Division of Spent Fuel Storage and Transportation Interim Staff Guidance - 8 Revision 3

Issue: Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks

Introduction:

Title 10 of the Code of Federal Regulations (10 CFR) Part 71, *Packaging and Transportation of Radioactive Material*, and 10 CFR Part 72, *Licensing Requirements for the Independent Storage of Spent Nuclear Fuel*, *High-Level Radioactive Waste*, and *Reactor-Related Greater Than Class C Waste*, require that spent nuclear fuel (SNF) remain subcritical in transportation and storage, respectively. Unirradiated reactor fuel has a well-specified nuclide composition that provides a straightforward and bounding approach to the criticality safety analysis of transportation and storage systems. As the fuel is irradiated in the reactor, the nuclide composition changes and, ignoring the presence of burnable poisons, this composition change will cause the reactivity of the fuel to decrease. Allowance in the criticality safety analysis for the decrease in fuel reactivity resulting from irradiation is termed burnup credit. Extensive investigations have been performed both within the United States and by other countries in an effort to understand and document the technical issues related to the use of burnup credit.

This Interim Staff Guidance (ISG) provides recommendations to the staff for accepting, on a design-specific basis, a burnup credit approach in the criticality safety analysis of pressurized water reactor (PWR) SNF storage and transportation systems. This revision to ISG-8 incorporates the results of burnup credit-related research that has been conducted since Revision 2 (Rev. 2) was published in September 2002. Based on the detailed results of this research and the technical judgment of the U.S. Nuclear Regulatory Commission (NRC) staff, ISG-8, Rev. 3, includes two major changes in the recommendations to staff reviewing burnup credit applications for SNF transportation and storage systems: (1) optional credit for fission product and minor actinide neutron absorbing isotopes in the SNF composition, and (2) misload analyses and additional administrative procedures in lieu of a burnup measurement at the time of loading. This ISG revision also includes an increase in the maximum assembly average burnup recommended for burnup credit.

Appendix A, *Technical Recommendations for the Criticality Safety Review of PWR Storage and Transportation Casks that Use Burnup Credit*, provides more information on the technical bases for the changes described above. The NRC staff will issue additional guidance and/or recommendations as more information is obtained from research programs directed at burnup credit and as experience is gained through future licensing activities. Except as specified in the Recommendations section of this ISG, the application of burnup credit does not alter the current guidance and recommendations provided by the NRC staff for criticality safety analysis of SNF transportation packages and storage casks.

The guidance provided in this ISG represents one methodology for demonstrating compliance with the criticality safety requirements in 10 CFR Parts 71 and 72 using burnup credit. Following this guidance, the reviewer should be able to determine whether the applicant has provided reasonable assurance that the storage or transportation system meets the applicable criticality safety regulations in 10 CFR Parts 71 and 72. Alternative methodologies proposed by

applicants and licensees should be considered on a case-by-case basis, using this guidance to the extent practicable.

Regulatory Basis:

A fissile material transportation package application must demonstrate that a single package is subcritical with water in-leakage [10 CFR 71.55(b)].

A fissile material transportation package application must demonstrate that a single package is subcritical under normal conditions of transport and hypothetical accident conditions [10 CFR 71.55(d) and (e), 71.71, and 71.73].

A fissile material transportation package application must demonstrate that arrays of packages are subcritical under normal conditions of transport and hypothetical accident conditions [10 CFR 71.59, 71.71, and 71.73].

An application for an Independent Spent Fuel Storage Installation must demonstrate that the system meets the criteria for nuclear criticality safety [10 CFR 72.124].

An application for a spent fuel storage cask must demonstrate that spent fuel is maintained subcritical under credible conditions [10 CFR 72.236(c)].

Applicability:

This revision to ISG-8 supersedes Revisions 0, 1, and 2 of the ISG in their entirety.

The recommendations that follow were developed with intact fuel as the basis but may also be applicable to fuel that is not intact. If burnup credit is requested by an applicant for fuel that is not intact, the recommendations of this guidance should be applied, as appropriate, to account for uncertainties that can be associated with fuel that is not intact and establish an isotopic inventory and assumed fuel configuration for normal and accident conditions that bounds the uncertainties. Rev. 2 of ISG-1, Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function,³ provides guidance for classifying the condition of the fuel (damaged, undamaged, intact) for SNF storage and transportation.

Recommendations:

1. Limits for the Licensing Basis

Available data support allowance for burnup credit where the licensing safety analysis is based on major actinide compositions only (i.e., actinide-only burnup credit) or limited actinide and fission product compositions (see Tables 1 and 2 below) associated with uranium dioxide (UO_2) fuel irradiated in a PWR up to an assembly-average burnup value of 60 gigawatt-days per metric ton uranium (GWd/MTU) and cooled out-of-reactor for a time period between 1 and 40 years. The range of available measured assay data for irradiated UO_2 fuel supports an extension of the licensing basis up to 5.0 weight percent enrichment in UO_2 fuel supports an extension of the licensing basis up to 5.0 weight percent enrichment in

Table 1: Recommended set of nuclides for actinide-only burnup credit

²³⁴ U	²³⁵ U	²³⁸ U
²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu
²⁴¹ Pu	²⁴² Pu	²⁴¹ Am

Table 2: Recommended set of additional nuclides for actinide and fission product burnup credit

product barriap credit			
	⁹⁹ Tc	¹⁰¹ Ru	¹⁰³ Rh
¹⁰⁹ Ag	¹³³ Cs	¹⁴⁷ Sm	¹⁴⁹ Sm
¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁴³ Nd
¹⁴⁵ Nd	¹⁵¹ Eu	¹⁵³ Eu	¹⁵⁵ Gd
²³⁶ U	²⁴³ Am	²³⁷ Np	

Within this range of parameters, the reviewer should exercise care in assessing whether the analytic methods and assumptions used are appropriate, especially near the limits of the parameter ranges recommended in this ISG for the licensing basis. Use of actinide and fission product compositions associated with burnup values or cooling times outside these specifications should be accompanied by the measurement data and/or justified extrapolation techniques necessary to extend the isotopic validation and quantify or bound the bias and bias uncertainty. Credit for neutron absorbing isotopes other than those identified in Tables 1 and 2 should be accompanied by assurance that such isotopes are non-volatile, and non-gaseous, and relatively stable, and analyses to determine the additional depletion and criticality code bias and bias uncertainty associated with these isotopes.

A certificate or license condition indicating the time limit on the validity of the burnup credit analysis may be necessary in light of the potential need for extended dry storage. Such a condition would depend on the type of burnup credit and the credited post-irradiation decay time.

2. Licensing-Basis Model Assumptions

The actinide and fission product compositions used to determine a value of k-effective ($k_{\rm eff}$) for the licensing basis should be calculated using fuel design and reactor operating parameter values that appropriately encompass the range of design and operating conditions for the proposed contents. The calculation of the $k_{\rm eff}$ value should be performed using system models and analysis assumptions that allow accurate representation of the physics in the system, as discussed in Section 4 of Appendix A. Attention should be given to the need to:

- account for and effectively model the axial and horizontal variation of the burnup within a SNF assembly (e.g., the selection of the axial burnup profiles, number of axial material zones);
- consider the potential for increased reactivity due to the presence of burnable absorbers or control rods (fully or partially inserted) during irradiation; and
- account for the irradiation environment factors to which the proposed assembly contents were exposed, including fuel temperature, moderator temperature and density, soluble boron concentration, specific power, and operating history.

YAEC-1937, Axial Burnup Profile Database for Pressurized Water Reactors, 4 provides a source of representative data that can be used for establishing profiles to use in the licensing basis safety analysis. However, care should be exercised when reviewing profiles intended to bound the range of potential k_{eff} values for the proposed contents for each burnup range, particularly near the upper end of the licensing basis parameter ranges stated in this ISG. NUREG/CR-6801, Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses, 5 provides additional guidance on selecting axial profiles.

A licensing basis modeling assumption where the assemblies are exposed during irradiation to the maximum (neutron absorber) loading of burnable poison rods (BPRs) for the maximum burnup encompasses all assemblies that may or may not have been exposed to BPRs. Such an assumption in the licensing basis safety analysis should also encompass the impact of exposure to fully inserted or partially inserted control rods in typical domestic PWR operations. Assemblies exposed to atypical insertions of control rods (e.g., full insertion for one full cycle of reactor operation) should not be loaded unless the safety analysis explicitly considers such operational conditions. If the assumption on BPR exposure is less than the maximum for which burnup credit is requested, then a justification commensurate with the selected value should be provided by the applicant. For example, the lower the exposure, the greater the need to: (1) support the assumption with available data, (2) indicate how administrative controls would prevent a misload of an assembly exposed beyond the assumed value, and (3) address such misloads in a misload analysis.

For assemblies exposed to integral burnable absorbers, the appropriate analysis assumption for absorber exposure varies depending upon burnup and absorber material. The appropriate assumption may be to neglect the absorber while maintaining the other assembly parameters (e.g., enrichment) the same for some absorber materials or for exposures up to moderate burnup levels (typically 20 - 30 GWd/MTU). Thus, a safety analysis including assemblies with integral burnable absorbers should include justification of the absorber exposure assumptions used in the analysis. For assemblies exposed to flux suppressors (e.g., hafnium suppressor inserts) or combinations of integral absorbers and BPRs or control rods, the safety analysis should use assumptions that provide a bounding safety basis, in terms of the effect on system k_{eff} , for those assemblies.

The licensing basis evaluation should include analyses that use irradiation conditions that produce bounding values for $k_{\rm eff}$, as discussed in Section 4 of Appendix A. The bounding conditions may differ for actinide-only burnup credit versus actinide-plus-fission product burnup credit, and may depend on the population of fuel intended to be loaded in the system (e.g., all PWR assemblies versus a site-specific population). Loading limitations tied to the actual operating conditions may be needed unless the operating condition values used in the licensing basis evaluation can be justified as those that produce the maximum $k_{\rm eff}$ values for the anticipated SNF inventory.

3. Code Validation – Isotopic Depletion

A depletion computer code is used to determine the concentrations of the isotopes important to burnup credit. To ensure accurate criticality calculation results, the selected code should be validated and the bias and bias uncertainty of the code should be determined at a 95% probability, 95% confidence level. Specifically, selection of the code and code validation approach for the fuel depletion analysis should include the considerations in the following paragraphs.

The selected depletion code and cross section library should be capable of accurately modeling the fuel geometry and the neutronic characteristics of the environment in which the fuel was irradiated. Two-dimensional depletion codes have been effectively used in burnup credit analyses. Although one-dimensional codes have been used in some applications, and suffice for making assembly average isotopic predictions for fuel burnup, they are limited in their ability to model increasingly complex fuel assembly designs, and generally produce larger bias and bias uncertainty values because of the approximations necessary in the models. Section 4 of Appendix A provides detailed discussions of the modeling considerations for the code validation analyses.

The destructive RCA data selected for code validation should include detailed information about the SNF samples. This information should include the pin location in the assembly, axial location of the sample in the pin, any exposure to strong absorbers (control rods, BPRs, etc.), the boron letdown, moderator temperature, specific power, and any other cycle-specific data for the cycles in which the sample was irradiated. Note that some RCA data are not suitable for depletion code validation because the depletion histories or environments of these samples are either difficult to accurately define in the code benchmark models, or are unknown. NUREG/CR-7108, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Isotopic Composition Predictions*, provides a recommended set of RCA data suitable for depletion code validation.

