design basis CRDA will be below the radioactive concentration necessary to activate the isolation of the control room intake. Thus, Control Room isolation during the release was ignored in the analysis. Control Room isolation would reduce Control Room doses. (See §6.16)

3.4 Source Term Model

The source term of activity available for release following a CRDA will be based on the methodology and guidelines in References 5.1 and 5.7 adjusted for the Cooper Site. The Cooper Source Term will be calculated using the computer code "AXIDENT". [5.6] This code uses TID-14844 as the initial bases for a source term. [5.7] A factor of four was applied to the iodine isotopes to compensate for an internal function of the AXIDENT code which reduces the initial iodine inventory to 25% of the input value for plate-out which is not appropriate for this accident scenario.

The NEDO-31400A analysis uses a value of 850 failed rods, consistent with a GE bounding evaluation for 8×8 fuel bundles. [5.5] The failed fuel fraction is based on 63 rods per assembly. CNS currently uses $8 \times 8 \mathrm{NB}$ fuel (GE9B) with 60 rods per assembly, but is changing to GE14 fuel over several fuel cycles. The bounding case of GE9B and GE14 is determined in Section 8.1 based on the respective number of failed rods, rods per assembly, and peaking factor, and used for the analysis.

The analysis uses the standard assumptions prescribed by the NRC in SRP 15.4.9, Appendix A (see $\S 6$ for a listing of all major assumptions). [5.1]
\qquad OF

3.5 Atmospheric Dispersion Factors (X/Qs)

Control Room dose calculations were performed using values calculated by the ARCON96 computer code (SCIENTECH Calculation 17080-M-01; see §4.3.7). [5.8] The ARCON96 code used site-specific information for CNS, including weather data.

Doses at the EAB and LPZ were determined using the X / Q values for ground level releases obtained from SCIENTECH Calculation 17080-M-06 (see §4.4). [5.9]

3.6 ICRP 30 DCFs

The existing licensing basis accident analysis is based on the Dose Conversion Factors (DCFs) from Regulatory Guide 1.3 and TDD-14844, which were developed in the early 1960's. [5.3, 5.7] Since the development of Regulatory Guide 1.3, work has been and continues to be performed in both the US and overseas on developing new DCFs.
Regulatory Guide 1.109 recommends DCFs that are significantly lower than those specified in Regulatory Guide 1.3 or TID-14844. [5.3, 5.7] ICRP Publication 30, "Limits for Intakes of Radionuclides by Workers," issued in 1979, provides more accurate DCFs. [5.10] Although these DCFs have not been included in a regulatory guide for use in accident analyses, they have been submitted and approved by NRC in a number of Post-TMI Control Room Habitability analyses. This analysis will use the ICRP 30 Dose Conversion Factors. The various DCFs are compared in Table 2.

Table 2. Comparison of Different Dose Conversion Factors for Iodine Isotopes

Isotope	Dose Conversion Factor (Rem/Ci)		
	ICRP 2 $[5.10]$	RG 1.109 $[5.11]$	ICRP 30 $[5.3]$
$\mathrm{I}-131$	$1.48 \mathrm{E}+6$	$1.49 \mathrm{E}+6$	$1.10 \mathrm{E}+6$
$\mathrm{I}-132$	$5.35 \mathrm{E}+4$	$1.43 \mathrm{E}+4$	$6.30 \mathrm{E}+3$
$\mathrm{I}-133$	$4.00 \mathrm{E}+5$	$2.69 \mathrm{E}+5$	$1.80 \mathrm{E}+5$
$\mathrm{I}-134$	$2.50 \mathrm{E}+4$	$3.73 \mathrm{E}+3$	$1.10 \mathrm{E}+3$
$\mathrm{I}-135$	$1.24 \mathrm{E}+5$	$5.60 \mathrm{E}+4$	$3.10 \mathrm{E}+4$

3.7 Modeling Approach for AXIDENT Code

The analysis conservatively assumes that the activity is instantaneously available for release from the condenser where it is released to the environment at a rate of 1% per day. For the AXIDENT code, this is accomplished by generating an available activity in a single release volume ("primary containment") and releasing the activity at a rate of 1% per day.
\qquad OF 29

The analysis period for the CRDA is 24 hours at which time all release is terminated, the duration of the release per SRP 15.4.9, Appendix A, III-12. [5.1] The AXIDENT model will be executed for the 30-day period to account for the dose associated with the residual activity in the Control Room envelope at the end of the 24 -hour release period.

4.0 DESIGN INPUT

Table 3 lists the design input.
\qquad OF \qquad

SCIENTECH/NUS, Inc. and Subsidiaries	STANDARD CALCULATION SHEET	
CLIENT: NPPD/Cooper \quadFILE NO: $17080-\mathrm{M}-04 \mathrm{R}_{1}$	${ }^{\text {BY }}$ R. F. Ely, Jr.	$\begin{aligned} & \text { PRGE: } \\ & 9 \text { of } 19 \\ & \hline \end{aligned}$
SUBJECT: Control Room, EAB, and LPZ Doses Following a CRDA	CFECKEDBY: W 代	DAIE:

Table 3. Design-Input

5.0 REFERENCES

5.1 NUREG-0800, Standard Review Plan, Rev. 2, July 1981.:

Section 6.4, "Control Room Habitability Systems,"
Section 15.4.9, Radiological Consequences of Control Rod Drop Accident
(BWR), Appendix A
5.2 Code of Federal Regulations: 10 CFR Part 100, Section 100.11.
5.3 Regulatory Guides:
1.3, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors".
1.25, "Assumptions Used for Evaluating the Potential Radiological

Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors".
1.77, "Assumptions Used for Evaluating a Control Rod Ejection Accident for Pressurized Water Reactors".
1.109," Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10CFR Part 50, Appendix I," Revision 1, issued in 1977. - Information Only
5.4 NUREG-0737
5.5 NEDO-31400A, October 1992, "Safety Evaluation for Eliminating the Boiling Water Reactor Main Steam Isolation Valve Closure Function and Scram Function of the Main Steam Line Radiation Monitor," May 1987 (prepared by GE).
5.6 SCIENTECH "AXIDENT, A Digital Computer Dose Calculation Model," Version 2, Mod 4, dated 2/18/92.
5.7 TID-14844, "Calculation of Distance Factors for Power and Test Reactors Sites," 1962.
5.8 SCIENTECH Calc. 17080-M-01, "Control Room Dispersion Factors Using ARCON96," Rev. 1.
5.9 SCIENTECH Calc. 17080-M-06, "EAB \& LPZ Meteorological Dispersion- Accident Analyses," Rev. 0.
5.10 ICRP Publication 30, "Limits for Intakes of Radionuclides by Workers," 1979.
5.11 ICRP Publication 2, "Report of Committee II, Permissible Dose for Internal Radiation," 1959.
5.12 CNS Technical Specifications:

Section 1.1
Section 5.5.7
Section 3.7.4
5.13 23A4720, Rev. 1, Fuel Bundle Data Sheet for GE9B.
\qquad OF \qquad

5.14 NEDC-32868P, GE14 Compliance With Amendment 22 of NEDE-24011-P-A (GESTAR II), Rev. 0.
5.15 GE Letter REK:99-161, R.E. Kingston to J.L. Lewis, dated September 17, 1999.
5.16 CNS Test Procedure:

