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Sept. 29-30 PFMI/PRA (PTS) Meeting Objectives and Agenda

Objectives: 

1) PTS Screening Criteria Re-evaluation Project Milestones and Schedule Chart 

2) Presentations & discussion on FAVOR Methodology and Uncertainty Analysis Steps 
in FAVOR code 

3) Presentations on Near-Term Action Plans (Progress Made and Schedule).  
4) Attempts to resolve any schedule conflicts for the Action Plans relative to the 

schedule for overall PTS Tech Bases Plan.  
5) Setting tentative dates for the next meeting of the PFM Sub-group.  

Meeting Location: One White Flint North, Room 04-B6, NRC/HQ.  

For Entry to Meeting Room, Contact: Shah Malik (415-6007) or Tanny Santos 
(415-6004), Doug Kalinousky (415-6788) 

September 29, 1999: 

1:15 Welcome and Introduction Mayfield/Hardies 

1:25 Review/Acceptance of Agenda Malik/Hardies 
and Meeting Objectives 

1:35 PTS Screening Criteria Re-evaluation Project Malik/Woods/Bessette 
Milestones and Schedule Chart 

2:15 Review FAVOR PFM Methodology Terry Dickson

3:15 BREAK

3:30 PRA Input Table Ron Gamble

4:30 PFM Sensitivity Analysis Bruce Bishop

5:00 ADJOURN 

September 30, 1999:

8:30 Status on Action Plan 1A (Statistical Distribution Kalinousky/Santos 
on Weld, Plate Material Chemistry

8:50 Status on Action Plan 1 B (Statistical Distribution on 
Klc, Kla

Terry Dickson

IBi



9:10 Vessel Materials Characterization 

9:30 Expert Elicitation on Flaw Distribution (Action Plan 4) 

10:00 BREAK 

10:15 Dependence Between "Initial RTndt" and "Delta Rtndt" 

10:25 General Discussion on PFM Methodology 

11:30 Summarise Work to be Continued and Any New Issues 

12:00 Next Meeting Date 

12:10 ADJOURN

Ron Gamble 

Debbie Jackson 

Dan Naimon 

All 

Malik/Hardies 

Malik/Hardies
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US, EZ ocr,. ,� Ion.

10 CFR 50.61 PTS Screening Criterion Re-evaluation Project

ID I Task Name I Start Finlish -- I"
30 Identify Expert Panel. Issues, Elicitation Team 7/11/99 9/30(99

31 Expert Panel Meeting, Scope Revision 10/1/99 11/30/99 

32 Elicitation from Experts by Elicitation Team 12/11/99 1/31/00 

33 Review Elicitation Results and Experts' Meeting 2/1/00 3/31/00 

34 Generic Flaw Distribution Report & Workshop 4/3/00 6/30/00 

35 Perform Tech Bases PFM Analsyses Plant-1 3/1/00 5/15/00 

36 Perform Tech Bases PFM Analsyses Plant-2 5/16/00 7/31/00 

37 Perform Tech Bases PFM Anatsyses Plant-3 8/1/00 10/13/00 

38 Perform Tech Bases PFM Analsyses Plant-4 10/16/00 12/29/00 

39 Determine Uncertainties in Each of the 4 Plants 114/01 3/30/01 

40 Develop Uncertainties For Entire Population of Plants 4/2/01 5/30/01 

41 Public Meeting on Tech Bases Results From 4 Plants 6V1/01 6/1/01 

42 Develop Proposed Changes to PTS Screening Criterion 6/1/01 9/26/01 

43 Develop Proposed Changes to 50.61 PTS Rule 6/1/01 9/28/01 

44 Public Meetings to Resolve Outstanding Issues 10/15/01 10/15/01 

45 Finalize Tech Bases to Revise 10 CFR 50.61 10/1/01 12/17/01 

46 ACRS Presentation on the Overall Project (7/99) 7/14/99 7/14/99 

47 ACAS Presentalon on Metthodology, Input (2/00) 2/2/00 2/2/00 

48 ACRS Presentaion on Interim Results (10/00) 10/3/00 10/3/00 

49 ACRS Presentaton on Screeing Criterion (6/01) 6/6/01 6/6/01

50 ACRS Presentation on Final Tech Bases (11/01) 1 1/6/0 1 11/6/01

PFM&PRA 

PFIV,PRA 

*Y PFAJ

1- - 4 1 -. 1

__________________ 1 ____ 1 ____ 1 ____________________________________________
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Sept. 29, 1999

Status on Collecting Plant Data on RES's Fluence Map Calcs 

* Cycle By Cycle Plant Data Requested for the H. B. Robinson-2 (HBR), 
Palisades, Oconee-1, and Calvert Cliffs-1 plants.  

* Plant data informally Requested in May 1999, and formally in early August 
1999.  

"* We have received most of the required data for HBR 

"* Received about Half of the data for Palisades. The remaining Palisades 
data was sent but was not readable and is being resent 

"* Received approximately 10% of the data for Oconee-1, and are presently 
trying to find out about a final delivery date on Oconee-1 from Framatome 
Cogema Fuels 

"* No data received from Calvert Cliffs-i, but have been promised this data 
will be provided by the end of September (Which is here Now !!) 

Progress on Fluence Calcs: 

"* Fluence Calcs. for HBR are well underway and will be completed in the 
next two weeks (October 15).  

"* Calcs. on Palisades are underway, but have been delayed because of the 
delay in the receipt of the plant data. In addition, we had assumed that we 
would only have to calculate Cycles 12-15, since we had previously 
calculated Cycles 1-11. However, during discussions with Consumers 
Power, we were informed that the Palisades core physics model is being 
revised and the power distribution data for the previously calculated 
Cycles 1-11 has changed significantly. Consequently, we will have to 
recalculate Cycles 1-11.  

"* Calcs. on Oconee-1 and Calvert Cliffs-1 will be initiated when we 
receive the plant data.



Review of FAVOR Probabilistic Fracture 

Mechanics (PFM) Analysis Methodology' 

Terry L. Dickson 
Heavy-Section Steel Technology Program 

Oak Ridge National Laboratory 

at 

Joint NRC-Industry Meeting 
NRC Headquarters 

Rockville, Maryland

September 29, 1999



PFM analyses are performed on the entire beltline Region (per, RG 1.154).  

The beltlmi.e embrittlement-related data is taken from the NRC-developed RVID 
Database.
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Table 2 - Embrlttlement map corresponding to EOL (32 EFPY) per AVID database
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Simulate Copper 
Simulate Nickel 
Simulate Neutron fluence 

culate ARTNDT = f [Cu, Ni, fl] 

S3imulate, RTNDT Margin Term (ERRTN) 

ate RTNDT = f [Cu, Ni, fl, EERRRT-N] 

iulate Kic data scatter (ERKIc 

I itime ie+ t 

3alculate Mean Klc =f[T(t), TD] 

culate Kic = f(T(t), RTNkT ERK 

Y

N



Method 2 PTS PFM Analysis Incorporates Uncertainty Associated 

with Thermal Hydraulics by Including Variants for Each of the 
Dominant Transients 

..... ...  

Transient 1 raset2 Transient 3 ~ int n MaWrTransients 

11, 12 13 11 21 22 23 23 31 32 .33 31 ni n2 n3 ni Veamnta 

Potential Thermal-Hydraulic 
"./ oundaty Conditions Imposed 

FAVORnt o°n the Innme Surace o the RPV 

Loand Generator 
(FAVL) tOL AL. 0r L~ 

For Tranesent 1-%, Variants 1-j: RPV load response k 61 ý' I, t,'s 
T(r,t) •o4 t,,t£,J , , ?I,,.LQ. 3r,,,5 

Kfor r" of axia anid alroumferentale swtace-breadNg flaw deplsf,,, t VJ 

2:1 -itdner udacetofllPw• Ii.v, A -AY't,'2;jc.. P 
8:1 -at deepest point offaw I, ,JV iP Uk 7 J

10:1 - at deepest point of flaw -- r%-, -, 

- - at deepest point of flaw J



Method 2 PTS PFM Analysis Generates 2-D Array, which Includes 

Uncertainty Associated. with Thermal Hydraulics, Embrittlement, 
"and Flaw-Related,Data

iI
1 

4 

n

I- PFM Army.



Method 2 PTS. PFM Analysis Integrates Uncertainties of Transient 

Initiating Frequencies with Results of PFM Analysis to Generate.  
Distribution for Frequency Vessel Failure

0a*

FAVOR

(FAVP Poi1v1 1W lproonIgr

For 1W h ves ! (1 --- m):

(E)1, O(E),.., 0(E),,L 

s. "mimriV". ay of R(F)m 

Qenemeo a Hlstogrna for 0(F)

O(F).

10,



FAVOR Probabilistic Fracture 
Mechancs (PFM) Analyses are 

Based on Monte Carlo Techniques 

Many deterministic fracture analyses are performed 

on probabilisticallY generated RPVs to determine if 

each vessel will fracture when subjected to specifed 

transient at a particular time in the operating life of 

the vessel 

probabiity crack initatlon - fractured vessels / total vessels 

probability of failure - failed vessels / totl vessels 

Each of the embrittlement-related parameters 

* neutron fluence 
0 copper 
0 nickle 
* initial unirradiated RTNDT (RTNDTo) 
* radiation-induced shift in RTNDT (ARTNDT) 
* fracture initiation toughness (Kic) 

* frature arrest toughness (KIa) 

are sampled from a.normal (Gaussian) distribution 
about the user-specified mean value and variability, 
i.e. standard deviation (1a) 

W 

-- I 
gii

mean



The radiation-induced shift in RTNDT for each flaw Is a function of 
stochasticallysimulated (sampled) values of copper, nickel, 
and neutron fluence per Regulatory Guide 1.99, revision 2

I
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copper (% weight)
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00 r - '-.  
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The Calculation of RTNDT includes simulation of margin term 

RTNDT(X) = RTNDTO + ARTNDT (Cu, ni, fluence(x)) + ERRTN* / (a nTOTo)2+ ( ARTNDT)2 

where:.  
RTNDTo = initial unirradiated value of RTNDT 
ARTNDT w neutron radiation-induced shift in RTNDT 

(YRTNDT, : 1 sigma uncertainty in initial (unirradlated) ATNOT 

OARTNOY = I sigma uncertainty in correlation used to predict ARTNDT 

ERRTN number between -3 and +3 obtained from normal distribution 
having a mean value of 0 and 1 sigma = 1 

1.3 

1.2 mean value =0 
I sigma I 

1.1 

1.0 

0.9

0.8

C 0.7

o" 0.6 

S0.5

0.4

0.3

0.2

0.1

0.0 I I I I 
-3 -2 -1 0 1 2 3

ERRTN (Margin term multiplier)



FAVOR Samples Kc Data from a Gaussian Distribution Defined Where the ASME 

K,c Curve is the Mean-2a K,, Curve Where la = 0.15 (Kc)m... The Sampling is 
truncated at + and -3a.

in 

CA 

.X 

.ft_.

0 4 • . 0 .. 0 . - . --400 -300 -200 -too. 0 100

T.RTNDT (F)

ASME Kc . (Kic)m.en - (2) (0.15) 
(K1c)m.mn = 1.43 ASME (Kc) 

+1 a Kz= 1.65 ASME K,0 
2(o K,0 = 1.86 ASME K ,c 

43o Kc = 2.07 ASME K ,c

(Kc)m.n (Kic)mrno, (0.70) 

-lo K,0 = 1.22 ASME K ,c 
-20 Kic = 1.00 ASME K 1c 

-3a Kc = 0.79 ASME K Ic



Any additional uncertainties (or sensitivities) will be considered outside of the 
FAVOR code 

PRA analysts may make requests for additional PFM analyses that Include other 

uncertainties (or sensitivities) in the following variables: 

(1) clad thicknesi 
(2) clad stress-free temperature 
(3) through-wall weld residual stress 
(4) epistemic (state-of-knowledge) uncertainty associated with T-H boundary conditions 

In each case, the PPM analysts would execute FAVOR with some combination of new variables 

chosen from the above 4 variables. In each case, the PFM analysts Will provide the PRA analysts 

with a distribution (in histogram :format) for the frequency of vessel failure,.  

If any of these additional uncertainties (to be .considered outside of the FAVOR code) are included in 

the analysis, the PRA analysts will-be rbsponsible f6r:performing the Latin Hypercube Sampling of 

the FAVOR generated results to assemble the final distribution of the frequency of vessel failure...



Statistically-Based Representation of K,, 
Fracture Toughness Curves for Use in 

PFM Analyses (xNmRIr 
-I 
F.

Terry L. Dickson 
Heavy-Section Steel Technology Program 

-Oak Ridge National.Laboratory .. (I 

at 
Joint NRC-Industry Meeting 

NRC Headquarters 
Rockville, Maryland 

September 29, 1999 
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EPRI Database of ASTM E-399
Valid Plane-Strain Kr,

• 171 valid K,, data points 
* 11 materials 

*HSST 02: n = 69 
*HSST 01: n = 17 
*A 533 B CI. 1: n = 13 
•A508 cl. 2 Euro. Forg.: n = 12 
*A 533 B C1. I weld: n = 10 
*A 508 Cl. 2: n = 10 
*HSST 03: n = 9 
*A 508 C1. 2: n = 9 
• HSST subarc weld: n = 8 
@A 533 B Cl. I subarc weld: n = 8 
*A 533 B Cl. 1 weldIHAZ: n = 6 

*Specimens 
*C(T)- 1T to C(T)- I1T 
*WOL-1T to WOL-2T

-0 

ON 

N 

G-) 

rn m• 
2o

"-7 
ID 

2 

a) (A 

* 
-'1 

I-.

