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Note To: Public Document Room
Mail Stop: LL-6, U.S. NRC

From: shahN.Maik <5 . N Q/\OV@(L,

Materials Engineering Branch (MEB)
Division of Engineering Technology (DET), Office of Re@‘arcﬁ{(RES)
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Subject: Technical Bases Development Activities for Potential Rq"yisio‘hfto 10 CFR

50.61 Screening Criterion for Pressurized Thermal Shodk (PTS) Events in

Pressurized Water Reactor (PWR) Pressure Vessels. = =5

=

-

RES Subiject File Code: 1B1 o

Attached here is a set of information presented to the PWR power plant licensees and
general public on the Office of Nuclear Regulatory Research (RES) activities pertaining
to the subject topic during a September 29-30 NRC/Industry meeting on PTS at the
NRC/HQ.
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Please place this package of technical information at the PDR. If you have any
questions, pl. let me know (Phone: 301/415-6007). Thank you very much.

Attachment: As Discussed

Copy: Edwin M. Hackett, Assistant Branch Chief
MEB/DET/RES
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Sept. 29-30 PFM/PRA (PTS) Meeting Objectives and Agenda

Objectives:

1) PTS Screening Criteria Re-evaluation Project Milestones and Schedule Chart

2) Presentations & discussion on FAVOR Methodology and Uncertainty Analysis Steps
in FAVOR code 4

3) Presentations on Near-Term Action Plans (Progress Made and Schedule).

4) Attempts to resolve any schedule conflicts for the Action Plans relative to the
schedule for overall PTS Tech Bases Plan.

5) Setting tentative dates for the next meeting of the PFM Sub-group.

Meeting Location: One White Flint North, Room 04-B6, NRC/HQ.

For Entry to Meeting Room, Contact: Shah Malik (415-6007) or Tanny Santos
(415-6004), Doug Kalinousky (415-6788)

September 29, 1999:

1:15 Welcome and Introduction Mayfield/Hardies

1:25 Review/Acceptance of Agenda . Malik/Hardies
and Meeting Objectives

1:35 PTS Screening Criteria Re-evaluation Project Malik/Woods/Bessette
Milestones and Scheduie Chart

2:15 Review FAVOR PFM Methodology Terry Dickson

3:15 BREAK

3:30 PRA Input Table Ron Gamble

4:36 PFM Sensitivity Analysis Bruce Bishop

5:00 ADJOURN

September 30, 1999:

8:30 Status on Action Plan 1A (Statistical Distribution  Kalinousky/Santos
on Weld, Plate Material Chemistry

8:50 Status on Action Plan 1B (Statistical Distribution on Terry Dickson
Kic, Kla



9:10 Vessel Materials Characterization Ron Gamble
9:30 Expert Elici-taiion on Flaw Distribution (Action Plan 4) Debbie Jackson
10:00 BREAK

10:15 Dependence Between “Initial RTndt” and “Delta Rtndt” Dan Naimon
10:25 General Discussion on PFM Methodology All

11:30 Summarise Work to be Continued and Any New Issues  Malik/Hardies
12:00 Next Meeting Date Malik/Hardies

12:10 ADJOURN



ddw gueidS LdVIlENO

| ebed

L 00/V/€ 00/V/e 8po) 1eindwo) Wdd uo doysuopm aand | 62
oorsee 00/LLL suswsuyey pue Sunse] epiod Ndd HOAVS| 82
00/p1/) 66/1/21 HOAV Ul (Wdd 'HL 'vHd) senuieLedun Sid pav| &2

66/0E/1 1 &66/\/1¥ 8p0D HOAV Ul luswdojeas( pereiey Wid elejdwod | 92
LO/OE/E | 00/9L/0L Bugpiodey |Buld pue $9[8) HL JO MejaeY 180d | ST

00/€4/0L | 0O/LLIL - lueld 10} (siueisuel) p) sishjeuy Hi wioped| T

00/L&/L 00/4/S €- ueld 50} (SluesursL p) SisAlRuUY H1 uuoped | €2

00/S1/S 00/L/2 2- ueid 10§ (slueisuelf p) SisAiBuUY HL usoped| 22

00/62T | 66/L2L 1- eld Jo) (SiueisuBly ) sisAiBuy M) wioped | 12
66/0E/kL | 66/L/LL sishjeue-ey 10} SjusiSUBL] Hi 199RS| 02
66/6€/01 66/2/8 slueld ¥ uo Indu) H 1 meney pue Ajuepl | 64

00/62/21 | 66/L/6 SOHBUBDS S1d PEIIBIBS JO} SOED YNVIHLY uuoped| 81

Q0/1E/0L oo/L/8 P-1UB|d JO} SIBD YHA"S1d WiOHed Ll

H 00/18/L 00/1/S £-1uBld 10} S0{BD YHd-S1d wioped | 91
m oo/Be/Y oo/L/e 2-lue|d JOj §9JBD VHJ-S1d uuopad |  Si
o loonen  jesnnt 1-1uBid 10} SIUBD VHd-S1d wioped| i

...... 66/62/01 | 66/1/0L pozkjeuy eq O} SJUBISUBI] Yojym puswwooey | €1

66/62/04 66/1/01 ¢ Pepnou| 8q 0} PesN Jueld ;eyi0 Auy seoq| 21

) 66/08/6 6628 siuelg (1 + S1d) €) Buisn jo Aoenbepy ssessy 3%

po\om\w 1072/ BB, dueldeddy uo Jaded LUOISSIMWOD | 01

00/62/2L 00/L/6 SHOV ‘Busi) soueidesdy uo sjuewwo) Aand 6

00/1€/8 00/119 Bueaw aand ‘euei) edueidecdy dojeaeq 8

00/1€/5 00/4/E 4437 01 JQD/eIn|B |osseA aeley | L

. 00/6272 66/121 4Q0/eine- [BSSEA 0 BUINOBID IBM-NIYL @1eley 9

66/05/LL | 66/28 Buneep 91IGNd *sen|eA puB SOUeW YUd SSessY|  §

66/08/LL | 66/L/6 (Wdd 'H1 ‘vrd) 1epo Aurensoun ¥siy Sid doeaeq| ¥

66/62/01 66/1/6 sindu| g @Inpedold siskjeuy uo Buipueisiepun uen €

: 66/1L€/8 66/1/9 SUOHSBNY) BAI050Y O SAOYSHOM 4

: : _ (t.u.:xm 66/92/5 66/11% eAjosay 0} suonsend Apuep| ol sbuneepyy 1

100¥ | 100¢ | 1002 1004 | 000y [ 000¢ | 0002 | 0004 660Y | 660¢ | g60z| usiud ueis sweNNseL[  al

6661 °L} "Ld3AS 3lva

1aloud uonenjeAa-ay uoHNID BujuaaIdg S1d 19°0S H4D 0L




10 CFR 50.61 PTS Screening Criterion Re-evaluation Project DATE: SEPT. 17, 1998

Task Name Start Finish_ |2Q99 {3099 {aqa9 1Q00 2000 [3a00 [aco00 1001 T2q01 [3001 [a001
Identity Expert Panel, Issues, Eficitation Team 71/99| 930199 TR PEM,PRA : . : .

31| Expert Panel Meeting, Scope Revision 1071/99]  11/30/03|

32 |Elicitation trom Experts by Elicitation Team 12/1/99 1/31/00

33 | Review Elicitation Results and Experts’ Meeting 2/1/00 3/31/00

34 | Generic Flaw Distribution Report & Workshop 4/3/00 6/30/00

35 | Perform Tech Bases PFM Analsyses Plant-1 31/00 snsio0|

36 |Perform Tech Bases PFM Anaisyses Plant-2 5/16/00 wmwoe| T

37 | Perform Tech Bases PFM Analsyses Plant-3 8/1/001 10/13/00

38 |Perform Tech Bases PFM Analsyses Plant-4 10/168/00|  12/29/00 ’

39 | Detenmine Uncertainties in Each of the 4 Plants 174101 3/30/01

40 | Develop Uncertainties For Entire Population of Plants 4/2/01 5/30/01

L3 Public Meeting on Tech Bases Results From 4 Plants 6/1/01 6/1/01

42 | Develop Proposed Changes to PTS Screening Criterion 6/1/01 9/28/01

43 | Develop Proposed Changes to 50.61 PTS Rule 8/1/01 YVl S S I B
44 | Public Meetings to Resolve Outstanding Issues 10/15/01 10/15/01

45 | Finalize Tech Bases to Revise 10 CFR 50.61 oot | senaer| T e
46 ACRS Presentation on the Overall Project (7/99) 714/99 714199

47 | ACRS Presentaion on Metthodology, Input (2/00) 2/2/100 2/2/00 ’
48 | ACRS Presentaion on Interim Results (10/00) 100300 10/3/00
49 | ACRS Presentaton on Screeing Criterion (6/01) 6/6/01 6/6/01

50 | ACRS Presentation on Final Tech Bases (11/01) 11/6/01 wen | T e e

Page 2
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Sept. 29, 1999

Status on Collecting Plant Data on RES’s Fluenée Map Calcs

Cycle By Cycle Plant Data Requested for the H. B. Robinson-2 (HBR),
Palisades, Oconee-1, and Calvert Cliffs-1 plants.

Plant data informally Requested in May 1999, and formally in early August
1999.

We have received most of the required data for HBR

Received about Half of the data for Palisades. The remaining Palisades
data was sent but was not readable and is being resent

Received approximately 10% of the data for Oconee-1, and are presently
trying to find out about a final delivery date on Oconee-1 from Framatome
Cogema Fuels

No data received from Calvert Cliffs-1, but have been promised this data
will be provided by the end of September (Which is here Now )

Progress on Fluence Calcs:

Fluence Calcs. for HBR are well underway and will be completed in the
next two weeks (October 15).

Calcs. on Palisades are underway, but have been delayed because of the
delay in the receipt of the plant data. In addition, we had assumed that we
would only have to calculate Cycles 12-15, since we had previously
calculated Cycles 1-11. However, during discussions with Consumers
Power, we were informed that the Palisades core physics model is being
revised and the power distribution data for the previously calculated
Cycles 1-11 has changed sngmflcantly Consequently, we will have to
recalculate Cycles 1-11.

Calcs. on Oconee-1 and Calvert Cliffs-1 will be initiated when we
receive the plant data.



Review of FAVOR Probabilistic Fracture

Mechanics (PFM) Analysis Methodology'
e ——

Terry L. Dickson
Heavy-Section Steel Technology Program
Oak Ridge National Laboratory

at
Joint NRC-Industry Meeting

NRC Headquarters
Rockville, Maryland

September 29, 1999




PFM analyses are perform'ed,on the entire beltline Region (per RG 1.154).

The beltline embrittlement-related déta is taken from the NRC-developed RVID
 Database.

"‘—mwf-*w—'l

Table 2~ Embrittiement map corresponding to EOL (32 EFPY) per RVID database

¢

Major tegion  Subregion number ) . Chemistry RT wrre RT\® » Margins (°F) Volume
numbes L . Cu(wi %) Ni(Wt %) (°F) B S ' 3
: ' ~ RG 1,99 Improved »
) ' Lower Shelt 0.1 0.53 -20 1S4 186 = 340 Y
' 2 © Lower Shell 01 056 -10 1259 1249 M0 . 74
| 3 Lower Shell 0.3 0.54 10 1674 1572 4.0 ' 734
2 4 Inter, Shell 0. 0.8 20 158.7 1544 M0 . B58
2 5- tnter. Shell 0.12 064 230 9.7 169 - 40 ' 85.8
2 6 Inter. Shel 0.12 0.64 0 142.9%¢ 10 i 85.8
3 7 Inter ax. Weld 0.2 0.88 . -50 256.8+* 56 0.8
3 8 Imcrax. Weld — © 021 0.88 50 256.8* 56 , 0.88
3 9 Inter ax. Weld 021 0.88 .50 250.8* . 56 0.88
4 10 Lowerax. Weld 021 0.69 -56 257.0 65.5 0.74
4 H " Lower ax. Weld 021 0.69 56 2510 655 - 0.74
4 12 Lower ax. Weld 0.21 0.69 86 2570 G55 ' 0.74
5 13 Lowercirc. weld 023 0.3 80 478+ 919 28.0 ' 4.90

N
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- VESSEL = VESSEL + 1.
I .

®.— Flaw = Flaw + 1
}

Select Vessel Subregion

Simulate Crack Geometry

Simulate Copper" ‘
Simulate Nickel
Simulate Neutron fluence

Calculate ARTNDT = f [Cu, Ni, fl]

I —
Simulate RTNDT Margin Term (ERRTN)

Calculate RTNDT = £ [Cu, Ni, fi, ERRTN]

} . R
Simulate Kic data scatter (ERKic]

@—— Transient = Transient +1}————— time =time + At

Calculate Mean Kic = f{T(t), RTNDT]

Calculate Kic = f(T(t). RTNDT ERKic)

Y
N
PFM(T,V)=1 Y Ki = Kic? More Time?
; ; e -
(B) Y_ T More flaws? More Transients?

