February 9, 2000

Dr. Robert U. Mulder Director, University of Virginia Reactor Facility Department of Mechanical, Aerospace and Nuclear Engineering University of Virginia Charlottesville, VA 22903-2442

SUBJECT: ISSUANCE OF AMENDMENT NO. 25 TO AMENDED FACILITY OPERATING LICENSE NO. R-66 - UNIVERSITY OF VIRGINIA (TAC NO. MA3737)

Dear Dr. Mulder:

The Commission has issued the enclosed Amendment No. 25 to Amended Facility Operating License No. R-66 for the University of Virginia Research Reactor. The amendment consists of changes to the facility operating license and technical specifications (TS) in response to your submission of September 29, 1998, as supplemented on January 20, August 16, and November 23, 1999.

The amendment removes authority from the license to operate the reactor, authorizes possession-only of the reactor and amends the TS to remove operational requirements not needed for possession-only status. The amendment also makes changes to the administrative controls for the reactor facility.

A copy of the safety evaluation supporting Amendment No. 25 is also enclosed.

Sincerely,

/RA/

Alexander Adams, Jr., Senior Project Manager Events Assessment, Generic Communications and Non-Power Reactors Branch Division of Regulatory Improvement Programs Office of Nuclear Reactor Regulation

Docket No. 50-62

Enclosures:

- 1. Amendment No. 25
- 2. Safety Evaluation

cc w/enclosures: See next page

DISTRIBUTION:

E-MAIL PDoyle TDragoun TMichaels SHolmes WEresian

MMendonca JLyons PIsaac

HARD COPY

File Center 50-62 PUBLIC OGC DMatthews GHill (2) CBassett

LMarsh AAdams EHylton REXB r/f SNewberry

DOCUMENT NAME: G:\REXB\ADAMS\62pol.25

REXB:PM OG AAdams// SU I /13/00 Z /9 OFFICIAL RECORD COP

REXB:BC LMarsh 2 /q/00

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

February 9, 2000

Dr. Robert U. Mulder Director, University of Virginia Reactor Facility Department of Mechanical, Aerospace and Nuclear Engineering University of Virginia Charlottesville, VA 22903-2442

SUBJECT: ISSUANCE OF AMENDMENT NO. 25 TO AMENDED FACILITY OPERATING LICENSE NO. R-66 - UNIVERSITY OF VIRGINIA (TAC NO. MA3737)

Dear Dr. Mulder:

The Commission has issued the enclosed Amendment No. 25 to Amended Facility Operating License No. R-66 for the University of Virginia Research Reactor. The amendment consists of changes to the facility operating license and technical specifications (TS) in response to your submission of September 29, 1998, as supplemented on January 20, August 16, and November 23, 1999.

The amendment removes authority from the license to operate the reactor, authorizes possession-only of the reactor and amends the TS to remove operational requirements not needed for possession-only status. The amendment also makes changes to the administrative controls for the reactor facility.

A copy of the safety evaluation supporting Amendment No. 25 is also enclosed.

Sincerely,

alexander Wans,

Alexander Adams, Jr., Senior Project Manager Events Assessment, Generic Communications and Non-Power Reactors Branch Division of Regulatory Improvement Programs Office of Nuclear Reactor Regulation

Docket No. 50-62

Enclosures:

1. Amendment No. 25

2. Safety Evaluation

cc w/enclosures: See next page

Docket Nos. 50-62/396

University of Virginia

CC:

Department of Environmental Quality Office of Grants Management/Intergovernmental Affairs 629 East Main Street, Sixth Floor Richmond, VA 23219

Dr. William Vernetson Director of Nuclear Facilities Department of Nuclear Engineering Sciences University of Florida 202 Nuclear Sciences Center Gainesville, FL 32611

Dr. Rolan E. Hertel, Director Neely Nuclear Research Center Georgia Institute of Technology 900 Atlantic Drive, N. W. Atlanta, GA 30332

Mr. Pedro B. Perez, Associate Director Nuclear Reactor Program North Carolina State University P.O. Box 7909 Raleigh, NC 27695-7909

Office of the Attorney General 101 North 8th Street Richmond, VA 23219

Virginia Department of Health Radiological Health Program P.O. Box 2448 Richmond, VA 23218

Dr. Ralph O. Allen, Chairman Reactor Decommissioning Committee University of Virginia Environmental Health and Safety P.O. Box 3425 Charlottesville, VA 22903

Mr. Paul E. Benneche, Supervisor Nuclear Reactor Facility University of Virginia c/o Thornton Hall Charlottesville, VA 22903-2442

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

UNIVERSITY OF VIRGINIA

DOCKET NO. 50-62

AMENDMENT TO AMENDED FACILITY OPERATING LICENSE

Amendment No. 25 License No. R-66

- 1. The U.S. Nuclear Regulatory Commission (the Commission) has found that
 - A. The application for an amendment to Amended Facility Operating License No. R-66 filed by the University of Virginia (the licensee) on September 29, 1998, as supplemented on January 20, August 16, and November 23, 1999, conforms to the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the regulations of the Commission as stated in Chapter I of Title 10 of the Code of Federal Regulations (10 CFR);
 - B. The facility will be possessed in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance that (i) the activities authorized by this amendment can be conducted without endangering the health and safety of the public and (ii) such activities will be conducted in compliance with the regulations of the Commission;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public;
 - E. This amendment is issued in accordance with the regulations of the Commission as stated in 10 CFR Part 51, and all applicable requirements have been satisfied; and
 - F. Prior notice of this amendment was not required by 10 CFR 2.105, and publication of notice for this amendment is not required by 10 CFR 2.106.

- 2. Accordingly, the license is amended by changes to the following paragraphs which are hereby amended to read as follows:
 - I.A. The application for amendment by the University of Virginia (the licensee) dated September 29, 1998, as supplemented by filings dated January 20, August 16, and November 23, 1999, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations as set forth in 10 CFR Chapter I;
 - I.B. The facility will be possessed, but not operated, in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - I.E. The licensee is a nonprofit educational institution and has satisfied the applicable provisions of 10 CFR 140, "Financial Protection Requirements and Indemnity Agreements," of the Commission's regulations;
 - I.H. The possession and disposal of byproduct and special nuclear material, as authorized by this license, will be in accordance with the Commission's regulations in 10 CFR 30 and 70.
 - II.A. This license applies to the light water-cooled and -moderated pool nuclear reactor owned by the University of Virginia (the licensee), located on the grounds of the University of Virginia at Charlottesville, Albemarle County, Virginia.
 - II.B.(1) Pursuant to Section 104c of the Act and 10 CFR 50, "Licensing of Production and Utilization Facilities," only to possess, but not operate, the reactor at the designated location near Charlottesville, Virginia, in accordance with the procedures and limitations described in the application and in this license.
 - II.B.(2) Pursuant to the Act and 10 CFR Part 70, "Domestic Licensing of Special Nuclear Material," the maximum U-235 possession limits are as follows:

Maximum U-235 <u>Kilograms</u>	<u>% Enrichment</u>	Form
4	<20%	Materials testing reactor (MTR)-type fuel
1	Any	Fission chambers, flux foils, and other forms used in connection with the reactor

- II.B.(3) Pursuant to the Act and 10 CFR 30, "Rules of General Applicability to Licensing of Byproduct Material" at the Reactor Facility, to possess and store 2,000 curies of cobalt 60; to possess and store 1.0 gram of neptunium 237; and to possess, but not separate, such byproduct materials as may have been produced by operation of the reactor prior to its permanent shutdown.
- II.C.(1) Maximum Power Level

The University of Virginia will not load the reactor core and not operate the reactor.

- Accordingly, the license is amended by deleting paragraph II.B.(4).
- 4. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the enclosure to this license amendment, and paragraph II.C.(2) of Amended Facility Operating License No. R-66 is hereby amended to read as follows:
 - (2) <u>Technical Specifications</u>

The Technical Specifications contained in Appendix A, as revised through Amendment No. 25, are hereby incorporated in the license. The licensee shall possess the facility in accordance with the Technical Specifications.

5. This license amendment is effective as of the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

LB Mars

Ledyard B. Marsh, Chief Events Assessment, Generic Communications and Non-Power Reactors Branch Division of Regulatory Improvement Programs Office of Nuclear Reactor Regulation

Enclosure: Appendix A, Technical Specifications Changes

Date of Issuance: February 9, 2000

ENCLOSURE TO LICENSE AMENDMENT NO. 25

AMENDED FACILITY OPERATING LICENSE NO. R-66

DOCKET NO. 50-62

Replace the following pages of Appendix A, "Technical Specifications," with the enclosed pages. The revised pages are identified by amendment number and contain vertical lines indicating the areas of change.

Remove Insert

1 - 58

1 - 57

APPENDIX A

TECHNICAL SPECIFICATIONS

FOR THE

UNIVERSITY OF VIRGINIA REACTOR

FACILITY LICENSE No. R-66 DOCKET No. 50-62

As Revised to Facilitate Permanent Reactor Shutdown, Decontamination and Decommissioning

November 22, 1999

Amendment No. 25 February 9, 2000

.

TABLE OF CONTENTS

÷

			Page
1.0.	DEFINI	TIONS	. 3
		Figure 1.1 Reactor Facility Boundary Areas	10
2.0	SAFET	V LIMIT AND LIMITING SAFETY SYSTEMS SETTINGS	11
2.0.	2 1	Safety Limit	11
	2.1.	Limiting Safety System Settings	15
	2.2.		10
3.0.	LIMITI	NG CONDITIONS FOR OPERATION	16
	3.1.	Reactivity	16
	3.2.	Reactor Safety System	18
	3.3.	Reactor Instrumentation	20
	3.4.	Radioactive Effluents	22
	3.5.	Confinement	23
	3.6.	Limitations on Experiments	24
	3.7.	Operation with Fueled Experiments	26
	3.8.	Height of Water Above the Core in Natural Convection	
		Mode of Operation	27
	3.9.	Rod-Drop Times	28
	3.10.	Emergency Removal of Decay Heat (deleted)	29
	3.11.	Primary Coolant Condition	30
4.0.	SURVE	ILLANCE REOUIREMENTS	32
	4.1.	Shim Rods (Deleted)	32
	4.2.	Reactor Safety System (Deleted)	32
	4.3.	Emergency Core Spray System (Deleted)	32
	4.4.	Area Radiation Monitoring Equipment	33
	4.5.	Maintenance (Deleted)	33
	4.6 .	Confinement (Deleted)	32
	4.7.	Airborne Effluents (Deleted)	32
	4.8.	Primary Coolant Conditions	34
	4.9	Surveillance of Activity in Secondary System (Deleted)	32
	4.10	Surveillance of Reactor Poolwater Level	34
5.0	DESIG	NFEATURES	35
5.0.	5.1.	Reactor Fuel Specifications	35
	5.2.	Reactor Building (Deleted)	37
	5.3.	Fuel Use and Storage	38
6.0			20
6.0.	ADMIN	NSTRATIVE CONTROLS	20
	6.1.	Urganization	. 39
	0.2.	Radiation Safety, Reactor Safety & Reactor Decommissioning Committees	41
	0.3.	Devices and Approval of Experiments	50 50
	0.4.	Diant Operating Decords	50
	0.3.	Promised Actions	54
	0.0. 67	Required Actions	54
	0./.	Reporting Requirements	

.

1.0. <u>DEFINITIONS</u>

<u>Administrative Controls</u>: Administrative controls are those organizational and procedural requirements that are established by the reactor licensee management.

<u>Applicability</u>: As regards use of this term in the Technical Specifications, it is a statement that indicates which components are involved.

<u>Basis</u>: As regards use of this term in the Technical Specifications, it is a statement that provides the background or reason for the choice of specification(s), or references a particular portion of the Safety Analysis Report (SAR) that does.

<u>Beamports</u>: The beamports are the two 8-inch diameter neutron beamports that penetrate the shield on the south side of the UVAR pool.

<u>Channel</u>: A channel is the combination of sensor, line, amplifier, and output devices which are connected for the purpose of measuring the value of a parameter. (Also, see definition for <u>measuring channel</u>).

<u>Channel Calibration</u>: A channel calibration is an adjustment of the channel such that its output corresponds with acceptable range and accuracy to known input values of the parameter which the channel measures. Calibration shall encompass the entire channel, including equipment actuation, alarm, or trip and shall be deemed to include a channel test.

<u>Channel Check</u>: A channel check is a qualitative verification of acceptable performance by observation of channel behavior, or comparison of the channel with other independent channels or systems measuring the same variable, where this capability exists.

<u>Channel Test</u>: A channel test is the introduction of a signal into a channel to verify that it is operable.

<u>Confinement</u>: Confinement means a closure on the overall facility that controls the movement of air into it and out through a controlled path.

<u>Decommissioning</u>: Decommissioning means to remove a facility or site safely from service and reduce residual radioactivity to a level that permits: (1) release of the property for unrestricted use and termination of the license; or (2) release of the property under restricted conditions and termination of the license (10CFR50.2). Decommissioning does not include storage or removal of fuel, or non-radiological demolition activities.

<u>Decontamination</u>: Decontamination are the activities employed to reduce the levels of radioactive and/or hazardous contamination in or on material, structures and equipment.

Design Features: The definition for design features is as defined in 10 CFR 50.36.

<u>Excess Reactivity</u>: Excess reactivity is that amount of reactivity that would exist if all reactivity control devices were moved to the maximum reactive condition from the point where the reactor is exactly critical ($k_{eff} = 1$).

<u>Experiment</u>: Any operation, hardware, or target (excluding devices such as detectors, foils, activation samples in an irradiation facility, etc...) that is designed to investigate non-routine reactor characteristics or that is intended for reactor irradiation within the UVAR pool, on or in the beamport or irradiation facility, and that is not rigidly secured to a core or shield structure so as to be a part of their design.

<u>Experimental Facility</u>: An experimental facility is a structure or device associated with the reactor that is intended to guide, orient, position, manipulate, or otherwise facilitate a multiplicity of experiments of similar character.

<u>Experimental Methods</u>: Experimental Methods are written and approved instructions which provide guidance to the reactor staff or experimenters for the completion of tasks specified in Experimental Procedures (EPs). While EPs, and changes thereto, are reviewed and approved by the Reactor Safety Committee (RSC), experimental methods are written and reviewed by reactor staff and/or experimenters and approved by a reactor supervisor or administrator. Newly developed experimental methods or changes to existing experimental methods should be sent to the RSC as information items.

<u>Experimental Procedures</u>: Written procedures reviewed and approved by the Reactor Safety Committee which describe the manner in which experiments are run in conjunction with the UVAR, to assure reactor and radiological safety. Operational limits peculiar to the experiment are included in these procedures. Detailed implementation of experimental procedures may be made through the use of experimental methods.

Explosive Material: Explosive material is a solid or liquid that is categorized as a Severe, Dangerous, or Very Dangerous Explosion Hazard in "Dangerous Properties of Industrial Materials" by N.I. Sax, or is given an Identification of Reactivity (Stability) index 2, 3, or 4 by the National Fire Protection Association in its publication 704-M, "Identification System for Fire Hazards of Materials," also enumerated in the "Handbook for Laboratory Safety" published by the Chemical Rubber Co.

<u>Forced Convection Mode</u>: The reactor is in the Forced Convection Mode when the flow header is up and the primary pump is operating.

<u>Fueled Experiment</u>: A fueled experiment is an experiment that contains U-235, U-233 or Pu-239 in levels exceeding trace quantities. Reactor fuel elements are not included in this definition. (Also, see the definition for <u>trace quantities</u> and TS 3.7.).

<u>Important Process Variables</u>: Important process variables are measurable parameters that individually or in combination reflect the basic physical condition of physical barriers. They may include fuel temperature, reactor power, reactor coolant flow rate, reactor coolant inlet or outlet temperature, pool level, or coolant pressure. (Also, see definition for <u>safety limits</u>)

<u>Large Access Facilities</u>: The large access facilities are the two large openings approximately 5 ft wide by 6 ft high that penetrate the shield on the south side of the UVAR pool.

<u>Licensed Operator</u>: A licensed operator is an individual authorized by the U.S. Nuclear Regulatory Commission to carry out the duties and responsibilities associated with operation of the UVAR. (Also, see definitions for <u>Senior Reactor Operator</u> and <u>Reactor Operator</u>). <u>Limiting Conditions for Operations</u>: Limiting Conditions of Operation (LCOs) are those administratively established constraints on equipment and operational characteristics that shall be adhered to during operation of the facility. The LCOs are the lowest functional capability or performance level required for safe operation of the reactor.

Limiting Safety System Settings: Limiting Safety System Settings (LSSS) are those limiting values for settings of the safety channels by which point protective action must be initiated. The LSSS are chosen so that automatic protective action will terminate the abnormal situation before a safety limit is reached. The calculation of the LSSS shall include the process uncertainty, the overall measurement uncertainty, and transient phenomena of the process instrumentation. To achieve operational flexibility, it is recommended that actual trip points, where possible, be set more conservatively than specification values.

<u>Measured Value</u>: The measured value of a parameter is the value of the variable as it appears on the output of a measuring channel.

<u>Measuring Channel</u>: A measuring channel is the combination of sensor, line, amplifier, and output devices which are connected for the purpose of measuring the value of a parameter. (Also, see definition for <u>channel</u>).

<u>Methods</u>: Methods are written and approved instructions which provide guidance to the reactor staff, and/or subcontractors working for reactor management, for the completion of tasks specified in Standard Operating Procedures (SOP's). While SOP's, and changes thereto, are reviewed and approved by the UVAR Decommissioning Committee (UDC), methods are written and reviewed by the reactor staff and/or subcontractors working for reactor management, and approved by the reactor supervisor or reactor director. Newly developed methods, or changes to existing methods, should be sent to the UDC as information items.

<u>Movable Experiment</u>: A movable experiment is one where it is intended that all or part of the experiment may be inserted, removed, or manipulated in or near the core while the reactor is critical.