Kk (ksi-int)

140 

120 
S. .. . ... . .. ... • ~• 

100 0 

go0 

00 U 

40 a 

A *' * *t 
00 4.* 

A aj

Ill
-400 -300 .200 .100 0

* EPRI NP-710-SR (1978) as amended ORNLINRC/LTR-93/15 (1993)

4 

U 

A 

V 

0 

S 
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A 

9 

U

HSST 01 subare weld (Shabbbt.) 
A533B subaru weld (Shabblts) 

HSST O1 (Mager) 

ijSST 01 (MAW).....  
A63 s (MOW) 

HSST 02 (MagerlShabblls) 

A533 8 weld (Mager) 

AS33 a wekgdHAZ (Mager) 
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Extended Database of 
ASTM E=399 Valid Plane-Strain K1,

( 3: NTFfý R I1A)
*71 additional data points 
*4 materials 

*HSSI Weld 72W(')-, n =12 

,JISSI Weld 73W(.'),: n -1-0 
*HSST Plate 13A (2 ): n =43 
*A508 CL. 3 3 n = 6 

*Specimens 
*C(T)-l/2T to C(T)-4T

KI (ks!-In"2)

(T - RT NDT)

(1) NIJREGICR-59 13, 1992.  
(2) NUREGICR-5788 
(3) Iwadate, et al., ASTM STP 803, pp 11-531-561, 1983

2 

I

HSST 01 subarc weld (Shabblif) r 
A539SS t* suaeWOW (StWeibts) 
HSSTOI (MAWr 
NSST03 (MM40 
AS33W(Uage) 
HSST 02 (M#grl~h*bblte) 
A533B weld (USOg) 
A533 3 weW4i-AZ (1age04 
ASO$ C1. 2. Euro. Forg. (Usger) 
AIS* 01. 2 (unpubllsWe) 
ASOS C12. (unpulbllsh4d 
tISSI Weld 72 W 
IiSSI Weld 73 W 
tiSST Plate 13 
A508 C1.3

O&7s"Ja giw

-u 
01 

I-.  
0

11 ., .  .
2
*�''f.*,�,'/�/ ��.&�Y¾"



Current Use of Kic in FAVOR
(T-N TE PI M)

K,, (ksi-in/ 2)

Extended Database: N = 242 points 

HSST 01 subarc weld (Shabbits) 
* A533B subarc weld (Shabblts) 
A HSST 01 (Mager) 

HSST 03 (Mager) 
• A533B (M*W,) 

H KSST 02 (Mager/Shabbits) 
SA533 B weld (Mager) ...  

A A533 B weld-HAZ (Mager) 
SA506 Cl. 2. Euro. Forg. (Mager) 

* HSSI Weld 72 W 
U HSSI Weld 73 W 
9 HSSTPlate 13 
SA508 CI. 3 

ASME Sect. Xl 
-Kman 
....... .3a 
... ..... "20 

+ .......+3

too

(T-RTNDT) (SF) 012a/W.K2 ptw

KI, = 33.2 + 

ASME Boiler mid Pressure Vessel Code, Section XI, Article A4000: 
Material Properties (1998) 413-417.

20.734exp[O.02(T - RTNor )]
-Y 
01 
\-

P1 m 
'o 
N 

Gd d° 

j.  

m 
(NI 
N 

U 
6) 

P1 
-7 

3) 
I

3I 

u1 
Gn 
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Results of Regression Analysis 
for Extended K1c Database

*Regression analysis 
used TableCurve2D 

*Exhaustive search of 3491 
linear and 176 nonlinear 
model forms yielded 242 
curve fits.  

93-parameter nonlinear 
exponential ranked number 4 

eCurrent Kmean in FAVOR 
is conservative in transition 
region and nonconservative 
on lower shelf relative 
to Kme• from regression 
analysis.

K10 (ksi-in112) ( FN TE K1 rl)

Extended Database: N = 242 points 

* HSST 01 subarc weld (Shabbits) 

* A5338 subarc weld (Shabbits) 

£ HSST 01 (Mager) 

HSST 03 (Mager) 

• A533B (Mager) 

* HSST 02 (Mager/Shabbits)-

* A533 B weld (Mager) 

* A533 B weld-HAZ (Mager) 

A508 Cl. 2. Euro. Forg. (Mager) 

SHSSI Weld 72 W 
HSSI Weld 73 W 

* HSST Plate 13 
" A508 Cf. 3 

-.ASME Sect. Xl 

- Kmean: FAVOR 

...... Curve Fit: Extended Database

100

(T-RTNDT) (QF) OW&23N99,K4 ptw

-N) 
Y 

._d•-z€•, •0
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Table 5.2 Top-Ranked Model Forms Calculated by 
TableCurve2D

Rank F-Statistic Model Fom
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
44 
45 
47 
49 
50 
51 
52 
53

212.08316474 
202.73543020 
202.10095146 
194.44231080 
176.25900038 
171.28645651 
170.24942226 
164.27947091 
159.13106263 
149.87823234 
146.13142246 
143.76110728 
141.07999819 
137.29791795 
137.22995434 
134.99360842 
130.98649922 
124.92269692 
124.92269692 
124.92269692 
123.06568751 
115.33293665 
109.76890768 
104.70649060 
101.55552931 
99.886096880 
98.539924648 
98.407676705 
95.436616294 
95.436616294 
95.436616294 
95.436616294 
95.256825667 
94.403752943 
93.064358636 
90.888406094 
84.126204190 
82.500766448 
81.574302114 
78.019197528 
78.019197528 
78.019197528 
76.248415354 
76.220106695 
73.648681893 
67.900165448 
67.900165448 
67.900165448 
67.749311766 
67.736722397

12

lay = .4 + bx 
yA(O. 5 ) = a + bx 

y = (a + cx)/(1 + bx)[NL] 
y = a + b exp(cx)[NL] 
yA(-.) x a + bx 
y = a + bx 
yA(0.5" = a + bx + cxA2 
y = a+bx+cxA2 
Iny = a+bx+cxA2 
lIy = p + bx + c exp(x) 
y = a--bx+c exp(x) 
Iny = +bx + cxA3 
y = a +.bx+cx^3 
y = a ; bX + cxA2 + d exp(x) 
FourierT Series Polynomial Ix2 
y = (a,+ cx)/(l + bx + dx^2) [NL] 
y = a+bx+ cxA3 + d exp(x) 
Chebyshev = >Std Polynomial Order 3 
Chebyshev Polynomial Order 3 
y = a+bx+ cxA2+ dxA3 
y^(O.5 )l = a + bx + exA2 + dxA3 
yA2 =a a+bx +cxA2 

mny = •+ bx + cxA2 + dXA3 

y = a +-bx+cxA2 + dXA3 + e exp(x) 
yA2 = aL + bx + cxA2 + dxA3 
y = (a +: cx + exA2)/(1 + bx . dxA2) (NL] 
yA(-1) ; a + bx + c exp(x) 
y = a + bxA2 + cxA3 + d exp(x) 
High Piecision Polynomial Order 4 
Chabyshev Polynomial Order 4 
Chebyshev = >Std Polynomial Order 4 
y = a + bx + cxA2 + dx^3 + exA4 
yA(-l) =a + bx + CXA2 
yA(-1) . a + bx + cxA3 
yA(0.5);= a + bx + cxA2 + dxA3 + eeA4 

FourieLSeries Polynomial 2W 
y = a + .xA2 + c exp(x) 
lny= a -bx + cx^2 + dx"3 + exA4 
yA2 = aw+ bx + CA^2 + dxA3 + exA4 
High Pýecision Polynomial Order 5 
Chebyshev = >Std Polynomial Order 5 
Chebyshev Polynomial Order 5 
y = a + b exp(x) 
yA(0.5) a + bx + cxW2 + dxA3 + exA4 + fxA5 
Iny = a+- bxA2 + c exp(x) 
Chebyshev Polynomial Ordcr 6 
High Precision Polynomial Order 6 
ChebysJev = >Std Polynomial Order 6 
y = a + bxA2 + cx^3 
Iny = a * bx + CXA2 + dxA3 + exA4 + fxA5

P. 8/10
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Table 5.2 Top-Ranked M1odel Forms Calculated by
TableCurve2D 

Rank F-Statistic Model Form
54 
55 
56 
57 
58 
59 
60 
61 
64 
65 
66 
67 
68 
69 
70 
71 
72 
74 
75 
76 
77 
78 
79 
81 
82 
83 
84 
85 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99

13

P.9/10

66.589185788 
63.418238130 
63.126196234 
60.358790633 
60.255288266 
60.255288266 
60.255288266 
60.222001357 
57.747180396 
57.285235500 
55.585467658 
54.862287108 
52.511231768 
52.399927006 
52.399927006 
52.399927006 
50.377723858 
47.134766769 
46.357029818 
46.357029818 
46.357029818 
44.972169153 
42.493046529 
41.595572118 
41.553003885 
41.522828495 
41.522828495 
41.522828495 
40.422344924 
40.422344924 
39.521249612 
38.415760094 
38.415760094 
38.415760094 
35.062442660 
35.062442660 
35.062442660 
34.629893962 
33.566708227 
33.566708227 
33.566708227

Fourier.Series Polynomial 3x2 
y=a+ +'bxA3 + e exp(x) 
yA(-1) = a + bx + cxA2 + dxA3 
yA(0.5)1= a + b exp(x) 

Chebyshev = >Std Polynomial Order 7 
Chebyshev Polynomial Order 7 
High Precision Polynomial Order 7 
y = a +:bxA2 + cxA4 
y = a +.bxA2 
y^(0.5)= a + bxA2 
Iny = (a + cx)/(l + bx) 
yN(0.5).ý= (a + cx)/(l + bx) 
Fourier. Series Polynomial 4x2 
Chebysbev = >Std Polynomial Order 8 
Chebyshev Polynomial Order 8 
High Precision Polynomial Order 8 
Iny = a:+ bxA2 + cxA3 
yA(-l) = a + bx + cxA2 + dxA3 + eXA4 
Chebyshev Polynomial Order 9 
High Precision Polynomial Order 9 
Chebyshev = >Std Polynomial Order 9 
yA2 = a + bexp(x) 
Iny =a. +bxA3 + cexp(x) 
yA(-l) = a + bxA2 + cexp(x) 
Fourier:Series Polynomial 5x2 
Chebysýev Polynomial Order 10 
High Precision Polynomial Order 10 
Chebyshev = >Std Polynomial Order 10 
Chebyshev Rational Order 4/4 
Chcbyshev = >Std Rational Order 4/4 
yA(-1) _ a + bx + cx^2 + dxA3 + cx^4 + fxA5 

High Precision Polynomial Order 11 
Chebyshev = >Std Polynomial Order 11 
Chebyslucv Polynomial Order II 
Chebyshev = >Std Polynomial Order 12 
Chebyshev Polynomial Order 12 
High Precision Polynomial Order 12 
Fourier Serim Polynomial 6x2 
Chebyshev = >Std Polynomial Order 13 
Chebyshev Polynomial Order 13 
High Precision Polynomial Order 13



Application of Weibull Modeling 
(T:NTE -RIM) 

*Regression model assumes data scatter normally distributed 
*Weibull distribution provides skewed PDF

* A Weibull model applied to 
the extended Kic database 
with RTNDT indexing is under 
study to develop a more 
statistically rigorous 
characterization of Kmean 
and data scatter.  

* Maximum likelihood and 
method of moments 
parameter estimators are 
currently being evaluated.  

* Scheduled completion of 
study is the end of October

Welbull PDFs for Different Shape Parameters
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PTS Action Plan lA 

Develop Statistical Distributions 
for Material Chemistry, RTNDT, 

and Fluence 

Kalinousky/Santos 

September 30, 1999



Procedure 
"• Obtain "valid" Cu/Ni data for various weld 

heats 
- CE NPSD-1039 Rev 2 

"* Use BESTFIT® software for distribution 
fitting 

"* For each heat, test a null hypothesis (Ho) 
- Ho: Sample is from a NORMAL distribution



Goodness-of-Fit Test 

° X2 recommended for continuous 
distributions in which the parameters are 
NOT specified 

"* mean 

"* standard deviation 

• Must group data into separate classes 
e equal ranges of chemistry values 

e recommend 5 data points per class 

* minimum of 4 classes required



Goodness-of-Fit Test (cont) 

"* Choose level of significance (a) 

* a = probability reject Ho when true 

• typical value = 0.05 

"* Calculate Test Statistic (x2) 

"• Determine Critical Value.  
"* from X2 table 

"• for a given cc and degrees of freedom



Goodness-of-fit Test (cont) 

• Compare Test Statistic to Critical Value 
"* 2 < Critical Value Accept Ho 

"* Otherwise Reject Ho



21935 (Mean Value) 

Copper (mean=O.19, SD=0.0308) 
33.0 

16.5 

0 .13 0.15 0.16 0.18 0.19 0.21



W52
Copper 

10.6 

5.3 

4 
008. 15 C

14 (Mean Values)
(mean=0.22, SD=0.0653)

.18 0.22 0.25 0.29 0.32

Nickel 
2.6 

1.3 

011 C

(mean=0.85, SD=0.43)



33A27 
Copper 

9.3 

4.6 

3 

0.8.14 0.

7 (Mean Values)
(mean=0.26, SD=0.0486) 

4 10 8 

18 0.22 0.25 0.29 0.33

'Nickel (mean=0.16, SD=0.0128) 
,'1'? A

0. 1"58 0.166 0.174 0.182 0.190

"11.4

38.7

nfl '

4 "1-

",-TI 5o



27204 (Mean Values) 
Copper (mean=0.20, SD=0.0197) 

29.3,

0.23

Nickel (mean=1.02, SD=0.0469)

0.98 1.01 1.03

14.7

o.8°L.