The selected code validation approach should be adequate for determining the bias and bias uncertainty of the code for the specific application. The burnup credit analysis results should be adjusted using the bias and bias uncertainty determined for the fuel depletion code, accounting for any trends of significance with respect to different control parameters such as burnup/enrichment ratio or ²³⁵U/²³⁹Pu ratio. NUREG/CR-6811, Strategies for Application of Isotopic Uncertainties in Burnup Credit, provides several methodologies that are acceptable to the staff for isotopic depletion validation, including the isotopic correction factor, direct difference, and Monte Carlo uncertainty sampling methods. Section 4 of Appendix A provides detailed discussions of the advantages and disadvantages of these methods. In general, the isotopic correction factor method is considered to be the most conservative, since individual nuclide composition uncertainties are represented as worstcase. The direct difference method provides a realistic "best estimate" of the depletion code bias and bias uncertainty, in terms of Δk_{eff} . The Monte Carlo uncertainty sampling method is more complex and computationally intensive than the other methods, but provides a way to make use of limited measurement data sets for some nuclides. Detailed descriptions of the direct difference and Monte Carlo uncertainty sampling methods are provided in NUREG/CR-7108.

In lieu of an explicit benchmarking analysis, the applicant may use the bias (β_i) and bias uncertainty (Δk_i) values estimated in NUREG/CR-7108 using the Monte Carlo uncertainty sampling method, as shown in Tables 3 and 4 below. These values may be used directly, provided that:

- the applicant uses the same depletion code and cross section library as was used in NUREG/CR-7108 (SCALE/TRITON and the ENDF/B-V or -VII cross section library),
- the applicant can justify that its design is similar to the hypothetical GBC-32⁸ system design used as the basis for the NUREG/CR-7108 isotopic depletion validation, and
- credit is limited to the specific nuclides listed in Tables 1 and 2.

Section 5 of Appendix A provides detailed discussions of the technical basis for the restrictions on directly applying the β_i and Δk_i values. β_i values should be added to the calculated system k_{eff} , while Δk_i values may be statistically combined with other independent uncertainties. Table 5 below summarizes the recommendations related to isotopic depletion code validation.

Table 3: Isotopic k_{eff} bias uncertainty (Δk_i) for the representative PWR SNF system model

using ENDF/B-VII data ($\beta_i = 0$) as a function of assembly average burnup

Burnup Range (GWd/MTU)	Actinides Only <i>∆k</i> ;	Actinides and Fission Products
		$\Delta \mathbf{k}_i$
0-5	0.0145	0.0150
5-10	0.0143	0.0148
10-18	0.0150	0.0157
18-25	0.0150	0.0154
25-30	0.0154	0.0161
30-40	0.0170	0.0163
40-45	0.0192	0.0205
45-50	0.0192	0.0219
50-60	0.0260	0.0300

Table 4: Isotopic k_{eff} bias (β_i) and bias uncertainty (Δk_i) for the representative PWR SNF system model using ENDF/B-V data as a function of assembly average burnup

Burnup Range (GWd/MTU)*	β _i for Actinides and Fission Products	∆k₁ for Actinides and Fission Products
0-10	0.0001	0.0135
10-25	0.0029	0.0139
25-40	0.0040	0.0165

^{*} Bias and bias uncertainties associated with ENDF/B-V data were calculated for a maximum of 40 GWd/MTU. For burnups higher than this, applicants should provide an explicit depletion code validation analysis, using one of the methods described in Appendix A, along with appropriate RCA data.

Table 5: Summary of code validation recommendations for isotopic depletion

Applicant's Approach	Recommendation
Uses SCALE/TRITON and the ENDF/B-	Use code bias and bias uncertainty
V or -VII cross section library, and demonstrates that design application is similar to GBC-32	values from Tables 3 and 4
- or -	
Uses other code and/or cross section	Use either isotopic correction factor or
library, or design application is not	direct difference method to determine
similar to GBC-32	code bias and bias uncertainty

4. Code Validation – K_{eff} Determination

Actinide-only credit

Actinide credit should be limited to the specific nuclides listed in Table 1. Criticality validation for these actinides should be based on the critical experiments available in NUREG/CR-6979, Evaluation of the French Haut Taux de Combustion (HTC) Critical

Experiment Data,⁹ also known as the HTC data, supplemented by mixed-oxide (MOX) critical experiments as appropriate. NUREG/CR-7109, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses – Criticality (k_{eff}) Predictions,¹⁰ contains a detailed discussion of available sets of criticality validation data for actinide isotopes, and the relative acceptability of these sets. Note that NUREG/CR-7109 demonstrates that fresh UO₂ experiments are not applicable to burned fuel compositions.*

Determination of the bias and bias uncertainty associated with actinide-only burnup credit should be performed according to the guidance in NUREG/CR-6361, *Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages*. This guidance includes criteria for selection of appropriate benchmark data sets, as well as statistics and trending analysis for determination of criticality code bias and bias uncertainty. An example of bias and bias uncertainty determination for actinide-only burnup credit is included in Section 6 of NUREG/CR-7109.

Fission product and minor actinide credit

The applicant may credit the minor actinide and fission product nuclides listed in Table 2, provided the bias and bias uncertainty associated with the major actinides is determined as described above. One point five percent (1.5%) of the worth of the minor actinides and fission products conservatively covers the bias due to these isotopes. Due to the conservatism in this value no additional uncertainty in the bias needs to be applied. This estimate is appropriate provided the applicant:

- uses the SCALE code system with the ENDF/B-V, ENDF/B-VI, or ENDF/B-VII cross section libraries,
- can justify that its design is similar to the hypothetical GBC-32⁸ system design used as the basis for the NUREG/CR-7109 criticality validation, and
- demonstrates that the credited minor actinide and fission product worth is no greater than 0.1 in k_{eff} .

For well qualified, industry standard code systems other than SCALE with the ENDF/B-V, ENDF/B-VI, or ENDF/B-VII cross section libraries, a conservative estimate for the bias associated with minor actinide and fission product nuclides of 3.0% of their worth may be used. Use of a minor actinide and fission product bias less than 3.0% should be accompanied by additional justification that the lower value is an appropriate estimate of the bias associated with that code system. Table 6 below summarizes the recommendations related to criticality code validation.

Table 6: Summary of code validation recommendations for K_{eff} determination

Actinide	Perform criticality code validation analysis to determine bias and		
criticality	bias uncertainty associated with actinides using HTC critical		
validation in	experiments, supplemented by applicable	MOX critical	
all cases	experiments.		
	Applicant's Approach	Recommendation	
Minor actinide	Uses SCALE code system with ENDF/B-	Use bias equal to	
and fission	V, ENDF/B-VI, or ENDF/B-VII cross	1.5% of minor	
product	section libraries, design application	actinide and fission	
validation	similar to GBC-32, and credited minor	product worth	
	actinide and fission product worth <0.1 in		
	k _{eff}		
	- or -		
	Uses other code with ENDF/B-V,	Use bias equal to	
	ENDF/B-VI, or ENDF/B-VII cross section	3.0% of minor	
	libraries, design application is similar to	actinide and fission	
	GBC-32, and credited minor actinide and product worth, or		
	fission product worth <0.1 in k_{eff} provide justification		
	for lower number		
	- or -		
	Uses cross section library other than	Perform explicit	
	ENDF/B-V, -VI, or –VII, design	criticality code	
	application not similar to GBC-32, or	validation for minor	
	credited minor actinide and fission	actinide and fission	
	product worth >0.1 in k_{eff}	product nuclides.	

5. Loading Curve and Burnup Verification

Burnup credit evaluations should include loading curves which specify the minimum required assembly average burnup as a function of initial enrichment for the purpose of loading SNF storage or transportation systems. Separate loading curves should be established for each set of applicable licensing conditions. For example, a separate loading curve should be provided for each minimum cooling time to be considered in the system loading. The applicability of the loading curve to bound various fuel types or burnable absorber loadings should be justified.

Burnup verification should be performed to ensure that a storage or transportation system evaluated using burnup credit is not loaded with an assembly more reactive than those included in the loading criteria. Verification should include a measurement that confirms the reactor record for each assembly. Confirmation of reactor records using measurement of a sample of fuel assemblies will be considered if the sampling method can be justified in comparison to measuring every assembly.

The assembly burnup value to be used for loading acceptance (termed the assigned burnup loading value) should be the confirmed reactor record value as adjusted by reducing the record value by a combination of the uncertainties in the record value and the measurement. NUREG/CR-6998, *Review of Information for Spent Nuclear Fuel Burnup Confirmation*, ¹² contains bounding estimates of reactor record burnup uncertainty.

Measurements should be correlated to reactor record burnup, enrichment, and cooling time values. Measurement techniques should:

- account for any measurement uncertainty (typical within a 95% confidence interval) in confirming reactor burnup records, and
- include a database of measured data (if measuring a sampling of fuel assemblies) to justify the adequacy of the procedure in comparison to procedures that measure each assembly.

Misload Analyses

Misload analyses may be performed in lieu of a burnup measurement. A misload analysis should address potential events involving the placement of assemblies into a SNF storage or transportation system that do not meet the proposed loading criteria. The applicant should demonstrate that the system remains subcritical for misload conditions, including calculation biases, uncertainties and an appropriate administrative margin that is not less than $0.02~\Delta k$. An adequate justification, that includes the level of conservatism in the depletion and criticality calculations, sensitivity of the system to further upset conditions, and the level of rigor in the code validation methods, should accompany the use of any administrative margin that is less than the normal $0.05~\Delta k$.

A misload analysis should consider:

- misloading of a single severely underburned assembly and,
- misloading of multiple moderately underburned assemblies.

The severely underburned assembly for the single misload analysis should be chosen such that the misloaded assembly reactivity bounds 95% of the discharged PWR fuel population considered unacceptable for loading in a particular storage or transportation system with 95% confidence. The multiple moderately underburned assemblies for this analysis should be assumed to make up at least 50% of the system payload, and should be chosen such that the misloaded assemblies' reactivity bounds 90% of the total discharged PWR fuel population. The 2002 Energy Information Administration RW-859 fuel survey, ¹³ or a later estimate, is acceptable as an estimate of discharged fuel population characteristics.

The misload analysis should also consider the effects of placing the underburned assemblies in the most reactive positions within the loaded system (e.g., middle of the fuel basket). If removable non-fuel absorbers were credited as part of a criticality safety analysis (e.g., poison rods added to guide tubes), the misload analysis should consider misloading of these absorbers. Additionally, the misload analysis should consider assemblies with greater burnable absorber or control rod exposure than assumed in the criticality analysis, if assumed exposure is not bounding. NUREG/CR-6955, *Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask*, ¹⁴ illustrates the magnitude of *k*_{eff} changes that can be expected as a result of various misloads in a theoretical GBC-32 SNF storage and transportation system.