STP-94-199, Control Room Envelope Unfiltered Inleakage Test STP-94-199-1, Control Room Envelope Unfiltered Inleakage Test (Amendment 1)
5.17 CNS Burns \& Roe Drawings:

2009, Revision N22
2019, Sheet 1, Revision N35.
2051, Revision N16.
2052, Revision N14
4506, Revision N06.
5.18 GE letter REK:99-152, R.E. Kingston to J.L. Lewis, dated September 1,1999.
5.19 Software Verification Memo from R. F. Ely, Jr. to T. Bladen, 1/15/2000.
5.20 Section 3.7 of NEDE-31152-P, General Electric Fuel Bundle Designs, Rev. 6.
5.21 USAR Section XI-4.3.1.2
5.22 USAR Section IX-4.4.2
5.23 CNS Drawing

2037, Rev. N54
6000302, sheet 1, Rev. N37
6000302, sheet 2, Rev. N10
2703-3
2701-4
5.24 Abnormal Procedure 2.4.7.1, High Off-gas Activity or Abnormal Off-gas Flow

6.0 MAJOR ASSUMPTIONS

6.1 All leakage will be from the main condenser through the Turbine Building with no mixing or holdup in the Turbine Building. This is a conservative assumption; mixing in the turbine building would significantly add to the decay and holdup.
6.2 The SJAE's \& Mechanical Vacuum Pumps will be isolated upon high radiation signals from the MSLRM and the SJAE radiation monitor. [5.17]
6.3 A coincident loss of offsite power is assumed at the time of the accident (SRP 15.4.9, Appendix A, III-1). [5.1]

CLIENT: NPPD/Cooper \quad FLLE NO.: $17080-\mathrm{M}-04$ R	${ }^{\text {BY }}$ R. F. Ely, J.	13 of 19
SOBJECT:	CHECKEDBY: HfG04	$3 / 20 / 00$

6.4 The amount of activity accumulated in the fuel cladding gap is assumed to be the same as established in Reg. Guide 1.77, i.e., 10% for both noble gases and iodines (SRP 15.4.9, Appendix A, III-5). [5.3, 5.1]
6.5 NEDO-31400A, Section 3.2.1, states the maximum mass fraction of fuel in the damaged rods which reaches temperatures in excess of the melting point is 0.0077 in 8×8 fuel bundles. [5.5] GE has not provided the mass fraction for GE14 fuel, but has stated that radiological consequences for GE12 fuel are essentially the same as for the 8×8 fuel designs and that the GE12 estimate is applicable to GE 14 (Refs. 5.23 and 5.24). Thus, a mass fraction of 0.0077 is assumed for both the 8×8 and GE14 fuel designs. 100% of the noble gases and 50% of the iodines contained in this fraction of damaged rods are assumed released to the reactor coolant (SRP 15.4.9, Appendix A, III-6). [5.1]
6.6 SRP 15.4.9, Appendix A, III-7 states, "Those fuel rods presumed to fail are assumed to have operated at power levels 1.5 times that of the average power level of the core." [5.1] Although the SRP does not state that this is a radial peaking factor (compare with Regulatory Guide 1.25 which specifies a minimum radial peaking factor of 1.5 for BWRs), a factor of 1.7, the maximum radial peaking factor for GE14 fuel at CNS through Cycle 23, is used for the GE14 fuel. [5.3, 5.18] A factor of 1.5 is used for the 8×8 fuel. Note the calculation applies this factor in a rod that has operated at 102% power. The loss-of-coolant accident analysis' guidance conservatively identifies the use of a power level at 102% rated power to account for instrument uncertainties. Since the basis of the CRDA factor is not clear, this analysis conservatively applies both the CRDA power level factor and the LOCA uncertainty factor.
6.7 The activity from failed fuel is assumed to mix instantaneously with the reactor coolant (SRP 15.4.9, Appendix A, III-8). [5.1]
6.8 The analysis assumes that 10% of all Iodine's and 100% of all Noble Gases are transported to the turbine/condenser (SRP 15.4.9, Appendix A, III-9). [5.1]
6.9 The analysis assumes that 100% of all Noble Gases are available for leakage from the turbine/condenser (SRP 15.4.9, Appendix A, III-10). [5.1]
6.10 The analysis assumes that 90% of all Iodine's that reach the turbine/condenser plate out leaving only 10% in the gaseous state available for leakage from the turbine/condenser (SRP 15.4.9, Appendix A, III-11). [5.1]

SCIENTECH/NUS, Inc.
STANDARD CALCULATION SHEET and Subsidiaries

${ }^{\text {CLIENT: }}$ NPPD/Cooper	FLLE NO: $17080-\mathrm{M}-04$	${ }^{88}$ R. F. Ely, Jr.	14 of 19
SUBJECT: Control Room, EAB,	Doses Following a CRDA	CHECKEDBY: J才¢	$3 / 20 / 00$

6.11 The analysis assumes that the turbine/condenser leaks directly to the atmosphere at a rate of 1% of the volume per day for an evaluation period of 24 hours (SRP 15.4.9, Appendix A, III-12). [5.1]
6.12 Credit is taken for decay due to hold up in the condenser (SRP 15.4.9, Appendix A, mil-13). [5.1]
6.13 In accordance with the SRP, the analysis uses, where appropriate, the same atmospheric dispersion factors, breathing rates, and dose conversion factors as those used in the LOCA analysis (SRP 15.4.9, Appendix A, II-14). [5.1]
6.14 The analysis assumes that the iodine release fractions are the same as for the LOCA analysis, i.e., 4\% Organic, 91% Elemental, 5\% Particulate. The AXIDENT code uses this as the default distribution. Since the assumed efficiencies and removal mechanisms are the same for all the forms of iodines, the chemical form does not affect the results of this CRDA analysis.
6.15 The Control Room volume is based on gross dimensions with a 20% reduction to account for walls, floors, and equipment.
6.16 It is conservative to assume that the radioactive release concentration at the Control Room intake following a design basis CRDA will be below the radioactive concentration necessary to activate the isolation of the control room intake. Control Room isolation was ignored while the leakage from the turbine/condenser is assumed to continue (see §6.11). For the purpose of maximizing the calculated Control Room doses, the Control Room is assumed to shift to the Control Room Emergency Filtration Mode after the release is assumed to terminate (24 hours). Minimizing air intake into the Control Room minimizes clean-up of the Control Room atmosphere.
6.17 Exfiltration from the Control Room is assumed to equal the intake flow (supply air plus inleakage). This assumes pressure remains constant in the Control Room. The AXIDENT code automatically assumes this.

7.0 COMPUTER CODES AND COMPUTER USED

The AXIDENT program was executed on a Gateway Solo laptop computer running a Windows 98 operating system as currently assigned to Richard F. Ely, Jr. Satisfactory operation of the AXIDENT code on this computer has been confirmed by revalidation. [5.19] The original "AXIDENT" code library data used the very conservative DCFs that were in effect and used for the 10CFR 100-type reactor siting analyses (i.e., TID-14844 and ICRP Publication 2). [5.2, 5.7, 5.11] During this calculation the AXIDENT-code library data
\qquad OF \qquad

file was changed to use the newer and more realistic DCFs presented in ICRP 30. [5.10] See section 3.6 for additional discussion. A listing of the updated library (with the changes indicated) is provided in attachment 1.