14.8 

7.4

0".96 1.06 1.08



86054B (Mean Values) 
Copper (mean=0.21, SD=0.0230)

35.2 

17.6

1313
"'I'.19 0.20 0.21 0.22 0.23 0.24

'Nickel (mean=.0463, SD=0.00446) 
220 

110 

.040 0.042 0.044 0.046 0.048 0.050

.2



Hypothesis Test Results 
Mean Values 

Ho: Sample Data is from a Normal Distribution 

Cu Ni 
Heat Number x7  ca=0.05 o=0.02 -J o a=0.05 a=0.02 a=0.01 a=0.001 

21935 4.60 R A N/A N/A N/A N/A N/A 

W5214 5.32 R A 24.38 R R R R 

33A277 3.01 A A 5.98 R R A A 

27204 3.89 R A 3.66 A A A A 

86054B 4.92 R A 6.56 R R A A 

34B009 N/A N/A N/A N/A N/A N/A N/A N/A 

12008/20291 N/A N/A N/A N/A N/A N/A N/A N/A

A = Accept Ho 
R = Reject Ho 
N/A = Not Applicable, too little data



Normal Distribution Parameters 
Mean Values 

Heat # of Data Points Mean Standard Deviation Plant 

21935 Cu 5 0.19 0.0308 Calvert Cliffs 1 
21935_Ni 2 N/A N/A 

Cu 10 0.22 0.0653 Palisades, 
W5214 Ni 16 0.85 0.43 Robinson 2 

Cu 25 0.26 0.0486 Calvert Cliffs 1 
Ni 6 0.16 0.0128 
Cu 6 0.20 0.0197 

27204 Ni 5 1.02 0.0469 Palisades 
Cu 5 0.21 0.0230 Robinson 2 

86054B Ni 6 0.0463 0.00446 
Cu 3 N/A N/A 

34B009 Ni 3 N/A N/A Robinson 2 
Ni 3 N/A N/A 

12008/20291 Cu 3 N/A N/A Calvert Cliffs 1 1201221Ni 3 N/A N/A



Accepted Distributions 
at 

= 0.05

Heat Number Copper Nickel 

21935 Weibull N/A 
21935 _ _Uniform 

W5214 Uniform None 
Beta 

Weibull Beta 
33A277 Normal LogLogistic 

Logistic Pareto 
Lognormal 

27204 Uniform Weibull 
Beta Beta 

Normal 
86054B Uniform None 
34B009 N/A N/A 

12008/20291 N/A N/A



Ongoing Work 

* Perform Bayesian Analysis 
• Appendix C of White Paper (N. Siu) 

"* Plate Distributions 

" RTNDT 

"* Fluence



ACTION PLAN-4 

GENERIC FLAW 
DISTRIBUTION 

D). •ACK-SON 

PTS/PFM MEETING 

SEPTEMBER 30, 1999



TOPICS FOR DISCUSSION 

"* Expert Elicitation Process 

"• Schedule 

"• List of Experts



EXPERT ELICITATION 

• Objectives 
- verify that a generalized flaw distribution can 

be properly developed 

- assist in developing a generalized flaw 
distribution



PLAN FOR COMPLETION 

"• Determine the process for the elicitation 

"* Define the specific issues/scope 

"• Determine the complexity 

"• Identify an expert panel 

"• Strawman of scope and issues to the panel



PLAN FOR COMPLETION con't 

"• Panel meets to agree on scope and issues 

"° Elicitation training for all 

"° Identify an elicitation team 

- subject matter expert 

- normative expert 

- recorder 

"* Experts perform analyses and formulate 
responses



PLAN FOR COMPLETION con't 

* Elicitation team meets individually with 
experts 

• Technical Facilitator Integrator (TFI) 
processes individual elicitation results 

° Panel meets to review elicitation results 

(panel members may modify their responses 
to the issues)



PLAN FOR COMPLETION con't 

• TFI aggregates panel responses to form 
community distributions 

• Publish community distributions



STRAWMAN OF ISSUES 
Clarification of objective which is "Develop a generalized fabrication flaw distribution for input 
into fracture mechanics calculations to address the consequences of transients in a reactor 
vessel 

What is a generalized flaw distribution? 

Is one distribution representative or will there be one distribution or one for welds, one for 
base metal and one for cladding? For weldment you must consider weld designs (single 
v, double v, etc), welding process (auto vs. manual), materials. Should one distribution 
be developed from vessel specific distributions.  

Fabrication processes in the various shops, were certain processes more susceptible to flaws 
(early on there was "dirty metal" resulting from the use of scrap metal, etc).  

Surface connected flaws - what must be done to create a surface breaking flaw 

How much is the base metal affected during the cladding process, in terms of under clad 
cracking and is under clad cracking more prevalent in French vessels? 

What are the factors, variables or determinants that will have an influence on the distribution of 
fabrication flaws? The list below is not all inclusive.  

Base Metal (Plates, forged rings) 
What NDE procedure was used (sensitivity, accept/reject criteria)? 
What are the flaw specifics (type, location, size) 
Were flaws surface or embedded: 
How many flaws per plate were detected: 
Was there a difference for plates in the beltline vs. nozzle shell, etc? 
What was the largest flaw detected & repaired? 
Was NDE performed on all surfaces of the plates? 
Did one surface contain more flaws than another surface? 

Welding procedure 

Welding materials 

Weld design 

Repairs (base metal, cladding, weldment) 

Cladding 
What NDE procedure was used? 
What are the flaw characteristics that required repair 
What was the location of most flaws? 
Describe the repair process 

Pre- and Post Hatch

Surfdce connected Flaws



Is more data available for naval vessels than for NPP vessels? 

What was the difference in steel used in NPP vessels and Naval vessels 

What caused the cracking the head of the Quad Cities vessel in the 1990s.  

Where has industry located surface breaking flaws (nuclear and non-nuclear) 

Location of vessel repairs, is there a pattern as to where the repairs are located 

Are NDE results of pre-Hatch vessels less reliable and are the vessels more susceptible to flaws than post-Hatch vessels? What effect did the change of NDE of vessel fabrication processes have as there were definitely more repairs. (Hatch History is discussed below) 

Prior to 1971/1972 a major discontinuity was discovered in a Hatch vessel nozzle after 
delivery.  
Pre-Hatch era was prior to 1971 

Reaction to Hatch era 1971-1975 
Stabilizing era after 1975 

Prior to the Hatch incident, no UT beyond the basic ASME Sec III was performed. During the reaction era numerous repairs were made because of the dramatic increase in UT requirements so vessels delivered between 1974 and 1977 had an increase repair rate. For vessels delivered after 1977 the repair rate was lower due to improvements n the welding and cladding processes 

How would you determine an estimate for a flaw distribution in the base metal using the data 
from the weldment flaw distribution? 

AREAS OF EXPERTISE REQUIRED 

ASME Code Metallurgy Vessel Fabrication Welding Forging (Nozzle & NDE Statistics Failure Analysis 
Ring)



In

I

2 Define Specific Issues/Scope I

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14

3rd Quarter 4th Quarter I 1st Quarter 2nd Quarter I 3rd Quarter 4th Quarter I 1st Quarter I 2nd Qua

Jul I Aug I Sep Oct I Nov I Dec I Jan I Feb I Mar 1IApr I May I Jun I Jul I Aug I Sep Oct I Nov I Dec I Jan IFTntk NzumA
ID Tak Nam

Determine Elicitation Process

Summary 

Rolled Up Task 

Rolled Up Milestone

Rolled Up Progress

Page 1

Project: 
Date: 9/30/99

Task 

Progress 

Milestone

II

a

Determine Level of Complexity 

Identify an Expert Panel 

Send Strawman Scope and Is, 

Panel Meets to verify issues & 

Elicitation Training 

Identify Elicitation Team 

Experts perform analyses 

Individual Meetings 

TFI Processes Results 

Panel Meets to Review Result 

TFI Aggretages Panel Respon 

Publish community Distributior



ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP 

GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

AREA OF E NAME ADDRESS EMAIL PHONE NO. FAX NO.  

NDE Frank Ammirato EPRI NDE Center fammirato@epri.com 704-547-6081 704-547-6168 

1300 Harris Blvd., Charlotte, NC 

NDE/ASME Michael INEEL Research Center-Mail Stop 2209 mta2.inel.aoV 208-526-8780 208-526-0690 

Anderson 2351 N. Boulevard 
P.O. Box 1625 
Idaho Falls, ID 83415 

NDE CB&I Francis C. 3754 Brookwood .Road 205-967-3020 

Berry Birmingham, AL 35223

>2 

>2

Vessel 
Fabrication 
CE 

NDE Navy

Spencer Bush 
Consultant 

Vic Chapman

630 Cedar Avenue 
Richland, WA 99352-3632

Rolls Royce Marine Power 
P.O. Box 2000 
Derby DE 21 
England

SH BUSH(aDnl.qov 509-943-0233

I I

N/A

509-943-6755

011-44-1332-661461 011-44-1332
x5962 622948

_________ A- r I r

Domenic 
Canonico 
VP, Technology 

Robert Denale 
Branch Chief,

ABB Alston Power 
911 W. Main Street 
Chattanooga, TN 37402-4708

Naval Surface Warfare Center 
Code 615 
Non-Destructive Evaluation 
9500 MacArthur Blvd 
West Bethesda, MD 20817-5700

domenic.canonico@(u 
sfsel01.mail.abb.com

rdenalec)metals.dt.na 
vy.mil

423-752-2513

301-227-

423-752-2650

301-227

I

A

I 

I I

I



ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP 

GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

Vessel H ,.reldGrbef ,rab.r Cn.u.,.ng 33 833-844 

Fabfieaiem 2512 Arnherst N ' 

_ _ __ Mesolln, 91] 446466 I _=_l_-'-

Nozzle 
Forging 

Metallurgy 
ASME Code 

EE Training 

EE Training 

Metallurgy 
Welding 

Ring Forging 
US Steel 

NDE 
CE/PVRUF

Mr. David 
Hershbell, 
Manager 
Technical

Lenape Forging Co.  
1280 Lenape Road 
West Chester, PA 19382

Services I
John Holstrup 509 Brady Point Road 

Sianal Mountain, TN 37337

Stephen Hor 
Professor of 
Management 
Science 

Ralph L.  
Kenney 

Carl Lundin

Harry Lunt 

John P. Lareau

University of Hawaii, Hilo 
200 W. Kawlli Street 
Hilo, HI 96720-4091

808- 974-7766 808-974-7685

101 Lombard Street kenneyr(.aol.com 415-433-8388 415-434-0968 

Suite 704W 

San Francisco, CA 94111

University of Tennessee 
Materials Sci & Eng 
307 Dougherty Engineering 
Knoxville,TN 37996

13 Brocken Drive 
Mendham, NJ 07945

lundin@utk.edu

I 1 973-543-2229
heluntDaol.com

�- + 1 1860-285-3590 860-285-3665
ABB 
200 Windsor Day Hill Road 
Windsor, CT 06095

john.p.lareauO.us.abb 
.com

2

860-285-3590 860-285-3665

I

610-793-3240610-793-1500 x 221

a, 808- 974-7766 808-974-7685

423-974-5310 423-974-0880

973-543-2229



ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP 

GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

Forgings Edward Nisbett National Forge 814-563-7522 814-563-4525 

Front Street, Irivne, PA 

Welding Charles J. Chicago Bridge & Iron Company pieperc(.asme.org 815-439-6106 815-439-6127 

CB&I Pieper, Jr. 1501 North Division Street 
Product Plainfield, IL 60544-8984 
Manager 

Failure Robert Pond, P.O. Box 42093 RPond@JHU.edu 410-321-7886 same 

Analysis Jr. Baltimore, MD 21284-2093 
Metallurgy President, 

MStructures, 
Inc.  

Metallurgy Dr. Harold S. Fatigue & Fracture hsreemsnydereDbsco. 215-694-6737 215-694-2326 
Reemsnyder Bethlehem Steel Corporation com 
Sr. Research Homer Research Laboratories 
Consultant Bethlehem, PA 18016-7699 

Failure Stan Rolfe, The University of Kansas rolfeaKUHUB.CC.UK 913-864-3766 913-864-3199 

Analysis Ph.D, P.E. 2006 Learned Hall ANS.EDU 
Professor of Lawrence, Kansas 66045-2225 
Civil 
Engineering 

Metallurgy Stan Rosinski EPRI NDE Center strosinscepri.com 704-547-6123 704-547-6035 
1300 Harris Blvd., Charlotte, NC 

ASME Kenneth Framatome Technologies, Inc. kstuckey(aframatech. 804-832-2593 804-832-3177 

Vessel Fab Stuckey P.O. Box 10935 com 

B&W Technical Lynchburg, VA 24506-0935 
Consultant

3



ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP 

GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

4

>2 Helmut Theilsch 195 Frances Avenue, Cranston, RI 401-467-6454 401-467-2398 

ACRS 70s 02910-2211 

>2 R. David RR. 01, Box 777 rdavidir(sover.net 802-827-3769 same 

Thomas E. Fairfield, Vermont 05448-9710 
R. D. Thomas & 
Co.  

Vessel Fab Ted Ward - ABB Alston Power 423-752-2650 

CE Retired 911 W. Main Street 
Chattanooga, TN 37402-4708 

Metallurgy Robert W. Edison Welding Institute bobwarke•asofthome. 614-699-5238 614-688-5001 

Welding Warke 1250 Arthur E. Adams Drive net 
Columbus, OH 43221 

Welding Dave Waskey Framatome Technologies, Inc. dwaskeyO-framatech. 804-832-3473 804-8.2-2-3177 
P.O. Box 10935 com 
Lynchburg, VA 24506-0935 

Vessel Alex Wilson Bethlehem Lukens 610-383-2000 6103832436 main 

Fabrication Modena Road 610-383-2674 

LUKENS Coatesville, PA 19320 _



Review of PTS Input Variables 

and Analysis Assumptions 

PTS Meeting 

September 29, 1999 
R. GAMBLE



Fracture Mechanics Input Evaluation Sheet (Page 1 of 3) 

Variable Best Estimate MeanValue

Dimensions and Applicable 
Material Included in the PTS 
Screening Reevaluation: 

"* Vessel ID 
"* Nominal vessel thickness 
"* Nominal cladding thickness

Vessel Materials

Physical and Mechanical 
Properties:

"* uonducuvity 
"* Specific heat 
"* Density 
"* Expansion Coefficient 
"* Elastic Modulus 
"* Stress free temperature 
"* Yield 

Fluence:

Toughness and Toughness 
Related Variables:

Copper Content 
Nickel Content 
Initial RTNDT 
A RTNDT 

Initiation Toughness 
Arrest Toughness

NT-TAP 2ab (SECY & IPTS vessels) 
NT-TAP 2ab (SECY & IPTS vessels) 
NT-TAP 2ab (SECY & IPTS vessels) 
NT-TAP 2ab (SECY & IPTS vessels) 
all beltline plates, forgings, and welds 

Base Metal Claddin 

24 10 (BTU/hr-ft- 0F) 

0.12 0.12 (BTU/lb--F) 
489 489 (lb/ft3) 

7.77e-6 9.45e-6 (OF') 
28e+6 22.8e+6 (psi) 

N/A 468 (OF) 

N/A 1,000 (ksi) 

Used as a parameter and includes 
material specific fluence mapping 

Base Metal and Weld 

NT-TAP 2ab (SECY & IPTS vessels) 
NT-TAP 2ab (SECY & IPTS vessels) 
NT-TAP 2ab (SECY & IPTS vessels) 

Improved correlation, E-900 & NT-TAP 5 

NT-TAP I 
NT-TAP I

1%¢1ue/T Tncertaintv
Dest Est~. jJm.LULS s IssueUncerain t

N/A 
N/A 
N/A 
N/A

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
N/A 

Normal, a = 0.2 of the mean 
(Basis: Expert Opinion)