Administrative Procedures

A misload analysis should be coupled with additional administrative procedures to ensure that the SNF storage or transportation system will be loaded with fuel that is within the

specifications of the approved contents. Procedures considered to protect against misloads in storage and transportation systems that rely on burnup credit for criticality safety may include:

- verification of the location of high reactivity fuel (i.e., fresh or severely underburned fuel) in the spent fuel pool both prior to and after loading,
- qualitative verification that the assembly to be loaded is burned (visual or gross measurement).
- verification, under a 10 CFR Part 71 quality assurance program, of the canister or cask inventory and loading records prior to shipment for previously loaded systems,
- quantitative measurement of any fuel assemblies without visible identification numbers,
- independent, third-party verification of the loading process, including the fuel selection process and generation of the fuel move instructions, and
- minimum soluble boron concentration in pool water, to offset the misloads described above, during loading and unloading.

Table 7: Summary of burnup verification recommendations

Applicant's Approach	Recommendation
Burnup verification measurement	Perform measurement for each
	assembly to be loaded, or for a
	statistically significant sample of
	assemblies
- or -	
Misload analysis and additional	Misload of fuel assembly which bounds
administrative procedures	reactivity of 95% of underburned fuel
	population with 95% confidence
	Misload of 50% of system capacity with
	fuel assemblies with reactivity which
	bounds 90% of total fuel population
	Additional administrative procedures
	as part of system loading.

Recommendation

The staff recommends that the appropriate chapters of NUREG-1536, Standard Review Plan for Dry Cask Storage Systems, ¹⁵ NUREG-1567, Standard Review Plan for Spent Fuel Dry Storage Facilities, ¹⁶ and NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, ¹⁷ be revised to address the guidance contained in this ISG and the information contained in the appendix.

Approved by:	<u>/RA/</u>	Date:	September 26	5, 2012
	Mark Lombard, Director, SFST			

References:

1. Code of Federal Regulations, Title 10, Part 71, *Packaging and Transportation of Radioactive Material*, January 1, 2012.

- 2. Code of Federal Regulations, Title 10, Part 72, Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste, January 1, 2012.
- 3. U.S. Nuclear Regulatory Commission, Spent Fuel Project Office Interim Staff Guidance 1, Rev. 2 Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function, U.S. Nuclear Regulatory Commission, May 11, 2007.
- 4. R. J. Cacciapouti and S. Van Volkinburg, *Axial Burnup Profile Database for Pressurized Water Reactors*, YAEC-1937, May 1997. Available as Data Package DLC-201 from the Radiation Safety Information Computational Center at Oak Ridge National Laboratory, http://www-rsicc.ornl.gov/ORDER.html.
- 5. J. C. Wagner, M. D. DeHart, and C. V. Parks, *Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses*, NUREG/CR-6801 (ORNL/TM-2001/273), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 2003.
- 6. G. Radulescu, I. C. Gauld, G. Ilas, and J. C. Wagner, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Isotopic Composition Predictions*, NUREG/CR-7108 (ORNL/TM-2011/509), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, April 2012.
- 7. I. C. Gauld, *Strategies for Application of Isotopic Uncertainties in Burnup Credit*, NUREG/CR-6811 (ORNL/TM-2001/257), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, June 2003.
- 8. J. C. Wagner, Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit, NUREG/CR-6747 (ORNL/TM-2000/306), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, October 2001.
- 9. D. E. Mueller, K. R. Elam, and P. B. Fox, *Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data*, NUREG/CR-6979 (ORNL/TM-2007/083), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, September 2008.
- D. E. Mueller, J. M. Scaglione, J. C. Wagner, and W. J. Marshall, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Criticality (k_{eff}) Predictions, NUREG/CR-7109 (ORNL/TM-2011/514), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, April 2012.*
- 11. J. J. Lichtenwalter, S. M. Bowman, M. D. DeHart, and C. M. Hopper, *Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages*, NUREG/CR-6361 (ORNL/TM-13211), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 1997.
- 12. B. B. Bevard, J. C. Wagner, C. V. Parks, and M. Aissa, *Review of Information for Spent Nuclear Fuel Burnup Confirmation*, NUREG/CR-6998 (ORNL/TM-2007/229), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, December 2009.
- 13. *RW-859 Nuclear Fuel Data*, Energy Information Administration, Washington, D.C., October 2004.
- 14. J. C. Wagner, *Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask*, NUREG/CR-6955 (ORNL/TM-2004/52), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, January 2008.
- 15. NUREG-1536, Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility, U.S. Nuclear Regulatory Commission, July 2010.
- 16. NUREG-1567, *Standard Review Plan for Spent Fuel Dry Storage Facilities*, U.S. Nuclear Regulatory Commission, March 2000.
- 17. NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, U.S. Nuclear Regulatory Commission, March 2000.

Appendix A: Technical Recommendations for the Criticality Safety Review of PWR Transportation Packages and Storage Casks that Use Burnup Credit

1. Introduction

The overall reactivity decrease of nuclear fuel irradiated in light water reactors is due to the combined effect of the net reduction of fissile nuclides and the production of parasitic neutron absorbing nuclides (non-fissile actinides and fission products). Burnup credit refers to accounting for partial or full reduction of spent nuclear fuel (SNF) reactivity caused by irradiation. This Interim Staff Guidance (ISG) provides guidance to the staff for its use in the review of spent fuel cask designs that seek burnup credit. This Appendix provides the technical bases for the recommendations provided in the ISG.

Historically, criticality safety analyses for transportation and dry cask storage of SNF assumed the fuel contents to be unirradiated (i.e., "fresh" fuel). In 2002, the U.S. Nuclear Regulatory Commission (NRC) Spent Fuel Project Office (SFPO) issued ISG-8, Revision 2¹ to provide recommendations for the use of actinide-only burnup credit (i.e., burnup credit using only major actinide nuclides) in storage and transport of pressurized water reactor (PWR) SNF. Based on the data available for burnup credit depletion and criticality computer code validation at the time ISG-8, Rev. 2, was published, SFPO staff recommended actinide-only credit. Additionally, staff recommended that a measurement be performed to confirm the reactor record burnup value, for SNF assemblies to be stored or transported in cask or package designs which credit burnup in the criticality analysis.

Since ISG-8, Rev. 2, was published, significant progress has been made in research on the technical and implementation aspects of burnup credit, with the support of the NRC Division of Spent Fuel Storage and Transportation (SFST, formerly SFPO), by the NRC Office of Nuclear Regulatory Research (RES), and its contractors at Oak Ridge National Laboratory (ORNL). This report will summarize the findings of a number of reports and papers published as part of the research program directed by RES over the last several years. It is recommended that staff read the referenced reports and papers to understand the detailed evaluation of specific burnup credit parameters discussed in this report. A comprehensive bibliography of burnup credit-related technical reports and papers is provided at http://www.ornl.gov/sci/nsed/rnsd/pubs_burnup.shtml.

2. General Approach in Safety Analysis

Criticality safety analyses of SNF storage or transportation systems involve a great deal of complexity in both the computer modeling of the system, as well as the required fuel information. The assumption of unirradiated fuel at maximum initial enrichment provides a straightforward approach for the criticality safety analysis of a SNF dry storage or transportation system. This approach is conservative in terms of criticality safety, and limits the system capacity. In comparison to the fresh fuel assumption, performing criticality safety analyses for SNF systems that credit burnup require:

- 1) additional information and assumptions for input to the analysis,
- 2) additional analyses to obtain the SNF compositions,
- 3) additional validation efforts for the depletion and decay software,

- 4) enhanced validation to address the additional nuclides in the criticality analyses, and
- 5) verification that the fuel assembly to be loaded meets the minimum burnup requirements made prior to loading the system.

The use of burnup credit for SNF storage casks and transportation packages provides for increased fuel capacities and higher limits on allowable initial enrichments for such systems. Applications for PWR SNF storage cask and transportation package licenses and Certificates of Compliance (CoCs) have generally shifted to high capacity designs (i.e., 32 fuel assemblies or greater) in the past decade. In order to fit this many assemblies in a similarly sized SNF system, applicants have removed flux traps present in lower capacity designs (i.e., 24 fuel assemblies or less), and replaced them with single neutron absorber plates between assemblies. Flux traps consist of two neutron absorber plates separated by a water region, with the water serving to slow neutrons down for more effective absorption. Single neutron absorber plates are less effective absorbers than flux trap designs, and result in a system which cannot be shown to be subcritical in unborated water without the use of some level of burnup credit.

An important outcome from a burnup credit criticality safety analysis is a SNF loading curve, showing the minimum burnup required for loading as a function of initial enrichment and cooling time. For a given system loading of SNF, the effective neutron multiplication factor (k_{eff}) will increase with higher initial enrichments, decrease with increases in burnup, and decrease with cooling time from 1 year to approximately 100 years. Information that should be considered in specifying the technical limits for fuel acceptable for loading includes: fuel design, initial enrichment, burnup, cooling time, and reactor conditions under which the fuel is irradiated. Thus, depending on the assumptions and approach used in the safety analysis and the limiting k_{eff} criterion, a loading curve or set of loading curves can be generated to define the boundaries between acceptable and unacceptable SNF specifications for system loading.

The recommendations in this ISG include:

- 1) general information on limits for the licensing basis.
- 2) recommended assumptions regarding reactor operating conditions,
- 3) quidance on code validation with respect to the isotopic depletion evaluation,
- 4) guidance on code validation with respect to the k_{eff} evaluation, and
- 5) guidance on preparation of loading curves, and the process for assigning a burnup loading value to an assembly.

Each of these five areas should be considered in a criticality safety analysis that uses burnup credit.

The five recommendations listed above were developed with intact fuel as the basis. An extension to fuel that is not intact may be warranted if the applicant can demonstrate that any additional uncertainties associated with the irradiation history and structural integrity (both during and subsequent to irradiation) of the fuel assembly have been addressed. In particular, a model that bounds the uncertainties associated with the allowed fuel inventory and fuel configuration in the system should be applied. Such a model should include the selection of appropriate burnup distributions and any potential rearrangement of fuel that is not intact during normal and accident conditions. The applicant should also apply each of the recommendations provided in this ISG and justify any exceptions

taken due to the nature of the fuel (e.g., the use of an axial profile that is not consistent with the recommendation). Rev. 2 of ISG-1, Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function,² provides guidance for classifying the condition of the fuel (e.g., damaged, intact) for SNF storage and transportation.

The validation methodologies presented in Sections 4 and 5 of this document were performed for a representative cask model, known as the GBC-32, described in NUREG/CR-6747, Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit.³ As will be discussed later in this report, in order to directly use bias and bias uncertainty numbers developed in:

- 1) NUREG/CR-7108, An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Isotopic Composition Predictions,⁴ and
- 2) NUREG/CR-7109, An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Criticality (k_{eff}) Predictions,⁵

applicants must use the same isotopic depletion and criticality code and nuclear data as were used in the isotopic depletion and criticality validation performed in those reports. Additionally, applicants must demonstrate that their SNF storage or transportation system design is similar to the GBC-32 used to develop the validation methodologies in NUREG/CR-7108 and NUREG/CR-7109. This demonstration should consist of a comparison of system materials and geometry, including neutron absorber material and dimensions, assembly spacing, and reflector materials and dimensions, etc. This demonstration should also include a comparison of neutronic characteristics such as hydrogen-to-fissile atom ratios (H/X), energy of average neutron lethargy causing fission (EALF), neutron spectra, and neutron reaction rates. Applicability of the validation methodology to systems with characteristics that deviate substantially from those for the GBC-32 should be justified. Sensitivity and uncertainty analysis tools, such as those provided in the SCALE code system, can provide a quantitative comparison of the GBC-32 to the application of interest.