<u>Natural Convection Mode</u>: The reactor is in the Natural Convection Mode when the flow through the core is maintained by the buoyancy forces associated with the water being heated by the reactor.

<u>Objective</u>: As regards use of this term in the Technical Specifications, it is a statement that indicates the purpose of the specifications.

<u>On Call</u>: To be on call refers to an individual who (1) has been specifically designated and the designation is known to the operator on duty, (2) keeps the operator on duty informed of where he may be contacted and the phone number, and (3) is capable of getting to the Reactor Facility within a reasonable time under normal conditions (e.g., approximately 30 min).

<u>Operable</u>: A component or system is operable when it is capable of performing its intended function in a normal manner.

<u>Operating</u>: A component or system is operating when it is performing its intended function in a normal manner.

<u>Protective Action</u>: Protective action is the initiation of a signal or the operation of equipment within the reactor safety system in response to a variable or condition of the reactor having reached a specific limit.

- (1) <u>channel level</u>. At the protective instrument channel level, protective action is the generation and transmission of a trip signal indicating that a reactor variable has reached a specified limit.
- (2) <u>subsystem level</u>. At the protective instrument subsystem level, protective action is the generation and transmission of a trip signal indicating that a specified limit has been reached.
 - <u>NOTE</u>: Protective action at this level would lead to the operation of the safety shutdown equipment to immediately shut down the reactor.
- (3) <u>instrument system level</u>. At the protective instrument system level, protective action is the generation and transmission of the command signal for the safety shutdown equipment to operate.
- (4) <u>safety system level</u>. At the reactor safety system level, protective action is the operation of sufficient equipment to immediately shut down the reactor.

<u>Reactor Facility</u>: Reactor Facility refers to the immediate site-area surrounding and including the reactor building which houses the University of Virginia Reactor (UVAR). The site boundary is demarcated by a chain link fence and gates. (See Figure 1.1)

<u>Reactivity Limits</u>: Reactivity limits for experiments are quantities referenced to an average pool temperature of $<90^{\circ}$ F with the effect of xenon poisoning on core reactivity accounted for if greater than or equal to 0.07\$. The reactivity worth of samarium in the core will not be included in reactivity limits. The reference core condition will be known as the cold, xenon-free critical condition.

<u>Reactivity Worth of an Experiment</u>: The reactivity worth of an experiment is the value of the reactivity change that results from the experiment being inserted into or removed from its intended position.

Reactor Operating: The reactor is operating whenever it is not secured or shutdown.

<u>Reactor Operation</u>: The reactor is in operation when not all of the shim rods are fully inserted and six or more fuel elements are loaded in the grid plate.

<u>Reactor Operator</u>: An NRC-licensed reactor operator is an individual who is certified by the NRC and the reactor administration to manipulate the controls of the UVAR reactor.

<u>Reactor Safety Systems</u>: Reactor safety systems are those systems, including their associated input channels, which are designed to initiate automatic reactor protection or to provide information for initiation of manual protective action.

<u>Reactor Secured</u>: The reactor is secured when:

- (1) Either there is insufficient moderator available in the reactor to attain criticality or there is insufficient fissile material present in the reactor to attain criticality under optimum available conditions of moderation and reflection, or
- (2) The following conditions exits:
 - a. All shim rods are fully inserted,
 - b. The console key is in the OFF position and is removed from the lock, and
 - c. No work is in progress involving core fuel, core structure, installed control rods, or control rod drives unless they are physically decoupled from the control rods, and
 - d. No experiments are being moved or serviced that have, on movement, a reactivity worth exceeding the maximum reactivity value allowed for a single experiment, or one dollar, whichever is smaller.

<u>Reactor Shutdown</u>: The reactor is shut down if it is subcritical by at least one dollar in the reference core condition with the reactivity worth of all installed experiments included.

<u>Permanent Reactor Shutdown</u>: A reactor is in a permanent shutdown state when all reactor fuel elements have been removed from the reactor gridplate and an administrative order is in place to prevent a reloading of the core.

Reactor Staff: The Reactor Director and all personnel administratively reporting to him.

<u>Reference Core Condition</u>: The condition of the core when it is at ambient temperature (cold) and the reactivity worth of xenon is negligible (<0.30\$).

<u>Regulating Rod</u>: The regulating rod is a control rod of low reactivity worth fabricated from stainless steel and used primarily to maintain an intended power level. The regulating rod need not have scram capability. The rod may be controlled by the operator with a manual switch or by the automatic servo-controller.

<u>Reportable Occurrence</u>: A reportable occurrence is any of the conditions described in Section 6.6.2 of these specifications.

<u>Research Reactor</u>: A research reactor is defined as a device designed to support a selfsustaining neutron chain reaction for research, development, education, training, or experimental purposes, and that may have provisions for the production of radioisotopes.

<u>Safety Limits</u>: Safety Limits are limits on important process variables that are found to be necessary to reasonably protect the integrity of the principal physical barriers that guard against the uncontrolled release of radioactivity. The principal physical barrier is often the fuel cladding. (Also, see the definition for <u>important process variables</u>).

<u>Scram Time</u>: Scram time is the elapsed time between the initiation of a scram signal and a specified movement of a control or safety device.

<u>Secured Experiment</u>: A secured experiment is an experiment, experiment facility, or component of an experiment that is held in a stationary position relative to the reactor by mechanical means. The restraining forces must be substantially greater than those to which the experiment might be subjected by hydraulic, pneumatic, buoyant, or other forces that are normal to the operating environment of the experiment or by forces that can arise as a result of credible malfunctions.

<u>Senior Reactor Operator</u>: An NRC-licensed senior reactor operator is an individual who is certified by the NRC and the reactor administration to manipulate the controls of the UVAR reactor and to direct the activities of <u>reactor operators</u>.

<u>Shall, should and may</u>: The word "shall" is used to denote a requirement; the word "should" to denote a recommendation; and the word "may" to denote permission, neither a requirement nor a recommendation.

<u>Shim Rod</u>: A shim rod is a control rod fabricated from borated stainless steel, which is used to compensate for fuel burnup, temperature, and poison effects. A shim rod is magnetically coupled to its drive unit allowing it to perform the function of a safety rod when the magnet is de-energized. (Also, see definition for regulating rod).

<u>Shutdown Margin</u>: Shutdown margin is the minimum shutdown reactivity necessary to provide confidence that the reactor can be made subcritical by means of the control and safety systems starting from any permissible operating condition and with the regulating rod and the most reactive shim rod in their most reactive position, and that the reactor will remain subcritical without further operator action.

<u>Specification(s)</u>: As regards use of this term in the Technical Specifications, it is a statement that provides specific data, conditions, or limitations that bound a system or operation. This statement is the most important statement in the technical specifications agreement. Only the specifications statements are governing.

<u>Standard Operating Procedures</u>: Written procedures reviewed and approved by the Reactor Safety Committee to assure reactor safety and compliance with federal regulations, which describe the manner by which the reactor staff will operate and maintain the UVAR. (Also, see TS 6.3).

<u>Surveillance Requirements</u>: The definition for surveillance requirements is as defined in 10 CFR 50.36.

Surveillance Time Intervals:

Annually (interval not to exceed 15 months) Semiannually (interval not to exceed 7 1/2 months) Quarterly (interval not to exceed 4 months) Monthly (interval not to exceed 6 weeks) Weekly (interval not to exceed 10 days) Daily (must be done during the calendar day) <u>Trace Quantities</u>: As related to fissionable or fissile nuclides such as U-235, U-233 or Th-232 potentially present in environmental samples on which neutron activation analysis may be attempted, trace quantities are taken to be negligibly-small concentration levels below 100 parts-per-million (ppm). (Also, see the definition for <u>Fueled Experiment</u>).

<u>Tried Experiment</u>: A tried experiment is (1) an experiment previously performed in the UVAR or (2) an experiment for which the size, shape, composition, and location does not differ significantly enough from an experiment previously performed in the UVAR to affect reactor safety.

<u>True Value</u>: The true value is the actual value of a parameter.

<u>Unscheduled Shutdown</u>: An unscheduled shutdown is defined as any unplanned shutdown of the reactor caused by the actuation of the reactor safety system, operator error, equipment malfunction, or manual shutdown in response to conditions that could adversely affect safe operation, not including shutdowns that occur during testing nor check-out operations.

Figure 1.1 Nuclear Reactor Facility (Area inside perimeter demarcated with x--x--x) (Latitude 38°2'30"N, longitude 78°31'W at an elevation of 700 feet)

- 10 -

Amendment No. 25 February 9, 2000 UVAR Tech. Specs.

2.0. SAFETY LIMIT AND LIMITING SAFETY SYSTEM SETTINGS

2.1. Safety Limits

2.1.1. Safety Limits in Forced Convection Mode of Operation

<u>Applicability</u>: This specification applies to the interrelated variables associated with core thermal and hydraulic performance in the forced convection mode of operation. These variables are:

- P = Reactor thermal power
- W = Reactor coolant flow rate
- T_{I} = Reactor coolant inlet temperature
- L = Height of water above the core

Objective: The objective is to ensure that the integrity of the fuel clad is maintained.

Specification: In the forced convection mode of operation:

- (1) The pool water level shall not be less than 19 ft above the top of the core.
- (2) The reactor coolant inlet temperature shall not be greater than 111°F.
- (3) The true value of reactor coolant flow shall not be below 575 gpm.
- (4) The combination of true values of reactor core power and reactor coolant flow shall be below the line defined by:

 $P = 0.24 + (4.5 \times 10^{-3} * W)$

P = 0 for W < 575; P in MW, W in gpm

The allowed region of operation is shown by the unshaded region of Figure 2.1.

<u>Basis</u>: Above 575 gpm in the region of full power operation, the criterion used to establish the safety limit was a burnout ratio of 1.49 including the worst variation in the manufacturer's tolerance and specification, hot channel factors and other appropriate uncertainties. The analysis is given in the LEU SAR.

Below 575 gpm buoyancy forces competing with forced convection may lead to flow instabilities in some of the channels and is therefore not allowed. The analysis of the loss of flow transient shows that during the transition from forced convection to natural convection following a loss of flow and reactor scram that the fuel temperature is well below the temperature at which fuel clad damage could occur.

Figure 2.1 Safety Limits with Forced Convection Flow

- 12 -

Amendment No. 25 February 9, 2000

UVAR Tech. Specs.

2.1.2. Safety Limits in the Natural Convection Mode of Operation

<u>Applicability</u>: This specification applies to the interrelated variables associated with core thermal and hydraulic performance in the natural convection mode of operation. These variables are:

P = Reactor thermal power

 $T_i = Reactor coolant inlet temperature$

Objective: The objective is to ensure that the integrity of the fuel clad is maintained.

Specification: In the natural convection mode of operation:

(1) The true value of reactor power shall not exceed 750 kW.

(2) The reactor coolant inlet temperature shall not be greater than 111°F.

<u>Basis</u>: The criterion for establishing a safety limit with natural convection flow is established as a fuel plate temperature. The analysis for natural convection flow shows that at 750 kW, the maximum fuel plate temperature is well below the temperature at which fuel clad damage could occur.

UVAR Tech. Specs.

2.1.3. Safety Limit for the Transition from Forced to Natural Convection Mode of Operation

<u>Applicability</u>: This specification applies to the condition when the reactor is in transition from forced convection flow to natural convection flow.

Objective: The objective is to ensure that the integrity of the fuel clad is maintained.

<u>Specification</u>: The current to the control rod magnets must be off when the reactor is making a transition from forced to natural convection.

<u>Basis</u>: The safety analysis of the loss of coolant transient demonstrates that the fuel plate temperature is maintained well below the temperature at which fuel clad damage could occur during the transition from forced downflow through flow reversal to the establishment of natural convection provided that the loss of flow transient is accompanied by a scram.

2.2. Limiting Safety System Settings

<u>Applicability</u>: These specifications apply to the set points for the safety channels monitoring reactor thermal power, coolant flow rate, reactor coolant inlet temperature, and the height of water above the core.

<u>Objective</u>: The objective is to ensure that automatic protective action is initiated to prevent the safety limit from being exceeded.

Specifications:

2.2.1. Forced Convection Mode

For operation in the forced convection mode, the limiting safety system settings shall be:

Reactor Thermal Power	=	3.0 MWt	(max)
Reactor Coolant Flow Rate	=	900 gpm	(min)
Reactor Coolant Inlet Temperature	=	108°F	(max)
Height of Water above Core	=	19' 2"	(min)
Reactor Period	=	3.3 sec	(min)

2.2.2. Natural Convection Mode

For operation in the natural convection mode, the limiting safety system settings shall be:

Reactor Power	=	300 kWt	(max)
Reactor Coolant Inlet Temperature	=	108°F	(max)
Reactor Period	=	3.3 sec	(min)

<u>Bases</u>: The analysis in the LEU SAR shows there is sufficient margin between these settings and the safety limit under the most adverse conditions of operation:

- (2.2.1.) For the forced convection mode, the LEU SAR considers accidents with reactor power at 3.45 MW, a period of 3 seconds, pool inlet temperature of 111°F and a coolant flow of 837 gpm. The maximum fuel plate temperature calculated was considerably below the aluminum clad melting point. The LSSS specified above for this mode of operation are more conservative than the parameters used in the LEU SAR analysis.
- (2.2.2.) With natural convection flow, there is no minimum coolant flow rate and no minimum height of water above the core so long as there is a path for flow (see Section 3.8 of these specifications). The LEU SAR shows that the maximum fuel plate temperature under natural convection with initial power of 750 kW and pool inlet temperature of 111°F was well below the aluminum clad melting point. The LSSS specified above for this mode of operation are below the analyzed condition.

3.0. LIMITING CONDITIONS FOR OPERATION

3.1. Reactivity

<u>Applicability</u>: This specification applies to the reactivity condition of the reactor and the reactivity worth of control rods and experiments.

<u>Objectives</u>: The objectives are to ensure that the reactor can be shut down at all times and that the safety limit will not be exceeded.

<u>Specification</u>: The reactor shall not be operated at powers in excess of 1 kW unless the following conditions exist:

- (1) The minimum shutdown margin provided by shim rods, with secured experiments (see Section 1.0) in place and referred to the cold, xenon-free condition with the highest-worth shim rod and the regulating rod fully withdrawn, is greater than 0.55\$.
- (2) An experiment with a reactivity worth greater than 0.60\$ must be a secured experiment.
- (3) The total reactivity worth of the two experiments having the highest reactivity worth is less than 2.00\$.
- (4) The total reactivity worth of all experiments is less than 2.50\$.
- (5) The maximum excess reactivity with fixed experiments in place and referred to cold, xenon-free condition shall be limited to 6.50\$.

<u>Bases</u>: Operation of the reactor at power levels below 1 kW to measure the reactivity worth of untried experiments, and to measure the excess reactivity of new core loadings, is allowed with procedures approved by the Reactor Safety Committee. Reactivity is measured in dollars from the reactor period, and as such is the quantity of safety significance. Reactivity limits expressed in \$ are more appropriate for the Technical Specifications, since they are not dependent on the type of fuel used in the reactor or on the geometry of a particular core loading.

- (1) The shutdown margin required by Specification 3.1(1) is necessary so that the reactor can be shut down from any operating condition and remain shut down after cooldown and xenon decay, even if the highest worth shim rod should stick in the fully withdrawn position, and with no credit taken for the non-scrammable regulating rod.
- (2) The reactivity of 0.60\$ in Specification 3.1(2) corresponds to an asymptotic 3-sec period. If this period were sustained without scramming the reactor until the reactor power reaches the maximum true value for the Limiting Safety System Setting (LSSS) for the High Power Scram (at which time the reactor scrams on high power), the resulting power overshoot would not exceed the safety limit for power vs. flow.
- (3) The reactivity of 2.00\$ in Specification 3.1(3) is less than 2.16\$ which corresponds to a 6.9-msec period. Reactor Core DU-12/25 of the SPERT-1 series of tests had MTR plate type elements (Reference: Thompson and Beckerly, "Technology of Nuclear

Reactor Safety," Volume I, page 683 (1964)). A 6.9-msec period was nondestructive. The simultaneous failure of more than two experiments is considered unlikely.

- (4) The total reactivity of 2.50\$ in Specification 3.1(4) places a reasonable upper limit on the worth of all experiments.
- (5) The limit of 6.50\$ on excess reactivity is to allow for xenon override and operational flexibility and to ensure that the operational reactor is reasonably similar in configuration to the reactor core analyzed in the SAR. In general, the excess reactivity is limited by the shutdown margin requirement.

3.2. <u>Reactor Safety System</u>

<u>Applicability</u>: This specification applies to the reactor safety system channels.

<u>Objective</u>: The objective is to stipulate the minimum number of reactor safety system channels that must be operable to ensure that the safety limit is not exceeded during normal operation.

<u>Specification</u>: The reactor shall not be operated unless the safety system channels described in Table 3.1 <u>Safety System Channels</u> are operable.

<u>Bases</u>: The startup interlock, which requires a neutron count rate of at least 2 counts per second (CPS) before the reactor is operated, ensures that sufficient neutrons are available for proper operation of the startup channel.

The pool-water temperature scram provides protection to ensure that if the limiting safety system setting is exceeded an immediate shutdown will occur to keep the fuel temperature below the safety limit. Power level scrams are provided to ensure that the reactor power is maintained within the licensed limits and to protect against abnormally high fuel temperatures. The manual scram allows the operator to shut down the reactor if an unsafe or abnormal condition arises. The period scram is provided to ensure that the power level does not increase above that described in the SAR.

Specifications on the pool-water level are included as safety measures in the event of a serious loss of primary water. Reactor operations are terminated if a major leak occurs in the primary system. The analysis in the SAR shows the consequences resulting from loss of coolant.