@Z_ M'o.re
Transients? . N




Method 2 PTS PFM Analysis Incorporates Uncertainty Associated
wnth Thermal Hydraullcs by Including Variants for Each of the

Dommant Transuents
RELAP
— I — i
Transient 1 Translent 2 Translent 3 Transient n Major Translents
mEEEEREEEREEREE l
1112131]2122232]8132333]n1n2n3 Variants
\ ' l ' i;olep;lal Thc:nnxal-ﬂyt:munc
— ' ition
FAVOR o:\m I::O?l?nll’ Buﬁlo: om.:\g\l ‘
Load Generator :
(FAVL)  Nove: Enche o [ the n

3

‘Lﬂ-ﬂw su,;u ds Comsists of

For ‘l‘nnniom 1-n, Variants 1-j: RPV load response |

:"(?‘) poo wll‘tﬂ Bu.'.-s Wiry Etuluz tr‘g'gg 3 t'Mb- L"” &ﬂt&b

OA(H)] x“' Plan Rigions Lasreor ?u-ln‘- Srasss Q\) t) b TL{B) _‘)L‘:B
K,fornngodmdmddmumtmnﬂdoudm-bmmnmdom _Dis{—ni'tuf;n'cwd a? g\rwt
21- hhmuudmomPV') fie w20 wfersidud

6:1 - at despest point of flaw f PQ /Zu'[ 3 e |-L|'A—L¢2/$ RLQUxuc/ZI
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10:1 - at deepest point of flaw
« - at deepest point of flaw




Method 2 PTS PFM Analysis Generates 2-D Array, which Includes
* Uncertainty Associated with Thermal Hydraulics, Embrittlement,

and Flaw-Related,Data
APV EmbritiamentMep: | [ Fires Crnnckiaiyab o
Neutron fiuenees | PRODIGAL Qd‘h
Chemistiies - Load Data o so,n.mnt
L (Output from FAVL) Flaw élze, density, and
HT."“ , ' Io:}}londlbu k"
NDT, L 1 Suatace batakwy
PFM Pgtaim_tm Qt !C'! L | o mgo/o.ﬁ- tmparootd
\ " EAVOR /
Method & PTS PFM Analysis N
(FAVP) :
VqVaVy ¥y Vg oV Stochastically Generated Vessels
1 [1]ojof1]o} |0 . S
a [ofo[o]ofo| [o] N
3 [1lololol1] |0 { ~——— Falled Vesasl
E o ol o] 0 Nontahee
IR PR —PFM Array.
;1 olojojojo 0




Method 2 PTS PFM Ahalysi.s Infegrates Uncertainties of Transient
Initiating Frequencies with Results of PFM Analysis to Generate
Distribution for Frequency Vessel Failure

oE), /- 2(E), j

. [ofoo]ooJo] T - ForEachVesesl (1 ~~m): -

3"7 11011101040 FAVOR 1. Sample Intiating Fraquericles:
< L fofolol1]olo - | e o

¢ [o[ifa[To[s (FAVP Postprooesor) Ely &y Ay

olofofafof1 2. Combing B(E)y with PFM Pesuls

— OF) = 5 OE)y * Py (1)

3. Resulting Amay of &(F), .
" Generates a Histogram for @(F)

u.n|||||l|||l||||||l|_llliim;




FAVOR Probabilistic Fracture
Mechanics (PFM) Analyses are
Based on Monte Carlo Techniques

Many deterministic fracture analyses are performed
on probabilistically generated RPVs 10 determine if
each vessel will fracture when subjected to specifed
transient at a particular time in the operating life of
the vessel | o '
tation = fractured vesseis / total vessels

probability of crack ini
probability of failure = failed vesseis / total vessels

Each of the embrittlement-related parameters

neutron fluence
copper

nickle | -

initial unirradiated RTNDT (RTNDTo)
radiation-induced shift in RTNDT (ARTNDT)
fracture initiation toughness (KIc)

fracture arrest toughness (KIa)

are sampled from a normal (Gaussian) distribution
about the user-specified mean value and variability,

j.e. standard deviation (1lo)

P

[+ o o
— e
[ p—
-—

simulated parameter

mean



- - - ..
-~ &» - -
1 . -

frequency
H

mean value = 0.30
1 sigma = 0.025

The radiation-induCed shift in RTy,; for each flaw is a function of -

stochastically. simulated (sampled) values of copper, nickel,
and neutron fluence per Regulatory Guide 1.99, revision 2

e TRV

020 022 0.24 028 0.28 030 0.32 0.34 0.38 038 0.40

copper (% weight)

\

A RTypr = f[Cu, Ni, FI]

mean value = 0.75
1 sigma = 0.1 ’

e e e e

64 08 08 07 O08 08 10
nickel (% weight)

|

—
SRR |

m.cln value = 20 .
1sigma =06

neyUency

00 g
00 08 10 18 20 28 30 38

I ) m———

neutron fluence at inner surface (x 1019/«

/




The Calculation of RT,or includes simulation of margin term

RTyor(X) = RTyoro + ARTypr (cu” ni, fluence(x)) + ERRTN* v (G arnovo) + (O 4rmvor)
-where: |

RTyor, = initial unirradiated value of RTpr
ARTyor = neutron radiation-induced shift in H‘T&m
~ 6RTyors = 1 sigma uncertainty in initial (unirradiated) RT,,,
~ 0ARTyor = 1 sigma uncertainty in correlation used to predict ART oy

ERRTN = number between -3 and +3 obtalned from normal distribution

having a mean value of 0 and 1 sigma = 1
1.3
1.2 -
1.1 -
1.0
0.9
0.8 -

T o7 -

mean value= 0"
1sigma=1

00 T T T T L
-3 -2 -1 0 1 2 3
ERRTN (Margin term multiplier)




- FAVOR Samples K, Data from a Gaussian Distribution Defined Where the ASME
K, Curve is the Mean-2¢ K, Curve Where 16 = 0.15 (Kic)naaa- The Sampling is
. truncated at + and -3c.

200 v ¥ \ Y v T
i~ “is0} * 'EPRIKIlc database
160 |
— 140
o i
o 120 |
- i Mean Kl¢ curve
= ) |
‘a 5
£ sf _—
r “...-.....-.....‘ .‘ d
2 60 PP YL T -q.-.-.-l‘. - -
> - i "
wEr g -
o—-.--—o-'-—- t-—---—. ) 1
mt | ASME curve
0 ' A 1 i | . ' . A [ L
-400 -300 -200 -100- 0 100

T-RTNDT (F)

ASME ch = (ch)mun (2) (0 15) (ch)mnn = (ch)mom (0'70)
(ch)mom = 1.43 ASME (ch)

Ao Ko=165ASMEK,,  -10Kc =122 ASMEK,
120 Ko = 1.86 ASME K,c  -20 K¢ = 1.00 ASME K ¢
130 K,c 2207 ASMEK,,  -30 K =079 ASME K ¢




Any additional uncertainties (or sensitivities) will be considered outside of the
| FAVOR code

PRA analysts may make requests for additional PFM analyses that include other
uncertainties (or sensitivities) in the following variables:

(1) clad thickness .

(2) clad stress-free temperature

(3) through-wall weld residual stress

(4) epistemic (state-of-knowledge) uncertainty associated with T-H boundary conditions

In each case, the PFM analysts :would execute FAVOR with some combination of new variables
chosen from the above 4 variables. In each case, the PFM analysts will provide the PRA analysts
with a distribution (in histogram format) for the frequency of vessel failure. |

If any of these additional uncertainties (to be f_éb"'r’i‘sid*c'ré"d_out_si'de of the FAVOR code) are included in
the analysis, the PRA analysts will-be responsible fér perfoiming the Latin Hypercube Sampling of
the FAVOR generated results to assemble the final distribution of the frequency of vessel failure.. . -




Statistically-Based Representation of K,
Fracture Toughness Curves for Use in
PFM Analyses (INTERIM)

Terry L. Dickson
Heavy-Section Steel Technology Program

at
Joint NRC-Industry Meeting
NRC Headquarters
Rockville, Maryland

September 29, 1999

TSQ@V&SSI9# gy CLUN 393122499 PB:ET 66. v2 435

er-2°d




EPRI Database of ASTM E-399
Valid Plane-Strain K, “czvrzem)

~+171 valid K|, data points

11 materials
*HSST 02: n =69
*HSST 01: n=17
*’AS33BCL1:n=13

A508 CL2 Euro. Forg:in=12  wf
*A 533 BCL 1 weld: n =10

*AS08Cl.2:n=10
*HSSTO03: n=9
‘A508Cl.2:n=9

+HSST subarc weld: n = 8
*A 533 BClL 1l subarcweld: n =8
*A 533 BCl. 1 weld/HAZ: n=6

*Specimens

«C(T)-1T to C(T)-11T
*WOL-1T to WOL-2T

* BPRI NP-710-SR (1978) as amended ORNL/NRC/LTR-93/15 (1993)

180

140 ¢+
120

100}

N Pa |

T YT T T T Ty

..................

(T-RTNDT) (F) OMTETIKI pla

i

a o » 0 o ® & i« » ® o

HSST 01 subarc weld (Shabbits)
AS533B subarc weld (Shabbits)
HEST 0f Mager)

HSSTOS (Maget) .. . . .. ..
AS33 8 (Mager)

HSST 02 (Mager/Shabbhits)
A533 B weld (Mager}

AS533 B wold-HAZ (Mager)

A508 Ci. 2 (Magnt)

AS08 €1 2 (unpubliahed)

AS08 C1. 2 (unpublished)
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Extended Database of |
ASTM E-399 Valid Plane-Strain K;,

< INTE Q\M)
71 additional data points < i

04 materials 160 (——————— ————— - ' .
(1) o} , | + HssTol auurcwddmbm)
*HSSI Weld 72W®: n = 12 ! st

+ H 1
. ] SST 01 (Mager)

HSSI Weld 73W®P: n =10 .1 ettt

R B HSST 02 (MagerShabbits)
e %l + ASSS B weld (M
‘HSST Plate 13A(2)‘ n= 43 ool .t 1 - As”awa\d-(ﬂ::(’:amr)

AS08 Ci. 2. Euro. Forg. (Mager)

- RO M . 2. Euro. Forg.
.A508 Cl 3(3) n-= 6 uo—‘ . "4 .;"‘ ‘f', 1 ¢ As08Cl 2 (unpublished)
¢

»  AS08 Ci2. {unpublishad)

‘a .
S oot 'é;:l',.: L * HSSIWeld72W
OS F,S 0 e o 1 » HssIWeid7sw
peCImenS ‘. : we e " ¢ HSST Piate 13

+C(T)-1/2T to C(T)-4T R

(1) NUREG/CR-5913, 1992.
(2) NUREG/CR-5788
(3) Iwadate, et al., ASTM STP 803, pp II-531-561, 1983

b
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Current Use of K. in FAVOR

K_({ksi-in"?)
e ™.
180 ——r—r—~—————— )
i c=15%KM ,':l"
140 |- K :’!é .
| mesn e k
120 .

100+ e
_,+3c

ASME Sect. XI K,

80 ™ + 20 . : .,'/:‘ a'. i :.
. SUTRUTIY TR gl $! -30 ]
[ - 7.‘ o ¢ " --—"‘ " ’I’. .‘ 3
w :-—-— A n @ & & ——— '.. : ,' . "I R
. .-.--.._‘.. ..... ‘.‘-.‘--a-'l" I,. ": 4
o frae Aot N
........-7...._'..3... S - X
_...o.-..........ﬁ.’.f.- I . SRR oy \
20 - K .30
[ mean
o 2 1 1 P ISP T SO N T SR
-400 300 -200 -100 0 100
T-RT °F 0672359 K2 ptw
(T-RT, ) (F)

ASME Boiler and Pressure Vessel Code, Section XI, Article A-4000:

Material Properties (1998) 413-417.

(_T.NTERM) |

Extended Dalabase: N = 242 points

HSST 01 subarc weld (Shabhits)
A3533B subarc weld (Shabbits)
HSST 01 (Mager)
* HSST 03 (Mager)
AS533B (Mager)
HSST 02 (Mager/Shabbits)
-A533 B weld (Mager) - - - -
A533 B weld-HAZ (Meger)
AS508 Cl, 2, Euro. Forg. (Mager)
HSS{Weld 72 W
HSSI Weld 73 W
HSST Plate 13
AS08CL. 3
-+=— ASME Sect. XI
= Kmsan
""" -3c
== 4+ 20
=== 4+ 80
"""" -1o
------ +10

S @ B @& » ¢ & & ¢ & »r U »

K, =33.2+20.734expl0.02(T - RT, ;)]

R
N
s
n

|

1S3arLsqio*

‘g9 CTILEN 39dI224P9 L8:ET 66. v2 d35
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Results of Regression Analys\is
for Extended K, Database

*Regression analysis
used TableCurve2D
*Exhaustive search of 3491
linear and 176 nonlinear
model forms yielded 242
curve fits. S
*3-parameter nonlinear
exponential ranked number 4
*Current K . in FAVOR"
is conservative in transition
region and nonconservative
on lower shelf relative
to K .., from regression
analysis.

40

-t

120

10k

20

K, (ksi-in'®?)

(IN TE RIM)

L I B LA Extended Database: N = 242 points

HSST 01 subarc weld (Shabbits)
A533B subarc weld (Shabbits)
HSST 01 (Mager)
HSST 03 (Mager)
AS533B (Mager)-

- HSST 02 (Mager/Shabbits)— -
AS533 B weid (Mager)
A533 B weld-HAZ (Mager)
A508 Cl. 2. Euro. Forg. {Mager)
HSSI Weld 72 W
HSS! Weld 73 W

L K from Ragression Analysis
" maen

1{-'. s . HSST Plate 13
TN ] AS508 CI. 3

5 ASME Sect. XI] ----- ASME Sect. XI
—~ Kmean: FAVOR

i
: ] * » L » * L] - * < » a1 *

;.‘.t..‘...;..,....['..U: ------ Curve Fit: Extended Database
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Table 5.2 Top-Ranked Model Forms Calculated by

TableCurve2D
Rank F-Suatistic : Model Form

1 212.08316474 lny = a + bx

2 202.73543020 y~(0.5) = a + bx

3 202.10095146 y = (a + ex)/(1 + bx)[NL]

4 194.44231080 y = a + bexp(ex) [NL]

5 176.25900038  yA(-1) = a + bx
6 171.28645651 y = a -+ bx

? 170.24942226  y~(0. 5) =a+bx +cx*2

8 164.27947091 y = a+bx+cx2

9 159.13106263 Iny = a+bx+cxA2

10 149.87823234 Iny = a+bx+cexp(x)

11 146.13142246  y = a3bx + ¢ exp(X)

12 14376110728 Iny = a+bx+cx"3

13 141.07999819 y = 24 bx+cx”3

14 137.29791795 y = &+ bx +cx2 +d exp(x)

15 137.22995434 Fourier, Series Polynomial 1x2

16 134.99360842 = (a+ cx)/(1 + bx + dxA2) [NL)

17 130.98649922 y = a+bx+cx?3 +d exp(x)

18 124.92269692 Chebyshev = >Std Polynomiul Order 3
19 124.92269692 Chebyshev Polynomial Order 3

20 124.92269692 y = a+ bx +cxA2 +dx"3

21 123.06568751 yM0.5) = a+ bx + ex*2 + dx*3

22 115.33293665  y"2 = fa + bx + cx*2

23 109.76890768 Iny = a+bx+ex"2+dx*3

24 104,70649060 y = 8+ bx+cx*2 +dx*3 + e exp(x)
25 101.55552931 yA2 = al+ bx + cxA2 + dx*3

26 99.886096880  y=(a+ cx +exA2)/(1 + bx + dx*2) [NL]
27 98.539924648 y*-1) ¥ a+ bx + ¢ exp(x)

28 98.407676705 y=2a+bx"2 + cx*3 + d exp(x)

29 95.436616294 High P;ec:sxon Polynomial Order 4

30 95436616294 Chebyshey Palynomial Order 4

31 95436616294  Chebyshev = >Std Polynomial Order 4
32 95.436616294 y=a+ bx +cx*2 + dx*3 + ex™

33 95.256825667 yM-1) =a + bx + cx42

34 94.403752943 yr(-1) = a+ bx +cx”3

35 93.064358636  y~(0.5)'=a + bx + cx2 + dx”3 + ex4
36 90.888406094 Fourier;Series Polynomial 2x2

37 84.126204190  y=a+bx2 +¢ exp(x)