The recommendations of this ISG were developed with PWR fuel as the basis. Boiling Water Reactor (BWR) burnup credit has not typically been sought by dry storage and transportation applicants due to the complexity of the fuel and irradiation parameters, the lack of code validation data to support burnup credit, and a general lack of need for such credit in existing designs. Although the ISG does not provide explicit guidance on BWR burnup credit, criticality analyses which include such credit should be reviewed on a case-by-case basis.

The remainder of this report discusses recommendations in each of the five burnup credit areas, and provides technical information and references that should be considered in the review of the Safety Analysis Report (SAR).

3. Limits for Licensing Basis (Recommendation 1)

Available validation data supports actinide-only and actinide and fission product burnup credit for UO_2 fuel enriched up to 5.0 weight percent ^{235}U , that is irradiated in a PWR to an assembly-average burnup value up to 60 GWd/MTU and cooled out-of-reactor between 1 and 40 years.

Nuclides of Importance

Several studies have been performed to identify the nuclides that have the most significant effect on the calculated value of k_{eff} as a function of burnup and cooling time. These results are summarized in NUREG/CR-6665, Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel.⁶ This report concludes that the actinides and fission products listed in Tables A-1 and A-2 are candidates for inclusion in burnup credit analyses for storage and transportation systems, based on their relative reactivity worth at the cooling times of interest. The relative reactivity worth of the nuclides will vary somewhat with fuel design, initial enrichment, and cooling time, but the important nuclides (fissile nuclides and select non-fissile absorbers) remain the same and have been substantiated by numerous independent studies. These nuclides have the largest impact on k_{eff} and there is a sufficient quantity of applicable experimental data available for validation of the analysis methods, as will be discussed in Sections 5 and 6 of this Appendix. Accurate prediction of the concentrations for the nuclides in Tables A-1 and A-2 requires that the depletion and decay calculations include nuclides beyond those listed in the tables. Additional actinides and fission products are needed to assure the transmutation chains and decay chains are accurately handled. Methods are also needed to accurately simulate the influence of the fission product compositions on the neutron spectrum, which in turn impacts the burnup-dependent cross sections. To accurately predict the reactivity effect of fission products, explicit representation of the important fission product transmutation and decay chains is needed to obtain the individual fission product compositions.

Table A-1: Recommended set of nuclides for actinide-only burnup credit

²³⁴ U	²³⁵ U	²³⁸ U
²³⁸ Pu	²³⁹ Pu	²⁴⁰ Pu
²⁴¹ Pu	²⁴² Pu	²⁴¹ Am

Table A-2: Recommended set of additional nuclides for actinide and fission product burnup credit

product burnup credit			
⁹⁵ Mo	⁹⁹ Tc	¹⁰¹ Ru	¹⁰³ Rh
¹⁰⁹ Ag	¹³³ Cs	¹⁴⁷ Sm	¹⁴⁹ Sm
¹⁵⁰ Sm	¹⁵¹ Sm	¹⁵² Sm	¹⁴³ Nd
¹⁴⁵ Nd		¹⁵³ Eu	¹⁵⁵ Gd
²³⁶ U	²⁴³ Am	²³⁷ Np	

Applicants attempting to credit neutron absorbing isotopes other than those listed in these tables should ensure that such isotopes are non-volatile, and non-gaseous, and relatively stable, and provide analyses to determine the additional depletion and criticality code bias and bias uncertainty associated with these isotopes. These analyses should be accompanied by additional relevant critical experiment and radiochemical assay (RCA) data, to the extent practicable, or sufficient penalties to account for the lack of such data.

Burnup and Enrichment Limits

NUREG/CR-7108 demonstrates that the range of existing RCA data that are readily available for validation extends up to 60 GWd/MTU and 4.657 weight percent ²³⁵U initial enrichment. Though limited RCA data is available above 50 GWd/MTU, it is the staff's

judgment that credit can reasonably be extended up to 60 GWd/MTU. Credit should not be extended to assembly-average burnups beyond this level, though local burnups can be higher. Fuel with an assembly average burnup greater than 60 GWd/MTU can be loaded into a burnup credit system, but credit should only be taken for the reactivity reduction up to 60 GWd/MTU. Additionally, while the enrichment range covered by the available assay data has increased, it has not increased enough to warrant a change with regard to the maximum initial enrichment that can be considered in a burnup credit analysis; thus, the initial enrichment limit for the licensing basis remains at 5.0 weight percent ²³⁵U.

Cooling Time

Figure A-1 illustrates the expected reactivity behavior for SNF in a hypothetical GBC-32 system for an analysis using major actinide concentrations and various actinide and fission product concentrations in the calculation of k_{eff} . The fact that reactivity begins to rise around 100 years after discharge means the time frame for interim SNF storage should be considered in the evaluation of acceptable cooling times. The curve indicates that the reactivity of the fuel at 40 years is about the same as that of fuel cooled to 200 years. The Commission has recently instructed staff to review the regulatory programs for SNF storage and transportation, considering extended storage beyond 120 years. In light of the increasingly likely scenario of extended dry storage of SNF, the CoC for a SNF transportation package may require an additional condition with regard to the applicability of the credited burnup of the SNF contents. The condition would be dependent upon the type of credit taken and the post irradiation decay time credited in the analysis. For example, crediting of 40 years would result in a CoC condition limiting the applicability of the credited burnup to 160 years after fuel discharge. Note that approval of a cooling time longer than 5 years for burnup credit in dry storage or transportation systems does not automatically guarantee acceptance for disposal without repackaging. NUREG/CR-6781, Recommendation on the Credit for Cooling Time in PWR Burnup Credit Analysis,8 provides a comprehensive study of the effect of cooling time on burnup credit for various cask designs and SNF compositions.

Summary

The acceptance criteria for burnup credit are based on the characteristics of SNF discharged to date, the parameter ranges considered in the majority of technical investigations, and the experimental data available to support development of a calculational bias and bias uncertainty. As indicated, a safety analysis that uses parameter values outside those recommended by the ISG should: 1) demonstrate that the measurement or experimental data necessary for proper code validation have been included, and 2) provide adequate justification that the analysis assumptions or the associated bias and bias uncertainty have been established in such a fashion as to bound the potential impacts of limited measurement or experimental data. Even within the recommended range of parameter values, the reviewer should exercise care in assessing whether the analytic methods and assumptions used are appropriate, especially near the ends of the range.

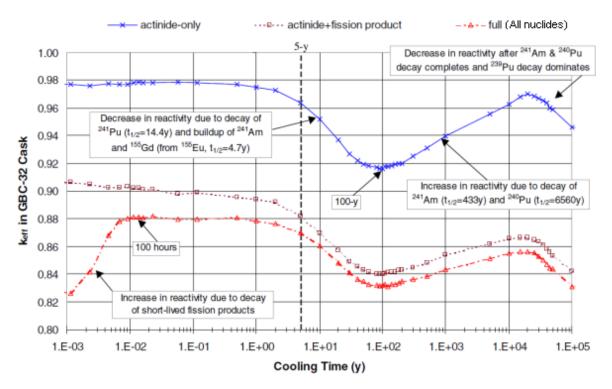


Figure A-1: Reactivity behavior in the GBC-32 cask as a function of cooling time for fuel with 4.0 weight percent ²³⁵U initial enrichment and 40 GWd/MTU burnup⁷

4. Licensing-Basis Model Assumptions (Recommendation 2)

The actinide and fission product compositions used to determine a value of $k_{\it eff}$ for the licensing basis should be calculated using fuel design and reactor operating parameter values that encompass the range of design and operating conditions for the proposed contents. Note that the proposed contents may consist of the entire population of discharged PWR fuel assemblies, a specific design of PWR fuel assembly (e.g., W17x17 OFA), or a smaller, specific population from a particular site. The calculation of the $k_{\it eff}$ value should be performed using cask models, analysis assumptions, and code inputs that allow accurate representation of the physics in the system. The following provides a discussion of important parameters that should be addressed in depletion analyses and $k_{\it eff}$ calculations in a burnup credit evaluation.

Reactor Operating History and Parameter Values

The impacts of fuel temperature, moderator temperature and density, soluble boron concentration, specific power and operating history, and burnable absorbers on the k_{eff} of SNF in a cask are described in Section 4.2 of NUREG/CR-6665.

As the assumed fuel temperature used in the depletion model increases, the $k_{\it eff}$ for the SNF in the cask will increase. The $k_{\it eff}$ will also increase with increases in either moderator temperature (lower density) or the soluble boron concentration. Analyses for both actinide-only and actinide-plus-fission product evaluations exhibit these trends in $k_{\it eff}$. Figures A-2 to A-4 provide examples of the Δk impact seen from differences in fuel

temperature, moderator temperature, and soluble boron concentration. The system modeled to determine these results was an infinite array of storage cells, but similar results have been confirmed for finite, reflected systems. All of these increases are due to the parameter increase causing increased production of fissile plutonium nuclides and decreased ²³⁵U utilization.

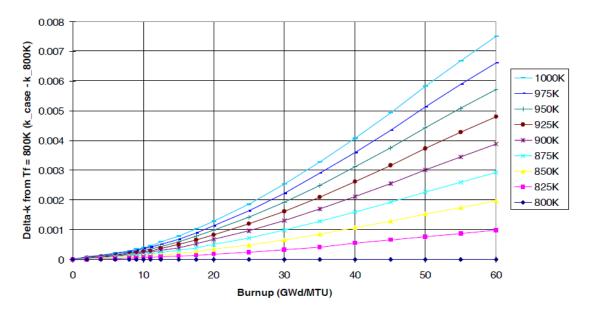


Figure A-2: Reactivity effect of fuel temperature during depletion on k_{inf} in an array of poisoned storage cells. Results correspond to fuel with 5.0 weight percent initial ²³⁵U enrichment.⁹

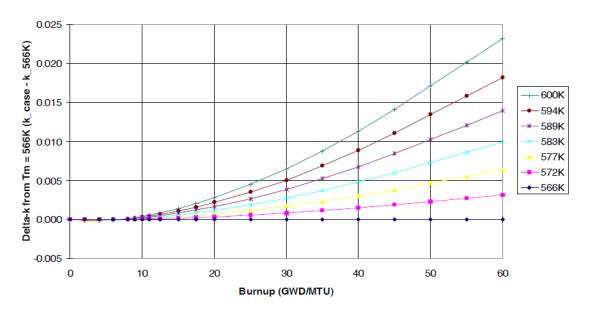


Figure A-3: Reactivity effect of moderator temperature during depletion on k_{inf} in an array of poisoned storage cells. Results correspond to fuel with 5.0 weight percent initial ²³⁵U enrichment.⁹

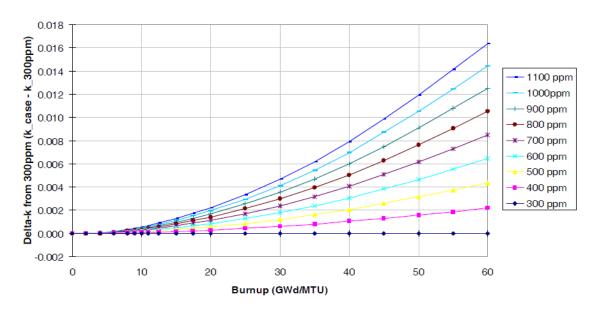


Figure A-4: Reactivity effect of soluble boron concentration during depletion on k_{inf} in an array of poisoned storage cells. Results correspond to fuel with 5.0 weight percent initial ²³⁵U enrichment.⁹

The impact of specific power and operating history is much more complex but has a very small impact on the cask $k_{\it eff}$ value. Figures A-5 and A-6 show the variation of $k_{\it inf}$ with specific power for various initial enrichment and burnup combinations, for actinide-only and actinide-plus-fission product burnup credit, respectively. Irradiation at higher specific power results in a slightly higher $k_{\it eff}$ for actinide-only burnup credit, but the reverse is true for burnup credit that includes actinides and fission products (see Section 3.4.2.3 of Ref. 10). Although the specific power at the end of irradiation is most important, the assumption of constant full-power is more straightforward and acceptable while having minimal impact on the $k_{\it eff}$ value relative to other assumptions.