The bridge radiation monitor gives warning of a high radiation level in the reactor room from failure of an experiment or from a significant drop in pool-water level.

A scram from loss of primary coolant flow, loss of power to the pump, or application of power to the pump when operating in the natural convection mode, protects the reactor from overheating.

Air pressure to the header above ambient results in a scram to:

- 1) Ensure that the header falls with loss of primary pump power when the reactor is operating in the forced convection mode.
- 2) Prevent raising the header when the reactor is in the natural convection mode.
- 3) Avoid producing additional Ar-41 by activating air introduced into the header.

(rest of page intentionally left blank)

Amendment No. 25 February 9, 2000

UVAR Tech. Specs.

ī

TABLE 3.1 SAFETY SYSTEM CHANNELS				
Measuring Channel	Minimum No. Operable	Set Point*	Function	Operating Mode Required
Pool water level monitor	2	19'2" (min)	Scram	Forced convection
Bridge radiation monitor	1.	30 mr/hr	Scram	All modes
Pool water temperature	1	108°F (max)	Scram	All modes
		loss of power	Scram	Forced convection
Power to primary pump	1	application of power	Scram	Natural convection
Primary coolant flow	1	900 gpm (min)	Scram	Forced convection
Startup count rate	1	2 cps (min)	Prevents withdrawal of any shim rod	Reactor startup
Manual button	1	•	Scram	All modes
		3 MWt (max)	Scram	Forced convection
Reactor power level	2	0.3 MWt (max)	Scram	Natural convection
Reactor period	1	3.3 sec (min)	Scram	All modes
Air pressure to header	1	above ambient	Scram	All modes

F

• Values listed are limiting set points. For operational convenience, set points may be changed to more conservative values.

3.3. Reactor Instrumentation

<u>Applicability</u>: This specification applies to the instrumentation that must be operable for safe operation of the reactor.

<u>Objective</u>: The objective is to require that sufficient information is available to the operator to ensure safe operation of the reactor.

<u>Specification</u>: The reactor shall not be operated unless the measuring channels described in Section 3.2 <u>Reactor Safety Systems</u> and in Table 3.2 <u>Measuring Channels</u> are operable.

<u>Bases</u>: The neutron detectors and the core gamma monitor provide assurance that measurements of the reactor power level are adequately covered at both low and high power ranges.

The radiation monitors provide information to operating personnel of a decrease in pool-water level and of an impending or existing danger from radiation contamination or streaming, allowing ample time to take necessary precautions to initiate safety action.

The reactor room constant air monitor and reactor face monitor provide redundant measures of abnormal high radiation levels. Because the other measuring channels for determining the radiation levels are required for reactor operation, the reactor can be operated safely if these monitors are not functioning for short periods of time.

(rest of page intentionally left blank)

Amendment No. 25 February 9, 2000

Tuble 5.2 Weasuring Chamiers		
Measuring Channel	Minimum No. Operable	Operating Mode in Which Required
Linear power	1	All modes
Intermediate power (Log N) and period	1	All modes
Core gamma monitor *	1	Forced convection mode
Reactor room constant air monitor *	1	All modes •
Bridge radiation monitor	1	All modes
Reactor face monitor *	1	All modes [•]
Pool-water level monitor	2	Forced convection mode
Pool-water temperature	1	All modes
Primary coolant flow	1	Forced convection mode
Startup count rate	1	Reactor startup
Reactor power level	2	All modes

Table 3.2	Measuring	Channels
-----------	-----------	----------

• The reactor room constant air monitor, reactor face monitor, and core gamma monitor may be out of service for a period not to exceed 7 days without requiring reactor shutdown. If the reactor face monitor cannot be repaired within 7 days, it may be replaced by a locally alarming monitor of similar range for up to 30 days without requiring a reactor shutdown.

3.4. Radioactive Effluents

<u>Applicability</u>: This specification applies to the monitoring of radioactive effluents from the Reactor Facility. Airborne and liquid effluents are discussed separately in the following sections.

3.4.1. <u>Airborne Effluents</u>

<u>Objective</u>: The objective is to ensure that exposure to the public resulting from the release of Ar-41 and other airborne effluents to the environment will be below the limits of 10 CFR 20 for unrestricted areas.

<u>Specification</u>: The activity of gases released beyond the Reactor Facility's site boundary shall not exceed 10 CFR 20 limits. When a neutron beamport vented to the atmosphere is drained of water during reactor operations and until such time as the beamport has been refilled, the effluent shall be monitored by an instrument located in the effluent vent and the effluent vent will have sufficient flow to maintain releases within 10 CFR 20 limits.

<u>Bases</u>: A basis for this specification is given by the analysis in the SAR. Compliance with federal regulation is another basis.

3.4.2. Liquid Effluents

<u>Objective</u>: The objective is to ensure that exposure to the public resulting from the release of radioactive effluents will be below the limits of 10 CFR 20 for unrestricted areas.

<u>Specification</u>: The activity of liquids released beyond the Reactor Facility's site boundary shall not exceed 10 CFR 20 limits.

Basis: The basis for this specification is compliance with federal regulations.

(rest of page intentionally left blank)

Amendment No. 25 February 9, 2000

3.5. Confinement

<u>Applicability</u>: This specification applies to the capability of isolating the UVAR's reactor room, when necessary.

<u>Objective</u>: The objective is to prevent exposure to the public from exceeding the limits of 10 CFR 20 for unrestricted areas, resulting from airborne activity released into the UVAR's reactor room, by providing confinement.

Specification: The reactor shall not be operated unless the following equipment is operable.

Equipment	Function
Truck door closed switch	Scram reactor when truck door is not fully closed
Ventilation duct doors	Close and seal when Bridge Radiation Monitor alarms
Personnel door	Close and seal when Bridge Radiation Monitor alarms
Emergency exit manhole water level	Water level is high enough to form a water seal at least 6 in. in depth

Basis: The basis for this specification is compliance with federal regulations.

3.6. Limitation on Experiments

<u>Applicability</u>: These specifications apply to experiments installed in the reactor and its experimental facilities.

<u>Objective</u>: The objective is to prevent damage to the reactor or excessive release of radioactive materials in the event of an experiment failure.

Specifications:

3.6.1. <u>Reactivity</u>

The reactor shall not be operated unless the following conditions exist:

- (1) The reactivity worth of all experiments shall be in conformance with specifications in Section 3.1.
- (2) Movable experiments must be worth less than 0.13\$.
- (3) Experiments worth more than 0.13\$ must be inserted or removed with the reactor shut down except as noted in Item (4).
- (4) Previously tried experiments with measured worth less than 0.50\$ may be inserted or removed with the reactor 2.70\$ or more subcritical.
- (5) If an experiment worth more than 0.50\$ is inserted in the reactor, a procedure approved by the Reactor Safety Committee shall be followed.

3.6.2. <u>Containers</u>

- (1) All materials to be irradiated in the reactor shall be either corrosion resistant or encapsulated within corrosion resistant containers.
- (2) Irradiation containers to be used in the reactor in which a static pressure will exist or in which a pressure buildup is predicted shall be designed and tested for a pressure exceeding the maximum expected by a factor of 2.

3.6.3. Dangerous Materials

Explosive material shall not be allowed in the reactor unless specifically approved by the Reactor Safety Committee. Experiments reviewed by the Reactor Safety Committee in which the material is potentially explosive, either while contained or if it leaks from the container, shall be designed to prevent damage to the reactor core or to the control rods or instrumentation, and to prevent any changes in reactivity.

3.6.4. <u>Cooling</u>

Cooling shall be provided to prevent the surface temperature of an experiment to be irradiated from exceeding the boiling point of the reactor pool water.

3.6.5. Precautions

Experimental apparatus, material, or equipment to be inserted in the reactor, shall not be positioned so as to cause shadowing of the nuclear instrumentation, interference with the control rods, or other perturbations that may interfere with the safe operation of the reactor.

3.6.6. <u>Cobalt Facility</u>

The Co-60 pins possessed under the UVAR Operating License when used and stored in the UVAR pool shall be at distances greater than 5 feet from the operating UVAR reactor. Gamma irradiation facilities utilizing the Co-60 pins shall be designed to prevent physical damage to the Co-60 pins. When the Co-60 pins are in the pool, UVAR pool water samples shall be subjected to gamma spectroscopy for the presence of Co-60 on a monthly frequency, (interval not to exceed six weeks) to assure that substantial leakage of Co-60 from the pins to reactor pool water does not occur.

<u>Bases</u>: (TS 3.6.1 - 3.6.5) The limitations on experiments specified in TS 3.6.1 through TS 3.6.5 are based on the irradiation program authorized by Amendment No. 3 to License No. R-66 dated August 13, 1962. The reactivity of less than 0.13\$ that can be inserted or removed with the reactor in operation is to accommodate experiments in the rabbits.

(Co-60 Facility) When the Co-60 pins are in the UVAR pool they shall be kept a safe distance away from the UVAR reactor when it is operated, to avoid neutron activation and possible failure of the pin cladding, which may result in leakage of Co-60 to the reactor pool water. The Co-60 pins and the gamma irradiation facilities in which they are used will not be used in conjunction with the UVAR.

The monthly reactor pool water sampling frequency, adopted to monitor possible Co-60 leakage from the pins, is the same as that used in the U.S. AEC Safety Evaluation that was performed for these pins by the Division of Reactor Licensing on August 4, 1971. This is a reasonable frequency, for the most likely damage to the pins would be caused by cladding corrosion leading to pin holes. Co-60 leakage under these circumstances would proceed very slowly, into a large pool of water. Therefore, a monthly water sampling and analysis frequency should be adequate to indicate contamination levels before they become significant. UVAR poolwater need not be sampled and analyzed for Co-60 leakage if all Co-60 pins have been removed from the pool.

3.7. Operation with Fueled Experiments

<u>Applicability</u>: This specification applies to the operation of the reactor with a fueled experiment within the reactor building.

<u>Objective</u>: The objective is to ensure that the confinement leak rate and fission product inventory in fueled experiments are within limits used in the safety analysis.

Specifications:

3.7.1. Fueled Experiments Generating Power Above or Equal to 1 W

For fueled experiments in which the thermal power generated is greater than or equal to 1 watt (W), the reactor shall not be operated unless the following conditions are satisfied:

- (1) The experiment must be in the reactor pool and under at least 15 ft of water.
- (2) The thermal power (or fission rate) generated in the experiment is not greater than 100 W (3.2×10^{12} fissions/sec).
- (3) The calculated total energy produced by the experiment shall not exceed 600 W-years.
- (4) The leak rate from the reactor room is not greater than 50% of containment of volume in 20 hours as measured within the previous 12 months.

3.7.2. <u>Fueled Experiments Generating Power Below 1 W</u>

Fueled experiments in which the thermal power generated is less than 1 W (3.2×10^{10} fissions/sec):

- (1) May be located anywhere in the reactor building.
- (2) The calculated total energy produced by the experiment shall not exceed 600 W-years.

<u>Bases</u>: In the event of the failure of a fueled experiment, with the subsequent release of fission products (100% noble gas, 50% iodine, 1% solids), the 2-hour inhalation exposures to iodine and strontium 90 isotopes at the facility exclusion distance, 70 meters, are less than the limits set by 10 CFR 20, using an averaging period of 1 year.

The safety analyses for which results are used here are found in the SAR. The analysis supporting Specification 3.7.2 assumes 100% exfiltration of fission products from the reactor building in 2 hours. The analysis supporting Specification 3.7.1 for the fueled experiments within the reactor pool assumes a fission product retention in the reactor room equivalent to 100% fission product exfiltration in 20 hours. The specification provides suitable allowancé for degradation between tests. The measurement of the exfiltration value is described in the SAR.

3.8. Height of Water Above the Core in Natural Convection Mode of Operation

<u>Applicability</u>: This specification applies to the height of water above the reactor core when the reactor is operating with natural convection cooling.

<u>Objective</u>: The objective is to ensure that there is a continuous path for circulation of water when the reactor is operated in the natural convection mode.

<u>Specification</u>: The reactor shall not be operated in the natural convection mode unless there is at least 1 ft of water above the core.

<u>Bases</u>: One foot of water above the core is sufficient to provide a continuous path for natural convection cooling. For other than zero power operation, the radiation levels may require a greater depth for shielding, in which case the regulations in 10 CFR 20 will govern.

3.9. <u>Rod Drop Times</u>

<u>Applicability</u>: This specification applies to the time from the initiation of a scram to the time a rod starts to drop (magnet release time) as well as to the time it takes for a rod to drop from the fully withdrawn to the fully inserted position (free-drop time).

<u>Objective</u>: The objective is to ensure that the reactor can be shut down within a specified period of time.

<u>Specification</u>: The reactor will not be operated unless (1) the magnet release time for each of the three shim rods is less than 50 msec and (2) the free-drop time for each of the three shim rods is less than 700 msec.

<u>Bases</u>: Rod drop times as specified will ensure that the safety limit will not be exceeded in a short period transient. The analysis is given in the SAR.

3.10. Emergency Removal of Decay Heat

This TS has been deleted because the reactor core has been permanently unloaded. The emergency decay heat removal system is designed to only cool elements located on the gridplate. As fuel will never be placed on the gridplate again, this TS is no longer needed.

(rest of page intentionally left blank)

Amendment No. 25 February 9, 2000
3.11. Primary Coolant Condition

<u>Applicability</u>: Technical Specification 3.11 applies until all reactor fuel elements and Co-60 pins have been removed from the UVAR pool. Following their removal, TS 3.11 is not applicable during the permanent shutdown and decommissioning period. A substitute TS for this period is unnecessary. This specification applies to the quality of the primary coolant in contact with the fuel cladding.

<u>Objectives</u>: The objectives are (1) to minimize the possibility for corrosion of the cladding on the fuel elements and (2) to minimize neutron activation of dissolved materials.

Specifications:

3.11.1. Conductivity

If reactor fuel elements or cobalt-60 pins are present in the UVAR pool, the conductivity of the pool water shall be no higher than 5×10^{-6} mhos/cm.

3.11.2. <u>Water pH</u>

If reactor fuel elements or cobalt-60 pins are present in the UVAR pool, the water pH of the poolwater shall be between 5.0 and 7.5.

<u>Bases</u>: A small rate of corrosion continuously occurs in a water-metal system. To limit this rate, and thereby extend the longevity and integrity of the fuel cladding, a water cleanup system is required. Experience with water quality control at many reactor facilities has shown that maintenance within the specified limits provides acceptable control.

By limiting the concentrations of dissolved materials in the water, the radioactivity of neutron activation products is limited. This is consistent with the as low as is reasonably achievable (ALARA) principle, and tends to decrease the inventory of radionuclides in the entire coolant system, which will decrease personnel exposures during maintenance and operations.

Following removal of all fuel elements and Co-60 pins from the pool, fuel cladding and Co-60 pin jacket corrosion due to improper poolwater conditions is no longer possible. Also, activation of dissolved minerals in the poolwater cannot occur if the reactor does not operate. Consequently, primary water quality conditions can be relaxed and need not be specified in the Technical Specifications once all fuel element and cobalt pins are removed from the pool.

3.12 <u>Poolwater-Level Monitoring</u>

<u>Applicability</u>: This specification applies to the poolwater-level float switch which monitors poolwater level and has alert and alarm functions.

<u>Objective:</u> The goal is to prevent severe loss of poolwater level while cobalt pins are kept in storage in the UVAR pool. Excessive loss of water level could result in diminished shielding and generation of a radiation hazzard.

Specification: Until all cobalt pins have been permanently removed from the UVAR pool, a poolwater level float switch shall be operating.

<u>Basis:</u> The water-level float switch is a simple device able to sense small decreases in poolwater level and perform timely local and remote alert and alarm functions.

4.0. SURVEILLANCE REQUIREMENTS

TS 4.1, 4.2, 4.3, 4.6, 4.7, and 4.9, have all been deleted. The justification for each deletion is given below. TS 4.4 has been modified with respect to its applicability.

- 4.1 This TS has been deleted because surveillance requirements on shim rod operation, rod drop times, reactivity measurements and rod physical condition either are not possible, necessary or appropriate if the reactor has been permanently and completely unloaded from the core gridplate.
- 4.2 This TS has been deleted because a reactor safety system only is necessary for an operating or operable reactor. Safety system channel tests, checks, calibrations, and a core heat balance either are not possible, necessary or appropriate if the reactor has been permanently and completely unloaded from the core gridplate.
- 4.3 This TS has been deleted because the emergency core spray system does not need to be checked and its flow rate measured if the reactor has been permanently and completely unloaded from the core gridplate.
- 4.4 The wording as to the applicability of this TS has been changed to recognize that once the reactor fuel has been completely removed from the Facility, and the Co-60 pins are no longer stored in the UVAR pool, an area radiation monitoring system will no longer be needed because it will then be impossible to generate very high radiation levels.
- 4.5 This TS has been revised at NRC request to insure that operation of the radiation monitors is verified after maintenance or modifications.
- 4.6 This TS has been deleted because surveillance of the reactor room closure equipment operability is not necessary or appropriate if the reactor has been permanently shut down and completely unloaded from the core gridplate. Fueled experiments cannot be run, and the fission product levels in the fuel are far below the levels in an operating reactor.
- 4.7 This TS has been deleted because surveillance of the airborne effluent monitor of the ventilation duct from the ground floor experimental area is not necessary or appropriate with the reactor permanently and completely defuelled. No experiments producing airborne effluents in association with the reactor can be run.
- 4.8 The wording to this TS has been modified, taking into account that it cannot be deleted until TS 3.11 no longer applies.
- 4.9 This TS has been deleted because secondary system coolant surveillance is not possible or needed if the reactor is permanently shut down. The surveillance relies on the regular production of Na-24 in the primary coolant by an operating reactor. At this time, all Na-24 has decayed away. Also, with the reactor shutdown a leak in the heat exchanger would result in secondary coolant flow into the primary coolant, and not the other way around as is the case when the reactor is being operated with the primary coolant pump on.
- 4.10 This TS has been added by NRC request to assure safe storage of cobalt in the UVAR pool.