38 82.500766448 Iny = a# bx + cx*2 + dx*3 + ex?4

39 81.574302114 y*2=a+ bx + exA2 + dx*3 + ex*4

40 78.019197528 High Precision Polynomial Order 5

41 78.019197528 Chebyspev >Std Polynomial Order 5
42 78.019197528 Chebyshev Polynomial Order 5

44 76.248415354 =a+b exp(x)

-45 76.220106695 y*(0.5) = a + bx + cx*2 + dx*3 + exMd + fx*5

47 73.648681893 lny = a'# bx"2 + ¢ exp(x)

49 67.900165448 Chebyshev Polynomial Order 6

50 67.900165448 High Precision Polynomial Order 6

51 67.900165448 Chcbyshcv >Std Polynomial Order 6
52 67.749311766 y =a+bx2 + cx”3

53 67.736722397 Iny=a W bX + Ex”2 + dx*3 + ex”4 + fxA5

12

P.B87160
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Table 5.2 Top-Ranked Model Forms Calculated by

- TableCurve2D
Rank F-Statistic : Model Form
54 66.589185788 Pourier Series Polynomial 3x2
55 63.418238130 y=2a+bx"3 + ¢ exp(x)
56 63.126196234 yA(-1) = a+ bx + cx 2 + dx*3
57 60.358790633  y~(0.5):=a + b exp(x)
58 60.255288266 Chebyshev = >Std Polynomial Order 7
59 60.255288266 Chebyshev Polynomial Order 7
60 60.255288266  High Precision Polynomial Order 7
61 60.222001357 y=a+bx"2 +cxr4
64 57747180396  y=a+bx2
65 57.285235500 y*0.5) =a + bx"2
66 55.585467658 Iny = (a + cx)/(1 + bX)
67 54.862287108 yM(0.5):= (a + cx)/(1 + bx)
68 52,511231768 Fourier:Series Polynomial 4x2
69 52.399927006 Chebyshev = >S1d Polynomial Order 8
70 52.399927006 Chebyshev Polynomigl Order 8
71 52.399927006 High Precision Polynomial Order 8
72 50.377723858  Iny=a+ bxA2 + cx*3
74 47.134766769 yA-1) = & + bx + cxA2 + dx3 + ex™d
75 46357029818  Chebyshev Polynomial Order 9
76 46.357029818 High Precision Polynomial Order 9
77 46.357029818 Chebyshev = >Std Polynomial Order 9
78 44.972169153 y*2 = a-+ bexp(x)
79 42.493046529 Iny = a+ bx*3 + cexp(x)
81 41595572118  yA(=1) = a + bx*2 + cexp(x)
82 41.553003885 Fourier Series Polynomial 5x2
83 41522828495 Chebyshev Polynomial Order 10
84 41.522828495 High Precision Polynomial Order 10
85 41.522828495 Chebyshev = >5td Polynomial Order 10
87 40.422344924  Chebyshev Rational Order 4/4
88 40.422344924 Chebyshev = >Std Rational Order 4/4
89 39.521249612 yA(-1) = 2 + bx + cx"2 + dx*3 + ex"4 + x5
90 38.415760094  High Precision Polynomial Order 11
91 38.415760094 - Chebyshev = >Std Polynomial Order 11
92 38.415760094 Chebyshev Polynomial Order 11
93 35.062442660 Chebyshev = >Std Polynomial Order 12
94 35.062442660 Chebyshev Polynomial Order 12
95 35.062442660 High Precision Polynomial Order 12
96 34.629893962 Fourier Serics Polynomial 6x2
97 33.566708227 Chebyshev = >Su Polynomial Order 13
98 33.566708227 Chebyshev Polynomial Order 13
99 33.566708227  High Precision Polyaomial Order 13

I3



Application of Weibull Modeling

(INTERIM)

*Regression model assumes data scatter normally distributed
*Weibull distribution provides skewed PDF |

e A Weibull model applied to
the extended K,, database

with RTy,, indexing is under

study to develop a more
statistically rigorous
characterization of K .,
and data scatter.

e Maximum likelihood and
method of moments
parameter estimators are
currently being evaluated.

e Scheduled completion of
study is the end of October

Weibull PDFs for Different Shape Parameters

------------------------------
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PTS Action Plan 1A

Develop Statistical Distributions
for Material Chemistry, RTnor,
“and Fluence

. Kalinousky/Santos
September 30, 1999




Procedure

o Obtain “valid” Cu/Ni data for various weld “

heats
_ CE NPSD-1039 Rev 2

« Use BESTFIT® software for distribution
fitting

» For each heat, test a null hypothesis (Ho)
— Ho: Sample is from a NORMAL distribution




Goodness-of-Fit Test

« y? recommended for continuous
distributions in which the parameters are
NOT specified

* mean
e standard deviation

» Must group data into separate classes
* equal ranges of chemistry values
+ recommend 5 data points per class
e minimum of 4 classes required




Goodness-of-Fit Test (cont)

+ Choose level of significance (o)

* o = probability reject Ho when true

« typical value = 0.05
« Calculate Test Statistic (%2 )

e Determine Critical Value
» from y?* table

» for a given o and degrees of freedom




Goodness-of-fit Test (cont)

« Compare Test Statistic to Critical Value

e %2 < Critical Value Accept Ho
» Otherwise Reject Ho
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W5214 (Mean Values)

Copper (mean=0.22, SD=0.0653)
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33A277 (Mean Values)
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27204 (Mean Values)
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29.3 I i I

147 /

2 2 2

et ""‘--.\

-0'3.18 019 020 021 022 023

Nickel (mean=1.02, SD=0.0469)
148 | |

7.4 —-‘b’*"‘:

1 2 2

0.
8.96 0.98 1.01 1.03 106 1.08




86054B (Mean Values)
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Hypothesis Test Results

Mean Values

Ho: Sample Data is from a Normal Distribution

| Cu Ni
Heat Number I—7—1=26:05 [ ¢=002 | 3 | «=0.05 | a=0.02 | a=0.01 | a=0.001
21935 460 | R A NA | NA NA | NA | NA
W5214 532 | R A | 2438 | R R R R
33A277 3.01 A A 5.98 R R A A
27204 389 | R A | 3.66 A A A A
860548 492 | R A | 656 R R A A
348009 NA | NA | WA | NA | NA N/A NA | NA
12008/20291 | N/A | NA | NA | NA | NA NA | NA | NA
A = Accept Ho
R = Reject Ho

N/A = Not Applicable, too little data




Normal Distribution Parameters

Mean Values

Heat # of Daté Points Mean Standard Deviation Plant
21935 = : s Lt Calvert Cliffs 1
TR e
33A277 o 2 o2 oaes Calvert Cliffs 1
27204 ﬁ:‘ g (1):(232 g:glg; Palisades
860548 N > o?digss 0.00445 Robinson 2
34B009 o s e A Robinson 2
12008120291 | : e dia Calvert Cliffs 1




Accepted Distributions

at

a=0.05

| Heat Number Copper Nickel
- Weibull
21935 Uniform N/A
Uniform
W5214 Beta None
Weibull Beta
33A277 Normal LogLogistic
Logistic Pareto
Lognormal
Uniform Weibull
27204 Beta Beta
Normal
86054B Uniform None
34B009 N/A N/A
12008/20291 N/A N/A




- Ongoing Work

‘Perform Bayesian Analysis
e Appendix C of White Paper (N. Siu)

Plate Distributions
RTypr

Fluence




ACTION PLAN-4

GENERIC FLAW
DISTRIBUTION

D. JACKSON

PTS/PFM MEETING
SEPTEMBER 30, 1999




TOPICS FOR DISCUSSION

« Expert Elicitation Process

e Schedule
« List of Experts




EXPERT ELICITATION

* Objectives

— verify that a generalized flaw distribution can
be properly developed

— assist in developing a generalized flaw
distribution




PLAN FOR COMPLETION

Determine the process for the elicitation
Define the specific issues/scope
Determine the complexity

Identify an expert panel

Strawman of scope and issues to the panel




PLAN FOR COMPLETION con’t

Panel meets to agree on scope and issues
Elicitation training for all
Identify an elicitation team

— subject matter expert
— normative expert
— recorder

Experts perform analyses and formulate
responses




PLAN FOR COMPLETION con’t

o Elicitation team meets individually with
experts

 Technical Facilitator Integrator (TFI)
processes individual elicitation results-

 Panel meets to review elicitation results
(panel members may modify their responses
to the issues)




PLLAN FOR COMPLETION con’t

« TFI aggregates panel responses to form
community distributions

 Publish community distributions




" STRAWMAN OF ISSUES

Clarification of objective which is “Develop a generalized fabrication flaw distribution for input
into fracture mechanics calculations to address the consequences of transients in a reactor
vessel

What is a generalized flaw distribution?

Is one distribution representative or will there be one distribution or one for welds, one for
base metal and one for cladding? For weldment you must consider weld designs (single
v, double v, etc), welding process {auto vs. manual), materials. Should one distribution
be developed from vessel specific distributions.

Fabrication processes in the varicus shops, were certain processes more susceptible to flaws
(early on there was “dirty metal” resulting from the use of scrap metal, etc).

Surface connected flaws - what must be done to create a surface breaking flaw

How much is the base metal affected during the cladding process, in terms of under clad
cracking and is under clad cracking more prevalent in French vessels?

What are the factors, variables or determinants that will have an influence on the distribution of
fabrication flaws? The list below is not all inclusive.

Base Metal (Plates, forged rings)
What NDE procedure was used (sensitivity, accept/reject criteria)?
What are the flaw specifics (type, location, size)
Were flaws surface or embedded:
How many flaws per plate were detected:
Was there a difference for plates in the beltline vs. nozzle shell, etc?
What was the largest flaw detected & repaired?
Was NDE performed on all surfaces of the plates?
Did one surface contain more flaws than another surface?
Welding procedure :

Welding materials
Weld design
Repairs (base metal, cladding, weldment)

Cladding _
What NDE procedure was used?
What are the flaw characteristics that required repair
What was the location of most flaws?
Describe the repair process
Pre- and Post Hatch

Suriace connected Flaws



_ Is more data available for naval vessels than for NPP vessels?

What was the difference in steel used in NPP vessels and Naval vessels

What caused the cracking the head of the Quad Cities vessel in the 1990s.
Where has industry located surface breaking flaws (nuclear and non-nuclear)
Location of vessel repairs, is there a pattern as to where the repairs are located

Are NDE results of pre-Hatch vessels less reliable and are the vessels more susceptible to
flaws than post-Hatch vessels? What effect did the change of NDE of vessel fabrication
processes have as there were definitely more repairs. (Hatch History is discussed below)

Prior to 1971/1972 a major discontinuity was discovered in a Hatch vessel nozzle after
delivery.

Pre-Hatch era was prior to 1971

Reaction to Hatch era 1971-1975

Stabilizing era after 1975

Prior to the Hatch incident, no UT beyond the basic ASME Sec Iil was performed. During the

reaction era numerous repairs were made because of the dramatic increase in UT requirements
so vessels delivered between 1974 and 1977 had an increase repair rate. For vessels delivered
after 1977 the repair rate was lower due to improvements n the welding and cladding processes

How would you determine an estimate for a flaw distribution in the base metal using the data
from the weldment flaw distribution?

AREAS OF EXPERTISE REQUIRED

ASME Code Metallurgy Vessel Fabrication Welding

Forging (Nozzle & NDE Statistics Failure Analysis
Ring) :
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ADDRESSES FOR LIST OF EXPE'RTS FOR PANEL TO DEVELOP
GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

West Bethesda, MD 20817-5700

AREA OF E | NAME ADDRESS EMAIL PHONE NO. FAX NO.
NDE Frank Ammirato | EPRI NDE Center fammirato@epri.com | 704-547-6081 704-547-6168
1300 Harris Bivd:; Charlotte, NC
NDE/ASME | Michael INEEL Research Center-Mail Stop 2209 | mta2@inel.gov 208-526-8780 208-526-0690
Anderson 2351 N. Boulevard
P.O. Box 1625
Idaho Falls, |D 83415
NDE CB& | Francis C. 3754 Brookwood Road 205-967-3020
' Berry Birmingham, AL 35223
>2 Spencer Bush 630 Cedar Avenue SH_BUSH@pnl.qov 509-943-0233 509-943-6755
Consultant Richland, WA 99352-3632
>2 Vic Chapman Rolls Royce Marine Power N/A 011-44-1332-661461 | 011-44-1332-
Derby DE 21
England
Vessel Domenic ABB Alston Power domenic.canonico@u | 423-752-2513 423-752-2650
Fabrication Canonico 911 W. Main Street sfse101.mail.abb.com
CE VP, Technology | Chattanooga, TN 37402-4708
NDE Navy Robert Denale | Naval Surface Warfare Center rdenale@metals.dt.na | 301-227- 301-227
Branch Chief, Code 615 vy.mil
Non-Destructive Evaluation
9500 MacArthur Blvd




ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP
GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

Yessel Harold-Graber | Graber-Gensuiting 330-833-8044
Fabrication 2542-Amherst-NW
B&W- Massiten;-OH-44646
Nozzle Mr. David Lenape Forging Co. 610-793-1500 x 221 -793-
Forging Hershbell, 1280 Lenape Road 610-793-3240
Manager West Chester, PA 19382
Technical
Services
Metallurgy John Holstrup 509 Brady Point Road
ASME Code Signal Mountain, TN 37337
EE Training | Stephen Hora, | University of Hawaii, Hilo 808- 974-7766 a74.
Professor of 200 W. Kawlli Street 808-974-7685
Management Hilo, HI 96720-4091
Science
EE Training | Ralph L. 101 Lombard Street kenneyr@aol.com 415-433-8388 415-434-0968
Kenney Suite 704W
San Francisco, CA 94111
Metallurgy Carl Lundin University of Tennessee lundin@utk.edu 423-974-5310 423-974-0880
Welding Materials Sci & Eng
307 Dougherty Engineering
Knoxville, TN 37996
Ring Forging | Harry Lunt 13 Brocken Drive helunt@aol.com 973-543-2229
US Steel Mendham, NJ 07945
NDE John P. Lareau | ABB john.p.lareau@us.abb | 860-285-3590 860-285-
CE/PVRUF 200 Windsor Day Hill Road com 60-285-3665