More detailed information on the impact of each parameter or phenomenon that should be assumed in the depletion model is provided in Refs. 6 and 10. Each of the trends and impacts has been substantiated by independent studies. However, to model the irradiation of the fuel to produce bounding values for keff consistent with realistic reactor operating conditions, information is needed on the range of actual reactor conditions for the proposed SNF to be loaded in a cask. Loading limitations tied to the actual operating conditions will be needed unless the operating condition values assumed in the model can be justified as those that produce the maximum k_{eff} values for the anticipated SNF inventory. As illustrated by the case of specific power and operating history, the bounding conditions and appropriate limitations may differ for actinide-only burnup credit versus actinide-plus-fission product burnup credit, since the parameter impact may trend differently for these two types of burnup credit. Note that the sensitivity to variations in the depletion parameter assumptions differs for the two types of burnup credit, with actinide-plus-fission product burnup credit analyses exhibiting greater sensitivity for some parameters (see NUREG/CR-6800, Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs 11).

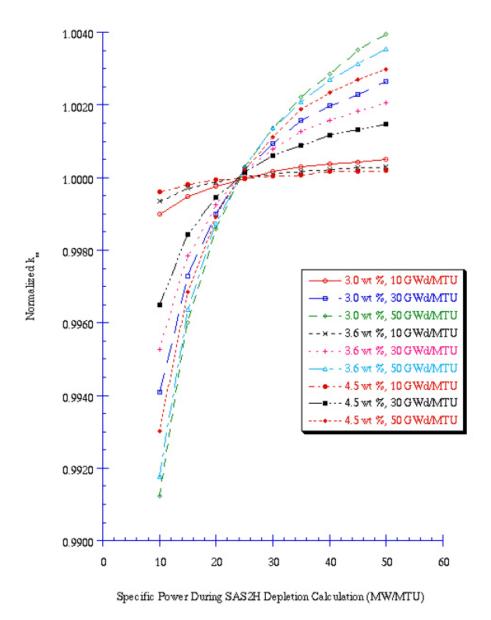


Figure A-5: Reactivity effect of specific power during depletion on k_{inf} in an array of fuel pins (actinides only).¹⁰

Also, the most reactive fuel design prior to irradiation will not necessarily have the highest reactivity after discharge from the reactor, and the most reactive fuel design may differ at various burnup levels. Thus, if various fuel designs are to be allowed in a particular cask design, parametric studies should be performed to demonstrate the most reactive SNF design for the range of burnup and enrichments considered in the safety analysis. Another option is to provide loading curves for each fuel assembly design and allow only one assembly type in each cask loading.

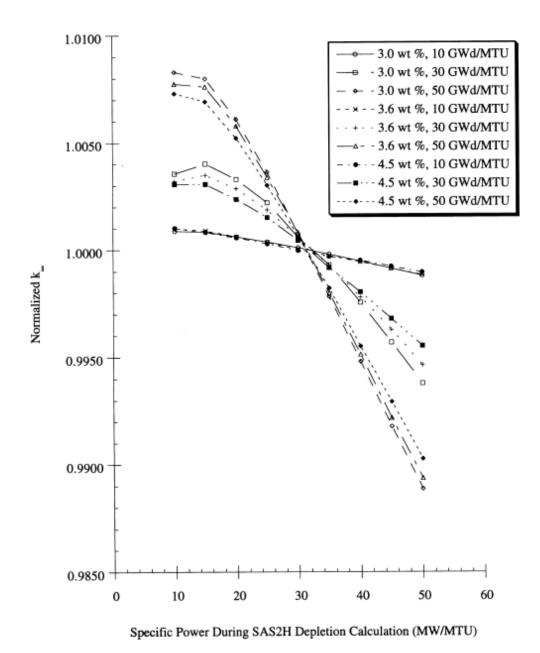


Figure A-6: Reactivity effect of specific power during depletion on k_{inf} in an array of fuel pins (actinides and fission products).¹⁰

Horizontal Burnup Profiles

Consideration of pin-by-pin burnups (and associated variations in SNF composition) does not appear to be necessary for analysis of the integral $k_{\rm eff}$ value in a SNF cask. To date, PWR cores have been managed such that the vast majority of assemblies experience a generally uniform burnup horizontally across the assembly during an operating cycle. However, assemblies on the periphery of the core may have a significant variation in horizontal burnup after a cycle of operation. ¹² In large rail casks, the probability that underburned quadrants of multiple fuel assemblies will be oriented in

such a way as to have a substantial impact of $k_{\it eff}$ is not expected to be significant. However, for smaller systems, the effect can be significant. The safety evaluation should address the impact of horizontal burnup gradients such as found in Ref. 12 on their system design or demonstrate that the assemblies to be loaded in the system will be verified to not have such gradients. One acceptable approach would be to determine the difference in $k_{\it eff}$ for a system loaded with fuel having a horizontal burnup gradient and a system loaded with the same fuel having a uniform horizontal burnup (i.e., no gradient). The fuel with the gradient would be arranged so as to maximize the reactivity effect of the gradient. The reactivity difference between the two cases could then be applied to the remaining analyses.

Axial Burnup Profiles

Considerable attention should be paid to the axial burnup profile(s) selected for use in the safety evaluation. A uniform axial profile is generally bounding at low burnups but is increasingly non-conservative at higher burnups due to the increasing relative worth of the fuel ends, as demonstrated in NUREG/CR-6801, *Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses*. Figure A-7 illustrates an example of this phenomenon for an actinide-only burnup credit analysis. As the figure shows, a uniform axial profile was conservative for that analysis at burnups less than about 20 GWd/MTU, but non-conservative at higher burnups. The burnup range at which this transition occurs will vary with fuel design and the type of burnup credit.

This ISG indicates that any analysis should provide "an accurate representation of the physics in the system." Thus, the applicant should select and model the axial burnup profile(s) in the analyses (including an appropriate number of axial material zones) that encompass the proposed contents and their range of potential $k_{\rm eff}$ values. The applicant should account for the fact that the axial effect will vary with burnup, cooling time, SNF nuclides used in the prediction of $k_{\rm eff}$, and cask design. The staff should consider the range of profiles anticipated for the fuel to be loaded in the system.

The publicly available database of axial profiles in YAEC 1937, Axial Burnup Profile Database for Pressurized Water Reactors, 14 is recommended as an appropriate source for selecting axial burnup profiles that will encompass the SNF anticipated for loading in a burnup credit cask. While the database represents only 4% of the assemblies discharged through 1994, NUREG/CR-6801 indicates that it provides a representative sampling of discharged assemblies. This conclusion is reached on the basis of fuel vendor/reactor design, types of operation (i.e., first cycles, out-in fuel management and low-leakage fuel management), burnup and enrichment ranges, use of burnable absorbers (including different absorber types), and exposure to control rods (CRs) (including axial power shaping rods (APSRs)). NUREG/CR-6801 also indicates that while the database has limited data for burnup values greater than 40 GWd/MTU and initial enrichments greater than 4.0 weight percent ²³⁵U, there is a high probability that the profiles resulting in the highest reactivity at intermediate burnup values will yield the highest reactivity at higher burnups. Thus, the existing database should be adequate for burnups beyond 40 GWd/MTU and initial enrichments above 4.0 weight percent ²³⁵U, if profiles are selected that include a margin for the potential added uncertainty in moving to the higher burnups and initial enrichments allowed per the ISG. Given the limited nature of the database, NUREG/CR-6801 includes an evaluation of the database's limiting profiles and the impacts of loading significantly more reactive assemblies in the place of assemblies with limiting profiles. NUREG/CR-6801 concludes that, based on

the low consequence of the more reactive profiles, the nature of the database's limiting profiles, and their application to all assemblies in a cask, the database is adequate for obtaining bounding profiles for use in burnup credit analyses.

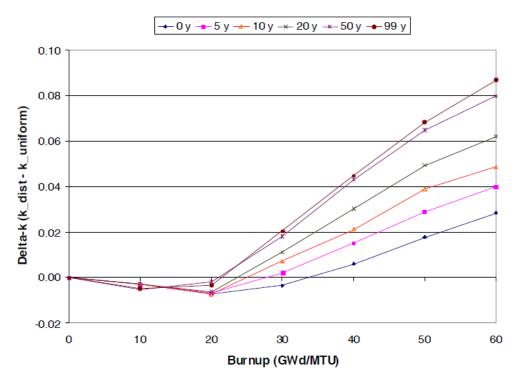


Figure A-7: Effect of axial burnup distribution on k_{eff} in the GBC-32 cask for actinide-only burnup credit and various cooling times for fuel with 4.0 weight percent initial enrichment.⁹

While the preceding discussion indicates that the database is an appropriate source of axial burnup profiles, the staff should ensure that profiles taken from the database are applied correctly. The application of the profiles in the database may not be appropriate for all assembly designs. This would include assemblies of different lengths than those evaluated in the database. While the database included some assemblies with axial blankets (natural or low enriched), these assemblies were not irradiated in a fully blanketed core (i.e., they were test assemblies). Thus, application of the database profiles to assemblies with axial blankets may also be inappropriate, as the impact of axial blankets has not been fully explored. However, it is generally conservative to assume fuel is not blanketed, using the enrichment of the non-blanketed axial zone and the limiting axial profile.

Other sources of axial burnup profiles may be appropriate to replace or supplement the database of YAEC 1937. The reviewer should assure that a description and evaluation of the database similar to that demonstrated in NUREG/CR-6801 has been performed. The reviewer should assure that the process used to obtain axial profiles included in the safety analysis has been described, and that the profiles are justified as encompassing the realistic profiles for the entire burnup range over which it is applied. The process of selecting and justifying the appropriate bounding axial profile may be simplified and/or conservatism may be reduced if a measurement of the axial burnup profile is performed prior to or during the cask loading operation. The measurement should demonstrate that

the actual assembly profile is equally or less reactive than that assumed in the safety evaluation.

Burnable Absorbers

Assemblies exposed to fixed neutron absorbers [also referred to as integral burnable absorbers (IBAs)] and removable neutron absorbers [also referred to as burnable poison rod assemblies (BPRs)] can have higher k_{eff} values than assemblies which are not exposed. This is due to the hardening of the neutron spectrum, and will lead to increased fissile plutonium nuclide production and reduced ²³⁵U depletion. In addition, when removable neutron absorbers are inserted, the spectrum is further hardened due to displacement of the moderator. NUREG/CR-6761, Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit, 15 and NUREG/CR-6760, Study of the Effect of Integral Burnable Absorbers on PWR Burnup Credit, 16 provide characterizations of the effects of burnable absorbers on spent fuel. The results of these studies indicate that a depletion analysis with a maximum realistic loading of BPRs (i.e., maximum neutron poison loading) and maximum realistic burnup for the exposure should provide an adequate bounding safety basis for fuel with or without BPRs. An evaluation relying on exposures to less than the maximum BPR loading and/or for less than the maximum burnup (for which credit is requested) needs adequate justification for the selected values (e.g., provision of available data to support the value selection and/or indication of how administrative controls will prevent a misload of an assembly with higher exposure).