4.4. Area Radiation Monitoring Equipment

<u>Applicability</u>: TS 4.4 applies to the bridge radiation monitor referenced in Table 3.1. This TS will cease to apply once all UVAR fuel elements have been removed from the Reactor Facility and all Co-60 pins have been taken from the UVAR pool for shielded storage elsewhere.

<u>Objectives</u>: The objectives are to ensure that the radiation monitoring equipment is operating and to verify appropriate alarm settings.

Specification:

4.4.1 Daily Operability Verification

The operation of the radiation monitoring equipment and the position of their associated alarm set points shall be verified daily during periods when the reactor is in operation.

4.4.2. <u>Semiannual Calibration</u>

The calibration of the bridge radiation monitor referenced in Table 3.1 shall be performed semiannually until all fuel elements have been removed from the Reactor Facility and all Co-60 pins have been taken from the UVAR pool for dry shielded storage or appropriate disposal.

<u>Bases</u>: Surveillance of the monitoring equipment will provide assurance that sufficient warning of a potential radiation hazard is available.

4.5. Maintenance

<u>Applicablity</u>: This specification applies to the surveillance requirements following maintenance of the area radiation monitoring system.

<u>Objective</u>: The goal is to ensure that the area radiation monitoring system is operable following maintenance, repair or modification and prior to first use.

<u>Specification</u>: Following maintenance, repair or modification of the area radiation monitoring system, it shall be verified that the system is operable before it is returned to service.

<u>Bases</u>: It is necessary to ensure that any work on or change made to the system is carried out properly so that the system will operate as intended and that the system or component has been properly reinstalled or reconnected. Operability must be verified prior to the first use of the system following maintenance, repair or modification.

4.8. Primary Coolant Conditions

<u>Applicability</u>: This specification applies to the surveillance of primary water quality whenever either fuel elements and/or Co-60 pins are in storage in the UVAR pool.

<u>Objective</u>: The objective is to ensure that water quality does not deteriorate over extended periods of time should the reactor not be operated and either fuel elements and/or Co-60 pins be in storage in the UVAR pool.

<u>Specification</u>: If the conductivity and pH of the primary coolant water is required to be maintained as per TS 3.11, then they shall be measured at least once every 2 weeks and verified to be as follows:

Conductivity: $\leq 5 \times 10^{-6}$ mhos/cmpH:between 5.0 and 7.5

<u>Bases</u>: Section 3.11 of these specifications ensures that the water quality is adequate during reactor operation. This section ensures that water quality is adequate whenever either fuel elements and/or Co-60 pins are in the UVAR pool and the reactor is not operated.

4.10. Surveillance of Reactor Poolwater Level

<u>Applicability</u>: Technical Specification 4.10 applies until all Cobalt-60 pins have been removed from the UVAR pool. This TS specifies the surveillance frequency of poolwater level monitoring instrumentation.

<u>Objective</u>: The goal is to detect significant poolwater leak rates well before loss of poolwater results in radiation hazard due to cobalt stored in the pool.

<u>Specification</u>: The poolwater level float switch shall be checked for operability, alarm and alert functions on a weekly basis until all cobalt pins have been removed permanently from the UVAR pool.

<u>Bases</u>: Poolwater is lost from the open UVAR pool by evaporation and small leaks. Makeup water is added about twice weekly, at which time the actual water level is checked and recorded.

5.0. DESIGN FEATURES

5.1. <u>Reactor Fuel Specifications</u>

Applicability: These specifications apply to UVAR low enriched uranium (LEU) fuel.

<u>Objective</u>: The objective is to describe LEU fuel approved by the U.S. NRC for use in the UVAR.

Specifications:

5.1.1. Fuel Material

UVAR LEU fuel is of a type described for use at U.S. research reactors by the U.S. Nuclear Regulatory Commission (NUREG-1313 "Safety Evaluation Report Related to the Evaluation of LEU Silicide Aluminum-Dispersed Fuel for Use in Non-Power Reactors"). The fuel meat is U_3Si_2 dispersed in an aluminum matrix and enriched to less than 20% U-235.

5.1.2. Element Description

- (1) Plate-type elements of the MTR type are used. The fuel "meat" is clad with aluminum alloy to form flat fuel plates. The active length of the fuel region in the fuel plates is approximately 24 inches and the width is approximately 2.5 inches. The LEU fuel plates are joined at their long-side edges to two side plates. The entire fuel plate assembly is joined at the bottom to a cylindrical nose piece that fits into the UVAR core gridplate. The overall fuel element dimensions are approximately 3 inches by 3 inches by 36 inches. Each fuel plate contains 12.5 grams of U-235.
- (2) "Standard" LEU fuel elements are composed of 22 parallel flat fuel plates each, and contain 275 grams of U-235.
- (3) "Control-rod" LEU elements are similar to the standard elements, with the exception that they have half as many fuel plates (the 11 center plates being removed to form a channel which is bounded by 0.125 inch thick aluminum plates). Control-rod elements accommodate the control rods in the central channel. Their U-235 content is 137.5 grams.
- (4) "Partial" LEU fuel elements are half-fueled elements composed of 11 LEU fuel plates and 11 unfuelled (dummy) plates. The U-235 content in these elements is 137.5 grams.
- (5) "Special" LEU fuel elements have 22 fuel plates, of which 20 are removable. The maximum U-235 content in these elements is 275 grams and the minimum is 25 grams.

5.1.3. Core Configurations

A variety of UVAR core configurations may be used to accommodate experiments, but the loadings shall always be such that the minimum shutdown margin and excess reactivity specified in the UVAR Technical Specifications are not exceeded.

<u>Bases</u>: The NRC has described LEU silicide-fuel suitable for use in U.S. research reactors in NUREG-1313 "Safety Evaluation Report Related to the Evaluation of LEU Silicide Aluminum-Dispersed Fuel for Use in Non-Power Reactors," [\$36.00, from NTIS, Springfield Va. (703-487-4650)]. Also, Bretscher and Snelgrove from the Argonne National Laboratory documented LEU fuel test results in ANL/RERTR/TM-14, "The Whole-Core LEU U_3Si_2 -Al Fuel Demonstration in the 30-MW Oak Ridge Research Reactor." The LEU-SAR for the UVAR contains the safety analysis performed for the 22 flat-plate University of Virginia fuel elements. The LEU elements were designed by EG&G, Idaho, and are manufactured by the Babcock and Wilcox Company of Lynchburg, Virginia.

5.2. Reactor Building

• • • •

TS 5.2 has been deleted, for the specifications on confinement, ventilation and reactor room free volume have been required to restrict leakage of radionuclides produced during reactor operation at power. The UVAR is no longer operated.

5.3. Fuel Use and Storage

<u>Applicability</u>: With the exception of Technical Specification 5.3.2, TS 5.3 applies until all reactor fuel elements have been removed from the UVAR Facility. Following their removal, TS 5.3 is not applicable during the permanent shutdown and decommissioning period. The specifications below apply to University of Virginia Reactor fuel used and/or stored at the University of Virginia Reactor Facility.

<u>Objective</u>: The objective is to describe reactor fuel which may be used, possessed and/or stored at the University of Virginia Reactor Facility as well as measures that avoid nuclear criticality or fuel-related accidents.

Specifications:

5.3.1 LEU Possession Limit

A maximum of 4 kilograms of contained uranium-235 at less than 20% enrichment (which is defined as low enriched uranium, LEU) may be possessed at the Reactor Facility.

5.3.2. <u>Plutonium Possession Limit</u>

All plutonium contained in start-up sources, irradiation targets, flux foils and fission chambers, which totals less than 131 grams, is possessed at the Reactor Facility under the University's By-Product License and not the Reactor License.

5.3.3. Storage Reactivity Limitation

All reactor fuel elements, including fueled experiments and fuel devices <u>not in the</u> <u>reactor</u>, shall be stored in a geometric array where calculated k_{eff} is no greater than 0.9 for all conditions of moderation and reflection using light water, except in cases where an approved fuel shipping container is used, in which case the fuel loading limitations specified in the certificate of compliance for the container shall apply.

5.3.4. Storage Cooling Requirement

Irradiated fuel elements and fueled devices shall be stored in an array that will permit sufficient natural convection cooling by water or air so that the fuel element or fueled device surface temperature will not exceed the boiling point of water.

<u>Bases</u>: Section 5.4 of the American National Standard ANSI/ANS-15.1-1990, "The Development of Technical Specifications for Research Reactors," was used as the overall basis for the above specifications. The limit given in specification 5.3.1 is based on an estimated reasonable need for reactor fuel for use in the core and a spare fuel requirement determined by DOE's expected spare fuel manufacturing schedule. The specification in 5.3.2 is based on the unavoidable production of small amounts of plutonium in reactor fuel, sources, irradiation targets, flux foils and fission chambers, as a consequence of normal reactor operation. Precise amounts of plutonium produced, decayed or burned during reactor operation is hard to quantify, and this is not necessary for the small amounts of plutonium produced and contained in these aforementioned devices pose no undue reactor or radiation safety risks.

6.0. ADMINISTRATIVE CONTROLS

6.1. Organization

<u>Applicability:</u> The specifications listed below in TS 6.1.1 through TS 6.1.4. apply to the organizational structure of the University of Virginia as it relates to the activities conducted at the Reactor Facility during the permanent shutdown and decommissioning period.

<u>Objective:</u> The objective is to describe the chain of command having responsibility for the safe maintenance, defueling, decontamination and decommissioning of the Reactor Facility. At the various administration levels, the functions, assignments, responsibilities and associated professional background, training and requalification requirements are listed, as applicable.

Specifications:

6.1.1. Structure

The Reactor Facility shall be an integral part of the University of Virginia. The organizational structure of U.Va.. relating to the Reactor Facility is shown in Figure 6.1. The Vice President for Research and Public Service (Level 1) shall have overall responsibility for management of the Facility.

The Reactor Decommissioning Committee Chair shall be responsible for advising the Reactor Director (Level 2) on all matters pertaining to the decommissioning and decontamination of the University of Virginia Reactor Facility. The decommissioning committee members may include reactor staff from Level 3, and employees from the Office of Environmental Health and Safety.

6.1.2. <u>Responsibility</u>

During the UVAR permanent shutdown and decommissioning period, the Reactor Facility Director (Level 2) shall be responsible for overall facility operation and the direction of decommissioning activities at the Reactor Facility.

During periods when the Reactor Facility Director is absent, the Director's responsibilities are automatically delegated to the Reactor Supervisor (Level 3).

The Reactor Facility Director shall have at least a bachelor's degree in science or engineering and a minimum of 5 years of experience in the nuclear field. A graduate degree may fulfill 4 years of experience on a one-for-one time basis.

The Reactor Supervisor shall be responsible for the day-to-day activities at the UVAR and ensuring that these are conducted in a safe manner and within the limits prescribed by the facility license. During periods when the Reactor Supervisor is absent, his responsibilities are delegated to a person at (Level 4). The Reactor Supervisor shall have the equivalent of a bachelor's degree in science or engineering and at least 2 years of experience in Reactor Operations at this facility, or an equivalent facility, or at least 6 years of experience in Reactor Operations. Equivalent education or experience may be substituted for a degree. Within nine months after being assigned to the position, the Reactor Supervisor shall obtain and maintain a NRC Senior Reactor Operator license if reactor fuel elements are still at the Facility. A NRC Senior Reactor Operator license, or a Reactor Operator license, is not required for level 3 and 4 personnel once all reactor fuel elements have been shipped offsite.

6.1.3. Staffing

A licensed Senior Reactor Operator shall supervise any movement of reactor fuel. One or more health physicists, organizationally independent of the Reactor Staff as shown in Figure 6.1, shall be responsible for radiological safety at the Reactor Facility.

6.1.4. Selection and Training of Personnel

The selection, training and requalification of Reactor Facility personnel shall follow the American National Standard for Selection and Training of Personnel for Research Reactors, ANSI/ANS-15.4-1988, Sections 4-6, to the extent applicable to the decommissioning status of the facility. The selected criteria for the personnel will be contained in the NRC-approved Operator Requalification Program, as amended.

<u>Bases</u>: Sections 6.1, 6.1.1, 6.1.2, 6.1.3 and 6.1.4 of the American National Standard ANSI/ANS 15.1-1990 "The Development of Technical Specifications for Research Reactors," describe a generic and generally acceptable organizational structure for U.S. research reactors. They provide the bases for TS 6.1 above. Some of the ANSI standard recommendations apply to operable or operating reactor facilities, and are not necessarily valid for staff hired to perform decommissioning activities.

6.2 Radiation Safety, Reactor Safety and Reactor Decommissioning Committees

6.2.A. <u>Radiation Safety Committee</u>

<u>Applicability</u>: The specifications 6.2.A.1 and 6.2A.2 apply to the expert group who will provide oversight over the Reactor Safety and Reactor Decommissioning Committees.

<u>Objective</u>: To describe the makeup, responsibilities, and authority of the Radiation Safety Committee as regards reactor permanent shutdown and decommissioning.

Specifications:

6.2.A.1. Composition and Qualification

There shall be a Radiation Safety Committee (RaSC) to ensure that the Reactor Facility is shutdown and decommissioned in a safe manner within the terms of its reactor and other licenses, reactor Technical Specifications and NRC approved plans. The RaSC shall advise the Vice President and Provost and the Director of the Reactor Facility on safety and other concerns involving the decommissioning of the Reactor Facility.

The RaSC shall include its Chairman, the Radiation Safety Officer, the Director of the Reactor Facility, representatives of the hospital administration, Nuclear Medicine, and Radiological Physics or Radiation Oncology. Additional members may be drawn from such areas as Environmental Health and Safety, Radiology, Pathology, Biology, Nursing, Nuclear Engineering, Microbiology, Physics, Obstectrics and Gynecology. Membership of the RaSC will change as appointments are made by the Office of the President of the University. However, the Radiation Safety Officer and the Reactor Director shall have standing appointments to the RaSC. Collectively, the RaSC members shall represent a broad spectrum of expertise in the radiological sciences. The membership of the Committee shall be such so as to maintain a high degree of technical proficiency in areas relating to radiation safety. The RaSC Chairman is the coordinator for all university licenses involving the use of radioactive materials and radiation producing equipment.

The Radiation Safety Committee is charged with ensuring that licensed material is used safely and in compliance with NRC regulations and institutional licenses. The RaSC reviews changes to the Broad Scope and other licenses. The RaSC also identifies program problems and recommends solutions and remedial actions. Some of its functions are carried out through the use of subcommittees, such as the Reactor Safety Committee and the Reactor Decommissioning Committee. The RaSC will carry out most of its functions relating to the Reactor Facility through these two subcommittees.

6.2.A.2. RaSC Charter and Rules

- (1) To establish a quorum, the ex-officio members and any 5 other Committee members must be present.
- (2) The Committee shall meet as often as necessary to conduct its business but not less than once in each calendar quarter.

- (3) The Committee shall have a written charter defining such matters as the authority of the Committee, the subjects within its purview, and other administrative provisions.
- (4) Radiation Safety Committee meeting minutes shall be distributed to the committee membership within three months following a meeting. These minutes shall be reviewed for approval at the next scheduled committee meeting.

6.2.B. Reactor Safety Committee

<u>Applicability</u>: The specifications 6.2.B.1 through 6.2B.3 apply to the expert group who will provide specific reviews and audits of Reactor Facility operations while reactor fuel elements are on-site.

<u>Objective</u>: To describe the makeup, responsibilities, and authority of the Reactor Safety Committee.

Specifications:

6.2.B.1. Composition and Qualification

There shall be a Reactor Safety Committee (Re SC) to review and audit reactor operations and ensure that the Reactor Facility is operated in a safe manner within the terms of the reactor license. However, reactor safety concerns will end once all reactor fuel elements have been permanently shipped from the Reactor Facility. At that time the need for a Re SC shall cease, and any remaining radiation safety issues shall be referred to and be addressed by the University's Radiation Safety Committee. The Technical Specification requirement for a Reactor Safety Committee shall cease following the shipment of all reactor fuel elements offsite.

The Reactor Safety Committee shall be part (a subcommittee) of the Radiation Safety Committee (RaSC) and report to its Chairman, who is the coordinator for all licenses involving the use of radioactive materials and radiation producing equipment at the University of Virginia. The Reactor Safety Committee shall be composed of at least four members, and shall include the Radiation Safety Officer of the University and the Director of the Reactor Facility. The Reactor Director shall be the sole reactor staff representative on the Committee. Collectively, the committee members shall represent a broad spectrum of expertise in the research-reactor field. The membership of the Committee shall be such so as to maintain a degree of technical proficiency in areas relating to reactor safety. The members may be drawn from within or outside the operating organization.

The ReSC shall advise the Vice President for Research and Public Service and the Director of the Reactor Facility on reactor safety concerns with the operation of the facility. ReSC reviews and audits are designed to uncover deficiencies that affect reactor safety.

6.2.B.2. Charter and Rules

(1) A quorum of the Committee shall consist of not less than the majority of the full committee. The Chair can designate another member from the Committee to preside in his absence.

- (2) The Committee shall meet at least semiannually and shall be on call by the Chair. Minutes of all meetings shall be disseminated as designated by the Chair.
- (3) The Committee shall have a written charter defining such matters as the authority of the Committee, the subjects within its purview, and other administrative provisions as are required for effective functioning of the Committee.
- (4) Reactor Safety Committee meeting minutes shall be distributed to the committee membership within three months following a meeting. These minutes shall be reviewed for approval at the next scheduled committee meeting.