8.0 DETAILED CALCULATIONS

8.1 Source term Development

The core inventory is determined using the methodology of TID-14844 by running the SCIENTECH's AXIDENT computer code. [5.7, 5.6] The power level used is 2429 MWt (102% of rated power per $\S 4.1 .1$). Most parameters are arbitrarily set to 1 or 0 so that the program will generate the source term; realistic values are not necessary. This run is included as Attachment 2 (only the first page is retained in the attachment).

To determine whether GE9B or GE14 fuel results in the larger release, the failed fuel fraction is determined and multiplied by the CRDA power level multiplier ($\S 6.6$). Note minimizing the number of rods in the core maximizes the percentage of the core released.

	GE9B	GE14
Number of failed rods (§4.2.3)	850	1200
Number of rods per assembly $(\S 4.2 .1)$	60	87.3333
Number of assemblies ($\S 4.2 .2)$	548	548
Power level multiplier $(\S 6.6)$	1.5	1.7
Fraction failed fuel	0.0259	0.0251
Fraction failed fuel corrected by power level multiplier	0.0388	0.0426

Although the fraction of failed rods is less for GE14 fuel than for GE9B fuel, there is a net increase in the source term resulting from use of the increased power level multiplier. Thus, the source term will be based on GE14 fuel. Addition of activity released from melted fuel will not affect this conclusion, since the fraction of damaged rods assumed to melt is the same for both fuel types ($\S 6.5$).

The fraction of the total core that is assumed to melt is:

$$
0.0077 \text { of the damaged rods }(\S 6.5)=0.0077 * 0.0251=1.93 \mathrm{E}-4
$$

In order to avoid double accounting of the activity in the melted fuel, the fraction of damaged rods can be reduced by this fraction:
$0.0251-1.93 \mathrm{E}-4=0.0249$
\qquad
\qquad OF \qquad

The activity released from the melted fuel is determined as follows:
(total core activity) * (core fraction melted) * (power level multiplier) * (fraction released)
where:
core fraction melted $\quad=1.93 \mathrm{E}-4$
power level multiplier $\quad=1.7$
fraction released $\quad=100 \%$ noble gas 50% iodine

The activity released from the damaged, but not melted fuel is determined as follows:
(total core activity) * (core fraction not melted) * (power level multiplier) * (gap fraction)
where:
core fraction not melted $\quad=0.0249$
power level multiplier $\quad=1.7$
gap fraction $\quad=0.1$ for noble gas and iodine
The total core activity is obtained from Attachment 2. The total activity released from damaged fuel is the sum of these releases.

Table 4: Determination of Activity Released from Damaged Fuel

Isotope	Total Core Activity (Ci) (Attachment 2)	Activity Released from Damaged Rods (Ci)	Activity Released from Melted Rods (Ci)	Total Activity Released from Damaged Fuel (Ci)
$\mathrm{I}-131$	$6.11 \mathrm{E}+7$	$2.59 \mathrm{E}+5$	$1.00 \mathrm{E}+4$	$2.69 \mathrm{E}+5$
$\mathrm{I}-132$	$9.10 \mathrm{E}+7$	$3.85 \mathrm{E}+5$	$1.49 \mathrm{E}+4$	$4.00 \mathrm{E}+5$
$\mathrm{I}-133$	$1.41 \mathrm{E}+8$	$5.95 \mathrm{E}+5$	$2.31 \mathrm{E}+4$	$6.18 \mathrm{E}+5$
$\mathrm{I}-134$	$1.64 \mathrm{E}+8$	$6.94 \mathrm{E}+5$	$2.69 \mathrm{E}+4$	$7.21 \mathrm{E}+5$
$\mathrm{I}-135$	$1.30 \mathrm{E}+8$	$5.52 \mathrm{E}+5$	$2.14 \mathrm{E}+4$	$5.73 \mathrm{E}+5$
$\mathrm{Xe}-131 \mathrm{~m}$	$4.62 \mathrm{E}+5$	$1.96 \mathrm{E}+3$	$1.52 \mathrm{E}+2$	$2.11 \mathrm{E}+3$
$\mathrm{Xe}-133 \mathrm{~m}$	$3.57 \mathrm{E}+6$	$1.51 \mathrm{E}+4$	$1.17 \mathrm{E}+3$	$1.63 \mathrm{E}+4$
$\mathrm{Xe}-133$	$1.41 \mathrm{E}+8$	$5.95 \mathrm{E}+5$	$4.61 \mathrm{E}+4$	$6.41 \mathrm{E}+5$
$\mathrm{Xe}-135 \mathrm{~m}$	$3.78 \mathrm{E}+7$	$1.60 \mathrm{E}+5$	$1.24 \mathrm{E}+4$	$1.73 \mathrm{E}+5$
$\mathrm{Xe}-135$	$1.32 \mathrm{E}+8$	$5.61 \mathrm{E}+5$	$4.34 \mathrm{E}+4$	$6.04 \mathrm{E}+5$
$\mathrm{Xe}-138$	$1.24 \mathrm{E}+8$	$5.25 \mathrm{E}+5$	$4.07 \mathrm{E}+4$	$5.66 \mathrm{E}+5$
$\mathrm{Kr}-83 \mathrm{~m}$	$1.09 \mathrm{E}+7$	$4.63 \mathrm{E}+4$	$3.59 \mathrm{E}+3$	$4.99 \mathrm{E}+4$
$\mathrm{Kr}-85 \mathrm{~m}$	$2.73 \mathrm{E}+7$	$1.16 \mathrm{E}+5$	$8.96 \mathrm{E}+3$	$1.25 \mathrm{E}+5$
$\mathrm{Kr}-85$	$9.17 \mathrm{E}+5$	$3.88 \mathrm{E}+3$	$3.01 \mathrm{E}+2$	$4.18 \mathrm{E}+3$
$\mathrm{Kr}-87$	$5.25 \mathrm{E}+7$	$2.22 \mathrm{E}+5$	$1.72 \mathrm{E}+4$	$2.40 \mathrm{E}+5$
$\mathrm{Kr}-88$	$7.48 \mathrm{E}+7$	$3.17 \mathrm{E}+5$	$2.45 \mathrm{E}+4$	$3.41 \mathrm{E}+5$

\qquad OF \qquad

The following table summarizes the source term development using the transport and release assumptions provided in §6. The AXIDENT code reduces the source term input to it by a factor of 75% to account for fraction airborne and plate-out to automatically take into consideration these parameters used in LOCA analyses, a factor of four is applied to the iodine isotopes to compensate for this reduction.