For IBAs, the results of these studies indicate that the impact on $k_{\it eff}$ depends upon the material type and the burnup level. Exposure to the maximum absorber loading was seen to be bounding for zirconium diboride (ZrB₂)-type IBAs (known as integral fuel burnable absorbers, or IFBAs) at burnups above about 30 GWd/MTU. At lower burnups, neglecting the presence of the absorber was seen to be bounding. Neglecting the absorber in the case of IBAs that use erbia, gadolinia, and alumina-boron carbide was also bounding for all burnups investigated for these IBAs. Exposures to absorber types or materials not considered in the references supporting this ISG, whether fixed, removable, or a combination of the two, should be evaluated on a case-by-case basis.

Control Rods

As with BPRs, CRs fully or partially inserted during reactor operation can harden the spectrum in the vicinity of the insertion and lead to increased production of fissile plutonium nuclides. In addition, CRs can alter the axial burnup profile. In either case the CR would have to be inserted for a significant fraction of the total irradiation time for these effects to be seen in terms of a positive Δk on the SNF cask. Domestic PWRs typically do not operate with CRs inserted, although the tips of the rods may rest right at the fuel ends. However, some older domestic reactors and certain foreign reactors may have used CRs in a more extensive fashion, such that the impact of CR insertion would be significant.

Based on the results of the parametric study of the effects of CR exposure conducted in NUREG/CR-6759, *Parametric Study of the Effect of Control Rods for PWR Burnup Credit*, ¹⁷ and the fact that BPRs and CRs cannot be inserted in an assembly at the same

time, the inclusion of BPRs in the assembly irradiation model should adequately account for the potential increase in $k_{\rm eff}$ that may occur for typical SNF exposures to CRs during irradiation. However, exposures to atypical CR insertions (e.g., full insertion for one full reactor operation cycle) may not be fully accounted for by inclusion of BPRs in the irradiation model, and assemblies irradiated under such operational conditions should be explicitly evaluated. Also, since the previously discussed axial burnup profile database includes a representative sampling of assemblies exposed to CRs and APSRs, the appropriate selection of a limiting axial profile(s) from that database would be expected to adequately encompass the potential impact for axial profile distortion caused by CRs and APSRs.

Exposures to CR or APSR insertions or materials not considered in the references supporting this ISG should be explicitly evaluated. This would also apply to exposures to flux suppressors (e.g., hafnium suppressor inserts) or similar hardware which affect reactivity. Safety analyses for exposures to these items should use assumptions (e.g., duration of exposure, cycle(s) of exposure) that provide an adequate bounding safety basis and include appropriate justification for those assumptions. Additionally, the axial burnup and power distributions in assemblies exposed to these devices may be unusual; thus, it may be necessary to use actual axial burnup shapes for those assemblies.

Depletion Analysis Computational Model

For depletion analyses, computer codes that can track a large number of nuclides should be used in order to obtain an accurate estimate of the SNF nuclide concentration. Although certain nuclides that are typically tracked may not directly impact the concentrations of the nuclides in Tables A-1 and A-2, they can indirectly impact the production and depletion via their effect on the neutron spectrum. Tracking of a sufficiently large number of nuclides, the use of accurate nuclear data, and the prediction of burnup-dependent cross sections representative of the spatial region of interest are necessary for an accurate depletion analysis model.

Two-dimensional codes are routinely used together with axial segmentation of the fuel assembly in the criticality model to approximate axial variation in depletion. The two-dimensional flux calculations can capture the planar neutron flux distribution in each axial segment of a fuel assembly. The two-dimensional model is built to calculate the isotopic composition of the assembly at a series of burnup values, derived from the chosen axial burnup profile and the assembly average burnup. This approach is acceptable because it accounts for both the planar and axial flux variation to achieve a relatively accurate depletion simulation. Ideally, three-dimensional computer codes would be useful for fuel assembly depletion analyses to accurately simulate this phenomenon. However, three-dimensional depletion analysis codes are not recommended at the present time, due to their current limitations.

Several two-dimensional neutron transport theory based codes are available, such as CASMO, HELIOS, and the SCALE TRITON sequence.¹⁸ Staff should be aware of the limitations of a particular code and version, such as those designed to use lumped cross sections for multiple nuclides. Such limitations may require additional justification of the code's utility for burnup credit criticality analyses. Review of depletion analyses should focus on the suitability and accuracy of the code and modeling of the fuel assembly depletion history.

Previously, due to the limited availability of accurate two-dimensional computer codes, most burnup credit calculations used one-dimensional depletion codes to determine spent fuel isotopic concentrations averaged over the assembly. With appropriate code benchmarking against assay measurements and appropriate treatment of the fuel assembly spatial heterogeneity (e.g., Dancoff factor correction, disadvantage factor correction¹⁹), one-dimensional physics models of PWR assembly designs can produce sufficiently accurate assembly average spent fuel compositions. However, in order to use a one-dimensional model, a cylindrical flux-weighted and geometry-equivalent supercell depletion model needs to be constructed to preserve the effective fuel assembly neutronics characteristics. Burnup-dependent cross sections are then generated using the flux-weighted and geometry-modified point-depletion model. This approach is sensitive to the accurate construction of the supercell materials and the approximation of the assembly geometry.

It is essential that the burnup-dependent cross sections are updated with sufficient frequency in the depletion analysis model and that the physics model used to update the cross sections is one that is representative of the assembly design and reactor operating history. As with analyses used to determine k_{eff} , the depletion analysis should be appropriately validated. The application analysis should use the same code and cross section library and the same, or similar, modeling options as were used in the depletion validation analysis. Issues associated with isotopic depletion code validation will be discussed in greater detail in Section 5 of this Appendix.

Models for Prediction of keff

The expectations regarding the codes and modeling assumptions to be used to determine k_{eff} of a dry storage cask or transportation package are documented in the following staff review guidance documents:

- NUREG/CR-5661, Recommendations for Preparing the Criticality Safety Evaluation of Transportation Packages, 20
- NUREG/CR-6361, Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages.²¹
- NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel,²²
- NUREG-1567, Standard Review Plan for Spent Fuel Dry Storage Facilities,²³ and
- NUREG-1536, Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility.²⁴

Monte Carlo codes capable of three-dimensional solutions of the neutron transport equation are typically required for such applications. A loading of SNF, including specific combinations of assembly-average burnup, initial enrichment, and cooling time, should be used for each cask analysis. However, unlike unirradiated fuel, the variability of the burnup (and thus the isotopic concentrations) along the axial length is an important input assumption.

In particular, the burnup gradient will be large at the ends of the fuel regions. Thus, the cask model should include several fuel zones, each with isotopic concentrations representative of the average burnup across the zone. Burnup profile information from

reactor operations is typically limited to 18–24 uniform axial regions. NUREG/CR-6801 has shown that subdividing the zones beyond that provided in the profile information (assuming at least 18 uniform axial zones) yields insignificant changes in the k_{eff} value for a cask.

In reality, the end regions of the fuel have the lowest burnup and provide the largest contribution to the reactivity of the system. Thus, the model boundary condition at the ends of the fuel will potentially be of greater importance than for uniform or fresh-fuel cases where the reactivity in the center of the fuel dominates reactivity. The end fitting regions above and below the fuel contain steel hardware with a significant quantity of void space (typically 50% or more) for potential water inleakage. The analyses in Appendix A of NUREG/CR-6801 demonstrate that both modeling the end regions as either 100% steel or full-density water provides a higher value of $k_{\rm eff}$ than a combination (homogenized mixture 50% water and 50% steel assumed) of the two. For the cask that was studied, the all steel reflector provided a $k_{\rm eff}$ change of nearly 1% over that of full density water. Although use of 100% steel is an extreme boundary condition (since water will always be present to some degree), the results indicate that the applicant should be attentive to the selection of a conservative boundary condition for the end regions of the fuel.

The large source of fissions distributed non-uniformly, due to the axial burnup profile, over a large source volume in a SNF cask, can cause difficulty in properly converging the analysis to the correct $k_{\it eff}$ value. Problems performed in an international code comparison study have demonstrated that results can vary based on user selection of input parameters crucial to proper convergence. Strategies that may be used in the calculations to accelerate the source convergence (e.g., starting particles preferentially at the more reactive end regions) should be justified and demonstrated to be effective.

An important issue in burnup credit criticality modeling is the need to verify that the correct SNF composition associated with the depletion and decay analysis is inserted in the correct spatial zone in the cask model. The data processing method to select and extract the desired nuclide concentrations from the depletion and decay analyses, and input them correctly to the various spatial zones of the criticality analysis is a non-trivial process that has the potential for error. The staff should verify the interface process and/or the computer code used to automate the data handling. As with fresh fuel criticality analyses, the staff should verify that the criticality analyses for burnup credit is appropriately validated. In other words, the application analysis should use the same code and cross section library and the same, or similar, modeling options as were used in the criticality code validation. Issues associated with criticality code validation will be discussed in greater detail in Section 6 of this Appendix.

5. Code Validation - Isotopic Depletion (Recommendation 3)

An isotopic depletion code typically consists of three parts:

- 1) a library of nuclear reaction cross sections,
- 2) a geometric and material representation of the fuel assembly as well as the reactor core configuration, and
- 3) an algorithm to predict the isotopic transmutation over time as the fuel assembly is irradiated in the reactor and decays after discharge.

To assure the accuracy of the code and identify the biases and uncertainties associated with the algorithm, nuclear data, and modeling capability, the depletion code should be validated against measured data from RCA measurements of SNF samples.

Validation of the depletion analysis code serves two purposes. The first is to determine if the code is capable of accurately modeling the depletion environment of fuel assemblies for which burnup credit is taken. The second is to quantify the bias and bias uncertainty of the depletion code against the depletion parameters, fuel assembly design characteristics, initial enrichment, and cooling time.

In general, validation of the depletion code consists of the following steps:

- 1) select RCA sample data sets that are suitable for validation of the depletion code.
- 2) build and run depletion models for spent fuel samples that are selected for depletion code validation, and
- 3) apply the bias and bias uncertainty of the depletion calculation to the criticality analysis code implicitly through the use of adjusted isotopic concentrations of the depletion model, or determine the bias and bias uncertainties associated with the fuel depletion analysis code in terms of Δk_{eff} , as discussed in NUREG/CR-7108.

Selection of Validation Data

Validation data consist of measurements of isotopic concentrations from destructive RCA samples of SNF. Reliable depletion code validation results require a sufficient number of data sets that include all isotopes for which burnup credit is taken. The applicant, therefore, should provide justification of the sample size for each nuclide. For example, the applicant should demonstrate that isotopic uncertainty is appropriately increased to account for uncertainty associated with a small number of available measurement data or for uncertainty associated with non-normal isotopic validation data. The analyses in NUREG/CR-7108 use appropriate methods to account for these uncertainties.