6.2.B.3. Review and Audit Functions

As a minimum the responsibilities of the Reactor Safety Committee include:

- (1) Review and approval of untried experiments and tests that are significantly different from those previously used or tested in the reactor, as determined by the Facility Director.
- (2) Review and approval of changes to the reactor core, reactor systems or design features that may affect the safety of the reactor.
- (3) Review and approve all proposed amendments to the reactor license, Technical Specifications, and changes to the standard operating procedures (Note: SOPs are discussed in Section 6.3 of these specifications).
- (4) Review reportable occurrences, to include violations of Technical Specifications, License or of Standard Operating Procedures that have safety significance, as well as the occurrences listed in ANSI/ANS-15.1-1990 Item 6.6.2. Also, to review the actions taken to identify and correct the cause of these occurrences.
- (5) Review significant operating abnormalities or deviations from normal performance of facility equipment that affect reactor safety.
- (6) Audit annually [through a selective yet comprehensive examination of records, logs and personnel]:
 - a) Facility operations for conformance to TS and License
 - b) Results of actions taken to correct verified deficiencies that may occur in reactor equipment, systems, structures or method of operations that affect reactor safety.
 - ... and audit biennially:
 - c) Operator retraining and requalification program for the reactor operations staff
 - d) Reactor Facility Emergency Plan and Implementing Procedures
- (7) Review and approval of changes to experiments, reactor systems and procedures as per 10 CFR 50.59.

<u>Bases</u>: American National Standard ANSI/ANS-15.1-1990, "The Development of Technical Specifications for Research Reactors," describes in Section 6.2 acceptable composition and qualification criteria for reactor safety committees and their review and audit functions. Section 6.3 of the standard describes the organizational relationship of the group responsible for radiation safety to the reactor operations group. These sections of the standard are used as bases for the specifications listed above.

6.2.C. <u>Reactor Decommissioning Committee</u>

<u>Applicability</u>: The specifications 6.2.C.1 through 6.2C.3 apply to the expert group who will have responsibility and oversight for decommissioning planning and execution activities at the Reactor Facility.

<u>Objective</u>: To describe the makeup, responsibilities and authority of the Reactor Decommissioning Committee.

Specifications:

6.2.C.1. Composition and Qualification

There shall be a Reactor Decommissioning Committee (RDC) to plan the safe, legal and timely decommissioning of the Reactor Facility. Collectively, the decommissioning committee members shall represent a broad spectrum of expertise in the research-reactor and health-physics fields, with experience in reactor management, radiological safety, research reactor decommissioning and university administration. Committee members may be drawn from within or outside the University of Virginia, including subcontracted companies. The Committee shall be composed of at least four members, and shall include the Radiation Safety Officer of the University and the Director of the Reactor Facility.

The Reactor Decommissioning Committee shall be part (subcommittee) of the Radiation Safety Committee, which reports to the Vice President and Provost. The Decommissioning Committee shall advise the Reactor Director (Level 2) on all matters impacting the decommissioning of the Reactor Facility.

6.2.C.2. Charter and Rules

- A quorum of the Decommissioning Committee shall consist of not less than the majority of the full committee. The RDC Chair can designate another member from the Committee to preside in his absence.
- (2) The Reactor Decommissioning Committee shall meet at least quarterly and shall be on call by the Chair. Meeting minutes shall be disseminated as per the RDC Charter.
- (3) The Reactor Decommissioning Committee shall have a written charter defining such matters as the authority of the Committee, the subjects within its purview, and other administrative provisions as are required for effective functioning of the Committee.
- (4) The Reactor Director shall cast a single vote in the name of the operations staff at Reactor Decommissioning Committee meetings. The operations staff encompasses the reactor staff, decommissioning subcontractors and anyone directly supporting decommissioning and working under the direction of the Reactor Director.
- (5) Reactor Decommissioning Committee meeting minutes shall be distributed to the committee membership within three months following a meeting. These minutes shall be reviewed for approval at the next scheduled committee meeting.

6.2.C.3. Decommissioning Committee Functions

As a minimum, the responsibilities of the Reactor Decommissioning Committee following the termination of the Reactor Safety Committee shall include:

- (1) Review and approval for changes to the Reactor Facility and to the UVAR SOPs as applicable and described in 10 CFR 50.59.
- (2) Review and approval of proposed changes to reactor licenses, Technical Specifications, NRC-approved plans (such as the Emergency and Security Plans), as well as the UVAR Standard Operating Procedures (SOPs), with the exception of changes to the organizational structure. [The responsibility and authority for the organizational structure for the Reactor Facility resides with the Vice President and Provost.]
- (3) Review unusual and reportable occurrences, to include those violations of Technical Specifications, License, or of Standard Operating Procedures that have safety significance, as well as the occurrences listed in ANSI/ANS-15.1-1990 Item 6.6.2. Also, to review the actions taken by reactor management to identify and correct the cause of these occurrences.
- (4) Annually audit [through a selective, yet comprehensive, examination of records, logs and personnel] facility operations for conformance to licenses, Technical Specifications, NRC regulations and inspections, as well as UVAR SOPs; and to recommend remedial action to correct identified deficiencies.
- (5) Biennially audit the Operator Retraining and Requalification Program of the reactor staff, as well as the Reactor Facility Emergency Plan and Implementing Procedures.

----- reporting lines

-- communication lines

FIGURE 6.1 "A" ORGANIZATIONAL CHART UNIV. OF VIRGINIA NUCLEAR REACTOR FACILITY (PRIOR TO SHIPMENT OF ALL FUEL ELEMENTS OFF-SITE)

UVAR Tech. Specs.

47 -

FIGURE 6.1 "B" ORGANIZATIONAL CHART UNIV. OF VIRGINIA NUCLEAR REACTOR FACILITY (AFTER SHIPMENT OF ALL FUEL ELEMENTS OFF-SITE)

Amendment No. 25 February 9, 2000

6.3. Standard Operating Procedures

<u>Applicability</u>: The specification below concerns the procedural controls used to operate the University of Virginia Reactor (UVAR) and conduct experiments.

<u>Objective</u>: The objective is the safe operation of the reactor in compliance with license conditions, federal regulations.

Specifications:

6.3.1. Items Covered by SOPs

Written procedures, reviewed and approved by the Reactor Safety Committee shall be in effect and followed for the items listed below. These procedures shall be adequate to ensure the safe decommissioning of the reactor, but should not preclude the use of independent judgment and action should the situation require such.

- (1) Startup, operation and shutdown of the reactor.
- (2) Installation or removal of fuel elements, control rods, experiments, and experimental facilities.
- (3) Actions to be taken to correct specific and foreseen potential malfunctions of systems or components, including responses to alarms, suspected primary coolant system leaks, abnormal reactivity changes.
- (4) Emergency conditions involving potential or actual release of radioactivity, including provisions for evacuation, re-entry, recovery, and medical support.
- (5) Preventative and corrective maintenance operations that could have an effect on reactor safety.
- (6) Periodic surveillance.
- (7) Radiation control.

6.3.2. Changes to SOPs

Substantive changes to approved procedures shall be made only with the approval of the Reactor Safety Committee (or by the Reactor Decommissioning Committee after the ReSC ceases to exist). Changes that do not change the original intent of the procedures may be made with the approval of the Facility Director. All such minor changes shall be documented and subsequently reviewed by the Reactor Safety Committee (or by the Reactor Decommissioning Committee after the ReSC ceases to exist).

<u>Basis</u>: Section 6.4 of American National Standard ANSI/ANS 15.1-1990, "The Development of Technical Specifications for Research Reactors," suggests acceptable procedural controls to be applied to operating U.S. research reactors.

6.4. Review and Approval of Experiments

<u>Applicability</u>: Specifications 6.4.1 through 6.4.6 listed below apply to classes of experiments run in the UVAR core, in the UVAR pool, or which use UVAR-generated neutron and/or gamma-radiation beams. However, a partial listing of examples of experimental work covered under experiment classes for which broad approval may have been obtained and, therefore, for which individualized experimental procedures would <u>not</u> be required follows below:

- (a) Samples to be irradiated in approved irradiation facilities, such as the neutron activation facilities, where the samples meet the criteria in TS 3.6 and TS 6.4.
- (b) Samples to be irradiated in the neutron radiography facility beamport which are known not to be hazardous to reactor safety.

<u>Objective</u>: The objective is the safe operation of the reactor and experiments, in accordance with license conditions and federal regulations. Experiments run in conjunction with the reactor should not adversely affect reactor and radiation safety. Notwithstanding the regard for safety, the requirement for review and approval of experiments shall not limit the flexibility of experimenters performing work covered under general written procedures, or for which unanalyzed safety issues do not exist, as determined by the Reactor Director.

Specifications:

- 6.4.1. Experimental Procedures and Methods
 - (1) Classes of experiments involving the UVAR, the UVAR pool or UVAR radiation beam facilities shall be carried out with established and approved written experimental procedures. The Reactor Safety Committee shall review all new classes of experiments prior to their initiation and approve written experimental procedures governing their operation.
 - (2) Written experimental methods that implement Reactor Safety Committee approved experimental procedures may be developed by the staff and/or experimenters, as needed. Such experimental methods shall be approved by a Reactor Supervisor or the Reactor Director prior to use.
 - (3) The Reactor Director or the Reactor Safety Committee shall decide whether an experimental procedure is required. Usually, an experimental procedure will not be required if the work in question is already covered under an existing approved general experimental procedure or by a Standard Operating Procedure.

6.4.2. <u>Reactivity limits</u>

As applicable, reactivity limits for experiments given in experimental procedures shall be based on analyses of maximum reactivity insertions that can be handled by the reactor or its control and safety systems without exceeding safety limits. Reactivity limits have been established in TS 3.6 <u>Limitations on Experiments</u> for maximum absolute reactivity worth of individual experiments and the sum of the absolute values of the worth of all experiments.

6.4.3. Materials

As applicable, special requirements shall be established in the experimental procedures for significant amounts of special materials such as fissionable materials, explosives or metastable materials capable of significant energy release, or materials that are corrosive to reactor components or highly reactive with coolants. Requirements listed in experimental procedures may range from detailed analyses to double encapsulation and prototype testing.

6.4.4. Failure and Malfunctions

- (1) Credible failures of any experiments shall not result in the release or exposures in excess of the annual limits established in Title 10, Code of Federal Regulations, Part 20.
- (2) Experiments shall be designed such that they will not contribute to the failure of other experiments, core components, or principal physical barriers to uncontrolled release of radioactivity. Similarly, no reactor transient shall cause an experiment to fail in such a way as to contribute to an accident.

6.4.5. Experimental Facility Specific LCO

Limiting Conditions of Operation limits unique to an experiment shall be specified, as necessary, in the written experimental procedures. Specific surveillance activities which may be required for experiments will also be addressed in the experimental procedures.

6.4.6. Deviations from Experimental Procedures

- (1) Changes to previously approved experiments and experimental procedures, determined by the Reactor Director to be substantive, shall be made only after review and approval by the Reactor Safety Committee.
- (2) Minor changes to experimental procedures may be made with the approval of the Reactor Director, who will determine that no new reactor safety concerns exist, and with the approval of the Reactor Health Physicist, who will assure that radiological safety requirements can be met.

<u>Bases</u>: National Standard ANSI/ANS-15.1-1990, "The Development of Technical Specifications for Research Reactors," suggests acceptable provisions governing reactorbased experiments in sections 3.6 and 6.4. These sections served as bases for the above specification. In addition, examples are presented of activities involving the reactor which typically do not require individualized written procedures, because they are covered under a general procedure for an approved class of experiments, or covered by SOPs. It is unreasonable to require procedures with undue specificity when this would limit reasonable experimental flexibility and no unanalyzed safety issues exist. The Reactor Director has the resources and authority to determine when experimental procedures are required.

6.5 Plant Operating Records

Applicability: The specifications below apply to UVAR operating records.

<u>Objective</u>: The objective is to maintain and keep on file reactor operating records for future reference, and for demonstration of compliance with license conditions and federal regulations.

Specifications:

6.5.1. <u>Records To Be Retained for at least Five Years</u>

In addition to the requirements of applicable regulations, records of the items listed below shall be kept in a manner convenient for review:

- (1) Normal reactor facility operation (for example, reactor logbooks, reactor checklists and irradiation request forms).
- (2) Principal reactor systems maintenance records.
- (3) Reportable occurrences.
- (4) Equipment and component surveillance activity required by Technical Specifications.
- (5) Reactor Facility radiation and contamination surveys.
- (6) Experiments performed with the UVAR.
- (7) Fuel inventories, transfers of radioactive material to and from the R-66 license.
- (8) Approved changes to operating procedures.
- (9) Records of meetings and audit reports of the Reactor Safety Committee.
- (10) Records of meetings and audit reports of the Reactor Decommissioning Committee.

6.5.2. <u>Records To Be Retained for One Certification Cycle</u>

Records of retraining and requalification of licensed operators shall be maintained at all times the individual is employed or until licensing is renewed.

6.5.3. <u>Records To Be Retained for the Life of the Facility</u>

In addition to the requirements of applicable regulations, records (or logs) of the items listed below shall be kept in a manner convenient for review and shall be retained as indicated:

- (1) Gaseous and liquid radioactive effluents released from the Reactor Facility.
- (2) Off-site (radiological) environmental monitoring surveys.
- (3) Radiation exposures for all personnel monitored at the Reactor Facility.
- (4) Updated, corrected and as-built drawings of the Reactor Facility.
- (5) Changes to reactor systems, components, or equipment that may affect reactor safety

<u>Basis</u>: American National Standard ANSI/ANS-15.1-1990, "The Development of Technical Specifications for Research Reactors," provides record-keeping guidance in Section 6.8. This is the basis for the above specifications.

6.6. <u>Required Actions</u>

<u>Applicability</u>: The specifications below apply to instances where radiologically unsafe situations have been, or were likely to have been, generated.

<u>Objective</u>: The objective is to report unsafe conditions, study their causes and consequences, determine their effect on the health and safety of personnel and the public, and take corrective action to prevent recurrence.

Specifications:

6.6.1. Action To Be Taken in the Event of a Reportable Occurrence

A reportable occurrence is any of the following conditions:

- (1) An observed inadequacy in the implementation of either administrative or procedural controls, such that the inadequacy could have caused the existence or development of an unsafe condition at the Reactor Facility.
- (2) Abnormal and significant degradation in reactor fuel, and/or cladding, coolant boundary, or containment boundary (excluding minor leaks) where applicable that could result in exceeding prescribed radiation-exposure limits of personnel and/or environment.
- (3) Major damage to the Co-60 pins resulting in Co-60 concentrations in reactor pool water in excess of 1 x 10⁻³ micro-curies/ml.
- (4) Occurrences listed in Item 6.6.2 of ANSI/ANS-15.1-1990.

In the event of a reportable occurrence, the following action shall be taken:

- (a) Ongoing activities shall cease until the occurrence has been resolved.
- (b) The Director of the Reactor Facility or his designee shall be notified as soon as possible and corrective action taken as foreseen in the procedures.
- (c) A written report of the occurrence shall be made which shall include an analysis of the cause of the occurrence, the corrective action taken, and recommendations for measures to preclude or reduce the probability of reoccurrence. This report shall be submitted to the Director and the Reactor Safety Committee and/or the Radiation Safety Officer for review.
- (d) A report shall be submitted to the Nuclear Regulatory Commission in accordance with Section 6.7 of these specifications.

<u>Bases</u>: National Standard ANSI/ANS-15.1-1990, "The Development of Technical Specifications for Research Reactors," describes in sections 6.6 and 6.7 acceptable specifications for required actions related to safety limits violations, actions to be taken upon their discovery, and reporting requirements. These form the bases for the above specifications.

6.7. Reporting Requirements

<u>Applicability</u>: The specifications 6.7.1 and 6.7.2 listed below apply to routine and special reports made by the University of Virginia Reactor Facility to the U.S. Nuclear Regulatory Commission.

<u>Objective</u>: The objective is to provide the licensing agency (NRC) with relevant information concerning normal and abnormal reactor operations which are necessary for the fulfillment of its mission to protect the public health and safety. A secondary objective is to comply with reporting requirements as given in the federal regulations.

<u>Specifications</u>: In addition to federal regulatory requirements (for example, follow 10 CFR 20, 30.50, 40.60, and 70.50, as applicable), reports should be made to the U.S. Nuclear Regulatory Commission as follows:

6.7.1. Reporting of Incidents

- (1) Immediate notification should be made by telephone, to the U.S. Nuclear Regulatory Commission Headquarters Operations Center of:
 - (a) Personnel total effective dose equivalent of 25 rem or more.
 - (b) The release of radioactive material, inside or outside of a restricted area, that results, or could result, over a 24 hour period, in personnel intake of 5 times the annual limit on intake specified in 10 CFR 20.
 - (c) Violation of UVAR Technical Specifications.
- (2) A special report should be made by telephone as soon as possible, but no later than the next working day, to the U.S. Nuclear Regulatory Commission Headquarters Operations Center of:
 - (a) Personnel exposures or releases of radioactive material greater than the limits in 10 CFR 20.
 - (b) Reportable occurrences as defined in TS 6.6.1 and Item 6.6.2 of ANSI/ANS-15.1-1990.
 - (c) Violation of a safety limit or technical specification.
- (3) A special written report should be sent by mail within 14 days to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555
 - (a) Accidental off-site release of radioactivity above 10 CFR 20 limits, whether or not the release resulted in property damage, personal injury, or exposure.
 - (b) Reportable occurrence as defined in Section 6.6.2 of ANSI/ANS-15.1-1990 and TS 6.6.1.
 - (c) Violation of a safety limit or technical specification.