Table 5. Determination of CRDA Source Term

Isotope	Total Activity Released from Damaged Fuel (Ci) (Table 4)	Fraction Transported to Turbine/ Condenser	Fraction Released from Turbine/ Condenser	Adjustment for AXIDENT. Input (2)	AXIDENT Source Term (Ci)
$\mathrm{I}-131$	$2.69 \mathrm{E}+5$	0.1	0.1	4	$1.08 \mathrm{E}+4$
$\mathrm{I}-132$	$4.00 \mathrm{E}+5$	0.1	0.1	4	$1.60 \mathrm{E}+4$
$\mathrm{I}-133$	$6.18 \mathrm{E}+5$	0.1	0.1	4	$2.47 \mathrm{E}+4$
$\mathrm{I}-134$	$7.21 \mathrm{E}+5$	0.1	0.1	4	$2.88 \mathrm{E}+4$
$\mathrm{I}-135$	$5.73 \mathrm{E}+5$	0.1	0.1	4	$2.29 \mathrm{E}+4$
$\mathrm{Xe}-131 \mathrm{~m}$	$2.11 \mathrm{E}+3$	1	1	1	$2.11 \mathrm{E}+3$
$\mathrm{Xe}-133 \mathrm{~m}$	$1.63 \mathrm{E}+4$	1	1	1	$1.63 \mathrm{E}+4$
$\mathrm{Xe}-133$	$6.41 \mathrm{E}+5$	1	1	1	$6.41 \mathrm{E}+5$
$\mathrm{Xe}-135 \mathrm{~m}$	$1.73 \mathrm{E}+5$	1	1	1	$1.73 \mathrm{E}+5$
$\mathrm{Xe}-135$	$6.04 \mathrm{E}+5$	1	1	1	$6.04 \mathrm{E}+5$
$\mathrm{Xe}-138$	$5.66 \mathrm{E}+5$	1	1	1	$5.66 \mathrm{E}+5$
$\mathrm{Kr}-83 \mathrm{~m}$	$4.99 \mathrm{E}+4$	1	1	1	$4.99 \mathrm{E}+4$
$\mathrm{Kr}-85 \mathrm{~m}$	$1.25 \mathrm{E}+5$	1	1	1	$1.25 \mathrm{E}+5$
$\mathrm{Kr}-85$	$4.18 \mathrm{E}+3$	1	1	1	$4.18 \mathrm{E}+3$
$\mathrm{Kr}-87$	$2.40 \mathrm{E}+5$	1	1	1	$2.40 \mathrm{E}+5$
$\mathrm{Kr}-88$	$3.41 \mathrm{E}+5$	1	1	1	$3.41 \mathrm{E}+5$.

8.2 Control Room Volume

Control Room parameters provided in §4.3.4.
Control Room proper
Height $=949^{\prime} 1.5^{\prime \prime}-932^{\prime} 6^{\prime \prime}=16.625^{\prime}$
Volume $=\left(72^{\prime}\right)^{*}\left(67.5^{\prime}\right) *\left(16.625^{\prime}\right)=80,800 \mathrm{ft} 3$
Cable Room
Height $=932^{\prime} 6^{\prime \prime}-918^{\prime}=14.5^{\prime}$
Volume $=\left(72^{\prime}\right) *\left(67.5^{\prime}\right) *\left(14.5^{\prime}\right)+\left(37.25^{\prime}\right) *\left(48.25^{\prime}\right) *\left(14.5^{\prime}\right)=96,530 \mathrm{ft}^{3}$
Total volume $=80,800+96,530=177,330 \mathrm{ft}^{3}$
\qquad OF \qquad

Assuming 20\% of the volumes include walls, floors, and equipment, the net volumes are:
Control Room proper $=64,640 \mathrm{ft}^{3}$
Control Room envelope $=141,860 \mathrm{ft}^{3}$

8.3 X/Q Values

The X/Q values for the Control Room intake are provided in §4.3.7. They are not adjusted for occupancy, since the occupancy factor is assumed to be one for the duration of the accident.

AXIDENT determines the dose for one site boundary location in a run. Since the site boundary doses are not affected by changes in the Control Room intake, the EAB and LPZ are run separately with the two Control Room runs (LPZ included with the unfiltered mode and $E A B$ with the filtered mode).

8.4 Other Parameters Required by AXIDENT

8.4.1 Activity Release Rate from Condenser

Convert the $1-\%$ per day to a release fraction as follows:
Release rate factor $\left(\mathrm{sec}^{-1}\right)=\frac{0.01 \text { per day }}{(24 \mathrm{hrs} \text { per day)(3600 sec per } \mathrm{hr})}=1.157 E-7 \mathrm{sec}^{-1}$

8.4.2 Activity Release Rate From the Turbine Building

Since the analysis is conservatively neglecting any holdup in the Turbine Building, the release rate is 1 volume per sec.

8.4.3 Spray Removal

Although there is no spray removal, AXIDENT requires values for the following parameters:

- FRA- time at which spray removal starts $=30$ days $=2.6 \mathrm{E} 6 \mathrm{sec}$ (i.e. no spray removal)
- Spray removal rates $=0$
- Mixing flow rate between sprayed and unsprayed regions $=1$
- Sprayed region volume $=1 \mathrm{ft}^{3}$
- Unsprayed region volume $=1 \mathrm{ft}^{3}$ (this is arbitrary volume, since all removal is based on volume/day)
- Fraction of initial release to sprayed region $=0$

8.4.4 Secondary Removal Rate

- 1 volume per second
\qquad of \qquad

9.0 COMPUTER INPUT AND OUTPUT

Attachments 3 and 4 give the AXIDENT code output for calculations of LPZ and control room doses, and EAB doses. At the beginning of each output is the listing of input values. Table 6 summarizes the results.

Table 6. AXIDENT Predictions for LPZ, Control Room, and EAB Doses at Cooper following a Design Basis CRDA

Location	Duration	Thyroid	Whole Body	Beta	Attachment
LPZ	$0-30$ days	1.65	0.15	0.11	3
Control Room	$0-30$ days	5.22	0.01	0.25	3
LAB	$0-2$ hours	0.63	0.13	0.07	4

10.0 SUMMARY OF RESULTS

The calculated doses to the Control Room operator and to a person located at EAB and LPZ are listed in Table 6. These dose values are below the regulatory limits given in Table 1.

11.0 CONCLUSIONS

The calculated doses for the Control Room, EAB, and LPZ as given in Table 6 are below the regulatory limits given in Table 1.

AXIDENT Library File

The $A X I D E N T$ library file is a plain ASCII text file which is read by the code. The dose conversion factors used in the original code are very conservative. They were in effect and used for the design basis 10 CFR 100 type reactor siting analyses (i.e., TID 14844 and ICRP Publication 2). For this analysis, more realistic DCFs are used. The DCFs used are obtained from ICRP 30. This required a change to the AXIDENT library file. The changes made are shown below.