Sample data necessary for depletion code validation includes initial enrichment and burnup, depletion history, assembly design characteristics, and physical location within the assembly. Over the past several decades, various RCA measurements of SNF samples have been performed at different laboratories. Detailed descriptions and analyses of the RCA measurements available for use in isotopic depletion validation have been published by NRC and ORNL in the following references:

- NUREG/CR-7012, Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel, 25
- NUREG/CR-7013, Analysis of Experimental Data for High-Burnup PWR Spent Fuel Isotopic Validation—Vandellós II Reactor,²⁶
- NUREG/CR-6968, Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation—Calvert Cliffs, Takahama, and Three Mile Island Reactors.²⁷
- NUREG/CR-6969, Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation-ARIANE and REBUS Programs (UO₂ Fuel).²⁸

NUREG/CR-7108 analyzed the available data sets and identified 100 fuel samples suitable for depletion code validation for SNF storage and transportation systems. The staff should examine the sample data and depletion models to ensure that these sample data are used in the application to determine the bias and bias uncertainty associated with the chosen isotopic depletion methodology. If different RCA data are used for the isotopic depletion validation, the applicant should provide all relevant information associated with that data (e.g., burnup, enrichment, cool time, local irradiation environment), and justify that this data is appropriate for the intended purpose. RCA data from samples with incomplete or unknown physical and irradiation history data should be avoided. Note that the burnup values associated with the RCA measurements are the actual sample burnup, rather than fuel assembly average burnup, which is typically used in burnup credit calculations. Reviewers should ensure that the benchmark models constructed by the applicant for depletion code validation use the appropriate burnup value.

Because of differences in the techniques used in RCA measurement programs, the results may vary significantly between different measurements of the same nuclide, in some cases. These variations may result in a large uncertainty in the calculated concentration for a particular nuclide, and reviewers should expect to see such large uncertainties for certain nuclides until a better database of measurements is available.

Radiochemical Assay Modeling

The depletion validation analysis should use the time-dependent irradiation environment and decay time for each individual RCA sample. Accurate sample depletion parameters should be used in the depletion code validation analysis models. A sample should not be used if its depletion history and environment are not well known. Note that some samples were taken from specific locations in the fuel assembly, while other samples have been taken on an assembly average basis. The latter type is typically found in earlier RCA data.

A depletion model should be built for each set of measurement data that were obtained from a RCA sample. To validate the computer code and obtain the bias and bias uncertainty, the depletion model should be able to accurately represent the environment in which each SNF sample was irradiated. For example, a sample from a fuel rod near a water hole will have a different neutron flux spectrum than a sample in a location where it is surrounded by fuel rods. Similarly, a fuel assembly with BPR insertion will have a different neutron spectrum in comparison to one without BPR exposure. Furthermore, a sample taken from the end of a fuel rod would have different specific power, fuel temperature, moderator temperature, and moderator density in comparison with that of a sample taken from the middle of a fuel assembly. Finally, time dependent, three dimensional effects, such as CR insertion, BPR insertions, partial rod or gray rod insertions during part of the depletion processes, should also be captured. These local effects are averaged in a one dimensional depletion code, and the reviewer should expect to see relatively large uncertainties associated with one-dimensional depletion code calculation of individual RCA sample nuclide concentrations.

Depletion Code Validation Methods

One of the objectives of code validation is to determine the bias and bias uncertainty associated with the isotopic concentration calculations. NUREG/CR-6811, Strategies for

Application of Isotopic Uncertainties in Burnup Credit,²⁹ discusses several approaches to treat the bias and bias uncertainty associated with isotopic concentration calculations. NUREG/CR-7108 expands on two of these approaches in greater detail, and provides reference results for representative SNF storage and transportation systems. These approaches are discussed in the following paragraphs.

1. Isotopic Correction Factor Method

This approach uses a set of correction factors for isotopes that are included in burnup credit analyses. Correction factors are derived by statistical analysis of the ratios of the calculated-to-measured isotopic concentrations of the RCA samples for each isotope. The mean value, plus or minus the standard deviation multiplied by a tolerance factor appropriate to yield a 95/95 confidence level, is determined as the correction factor for a specific isotope. For the fissile isotopes, the correction factor is the mean value plus the modified standard deviation. For non-fissile absorber isotopes the correction factor is the mean value minus the modified standard deviation. Fissile isotope correction factors that are below 1.0 are conservatively set to 1.0, and absorber isotope correction factors that are above 1.0 are conservatively set to 1.0. Since this method includes all the uncertainties associated with the measurements, computer algorithm, data library, and modeling, and since the correction factors are only modified in a manner that will increase k_{eff} , the result is considered bounding.

2. Direct Difference Method

The direct difference method directly computes the k_{eff} bias and bias uncertainty associated with the depletion code for the same set of isotopes by using the measured and calculated isotopic concentrations in the criticality analysis models separately. Two k_{eff} values are obtained in each pair of calculations, and a Δk_{eff} is calculated for each set of measured data. A statistical analysis is performed to calculate the mean value and the uncertainty associated with the mean value of the Δk_{eff} . Regression analysis is performed to determine the bias of the mean Δk_{eff} value as a function of various system parameters (e.g., burnup, initial enrichment).

Note that the direct difference method requires a full set of measured data for all isotopes for which this method is used to determine the bias and bias uncertainty of the isotopic depletion analysis code. However, many isotopes in Tables A-1 and A-2, particularly the fission products, do not have sufficient numbers of measured data for performing significant statistical analysis. In these cases, surrogate data have been used, as described in NUREG/CR-7108. This surrogate data set was generated using the available measured data for an isotope as the basis to populate the missing data in the measured data sets. A surrogate data value was determined by multiplying the calculated nuclide concentration by the mean value of the measured-to-calculated concentration ratio values obtained from samples with measured data. The fundamental assumption of this approach is that the limited available measured data are representative of the entire population of isotopic concentration values. When the number of available measured data for a specific isotope is low or covers a small burnup range, the applicant should ensure that this assumption is still valid, as was done for ⁹⁵Mo, ¹⁰¹Ru, ¹⁰³Rh, and ¹³³Cs in NUREG/CR-7108 (see Section 6.2).

Based on the recent studies published in NUREG/CR-7108, decay time correction is an important factor when using the direct difference method. In cases where there are

differences between the cooling times of the samples used in code validation and the design basis fuel cooling time, the error in the isotopic calculations can be large. NUREG/CR-7108 provides a discussion of the method to correct decay times for the samples that were selected for code validation. This method uses the Bateman Equation 30 to adjust the measured isotopic concentration of the nuclide of interest to the design basis cooling time of the application. For a general case of nuclide B with a decay precursor A and a daughter product C (i.e., A \rightarrow B \rightarrow C), the content of nuclide B at a reference cooling time can be obtained by solving the Bateman Equation. The time-adjusted isotopic concentration should be used in the validation, rather than the measurement data. In the case where only a fraction of the decay leads to the production of nuclide B, the fraction of decay of nuclide A leading to nuclide B should also be included. For a nuclide without a significant precursor, the contribution from decay of precursors should be set to zero, and only the decay of nuclide B need be accounted for.

3. Monte Carlo Uncertainty Sampling Method

The Monte Carlo uncertainty sampling method generates a depletion code k_{eff} bias (β_i) and bias uncertainty, Δk_i , for the group of nuclides for which burnup credit is taken. It determines the β_i and Δk_i using a statistical method that adjusts the isotopic concentrations of the SNF in the criticality analysis model by a factor randomly sampled within the uncertainty band of measured-to-calculated isotopic concentration ratios of each nuclide. NUREG/CR-7108 provides a more detailed discussion of this approach. Research results published in NUREG/CR-7108 indicate that this method, although statistically complex and computationally intensive, can be used to determine a more realistic bias and bias uncertainty of the depletion code.

Using the Monte Carlo uncertainty sampling method, ORNL has developed reference β_i and Δk_i values for the hypothetical GBC-32 storage and transportation system. It is acceptable for the applicant to use the β_i and Δk_i values from Tables A-3 and A-4 directly, in lieu of an explicit depletion validation analysis, provided the following conditions are met:

- the applicant uses the same depletion code and cross section library as was used in NUREG/CR-7108 (SCALE/TRITON and the ENDF/B-V or -VII cross section library),
- the applicant can justify that its design is similar to the hypothetical GBC-32 system design used as the basis for the NUREG/CR-7108 isotopic depletion validation, and
- credit is limited to the specific nuclides listed in Tables A-1 and A-2.

Table A-3: Isotopic k_{eff} bias uncertainty (Δk_i) for the representative PWR SNF system model

using ENDF/B-VII data ($\beta_i = 0$) as a function of assembly average burnup

Burnup Range (GWd/MTU)	Actinides Only <i>∆k_i</i>	Actinides and Fission Products Δk_i
0-5	0.0145	0.0150
5-10	0.0143	0.0148
10-18	0.0150	0.0157
18-25	0.0150	0.0154
25-30	0.0154	0.0161
30-40	0.0170	0.0163
40-45	0.0192	0.0205
45-50	0.0192	0.0219
50-60	0.0260	0.0300

Table A-4: Isotopic k_{eff} bias (β_i) and bias uncertainty (Δk_i) for the representative PWR SNF system model using ENDF/B-V data as a function of assembly average burnup

Burnup Range (GWd/MTU)*	β_i for Actinides and Fission Products	△k _i for Actinides and Fission Products
0-10	0.0001	0.0135
10-25	0.0029	0.0139
25-40	0.0040	0.0165

^{*} Bias and bias uncertainties associated with ENDF/B-V data were calculated for a maximum of 40 GWd/MTU. For burnups higher than this, applicants should provide an explicit depletion code validation analysis, using one of the methods described in Appendix A, along with appropriate RCA data.

 β_i values should be added to the calculated system k_{eff} , while Δk_i values may be statistically combined with other independent uncertainties, consistent with standard criticality safety practice. Demonstration of system similarity to the GBC-32 should consist of a comparison of materials and geometry, as well as neutronic characteristics such as H/X ratio, EALF, neutron spectra, and neutron reaction rates. In case the actual design is significantly different from the GBC-32 cask, or the applicant uses a different code and/or cross section library for its analysis, the applicant should use the direct difference or isotopic correction factor methods discussed previously.

6. Code Validation – K_{eff} Determination (Recommendation 4)

For the $k_{\it eff}$ component of burnup credit criticality calculations, validation is the process by which a criticality code system user demonstrates that the code and associated data predict actual system $k_{\it eff}$ accurately. The criticality code validation process should include an estimate of the bias and bias uncertainty associated with using the codes and data for a particular application.

As stated in ANSI/ANS 8.1, *Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors*, ³¹ "Bias shall be established by correlating the results of critical and exponential experiments with results obtained for these same systems by the calculational method being validated." The previous technical basis for burnup credit in ISG-8, Rev. 2, limited credit to the major actinides, since there were not adequate critical experiments at the time for estimating the bias and bias uncertainty relative to modeling SNF in a cask environment. This technical basis considered the fact that no critical

experiments existed which included the fission product isotopes important to burnup credit. Additionally, critical experiments available for actinide validation were limited to only: 1) fresh low-enriched UO₂ systems, and 2) fresh mixed uranium and plutonium oxide (MOX) systems. These systems are not entirely representative of SNF in a transportation package, as fresh UO₂ systems contain no plutonium, and the MOX experiments generally do not have plutonium isotopic ratios consistent with that of burned fuel.