- (4) A special written report should be sent by mail within 30 days to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, of:
 - (a) Accidental off-site release of radioactivity above 10CFR20 limits, whether or not the release resulted in property damage, personnel injury, or exposure.
 - (b) Reportable occurrence as defined in Section 6.6.1 of these specifications, and Item 6.6.2 of ANSI-ANS-15.1-1990.
 - (c) Changes in personnel serving as Vice President For Research and Public Service, the Radiation Safety Committee Chair, Reactor Decommissioning Committee Chairman, Reactor Safety Committee Chair, Reactor Facility Director, or Reactor Supervisor.
- (5) A written report should be sent within nine months after initial criticality of the reactor or within 90 days of completion of the startup test programs, whichever is earlier, to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, upon receipt of a new facility license, an amendment to the license authorizing an increase in power level or the installation of a new core with fuel elements of a design different design than previously used. The report will include the measured values of the operating conditions or characteristics of the reactor under the new conditions, including:
 - (a) Total control rod reactivity worth.
 - (b) Reactivity worth of the single control rod of highest reactivity worth.
 - (c) Minimum shutdown margin both at ambient and operating temperatures.
- 6.7.2. Routine Annual Reports

A routine annual report will be made by March 31 of each year on decommissioning and related activities completed during the previous calendar year. The report should be sent to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, providing the following information:

- (1) Reactor Facility utilization,
- (2) Description of university staff assigned to decommissioning: numbers, background and responsibilities,
- (3) TS compliance and reportable events,
- (4) Results of NRC inspections and licensing actions,
- (5) Summary report on RDC meetings and audit findings,
- (6) Health Physics Program
- (7) Annual waste content and yolume shipped,
- (8) Summary of the nature and amount of radioactive solid, liquid and airborne effluents released or discharged to the environs beyond the effective control of the licensee, as measured or calculated at or prior to the point of such release or discharge,
- (9) Results of environmental surveys and sampling outside the Reactor Facility,

- (10) Reactor Facility personnel and visitor radiation exposure summary report, including the dates and times of significant exposures (greater than 500 mrem for adults and 50 mrem for persons under 18 years of age),
- (11) Summary of radiation and contamination surveys performed within the Reactor Facility,
- (12) Status of decommissioning funding and expenditures,
- (13) Description of contractor companies operating on-site,
- (14) Summary of contracted tasks and timelines,
- (15) Significant Changes to the Reactor Facility, Reactor SOPs and of all changes made per 10 CFR 50.59,
- (16) Summary of large equipment transfers,
- (17) New and modified SOPs having radiation safety significance,
- (18) Status of emergency preparedness,
- (19) Figures on industrial accidents or incidents.

UNITED STATES NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555-0001

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

SUPPORTING AMENDMENT NO. 25 TO

AMENDED FACILITY OPERATING LICENSE NO. R-66

THE UNIVERSITY OF VIRGINIA

DOCKET NO. 50-62

1.0 INTRODUCTION

By letter dated September 29, 1998, as supplemented on January 20, August 16, and November 23, 1999, the University of Virginia (UVA or licensee) submitted a request for amendment to Amended Facility Operating License No. R-66 for the UVA Research Reactor (UVAR) and Appendix A of the license, "Technical Specifications for the University of Virginia Reactor." The requested changes would remove authorization from the license to operate the reactor, authorize possession-only of the reactor and remaining byproduct and special nuclear material, and change the technical specifications (TSs) to remove or modify operational TSs that are not needed for possession-only status. The licensee also requested changes in the administrative controls for the reactor facility.

2.0 EVALUATION

2.1 Introduction

UVA has requested that the license for the UVAR be amended to remove authorization to operate the facility because the facility has been permanently shut down in preparation for decommissioning. In addition, the licensee has requested the amendment of certain TSs that are associated with the operable reactor to remove requirements not necessary for a reactor in possession-only status.

The reactor in possession-only configuration will be incapable of achieving criticality under all environmental conditions. All irradiated fuel has been removed from the facility and returned to the Department of Energy. The fuel remaining on site is unirradiated and is kept in approved fuel storage facilities. The remaining fuel is less than a critical mass and will not be placed on the reactor grid plate.

The proposed license amendment does not change any TSs requirements for fuel storage. Fuel will be moved and stored in accord with the existing TS and UVA procedures until removed from the site. The physical security plan and emergency plan will continue in place. TSs relevant to radiation safety will continue in effect. This includes TSs concerning pool water quality and level until the cobalt 60 irradiator is removed from the pool. The licensee has proposed changes to TSs to remove wording from the TSs not applicable to a reactor in possession-only status. TSs proposed to be removed from the license include those requiring emergency cooling of the reactor core, control rod surveillances, safety system checks and calibrations, and reactor room ventilation.

2.2 Changes to License Conditions

ž

The licensee has proposed changes to the license to remove reference to operation of the facility, use of the reactor, and the use of byproduct and special nuclear material. The licensee has also proposed changes to byproduct and special nuclear material possession limits to reflect the permanent removal of material from the facility.

Paragraph I.B., which concerns NRC staff findings about the licensee currently reads:

I.B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;

The licensee has proposed changing this license condition to read:

I.B. The facility will be possessed, but not operated, in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;

Paragraph I.E., which also concerns staff findings about the licensee currently reads:

I.E. The licensee is a nonprofit educational institution and will use the facility for the conduct of educational activities, and has satisfied the applicable provisions of 10 CFR 140, "Financial Protection Requirements and Indemnity Agreements," of the Commission's regulations;

The licensee has proposed changing this license condition to read:

I.E. The licensee is a nonprofit educational institution and has satisfied the applicable provisions of 10 CFR 140, "Financial Protection Requirements and Indemnity Agreements," of the Commission's regulations;

Paragraph II.B.(1), which discusses authority to possess and use the reactor currently reads:

II.B.(1) Pursuant to Section 104c of the Act and 10 CFR 50, "Licensing of Production and Utilization Facilities," to possess and operate the reactor as a utilization facility at the designated location near Charlottesville, Virginia, in accordance with the procedures and limitations described in the application and in this license.

The licensee has proposed changing this license condition to read:

II.B.(1) Pursuant to Section 104c of the Act and 10 CFR 50, "Licensing of Production and Utilization Facilities," only to possess, but not operate, the reactor at the designated location near Charlottesville, Virginia, in accordance with the procedures and limitations described in the application and in this license. Paragraph II.C.(1) about maximum power level currently reads:

(1) Maximum Power Level

The University of Virginia is authorized to operate the reactor at steady state power levels up to a maximum of 2 megawatts (thermal).

The licensee has proposed changing this license condition to read:

(1) Maximum Power Level

The University of Virginia will not load the reactor core and not operate the reactor.

In addition, the word "operate" was changed to "possess" in license paragraph II.C.(2) concerning TSs.

The changes to the above license conditions remove reference to reactor operation from the facility license and refer to possession-only of the reactor. Because this is commensurate with the permanent shut down of the reactor and the change to possession-only status, these changes to the license are acceptable to the staff.

Paragraph I.H., concerning byproduct and special nuclear material currently reads:

I.H. The receipt, possession and use of the byproduct and special nuclear material as authorized by this license, will be in accordance with the Commission's regulations in 10 CFR 30 and 70, including sections 30.33, 70.23 and 70.31.

The licensee has proposed changing this license condition to read:

I.H. The possession and disposal of byproduct and special nuclear material, as authorized by this license, will be in accordance with the Commission's regulations in 10 CFR 30 and 70.

The proposed changes to license condition I.H. remove authority to receive any additional byproduct or special nuclear material. Because the reactor will not be operated again, additional byproduct or special nuclear material is not needed and this change is therefore acceptable to the staff. The licensee has also removed reference to specific regulations. Because the licensee still must follow the requirements in 10 CFR Parts 30 and 70, the change has no effect on the license condition and simplifies the condition. This change is therefore acceptable to the staff.

License conditions II.B.(2) and II.B.(4) contain possession limits on special nuclear material. Paragraph II.B.(4) was added to the facility license when the facility converted from highenriched to low-enriched uranium fuel to allow continued possession of the high-enriched fuel until it was removed from the facility.

Paragraph II.B.(2) currently reads:

II.B.(2) Pursuant to the Act and 10 CFR Part 70, "Domestic Licensing of Special Nuclear Material," to receive, possess, and use up to a maximum of 12 kilograms of

contained uranium-235 at various enrichments, up to a maximum of 16 grams of plutonium in the form of a sealed plutonium-beryllium neutron source in connection with operation of the reactor, and to possess, but not separate, such special nuclear material as may be produced by the operation of the facility. Without exceeding the foregoing maximum possession limits, the maximum limits on specific enrichments of U-235 are as follows:

Maximum U-235 <u>Kilograms</u>	% Enrichment	<u>Form</u>
11	<20%	Materials testing reactor (MTR)-type fuel
1	Any	Fission chambers, flux foils, and other forms used in connection with operation of the reactor

Paragraph II.B.(4) currently reads:

II.B.(4) Pursuant to the Act and 10 CFR 70, "Domestic Licensing of Special Nuclear Material," to possess, but not to use, a maximum of 5.0 kilograms of contained uranium-235 at greater than 20-percent enrichment and other such special nuclear material produced by operation of the facility in the form of MTR-type reactor fuel until the existing inventory of high-enriched MTR-type reactor fuel is removed from the facility.

The licensee has proposed combining paragraphs II.B.(2) and II.B.(4) into paragraph II.B.(2) to read:

II.B.(2) Pursuant to the Act and 10 CFR Part 70, "Domestic Licensing of Special Nuclear Material," the maximum U-235 possession limits are as follows:

Maximum U-235 <u>Kilograms</u>	<u>% Enrichment</u>	Form
4	<20%	Materials testing reactor (MTR)-type fuel
1	Any	Fission chambers, flux foils, and other forms used in connection with the reactor

The licensee has proposed changes to this license condition to remove authority to receive and use SNM. The possession limits have been changed to reflect the permanent removal from the facility of all irradiated reactor fuel. The proposed possession limits account for 10 unirradiated low-enriched fuel elements and three unirradiated high-enriched fuel plates still at the facility. Possession of the three unirradiated high-enriched fuel plates was authorized under license condition II.B.(4), but it has been proposed to possess the plates under the 1 kilogram of any

enrichment uranium limit in the table above. The authority to possess plutonium has been removed from the proposed license paragraph. The licensee has transferred all plutonium from the reactor license to the University's byproduct material license. The wording of the license condition is changed to reflect the fact that the reactor is permanently shut down. Because the reactor is permanently shut down and material has been permanently removed from site or transferred to the University's byproduct material license, the requested changes are commensurate with the change to possession-only status and are acceptable to the staff.

Paragraph II.B.(3) concerning possession of byproduct material currently reads:

II.B.(3) Pursuant to the Act and 10 CFR Part 30, "Rules of General Applicability to Licensing of Byproduct Material," to receive, possess, store and use in the reactor pool 70,000 curies of cobalt 60; to receive, possess and use 1.0 gram of neptunium 237; and to possess, but not separate, such byproduct materials as may be produced by operation of the reactor.

The licensee has proposed changing this license condition to read:

II.B.(3) Pursuant to the Act and 10 CFR Part 30, "Rules of General Applicability to Licensing of Byproduct Material" at the Reactor Facility, to possess and store 2,000 curies of cobalt 60; to possess and store 1.0 gram of neptunium 237; and to possess, but not separate, such byproduct materials as may have been produced by operation of the reactor prior to its permanent shutdown.

The licensee has proposed changes to this license condition to remove authority to receive and use byproduct material. The wording of the license condition is changed to reflect the fact that the reactor is permanently shut down. The quantity of cobalt 60 possessed under the license is reduced from 70,000 to 2,000 curies to reflect decay of the cobalt since the license condition was originally written. The license condition is also changed to remove the restriction that the cobalt 60 is only used in the reactor pool. As decommissioning activities occur in the future, the cobalt may need to be moved to another location within the reactor facility. This issue is discussed further below in the discussion of changes to TS 3.6.6. Because the reactor is permanently shut down and the requested changes are commensurate with the change to possession-only status, these changes are acceptable to the staff.

Paragraph I.A. currently reads:

I.A. The application for amendment by the University of Virginia (the licensee) dated March 9, 1977, as supplemented by filings dated December 18, 1978, January 19, 1979, September 18, 1979, July 15, 1980, February 12, 1981, August 19, 1981, March 11, 1982, March 19, 1982, May 18, 1982, June 7, 1982, and August 27, 1982, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations as set forth in 10 CFR Chapter I;

The licensee had proposed changes to this paragraph based on the application for this license amendment. The licensee had proposed adding the date November 22, 1999 (the date the

licensee put on their proposed license conditions), to the list of dates in this paragraph. However, the date of the licensee's letter to NRC is November 23, 1999, which is the correct date of the application. During a discussion between the licensee and NRC project manager on November 30, 1999, it was agreed that the November 23, 1999, date would be referenced to in this license paragraph. It is proposed that this paragraph be amended to read:

I.A. The application for amendment by the University of Virginia (the licensee) dated September 29, 1998, as supplemented by filings dated January 20, August 16, and November 23, 1999, complies with standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations as set forth in 10 CFR Chapter I;

This change is acceptable to the staff because it is administrative in nature and reflects the proposed license amendment.

Paragraph II.A. currently reads:

II.A. This license applies to the light water-cooled and -moderated swimming pool nuclear reactor owned by the University of Virginia (the licensee), located on the campus of the University of Virginia at Charlottesville, Albemarle County, Virginia and described in the application for license renewal.

The licensee has proposed changing this license condition to read:

II.A. This license applies to the light water-cooled and -moderated pool nuclear reactor owned by the University of Virginia (the licensee), located on the grounds of the University of Virginia at Charlottesville, Albemarle County, Virginia.

These changes clarify the description of the facility and remove reference to the license renewal application. These changes are administrative and are acceptable to the staff.

The licensee had proposed changing reference to "operating license" to "possession-only amendment" in license paragraph I. D. In a telephone conversation with the NRC project manager on November 30, 1999, the licensee agreed to leave the term "operating license" because there is not a specific license type known as a "possession-only amendment." The proposed license amendment will result in an operating license that allows possession but not operation of the facility.

The staff finds these changes to license conditions acceptable because they remove reference to reactor operation, use of the reactor, and the receipt and use of byproduct and SNM and are consistent with the possession-only status requested by the licensee.

2.3 Changes to Technical Specifications

The licensee has proposed changes to a number of TSs to reflect the permanent shut down and defueled status of the facility. The licensee has also requested changes to the administrative portion of the TSs.

The licensee has proposed updating the TS cover page and table of contents to reflect the other requested changes to the TSs. These changes are acceptable to the staff because they are administrative in nature.

The licensee retyped their TSs as part of this license amendment. While reviewing the TSs, the NRC project manager noted an instance where the wording of a TS was changed that was not proposed for change by the licensee. During a telephone call with the licensee on November 30, 1999, the license verified that the change in wording was an error in retyping the TSs and not a proposed change. The change was corrected to retain the original wording of the TS.

The licensee has proposed the addition of four definitions to the TSs as follows:

<u>Decommissioning</u>: Decommissioning means to remove a facility or site safely from service and reduce residual radioactivity to a level that permits: (1) release of the property for unrestricted use and termination of the license; or (2) release of the property under restricted conditions and termination of the license (10CFR50.2). Decommissioning does not include storage or removal of fuel, or non-radiological demolition activities.

<u>Decontamination</u>: Decontamination are the activities employed to reduce the levels of radioactive and/or hazardous contamination in or on material, structures and equipment.

<u>Reactor Facility</u>: Reactor Facility refers to the immediate site-area surrounding and including the reactor building which houses the University of Virginia Reactor (UVAR). The site boundary is demarcated by a chain link fence and gates. (See Figure 1.1)

<u>Permanent Reactor Shutdown</u>: A reactor is in a permanent shutdown state when all reactor fuel elements have been removed from the reactor gridplate and an administrative order is in place to prevent a reloading of the core.

The definition of decommissioning is partially taken from the regulations in 10 CFR 50.2. The definition of decontamination is a common definition used in the radiation protection field. The definitions of reactor facility and permanent reactor shutdown are specific to UVA and clarify the possession-only TS. The licensee has also proposed adding Figure 1.1 to the TSs that clearly shows the facility boundary. These new definitions are commensurate with the change to possession-only status and are therefore acceptable to the staff.

The licensee has requested changes to TS 3.6.6 concerning the cobalt facility which currently reads:

3.6.6. <u>Cobalt Facility</u>

The Co-60 rods possessed under the UVAR Operating License shall be used and stored in the UVAR pool at distances greater than 5 feet from the operating UVAR reactor. Gamma irradiation facilities utilizing the Co-60 rods shall be designed to prevent physical damage to the Co-60 rods. UVAR pool water samples shall be subjected to gamma spectroscopy for the presence of Co-60 on a monthly frequency, (interval not to exceed six weeks) to assure that substantial leakage of Co-60 from the rods to reactor pool water does not occur. The licensee has proposed that this TS be changed to read:

3.6.6. <u>Cobalt Facility</u>

The Co-60 pins possessed under the UVAR Operating License when used and stored in the UVAR pool shall be at distances greater than 5 feet from the operating UVAR reactor. Gamma irradiation facilities utilizing the Co-60 pins shall be designed to prevent physical damage to the Co-60 pins. When the Co-60 pins are in the pool, UVAR pool water samples shall be subjected to gamma spectroscopy for the presence of Co-60 on a monthly frequency, (interval not to exceed six weeks) to assure that substantial leakage of Co-60 from the pins to reactor pool water does not occur.

The proposed changes to this TS clarifies the fact that this TS is only applicable when cobalt 60 pins are in the reactor pool. As discussed in the changes to license condition II.B.(3) above, the licensee may want to remove the cobalt 60 pins from the reactor pool into other shielded storage to facilitate facility dismantlement in the future. The primary purpose of this TS is to control the potential interaction between the cobalt 60 and the operating reactor. These concerns do not exist for storage outside the reactor pool. The licensee has also proposed a change to the bases of this TS that is commensurate with the requested change to the specification. Because the proposed TS clarifies the conditions of cobalt 60 pin use in the reactor pool and is commensurate with changes to license condition II.B.(3), the staff concludes that the requested changes to this TS are acceptable.

