

ACRS

SECY-12-0064

Donald A. Cool
U.S. Nuclear Regulatory Commission
October 4, 2012

Presentation Outline

- Background
- Risk
- Occupational Exposure Data
- Regulatory Approaches Considered

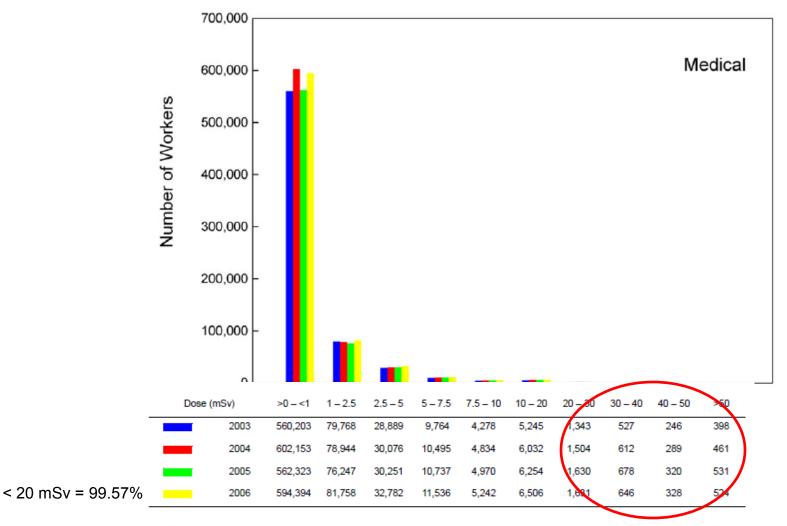
Background

- SECY-12-0064, April 25, 2012
- Staff met with ACRS Subcommittee on Radiation Protection and Nuclear Materials on April 27 and September 18, 2012
- Staff met with ACRS on June 6, 2012

Regulation Risk Basis

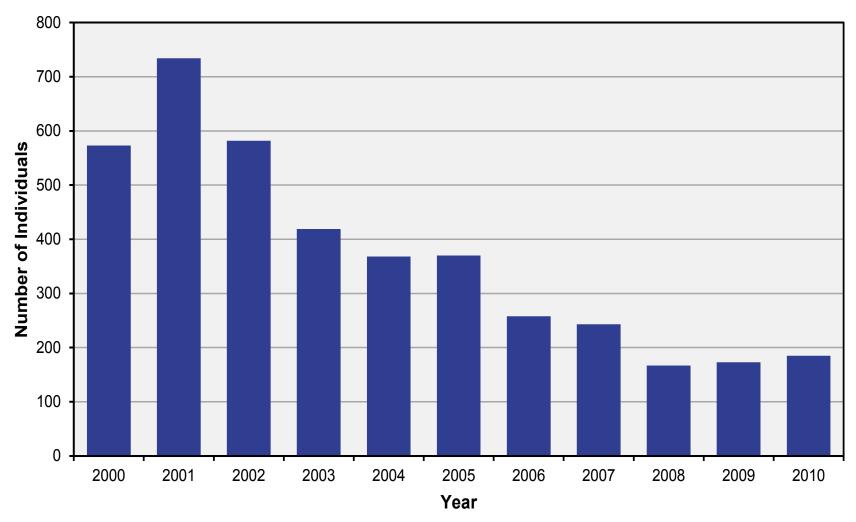
- 10 CFR Part 20 Occupational Dose limits based on assumed risk of 1.25 x 10⁻² per Sv cancer mortality and risk of heritable disease
- Current radiation risk ≈ 5x10⁻² per Sv
 - Considered mortality, morbidity and hereditary effects
 - Comparable results from UNSCEAR, ICRP, BEIR, NCRP
 - EPA "Blue Book" values for U.S. Population

Incidence: 1.16×10^{-1} (5.6 x 10^{-2} to 2.1 x 10^{-1})


Mortality: 5.8×10^{-2} (2.8 x 10^{-2} to 1.0×10^{-3})

Selection of the Limit Value

- 1977 ICRP 26
 - average annual risk of accidental death in industries generally accepted as safe working environment – 1 x 10⁻⁴
 - 5 rem value based on expectation that most individuals would be unlikely to exceed 1 rem
- 1990 ICRP 60
 - Multi-attribute approach
 - Objective to prevent cumulative exposure to less than 100 rem (1 Sv)
 - Average and maximum values to provide flexibility for implementation



 ${\bf Fig.~7.5.~Dose~distribution~for~workers~with~recordable~dose~for~the~medical~category, 2003~to~2006.}$

REIRS Data Individuals with Dose Greater than 2 rem

^{*} Data from NUREG-0713, Vol. 32; www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0713/v32/

Findings

- For reported exposures, almost all exposures are below limits
- Individual exposures occur each year in excess of ICRP recommended average
- The number of individuals exceeding 2 remeach year is small

Findings

- For the individuals at the high dose end of the distribution, multiple years of exposure can exceed recommended lifetime value
- The person-rem total of higher dose individuals is small, because of the small number of individuals
- By traditional regulatory analysis, little justification for changes

The Challenge

- What is the most efficient and effective method to ensure that each individual is adequately protected?
- Method must be clear, predictable, and reliable
- Method must be applicable to all types of occupational exposures, for all types of uses

What did Staff Consider?

- Strengthen ALARA
- ICRP Recommended Average and Maximum Limit
- Single Lower Dose Limit

Staff Conclusions

- A change to limits is a more straight forward, performance based approach than additions to ALARA program requirements
- Rulemaking would require designation of adequate protection and/or backfit justification on both quantitative and qualitative grounds

Staff Conclusions

- Additional efforts will be needed to develop regulatory basis for a proposed rule
 - Explore possible draft rule text
 - Explore possible guidance for implementation
 - Dose coefficients needed before Appendix B values can be revised
 - Detailed cost-benefit information needed for specific proposals

Questions and Discussion