Section of original library file

$I-131$	$9.97 E-07$	$1.48 \mathrm{E}+06$	2.91	0.197	0.371	9
$\mathrm{I}-132$	$8.37 \mathrm{E}-05$	$5.35 \mathrm{E}+04$	4.33	0.448	2.40	34
$\mathrm{I}-133$	$9.17 \mathrm{E}-06$	$4.00 \mathrm{E}+05$	6.69	0.423	0.477	6
$\mathrm{I}-134$	$2.22 \mathrm{E}-04$	$2.50 \mathrm{E}+04$	7.8	0.455	1.939	24
$\mathrm{I}-135$	$2.87 \mathrm{E}-05$	$1.24 \mathrm{E}+05$	6.2	0.308	1.779	25

Section of new library file

$I-131$	$9.97 E-07$	$1.10 \mathrm{E}+06$	2.91	0.197	0.371	9
$I-132$	$8.37 E-05$	$6.30 \mathrm{E}+03$	4.33	0.448	2.40	34
$I-133$	$9.17 E-06$	$1.80 \mathrm{E}+05$	6.69	0.423	0.477	6
$I-134$	$2.22 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	7.8	0.455	1.939	24
$I-135$	$2.87 E-05$	$3.10 \mathrm{E}+04$	6.2	0.308	1.779	25

The complete library file used is presented below.

\qquad OF \qquad

1.34	2.	E-02	1.46	4.	E-02	1.49		1.	E-02	1.62	5.	E-02
1.79	5.	E-02	0.2204	1.8	E-02	0.2884		3.4	E-02	0.4175	3.2	E-02
0.434	8.2	E-03	0.5269	1.49	E-01	0.5465		6.2	E-02	0.7077	5.9	E-03
0.8369	5	E-02	0.9724	1.8	E-02	1.0387		9.	E-02	1.1017	1.7	E-02
1.1243	3.3	E-02	1.1316	1.75	E-01	1.1691		7.9	E-03	1.2604	2.58	8 E-01
1.4575	7.1	E-02	1.5029	1.2	E-02	1.5659		1.4	E-02	1.6785	9.5	E-02
1.707	3.8	E-02	1.7919	7.6	E-02	1.8314		6.4	E-03	2.0467	8.3	E-03
2.2567	6.3	E-03	2.4079	9.	E-03	0.005		6.	E-02	0.03	5.9	E-01
0.16398	2.3	E-02	0.0297	1.41	E-01	0.0338		3.2	E-02	0.2328	8.	E-02
0.0308	3.82	E-01	0.0353	8.6	E-02	0.0796		6.	E-03	0.081	3.7	E-01
0.1607	6.6	E-04	0.2234	2.4	E-06	0.3031		5.1	E-05	0.3841	2.3	E-04
0.0045	4	E-04	0.0304	1.35	E-01	0.527		8.2	E-01	0.031	4.5	E-02
0.1585	2.1	E-03	0.1999	2.	E-04	0.2498		9.16	E-01	0.3586	2.2	E-03
0.3731	1.1	E-04	0.4082	3.1	E-03	0.5733		5.	E-05	0.6086	2.4	E-02
0.6546	3.2	E-04	0.7319	4.6	E-04	0.8126		5	E-04	1.063	3	E-05
0.03	3	E-02	0.155	7.8	E-02	0.243		3.6	E-02	0.259	3.7	E-01
0.397	7.4	E-02	0.402	2.8	E-02	0.434		2.3	E-01	1.77	2.	E-01
2.00	1.6	E-01	0.0016	8.	E-02	0.0093		8.	E-02	0.0128	1.6	E-01
0.0016	6.5	E-04	0.0128	5.2	E-02	0.1495		7.7	E-01	0.305	1.35	5 E-01
0.514	4.35	E-03	0.403	5.9	E-01	0.6743		2.5	E-02	0.836	8.	E-03
0.8458	8.1	E-02	1.1755	1.4	E-02	1.338		7.5	E-03	1.384	5.5	E-03
1.741	2	E-02	2.012	2.6	E-02	2.556		9.5	E-02	2.559	5.1	E-02
2.8112	4	E-03	3.3098	6.	E-03	0.166		6.9	E-02	0.1961	3.81	$1 \mathrm{E}-01$
0.3626	3.	E-02	0.3904	6.	E-03	0.4723		6.	E-03	0.8347	1.31	1 E-01
0.8624	5.	E-03	0.9867	1.6	E-02	1.1417		1.8	E-02	1.1833	9.	E-03
1.25	1.1	E-02	1.5185	1.5	E-02	1.5298		1.14	E-01	2.0295	4.8	E-02
2.0353	4.8	E-02	2.1959	2.51	E-01	2.2316		3.6	E-02	2.3524		E-03
2.392	3.82	E-01										
0.01		4.99	0.015		. 55	0.02			0.752	0.03		0.349
0.04		0.248	0.05		0.208	0.06			. 188	0.08		0.167
0.1		0.154	0.15		0.136	0.2			0.123	0.3		0.107
0.4		0.0954	0.5		0.087	0.6			. 0805	0.8		0.0707
1.		0.0636	1.5		0.0518	2.0			. 0445	3.0		0.0358
4.0		0.0308										
4.61		1.27	0.511		0.148	0.06	669		0.0406	0.0305		0.0243
0.0234		0.0250	0.0268		0.0288	0.02	295		0.0297	0.0296		0.0289
0.0280		0.0257	0.0238		0.0212	0.01	194					
I-131 I-	332	I-133	I-134	I-1	135	I-131	I-1	32	I-13	3 I-134		
I-135 I-	31	I-132	I-133	I-1	134	I-135	XE-	131M	M XE-1	33M XE-133		
XE-135M XE	135	XE-13	8 KR-83M	KR-	-85M	KR-85	KR-	-87	KR-8			

\qquad OF 29

```
AXIDENT VER 2 MOD 4
PRODUCTION DATE 02/18/92
BEGIN EXECUTION DATE: 12/03/1999
BEGIN EXECUTION TIME: 09:24:03.05
```


1
CNS CRDA: Source Term Run for 2429 NWt (102 \%)
INITIAL CONTAINMENT INVENTORY
ISOTOPE ACTIVITY (CURIES)

$I-131$	$6.114 \mathrm{E}+07$
$\mathrm{I}-132$	$9.098 \mathrm{E}+07$
$\mathrm{I}-133$	$1.406 \mathrm{E}+08$
$\mathrm{I}-134$	$1.639 \mathrm{E}+08$
$\mathrm{I}-135$	$1.303 \mathrm{E}+08$
$\mathrm{XE}-131 \mathrm{M}$	$4.622 \mathrm{E}+05$
$\mathrm{XE}-133 \mathrm{M}$	$3.572 \mathrm{E}+06$
$\mathrm{XE}-133$	$1.406 \mathrm{E}+08$
$\mathrm{XE}-135 \mathrm{M}$	$3.782 \mathrm{E}+07$
$\mathrm{XE}-135$	$1.324 \mathrm{E}+08$
$\mathrm{XE}-138$	$1.240 \mathrm{E}+08$
$\mathrm{KR}-83 \mathrm{M}$	$1.093 \mathrm{E}+07$
$\mathrm{KR}-85 \mathrm{M}$	$2.731 \mathrm{E}+07$
$\mathrm{KR}-85$	$9.167 \mathrm{E}+05$
$\mathrm{KR}-87$	$5.253 \mathrm{E}+07$
$\mathrm{KR}-88$	$7.480 \mathrm{E}+07$

\qquad OF \qquad

```
AXIDENT VER 2 MOD 4
PRODUCTION DATE 02/18/92
BEGIN EXECUTION DATE: 03/17/2000
BEGIN EXECUTION TIME: 09:33:06.32
```