The licensee has proposed elimination of TS 3.10 concerning emergency removal of decay heat and TSs 4.3.1 and 4.3.2, which contain surveillance requirements for the emergency core spray systems. TS 3.10 currently reads:

<u>Specification</u>: There shall be two separate emergency core spray systems, each capable of maintaining a flow rate of at least 10 gpm over the 64 fuel element positions for the first 30 min, and at least 7 l/2 gpm over the 64 fuel element positions for the next 60 min following a total loss of coolant.

The associated surveillance requirement (TS 4.3) for this system reads as follows:

4.3.1. Spray System Checks

Whenever the reactor bridge is moved and replaced into position for forced convection operation, the remote coupler for each spray system shall be air-pressure checked to ensure that there is no leakage.

4.3.2. Flow Rate Measurements

Measurements will be made annually to verify that each spray system will deliver at least 10 gpm for 30 min.
The licensee has proposed replacing TSs 3.10 and 4.3 with the following:

3.10. Emergency Removal of Decay Heat

This TS has been deleted because the reactor core has been permanently unloaded. The emergency decay heat removal system is designed to only cool elements located on the gridplate. As fuel will never be placed on the gridplate again, this TS is no longer needed.

4.3 This TS has been deleted because the emergency core spray system does not need to be checked and its flow rate measured if the reactor has been permanently and completely unloaded from the core gridplate.

The purpose of the emergency core spray systems was to provide cooling water spray to the core following a loss of coolant accident for a period of time until air cooling can sufficiently cool the uncovered core. These systems are no longer needed because the reactor has been permanently shut down and all irradiated fuel has been removed from the site. Because the emergency core spray system is no longer needed, there is no longer any need to verify operation of the system. Therefore the staff concludes that the elimination of these TSs will have no effect on safety and is therefore, acceptable.

The licensee has proposed changes to TS 3.11 concerning primary coolant condition and the bases of the TS. Changes have also been proposed to the associated surveillance TS 4.8, which requires measurement of primary coolant conditions every two weeks. This TS places limits on reactor pool conductivity and water pH. The licensee has proposed wording for TS 3.11 that the conductivity and pH limits only apply when there is fuel or cobalt 60 pins present in the reactor pool. Likewise, the requirement in TS 4.8 to measure pH and conductivity only applies when TS 3.11 is in force. The current TS requires these limits to be met at all times. Protection of the fuel cladding and cobalt 60 pins is the primary purpose of this TS. However, there is currently no fuel in the reactor pool. The UVAR reactor pool is made of concrete and is not subject to corrosion. This change is acceptable to the staff because the primary purpose of TS is to limit corrosion of the fuel and cobalt 60 pins are removed from the pool.

The licensee has proposed the addition of a new TS 3.12, concerning pool water level monitoring, and an associated surveillance requirement, TS 4.10 which reads as follows:

3.12 Poolwater-Level Monitoring

<u>Applicability:</u> This specification applies to the poolwater-level float switch which monitors poolwater level and has alert and alarm functions.

<u>Objective:</u> The goal is to prevent severe loss of poolwater level while cobalt pins are kept in storage in the UVAR pool. Excessive loss of water level could result in diminished shielding and generation of a radiation hazzard.

<u>Specification:</u> Until all cobalt pins have been permanently removed from the UVAR pool, a poolwater level float switch shall be operating.

<u>Basis:</u> The water-level float switch is a simple device able to sense small decreases in poolwater level and perform timely local and remote alert and alarm functions.

4.10. Surveillance of Reactor Poolwater Level

<u>Applicability</u>: Technical Specification 4.10 applies until all Cobalt-60 pins have been removed from the UVAR pool. This TS specifies the surveillance frequency of poolwater level monitoring instrumentation.

<u>Objective</u>: The goal is to detect significant poolwater leak rates well before loss of poolwater results in radiation hazard due to cobalt stored in the pool.

<u>Specification</u>: The poolwater level float switch shall be checked for operability, alarm and alert functions on a weekly basis until all cobalt pins have been removed permanently from the UVAR pool.

<u>Bases</u>: Poolwater is lost from the open UVAR pool by evaporation and small leaks. Makeup water is added about twice weekly, at which time the actual water level is checked and recorded.

If water is lost from the reactor pool, the cobalt pins stored in the reactor pool could present a direct radiation hazard to facility personnel. Maintaining a pool level warning system operable while cobalt is stored in the pool will help to ensure that a loss of pool water will be detected in a timely manner. The system actuates a visual and audible alarm in the first floor hallway of the facility and during off-work hours activates an automatic phone dialer to alert the reactor staff. Because the reactor staff will be alerted to the loss of pool water while cobalt is stored in the reactor pool, these TSs are acceptable to the staff.

The licensee has proposed removing a number of surveillance requirements from the TSs to reflect the permanent shut down status of the reactor.

TSs 4.1.2 and 4.1.3 concerning surveillance requirements for the shim rods read as follows:

4.1.2. Reactivity Measurements

The shim rod reactivity worth shall be measured whenever the rods are installed in a new core configuration.

4.1.3. Visual Inspections

The shim rods shall be visually inspected annually and when rod drop times exceed the limiting conditions for operation (Section 3.9 of these specifications).

TS 4.1.1. concerning rod drop time measurements was removed from the TSs by Amendment No. 24 dated December 21, 1998. The licensee has proposed that TS 4.1 be replaced with the following wording:

4.1 This TS has been deleted because surveillance requirements on shim rod operation, rod drop times, reactivity measurements and rod physical condition either are not possible, necessary or appropriate if the reactor has been permanently and completely unloaded from the core gridplate.

Because fuel has been completely unloaded from the core gridplate and irradiated fuel has been removed from the site, shim rods are no longer needed to control reactivity or keep the fuel in a subcritical condition. Therefore the removal of these TSs is acceptable to the staff.

The licensee has proposed deletion of TS 4.2 which reads as follows:

4.2.1. Channel Tests

A channel test of each of the reactor safety system measuring channels shall be performed before each day's operation or before each operation extending more than one day.

4.2.2. Channel Checks

A channel check of each of the reactor safety system measuring channels shall be performed daily when the reactor is in operation.

4.2.3. Channel Calibrations

A channel calibration of the reactor safety measuring channels shall be performed semiannually.

4.2.4. Heat Balance

The power range channels 1 and 2 shall be checked against a primary system heat balance at least once each week the reactor is in operation above 100 kW in the forced convection mode.

4.2.5. Reactor Safety Channels Checks

The above specifications (4.2.1 through 4.2.4) do not apply to the following reactor safety channels: power to primary coolant pump, manual button, header air pressure, pool water level monitor, and primary coolant flow. Operation of these safety channels will be checked before each day's operation or before each operation extending more than one day.

The licensee has proposed that TS 4.2 be replaced with the following wording:

4.2 This TS has been deleted because a reactor safety system only is necessary for an operating or operable reactor. Safety system channel tests, checks, calibrations, and a core heat balance either are not possible, necessary or appropriate if the reactor has been permanently and completely unloaded from the core gridplate.

Because the reactor will not be operated again and because the fuel has been unloaded from the core gridplate and irradiated fuel has been removed from the site, the reactor safety system is no longer needed. Therefore, there is no need to perform channel tests, checks, or calibrations on the system. Also because the reactor will not be operated again, there is no need to perform a heat balance to verify the readings of the power range channels. Because the reactor will not be operated again the elimination of these TSs are acceptable to the staff.

The licensee has proposed changes to TS 4.4 concerning area radiation monitoring equipment. It is proposed that the applicability of the TS be changed to apply only to the bridge radiation monitor and that the monitor be calibrated until all fuel elements and cobalt pins have been removed from the reactor pool. The change in applicability eliminates requirements to calibrate the core gamma monitor, reactor room constant air monitor, and reactor face monitor. These three monitors were only required to be in operation if the reactor was operated. Because the reactor will not be operated again, there is no requirement for these radiation monitors to be operable, and therefore there is no need for calibration.

The licensee has proposed adding wording to the introduction of TS 4.0 as follows:

4.4 The wording as to the applicability of this TS has been changed to recognize that once the reactor fuel has been completely removed from the Facility, and the Co-60 pins are no longer stored in the UVAR pool, an area radiation monitoring system will no longer be needed because it will then be impossible to generate very high radiation levels.

Because the reactor is permanently shut down these changes in radiation monitoring equipment surveillance requirements are acceptable to the staff.

The licensee has proposed changes to TS 4.5 concerning maintenance. It is proposed that the applicability of this TS be changed to apply to the area radiation monitor instead of the control and safety system. The TS requires that following maintenance or modification of a control or safety system or component, it shall be verified that the system is operable before it is returned to service or during its initial operation. It is proposed that following maintenance, repair or modification of the radiation monitoring system, it shall be verified that the system is operable before it is returned to service. Because the reactor will not be operated again, maintenance will not be performed on the control and safety system. However, the area radiation monitoring system will continue to be operated until fuel and cobalt 60 is removed from the reactor pool. The licensee has proposed additional wording to the introduction of TS 4.0 that summarizes the proposed changes to TS 4.5. Because the proposed change in this TS reflects the permanent shut down status of the reactor, it is acceptable to the staff.

The licensee has proposed eliminating TS 4.6 concerning confinement. The TS contained requirements for a daily check of the water level in the emergency exit manhole before each day's operation, monthly operability tests of certain equipment associated with the confinement system, semiannual visual inspection of seals, and measurement of the UVAR room leak-rate before operation of certain fueled experiments. The licensee has proposed replacing the TS with the following:

4.6 This TS has been deleted because surveillance of the reactor room closure equipment operability is not necessary or appropriate if the reactor has been permanently shut down and completely unloaded from the core

gridplate. Fueled experiments cannot be run, and the fission product levels in the fuel are far below the levels in an operating reactor.

The licensee has also proposed the deletion of TS 5.2 concerning the reactor building. The TS contains design specifications as follows:

5.2.1. Confinement

The reactor shall be housed in a room designed to restrict leakage, as stated in Section 3.7.1.(4) of these specifications.

5.2.2. Ventilation

The reactor room shall be equipped with a ventilation system designed to exhaust air or other gases from the reactor room through a stack at a minimum of 37 ft above ground level.

5.2.3. Free Volume

The minimum free volume of the reactor room shall be 60,000 ft³.

The licensee has proposed replacing TS 5.2 with the following:

5.2. <u>Reactor Building</u>

TS 5.2 has been deleted, for the specifications on confinement, ventilation and reactor room free volume have been required to restrict leakage of radionuclides produced during reactor operation at power. The UVAR is no longer operated.

The primary purpose of the confinement system was to control the release of airborne radioactive material from the UVAR room. The potential source of this radioactive material would be fission products from a failed fuel element or fueled experiment or activation products from operation of the reactor. Because all irradiated fuel has been removed from site and the reactor will not operate again, there is no source of fission products or airborne activation products at the reactor facility. Therefore, elimination of the requirement to perform surveillance on the UVAR room confinement system and the TS design requirements for the reactor building are acceptable to the staff.

The licensee has proposed the elimination of TS 4.7 concerning surveillance for airborne effluents. The TS requires a monthly channel check of the airborne effluent monitor when operation of the monitor is required and a semiannual calibration of the monitor. The primary purpose of the monitor was the detection of activation products from operation of the reactor. The licensee has proposed replacing the TS with the following:

4.7 This TS has been deleted because surveillance of the airborne effluent monitor of the ventilation duct from the ground floor experimental area is not necessary or appropriate with the reactor permanently and completely defuelled. No experiments producing airborne effluents in association with the reactor can be run.

With the permanent removal of all irradiated fuel from the facility, this monitor is no longer required. Therefore, elimination of this surveillance requirement is acceptable to the staff.

The licensee has proposed elimination of TS 4.9 which states:

<u>Specification</u>: Cooling tower (secondary system) water shall be sampled and analyzed for radionuclides, <u>at least weekly</u>.

The licensee has proposed replacing this TS with the following wording:

4.9 This TS has been deleted because secondary system coolant surveillance is not possible or needed if the reactor is permanently shut down. The surveillance relies on the regular production of Na-24 in the primary coolant by an operating reactor. At this time, all Na-24 has decayed away. Also, with the reactor shutdown a leak in the heat exchanger would result in secondary coolant flow into the primary coolant, and not the other way around as is the case when the reactor is being operated with the primary coolant pump on.

The purpose of this TS was to detect tube failure in the heat exchanger that had the potential to release radioactive material to the environment during reactor operation. With the reactor permanently shutdown, operation of the primary and secondary cooling systems is not needed to cool the reactor and the reactor pool. Because of the design of the system, any failure of the heat exchanger without the primary and secondary pumps running would result in secondary water being introduced into the primary side of the heat exchanger and the reactor cooling system. This leakage would be detected by changes in the measurement of pool conductivity and pH. The licensee would then need to take whatever steps were necessary (e.g., valve closure or heat exchanger tube repair) to maintain conductivity and pH within TS limits. Because the reactor is permanently shut down and radioactive material cannot be introduced into the environment by way of the heat exchanger, this water analysis is no longer needed and its elimination is acceptable to the staff.

The licensee has proposed changes to TS 5.3, "Fuel Use and Storage." The specification for the LEU possession limit (TS 5.3.1) and plutonium possession limit (TS 5.3.2) are amended to match the possession limits in the applicable UVA license. Reference to use of material is also removed from the TS. The applicability section of the TS is amended to apply until all reactor fuel elements are removed from the facility (with the exception of the plutonium possession limit TS that states that all plutonium has been transferred to the University's by-product license). Because these changes to the possession limits reflect the current configuration of the permanently shut down and defueled facility, they are acceptable to the staff.

The licensee has proposed a number of changes to the organizational structure of the UVAR to reflect the permanent shutdown of the reactors and the eventual removal of fuel from the facility. The most significant of these changes is the creation of a Reactor Decommissioning Committee (RDC) which will provide oversight of decommissioning activities at UVA. The RDC is a subcommittee of the Radiation Safety Committee, which is responsible for oversight of all activities at the University involving radioactive materials. Both the RDC and Radiation Safety Committee are added to the TSs. Another significant change is the elimination of the Reactor Safety Committee after fuel is removed from the site. With removal of the fuel, the need for the oversight of reactor safety ends with radiation safety becoming the principle issue. The Radiation Safety Committee will remain after the Reactor Safety Committee is eliminated.

The licensee has made changes to a number of organizational TSs to remove reference to operating the reactor. Because the reactor is permanently shut down, these changes are acceptable to the staff.

The licensee has proposed two organizational charts in the TSs, one that is applicable to the organization prior to the shipment of fuel elements off site and one that applies after shipment of fuel off site.

The licensee has proposed changes to the current organizational chart that is applicable prior to the shipment of fuel. A change is proposed to the level one management position to which the Reactor Director and Director, Office of Environmental Health and Safety report. The management position is changed from the Vice Provost for Research to the Vice President for Research and Public Service. This is a change in title only, and the level of upper management oversight remains unchanged. Because this is a change in title only and upper-level management oversight of the reactor facility is unchanged, this change is acceptable to the staff.

The proposed organization also shows the addition of the RDC as a subcommittee of the Radiation Safety Committee. Details of the composition, qualification, charter and rules of the Radiation Safety Committee are proposed in new TS 6.2.A which reads as follows:

6.2.A. Radiation Safety Committee

<u>Applicability</u>: The specifications 6.2.A.1 and 6.2A.2 apply to the expert group who will provide oversight over the Reactor Safety and Reactor Decommissioning Committees.

<u>Objective</u>: To describe the makeup, responsibilities, and authority of the Radiation Safety Committee as regards reactor permanent shutdown and decommissioning.

Specifications:

6.2.A.1. Composition and Qualification

There shall be a Radiation Safety Committee (RaSC) to ensure that the Reactor Facility is shutdown and decommissioned in a safe manner within the terms of its reactor and other licenses, reactor Technical Specifications and NRC approved plans. The RaSC shall advise the Vice President and Provost and the Director of the Reactor Facility on safety and other concerns involving the decommissioning of the Reactor Facility.

The RaSC shall include its Chairman, the Radiation Safety Officer, the Director of the Reactor Facility, representatives of the hospital administration, Nuclear Medicine, and Radiological Physics or Radiation Oncology. Additional members may be drawn from such areas as Environmental Health and Safety, Radiology, Pathology, Biology, Nursing, Nuclear Engineering, Microbiology, Physics, Obstectrics and Gynecology. Membership of the RaSC will change as appointments are made by the Office of the President of the University. However, the Radiation Safety Officer and the Reactor Director shall have standing appointments to the RaSC. Collectively, the RaSC members shall represent a broad spectrum of expertise in the radiological sciences. The membership of the Committee shall be such so as to maintain a high degree of technical proficiency in areas relating to radiation safety. The RaSC Chairman is the coordinator for all university licenses involving the use of radioactive materials and radiation producing equipment.

The Radiation Safety Committee is charged with ensuring that licensed material is used safely and in compliance with NRC regulations and institutional licenses. The RaSC reviews changes to the Broad Scope and other licenses. The RaSC also identifies program problems and recommends solutions and remedial actions. Some of its functions are carried out through the use of subcommittees, such as the Reactor Safety Committee and the Reactor Decommissioning Committee. The RaSC will carry out most of its functions relating to the Reactor Facility through these two subcommittees.

6.2.A.2. RaSC Charter and Rules

- (1) To establish a quorum, the ex-officio members and any 5 other Committee members must be present.
- (2) The Committee shall meet as often as necessary to conduct its business but not less than once in each calendar quarter.
- (3) The Committee shall have a written charter defining such matters as the authority of the Committee, the subjects within its purview, and other administrative provisions.
- Radiation Safety Committee meeting minutes shall be distributed to the committee membership within three months following a meeting. These minutes shall be reviewed for approval at the next scheduled committee meeting.