Base Metal and Weld 

TAP 1, SECY & LPTS vessels 
TAP 1, SECY & IPTS vessels 
TAP 1, SECY & IPTS vessels 

Improved correlation, E-900 
NT-TAP 1 
NT-TAP 1

Resample or use initial 
sampled values in 

material segment when 
there are multiple flaws 

in the segment? (all 
variables) 

NT-TAP 3 & 1

Basis for Values

RVID Data Base

From ASME Code at temperature = 335*F, 
(avg. of 550 &120*F) 

Cladding modulus 
and SFT from ORNL 
work

SECY (Typical) and IPTS fluence maps 

RVf) Data Base

PFM-Input Table, R2

0

0 

S 

0 

0 

0 

0



Fracture Mechanics Input Evaluation Sheet (Page 2 of 3) 

Variable Best Estimate Mean Value Best Est. Distribution & Std Dev. Issue/Uncertainty Basis for Values 

Transient Conditions: 

* Pressure-time history Plant/event specific Estimated in T/H analysis SECY-82-465 and IPTS 

* Temperature-time history Plant/event specific Estimated in T/H analysis PRA and T/H work 

* Heat trans. Coef.-time history Plant/event specific Estimated in T/H analysis 

Flaw Related Variables: Welds and Base Metal Welds and Base Metal 

* Size & location distribution NT-TAP 4 NT-TAP 4 Expert Panel 

* Flaw density NT-TAP 4 NT-TAP 4 Expert Panel 

Aspect ratio, pre-initiation 2,6, and 10 Uniform distribution Surface & near surface 

* Aspect ratio, post-initiation (axial) irradiated length; (circ.) 3600 N/A High irradiation region 
& vessel configuration 

Residual Stress Welds Base Metal 
ORNL data from 

Table 2 N/A N/A canceled vessel 

Evaluation Criterion: 

* Initiation and Arrest Yes N/A 

Post-initiation Toughness and 
Toughness Related Variables: 

"* Cu content Resampled or fixed? (NT-TAP 2c & 1) NT-TAP 1 

"* Ni content Resampled or fixed? (NT-TAP 2c & 1) NT-TAP 1 

"* Initial RTmr Resampled or fixed? (NT-TAP 2c & 1) NT-TAP 1 

"* Fluence Attenuation per RG 1.99, Rev. 2 Normal, a = 0.2 of the mean 

"* ARTNDT Improved correlation, E-900 Improved correlation, E-900 

"* Reinitiation Toughness NT-TAP 1 NT-TAP 1 

e Arrest Toughness NT-TAP 1 NT-TAP 1

PFM-Input Table, R2



r racture iviechianics. Inp~ut J~vaI4II s.Juqt~ on.- '-)____________ ________

Tec~vi/T Tnr'prtinltv Basis for Values
Variable Best Estimate mean value OtU. IJ.V. YaiU%j .............. ___.....

Flaw Extension:

Cladding, 
Back gouged regions 
Repaired regions

Warm Prestress:

N/A Flaw extension for 
material & stress 

conditionsin cladding, 
back gouged, and 
renaired regions

1 1
N..

N/A

__________________________ j _______________________________ J _____________________

Applicability relative 
to transient conditions 
and onerator actions

PRA

PFM-Input Table, R2

0 

0 

0

LT-TAP 3

LT-TAP 4
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PFM Action Plans To Be Developed For PTS Screening Reevaluation 

Near Term Action Plans and Activities - Due June 30, 1999 

1. White paper on uncertainty, and determination of appropriate distributions and truncation for 
PFM variables. Responsible individuals: Nathan Siu, Matt Mitchell, and Shah Malik.  

2. Determination of input for generic reevaluation of the SECY vessel, materials classification 
for application to IPTS vessels, and evaluation of material conditions used for determining 
crack arrest. Responsible individuals: Terry Dickson and Ron Gamble.  

3. Sampling sequence and flaw selection for evaluation of POF for vessel regions containing 
multiple flaws. Responsible individuals: Terry Dickson, Bruce Bishop, and Ron Gamble.  

4. Flaw Distributions. Responsible individual: Mike Mayfield 

5. Evaluate using a distribution for ARTNDT and eliminating use of distributions for Cu, Ni, and 
initial RTNDT. Responsible individuals: Bob Hardies, Matt Mitchell, Nathan Siu, and Art 
Buslik.  

6. Evaluate options for including as an IPTS plant a plant that has a plate as the RTPrs limiting 
beltline material. Responsible individual: Bob Hardies.  

7. Clarify question concerning transient selection of for IPTS plants; whether this is a joint 
NRC/industry effort or will be done by NRC. Responsible individual: Ron Gamble 

Long Term Action Plans and Activities - Due Date to be Decided Later 

1. Independent industry QA/V&V of FAVOR software. Responsible individual: Stan Rosinski.  

2. Sensitivity studies (including master curve and cladding plasticity) and assessment of effect 
of uncertainties in calculated values of POF and event frequencies on risk. Responsible 
individual: Bruce Bishop 

3. Evaluation of flaws located in cladding, back gouged regions, and repair weld regions.  

Responsible individuals: NRC staff.  

4. Evaluate the applicability of WPS for PTS. Responsible individuals: To be determined.  

5. Evaluate the potential for including constraint and shallow flaw effects in the material 
toughness representation. Responsible individual: Shah Malik.  

6. Present a tutorial on use of the revised FAVOR software. Responsible individuals: Terry 
Dickson and Shah Malik.  

7. Evaluate the use of an alternative to RTnrs for the PTS screening criteria. Responsible 
individuals: Industry personnel, to be determined.

PTS Action Plans



Categorization of PWR Vessels 

PTS Meeting 

September 30, 1999
R. GAMBLE_



Categorization of PWR V 

PTS @ EOL (From RVID,

essels Based on
Rev. 2.0.5, 6/9/99)

Category 

* XXL (11) 

XL (15) 

L(10) 

M(19)

* H (16)

Criteria

RTpTs <= 100 OF 

100 < RTPTS <= 150 OF 

150 < RTpTs <- 20 0 OF 

200 < RTPTS <= 240 oF, 

230 < RTPTS <- 270 OF

Material

All Materials 

Limiting Material 

Limiting Material 

Limiting AW or BM 

Limiting CW
or

RTPTS > 240 OF, or 
RTPTS > 270 OF

Limiting AW or BM 
Limiting CW

RT
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Proposed Sensitivity Studies (1) for 
PTS Screening Criteria Risk Analysis 

B. B•ISHOP 

No. Parameter Investiqated Notes 

1 Uncertainty on Initial Ref. NDT Temperature (2) 

2 Uncertainty in Copper Content - (2) 

3 Uncertainty in Nickel Content (2) 

4 Shape of Flaw Size Distribution (2) (3) 

5 Cladding Thickness (4) 

6 Stress-Free Temperature (4) 

7 Cladding Yield Strength (Plasticity) (4) 

8 Step vs. Linear Cladding Stress to Calculate SIF (4) (5) 

9 Maximum Residual Stress (4) 

10 Residual Stress Variation with Depth in Wall (4) 

11 Master Curve Fracture Toughness (5) (6) 

a) Unirradiated Only 

b) Irradiated 

12 Monte-Carlo Simulation Method and Results (5) (6) 

a) Order of Regions (Welds vs. Plates First) 

b) 10,000 each t/8 flaw vs. 10,000 vessels 

13 Any Others: 

a) Initiation Only vs. Arrest Failure Criteria? 

b) Pressure and Temperature?



Proposed Sensitivity Studies for 
PTS Screening Criteria Risk Basis 

Notes 

(1) If possible, each study would be performed using last public 
version of FAVOR for one surface flaw in the most 
embrittled region for two PTS transients (with and without 
re-pressurization) to the bound effects on probability.  

(2) A range of uncertainty values would be used to determine 
the effect of uncertainty in the uncertainty on probability.  

(3) The effects of different flaw distributions and flaw density 
between plates, forgings, welds and repair regions will be 
addressed by NRC-PNNL led task team on RPV flaws.  

(4) A range of parameter values would be used to determine 
the effect of the uncertainty in the parameter on probability.  

(5) Source code for current version of FAVOR code would have 
to be modified for these sensitivity studies.  

(6) Results from these sensitivity studies can be used to judge 
the degree of conservatism in the selected method.



Uncertainty Analysis and Pressurized Thermal Shock: An Opinion 
N. Siu 

"White Paper Last Revised September 2, 1999 

Introduction 

To support current efforts regarding pressurized thermal shock (PTS) screening criteria in a 

manner consistent with NRC's current views on risk-informed decision making, probabilistic risk 

assessment (PRA) analysts need to: a) develop estimates of risk metrics such as core damage 

frequency (CDF) and large early release frequency (LERF), and b) characterize the 

uncertainties in these estimates. Typically, this characterization is in the form of a probability 

distribution (see Figure 1, where X represents the frequency of interest and Tr(?) is the 

probability density function for that frequency). But what does this distribution mean? What 

uncertainties does it represent? Aren't CDF and LERF already measures of uncertainty? And 

how do we develop the CDF and LERF distributions for PTS? 

IE+05 

BE+04 

6E404 

4E+04 

2E+04 

OE+00 I 

Lb LUU 

Figure 1 - Example Output of a PRA 

This white paper answers these questions in two steps. First, it addresses the issues of 

uncertainty in a methodologically oriented discussion. This includes a definition of the two 

"types" of uncertainties currently distinguished in PRA, and a discussion of how they are 

treated. Second, based on this methodological discussion, it proposes an approach for 

addressing uncertainties in PTS; this approach integrates thermal hydraulic (T/H) and 

probabilistic fracture mechanics (PFM) analyses in a PRA framework. The proposed approach 

is then shown to be nearly identical with the current ("Method 2") PTS approach. Differences 

between the two approaches and their implications for PTS analysis are discussed.  

It is recognized that, despite the agreement between the proposed approach and the current 

PTS approach, a number of details may need to be revised following input from domain 

experts; the intent of this paper is to provide an initial approach to the problem that is consistent 

with current PRA views on the treatment of uncertainty.  

This paper also includes a list of references for further reading and three appendices covering 

probability concepts, aleatory and epistemic uncertainties, and parameter estimation.
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Uncertainty Analysis Concepts

On the Meaning of "Frequency" 

Although the analyses of CDF and LERF require the treatment of very different physical 
phenomena, they are, from a mathematical viewpoint, both frequencies of undesired events.  
This section discusses the notion of frequency as it is typically used in PRA models. It is shown 
that, in PRA, the frequency is a parameter in a probability distribution that quantifies random 
variability ("aleatory uncertainty") in an observable variable.  

Let's start with some basic assertions that provide the foundation for subsequent discussion.  

1. There are physical variables which are, in principle, observable. Examples include the 
time to failure of a particular component, the time at which an operator takes a particular 
action at a given point in an accident sequence, the average copper content in a 
particular subregion of a particular reactor vessel at a particular point in time.  

2. We need to predict the values of a set of these variables as part of the PRA analysis.  

3. Because of limitations in resources, lack of knowledge, or both, we choose to treat 
some of these variables as being the results of random processes. In other words, if we 
employ a thought experiment involving a number of repeatable trials, we envision 
observing a distribution of values (e.g., an empirical histogram) for the variable of 
interest. The "prediction," therefore, will be in terms of a probability distribution.  

4. We also choose to treat the remaining variables as being deterministic. If we employ a 
thought experiment involving a number of repeatable trials, we envision observing a 

single value for the variable of interest (or, at least, a range of variability that is 
sufficiently small for the practical application). The prediction, therefore, will be in terms 
of a point value, at least in principle.  

Note that because choice is involved, there is no fundamental principle as to when a variable 

should be modeled as being random or deterministic; the analyst needs to decide if the notion 

of repeatable trials makes sense for the problem being addressed. In PRAs, such things as 

pump failures and operator actions are modeled as being random; we treat pumps and 
operators as coming from populations of pumps and operators, and don't attempt to model 

individual pumps or individual operators. (One can argue that, even in the case of individual 
pumps and operators, the notion of random variability still makes sense due to such processes 
as environmental variation and renewal.) In the case of a reactor vessel, the choice may be 

less clear. A proposed approach is discussed later in this paper.  

Note also that, in current PRAs, core damage events and large early release events are 
modeled as being the possible results of a set of interacting random processes, namely, those 

involving the initiating event that causes a plant transient, the response of mitigating systems to 

the transient, and the associated actions of human operators. The occurrences of core 

damage and large early release events are also, therefore, random processes.
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For random events occurring over time, PRAs typically use a Poisson distribution to model 

event occurrence. This means that the probability of observing N core damage events in a time 

period T is given by" 

P{N events in time TI X,= (X-T) eXT (1) 
N! 

where X, which is called a "frequency," is a simply a parameter characterizing the process. As 

X increases, the likelihood of events also increases (see Figure 2). It can be shown that the 

average number of events occurring in time period T is equal to XT.  
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Figure 2 - Poisson Probability Distributions for Two Values of X 

It turns out that for a Poisson process, if T, is the time to the first event, then the distribution of 

T, is exponential, i.e., 

PIT, < ti XL=1--t (2) 

As X increases, the probability of observing the first event by a specified time also increases 

(see Figure 3). It can be shown that the average time to the first event is equal to 1/k. It can 

also be shown that 

p{T,<t!,X}=2.t whenkZ-t <0.1 (3) 

As noted earlier, CDF and LERF are the frequencies of core damage events and large early 

release events, respectively. Thus, they are simply parameters of Poisson distributions.  

Knowing the values of CDF and LERF, we can make statements about the likelihood of 

observing a core damage event or a large early release event in, say, the next year. Of course,
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we don't know the values of CDF and LERF with a high degree of certainty. This issue is 
discussed in the following section.  

Before concluding this discussion, it should be noted that the Poisson model, like all models, 
has some underlying assumptions. In particular, the Poisson model assumes that the process 
doesn't age, i.e., that X does not change over time. In the case of CDF and LERF, this can be 
an unrealistic assumption. For example, if a severe accident really does occur, we can expect 
there to be significant changes in the industry (e.g., all plants might be shut down). Less 
dramatically, aging considerations might become important over time. For most PRA purposes, 
the Poisson model is adequate.  
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Figure 3 - Effect of Frequency on Time-to-Occurrence 

Types of Uncertainties: Aleatory and Epistemic 

The preceding discussion addresses uncertainties due to "inherent randomness". In earlier 
literature, they are often called "random uncertainties" or "stochastic uncertainties." Currently, 
following the terminology espoused by the ACRS, they are called "aleatory uncertainties."' 
Their principal characteristic is that they are (or are modeled as being) irreducible; they are 
defined by the form of the probability distribution (e.g., the Poisson distribution) and the value of 
the distribution parameters (e.g., X).  