 1 CNS CRDA: LPZ Doses \& CR Doses Isolation
 2521.01 .0
 \(\begin{array}{lllll}3 & -2429 & 2.6 \mathrm{E} 6 & 1.4186 \mathrm{E} 5 & 6.464 \mathrm{E} 4\end{array}\)
 \(40.00 .00 .01 .01 .01 .0 \quad 0.0\)
 \(57.2 \mathrm{E} 3 \quad 2.88 \mathrm{E} 4 \quad \mathrm{~B} .64 \mathrm{E} 4 \quad 3.456 \mathrm{E} 5 \quad 2.592 \mathrm{E} 6\)
 6 3*1.157E-7 2*0.0
 \(75 * 1.0\)
 \(85 * 1.0\)
 9 3*3316 2*891
 $102 * 2.9 \mathrm{E}-4$ 7.3E-5 2*0.0
11 9.54E-4 4.93E-4 2.69E-4 2*0.0
12 5*0.0
13 5*0.0
14 5*0.0
35 5*0.0
16 5*0.0
17 5*0.0
18 5*0.0
$195 * 0.0$
20 5*0.0
21 6*1.0
22 3*1.0
$231.08 \mathrm{E}+041.60 \mathrm{E}+042.47 \mathrm{E}+042.88 \mathrm{E}+042.29 \mathrm{E}+042.11 \mathrm{E}+031.63 \mathrm{E}+046.41 \mathrm{E}+05$
$241.73 \mathrm{E}+056.04 \mathrm{E}+05 \mathrm{5} .66 \mathrm{E}+054.99 \mathrm{E}+041.25 \mathrm{E}+054.18 \mathrm{E}+03 \quad 2.40 \mathrm{E}+05 \quad 3.41 \mathrm{E}+05$

CNS CRDA: LPZ Doses \& CR Doses Isolation

INITIAL CONTAINMENT	INVENTORY
ISOTOPE	ACTIVITY
(CURIES)	
I-131	$1.080 \mathrm{E}+04$
$\mathrm{I}-132$	$1.600 \mathrm{E}+04$
$\mathrm{I}-133$	$2.470 \mathrm{E}+04$
$\mathrm{I}-134$	$2.880 \mathrm{E}+04$
$\mathrm{I}-135$	$2.290 \mathrm{E}+04$
$\mathrm{XE}-131 \mathrm{M}$	$2.110 \mathrm{E}+03$
$\mathrm{XE}-133 \mathrm{M}$	$1.630 \mathrm{E}+04$
$\mathrm{XE}-133$	$6.410 \mathrm{E}+05$
$\mathrm{XE}-135 \mathrm{M}$	$1.730 \mathrm{E}+05$
$\mathrm{XE}-135$	$6.040 \mathrm{E}+05$
$\mathrm{XE}-138$	$5.660 \mathrm{E}+05$
$\mathrm{KR}-83 \mathrm{M}$	$4.990 \mathrm{E}+04$
$\mathrm{KR}-85 \mathrm{M}$	$1.250 \mathrm{E}+05$
$\mathrm{KR}-85$	$4.180 \mathrm{E}+03$
$\mathrm{KR}-87$	$2.400 \mathrm{E}+05$
$\mathrm{KR}-8 \mathrm{~B}$	$3.410 \mathrm{E}+05$

CNS CRDA: LPZ Doses \& CR Doses Isolation

ANALYSIS BASED ON: 2429 MWT, 141860. FT3 CONT CENTER VOLUME, 64640. FT3 CONTROL ROOM VOLUME, 31.37 FT EFF RADIUS SPRAYED VOL

1. FT3 SPRAYED VOL,
2. FT3 UNSPRAYED VOL,
3. CFM MIXING,
00.00 PCT REL TO

AT 2.000 HOURS: $X / Q(S I T E)=.29 E-03 \mathrm{SEC} / \mathrm{M} 3$
PRIMARY LEAK RATE= 1.000 PERCENT/DAY
CONTROL ROOM INTAKE =3316.0 CFM
X / Q CONT ROOM= $95 \mathrm{SE}-03 \mathrm{SEC} / \mathrm{M} 3 \quad \mathrm{SEC}$ RELEASE RATE= $-86 E+05$ VOL/DAY \quad PCT RI LKG TO ATM $=$
00.00

\qquad
\qquad OF \qquad

CNS CRDA: LPZ Doses \& CR Doses Isolation

ANALYSIS BASED ON: 2429 MFT, 141860. FT3 CONT CENTER VOLUME, 64640. FT 3 CONTROL ROOM VOLUME, 31.37 FT EFF RADIUS 1. FT3 SPRAYED VOL, 1. FT3 UNSPRAYED VOL, 1. CFM MIXING. 00.00 PCT REL TO SPRAYED VOL

AT $\quad 8.000$ HOURS: $\quad X / Q(S I T E)=.29 E-03 \mathrm{SEC} / \mathrm{M} 3$
PRIMARY LEAK RATE= 1.000 PERCENT/DAY
CONTROL ROOM
INTAKE $=3316.0 \mathrm{CFM}$
X/Q CONT ROOM= . 49E-03 SEC/M3 SEC RELEASE RATE= . B6E+05 VOL/DAY
PCT PRY LKG TO ATM =
00.00

\qquad OF

ANALYSIS BASED ON: 2429 MWT, 141860. FT3 CONT CENTER VOLUME, 64640. FT3 CONTROL ROOM VOLUME, 31.37 FT T EFF RADIUS

1. FT3 SPRAYED VOL. 1. ET3 UNSPRAYED VOL,
2. CFM MIXING, 00.00 PCT REL TO

SPRAYED VOL

CNS CRDA: LPZ Doses \& CR Doses Isolation

ANALYSIS BASED ON: 2429 MWT, 141860. FT3 CONT CENTER VOLUME, 64640. FT 3 CONTROL ROOM VOLUME, 31.37 FT EFF RADIUS SPRAYED VOL

1. FT3 SPRAYED VOL, 1. FT3 UNSPRAYED VOL, 1. CFM MIXING, 00.00 PCT REL TO

\qquad

CNS CRDA: LPZ Doses \& CR Doses Isolation

ANALYSIS BASED ON: 2429 MWT , 141860. FT3 CONT CENTER VOLUME, 64640. FT3 CONTROL ROOM VOLUME. 31.37 FT EFF RADIUS 1. FT3 SPRAYED VOL, 1. FT3 UNSPRAYED VOL,

1. CFM MIXING, 00.00 PCT REL TO SPRAYED VOL

AT 720.000 HOURS: $\quad X / Q(S I T E)=.00 E+00 \mathrm{sEC} / \mathrm{M} 3$
PRIMARY LEAK RATE: . 000 PERCENT/DAY
CONTROL ROOM INTAKE= 891.0 CFM
X / Q CONT ROOM $=.00 E+00 \mathrm{SEC} / \mathrm{M} 3$ SEC RELEASE RATE $=.86 E+0 S$ VOL/DAY PCT PRI LKG TO ATM $=$
00.00