Details of the composition, qualification, charter, rules and functions of the RDC are presented in proposed new TS 6.2.C which reads as follows:

6.2.C. Reactor Decommissioning Committee

<u>Applicability</u>: The specifications 6.2.C.1 through 6.2C.3 apply to the expert group who will have responsibility and oversight for decommissioning planning and execution activities at the Reactor Facility.

<u>Objective</u>: To describe the makeup, responsibilities and authority of the Reactor Decommissioning Committee.

Specifications:

6.2.C.1. Composition and Qualification

There shall be a Reactor Decommissioning Committee (RDC) to plan the safe, legal and timely decommissioning of the Reactor Facility. Collectively, . the decommissioning committee members shall represent a broad spectrum of expertise in the research-reactor and health-physics fields, with experience

in reactor management, radiological safety, research reactor decommissioning and university administration. Committee members may be drawn from within or outside the University of Virginia, including subcontracted companies. The Committee shall be composed of at least four members, and shall include the Radiation Safety Officer of the University and the Director of the Reactor Facility.

The Reactor Decommissioning Committee shall be part (subcommittee) of the Radiation Safety Committee, which reports to the Vice President and Provost. The Decommissioning Committee shall advise the Reactor Director (Level 2) on all matters impacting the decommissioning of the Reactor Facility.

6.2.C.2. Charter and Rules

- (1) A quorum of the Decommissioning Committee shall consist of not less than the majority of the full committee. The RDC Chair can designate another member from the Committee to preside in his absence.
- (2) The Reactor Decommissioning Committee shall meet at least quarterly and shall be on call by the Chair. Meeting minutes shall be disseminated as required by the RDC Charter.
- (3) The Reactor Decommissioning Committee shall have a written charter defining such matters as the authority of the Committee, the subjects within its purview, and other administrative provisions as are required for effective functioning of the Committee.
- (4) The Reactor Director shall cast a single vote in the name of the operations staff at Reactor Decommissioning Committee meetings. The operations staff encompasses the reactor staff, decommissioning subcontractors and anyone directly supporting decommissioning and working under the direction of the Reactor Director.
- (5) Reactor Decommissioning Committee meeting minutes shall be distributed to the committee membership within three months following a meeting. These minutes shall be reviewed for approval at the next scheduled committee meeting.

6.2.C.3. Decommissioning Committee Functions

As a minimum, the responsibilities of the Reactor Decommissioning Committee following the termination of the Reactor Safety Committee shall include:

- (1) Review and approval for changes to the Reactor Facility and to the UVAR SOPs as applicable and described in 10 CFR 50.59.
- (2) Review and approval of proposed changes to reactor licenses, Technical Specifications, NRC-approved plans (such as the Emergency and Security Plans), as well as the UVAR Standard

Operating Procedures (SOPs), with the exception of changes to the organizational structure. [The responsibility and authority for the organizational structure for the Reactor Facility resides with the Vice President and Provost.]

- (3) Review unusual and reportable occurrences, to include those violations of Technical Specifications, License, or of Standard Operating Procedures that have safety significance, as well as the occurrences listed in ANSI/ANS-15.1-1990 Item 6.6.2. Also, to review the actions taken by reactor management to identify and correct the cause of these occurrences.
- (4) Annually audit [through a selective, yet comprehensive, examination of records, logs and personnel] facility operations for conformance to licenses, Technical Specifications, NRC regulations and inspections, as well as UVAR SOPs; and to recommend remedial action to correct identified deficiencies.
- (5) Biennially audit the Operator Retraining and Requalification Program of the reactor staff, as well as the Reactor Facility Emergency Plan and Implementing Procedures.

The staff supports the guidance of ANSI/ANS-15.1-1990, "American National Standard for The Development of Technical Specifications for Research Reactors," (ANS-15.1) for organizational requirements for non-power reactors. The Radiation Safety Committee and its RDC subcommittee will have sole oversight responsibility after fuel is removed from the site and the Reactor Safety Committee is eliminated. Therefore, the staff compared the guidance of the standard against the attributes of the committee and subcommittee. While ANS-15 was written for operating non-power reactors, the staff considered the permanent shutdown, defueled status of the UVAR in its evaluation and allowed changes to review and audit functions as appropriate. The committees are within the standard's guidance for minimum number of members, expertise of members, appointment of members, meeting frequency, quorums and committee minutes. The review and audit functions of the committees includes those listed in ANS-15.1 that are applicable to a permanently shut down reactor. Because the committees operating requirements and review and audit functions meet the guidance of ANS-15.1, considering the permanent shutdown status of the reactor facility, the proposed Radiation Safety Committee and RDC are acceptable to the staff.

The licensee has proposed a second organizational chart which shows the facility organization after shipment of fuel offsite and the elimination of the Reactor Safety Committee. These changes are acceptable to the staff because the reactor will be permanently shut down, all fuel will be removed from the site and the Radiation Safety Committee and RDC will provide oversight of radiation protection and decommissioning issues.

The licensee has proposed changes to the TS requirements for the Reactor Safety Committee that would be in effect while the committee continues to function awaiting the shipment of all fuel from the facility. This committee is a subcommittee of the Radiation Safety Committee and has been responsible for the review and audit of operational reactor safety at the reactor facility. The licensee has proposed that the Reactor Safety Committee be eliminated after all fuel is shipped offsite and the need for the review and audit of operational reactor safety ends. The licensee has proposed reducing the number of members on the Reactor Safety Committee

from five to four. Given the reduction in reactor safety activities that have accompanied permanent shutdown of the reactor and that the number of members on the committee continues to meet the guidance of ANS-15.1, this change is acceptable to the staff. The licenses has also changed the wording of TS 6.2.1 (renumbered as TS 6.2.B.1) concerning composition and qualification of the reactor safety committee. However, except for the issues discused above, the rewording does not change the requirements of the TS and the rewording is therefore, acceptable to the staff. The licensee has proposed adding a requirement [TS 6.2.B.2. 4)] to have meeting minutes distributed to the committee within three months following a meeting with the minutes reviewed and approved at the next scheduled meeting. Because this acceptable to the staff. The licensee has also proposed changes in the review and audit function of the Reactor Safety Committee to more closely match those suggested by ANS-15.1. Because the changes are consistent with ANS-15.1, they are acceptable to the staff.

The licensee has proposed changes to TS 6.1, "Organization," to reflect the permanent shut down status of the reactor. It is proposed to add a paragraph to TS 6.1.1, "Structure," about the RDC that reads as follows:

The Reactor Decommissioning Committee Chair shall be responsible for advising the Reactor Director (Level 2) on all matters pertaining to the decommissioning and decontamination of the University of Virginia Reactor Facility. The decommissioning committee members may include reactor staff from Level 3, and employees from the Office of Environmental Health and Safety.

This paragraph captures information on the proposed organizational charts and TS that governs operation of the committee and is therefore, acceptable to the staff.

A pic posed change to section 6.1.2 of the TS, "Responsibility," would assign responsibility for the direction of decommissioning activities at the facility to the Reactor Facility Director. Another change to this TS clarifies that NRC licensed reactor operators are not needed after fue its removed from the facility. These changes are commensurate with the permanent shut dourn status of the facility and are therefore acceptable to the staff.

Proposed changes to TS 6.1.3, "Staffing," would eliminate staffing requirements that must be metawhen the reactor is operating. A requirement is added to the TSs that a licensed Senior Registor Operator shall supervise any movement of fuel. This change is commensurate with the permanent shut down status of the facility and meets the guidance given in ANS-15.1 for evolutions requiring the presence of a Senior Reactor Operator and is therefore, acceptable to the staff.

The licensee has proposed changes to TS 6.1.4, "Selection and Training of Personnel," concerning the use of ANSI/ANS-15.4-1988, "American National Standard for Selection and Training of Personnel for Research Reactors." This standard was written primarily for operating non-power reactor facilities. The licensee currently uses sections of this standard as requirements that operations personnel meet. The licensee has proposed using this standard for facility personnel to the extent applicable considering the decommissioning status of the facility. In response to a request for additional information from the NRC staff, the licensee provided a breakdown of sections of the standard that they consider applicable as guidance. The staff has reviewed this information and finds it acceptable. Because the reactor is permanently shut down the use of applicable sections of this standard as guidance instead of use as a requirement is acceptable to the staff. The licensee has proposed a change to TS 6.3.2, "Changes to SOPs" to allow the RDC to approval substantive changes to Standard Operating Procedures (SOPs) and review minor changes to SOPs once the Reactor Safety Committee is eliminated. Because independent oversight of changes to SOPs will continue this change is acceptable to the staff.

The licensee has proposed a change to TS 6.5, "Plant Operating Records," to add a requirement for the retention of records of meetings and audit reports of the RDC for at least five years. Because this change is commensurate with the permanent shut down status of the facility it is acceptable to the staff.

Changes have been proposed by the licensee to TS 6.6, "Required Actions." The section of this TS that has required actions to be taken if a safety limit is exceeded has been proposed for elimination. Because the reactor will not be operated again, it is impossible to exceed a safety limit. The licensee has made changes to events that are considered reportable to be commensurate with the permanent shut down status of the reactor. TS 6.6.2. "Action To Be Taken in the Event of a Reportable Occurrence" currently reads:

6.6.2. Action To Be Taken in the Event of a Reportable Occurrence

A reportable occurrence is any of the following conditions:

- (1) Safety system setting less conservative than specified in Section 2.2 of these specifications.
- (2) Operating in violation of a Limiting Condition of Operation (LCO) established in these specifications, unless prompt remedial action is taken.
- (3) Safety system component malfunctions or other component or system malfunctions during reactor operation that could, or threaten to, render the safety system incapable of performing its intended safety function, unless immediate shutdown of the reactor is initiated.
- (4) An uncontrolled or unanticipated increase in reactivity in excess of 0.70\$.
- (5) An observed inadequacy in the implementation of either administrative or procedural controls, such that the inadequacy could have caused the existence or development of an unsafe condition in connection with the operation of the reactor.
- (6) Abnormal and significant degradation in reactor fuel, and/or cladding, coolant boundary, or containment boundary (excluding minor leaks) where applicable that could result in exceeding prescribed radiation-exposure limits of personnel and/or environment.
- (7) Major damage to the Co-60 rods resulting in Co-60 concentrations in reactor pool water in excess of 1 x 10⁻³ micro-curies/ml.

In the event of a reportable occurrence, the following action shall be taken:

(a) The Director of the Reactor Facility shall be notified as soon as possible and corrective action shall be taken before resuming the operation involved.

- (b) A written report of the occurrence shall be made which shall include an analysis of the cause of the occurrence, the corrective action taken, and recommendations for measures to preclude or reduce the probability of reoccurrence. This report shall be submitted to the Director and the Reactor Safety Committee for review.
- (c) A report shall be submitted to the Nuclear Regulatory Commission in accordance with Section 6.7 of these specifications.

The licensee has renumbered this TS as 6.6.1 and proposed that it reads as follows:

6.6.1. Action To Be Taken in the Event of a Reportable Occurrence

A reportable occurrence is any of the following conditions:

- (1) An observed inadequacy in the implementation of either administrative or procedural controls, such that the inadequacy could have caused the existence or development of an unsafe condition at the Reactor Facility.
- (2) Abnormal and significant degradation in reactor fuel, and/or cladding, coolant boundary, or containment boundary (excluding minor leaks) where applicable that could result in exceeding prescribed radiation-exposure limits of personnel and/or environment.
- (3) Major damage to the Co-60 pins resulting in Co-60 concentrations in reactor pool water in excess of 1 x 10⁻³ micro-curies/ml.
- (4) Occurrences listed in Item 6.6.2 of ANSI/ANS-15.1-1990.

In the event of a reportable occurrence, the following action shall be taken:

- (a) Ongoing activities shall cease until the occurrence has been resolved.
- (b) The Director of the Reactor Facility or his designee shall be notified as soon as possible and corrective action taken as foreseen in the procedures.
- (c) A written report of the occurrence shall be made which shall include an analysis of the cause of the occurrence, the corrective action taken, and recommendations for measures to preclude or reduce the probability of reoccurrence. This report shall be submitted to the Director and the Reactor Safety Committee and/or the Radiation Safety Officer for review.
- (d) A report shall be submitted to the Nuclear Regulatory Commission in accordance with Section 6.7 of these specifications.

The licensee has proposed eliminating certain reportable occurrences that are associated with reactor operation. The licensee has proposed adding to the definition of reportable occurrence the occurrences listed in Item 6.6.2. of ANS-15.1. The actions to be taken in the event of a reportable occurrence have been expanded to direct that ongoing activities cease until the occurrence has been resolved. Operational occurrences usually result in a reactor scram which terminates the activity in progress (reactor operation). However, this may not be true for activities associated with fuel shipment or preparations for decommissioning. Therefore, the

licensee has clarified reportable occurrence actions. The staff finds that these changes are commensurate with the change in the facility status to possession-only and therefore these changes are acceptable.

TS 6.7.1 contains requirements for reporting of incidents. The licensee has proposed adding violation of UVAR TSs to the events to be reported to the NRC immediately. The licensee has proposed adding violation of UVAR TSs and reportable occurrences as defined in ANS-15.1 to special reports to be made to NRC no later than the next working day and special written reports to be sent to NRC within 14 days. TS 6.7.1 (4) concerning special 30 days written reports currently reads:

- (4) A special written report should be sent by mail within 30 days to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, of:
 - (a) Substantial variance from performance specifications contained in these specifications or in the UVAR SAR.
 - (b) Significant change in the transient or accident analyses as described in the UVAR SAR.
 - (c) Changes in personnel serving as Vice Provost for Research, Reactor Facility Director, or Reactor Supervisor.

The licensee has proposed that this TS be revised to read as follows:

- (4) A special written report should be sent by mail within 30 days to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, of:
 - (a) Accidental off-site release of radioactivity above 10 CFR 20 limits, whether or not the release resulted in property damage, personnel injury, or exposure.
 - (b) Reportable occurrence as defined in Section 6.6.1 of these specifications, and Item 6.6.2 of ANSI-ANS-15.1-1990.
 - (c) Changes in personnel serving as Vice President For Research and Public Service, the Radiation Safety Committee Chair, Reactor Decommissioning Committee Chairman, Reactor Safety Committee Chair, Reactor Facility Director, or Reactor Supervisor.

Because the reactor is permanently shut down and all irradiated fuel has been removed from the site, performance standards, transient analysis and accident analysis for the reactor will not change. With the reactor in a possession only configuration, release of radioactive material above regulatory limits and reportable occurrences are appropriate to report. The change in the listing of personnel changes that must be reported reflects the other organizational changes requested by the licensee. Because the changes to reporting of incidents is commensurate with the change in facility status to possession-only, these changes are acceptable to the staff.

The licensee had proposed changing TS 6.7.2, "Routine Annual Reports." The proposed list of reporting topics is as follows:

6.7.2. Routine Annual Reports

A routine annual report will be made by March 31 of each year on decommissioning and related activities completed during the previous calendar year. The report should be sent to the U.S. Nuclear Regulatory Commission, Document Control Desk, Washington, D.C. 20555, providing the following information:

- (1) Reactor Facility utilization,
- (2) Description of university staff assigned to decommissioning: numbers, background and responsibilities,
- (3) TS compliance and reportable events,
- (4) Results of NRC inspections and licensing actions,
- (5) Summary report on RDC meetings and audit findings,
- (6) Health Physics Program
- (7) Annual waste content and volume shipped,
- (8) Summary of the nature and amount of radioactive solid, liquid and airborne effluents released or discharged to the environs beyond the effective control of the licensee, as measured or calculated at or prior to the point of such release or discharge,
- (9) Results of environmental surveys and sampling outside the Reactor Facility,
- (10) Reactor Facility personnel and visitor radiation exposure summary report, including the dates and times of significant exposures (greater than 500 mrem for adults and 50 mrem for persons under 18 years of age),
- (11) Summary of radiation and contamination surveys performed within the Reactor Facility,
- (12) Status of decommissioning funding and expenditures,
- (13) Description of contractor companies operating on-site,
- (14) Summary of contracted tasks and timelines,
- (15) Significant Changes to the Reactor Facility, Reactor SOPs and of all changes made per 10 CFR 50.59,
- (16) Summary of large equipment transfers,
- (17) New and modified SOPs having radiation safety significance,

(18) Status of emergency preparedness,

(19) Figures on industrial accidents or incidents.

This list of annual report topics is commensurate with the change in status of the facility to possession-only and is therefore acceptable to the staff.

The staff has determined that removal of authorization to operate the reactor, the authorization to possess but not operate the reactor, and amendment of the license and TSs to reflect the possess but not operate status of the facility is acceptable because the reactor has been placed in a permanent shut down state with fuel removed from the core and all irradiated fuel removed from the site. Also the remaining unirradiated fuel will be stored in accord with the TSs, procedures, and the fixed site physical protection plan until removed from the site.

3.0 ENVIRONMENTAL CONSIDERATION

This amendment involves changes in the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20 or changes in inspection and surveillance requirements. The staff has determined that this amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released off site, and no significant increase in individual or cumulative occupational radiation exposure. Accordingly, this amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9).

This amendment also involves changes in recordkeeping, reporting, or administrative procedures or requirements. Accordingly, the amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(10).

Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the issuance of this amendment.

4.0 CONCLUSION

The staff has concluded, on the basis of the considerations discussed above, that (1) because the amendment does not involve a significant increase in the probability or consequences of accidents previously evaluated, or create the possibility of a new or different kind of accident from any accident previously evaluated, and does not involve a significant reduction in a margin of safety, the amendment does not involve a significant hazards consideration; (2) there is reasonable assurance that the health and safety of the public will not be endangered by the proposed activities; and (3) such activities will be conducted in compliance with the Commission's regulations and the issuance of this amendment will not be inimical to the common defense and security or the health and safety of the public.

Principal Contributor: A. Adams, Jr. Date: February 9,2000