Note that in the examples given earlier, the variability in the uncertain variable (e.g., N or Tj) is 
observable, at least in principle. In other words, repeated observations of the variable will result 
in an empirical distribution of values. This provides a way to think about aleatory uncertainties; 
if repeated trials of an idealized thought experiment (where the conditions are kept constant 
from trial to trial) will, assuming no measurement error, lead to a distribution of outcomes for the 
variable, this distribution is a measure of the aleatory uncertainties in the variable.  

'According to Webster's, aleatory (adj.) comes from aria (a dice game); relevant 
definitions are: (1) depending on an uncertain event; (2) relating to good or bad luck.
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Another type of uncertainty addressed in PRAs is "epistemic uncertainty,"2 which has been 
called "state of knowledge uncertainty" in earlier papers because it is due to weaknesses in the 
current state of knowledge of the assessor. Uncertainties in a deterministic variable whose true 
value is unknown are epistemic. Repeated trials of a thought experiment involving the variable 
will, in principle, result in a single outcome, the true value of the variable.3 

Unlike aleatory uncertainty, epistemic uncertainty is reducible with the collection of additional 
information. In PRAs, for example, it is typically assumed that the Poisson model is a good 
representation for the failure of equipment while running. Therefore, it is assumed that there is 
a particular failure rate for each component. Initially, we may not have much failure data for a 

component, and our (epistemic) uncertainties in the value of the failure rate will be large. After 

we collect a large enough sample of failure data, we can get a very good estimate of the failure 

rate, i.e., the epistemic uncertainties in the value of the failure rate will be small. The epistemic 

uncertainties are quantified using probability distributions (see Appendix A). Figure 4 shows 

how, in instance, the distributions are narrowed, i.e., the uncertainties are reduced, when 

additional information is collected. (N represents the number of observed failures and T 
represents the period of observation in hours.) The method for generating these distributions, 
given data, is discussed in the next section.  

4OOO 

3500 N=3, T-100001 
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Figure 4 - Reduction in Epistemic Uncertainty with Increased Data 

The answers to the first three questions posed at the beginning of this paper are therefore as 
follows. (1) The distribution in Figure 1 quantifies the analyst's uncertainties in the value of the 

2According to Webster's, epistemic (adj.) comes from epistemikos (of knowledge, 

capable of knowledge); relevant definitions are: (1) of, having the character of, or relating to 

intellectually certain knowledge; (2) purely intellectual or cognitive; (3) subjective.  

3Note that measurement error arises from an aleatory process. However, if the 

measured variable is, in principle, deterministic, then the uncertainties in the variable are 

epistemic. The apparent contradiction can be resolved by clearly defining what uncertainties 

are being addressed in the PRA. This issue is further discussed in Appendix A.
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parameter X (which represents either CDF or LERF). Specifically, the integral of the curve 

(which is a probability density function) between any two limits, say X1 and X2, gives the 

probability that X lies'in the range (X1,X2). (2) These uncertainties are epistemic; they arise 

from the analyst's imperfect state of knowledge regarding the true value of X. (3) CDF and 

LERF (which are typically computed in PRAs using conventional event tree/fault tree analysis) 

are frequencies (as defined earlier in this paper); they are parameters that quantify aleatory 

uncertainties in observable variables, e.g., the time to a core damage event. There are, of 

course, generally epistemic uncertainties in their values.  

Figure 5 shows how these two types of uncertainty can be represented in the case of such 

variables as event occurrence times. (An analogous representation can be developed for 

variables representing the number of events in a given time period.) The heavy curves (solid 

and dashed) are the cumulative probability distributions quantifying the aleatory uncertainties in 

the event occurrence time. The light curve crossing these heavy curves is the probability 

density function quantifying the epistemic uncertainties in X; it represents the same distribution 

as that illustrated in Figure 1. As shown by Equation (2), the aleatory distributions are 

conditioned on the value of X; the four curves shown correspond to the 5V percentile (?X05), 

median (X50), mean (<X>), and 9 51 percentile (X95) values of X. Note that PRAs typically 

display results in the form of Figure 1 and not Figure 5; the aleatory uncertainties in the 

observable variable are assumed to be understood.  

It should also be noted that fundamentally, as discussed by a number of authors (e.g., see 

Apostolakis, 1999) and noted in Appendix A, there is only one kind of uncertainty. Why does 

PRA distinguish between "aleatory" and "epistemic" uncertainties? The answer is due to the 

fact that PRA is used to support decision making; the distinction can be important for both 

interpreting the PRA output, and deciding what to do with this output. This is discussed in 

Appendix B.  
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Figure 5 - Representation of Aleatory and Epistemic Uncertainties in Event Occurrence Time
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Uncertaintv Analysis in PRA

Current PRAs typicaily use two kinds of models to address aleatory uncertainties. The first, 
which is applied to events occurring over time (e.g., failures of already operating pumps), is the 
Poisson distribution already discussed. The second, which is applied to events occurring as the 
immediate consequence of a challenge (e.g., failures of standby pumps to start on demand), is 
the binomial distribution. This distribution quantifies the likelihood of outcomes resulting from a 
Bernoulli (or "coin flip") process. It is given by: 

N! •R (_)NR(4 
P{R failures in N demandsl} = R!(N-R)! - (4) 

where 0 is the probability of failure for a single demand. It can be seen that mathematically, 0 

plays the same role as X; it is just a parameter characterizing a distribution. It can be shown 

that as the number of trials gets very large, the relative frequency of failures, R/N, approaches 
0. Thus, 0 can be interpreted as the fraction of times failures will occur in the long run.  

Using the various X's and O's corresponding to the different components included in the PRA 

model, the CDFs and LERFs associated with various event sequences, as well as the overall 
CDF and LERF, can be computed. Symbolically, 

CDF =f1 (_X.,_) 

LERF =f 2 (_sc) 

To quantify the epistemic uncertainties in CDF and LERF, the epistemic uncertainties in the X's 

and O's are propagated through f, and f2. This is currently done on a routine basis using 
sampling schemes (e.g., direct Monte Carlo sampling).  

The quantification of the uncertainties in the X's and O's involves the collection and 

interpretation of a variety of forms of evidence (e.g., model predictions, expert opinion, 
empirical data), and the application of an appropriate estimation procedure that uses this 
evidence. Formally, the estimation procedure involves the application of Bayes' Theorem. The 
general form of this theorem is: 

L(EI)) o (_)(6) 

S JL(EI._) no (_)d!O 
e 

where e is the vector of parameters to be estimated; E is the evidence; L(ElI) is the likelihood 

function, i.e., the probability of observing the evidence if is known; nr0 () is the prior distribution 

for 0, i.e., the probability distribution for _ prior to observing the evidence; and the denominator 

on the right hand side of the equation is just a normalization constant.
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While it may appear to be complicated, application of Equation (6) is straightforward in many 

practical cases. Consider the situation where we are estimating the failure rate (frequency) of a 

component, X, and the evidence consists of an observation of R failures in a specified time 

interval T. The likelihood function is then the Poisson distribution as given by Equation (1); 

removing constants that appear in the numerator and denominator, Bayes' Theorem becomes: 

R X-T 
1 JR,T) = (7) 

f ?R e-•T M (X)dk 
0 

which has analytical solutions for some forms of the prior distribution, and which can be solved 

numerically using simple tools (e.g., spreadsheets or equation solving software) for arbitrary 

forms of the prior distribution. (The development of the prior distribution requires judgment, 

especially in the case where the data are sparse. Practical approaches are discussed in the 

paper by Siu and Kelly which is included in the list of references at the end of this paper. It is 

worth noting that for reasonable prior distributions, the precise shape of the distribution is 

unimportant when large amounts of data are available.) 

It is important to observe that the likelihood function represents the aleatory model for the 

observable variable. In the above case, the observable variable (R), is assumed to be the 

result of a Poisson process; the Poisson distribution (which has the single parameter X) is then 

appropriate for the likelihood function. To expand on this point, consider a slightly more 

complicated case where the observable variable, denoted by C, is assumed to be: a) random, 

and b) the result of a lognormal process, i.e., the aleatory uncertainties in C are quantified by a 

lognormal distribution. Assume an experiment is performed which results in N observations of 

C. Bayes' Theorem is then 

N 

) 71(ý401C1,...CN) _= i =1 (8) 

ffI-I7J c~ .ep- [encJt j m,,( ad 
-- 0 i=1j7 ntci C 

where g and a are the two parameters of the lognormal distribution and are related to the mean 

and variance of C. This equation can be solved using relatively simple software tools. An 

example is provided in Appendix C.  

When the evidence is in more complicated forms (e.g., expert opinions), the use of Bayes' 

Theorem is not as straightforward. In such cases, current PRAs generally employ less formal 

procedures, e.g., subjective estimation of the probability distribution based on considerations of 

sample averages and ranges. Bayes' Theorem is an important tool for ensuring that the 

analyst updates his/her state of knowledge concerning the uncertain parameter in a manner 

consistent with the laws of probability, but it is just a tool.
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Summary Points Uncertainty Concepts

9

* Uncertainties in a variable are treated in PRAs as being aleatory when the variable is 
assumed to be the result of a random process, i.e., repeated trials of a thought 
experiment will lead to a distribution of values for the variable.  

Uncertainties in a variable are treated in PRAs as being epistemic when the variable is 
assumed to be deterministic, i.e., repeated trials of a thought experiment will lead to a 
single value for the variable.  

The distinction between aleatory and epistemic uncertainties is not always clear; drawing 
the line between the two is generally a modeling decision.  

* PRAs generally address aleatory uncertainties in the behavior of model elements through 
the X and 0 parameters. The aleatory uncertainties in overall plant behavior are 

addressed using the CDF and LERF parameters; these are functions of the V's and 4's.  

The epistemic uncertainties in the V's and ý's are propagated through the PRA model to 
develop epistemic distributions for CDF and LERF 

The formal approach for quantifying epistemic uncertainties in the V's and 4's (or any 
other model parameter) involves the use of Bayes' Theorem. This is a straightforward 
process for many practical situations, and can be accomplished using spreadsheets or 
simple equation solving software.



Integrated PTS Analysis

To develop estimates of CDF and LERF associated with PTS, we know that thermal hydraulic 
(T/H) uncertainties and probabilistic fracture mechanics (PFM) uncertainties must be addressed 
in an integrated PRA framework. But how should this be done? Which uncertainties are 
aleatory? Which are epistemic? How should the results be presented? What does this mean 
in terms of the computational process used to generate the results? 

This section proposes a particular approach for dealing with these questions. As indicated at 
the beginning of this paper, the intent is to provide an initial view and thereby stimulate 
constructive discussion. A final position cannot be developed without input from the PFM and 
T/H domain experts.  

The Problem 

Figure 6 shows a highly simplified view of the PTS problem with respect to the issue of CDF.  
(The discussion for LERF follows along very similar lines.) Using conventional PRA tools (e.g., 
event trees and fault trees), the scenarios resulting in PTS-related challenges to a particular 
reactor vessel (RV) at a particular plant can be identified and their frequencies (denoted in the 
figure by X,, i = 1,2,...,n) estimated. These frequencies characterize the aleatory uncertainties 
associated with the occurrence of the PTS challenge scenarios. Conventional PRA tools (e.g., 
Monte Carlo or Latin Hypercube sampling) can also be used to generate distributions 
quantifying the epistemic uncertainties in these frequencies.  

Consider the ith PTS challenge scenario defined by the PRA. Using PFM models and 
judgment,4 we can estimate Oi, the conditional probability of vessel failure and core damage due 
to PTS, given the ith scenario. The parameter 0, is a measure of the aleatory uncertainty in 
the response of the vessel to the PTS challenge scenario. It is perhaps best interpreted as 
the fraction of times PTS-induced core damage will be observed, given a large number of 
challenges of the type defined by scenario i. Care needs to be taken in defining which PFM 
uncertainties contribute to 4,, and which contribute to the epistemic distribution for ,i.  

Before discussing a proposed treatment of aleatory and epistemic uncertainties in PFM which is 
based on the discussions provided earlier in this paper, we first need to address the question of 
why there should be a Oi term at all. In other words, is the behavior of the reactor vessel 
deterministic, given the ith PTS challenge scenario? 

4Judgment comes in when we are deciding what PFM endpoint is equivalent to core 
damage. Some possible endpoints are, in order of decreasing conservatism and increasing 
PFM uncertainty: RV crack initiation, RV through-wall crack, and catastrophic RV failure (i.e., 
failure of the RV beyond the capacity of available makeup). The general discussion in this 
paper is intended to cover all of these endpoints; the specific examples employed focus on 
crack initiation.
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Figure 6 - Simplified PRA Representation of PTS Problem 

I believe that variability in the response of the reactor vessel should be expected. This 

variability certainly arises because of the manner in which the PRA defines the PTS challenge 

scenarios. It may also arise due to modeling simplifications in the PFM analysis, even for such 

relatively well defined problems as crack initiation.  

Consider first the issue of scenario definition. The PTS challenge scenarios identified by 

conventional PRAs are defined in terms of initiating events (e.g., steam line breaks) and 

successes or failures of mitigating equipment and actions (e.g., isolation of main feedwater on 

demand). Two important modeling approximations in this characterization are: a) all equipment 

and operator behaviors are treated as being binary (either successful or failed), and b) the 

timing of events is important only to the extent that it affects the definition of "success" or 

"failure." The T/H response of the plant to the initiating event is clearly affected by these 
issues.  

For example, a PRA might treat two states of a pressurizer PORV block valve: the block valve 

closes (on demand), and the block valve fails to close. If the block valve only closes midway or 

takes too long to close, the PRA might (depending on the precise success criteria employed) 

treat these as being equivalent to a situation where the valve gate doesn't move at all.  

However, these different situations could lead to different temperature and pressure transients, 
and, therefore, different reactor vessel responses.  

As another example, each initiating event treated in the PRA actually represents a set of 

potential accident initiators. For instance, the PRA groups steam line breaks of different sizes 

and locations. Again, these differences could lead to different temperature and pressure 

transients and different reactor vessel responses.  