\qquad OF

1
CNS CRDA: LPZ Doses \& CR Doses Isolation

ISOTOPE					ACTIVITY	RELEASED	URIES)
	2. HRS	B. HRS	24. HRS	96. HRS	720. HRS		
ELEMENTAL							
1-131	$2.04 E+00$	$6.02 \mathrm{E}+00$	$1.54 \mathrm{E}+01$	2.58E-04	$0.00 \mathrm{E}+00$	$2.34 \mathrm{E}+01$	
I-132	2.28E+00	$2.30 \mathrm{E}+00$	4.46E-01	3.02E-07	$0.00 \mathrm{E}+00$	$5.02 \mathrm{E}+00$	
I-133	4.53E+00	1.19E+01	2.22E+01	2.91E-04	$0.00 \mathrm{E}+00$	$3.86 E+01$	
I-134	$2.72 \mathrm{E}+00$	6.84E-01	5.69E-03	3.51E-12	$0.00 E+00$	3.41E+00	
I-135	$3.92 \mathrm{E}+00$	$7.8 \mathrm{BE}+00$	7.39E+00	5.00E-05	$0.00 \mathrm{E}+00$	1.92E+01	
PARTICULATE							
I-131	$1.12 \mathrm{E}-01$	3.31E-01	8.44E-01.	1-42E-05	$0.00 \mathrm{E}+00$	1.29E+00	
I-132	1.25E-01	$1.26 \mathrm{E}-01$	2.45E-02	1.66E-08	$0.00 \mathrm{E}+00$	2.76E-01	
I-133	2.49E-01	6.54E-01	1.22E+00	1.60E-05	$0.00 E+00$	$2.12 \mathrm{E}+00$	
I-134	1.50E-01	3.76E-02	3.13E-04	$1.93 \mathrm{E}-13$	$0.00 \mathrm{E}+00$	1.87E-01	
I-135	2.15E-01	4.33E-01	4.06E-01	2.75E-06	$0.00 \mathrm{E}+00$	$1.05 E+00$	
ORGANIC							
I-131	8.96E-02	2.65E-01	6.75E-01	1.14E-05	0.00E+00	$1.03 \mathrm{E}+00$	
I-132	1.00E-01	1.01E-01	1.96E-02	1.33E-08	$0.00 E+00$	2.21E-01	
I-133	1.99E-01	5.23E-01	9.76E-01	1.28E-05	$0.00 E+00$	$1.70 \mathrm{E}+00$	
I-134	1.20E-01	3.01E-02	2.50E-04	1.54E-13	$0.00 \mathrm{E}+00$	1.50E-01	
I-135	1.72E-01	3.46E-01	3.25E-01	2.20E-06	$0.00 \mathrm{E}+00$	8.43E-01	
NOBLE GASES							
XE-131M	1.75E+00	5. $20 \mathrm{E}+00$	$1.34 \mathrm{E}+01$	2-28E-04	$0.00 \mathrm{E}+00$	$2.04 \mathrm{E}+01$	
XE-133M	$1.34 \mathrm{E}+01$	3.81E+01	$8.81 E+01$	1.37E-03	$0.00 \mathrm{E}+00$	$1.40 \mathrm{E}+02$	
XE-133	$5.31 E+02$	1.56E+03	$3.89 E+03$	6.44E-02	$0.00 \mathrm{E}+00$	$5.98 \mathrm{E}+03$	
XE-135M	$2.69 E+01$	1.31E-01	$1.50 \mathrm{E}-08$	3.39E-30	$0.00 \mathrm{E}+00$	$2.70 \mathrm{E}+01$	
XE-135	$4.67 E+02$	$1.04 \mathrm{E}+03$	$1.26 \mathrm{E}+03$	1.12E-02	$0.00 \mathrm{E}+00$	2.77E+03	
XE-138	$9.83 E+01$	8.56E-01	5.50E-07	1.11E-26	$0.00 \mathrm{E}+00$	9.91E+01	
KR-83M	$2.93 \mathrm{E}+01$	$2.38 \mathrm{E}+01$	$2.87 E+00$	7.80E-07	$0.00 \mathrm{E}+00$	$5.60 \mathrm{E}+01$	
KR-85M	$8.93 E+01$	$1.47 \mathrm{E}+02$	$8.56 \mathrm{E}+01$	3.25E-04	$0.00 E+00$	3.22E+02	
KR-85	$3.48 \mathrm{E}+00$	$1.04 \mathrm{E}+01$	2.77E+01	4.79E-04	$0.00 E+00$	4.16E+01	
KR-87	1. $21 \mathrm{E}+02$	$5.88 \mathrm{E}+01$	2.28E+00	5.44E-08	$0.00 E+00$	$1.83 \mathrm{E}+02$	
KR-88	2.24E+02	$2.70 \mathrm{E}+02$	$7.72 \mathrm{E}+01$	1.02E-04	$0.00 \mathrm{E}+00$	$5.71 \mathrm{E}+02$	
END EXECUTION DATE:		03/17/2000					
END EXEC	TION TIME:	09:33:06.48					

\qquad OF
AXIDENT YER 2 MOD 4
PRODUCTION DATE 02/18/92
BEGIN EXECUTION DATE: $03 / 17 / 2000$
BEGIN EXECUTION TIME: $09: 33: 23.29$
$\begin{array}{ll}\text { BEGIN EXECUTION DATE: } & 03 / 17 / 2000 \\ \text { BEGIN EXECUTION TIME: } & 09: 33: 23.29\end{array}$

```
1 CNS CRDA: EAB DOses
2 2 1.0 1.0
-2429 2.6E6 1.4186ES 6.464E4
40.0 0.0 0.0 1.0 1.0 1.0 0.0
5 7.2E3
6 1.157E-7
71.0
8 1.0
90.0
10 5.2E-4
11 0.0
120.0
130.0
14.0.0
150.0
16 0.0
70.0
18 0.0
190.0
20 0.0
21 6*1.0
22 3*1.0
1.08E+04 1.60E+04 2.47E+04 2.88E+04 2.29E+04 2.11E+03 1.63E+04 6.41E+05
24 1.73E+05 6.04E+05 5.66E+05 4.99E+04 1.25E+05 4.18E+03 2.40E+05 3.41E+05
```

INITIAL CONTAINMENT INVENTORY
ISOTOPE ACTIVITY (CURIES)

$I-131$	$1.080 \mathrm{E}+04$
$\mathrm{I}-132$	$1.600 \mathrm{E}+04$
$\mathrm{I}-133$	$2.470 \mathrm{E}+04$
$\mathrm{I}-134$	$2.880 \mathrm{E}+04$
$\mathrm{I}-135$	$2.290 \mathrm{E}+04$
$\mathrm{XE}-131 \mathrm{M}$	$2.110 \mathrm{E}+03$
$\mathrm{XE}-133 \mathrm{M}$	$1.630 \mathrm{E}+04$
$\mathrm{XE}-133$	$6.410 \mathrm{E}+05$
$\mathrm{XE}-135 \mathrm{M}$	$2.730 \mathrm{E}+05$
$\mathrm{XE}-135$	$6.040 \mathrm{E}+05$
$\mathrm{XE}-138$	$5.660 \mathrm{E}+05$
$\mathrm{KR}-83 \mathrm{M}$	$4.990 \mathrm{E}+04$
$\mathrm{KR}-85 \mathrm{M}$	$1.250 \mathrm{E}+05$
$\mathrm{KR}-85$	$4.180 \mathrm{E}+03$
$\mathrm{KR}-87$	$2.400 \mathrm{E}+05$
$\mathrm{KR}-88$	$3.410 \mathrm{E}+05$