Windsor, CT 06095




GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP

Forgings Edward Nisbett | National Forge 814-563-7522 814-563-4525
Front Street, Irivne, PA
Welding Charles J. Chicago Bridge & Iron Company pieperc@asme.org 815-439-6106 815-439-6127
CBa&l Pieper , Jr. 1501 North Division Street :
Product Plainfield, IL 60544-8984
Manager
Failure Robert Pond, P.O. Box 42093 RPond@JHU.edu 410-321-7886 same
Analysis Jr. Baltimore, MD 21284-2093
Metallurgy President,
MStructures,
Inc.
Metallurgy Dr. Harold S. Fatigue & Fracture hsreemsnyder@bsco. | 215-694-6737 215-694-2326
Reemsnyder Bethlehem Steel Corporation com
Sr. Research Homer Research Laboratories
Consultant Bethlehem, PA 18016-7699
Failure Stan Rolfe, The University of Kansas rolfe@KUHUB.CC.UK | 913-864-3766 913-864-3199
Analysis Ph.D, P.E. 2006 Learned Hall ANS.EDU
Professor of Lawrence, Kansas 66045-2225
Civil
Engineering
Metallurgy Stan Rosinski EPRI NDE Center strosins@epri.com 704-547-6123 704-547-
1300 Harris Bivd., Charlotte, NC 47-6035
ASME Kenneth Framatome Technologies, Inc. kstuckey@framatech. | 804-832-2593 804-832-3177
Vessel Fab Stuckey P.O. Box 10935 com
B&W Technical Lynchburg, VA 24506-0935

Consultant




GENERALIZED FLAW DISTRIBUTIONS FOR PTS SCREENING CRITERION RE-EVALUATION

ADDRESSES FOR LIST OF EXPERTS FOR PANEL TO DEVELOP

>2 Helmut Theilsch | 195 Frances Avenue, Cranston, R 401-467-6454 401-467-2398
ACRS 70s 02910-2211
>2 R. David RR. 01, Box 777 rdavidjr@sover.net 802-827-3769 same
Thomas E. Fairfield, Vermont 05448-9710
R. D. Thomas &
Co.
Vessel Fab | Ted Ward - ABB Alston Power 423-752-2650
CE Retired 911 W. Main Street
Chattanooga, TN 37402-4708
Metallurgy Robert W. Edison Welding Institute bobwarke@softhome. | 614-699-5238 614-688-5001
Welding Warke 1250 Arthur E. Adams Drive net
Columbus, OH 43221
Welding Dave Waskey | Framatome Technologies, Inc. dwaskey@framatech. | 804-832-3473 804-8:2-3177
P.O. Box 10935 com
Lynchburg, VA 24506-0935
Vessel Alex Wilson Bethlehem Lukens 610-383-2000 6103832436 main
Fabrication Modena Road 610-383-2674

LUKENS

Coatesville, PA 19320




Review of PTS Input Variables
and Analysis Assumptions

PTS Meeting
September 29, 1999

R. GAMBLE




Fracture Mechanics Input Evaluation Sheet (Page 1 of 3)

Variable Best Estimate MeanValue Best Est. Distribution & Std. Dev. Issue/Uncertainty Basis for Values
Dimensions and Applicable
Material Included in the PTS
Screening Reevaluation:
e VesselID : NT-TAP 2a,b (SECY & IPTS vessels) N/A RVID Data Base
e Nominal vessel thickness NT-TAP 2a,b (SECY & IPTS vessels) N/A «
¢ Nominal cladding thickness NT-TAP 2a,b (SECY & IPTS vessels) N/A “
e Vessel Materials NT-TAP 2a,b (SECY & IPTS vessels) N/A «

all beltline plates, forgings, and welds “
Physical and Mechanical Base Metal  Cladding
Properties:
e  Conductivity 24 10 BTU/Mr-ft-°F) N/A From ASME Code at
e  Specific heat 0.12 012  (BTU/b-F) N/A temperature = 335°F,
e Density 489 489 (/) N/A (avg. of 550 &120°F)
o Expansion Coefficient 7.77e-6 945¢-6 (F) N/A .
e Elastic Modulus 28et6° . 22.8¢+6 (psi) N/A Cladding modulus
o  Stress free temperature N/A 468 (F) N/A antilfFl" from ORNL
e Yield N/A 1,000  (ksi) N/A wo
Fluence: Used as a parameter and includes Normal, ¢ = 0.2 of the mean SECY (Typical) and
' material specific fluence mapping (Basis: Expert Opinion) IPTS fluence maps
Toughness and Toughness
Related Variables: Base Metal and Weld Base Metal and Weld
¢ Copper Content NT-TAP 2a,b (SECY & IPTS vessels) TAP 1, SECY & IPTS vessels Resample or use initial RVID Data Base
e Nicket Content NT-TAP 2a,b (SECY & IPTS vessels) TAP 1, SECY & IPTS vessels sampled values in “
¢ Initial RTypr NT-TAP 2a,b (SECY & IPTS vessels) TAP 1, SECY & IPTS vessels material segment when «“
e ARTwpor Improved correlation, E-900 & NT-TAP 5 Improved correlation, E-900 there are multiple flaws
e Initiation Toughness NT-TAP 1 NT-TAP 1 in the segg;:nt)? @l
Armest T NT-TAP 1 NT-TAP 1 variavies

. t Toughness NT-TAP3 &1

PFM-Input Table, R2




Fracture Mechanics Input Evaluation Sheet (Page 2 of 3)

Variable Best Estimate Mean Value Best Est. Distribution & Std Dev. Issue/Uncertainty Basis for Values
Transient Conditions:
e  Pressure-time history Plant/event specific Estimated in T/H analysis SECY-82-465 and IPTS
¢ Temperature-time history Plant/event specific Estimated in T/H analysis PRA and T/H work
e Heat trans. Coef -time history Plant/event specific Estimated in T/H analysis '
Flaw Related Variables: Welds and Base Metal Welds and Base Metal
o Size & location distribution NT-TAP 4 NT-TAP 4 Expert Panel
¢ Flaw density NT-TAP 4 NT-TAP 4 Expert Pansclllrf
o  Aspect ratio, pre-initiation 2,6, and 10 Uniform distribution Surface & near surface
o  Aspect ratio, post-initiation (axial) irradiated length; (circ.) 360° ° N/A High irradiation region
& vessel configuration
Residual Stress Welds Base Metal
ORNL data from
Table 2 N/A N/A canceled vessel
Evaluation Criterion:
e Initiation and Arrest Yes N/A
Post-initiation Toughness and
Toughness Related Variables:
s Cucontent Resampled or fixed? (NT-TAP 2¢c & 1) NT-TAP 1
¢ Ni content Resampled or fixed? (NT-TAP 2¢ & 1) NT-TAP 1
e Initial RTnpr Resampled or fixed? (NT-TAP 2c & 1) NT-TAP 1
¢  Fluence Attenuation per RG 1.99, Rev. 2 Normal, o = 0.2 of the mean
e ARTypr Improved correlation, E-900 Improved correlation, E-900
¢ Reinitiation Toughness NT-TAP 1 NT-TAP 1
e  Arrest Toughness NT-TAP 1 NT-TAP 1

PFM-Input Table, R2




Fracture Mechanics Input Evaluation Sheet (Page 3 of 3)

Variable Best Estimate Mean Value Std. Dev. Value Issue/Uncertainty Basis for Values
Flaw Extension:
¢ Cladding, LT-TAP3 N/A Flaw extension for
e  Back gouged regions material & stress
e Repaired regions conditionsin cladding,
back gouged, and
repaired regions
Warm Prestress: T
LT-TAP 4 N/A Applicability relative PRA
to transient conditions

and operator actions

PFM-Input Table, R2




PFM Action Plans To Be Developed For PTS Screening Reevaluation

Near Term Action Plans and Activities ~ Due June 30, 1999

1. White paper on uncertainty, and determination of appropriate distributions and truncation for
PFM variables. Responsible individuals: Nathan Siu, Matt Mitchell, and Shah Malik.

2. Determination of input for generic reevaluation of the SECY vessel, materials classification
for application to IPTS vessels, and evaluation of material conditions used for determining
crack arrest. Responsible individuals: Terry Dickson and Ron Gamble.

3. Sampling sequence and flaw selection for evaluation of POF for vessel regions containing
multiple flaws. Responsible individuals: Terry Dickson, Bruce Bishop, and Ron Gamble.

4. Flaw Distributions. Responsible individual: Mike Mayfield

5. Evaluate using a dlstrlbutxon for ARTxpr and eliminating use of distributions for Cu, Ni, and
initial RTnpr. Respons1ble mdxvnduals Bob Hardies, Matt Mitchell, Nathan Siu, and Art
Buslik.

6. Evaluate options for including as an IPTS plant a plant that has a plate as the RTprs limiting
beltline material. Responsible individual: Bob Hardies.

7. Clarify question concerning transient selection of for IPTS plants; whether this is a joint
NRC/industry effort or will be done by NRC. Responsible individual: Ron Gamble

Long Term Action Plans and Activities — Due Date to be Decided Later

1. Independent industry QA/V&V of FAVOR software. Responsible individual: Stan Rosinski.
2. Sensitivity studies (including master curve and cladding plasticity) and assessment of effect
of uncertainties in calculated values of POF and event frequencies on risk. Responsible

individual: Bruce Bishop

3. Evaluation of flaws located in cladding, back gouged regions, and repair weld regions.
Responsible individuals: NRC staff.

4, Evaluate the applicability of WPS for PTS. Responsible individuals: To be determined.

5. Evaluate the potential for including constraint and shallow flaw effects in the material
toughness representation. Responsible individual: Shah Malik.

6. Present a tutorial on use of the revised FAVOR software. Responsible individuals: Terry
Dickson and Shah Malik.

7. Evaluate the use of an alternative to RTers for the PTS screening criteria. Responsible
individuals: Industry personnel, to be determined.

PTS Action Plans



Categorization of PWR Vessels

PTS Meeting
September 30, 1999

R. GAMBLE.




Categorization of PWR Vessels Based on

RT,s @ EOL (From RVID, Rev. 2.0.5, 6/9/99)
Categ'og_ Criteria Material

XXL (11) RT,ps <= 100 °F * Al Materials

XL (15) 100 < RTppg <= 150 °F 'Lir\niting Material

L (10) 150 < RTppg <= 200 °F Lir;liting Material

M (19) 200 < RTppq <= 240 °F, or Limiting AW or BM
230 < RTppq <= 270 °F Limiting CW

H (16) RTprg > 240 °F, or Limiting AW or BM

RTppg > 270 °F Limiting CW
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Proposed Sensitivity Studies (1) for
PTS Screening Criteria Risk Analysis

B. BisHoP
Parameter Investigated

Uncertainty on Initial Ref. NDT Temperature
Uncertainty in Copper Content -
Uncertainty in Nickel Content
Shape of Flaw Siz_e Distribution
Cladding Thickness
Stress-Free Temperature
Cladding Yield Strength (Plasticity)
Step vs. Linear Cladding Stress to Calculate SIF
Maximum Residual Stress
Residual Stress Variation with Depth in Wall
Master Curve Fracture Toughness
a) Unirradiated Only
b) Irradiated
Monte-Carlo Simulation Method and Results
a) Order of Regions (Welds vs. Plates First)
b) 10,000 each /8 flaw vs. 10,000 vessels
Any Others:
a) Initiation Only vs. Arrest Failure Criteria?

b) Pressure and Temperature?

Notes
(2)
(2)
(2)
(2) (3)
(4)
(4)

@

(4) (5)
(4)
(4)
(5) (6)

(5) (6)



(1)

(2)

)
@
)

(6)

Proposed Sensitivity Studies for
PTS Screening Criteria Risk Basis

Notes

If possible, each study would be performed using last public
version of FAVOR for one surface flaw in the most
embrittled region for two PTS transients (with and without
re-pressurization) to the bound effects on probability.

A range of uncertainty values would be used to determine
the effect of uncertainty in the uncertainty on probability.

The effects of different flaw distributions and flaw density
between plates, forgings, welds and repair regions will be
addressed by NRC-PNNL led task team on RPV flaws.

A range of parameter values would be used to determine
the effect of the uncertainty in the parameter on probability.

Source code for current version of FAVOR code would have
to be modified for these sensitivity studies.

Results from these sensitivity studies can be used to judge
the degree of conservatism in the selected method.



Uncertainty Analysis and Pressurized Thermal Shock: An Opinion
N. Siu
White Paper Last Revised September 2, 1999

introduction

To support current efforts regarding pressurized thermal shock (PTS) screening criteria in a
manner consistent with NRC’s current views on risk-informed decision making, probabilistic risk
assessment (PRA) analysts need to: a) develop estimates of risk metrics such as core damage
frequency (CDF) and large early release frequency (LERF), and b) characterize the
uncertainties in these estimates. Typically, this characterization is in the form of a probability
distribution (see Figure 1, where X represents the frequency of interest and n(A) is the
probability density function for that frequency). But what does this distribution mean? What
uncertainties does it represent? Aren't CDF and LERF already measures of uncertainty? And
how do we develop the CDF and LERF distributions for PTS?
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Figure 1 - Example Output of a PRA

This white paper answers these questions in two steps. First, it addresses the issues of
uncertainty in a methodologically oriented discussion. This includes a definition of the two
“types” of uncertainties currently distinguished in PRA, and a discussion of how they are
treated. Second, based on this methodological discussion, it proposes an approach for
addressing uncertainties in PTS; this approach integrates thermal hydraulic (T /H) and
probabilistic fracture mechanics (PFM) analyses in a PRA framework. The proposed approach
is then shown to be nearly identical with the current (“Method 2°) PTS approach. Differences
between the two approaches and their implications for PTS analysis are discussed.

It is recognized that, despite the agreement between the proposed approach and the current
PTS approach, a number of details may need to be revised following input from domain
experts; the intent of this paper is to provide an initial approach to the problem that is consistent
with current PRA views on the treatment of uncertainty.

This paper also includes a list of references for further reading and three appendices covering
probability concepts, aleatory and epistemic uncertainties, and parameter estimation.



Uncertainty Analysis Concepts

On the Meaning of “Frequency”

Although the analyses of CDF and LERF require the treatment of very different physical
phenomena, they are, from a mathematical viewpoint, both frequencies of undesired events.
This section discusses the notion of frequency as it is typically used in PRA models. It is shown
that, in PRA, the frequency is a parameter in a probability distribution that quantifies random
variability (“aleatory uncertainty”) in an observable variable.

Let's start with some basic assertions that provide the foundation for subsequent discussion.

1. There are physical variables which are, in principle, observable. Examples include the
time to failure of a particular component, the time at which an operator takes a particular
action at a given point in an accident sequence, the average copper contentin a
particular subregion of a particular reactor vessel at a particular point in time.

2. We need to predict the values of a set of these variables as part of the PRA analysis.

3. Because of limitations in resources, lack of knowledge, or both, we choose to treat
some of these variables as being the results of random processes. In other words, if we
employ a thought experiment involving a number of repeatable trials, we envision
observing a distribution of values (e.g., an empirical histogram) for the variable of
interest. The “prediction,” therefore, will be in terms of a probability distribution.