In general, it can be seen that each PRA-defined scenario actually represents a bundle of 

possible T/H scenarios. Even if reactor vessel behavior were a deterministic function of the T/H 

scenario, an experiment involving multiple occurrences of a particular PRA-defined PTS
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challenge scenario would be expected to lead to multiple outcomes due to variations in the T/H 
scenarios included in the PRA scenario.  

Next consider the behavior of the reactor vessel. It is for the PFM analysts to decide if there 
can be any significant variations in the response of a specified reactor vessel to a well-defined 
T/H scenario. However, if the current PFM approach5 includes models for material behavior 
that do not explicitly account for all potentially important factors (see the scatter data for K1J), 
then vessel behavior could vary, even if all PFM model input parameters (including those 
defining the T/H scenario) are fixed.  

Based upon the preceding arguments, it appears that the concept of aleatory uncertainties in 
the behavior of the reactor vessel when subjected to a PTS-challenge scenario (as defined by 
the PRA) is valid. The term 4, is therefore relevant and needs to be estimated.  

Analysis Interfaces 

Before discussing a proposal concerning how Oi is to be estimated, a short discussion on the 
interfaces between the PRA, T/H, and PFM analyses is useful. This will provide a context for 
the discussion on estimation.  

Figure 7 outlines a conceptual approach for defining the interfaces. In this approach, a PRA 
analysis (with some input from T/H analyses, e.g., regarding system success criteria) defines 
the PTS challenge scenarios in terms of initiating events (IEs) and associated 
equipment/operator successes and failures, and then estimates the frequencies (X,) of these 
scenarios.6 These PRA scenario definitions and frequencies are provided to a T/H analysis.  
For each PRA scenario, a set of representative T/H scenarios is defined (with some additional 
input from the PRA analysis, e.g., regarding the likelihood of various failure times). Each 
representative T/H scenario, which is chosen to represent a bundle of similar T/H scenarios, is 
assigned an appropriate fraction of the PRA scenario frequency, and is analyzed using an 
appropriate T/H model. (Note that the effect of aleatory uncertainties in key T/H parameters, if 
any, should be factored into the T/H scenario frequencies; the effect of epistemic uncertainties 
in key parameters should be addressed through the epistemic uncertainties in both the scenario 
frequencies and the T/H output for each T/H scenario.) The results of each T/H scenario 
analysis, together with an estimate of the scenario frequency, are then provided to a PFM 
analysis. The PFM analysis then generates an estimate of 0j." The Oi are then combined with 
the X. in an integrated assessment of CDF (shown) and LERF.  

'Ail references to the "current PFM approach" refer to the proposed Method 2 presented 
at the joint NRC-industry meeting on PTS held on April 20, 1999 and discussed in subsequent 
NRC meetings.  

6The estimation process is assumed to include the quantification of epistemic 
uncertainties.  

7A decision needs to be made whether some reactor vessel endstate is going to be used 
to represent core damage, or if additional analysis between, say, through-wall crack 
propagation, and core damage is to be performed.
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This approach appears to be nearly identical to that discussed at the April 30, 1999 and June 9, 
1999 NRC meetings on PFM/PRA integration. Two minor differences are as follows. First, the 
proposed approach'requires a slightly different aggregation of results (on a PRA scenario basis, 
rather than on an overall basis). Second, it requires that PRA scenario frequencies be explicitly 
allocated to the constituent T/H scenarios in a manner consistent with the PRA model.  

Proposed Approach for Estimating 1, 

The PFM variables and parameters considered as being uncertain in the current approach to 
PTS are listed in Table 1. (This table is based on discussion at the June 9, 1999 NRC meeting 
on PFM/PRA.) My understanding is that the uncertainties in the variables and parameters listed 
as being "inside FAVOR," as well as the uncertainties in the T/H scenarios (each T/H scenario 
is effectively assigned a probability), are currently being addressed via Monte Carlo simulation 
in two ways (see Figure 8). First, most of the Table 1 variables and parameters (e.g., copper 
content, fluence, flaw size) are sampled to characterize a particular reactor vessel. Second, the 
possible T/H scenarios are sampled to estimate what fraction of these scenarios will lead to the 
failure of the given vessel. As shown in Figure 8, the first (reactor vessel-related) round of 
sampling effectively treats the sampled variables as being deterministic; the associated 
uncertainties are therefore epistemic. The second (T/H-related) round of sampling effectively 
treats the sampled variables as being random; the associated uncertainties are therefore 
aleatory. (Note that in Figure 8, the "0" and "PFM" terms correspond to the "X" and "0" terms, 
respectively, of this paper.) 

Table 1 - Uncertain Variables and Parameters in PFM 

Inside FAVOR' Outside FAVOR' 

copper content weld residual stresses 

nickel content cladding thickness 

neutron fluence stress-free temperature 

flaw size flaw size distributionsb 

flaw location flaw density" 

RTNDT margin T/H pressure-temperature curveb 

reactor vessel temperature 

reactor vessel stress 

K, 

Kic scatter 

"Based on current version of FAVOR 
bMight be able to move inside FAVOR without modifying loading/stress intensity libraries
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This section of the paper re-examines the variables and parameters listed in Table 1 in light of 
the philosophical discussion provided in the first section of the paper. It then provides 
recommendations as to whether their uncertainties should be categorized as being aleatory, 
epistemic, or both. 8 It concludes with a discussion of the implications of any changes in 
categorization on FAVOR.  

Modeling Observations and Assumptions Concerning the Reactor Vessel 

As mentioned early in this paper, the distinction between aleatory and epistemic uncertainties 
is, to some degree, a matter of modeling. The discussion therefore starts with some modeling 
observations and assumptions that will be used to provide a basis for the discussion on 
uncertainty-based categorization.  

First, it should be recognized that, under the current PTS program, analyses will be performed 
for a set of specified plants and reactor vessels. Thus, the although the results will be used in 
developing a generic screening criterion, the analyses themselves are not generic.  

Second, looking at a specific reactor vessel, the vessel's material properties are essentially 
deterministic. In other words, the concept of "the true value" for such variables as the copper 
content at a specified point9 is meaningful, whether or not there are problems with our current 
ability to reliably measure those variables. Other reactor vessel spatially dependent physical 
characteristics that can be viewed as being deterministic on a pointwise basis are the weld 
residual stresses, the vessel cladding thickness, and flaws in the vessel. Regarding the latter, it 
appears that the flaws in the reactor vessel are those created during manufacturing, i.e., non
catastrophic operational transients cannot initiate or propagate flaws with any significant 
likelihood. If this observation is incorrect, then random variations in the timing and magnitude 
of such transients would then lead to random variations in flaw density, size, and location.  

Regarding external influences on the reactor vessel prior to the PTS challenge, it seems 
reasonable to assume that the spatially dependent neutron fluence can be treated as being 
deterministic. (There are random fluctuations in neutron flux, but time averaging will tend to 
smooth out these fluctuations.) Regarding external influences during the challenge, it seems 
that reactor coolant temperature and pressure can also be treated as being deterministic, i.e., 
that the impact of random fluctuations will be small (due to vessel thermal and mechanical 
inertia).  

Third, many of the reactor vessel properties and external influences will vary with location 
(r,e,z). This means, for example, that a sampling of the copper content over a specified vessel 
subregion will result in an empirical distribution of values for that property. (This distribution can 
be fairly broad and can be multimodal.) It should be emphasized that the existence of a 
sampling distribution reflects aleatory uncertainty in the sampling process. It does not 
necessarily mean that the pointwise values are themselves random.  

8Random variables whose distributions are uncertain have both aleatory and epistemic 
uncertainties.  

9The "value of a continuously distributed variable at a point in the reactor vessel" is 
understood to mean the average value in a suitably small subvolume about that point.
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Proposed Categorization of Uncertain Variables and Parameters

The following proposals concerning the categorization of the variables and parameters listed in 
Table 1 are based upon the preceding observations and assumptions 

* Copper Content: Epistemic 

In the current PFM approach, which is done on a subregion basis, the copper content is 
sampled once per flaw. This is done because the concern is not with the average 
copper content in the entire subregion (whose characteristic dimensions can range from 
several centimeters to even a few meters), but rather with the copper content local to 
the flaw (and at the time of the PTS challenge). The sampling is done using a 
distribution derived from empirical data. As noted earlier, the procedure essentially 
treats the uncertainties in copper content as being epistemic in nature.  

Both the flaw location and the local copper content are, in principle, deterministic. (They 
are essentially determined when the vessel is manufactured.) Thus, it seems 
reasonable (i.e., consistent with the principles described in the first part of this paper) to 
treat the uncertainty in the copper content as being epistemic. Sampling based 
distributions can be used to quantify epistemic uncertainties,'" but they should not be 
used as aleatory distributions. Note that the current assumption that the uncertainty 
distribution for copper content is Gaussian may need to be revisited; the investigation 
can be done in a straightforward manner using standard statistical tools.  

* Nickel Content: Epistemic 

See the discussion for copper content.  

* Neutron fluence: Epistemic 

In the current PFM approach, the neutron fluence is sampled once per flaw (to support 
the calculation of the extent of embrittlement near the flaw). The sampling is done using 
a distribution derived from expert judgment concerning the accuracy of neutronics 
calculations. The procedure essentially treats the uncertainties in fluence as being 
epistemic in nature.  

As argued earlier, although there are random fluctuations in the neutron flux (and 
therefore fluence), the time averaging used to calculate the fluence should tend to 
reduce the impact of these fluctuations. It therefore appears reasonable to treat the 
uncertainty in the fluence as being epistemic in nature. Expert judgment, which could 
involve a more detailed treatment which explicitly addresses the key sources of 
uncertainty, can be used to quantify the uncertainty.  

* Flaw size: Epistemic 

"i1n cases where the assessor chooses to use the sampling distribution directly as a 
representation of his/her state of knowledge, they are numerically identical.
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In the current PFM approach, uncertainties in the crack geometry are effectively treated 
being treated as being epistemic in nature. Since non-catastrophic operational 
transients al~parently have little effect on flaw initiation or growth, it appears that the 
geometry of a given flaw should be deterministic. (It is essentially determined when the 
vessel is manufactured.) Therefore, it appears reasonable to treat the uncertainties in 
flaw size as being epistemic. As is the case with copper and nickel content, sampling 
based distributions can be used to quantify the epistemic uncertainties in flaw size, but 
they should not be used as aleatory distributions.  

* Flaw location: Epistemic 

See the preceding discussions on copper content and flaw size.  

* RTNDT marin: Epistemic 

In the current PFM approach, this term is used to account for uncertainties in both the 
initial, unirradiated value of RTNDT, i.e., RTNDTO, and uncertainties in the correlation used 
to predict the neutron radiation-induced shift in RTNDT, i.e., ARTNDT. As with most of the 
other variables and parameters discussed, the uncertainties are treated as being 
epistemic in nature.  

This treatment appears to be reasonable. The parameter RTNDTO is derived 
experimentally under a specified protocol. For the purposes of the PTS analysis, it 
appears that it can be considered as a material property. This means that the 
uncertainties in RTNDTO can be treated as being epistemic. For similar reasons, the 
parameter ARTNDT can also be considered as a material property, and its uncertainties 
can be treated as being epistemic in nature.  

Note that the comparison of correlation results for ARTNDT with experimental data will 
lead to a sampling distribution for error in the correlation (due to the effect of factors not 
included in the correlation). This sampling distribution can be used to develop the 
epistemic distribution for ARTNDT, but it should not be taken to mean that ARTNDT at a 
given point (the location of the flaw) is itself aleatory.  

Also note that the correlation for ARTNDT requires values of copper content, nickel 
content, and fluence, all of which are uncertain. Estimation of the uncertainties in 
ARTNDT due solely to modeling needs to be done recognizing these uncertainties.  
Bayesian methods have been developed to address this problem.  

* Reactor vessel temperature: Deterministic 

In the current PFM approach, the spatial distribution of temperature inside the reactor 
vessel is computed deterministically based on the temperature-time curves provided by 
the T/H analysis. (Presumably, the heat transfer coefficients and material thermal 
properties, e.g., thermal diffusivities, are assumed to be constant.) Uncertainties in the 
T/H input will lead to uncertainties in the vessel temperature, but there are no other 
sources of uncertainty considered.
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Unless the effect of uncertainties in the heat transfer coefficients and the material 

thermal properties are believed to be important, there is no need to perform any 

additional sa'mpling.  

* Reactor vessel stress: Deterministic 

In the current PFM approach, the spatial distribution of stress inside the reactor vessel is 

also computed deterministically (based on a number of factors, including the time

dependent temperature profile, the vessel geometry, and the weld residual stresses.) 

Unless there are any significant uncertainties in these calculations, there is no need to 

perform any additional sampling.  

K,: Deterministic 

This variable is currently computed deterministically as a function of other variables.  

Unless it is postulated that the computation process itself introduces additional 

uncertainties, there is no need to perform any additional sampling.  

* K& scatter: Aleatory and Epistemic 

In the current PFM approach, the scatter in K,, is sampled once per time step for each 

flaw. (The sampling distribution is based on a comparison of Kic predictions with 

experimental data.) Based on when the sampling is done (KI, is a function of local 

temperature, which is a function of the thermal hydraulic transient), it appears that the 

uncertainties in K,, are being treated as being aleatory in nature.  

At first glance, it appears that K1 , which is computed as a function of T - RTNDT, is a 

temperature-dependent material property and should therefore be deterministic (at a 

given point). However, consider the crack initiation model which uses Kic. This model 

predicts crack initiation whenever K,, which is a computed function of a number of 

factors (e.g., crack geometry and applied stress), exceeds Kjc. Applying this model to 

experimental results, it would not be surprising for the model would be correct for some 

trials and incorrect for others. (The graph showing variability in Kic for fixed values of T 

RTNDT may be an indication of this aleatory uncertainty. Note that models, by definition, 

are simplified representations of the real world, and generally don't address all factors 

that can potentially affect the results.) Thus, although the uncertainties in K0c are 

epistemic, there are aleatory uncertainties in the results of the model which uses K,c.  

Note that in a mathematically analogous problem involving aging-related failures of 

piping, Apostolakis (1999) argues that model uncertainty should be treated as being 

epistemic in a PRA. It is currently planned that a small task group reinvestigate the 

treatment of the scatter in K,,. The task group will need to determine if the current PFM 

distribution for K,, appropriately addresses the model uncertainty and how epistemic 

uncertainties in the model should be addressed.
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0 Weld residual stresses: Epistemic

In the current PFM analysis, these are treated as being deterministic. (They affect the 
finite element stress calculations, and therefore cannot be easily incorporated into the 
current computational scheme used by FAVOR to address uncertainties.) 