ANALYSIS BASED ON: 2429 MAT, 141860 . FT 3 CONT CENTER VOLUME, 64640. FT CONTROL ROOM VOLUME, 31.37 ET EFF RADIUS

1. FT3 SPRAYED VOL. 1. ET3 UNSPRAYED VOL. 1 - GEM MIXING, 00.00 PCT REL. TO SPRAYED VOL

\qquad
SHEET \qquad OF \qquad

1
CNS CRDA: EAB DOses

ISOTOPE			ACTIVITY RELEASED (CURIES)
	2. HRS		
ELEMENTAL			
I-131	$2.04 \mathrm{E}+00$	$2.04 E+00$	
I-132	$2.28 \mathrm{E}+00$	$2.28 \mathrm{E}+00$	
I-133	$4.53 E+00$	4.53E+00	
I-134	2.72E+00	2.72E+00	
I-135	$3.92 \mathrm{E}+00$	$3.92 \mathrm{E}+00$	
PARTICULATE			
I-131	1.12E-01	1.12E-01	
I-132	1.25E-01	1.25E-01	
I-133	2.49E-01	2.49E-01	
I-134	1.50E-01	1.50E-01	
I-135	2.15E-01	2.15E-01	
ORGANIC			
I-131	8.96E-02	8.96E-02	
I-132	1.00E-01	1.00E-01	
I-133	1.99E-01	1.99E-01	
I-134	1.20E-01	1.20E-01	
I-135	1.72E-01	1.72E-01	
NOBLE GASES			
XE-131M	$1.75 \mathrm{E}+00$	$1.75 \mathrm{E}+00$	
XE-133M	$1.34 \mathrm{E}+01$	$1.34 \mathrm{E}+01$	
XE-133	$5.31 \mathrm{E}+02$	$5.31 \mathrm{E}+02$	
XE-135M	$2.69 E+01$	2.69E+01	
XE-135	$4.67 E+02$	$4.67 E+02$	
XE-138	$9.83 \mathrm{E}+01$	$9.83 \mathrm{E}+01$	
KR-83M	$2.93 \mathrm{E}+01$	$2.93 \mathrm{E}+01$	
KR-85M	$8.93 \mathrm{E}+01$	$8.93 \mathrm{E}+01$	
KR-85	$3.48 \mathrm{E}+00$	$3.48 \mathrm{E}+00$	
KR-87	1.21E+02	$1.21 \mathrm{E}+02$	
KR-88	2.24E+02	$2.24 \mathrm{E}+02$	

\qquad
\qquad OF \qquad

Informational Estimate with Fumigation Contribution

As a result of discussions on March 21, 2000, the NRC requested that the District provide an informational estimate that addresses the effects of assuming an additional control room dose contribution from the elevated release path by assuming an initial 30 minute "fumigation" contribution. The fumigation X/Q requested to be utilized is that utilized in the Control Room Habitability study (in response to TMI Item III.D.3.4) provided in a December 30, 1980 District letter to the NRC.

The District recognizes that a 0-30 minute fumigation X / Q for the elevated release point was used in the Control Room habitability calculations performed in support of the District's response to the Post TMI Requirement/Action Plan. The fumigation model was based on regulatory guidance associated with Exclusion Area Boundary and Low Population Zone atmospheric diffusion models rather than site specific configuration modeling. The District believes that the methodology applied in ARCON96 correctly models the site configuration and does not believe that fumigation should be applied in conjunction with the use of the ARCON96 code. ARCON96 simulates near-field atmospheric dispersion in a building wake environment, i.e., within the plant area dominated by structures. The model explicitly addresses stack downwash and building wake cavity dispersion. Fumigation of an elevated plume is not expected to occur in the plant environment, because mechanical turbulence produced by the buildings prevents the formation of the elevated inversion layer, which is a prerequisite to fumigation.

Use of the ARCON96 model for Control Room X/Qs in Calculation NEDC 99-033 (LOCA), Revision 1, results in a Control Room thyroid dose of 6.62 rem. The NRC requested that the District perform an evaluation of the Control Room Operator dose in Calculation NEDC 99-033 (LOCA) using the fumigation based X/Q used in the District's Post TMI Requirements/Action Plan Response for the first 30 minutes of release from the elevated release point. An informational estimate of the Control Room Operator thyroid dose was determined by substituting the fumigation X/Q (3.03E-04) in place of the ARCON96 determined X/Q ($1.00 \mathrm{E}-09$) for the first 30 minutes of release from the elevated release point. In general, for the 0 to 21 minute period, the fumigation X / Q was used for the elevated release point; for the 21 minute to 1 hour period the fumigation X / Q was used for the elevated release point from 21 to 30 minutes and the ARCON96 X/Q was used for the period from 30 to 60 minutes; for the period of 1 hour to 30 days ARCON96 X/Qs were used for the elevated release point. Details of the informational estimate, were based on the data provided in NEDC 99-033, Revision 1, Tables 8 and 9 , and are summarized in the following Table.

Informational Estimate Utilizing 30 Minute "Fumigation"

	$0-21$ Minutes (Rem)	$21-30$ Minutes (Rem)	$30-60$ Minutes $($ Rem $)$	$60+$ Minutes (Rem)	Sum (Rem)
SGT Containment	$1.11 \mathrm{E}-04 \times(3.03 \mathrm{E}-04 / 1.00 \mathrm{E}-09)$	$9 / 39 \times 1.01 \mathrm{E}-05 \times(3.03 \mathrm{E}-04 / 1.00 \mathrm{E}-09)$	$30 / 39 \times 1.01 \mathrm{E}-05$	$2.38 \mathrm{E}-02$	34.36
SGT ESF	$3.17 \mathrm{E}-06 \times(3.03 \mathrm{E}-04 / 1.00 \mathrm{E}-09)$	$9 / 39 \times 2.88 \mathrm{E}-07 \times(3.03 \mathrm{E}-04 / 1.00 \mathrm{E}-09)$	$30 / 39 \times 2.88 \mathrm{E}-07$	$7.47 \mathrm{E}-04$	0.98
MSIV (unaffected)	$3.57 \mathrm{E}-03$	6.59	6.59		

Correspondence No: NLS2000033
Page 1 of 1

The following table identifies those actions committed to by the District in this document. Any other actions discussed in the submittal represent intended or planned actions by the District. They are described to the NRC for the NRC's information and are not regulatory commitments. Please notify the NL\&S Manager at Cooper Nuclear Station of any questions regarding this document or any associated regulatory commitments.

COMMITMENT	COMMITTED DATE OR OUTAGE		
1. The District will impose limitations on the movement			
of any irradiated GE-14 fuel assembly or loads over			
irradiated GE-14 fuel assemblies.		$\mathrm{N/A}$	2. The District will continue the previous commitment to
:---			
make KI (potassium-iodide) tablets available to the			
Control Room operators in accordance with the			
recommended dosage if plant conditions indicate that a			
LOCA is occurring coincident with core damage.			