4, We also choose to treat the remaining variables as being deterministic. If we employ a
thought experiment involving a number of repeatable trials, we envision observing a
single value for the variable of interest (or, at least, a range of variability that is
sufficiently small for the practical application). The prediction, therefore, will be in terms
of a point value, at least in principle.

Note that because choice is involved, there is no fundamental principle as to when a variable
should be modeled as being random or deterministic; the analyst needs to decide if the notion
of repeatable trials makes sense for the problem being addressed. In PRAs, such things as
pump failures and operator actions are modeled as being random; we treat pumps and
operators as coming from populations of pumps and operators, and don’t attempt to model
individual pumps or individual operators. (One can argue that, even in the case of individual
pumps and operators, the notion of random variability still makes sense due to such processes
as environmental variation and renewal.) In the case of a reactor vessel, the choice may be
less clear. A proposed approach is discussed later in this paper.

Note also that, in current PRAs, core damage events and large early release events are
modeled as being the possible results of a set of interacting random processes, namely, those
involving the initiating event that causes a plant transient, the response of mitigating systems to
the transient, and the associated actions of human operators. The occurrences of core
damage and large early release events are also, therefore, random processes.



For random events occurring over time, PRAs typically use a Poisson distribution to model
event occurrence. This means that the probability of observing N core damage events in a time
period T is given by?

N
P{N events in time TIA}= (kNT|) e )

where A, which is called a “frequency,” is a simply a parameter characterizing the process. As
A increases, the likelihood of events also increases (see Figure 2). It can be shown that the
average number of events occurring in time period T is equal to AT.
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Figure 2 - Poisson Probability Distributions for Two Values of A

it turns out that for a Poisson process, if T, is the time to the first event, then the distribution of
T, is exponential, i.e.,

P{Ti<tiA}=1-e" @

As % increases, the probability of observing the first event by a specified time also increases
(see Figure 3). It can be shown that the average time to the first event is equai to 1/A. It can
also be shown that

p{-‘-1<t|x}z7\,-t when A-t <0.1 (3)

As noted earlier, CDF and LERF are the frequencies of core damage events and large early
release events, respectively. Thus, they are simply parameters of Poisson distributions.
Knowing the values of CDF and LERF, we can make statements about the likelihood of
observing a core damage event or a large early release event in, say, the next year. Of course,



we don't know the values of CDF and LERF with a high degree of certainty. This issue is
discussed in the following section.

Before concluding this discussion, it should be noted that the Poisson model, like all models,
has some underlying assumptions. In particular, the Poisson model assumes that the process
doesn't age, i.e., that A does not change over time. In the case of CDF and LERF, this can be
an unrealistic assumption. For example, if a severe accident really does occur, we can expect
there to be significant changes in the industry (e.g., all plants might be shut down). Less
dramatically, aging considerations might become important over time. For most PRA purposes,
the Poisson model is adequate.

09 +
08 1
07 T
0.6 1T
05 1

!

0.4 1+ //

03 T l‘ _____ Al

02 1/

01 4
LR +

Probability

0E+00
1E404
2E+04
3E+04
4E404
SE+04 1
6E+04
7E+04
B8E+04
9E+04
1£405 -

t(hr)

Figure 3 - Effect of Frequency on Time-to-Occurrence

Types of Uncertainties: Aleatory and Epistemic

The preceding discussion addresses uncertainties due to “inherent randomness”. In earlier
literature, they are often called “random uncertainties” or “stochastic uncertainties.” Currently,
following the terminology espoused by the ACRS, they are called “aleatory uncertainties.”
Their principal characteristic is that they are (or are modeled as being) irreducible; they are
defined by the form of the probability distribution (e.g., the Poisson distribution) and the value of

the distribution parameters (e.g., A).

Note that in the examples given earlier, the variability in the uncertain variable (e.g.,, Nor T,) is
observable, at least in principle. In other words, repeated observations of the variable will result
in an empirical distribution of values. This provides a way to think about aleatory uncertainties;
if repeated trials of an idealized thought experiment (where the conditions are kept constant
from trial to trial) will, assuming no measurement error, lead to a distribution of outcomes for the
variable, this distribution is a measure of the aleatory uncertainties in the variable.

'According to Webster's, aleatory (adj.) comes from alia (a dice game); relevant
definitions are: (1) depending on an uncertain event; (2) relating to good or bad luck.

4



Another type of uncertainty addressed in PRAs is “epistemic uncertainty,” which has been
called “state of knowledge uncertainty” in earlier papers because it is due to weaknesses in the
current state of knowledge of the assessor. Uncertainties in a deterministic variable whose true
value is unknown are epistemic. Repeated trials of a thought experiment involving the variable
will, in principle, result in a single outcome, the true value of the variable.?

Unlike aleatory uncertainty, epistemic uncertainty is reducible with the coliection of additional
information. In PRAs, for example, it is typically assumed that the Poisson model is a good
representation for the failure of equipment while running. Therefore, it is assumed that there is
a particular failure rate for each component. Initially, we may not have much failure data fora
component, and our (epistemic) uncertainties in the value of the failure rate will be large. After
we collect a large enough sample of failure data, we can get a very good estimate of the failure
rate, i.e., the epistemic uncertainties in the value of the failure rate will be small. The epistemic
uncertainties are quantified using probability distributions (see Appendix A). Figure 4 shows
how, in instance, the distributions are narrowed, i.e., the uncertainties are reduced, when
additional information is collected. (N represents the number of observed failures and T
represents the period of observation in hours.) The method for generating these distributions,
given data, is discussed in the next section.
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Figure 4 - Reduction in Epistemic Uncertainty with Increased Data

The answers to the first three questions posed at the beginning of this paper are therefore as
follows. (1) The distribution in Figure 1 quantifies the analyst’s uncertainties in the value of the

2paccording to Webster's, episteric (adj.) comes from epistemikos (of knowledge,
capable of knowledge); relevant definitions are: (1) of, having the character of, or relating to
intellectually certain knowledge; (2) purely intellectual or cognitive; (3) subjective.

3Note that measurement error arises from an aleatory process. However, if the
measured variable is, in principle, deterministic, then the uncertainties in the variable are
epistemic. The apparent contradiction can be resolved by clearly defining what uncertainties
are being addressed in the PRA. This issue is further discussed in Appendix A.
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parameter A (which represents either CDF or LERF). Specifically, the integral of the curve
(which is a probability density function) between any two limits, say A, and i ,, gives the
probability that A lies’in the range (A ,,A,). (2) These uncertainties are epistemic; they arise
from the analyst's imperfect state of knowledge regarding the true value of A. (3) CDF and
LERF (which are typically computed in PRAs using conventional event tree/fault tree analysis)
are frequencies (as defined earlier in this paper); they are parameters that quantify aleatory
uncertainties in observable variables, e.g., the time to a core damage event. There are, of
course, generally epistemic uncertainties in their values.

Figure 5 shows how these two types of uncertainty can be represented in the case of such
variables as event occurrence times. (An analogous representation can be developed for
variables representing the number of events in a given time period.) The heavy curves (solid
and dashed) are the cumulative probability distributions quantifying the aleatory uncertainties in
the event occurrence time. The light curve crossing these heavy curves is the probability
density function quantifying the epistemic uncertainties in A; it represents the same distribution
as that illustrated in Figure 1. As shown by Equation (2), the aleatory distributions are
conditioned on the value of A; the four curves shown correspond to the 5" percentile (A05),
median (A50), mean (<A>), and 95" percentile (A95) values of . Note that PRAs typically
display results in the form of Figure 1 and not Figure 5; the aleatory uncertainties in the
observable variable are assumed to be understood.

It should also be noted that fundamentally, as discussed by a number of authors (e.g., see
Apostolakis, 1999) and noted in Appendix A, there is only one kind of uncertainty. Why does
PRA distinguish between “aleatory” and “epistemic” uncertainties? The answer is due to the
fact that PRA is used to support decision making; the distinction can be important for both
interpreting the PRA output, and deciding what to do with this output. This is discussed in
Appendix B.

pt)

Figure 5 - Representation of Aleatory and Epistemic Uncertainties in Event Occurrence Time



‘Uncertainty Analysis in PRA

Current PRAs typically use two kinds of models to address aleatory uncertainties. The first,
which is applied to events occurring over time (e.g., failures of already operating pumps), is the
Poisson distribution already discussed. The second, which is applied to events occurring as the
immediate consequence of a challenge (e.g., failures of standby pumps to start on demand), is
the binomial distribution. This distribution quantifies the likelihood of outcomes resulting from a
Bernoulli (or “coin flip”) process. It is given by:

N! R N-R
RUN—R)! ¢ (1-0) 4)

P{R failures in N demands|$} =
where ¢ is the probability of failure for a single demand. [t can be seen that mathematically, ¢
plays the same role as A; it is just a parameter characterizing a distribution. 1t can be shown
that as the number of trials gets very large, the relative frequency of failures, R/N, approaches
¢. Thus, ¢ can be interpreted as the fraction of times failures will occur in the long run.

Using the various A’s and ¢'s corresponding to the different components included in the PRA
model, the CDFs and LERFs associated with various event sequences, as well as the overall
CDF and LERF, can be computed. Symbolically,

(5)
LERF =f,(A ¢)

To quantify the epistemic uncertainties in CDF and LERF, the epistemic uncertainties in the A's
and ¢'s are propagated through f, and f,. This is currently done on a routine basis using
sampling schemes (e.g., direct Monte Carlo sampling).

The quantification of the uncertainties in the A's and ¢’s involves the collection and
interpretation of a variety of forms of evidence (e.g., model predictions, expert opinion,
empirical data), and the application of an appropriate estimation procedure that uses this
evidence. Formally, the estimation procedure involves the application of Bayes’ Theorem. The
general form of this theorem is:

- (@lE) = B m©
T LEem (@)
e

(6)

where 6 is the vector of parameters to be estimated; E is the evidence; L(E!) is the likelihood

function, i.e., the probability of observing the evidence if is known; m(8) is the prior distribution
for 0, i.e., the probability distribution for 8 prior to observing the evidence; and the denominator
on the right hand side of the equation is just a normalization constant.



While it may appear to be complicated, application of Equation (6) is straightforward in many
practical cases. Consider the situation where we are estimating the failure rate (frequency) of a
component, A, and the evidence consists of an observation of R failures in a specified time
interval T. The likelihood function is then the Poisson distribution as given by Equation (1);
removing constants that appear in the numerator and denominator, Bayes’ Theorem becomes:

R_-AT
[ARe™T mo (A)an
0

(7)

which has analytical solutions for some forms of the prior distribution, and which can be solved
numerically using simple tools (e.g., spreadsheets or equation solving software) for arbitrary
forms of the prior distribution. (The development of the prior distribution requires judgment,
especially in the case where the data are sparse. Practical approaches are discussed in the
paper by Siu and Kelly which is included in the list of references at the end of this paper. itis
worth noting that for reasonable prior distributions, the precise shape of the distribution is
unimportant when large amounts of data are available.)

It is important to observe that the likefihood function represents the aleatory model for the
observable variable. In the above case, the observable variable (R), is assumed to be the
result of a Poisson process; the Poisson distribution (which has the single parameter 1) is then
appropriate for the likelihood function. To expand on this point, consider a slightly more
complicated case where the observable variable, denoted by C, is assumed to be: a) random,
and b) the result of a lognormal process, i.e., the aleatory uncertainties in C are quantified by a
lognormal distribution. Assume an experiment is performed which results in N observations of
C. Bayes’ Theorem is then

N 2
1 fnC-—u]
——expy 3| ,G
EIJZnoCi i 2[ o | [we)
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where p and ¢ are the two parameters of the lognormal distribution and are related to the mean
and variance of C. This equation can be solved using relatively simple software tools. An
example is provided in Appendix C. :

When the evidence is in more complicated forms (e.g., expert opinions), the use of Bayes’
Theorem is not as straightforward. In such cases, current PRAs generally employ less formal
procedures, e.g., subjective estimation of the probability distribution based on considerations of
sample averages and ranges. Bayes’ Theorem is an important tool for ensuring that the
analyst updates his/her state of knowledge concerning the uncertain parameter in a manner
consistent with the laws of probability, but it is just a tool.



Summary Points : Uncertainty Concepts

B 4

Uncertainties in a variable are treated in PRAs as being aleatory when the variable is
assumed to be the result of a random process, i.e., repeated trials of a thought
experiment will lead to a distribution of values for the vanab!e . '

Uncertainties in a variable are treated in PRAs as being epistemic when the vanable is
assumed to be deterministic, i.e., repeated trials of a thought expenment will 1ead to a
single value for the variable. :

The distinction between aleatory and epistemic uncertamtues is not aMays c!ear drawmg
the line between the two is generally a modeling decision. : S

PRAs generally address aleatory uncertainties in the behawor of model elements through
the A and ¢ parameters. The aleatory uncertainties in overall plant behavior are
addressed using the CDF and LERF parameters; these are functions of the A's and ¢'s.

The epistemic uncertainties in the A’s and ¢'s are propagated through the PRA model to
develop epistemic distributions for CDF and LERF. S

The formal approach for quantifying epistemic uncertam’aes in the A’s and ¢ s (or any
other model parameter) involves the use of Bayes’ Theorem. This is a straightforward
process for many practical situations, and can be acoompllshed usmg spreadsheets or
simple equation solving software : R i




integrated PTS Analysis

To develop estimates of CDF and LERF associated with PTS, we know that thermal hydraulic
(T/H) uncertainties and probabilistic fracture mechanics (PFM) uncertainties must be addressed
in an integrated PRA framework. But how should this be done? Which uncertainties are
aleatory? Which are epistemic? How should the results be presented? What does this mean
in terms of the computational process used to generate the results?

This section proposes a particular approach for dealing with these questions. As indicated at
the beginning of this paper, the intent is to provide an initial view and thereby stimulate
constructive discussion. A final position cannot be developed without input from the PFM and
T/H domain experts.

The Problem

Figure 6 shows a highly simplified view of the PTS problem with respect to the issue of CDF.
(The discussion for LERF follows along very similar lines.) Using conventional PRA tools (e.g.,
event trees and fault trees), the scenarios resulting in PTS-related challenges to a particular
reactor vessel (RV) at a particular plant can be identified and their frequencies (denoted in the
figure by A, i = 1,2,...,n) estimated. These frequencies characterize the aleatory uncertainties
associated with the occurrence of the PTS challenge scenarios. Conventional PRA tools (e.g.,
Monte Carlo or Latin Hypercube sampling) can also be used to generate distributions
quantifying the epistemic uncertainties in these frequencies.