Since weld residual stresses are essentially determined at the time of vessel 
manufacture, the uncertainties in these stresses are epistemic in nature. Given the 
difficulty of addressing these uncertainties within FAVOR, a scheme for doing this 
outside of FAVOR is outlined later in this section.  

* Cladding thickness: Epistemic 

In the current PFM analysis, this is treated as being deterministic. (It affects the finite 
element stress calculations, and therefore cannot be easily incorporated into the current 
computational scheme used by FAVOR to address uncertainties.) 

Since the vessel dimensions (including the cladding thickness) are essentially 
determined at the time of vessel manufacture, the uncertainties in this thickness (for a 
given subregion) are epistemic in nature. Given the difficulty of addressing these 
uncertainties within FAVOR, a scheme for doing this outside of FAVOR is outlined later 
in this section.  

* Stress-free temperature: Epistemic 

In the current PFM analysis, this is treated as being a deterministic parameter.  
Presuming that, for a given reactor vessel, there is a temperature at which the stress 
between the cladding and the vessel base material is zero, it appears that this treatment 
is reasonable. The uncertainties in the parameter are, therefore, epistemic.  

* Flaw size distributions: Epistemic 

In the current PFM analysis, uncertainties in the flaw size distribution (e.g., regarding its 
shape and parameter values) are not treated. Since, as noted earlier, the uncertainties 
in the flaw characteristics are epistemic in nature, the uncertainties in the distribution of 
characteristics is also epistemic. From a computational point of view, the proposed 
treatment of flaw characteristics accounts for uncertainties in the flaw size distribution; 
no additional treatment is needed.  

* Flaw density: Epistemic 

Following the discussion of other flaw characteristics, the flaw density is determined at 
the time of vessel manufacture and the uncertainties in this density are epistemic.  

* T/H pressure-temperature curve: Aleatory and Epistemic 

In the current PFM analysis, T/H uncertainties are used directly in the computation of 
the 0; this procedure treats the T/H uncertainties as being aleatory.
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The proposed treatment of T/H uncertainties has been discussed earlier in this paper. It 

recognizes that there is an aleatory component (quantified by the frequency of the 

parent PRA ,c~narios and the fraction of this frequency associated with the bundle of 

T/H scenarios modeled through the use of a single representative T/H scenario) and an 

epistemic component (quantified by distributions for the T/H scenario frequencies and 

the conditional T/H model output).  

Table 2 summarizes the results of the preceding discussions on the categorization of uncertain 

PFM variables and parameters. In general, the conceptual treatment of uncertainties in the 

variables and parameters used by the current PFM approach appears to be consistent with the 

principles described in the first part of this paper (although a PRA-based description would 

describe the process somewhat differently1 '). The impact of changes in categorization are 

discussed in the following section.  

Implications for FAVOR 

Table 2 shows that, from the standpoint of PFM uncertainty analysis, four classes of 

variables/parameters have been identified.  

1. Variables/parameters which do not need to be explicitly included in sampling schemes 

used to perform the uncertainty analysis. These are generally deterministic functions of 

other uncertain variables/parameters. Uncertainties in these will be automatically dealt 

with as part of the uncertainty analysis process.  

2. Variables/parameters which have both aleatory and epistemic uncertainties. The 

epistemic uncertainties can be addressed within FAVOR.  

3. Variables/parameters which have epistemic uncertainties. The epistemic uncertainties 

can be addressed within FAVOR.  

4. Variables/parameters which have epistemic uncertainties. The epistemic uncertainties 

cannot be addressed within FAVOR (at least without considerable restructuring of the 

code).  

The discussion in the previous section and Table 2 show that the current PFM categorization of 

variables and parameters is generally reasonable. Furthermore, Figure 8 shows that the 

computational approach used by FAVOR appropriately distinguishes between aleatory and 

epistemic uncertainties. Thus, the following points, which address recommended changes in 

the PFM uncertainty analysis, do not appear to require significant changes in the FAVOR code.  

"For example, as noted earlier in this paper, the term "stochastic" is typically used in the 

PRA literature to refer to random or aleatory issues. My understanding is that the process of 
"stochastically generating vessels" actually addresses epistemic uncertainties. I recommend 

that future descriptions of the PFM analysis use the terminology of this white paper.
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Table 2 - Recommendations for Categorization of Uncertain Variables and Parameters in PFM 

Variable/Parameter Recommended Uncertainty Category" 

copper content epistemic 

nickel content epistemic 

neutron fluence epistemic 

flaw size epistemic 

flaw location epistemic 

RTNDT margin epistemic 

reactor vessel temperature deterministicb 

reactor vessel stress deterministicb 

K, deterministicb 

Kic scatter aleatory and epistemic 

weld residual stresses epistemic 

cladding thickness epistemic 

stress-free temperature epistemic 

flaw size distributions epistemicc 

flaw density epistemic 

T/H pressure-temperature curve aleatory and epistemic 

'Underline indicates a change from the current PFM approach.  
bVariable is a deterministic function of other, uncertain variables; no additional treatment of 

uncertainty is required.  
cUncertainties in flaw size distribution should be addressed as part of the uncertainty analysis 

for flaw size.  

0 Category 2 Variables and Parameters: K&c scatter and T/H temperature/pressure 

In general, the parameters of aleatory distributions are uncertain. If these uncertainties 
are significant (methods for quantifying these uncertainties were discussed in the first 
section of this paper), they need to be addressed in the sampling process. This can be 
done in a very straightforward manner within the FAVOR code.  

Assume, for example, that the distribution of K, is lognormal with uncertain parameters 
gi and a. At the time FAVOR is sampling the reactor vessel parameters (e.g., copper 
content, which have epistemic uncertainties), it should also sample a value for gi and a 
value for cy. Then, when FAVOR is actually sampling for Kc, it should use the sampled 
values of l. and a in defining the lognormal distribution for K,,.
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* Cateqory 4 Variables and Parameters: weld residual stresses, cladding thickness, and 

stress-free tbmperature 

Although the epistemic uncertainties in these variables and parameters are 

fundamentally of the same nature as the epistemic uncertainties in other variables and 

parameters, it appears for computational efficiency reasons that they should be 

addressed outside of the FAVOR code. It appears that this can be done relatively 

simply using Latin Hypercube Sampling (LHS) techniques; LHS is used to define sets of 

inputs (with appropriate probability weights) that are then provided to FAVOR.
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'Summary Points - Integrated PTS Analysis 

The proposed approach for integrating PRA, T/H, and PFM analyses described in this 
paper (see Figure 7) is nearly identical to that discussed at the April 30, 1999 and June 

9, 1999 NRC meetings on PFM/PRA integration. Two minor differences are: 1) the 

proposed approach requires the aggregation of results on a PRA scenario basis, rather 

than on an overall basis; and 2) the approach requires that PRA scenadio frequencies be 

explicitly allocated to the constituent T/H scenarios in a manner consistent with the PRA 
model.  

Although it doesn't use the same terminology, the uncertainty analysis framework 
employed by the current PFM approach correctly distinguishes between epistemic and 
aleatory uncertainties.  

* The current PFM categorization of uncertain PFM variables and parameters (in terms of 

whether the uncertainties are epistemic, aleatory, or both) appears to be generally 
reasonable. A few changes in categorization are recommended (see Table 2). Some of 

these changes can be addressed within the current FAVOR code; others will need to be 

addressed outside of the code.  

"• The quantification of aleatory uncertainties in Kc and of the epistemic uncertainties in this 

distribution needs to be looked at further.  

"• The current quantification of uncertainties for many of the PFM variables and parameters 
can be updated using relatively simple tools.
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Appendix A - Probability Definitions and Concepts

Probability 

Probability is a subjective (internal) measure of likelihood.' Thus, P{A} is the quantity that 
measures the assessor's degree of certainty (or uncertainty) as to the truth of proposition A.2 

P{AIB}, the conditional probability of A, given B, measures the assessor's belief that proposition 
A is true, given (assuming) that proposition B is true. Some important observations are as 
follows: 

1. Although there is no "true" or "correct" probability for a given proposition, useful 
probabilistic assessments are not arbitrary; they must adhere with the rules established 
by the calculus of probabilities. It turns out that this requirement forces convergence of 
subjective and frequentist probabilities when there is a large amount of data.  

2. For a probability to be meaningful, the proposition must be carefully defined. Lack of 
clarity can lead to misunderstandings and misuses of probabilistic analysis results.  

3. All probabilities are conditional; they are all based on the assessor's current state of 
knowledge concerning the proposition in question. As that state of knowledge changes, 
the (conditional) probability of the proposition changes as well.  

4. The definition of probability does not distinguish between "aleatory" and "epistemic" 
uncertainties. Uncertainties of both types contribute to the overall probability. However, 
they contribute in different manners, as illustrated by an example at the end of this 
appendix.  

Probability Distributions 

Let X be a continuous variable (e.g., the copper content at a specific point in the reactor vessel) 
whose precise value is unknown. Some generic propositions of interest are: 

{X :5;X} 
{X >x} 
{x 5X <x+AX} 

where x is a given value. The probabilities of these propositions being true clearly can change 
as functions of x. Because of their usefulness, these functions have been given specific 
names: 

'Although there are other definitions of probability, e.g., the "frequentist" definition which 
takes the probability to be the limiting ratio of successes to trials in an infinite series of 
repeatable, identical experiments, the subjectivist definition is appropriate for use in PRA, as it 
is an integral part of current theories on decision making under uncertainty.  

2A proposition is a statement that is either true or false.
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Cumulative Distribution Function (CDF): F(x) -P{X _< x}

Complementary Cumulative Distribution Function (CCDF): F(x) =- P{X > x} 

Probability Density Function (pdf): f(x) - r lim P{x X <x +Ax} 
Ax--0 AX 

Some useful relationships following from these definitions and the axioms of probability are 
given in Table A.1.  

It is important to observe that all of the above distribution functions are probabilities which 

quantify the assessor's subjective beliefs as to whether the true value of X lies in a specified 

range. Thus, for example (see Figure A.1), a highly peaked pdf indicates that the assessor is, 

correctly or incorrectly, very confident in his knowledge about X; a more shallow pdf indicates a 

lower level of confidence.  

high 
confidence 

f(x) 

confidence 

x 

Figure A.1 - Probability Density Functions (pdfs) and Confidence 

It should also be noted that neither the definitions of distributions nor the relationships in Table 

A.1 are dependent on the particular form of the distribution. This means that, in principle, 

probability distributions do not have to members of any particular parametric family, e.g., normal 

(Gaussian), lognormal, gamma, Weibull, or exponential. However, for mathematical and 

computational convenience, it is often useful to approximate the assessor's distribution using a 

particular parametric form. Specific forms and their characteristics (e.g., mean value, variance, 

key percentiles) can be found in numerous handbooks and textbooks.  

The above discussion focuses on a single uncertain variable. Similar propositions and 

associated distribution functions can be developed for multiple uncertain variables, albeit with 

more complexity. In dealing with multiple variables, care needs to be taken that dependencies 

between the variables are accounted for because, in general, 

P{a_<X <b,c_<Y<d) #P{a<X <b}-P{c <Y <d}
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Table A.1 - Some Useful Relationships Between Distribution Functions

F(x) =1-F(x) 

F(x) = Jf(x')dx' 

b 

P{a• X <b} =F(b)-F(a) =ff(x')dx' 
a 

f(x) =dF(x) 
dx 

On The Meaning of Probability Distributions: Examples 

In probabilistic risk assessments (PRAs) and other probabilistic analyses, probability 
distributions are routinely used to represent the uncertainties in key variables and parameters.  
However, the meaning of each distribution, which is directly related to the specific proposition 
addressed by the distribution, is not always clearly specified. This can lead to 
misunderstandings or even misuses of the distributions and, therefore, of the analysis results.  

Example 1: Reactor Vessel Copper Content 

Define the variable C as the copper content (in weight percent) at the location of a specific flaw 
in a particular subregion of the vessel.3 From an engineering analysis perspective, it is 
reasonable to assume that there is a fixed, "true value" of C, whether or not there are problems 
with our current ability to reliably measure C. The proposition of interest, therefore, is that the 
true value of C lies in a specific range-of values, e.g., (c,c+Ac).  

For the sake of this simple example, assume that, following some data analysis (see Appendix 
C for example calculations), the assessor determines that his state of knowledge regarding C is 
adequately represented by a lognormal distribution function with a mean value of 0.20 and a 
standard deviation of 0.05. The pdf is shown in Figure A.2.  

'C is clearly a function of position; its explicit dependence on (r,e,z) is not shown for 
notational convenience.
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Figure A.2 - Copper Content Probability Density Function (Example) 

Using the properties of the lognormal distribution function, it can be shown that some of the key 
percentiles of this distribution are as follows.  

C05 = 0.129, i. e., P{C _< 0.129) = 0.05 

C50 = 0.194, i.e., P{C < 0.194) = 0.50 

C95=0.291, i.e., P{C<0.291}=0.95 

It can be seen that the assessor is very confident (with 95% probability) that the true (but 
unknown) value of C is less than 0.291. It also can be seen, using the third relationship in 
Table A.1, that the assessor is very confident (with 90% probability) that the true value of C lies 
between 0.129 and 0.291.  

Note that the uncertainties modeled by this distribution of C are purely epistemic and should be 
treated as such. If the uncertainties are treated in an analysis as being aleatory,4 this would 
imply that C could vary randomly over time (e.g., from pressurized thermal shock event to 
event), which contradicts the basic modeling assumption that there is a fixed, true value of C.  

Example 2: On Measurement Errors and Epistemic Uncertainties 

Consider a situation where the copper content of a particular sample is measured in a series of 
tests. It can be expected that random variations in the measurement process will lead to 
random variability, i.e., aleatory uncertainty, in the measurement outcomes, and that this 
variability can be represented by a distribution. Does this mean that the copper content is an 
aleatory variable? 

4Appendix B provides additional discussion on the treatment of epistemic and aleatory 
uncertainties in a probabilistic analysis.
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The answer depends on what is meant by "the copper content," i.e., what is the underlying 
proposition.  

If the proposition is that the value of the next measurement of copper content falls in some 
range, e.g., (c,c+Ac), the uncertainty in the truth of this proposition is indeed aleatory. (This 
follows directly from the description of the situation.) The observed distribution provides a good 
indication of what the next measurement might be, as long as key factors (e.g., the test 
procedure, the sample itself) are not changed.  

On the other hand, if the proposition is that the copper content at some specified (r,e,z) in a 
given reactor vessel falls in some range, then the model of the previous example still holds: the 
uncertainties in this copper content are epistemic. The distribution of measured values for the 
sample is evidence which affect the assessor's distribution for C(r,e,z), but it is not the 
assessor's distribution. Even if, as a practical matter, the assessor decides to make his 
distribution for C(r,e,z) numerically identical to the distribution of measured values, his 
distribution must be treated in subsequent analyses as being epistemic (rather than aleatory), 
or else the analysis will be inconsistent.
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Appendix B - Aleatory and Epistemic Uncertainties

Is It Important To Make The Distinction? 

In order to make most effective use of the results of any analysis, it is important that the user 

understand the fundamental modeling assumptions underlying the analysis. In particular, in the 

case of a probabilistic risk assessment (PRA), it is important to understand how the analysis 

deals with uncertainties that arise because of issues not explicitly modeled and those that arise 

because of imperfect knowledge concerning the issues that are explicitly modeled. This 

understanding will affect how the user perceives and uses the analysis results in subsequent 

decision making activities.  

Consider a situation where a reactor pressure vessel (RPV) could be subjected to a pressurized 

thermal shock (PTS) event. Assume the PTS event arrival is governed by a Poisson process 

and has characteristic frequency X. We are uncertain as to whether the RPV will fail because 

of a PTS event; the associated conditional probability of failure, given a PTS event, is 0.  

Depending on the interpretation of 0, the analysis user could have very different pictures of the 

situation.  

Two extreme interpretations are as follows (see Figures B.1 and B.2).  

1. The uncertainty quantified by 0 arises only because of issues not explicitly modeled 

(e.g., causal factors underlying differences in the timing of component actuations and 

failures, which, in turn, lead to different thermal hydraulic subscenarios) and is entirely 

aleatory. Under this treatment, if we hypothesize a very large number of PTS events, 

we would expect to see RPV failure for a fraction 0 of these events.  

2. The uncertainty quantified by 0 arises only because of imperfect knowledge regarding 

modeled processes (e.g., sparsity and relevance of data for the copper content at a 

specific point in the RPV) and is entirely epistemic. Under this treatment, the RPV will 

either fail or it won't, regardless of the number of challenges. Thus, for N hypothesized 

PTS events, one of two hypotheses will be true: i) there will be N RPV failures, or ii) 

there will be N RPV successes. The likelihood that the first hypothesis is true is 0; the 

likelihood that the second hypothesis is true is 1 - 0.  

Under the first interpretation, the expected number of PTS-induced RPV failures in a fixed time 

interval T is given by: 

E[# RPV failures in (0,T)linterpretation 1] =74T 

The probability of N such events is given by: 

P{N RPV failures in (0, T)lintepretation 1) = e7 4T 
N! 

Under the second interpretation, the expected number of events and the probability of N such 

events are given by:
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PTS 
Challenge

RV 
Good?

Scenario 
Frequency

RV 
State

X(1-4) Good 

xbfI Failed

Figure B.1 - Risk Model for Aleatory Interpretation of RPV Conditional Failure Probability 

Probability = I - )

PTS 
Challenge

PTS 
Challenge

RV 
Good?

Scenario 
Frequency

0

RV 
Good?

RV 
State 

Good 

Failed

Scenario RV 
Frequency State 

0 Good 

x Failed

Figure B.2 - Risk Model for Epistemic Interpretation of RPV Conditional Failure Probability
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E[# RPV failures in (0,T)I interpretation 2] =?4T 

P{N RPV failures in (0,T)Iintepretation 2} =4. (T)N eN! 

It can be seen that if the user only cares about the expected number of events in a fixed time 
interval T, both interpretations will lead to the same value: 4T. However, if the user has a non
linear consequence function for PTS-induced RPV failure (e.g., if one event is barely tolerable 
but two events spell utter doom), the differences in interpretation can make a difference.  

Reinforcing the points raised above, Apostolakis (1999) points out that the distinction between 
aleatory and epistemic uncertainties can make a difference at the detailed technical analysis 
level. In particular, he questions the concept of a failure rate for components when the failure 
mechanisms are essentially deterministic (albeit, with uncertain governing parameters). The 
problem involves the passive failure of an aging pipe under steady-state load conditions, and 
corresponds mathematically to the situation shown in Figure B.2.  

In general, it might be expected that there are aleatory and epistemic contributions to the RPV 
conditional failure probability. Operational issues in dealing with such situations are discussed 
in the following section.  

Treating Aleatory and Epistemic Uncertainties 

For situations where there are aleatory and epistemic contributions to uncertainty, these 
contributions need to be separated for the reasons discussed above. In our example of the 
PTS-induced RPV failure, this separation is shown in Figure B.3. The aleatory contribution (4') 
is dealt with in the event tree (i.e., as a "conditional split fraction"). The epistemic uncertainty in 
0' is treated when epistemic uncertainties are propagated through the event tree model.  
Neglecting the epistemic uncertainties in X for simplicity, the expected number of failures and 
the probability of N events are given by: 

1 

E[# RPV failures in (0,T)] =XT. f qJ 7(')d' =?X T.E[q'] 
0 

P{N RPV failures in (0,T)} T (2'-;T)N! 
0 

where ir(o') is the epistemic pdf for 0'. Note that 0, the overall conditional probability of PTS
induced RPV failure given a PTS event, is given by: 

1 

f q 0'()dO' =E['] 
0
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PTS RV 
Challenge Good?

Scenario RV 
Frequency State 

W-0' Good 

X' Failed

X%ý I

Figure B.3 - Risk Model for General Interpretation of RPV Conditional Failure Probability 

A Computational Note 

In situations where Monte Carlo sampling is used to address both aleatory uncertainties and 
epistemic uncertainties, it is still important to treat these two contributions separately. In the 
example of the PTS-induced RPV failure probability, an appropriate approach is illustrated in 
Figure B.4. Here, an inner sampling loop is used to estimate 0', which is conditioned on a 

number of deterministic (but unknown) parameters, represented by the vector (0. (Recall that •' 
quantifies the aleatory uncertainties in RPV failure.) The epistemic uncertainties in the 
deterministic parameters, represented by the joint distribution nt(o) are addressed via an outer 
sampling loop. (This is the so-called "propagation of uncertainties" phase of the PRA.) Failure 
to properly perform this sampling (e.g., by addressing epistemic uncertainties in the inner loop) 
will lead to confusion in the interpretation of results.
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Use histogram 
for (4•') to develop 7•(X.') 

Figure B.4 - Schematic of Sampling Scheme for Addressing 
Aleatory and Epistemic Uncertainties
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Appendix C - Example Application of Bayes' Theorem for A Lognormal Variable 

Problem 

Consider a situation where C, a random variable, is believed to be lognormally distributed. In 
other words, the likelihood that C takes on a value in any specified range, e.g., (c,C+Ac), is 
governed by a probability density function (pdf) of the form 

f(cd p.,• ) = =-1 exp[p 

where g and a are parameters of the distribution. Note that the mean value and variance of C 
can be determined from g and a, if they are known: 

E[C] = e +°'sa2 

Var[C] = (E[C]) 2 (e02 - 1) 

In general, g and a are not known and must be estimated based on available data.  

Assume that there are N data points for C: {c¶,c 2 .... CN}. If N is large, g and a can be estimated 
using a number of different methods (e.g., the method of maximum likelihood, Bayes' 
Theorem). If N is small, Bayes' Theorem provides an appropriate tool. In the case of this 
example, Bayes' Theorem states that the joint distribution for Ii and a is given by: 

2t1I-C1..~C)= N 1 ____ -2" I2-ci exp 2 

where n0(p.,a) is the joint probability distribution for g and a prior to the collection of the data set 
{c¶,c 2,...,cN}. The predictive pdf for C, i.e., the pdf to be used for predictivb purposes, is the 
average lognormal distribution function, where the posterior distribution for g. and a is used as 
the weighting function.  

f(dC1,,...,CN) = Jf ff(cd JJ• () T1(p (dcI,..., cN)dcdýi 

-- 0
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Example Application

Consider the following data set:

Table C.A - Sample Data Set

i JCi (dimensionless) 

1 0.20 

2 0.13 

3 0.44 

4 0.18 

5 0.19

Sample Mean 

Sample Variance

0.228 

0.0118

Using a non-informative prior distribution (in this case, a distribution proportional to 1/a)', 
Bayes' Theorem and the predictive distribution for C can be readily evaluated using commercial 
spreadsheet or equation solving software. An example solution using Mathcad 6.0 is attached.  
The mean, variance, 5th, 50t', and 95W percentiles of the predictive distribution are as follows: 

E[C] = 0.23 
Var[C] = 0.018 
C05 = 0.076 
C50 = 0.21 
C95 = 0.57 

Computation Notes 

1. The Mathcad worksheet has been written for clarity of presentation and not 
computational efficiency. For example, the integration symbols used in the worksheet 
invoke the Mathcad-supplied automatic integrator. For the problem of interest, pre
computing the posterior distribution at a specified set of points and using a single-pass 
trapezoidal integration scheme will lead to results of comparable accuracy with 
significantly less computation time.  

'See for example G.E.P. Box and G.C. Tiao, Bayesian Inference in StatisticalAnalysis, 
Addison-Wesley, Reading, MA, 1973.
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2. The maximum likelihood estimates (MLEs) for g• and a can be found using the sample 
moments shown in Table C.1 and the relationships between E[C], Var[C], gI, and a 
specified earlier. Figure C.1 compares the pdf based on these estimates with the pdf 
developed using Bayes' Theorem. It can be seen that the MLE-based pdf is narrower; 
this is because the MLE-based pdf does not account for the uncertainties in gi and a due 
to the limited sample size.

Figure C.1 - Comparison of Bayesian and MLE pdfs
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Example Application of Bayes' Theorem for A Lognormal Variable 
Mathcad 6.0 Worksheet, Last Revised September 3, 1999

Data

N = length(C) 

i = 0..N - 1

mean(C) =0.228 

var(C) =0.0118 (Mathcad uses "0' as the first 
index of a vector/matrix)

Functions 

G 
Ipl -0.5 \/ l In (c) )21 

L(c4L,a) [I L.c i ng j2 
N-I 

i=O 

Initial Plot (Unnormalized Posterior Distribution)

(Prior distribution)

(Likelihood function - 1 data point) 

(Likelihood function - N data points)

k:= 0.. m (Linear grid for p and a)

himin = -2.5 11max:= -. 5 amin = .01 omax = 1.5

p. = min + 1-. (pmax - 1min) 
1 m 

itluj = LN(C.P. a )no(.~ 
(A plo of the unk) ae (postero isueu

k 
ak ý= amin -- (amax - amin) 

m

(A plot of the unnormalized posterior is useful 
for defining appropriate integration bounds.) 

Bayes' Theorem Inteqration Constant

k:= omax r pmax 
main J l.min

k = 85.986 

Normalized Posterior Distribution Function 

k

(Unnormalized posterior distribution)

nlu

0.20 

0.131 

C 0.44 

0.18 

0.19

m = 25 j = 0..m

LN(C ,g~, a).0:(lg,ac) dg do



Posterior Distribution Moments

E 2  F Com ax " pm ax 

ip = om in i 

Eg2 JF0 ax [Ilmax 
Ymin .tmin 

Ec2 = Iomax 
[,imax J omin i 1min 

[omax Fjmax 

Ej•i J E~ = j min ý,•gmin 

Corrpaa CovAOi 

FVarg~- Vara 

Eji =1.568 

VarE = 0.063 

Eo= 0.541 

Vara = 0.047 

CovliO =7.618.10-4 

Corrlc =0.014 

Predictive Distribution for C

Ai.nI (I±,o) dp do 

2 
A I' it(pI,a) djpdo

2 a . rIt(g~, a)dp da

(The moments of p and a are not needed 
to develop the predictive distribution but 
they can be useful. Note that the 
calculations would be more efficient if a 
precalculated posterior and a single-pass 
numerical integration scheme were used; 
the Mathcad automatic integrator is used 
for clarity of presentation.) 

Varl:= Et2 - E9 2

Vara := Eo2 - Eo 2

(la-)'tl (jIo) dpa do Covgo i= EpIa - Ep-Eo

(Mean value of p) 

(Variance of p') 

(Mean value of o) 

(Variance of a) 

(Covariance of p and a)

(Correlation coefficient: p and o)

npoint := 30 ii := 0.. npoint - I 

CPmin := 0.01 CPmax - 0.80 

ii 

CP.. -Crin/ (CPmax'ra 
ii C---in)

armax i .mai 

armin - min

(The pdf is calculated at 
specified points on a grid. A 
logarithmic grid is used here.)

I . exp[ 5..(i • .2 l ( g, a) d(gt dc )



fCP..  11

6 

4 

2

0 r 0 0.5

CR., 11 

Cumulative Distribution and Moments 

ij := L. npoint - 1 

FCP0  0 

FCP_ FCP_ + 0.5- (fCP.. sfC..- +_,) 
.10 A1i \JJ IX- \j3 I- CP I

(Plot of predictive pdf)

(Trapezoidal integration is used 
for ease and efficiency; CDF and 
moments can also be found using 
built-in integration functions.)

npoint - 1 

ECP = Z 0.5.(CP, A fCP % _ A ,-fCP ,).(CP A- CP ,) 
jj=I

ECP2 =

npoint - i 

jj= 0

VarCP:= ECP2 - ECP2 

CO = min(CP) 

Given 
linterp(CP, FCP,CO)=0.05 
C05 = Find(CO) 

Given 
Iinterp(CP,FCP,CO)w0.50 
C50 = Find(CO) 

Given 
linterp(CP,FCP,CO)m0.95 
C95 := Find(CO)

(Use linear interpolation to find 
percentiles of C)

ECP = 0.229 
VarCP = 0.0177 
C05 = 0.076 
C50 = 0.209 
C95 = 0.571

(Mean value of C) 
(Variance of C) 
(5th percentile of C) 
(50th percentile of C) 
(95th percentile of C)

Output Results To File case1 .prn

Mii = (CPii fCPii FCPii) 

WR=TEPRN(casel):= M

I

(CP,,- ý)I-fcp" (CP A - CPj,