Consider the ith PTS challenge scenario defined by the PRA. Using PFM models and
judgment,* we can estimate ¢, the conditional probability of vessel failure and core damage due
to PTS, given the ith scenario. The parameter ¢, is a measure of the aleatory uncertainty in
the response of the vessel to the PTS challenge scenario. It is perhaps best interpreted as
the fraction of times PTS-induced core damage will be observed, given a large number of
challenges of the type defined by scenario i. Care needs to be taken in defining which PFM
uncertainties contribute to ¢,, and which contribute to the epistemic distribution for ¢.

Before discussing a proposed treatment of aleatory and epistemic uncertainties in PFM which is
based on the discussions provided earlier in this paper, we first need to address the question of
why there should be a ¢, term at all. In other words, is the behavior of the reactor vessel
deterministic, given the ith PTS challenge scenario?

‘Judgment comes in when we are deciding what PFM endpoint is equivalent to core
damage. Some possible endpoints are, in order of decreasing conservatism and increasing
PFM uncertainty: RV crack initiation, RV through-wall crack, and catastrophic RV failure (i.e.,
failure of the RV beyond the capacity of available makeup). The general discussion in this
paper is intended to cover all of these endpoints; the specific examples employed focus on
crack initiation.

10
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Figure 6 - Simplified PRA Representation of PTS Problem

| believe that variability in the response of the reactor vessel should be expected. This
variability certainly arises because of the manner in which the PRA defines the PTS challenge
scenarios. It may also arise due to modeling simplifications in the PFM analysis, even for such
relatively well defined problems as crack initiation.

Consider first the issue of scenario definition. The PTS challenge scenarios identified by
conventional PRAs are defined in terms of initiating events (e.g., steam line breaks) and
successes or failures of mitigating equipment and actions (e.g., isolation of main feedwater on
demand). Two important modeling approximations in this characterization are: a) all equipment
and operator behaviors are treated as being binary (either successful or failed), and b) the
timing of events is important only to the extent that it affects the definition of “success” or
“failure.” The T/H response of the plant to the initiating event is clearly affected by these
issues.

For example, a PRA might treat two states of a pressurizer PORV block valve: the block valve
closes (on demand), and the block valve fails to close. If the block valve only closes midway or
takes too long to close, the PRA might (depending on the precise success criteria employed)
treat these as being equivalent to a situation where the valve gate doesn’t move at all.
However, these different situations could lead to different temperature and pressure transients,
and, therefore, different reactor vessel responses.

As another example, each initiating event treated in the PRA actually represents a set of
potential accident initiators. For instance, the PRA groups steam line breaks of different sizes
and locations. Again, these differences could lead to different temperature and pressure
transients and different reactor vessel responses.

In general, it can be seen that each PRA-defined scenario actually represents a bundle of

possible T/H scenarios. Even if reactor vessel behavior were a deterministic function of the T/H
scenario, an experiment involving multiple occurrences of a particular PRA-defined PTS
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'challerige scenario would be expected to lead to multiple outcomes due to variations in the T/H
scenarios included in the PRA scenario.

Next consider the behavior of the reactor vessel. It is for the PFM analysts to decide if there
can be any significant variations in the response of a specified reactor vessel to a well-defined
T/H scenario. However, if the current PFM approach® includes models for material behavior
that do not explicitly account for all potentially important factors (see the scatter data for K,_),
then vessel behavior could vary, even if all PFM mode! input parameters (including those
defining the T/H scenario) are fixed.

Based upon the preceding arguments, it appears that the concept of aleatory uncertainties in
the behavior of the reactor vessel when subjected to a PTS-challenge scenario (as defined by
the PRA) is valid. The term ¢, is therefore relevant and needs to be estimated.

Analysis Interfaces

Before discussing a proposal concerning how ¢, is to be estimated, a short discussion on the
interfaces between the PRA, T/H, and PFM analyses is useful. This will provide a context for
the discussion on estimation.

Figure 7 outlines a conceptual approach for defining the interfaces. In this approach, a PRA
analysis (with some input from T/H analyses, e.g., regarding system success criteria) defines
the PTS challenge scenarios in terms of initiating events (IEs) and associated
equipment/operator successes and failures, and then estimates the frequencies (A) of these
scenarios.! These PRA scenario definitions and frequencies are provided to a T/H analysis.
For each PRA scenario, a set of representative T/H scenarios is defined (with some additional
input from the PRA analysis, e.g., regarding the likelihood of various failure times). Each
representative T/H scenario, which is chosen to represent a bundle of similar T/H scenarios, is
assigned an appropriate fraction of the PRA scenario frequency, and is analyzed using an
appropriate T/H model. (Note that the effect of aleatory uncertainties in key T/H parameters, if
any, should be factored into the T/H scenario frequencies; the effect of epistemic uncertainties
in key parameters should be addressed through the epistemic uncertainties in both the scenario
frequencies and the T/H output for each T/H scenario.) The results of each T/H scenario
analysis, together with an estimate of the scenario frequency, are then provided to a PFM
analysis. The PFM analysis then generates an estimate of ¢,.” The ¢, are then combined with

the A, in an integrated assessment of CDF (shown) and LERF.

SAll references to the “current PFM approach” refer to the proposed Method 2 presented
at the joint NRC-industry meeting on PTS held on April 20, 1999 and discussed in subsequent
NRC meetings.

‘ ¥The estimation process is assumed to include the quantification of epistemic
uncertainties.

’A decision needs to be made whether some reactor vessel endstate is going to be used
to represent core damage, or if additional analysis between, say, through-wall crack
propagation, and core damage is to be performed.
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‘This approach appears to be nearly identical to that discussed at the April 30, 1999 and June 9,
1998 NRC meetings on PFM/PRA integration. Two minor differences are as follows. First, the

proposed approach requires a slightly different aggregation of results (on a PRA scenario basis,
rather than on an overall basis). Second, it requires that PRA scenario frequencies be explicitly
allocated to the constituent T/H scenarios in a manner consistent with the PRA model.

Proposed Approach for Estimating ¢,

The PFM variables and parameters considered as being uncertain in the current approach to
PTS are listed in Table 1. (This table is based on discussion at the June 9, 1999 NRC meeting
on PFM/PRA.) My understanding is that the uncertainties in the variables and parameters listed
as being “inside FAVOR,” as well as the uncertainties in the T/H scenarios (each T/H scenario
is effectively assigned a probability), are currently being addressed via Monte Carlo simulation
in two ways (see Figure 8). First, most of the Table 1 variables and parameters (e.g., copper
content, fluence, flaw size) are sampled to characterize a particular reactor vessel. Second, the
possible T/H scenarios are sampled to estimate what fraction of these scenarios will lead to the
failure of the given vessel. As shown in Figure 8, the first (reactor vessel-related) round of
sampling effectively treats the sampled variables as being deterministic; the associated
uncertainties are therefore epistemic. The second (T/H-related) round of sampling effectively
treats the sampled variables as being random; the associated uncertainties are therefore
aleatory. (Note that in Figure 8, the “¢” and “Pg,,” terms correspond to the “A” and “¢” terms,
respectively, of this paper.)

Table 1 - Uncertain Variables and Parameters in PEFM

Inside FAVOR® Outside FAVOR®
copper content weld residual stresses
nickel content cladding thickness
neutron fluence stress-free temperature
flaw size flaw size distributions®
flaw location flaw density®
RT\por margin T/H pressure-temperature curve®

reactor vessel temperature
reactor vessel stress
K
K, scatter

*Based on current version of FAVOR
®Might be able to move inside FAVOR without modifying loading/stress intensity libraries
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This section of the paper re-examines the variables and parameters listed in Table 1 in light of
the philosophical discussion provided in the first section of the paper. It then provides
recommendations as to whether their uncertainties should be categorized as being aleatory,
epistemic, or both.® it concludes with a discussion of the implications of any changes in
categorization on FAVOR.

Modeling Observations and Assumptions Concerning the Reactor Vessel

As mentioned early in this paper, the distinction between aleatory and epistemic uncertainties

is, to some degree, a matter of modeling. The discussion therefore starts with some modeling
observations and assumptions that will be used to provide a basis for the discussion on
uncertainty-based categorization.

First, it should be recognized that, under the current PTS program, analyses will be performed
for a set of specified plants and reactor vessels. Thus, the aithough the results will be used in
developing a generic screening criterion, the analyses themselves are not generic.

Second, looking at a specific reactor vessel, the vessel’'s material properties are essentially
deterministic. In other words, the concept of “the true value” for such variables as the copper
content at a specified point® is meaningful, whether or not there are problems with our current
ability to reliably measure those variables. Other reactor vessel spatially dependent physical
characteristics that can be viewed as being deterministic on a pointwise basis are the weld
residual stresses, the vessel cladding thickness, and flaws in the vessel. Regarding the latter, it
appears that the flaws in the reactor vessel are those created during manufacturing, i.e., non-
catastrophic operational transients cannot initiate or propagate flaws with any significant
likelihood. If this observation is incorrect, then random variations in the timing and magnitude
of such transients would then lead to random variations in flaw density, size, and location.

Regarding external influences on the reactor vessel prior to the PTS challenge, it seems
reasonable to assume that the spatially dependent neutron fluence can be treated as being
deterministic. (There are random fluctuations in neutron flux, but time averaging will tend to
smooth out these fluctuations.) Regarding external influences during the challenge, it seems
that reactor coolant temperature and pressure can also be treated as being deterministic, i.e.,
that the impact of random fluctuations will be small (due to vessel thermal and mechanical
inertia).

Third, many of the reactor vessel properties and external influences will vary with location
(r,8,2). This means, for example, that a sampling of the copper content over a specified vessel
subregion will result in an empirical distribution of values for that property. (This distribution can
be fairly broad and can be multimodal.) It should be emphasized that the existence of a
sampling distribution reflects aleatory uncertainty in the sampling process. It does not
necessarily mean that the pointwise values are themselves random.

8Random variables whose distributions are uncertain have both aleatory and epistemic
uncertainties.

*The “value of a continuously distributed variable at a point in the reactor vessel” is
understood to mean the average value in a suitably small subvolume about that point.
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' Propésed Categorization of Uncertain Variables and Parameters

The following proposals concerning the categorization of the variables and parameters listed in
Table 1 are based upon the preceding observations and assumptions

Copper Content: Epistemic

In the current PFM approach, which is done on a subregion basis, the copper content is
sampled once per flaw. This is done because the concern is not with the average
copper content in the entire subregion (whose characteristic dimensions can range from
several centimeters to even a few meters), but rather with the copper content local to
the flaw (and at the time of the PTS challenge). The sampling is done using a
distribution derived from empirical data. As noted earlier, the procedure essentially
treats the uncertainties in copper content as being epistemic in nature.

Both the flaw location and the local copper content are, in principle, deterministic. (They
are essentially determined when the vessel is manufactured.) Thus, it seems
reasonable (i.e., consistent with the principles described in the first part of this paper) to
treat the uncertainty in the copper content as being epistemic. Sampling based
distributions can be used to quantify epistemic uncertainties,' but they should not be
used as aleatory distributions. Note that the current assumption that the uncertainty
distribution for copper content is Gaussian may need to be revisited; the investigation
can be done in a straightforward manner using standard statistical tools.

Nickel Content: Epistemic

See the discussion for copper content.

Neutron fluence: Epistemic

In the current PFM approach, the neutron fluence is sampled once per flaw (to support
the calculation of the extent of embrittiement near the flaw). The sampling is done using
a distribution derived from expert judgment concerning the accuracy of neutronics
calculations. The procedure essentially treats the uncertainties in fluence as being
epistemic in nature.

As argued earlier, although there are random fluctuations in the neutron flux (and
therefore fluence), the time averaging used to calculate the fluence should tend to
reduce the impact of these fiuctuations. It therefore appears reasonable to treat the

‘uncertainty in the fluence as being epistemic in nature. Expert judgment, which could

involve a more detailed treatment which explicitly addresses the key sources of
uncertainty, can be used to quantify the uncertainty.

Flaw size: Epistemic

Yin cases where the assessor chooses to use the sampling distribution directly as a

representation of his/her state of knowledge, they are numerically identical.
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in the current PFM approach, uncertainties in the crack geometry are effectively treated
being treated as being epistemic in nature. Since non-catastrophic operational
transients apparently have little effect on flaw initiation or growth, it appears that the
geometry of a given flaw should be deterministic. (It is essentially determined when the
vessel is manufactured.) Therefore, it appears reasonable to treat the uncertainties in
flaw size as being epistemic. As is the case with copper and nickel content, sampling
based distributions can be used to quantify the epistemic uncertainties in flaw size, but
they should not be used as aleatory distributions.

Flaw location: Epistemic
See the preceding discussions on copper content and flaw size.
RT\pr.margin: Epistemic

in the current PFM approach, this term is used to account for uncertainties in both the
initial, unirradiated value of RTpr, i.€., RTyor, @and uncertainties in the correlation used
to predict the neutron radiation-induced shift in RTpr, i.€., ARTyor. As with most of the
other variables and parameters discussed, the uncertainties are treated as being
epistemic in nature.

This treatment appears to be reasonable. The parameter RTy, is derived
experimentally under a specified protocol. For the purposes of the PTS analysis, it
appears that it can be considered as a material property. This means that the
uncertainties in RTy1, Can be treated as being epistemic. For similar reasons, the
parameter ART,; can also be considered as a material property, and its uncertainties
can be treated as being epistemic in nature.

Note that the comparison of correlation results for ART,; with experimental data will
lead to a sampling distribution for error in the correlation (due to the effect of factors not
included in the correlation). This sampling distribution can be used to develop the
epistemic distribution for ARTpr, but it should not be taken to mean that ART,r at a
given point (the location of the flaw) is itself aleatory. '

Also note that the correlation for ART 57 requires values of copper content, nickel
content, and fluence, all of which are uncertain. Estimation of the uncertainties in
ART o7 due solely to modeling needs to be done recognizing these uncertainties.
Bayesian methods have been developed to address this problem.

Reactor vessel temperature: Deterministic

In the current PFM approach, the spatial distribution of temperature inside the reactor
vessel is computed deterministically based on the temperature-time curves provided by
the T/H analysis. (Presumably, the heat transfer coefficients and material thermal
properties, e.g., thermal diffusivities, are assumed to be constant.) Uncertainties in the
T/H input will iead to uncertainties in the vessel temperature, but there are no other
sources of uncertainty considered.
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Unless the effect of uncertainties in the heat transfer coefficients and the material
thermal properties are believed to be important, there is no need to perform any
additional sampling.

Reactor vessel stress: Deterministic

in the current PFM approach, the spatial distribution of stress inside the reactor vessel is
also computed deterministically (based on a number of factors, including the time-
dependent temperature profile, the vessel geometry, and the weld residual stresses.)
Unless there are any significant uncertainties in these calculations, there is no need to
perform any additional sampling.

K;: Deterministic

This variable is currently computed deterministically as a function of other variables.
Unless it is postulated that the computation process itself introduces additional
uncertainties, there is no need to perform any additional sampling.

K, scatter: Aleatory and Epistemic

In the current PFM approach, the scatter in K. is sampled once per time step for each
flaw. (The sampling distribution is based on a comparison of K. predictions with
experimental data.) Based on when the sampling is done (K, is a function of local
temperature, which is a function of the thermal hydraulic transient), it appears that the
uncertainties in K, are being treated as being aleatory in nature.

At first glance, it appears that K., which is computed as a function of T-RTyom isa
temperature-dependent material property and should therefore be deterministic (at a
given point). However, consider the crack initiation model which uses K,.. This model
predicts crack initiation whenever K, which is a computed function of a number of
factors (e.g., crack geometry and applied stress), exceeds K. Applying this model to
experimental results, it would not be surprising for the model would be correct for some
trials and incorrect for others. (The graph showing variability in K for fixed values of T-
RT,or may be an indication of this aleatory uncertainty. Note that models, by definition,
are simplified representations of the real world, and generally don't address all factors
that can potentially affect the results.) Thus, although the uncertainties in K, are
epistemic, there are aleatory uncertainties in the results of the mode! which uses K.

Note that in a mathematically analogous problem involving aging-related failures of
piping, Apostolakis (1999) argues that model uncertainty should be treated as being
epistemic in a PRA. It is currently planned that a small task group reinvestigate the
treatment of the scatter in K,.. The task group will need to determine if the current PFM
distribution for K,, appropriately addresses the model uncertainty and how epistemic
uncertainties in the mode! should be addressed.
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Weld residual stresses: Epistemic

In the current PFM analysis, these are treated as being deterministic. (They affect the
finite element stress calculations, and therefore cannot be easily incorporated into the
current computational scheme used by FAVOR to address uncertainties.)

Since weld residual stresses are essentially determined at the time of vessel
manufacture, the uncertainties in these stresses are epistemic in nature. Given the
difficulty of addressing these uncertainties within FAVOR, a scheme for doing this
outside of FAVOR is outlined later in this section.

Cladding thickness: Epistemic

In the current PFM analysis, this is treated as being deterministic. (It affects the finite
element stress calculations, and therefore cannot be easily incorporated into the current
computational scheme used by FAVOR to address uncertainties.)

Since the vessel dimensions (including the cladding thickness) are essentially
determined at the time of vessel manufacture, the uncertainties in this thickness (for a
given subregion) are epistemic in nature. Given the difficulty of addressing these
uncertainties within FAVOR, a scheme for doing this outside of FAVOR is outlined later
in this section.

Stress-free temperature: Epistemic

In the current PFM analysis, this is treated as being a deterministic parameter.
Presuming that, for a given reactor vessel, there is a temperature at which the stress
between the cladding and the vessel base material is zero, it appears that this treatment
is reasonable. The uncertainties in the parameter are, therefore, epistemic.

Fiaw size distributions: Epistemic

in the current PFM analysis, uncertainties in the flaw size distribution (e.g., regarding its
shape and parameter values) are not treated. Since, as noted earlier, the uncertainties
in the flaw characteristics are epistemic in nature, the uncertainties in the distribution of
characteristics is also epistemic. From a computational point of view, the proposed
treatment of flaw characteristics accounts for uncertainties in the flaw size distribution,
no additional treatment is needed.

Flaw density: Epistemic

Following the discussion of other flaw characteristics, the flaw density is determined at
the time of vessel manufacture and the uncertainties in this density are epistemic.

T/H pressure-temperature curve: Aleatory and Epistemic

In the current PFM analysis, T/H uncertainties are used directly in the computation of
the ¢ this procedure treats the T/H uncertainties as being aleatory.
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The proposed treatment of T/H uncertainties has been discussed earlier in this paper. 1t
recognizes that there is an aleatory component (quantified by the frequency of the
parent PRA scenarios and the fraction of this frequency associated with the bundle of
T/H scenarios modeled through the use of a single representative T/H scenario) and an
epistemic component (quantified by distributions for the T/H scenario frequencies and
the conditional T/H model output). ‘

Table 2 summarizes the results of the preceding discussions on the categorization of uncertain
PFM variables and parameters. In general, the conceptual treatment of uncertainties in the
variables and parameters used by the current PFM approach appears to be consistent with the
principles described in the first part of this paper (although a PRA-based description would
describe the process somewhat differently'’). The impact of changes in categorization are
discussed in the following section.

Implications for FAVOR

Table 2 shows that, from the standpoint of PFM uncertainty analysis, four classes of
variables/parameters have been identified.

1. Variables/parameters which do not need to be explicitly included in sampling schemes
used to perform the uncertainty analysis. These are generally deterministic functions of
other uncertain variables/parameters. Uncertainties in these will be automatically dealt
with as part of the uncertainty analysis process.

2. Variables/parameters which have both aleatory and epistemic uncertainties. The
epistemic uncertainties can be addressed within FAVOR.

3. Variables/parameters which have epistemic uncertainties. The epistemic uncertainties
can be addressed within FAVOR.

4, Variables/parameters which have epistemic uncertainties. The epistemic uncertainties
cannot be addressed within FAVOR (at least without considerable restructuring of the
code).

The discussion in the previous section and Table 2 show that the current PFM categorization of
variables and parameters is generally reasonable. Furthermore, Figure 8 shows that the
computational approach used by FAVOR appropriately distinguishes between aleatory and
epistemic uncertainties. Thus, the following points, which address recommended changes in
the PFM uncertainty analysis, do not appear to require significant changes in the FAVOR code.

""For example, as noted earlier in this paper, the term “stochastic” is typically used in the
PRA literature to refer to random or aleatory issues. My understanding is that the process of
“stochastically generating vessels” actually addresses epistemic uncertainties. | recommend
that future descriptions of the PFM analysis use the terminology of this white paper.
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' Table 2 - Recommendations for Categorization of Uncertain Variables and Parameters in PFM

- -

Variable/Parameter

copper content
nickel content

neutron fluence
flaw size
flaw location
RTyor margin
reactor vessel temperature
reactor vessel stress
K,
K, scatter
weld residual stresses
cladding thickness
stress-free temperature
flaw size distributions
flaw density

T/H pressure-temperature curve

Recommended Uncertainty Category®

epistemic
epistemic
. epistemic
epistemic
epistemic
epistemic
deterministic®
deterministic®
deterministic®
aleatory and epistemic
epistemic
epistemic
epistemic
epistemic®
epistemic
aleatory and epistemic

#Underline indicates a change from the current PFM approach.
®Variable is a deterministic function of other, uncertain variables; no additional treatment of

uncertainty is required.

“Uncertainties in flaw size distribution should be addressed as part of the uncertainty analysis

for flaw size.

° Category 2 Variables and Parameters: K. scatter and T/H temperature/pressure

In general, the parameters of aleatory distributions are uncertain. If these uncertainties
are significant (methods for quantifying these uncertainties were discussed in the first
section of this paper), they need to be addressed in the sampling process. This can be
done in a very straightforward manner within the FAVOR code.

Assume, for example, that the distribution of K is lognormal with uncertain parameters
u and o. At the time FAVOR is sampling the reactor vesse! parameters (e.g., copper
content, which have epistemic uncertainties), it should also sample a value for p and a
value for 6. Then, when FAVOR is actually sampling for K., it should use the sampled
values of u and ¢ in defining the lognormal distribution for K,..



Category 4 Variables and Parameters: weld residual stresses, cladding thickness, and
stress-free temperature

Although the epistemic uncertainties in these variables and parameters are
fundamentally of the same nature as the epistemic uncertainties in other variables and
parameters, it appears for computational efficiency reasons that they should be
addressed outside of the FAVOR code. It appears that this can be done relatively
simply using Latin Hypercube Sampling (LHS) techniques; LHS is used to define sets of
inputs (with appropriate probability weights) that are then provided to FAVOR.

‘Summary Points - Integrated PTS Analysis

The proposed approach for integrating PRA, T/H, and -PFM analyses described in this
paper (see Figure 7) is nearly identical to that discussed at the April 30, 1999 and June
9, 1999 NRC meetings on PFM/PRA integration. Two minor differences are: 1) the
proposed approach requires the aggregation of results on a PRA scenario basis, rather
than on an overall basis; and 2) the approach requires that PRA scenario frequencies be
explicitly allocated to the constituent T/H scenarios in a manner consistent with the PRA

Although it doesn't use the same termin_ologjy, the ﬁn&énaiﬁty anawéié’f}amébvork'
employed by the current PFM approach correctly dis,t}inguishe»sp_.‘etween epistemic and

aleatory uncertainties. R

The current PFM categorization of uncertain PFM variables and parameters (in terms of
whether the uncertainties are epistemic, aleatory, or both) appears 1o be generally -
reasonable. A few changes in categorization are recommended (see Table 2). Some of
these changes can be addressed within the current FAVOR code; others will need to be
addressed outside of the code. .+ . e s S
The quantification of aleatory uncertainties in K, and of the epistemic uncertainties in this
distribution needs to be looked at further. = " .. Srgapti T
The current quantification of uncertainties for many of the PFM variables and parameters
can be updated using relatively s_i_mple tools. - o
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Appendix A - Probability Definitions and Concepts
Probability

Probability is a subjective (internal) measure of likelihood." Thus, P{A} is the quantity that
measures the assessor’s degree of certainty (or uncertainty) as to the truth of proposition A?
P{AIB}, the conditional probability of A, given B, measures the assessor’s belief that proposition
A is true, given (assuming) that proposition B is true. Some important observations are as
follows:

1. Although there is no “true” or “correct” probability for a given proposition, useful
probabilistic assessments are not arbitrary; they must adhere with the rules established
by the calculus of probabilities. It turns out that this requirement forces convergence of
subjective and frequentist probabilities when there is a large amount of data.

2. For a probability to be meaningful, the proposition must be carefully defined. Lack of
clarity can lead to misunderstandings and misuses of probabilistic analysis results.

3. All probabilities are conditional; they are all based on the assessor’s current state of
knowledge concerning the proposition in question. As that state of knowledge changes,
the (conditional) probability of the proposition changes as well. :

4, The definition of probability does not distinguish between “aleatory” and “epistemic”
uncertainties. Uncertainties of both types contribute to the overall probability. However,
they contribute in different manners, as illustrated by an example at the end of this
appendix.

Probability Distributions

Let X be a continuous variable (e.g., the copper content at a specific point in the reactor vessel)
whose precise value is unknown. Some generic propositions of interest are:

{X <x}
{X >x}
{x <X <x+AXx}

where x is a given value. The probabilities of these propositions being true clearly can change
as functions of x. Because of their usefulness, these functions have been given specific
names:

'Although there are other definitions of probability, e.g., the “frequentist” definition which
takes the probability to be the limiting ratio of successes to trials in an infinite series of
repeatable, identical experiments, the subjectivist definition is appropriate for use in PRA, as it
is an integral part of current theories on decision making under uncertainty.

2A proposition is a statement that is either true or false.
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Cumulative Distribution Function (CDF): F(x) =P{X <x}

Complementary Cumulative Distribution Function (CCDF): —F-'(x) =P{X >x}

P{x <X <x+Ax}
AX

Probability Density Function (pdf): f(x) = lim
Ax—0

Some useful relationships following from these definitions and the axioms of probability are
given in Table A.1.

It is important to observe that all of the above distribution functions are probabilities which
quantify the assessor’s subjective beliefs as to whether the true value of X lies in a specified
range. Thus, for example (see Figure A.1), a highly peaked pdf indicates that the assessor is,
correctly or incorrectly, very confident in his knowledge about X; a more shallow pdf indicates a
lower level of confidence.

high
confidence
f(x)

low
confidence

X

Figure A.1 - Probability Density Functions (pdfs) and Confidence

It should also be noted that neither the definitions of distributions nor the relationships in Table
A.1 are dependent on the particular form of the distribution. This means that, in principle,
probability distributions do not have to members of any particular parametric family, e.g., normal
(Gaussian), lognormal, gamma, Weibull, or exponential. However, for mathematical and
computational convenience, it is often useful to approximate the assessor's distribution using a
particular parametric form. Specific forms and their characteristics (e.g., mean value, variance,
key percentiles) can be found in numerous handbooks and textbooks.

The above discussion focuses on a single uncertain variable. Similar propositions and
associated distribution functions can be developed for multiple uncertain variables, albeit with

more complexity. in dealing with multiple variables, care needs to be taken that dependencies
between the variables are accounted for because, in general,

P{a<X <b,c<Y <d}=#P{as<X <b}-P{c<Y <d}
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Table A.1 - Some Useful Relationships Between Distribution Functions

F(x) =1—F(x)

Hm:ﬁumx

b

P{a <X <b}=F(b)—-F(a) = _[ f(x’)dx’
_ dF(x)

f(x) = ix

On The Meaning of Probability Distributions: Examples

in probabilistic risk assessments (PRAs) and other probabilistic analyses, probability
distributions are routinely used to represent the uncertainties in key variables and parameters.
However, the meaning of each distribution, which is directly related to the specific proposition
addressed by the distribution, is not always clearly specified. This can lead to
misunderstandings or even misuses of the distributions and, therefore, of the analysis results.

Example 1: Reactor Vessel Copper Content

Define the variable C as the copper content (in weight percent) at the location of a specific flaw
in a particular subregion of the vessel.> From an engineering analysis perspective, it is
reasonable to assume that there is a fixed, “true value” of C, whether or not there are problems
with our current ability to reliably measure C. The proposition of interest, therefore, is that the
true value of C lies in a specific range of values, e.g., (c,c+Ac).

For the sake of this simple example, assume that, following some data analysis (see Appendix
C for example calculations), the assessor determines that his state of knowledge regarding C is
adequately represented by a lognormal distribution function with a mean value of 0.20 and a
standard deviation of 0.05. The pdf is shown in Figure A.2.

3C is clearly a function of position; its explicit dependence on (r,8,z) is not shown for
notational convenience.
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Figure A.2 - Copper Content Probability Density Function (Example)

Using the properties of the lognormal distribution function, it can be shown that some of the key
percentiles of this distribution are as follows.

Cos =0.129, i.e., P{C <0.129} =005
Cso =0.194, i.e., P{C <0.194} =0.50
Cos =0.291, i.e., P{C <0.291}=0.95

It can be seen that the assessor is very confident (with 95% probability) that the true (but
unknown) value of C is less than 0.291. it also can be seen, using the third relationship in
Table A.1, that the assessor is very confident (with 90% probability) that the true value of C lies
between 0.129 and 0.291.

Note that the uncertainties modeled by this distribution of C are purely epistemic and should be
treated as such. If the uncertainties are treated in an analysis as being aleatory,* this would
imply that C could vary randomly over time (e.g., from pressurized thermal shock event to
event), which contradicts the basic modeling assumption that there is a fixed, true value of C.

Example 2: On Measurement Errors and Epistemic Uncertainties

Consider a situation where the copper content of a particular sample is measured in a series of
tests. It can be expected that random variations in the measurement process will lead to
random variability, i.e., aleatory uncertainty, in the measurement outcomes, and that this
variability can be represented by a distribution. Does this mean that the copper content is an
aleatory variable?

“Appendix B provides additional discussion on the treatment of epistemic and aleatory
uncertainties in a probabilistic analysis.
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The answer depends on what is meant by “the copper content,” i.e., what is the underlying
proposition. o

If the proposition is that the value of the next measurement of copper content falls in some
range, e.g., (c,c+Ac), the uncertainty in the truth of this proposition is indeed aleatory. (This
follows directly from the description of the situation.) The observed distribution provides a good
indication of what the next measurement might be, as long as key factors (e.g., the test
procedure, the sample itself) are not changed.

On the other hand, if the proposition is that the copper content at some specified (r,6,z) in a
given reactor vessel falls in some range, then the mode! of the previous example still holds: the
uncertainties in this copper content are epistemic. The distribution of measured values for the
sample is evidence which affect the assessor’s distribution for C(r,8,z), but it is not the
assessor's distribution. Even if, as a practical matter, the assessor decides to make his
distribution for C(r,8,z) numerically identical to the distribution of measured values, his
distribution must be treated in subsequent analyses as being epistemic (rather than aleatory),
or else the analysis will be inconsistent.



Appendix B - Aleatory and Epistemic Uncertainties
Is It Important To Make The Distinction?

In order to make most effective use of the results of any analysis, it is important that the user
understand the fundamental modeling assumptions underlying the analysis. In particular, in the
case of a probabilistic risk assessment (PRA), it is important to understand how the analysis
deals with uncertainties that arise because of issues not explicitly modeled and those that arise
because of imperfect knowledge concerning the issues that are explicitly modeled. This
understanding will affect how the user perceives and uses the analysis results in subsequent
decision making activities.

Consider a situation where a reactor pressure vessel (RPV) could be subjected to a pressurized

_thermal shock (PTS) event. Assume the PTS event arrival is governed by a Poisson process
and has characteristic frequency A. We are uncertain as to whether the RPV will fail because
of a PTS event; the associated conditional probability of failure, given a PTS event, is ¢.
Depending on the interpretation of ¢, the analysis user could have very different pictures of the
situation.

Two extreme interpretations are as follows (see Figures B.1 and B.2).

1. The uncertainty quantified by ¢ arises only because of issues not explicitly modeled
(e.g., causal factors underlying differences in the timing of component actuations and -
failures, which, in turn, lead to different thermal hydraulic subscenarios) and is entirely
aleatory. Under this treatment, if we hypothesize a very large number of PTS events,
we would expect to see RPV failure for a fraction ¢ of these events.

2. The uncertainty quantified by ¢ arises only because of imperfect knowledge regarding
modeled processes (e.g., sparsity and relevance of data for the copper content at a
specific point in the RPV) and is entirely epistemic. Under this treatment, the RPV wiill
either fail or it won't, regardless of the number of challenges. Thus, for N hypothesized
PTS events, one of two hypotheses will be true: i) there will be N RPYV failures, or ii)
there will be N RPV successes. The likelihood that the first hypothesis is true is ¢; the
likelihood that the second hypothesis is true is 1 - ¢.

Under the first interpretation, the expected number of PTS-induced RPYV failures in a fixed time
interval T is given by:

E[# RPV failures in (0, T)linterpretation =T

The probability of N such events is given by:

N
P{N RPV failures in (0, T)lintepretation 1) = (7‘;‘5‘) e M7

Under the second interpretation, the expected number of events and the probability of N such
events are given by:
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PTS RV Scenario RV
Challenge Good? Frequency State

AM1-9) Good

Ad Failed

Figure B.1 - Risk Model for Aleatory Interpretation of RPV Conditional Failure Probability

Probability =1-¢
PTS RV Scenario RV
Good? Frequency State

Challenge
A Good
Probability = ¢ 0 Failed
PTS RV Scenario RV
Challenge Good?  Frequency State
0 Good
A Failed

Figure B.2 - Risk Model for Epistemic Interpretation of RPV Conditional Failure Probability
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E[# RPV failures in (0, linterpretation 2] = AT

P{N RPV fallures in (0, T)lintepretation 2} =¢-~—— (7LT)

It can be seen that if the user only cares about the expected number of events in a fixed time
interval T, both interpretations will lead to the same value: A$T. However, if the user has a non-
linear consequence function for PTS-induced RPV failure (e.g., if one event is barely tolerable
but two events spell utter doom), the differences in interpretation can make a difference.

Reinforcing the points raised above, Apostolakis (1999) points out that the distinction between
aleatory and epistemic uncertainties can make a difference at the detailed technical analysis
level. In particular, he questions the concept of a failure rate for components when the failure
mechanisms are essentially deterministic (albeit, with uncertain governing parameters). The
problem involves the passive failure of an aging pipe under steady-state load conditions, and
corresponds mathematically to the situation shown in Figure B.2.

In general, it might be expected that there are aleatory and epistemic contributions to the RPV
conditional failure probability. Operational issues in dealing with such situations are discussed
in the following section.

Treating Aleatory and Epistemic Uncertainties

For situations where there are aleatory and epistemic contributions to uncertainty, these
contributions need to be separated for the reasons discussed above. In our example of the
PTS-induced RPV failure, this separation is shown in Figure B.3. The aleatory contribution (¢°)
is dealt with in the event tree (i.e., as a “conditional split fraction”). The epistemic uncertainty in
¢' is treated when epistemic uncertainties are propagated through the event tree model.

Neglecting the epistemic uncertainties in A for simplicity, the expected number of failures and
the probability of N events are given by:

1
E[# RPV failures in (0,T)] =AT- j & (& )do =AT-E[¢/]
P{N RPV failures in (0,T)} = j ("“’T) &M 1 )ddy

where nt(¢‘) is the epistemic pdf for ¢'. Note that ¢, the overall conditional probability of PTS-
induced RPYV failure given a PTS event, is given by:

1
= [¢m(¢)d =El¢]
0
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PTS RV Scenario RV
Challenge Good? Frequency State

A(1-9") Good
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n(Ad)

A’

Figure B.3 - Risk Model for General interpretation of RPV Conditional Failure Probability

A Computational Note

In situations where Monte Carlo sampling is used to address both aleatory uncertainties and
epistemic uncertainties, it is still important to treat these two contributions separately. In the
example of the PTS-induced RPV failure probability, an appropriate approach is illustrated in
Figure B.4. Here, an inner sampling loop is used to estimate ¢‘, which is conditioned on a
number of deterministic (but unknown) parameters, represented by the vector w. (Recall that ¢
quantifies the aleatory uncertainties in RPV failure.) The epistemic uncertainties in the
deterministic parameters, represented by the joint distribution n(w) are addressed via an outer
sampling loop. (This is the so-called “propagation of uncertainties” phase of the PRA.) Failure
to properly perform this sampling (e.g., by addressing epistemic uncertainties in the inner loop)
will lead to confusion in the interpretation of results.
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Figure B.4 - Schematic of Sampling Scheme for Addressing
Aleatory and Epistemic Uncertainties



~ Appendix C - Example Application of Bayes’ Theorem for A Lognormal Variable

-

Problem

Consider a situation where C, a random variable, is believed to be lognormally distributed. In
other words, the likelihood that C takes on a value in any specified range, e.g., (c,c+Ac), is
governed by a probability density function (pdf) of the form

2
fcly,o) = \/E:;oc expl:—-;-[gncc_“ )}

where | and ¢ are parameters of the distribution. Note that the mean value and variance of C
can be determined from p and g, if they are known:

E[C] = ep+0.502
Var[C] = (E[C])? (eo2 - 1)

In general, p and ¢ are not known and must be estimated based on available data.

Assume that there are N data points for C: {c,,C,,...,c\}. If N is large, p and ¢ can be estimated
using a number of different methods (e.g., the method of maximum likelihood, Bayes’
Theorem). If N is small, Bayes' Theorem provides an appropriate tool. In the case of this
example, Bayes’ Theorem states that the joint distribution for p and ¢ is given by:

8 g
e

—o 0 i=1

TC1(IJ,0101, ,CN)

where m,(u,0) is the joint probability distribution for p and o prior to the collection of the data set
{c,,C,....,Cy}. The predictive pdf for C, i.e., the pdf to be used for predictivé purposes, is the
average lognormal distribution function, where the posterior distribution for u and ¢ is used as
the weighting function.

f(eley,....on) = [ [l o) m( clcy,....on)dodp
—0 0



Exémple Application

Consider the followi.ng‘ data set:

Table C.1 - Sample Data Set

i C, {(dimensionless)

1 0.20

2 0.13

3 0.44

4 0.18

5 0.19
Sample Mean 0.228
Sample Variance 0.0118

Using a non-informative prior distribution (in this case, a distribution proportional to 1/c)’,
Bayes' Theorem and the predictive distribution for C can be readily evaluated using commercial
spreadsheet or equation solving software. An example solution using Mathcad 6.0 is attached.
The mean, variance, 5%, 50", and 95" percentiles of the predictive distribution are as follows:

E[C]=0.23
Var[C]=0.018
Cys = 0.076
C,,=0.21

Cys = 0.57

Computation Notes

1. The Mathcad worksheet has been written for clarity of presentation and not
computational efficiency. For example, the integration symbols used in the worksheet
invoke the Mathcad-supplied automatic integrator. For the problem of interest, pre-
computing the posterior distribution at a specified set of points and using a single-pass
trapezoidal integration scheme will lead to results of comparable accuracy with
significantly less computation time.

'See for example G.E.P. Box and G.C. Tiao, Bayesian Inference in Statistical Analysis,
Addison-Wesley, Reading, MA, 1973.
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The maximum likelihood estimates (MLEs) for i and ¢ can be found using the sample
moments shown in Table C.1 and the relationships between E[C], Var[C], u, and ¢
specified earlier. Figure C.1 compares the pdf based on these estimates with the pdf
developed using Bayes’ Theorem. It can be seen that the MLE-based pdf is narrower;
this is because the MLE-based pdf does not account for the uncertainties in u and o due
to the limited sample size.

flc)

Figure C.1 - Comparison of Bayesian and MLE pdfs
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Example Application of Bayes’ Theorem for A Lognormal Variable
Mai_h_cad 6.0 Worksheet, Last Revised September 3, 1999

Data
0.20 ]
0.13
C =044 N = length(C)  mean(C) =0.228
0.18 i=0.N-1 var(C) =0.0118
0.19 |
Eunctions
1
no(pva) ==

1 [ In(c) - u\2|
L{c,u,0) = ( -exp —0.5-(—“) J
e o

N-1

LN(c,}t,0) - l_[ L{c.1.0)
i=0

initial Plot (Unnormalized Posterior Distribution)

m =25 j=0.m k=0.m

umin = -2.5 pmax = -.5 omin =.01 omax =15

j k
pj = Umin + i-(umax - gmin)  ©, = omin + —(Omax - omin)
m m

k

rrluj‘k = LN(C,pj,ok>-nO(pj,ok)

(A plot of the unnormalized posterior is useful

for defining appropriate integration bounds.)
Bayes' Theorem Integration Constant

omax [ pmax
k:= LN(C,u,0)n0(pn,0) dudo
omin f{min

k =85.986

Normalized Posterior Distribution Function

nl(p,6) = l—](-LN(C.u,o)-nO(u,c)

(Mathcad uses "0" as the first
index of a vector/matrix)

(Prior distribution)

(Likelihood function - 1 data point)

{Likelihood function - N data points)

{Linear grid for u and o)

(Unnormalized posterior distribution)

nlu



Posterior Distribution Moments

omax

J omin
aomax
Ep2 =
4]

Eu

J

pmin

|

pHmax

(The moments of p and ¢ are not needed
to develop the predictive distribution but
they can be useful. Note that the
calculations would be more efficient if a
precalculated posterior and a single-pass
numerical integration scheme were used;
the Mathcad automatic integrator is used
for clarity of presentation.)

Varp = En2 - Ey

wrli(pn,o)dudo

pmax
u2~n1(u,o)dud0

min min
{' omax Hmax
Eoc = G-mi(y,o) du do
.I omin Hmin
fomax [pmax
Ec2 = cz-nl(u,o) du do Varo = Ec2 - E02
Jomin Jumin
fomax [ Mmax
Epo = (Ho)rl(y,0) dudo Covuo = Eus - Ey-Eo
Jomin Jumin
Covuo
Comji0 = ————
JVarp-Varc
Ep =-1.568 (Mean value of )
Varp =0.063 (Variance of p)
Ec =0.541 (Mean value of ¢)
Varc =0.047 (Variance of o)

Covpo =7.618-10 *

Commuc =0.014

(Covariance of p and o)

(Correlation coefficient: p and o)

Predictive Distribution for C

npoint := 30 ii := 0..npoint - 1 (The pdf is calculated at
. specified points on a grid. A
CPmin := 0.01 CPmax = 0.80 logarithmic grid is used here.)
ii
npoint - 1
CP. - CPmin | L&
n Pmin
omax [ {imax )
1 m(CPii) ~H
fCPii = ~————exp|-.5{————| |'nl(K,0)dudo
,,/2~1t-o-CPﬁ
omin Hmin



oyt A

6
. ] (Plot of predictive pdf)
4 p
fCP..
1
2 e ——
0 0 0.5 1
CP..
1
Cumulative Distribution and Moments (Trapezoidal integration is used
. . for ease and efficiency; CDF and
ij = 1..npoint - 1 moments can also be found using
FCPO -0 built-in integration functions.)
FCP; = FCP;_, + o.s-(fcpjj +fCP, _ ])-(cpﬁ - CP;_ ])
npoint - 1
BCP: > 05(CPACP, + CP,_ fCP,_,)-(CP; - CP,_ )
i=1
npoint - 1

BCP2= )7 05 (CRy)CR + (CBy_,)H1CRy (ep-cpy )
i=1

VarCP = ECP2 - ECP?

CO = min(CP) (Use linear interpolation to find
. percentiles of C)
Given

linterp(CP,FCP,C0)=0.05
C05 = Find(C0)

Given
linterp(CP,FCP,C0)=0.50
C50 = Find(C0)

Given
linterp(CP ,FCP,C0)=0.95
C95 := Find(CO0)

ECP =0.229 (Mean value of C)
VarCP =0.0177 (variance of C)

C05 =0.076 (5th percentile of C)
C50 =0.209 (50th percentile of C)
C95 =0.571 (95th percentile of C)

Output Results To File casel.prn
M, = (CP i fCPy FCPii)
WRITEPRN(casel) = M