While there were no representative critical experiments for SNF transportation criticality validation, there were considered to be adequate RCA data for validating actinide isotopic depletion calculations for major actinide absorbers. For this reason, as well as the criticality validation limitations discussed above, staff deemed that it was appropriate to recommend "actinide-only" credit for SNF transportation criticality safety evaluations. This approach represented the bulk of the reduction in $k_{\rm eff}$ due to depletion of the fuel (see Table A-5), and excluded the fission products which served as additional margin to cover uncertainties due to modeling actinide depletion $k_{\rm eff}$ effects.

Although there continue to be insufficient critical experiments for a traditional validation of the code-predicted reduction in $k_{\rm eff}$ due to fission products and minor actinides in spent fuel, a group of critical experiments designed for validating SNF $k_{\rm eff}$ reduction due to major actinides has become available since ISG-8, Rev. 2, was published. This actinide criticality validation data is described in detail in NUREG/CR-6979, *Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data*, ³² and is available to applicants from ORNL, subject to execution of a non-disclosure agreement. These experiments are more appropriate for validating the code-predicted reduction in $k_{\rm eff}$ due to actinide depletion than fresh UO $_2$ or other MOX critical experiments. The HTC experiments consisted of fuel pins fabricated from mixed uranium and plutonium oxide, with the uranium and plutonium isotopic ratios designed to approximate what would be expected from UO $_2$ fuel burned in a PWR to 37.5 GWd/MTU. While these experiments were designed to correspond to a single burnup, rather than the range of burnups that would be ideal for criticality validation, this data set represents a significant improvement to the criticality validation data available for actinide isotopes.

The improvement to the actinide criticality validation data set allows applicants for burnup credit SNF transportation packages to perform a traditional validation for the actinide component of the reduction in $k_{\rm eff}$ due to burnup, per the recommendations of NUREG/CR-6361. ORNL has performed a representative actinide criticality validation for the GBC-32 transportation package, provided in NUREG/CR-7109, using the best available validation data.

Although the contribution from fission products to the reduction in $k_{\it eff}$ due to burnup is relatively small (see Table A-5), applicants for SNF transportation packages have requested the additional credit represented by these absorbers. The apparent need for fission product credit is due to the significant increase in percentage of discharged PWR fuel assemblies capable of being shipped in a high capacity (e.g., 32 assembly) rail transportation package. Figure A-8 represents a typical discharged PWR fuel population in terms of initial enrichment and burnup. Two representative loading curves, one for actinide-only burnup credit and another for actinide and fission product burnup credit, are overlaid on this figure, showing the relative amounts of the PWR fuel population which would be transportable in a hypothetical package. Although the loading curve does not move significantly from actinide-only credit to actinide and fission product

credit, the curve moves across the bulk of the discharged fuel population, making a greater percentage of this population transportable. If a greater number of transportation packages can have this high capacity, then the total number of eventual SNF shipments could be reduced.

The ability to properly validate criticality codes for actinide burnup credit is a crucial step towards recommending fission product credit, as the actinides represent the bulk of the reduction in k_{eff} due to burnup. However, it is still necessary to be able to estimate the bias and bias uncertainty due to modeling fission products in SNF, and critical experiments which include fission product absorbers continue to be exceedingly rare. As of this writing, there are only a handful of such publicly available critical experiments: one set involving ¹⁴⁹Sm (LEU-COMP-THERM-050), another involving ¹⁰³Rh (LEU-COMP-THERM-079), and a third involving elemental Sm, Cs, Rh, and Eu (LEU-MISC-THERM-005). The preferred method for further fission product criticality validation would be the development of numerous and varied critical experiments involving both actinide and fission product absorbers in concentrations representative of spent fuel of various initial enrichments and burnups. Given the cost and practical difficulties associated with such a critical experiment program (e.g., obtaining specific absorber isotopes as opposed to natural distributions of isotopes), staff does not expect to see such experiments carried out within a reasonable timeframe. In the absence of such important criticality validation data, staff and their contractors at ORNL sought alternative methodologies for estimating fission product bias and bias uncertainty.

Table A-5: FP Reactivity Worth for "Typical" Burnup in Generic Burnup Credit Cask (GBC-32) with 4 weight percent ²³⁵U Westinghouse 17 × 17 OFA, Burned to 40 GWd/MTU

, man i mongrit porconit	o modernighted	c., Baillea to 10 citamin	
Credited Nuclides	k _{eff}	Δk	%Δk¹
Fresh Fuel	1.13653		
8 Major Actinides ²	0.94507	0.19146	71.9
All Actinides	0.93486	0.01021	3.8
Key 6 Fission Products ³	0.88499	0.04987	18.7
All Remaining Fission Products	0.87010	0.01489	5.6
Total		0.26643	100

¹This is the percent of total Δk for the burnup attributable to the portion of the total nuclide population in the first column

²⁸ major actinides include ²³⁵U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu and ²⁴¹Am ³Key 6 fission products include ¹⁰³Rh, ¹³³Cs, ¹⁴⁹Sm, ¹⁵¹Sm, ¹⁴³Nd, and ¹⁵⁵Gd

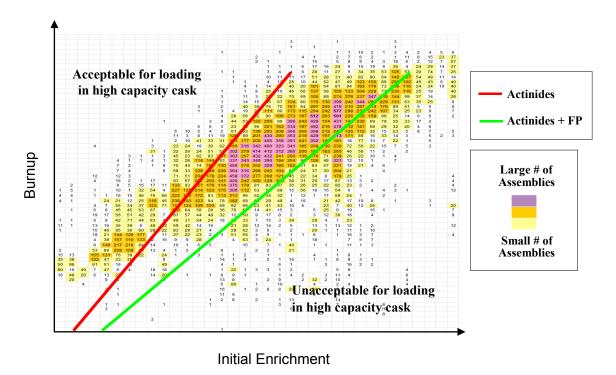


Figure A-8: Representative Loading Curves and Discharged PWR Population

In order to achieve an appropriate estimate of the $k_{\it eff}$ bias and bias uncertainty due to fission products, ORNL developed a methodology based on the SCALE *Tools for Sensitivity and Uncertainty Methodology Implementation* (TSUNAMI) code,³³ developed as part of the SCALE code system. This methodology uses the nuclear data uncertainty estimated for each fission product cross section known as the cross section covariance data. These data are provided with the ENDF/B-VII cross section library. The TSUNAMI code is used to propagate the cross section uncertainties represented by the covariance data into $k_{\it eff}$ uncertainties for each fission product isotope used in a particular application. The theoretical basis of this validation technique is that computational biases are primarily caused by errors in the cross section data, which are quantified and bounded, with a 1 σ confidence, by the cross section covariance data. The validity of this theoretical basis is discussed in greater detail in NUREG/CR-7109.

This methodology has been benchmarked against a large number of low enrichment uranium (LEU) critical experiments, high enrichment uranium (HEU) critical experiments, plutonium critical experiments, and mixed uranium and plutonium critical experiments to demonstrate that the $k_{\rm eff}$ uncertainty estimates generated by the method are consistent with the calculated biases for these systems. The $k_{\rm eff}$ uncertainty results for specific fission products were also compared to fission product bias estimates obtained from the limited number of critical experiments that include fission products. The uncertainty analysis method is described and details of the comparisons are provided in NUREG/CR-7109. The results demonstrate that, for a generic SNF transportation package evaluated with the SCALE code system, and the ENDF/B-V, -VI, or -VII cross section libraries, the total fission product nuclear data uncertainty (1 σ) does not exceed 1.5% of the total minor actinide and fission product worth for the 19 nuclides (Table A-2) considered over the burnup range of interest (i.e., 5 to 60 GWd/MTU). Since the uncertainty in $k_{\rm eff}$ due to uncertainty in the cross section data is an indication of how

large the actual code bias could be, the 1.5% value should be used as a bias (i.e., added directly to the calculated k_{eff}). Due to the conservatism in this value no additional uncertainty in the bias needs to be applied.

In order to use the 1.5% value directly as a bias, applicants must demonstrate that they have used the code in a manner consistent with the modeling options and initial assumptions used in NUREG/CR-7109. Applicants must also demonstrate that their SNF storage or transportation system design is similar to the GBC-32 used to develop the bias estimate. This demonstration should consist of a comparison of materials and geometry, as well as neutronic characteristics such as H/X ratio and EALF. Since improved actinide validation with the HTC experiments discussed previously represents a considerable part of the technical basis for crediting fission product absorbers, applicants should validate the actinide portion of the k_{eff} evaluation against this data set. Applicants may also use a different criticality code, provided that the code uses ENDF/B-V. -VI. or -VII cross section data. In this case, the combined minor actinide and fission product bias and bias uncertainty should be increased to 3.0%. NUREG/CR-7109 shows that the bias and bias uncertainty is based largely on the uncertainty in the nuclear data. However, there are differences in how different codes handle the same cross section data, potentially affecting bias and bias uncertainty. Since validation studies similar to that performed in NUREG/CR-7109 have not been performed for other codes, the staff finds that an additional k_{eff} penalty should be applied to cover any additional uncertainties, and that doubling the 1.5% determined for the SCALE code system is conservative.

Staff should consider applicant requests to use the 1.5% value for other well-qualified industry standard code systems, provided the application includes additional justification that this value is appropriate for that specific code system (e.g., a minor actinide and fission product worth comparison to SCALE results). For applications where the applicant uses cross section libraries other than ENDF/B-V, -VI, or -VII, where the application system cannot be demonstrated to be similar to the GBC-32, or where the credited minor actinide and fission product worth is significantly greater than 0.1 in $k_{\rm eff}$, then an explicit validation analysis should be performed to determine the bias and bias uncertainty associated with minor actinides and fission products.

Integral Validation

ANSI/ANS 8.27-2008, *Burnup Credit for LWR Fuel*,³⁴ provides a burnup credit criticality validation option consisting of analysis of applicable critical systems consisting of irradiated fuel with a known irradiation history. This is known as integral, or "combined," validation, since the bias and bias uncertainty associated with the depletion calculation method is inseparable from that associated with the criticality calculation method. The most common publicly available source of integral validation data are commercial reactor critical (CRC) state points. These CRC state points consist of either a hot zero-power critical condition attained after sufficient cooling time to allow the fission product xenon inventory to decay or at-power equilibrium critical condition where xenon worth has reached a fairly stable value.

CRC state points have been shown to be similar to cask-like environments, with respect to neutron behavior, in NUREG/CR-6951, *Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit.*³⁵ With integral validation, however, the biases and uncertainties for the depletion approach cannot be separated from those

associated with the criticality calculation, and only the net biases and uncertainties from the entire procedure are obtained. This approach allows for compensating errors between the depletion methodology and the criticality methodology (e.g., under prediction of a given nuclide's concentration coupled with simultaneous over prediction of this nuclide's effect on $k_{\rm eff}$). It is desirable to understand the sources of uncertainty associated with the depletion methodology separately from the criticality methodology, in order to ensure that the overall bias and bias uncertainty are determined correctly for the cask system for the entire range of system parameters.

Additionally, concerns remain regarding the physical differences between CRC state points and cask systems, such as borated water in a reactor versus fresh water in a cask, high worth absorber plates in a cask versus none in a reactor, low moderator density in a reactor versus full density in a cask, and high temperature in a reactor versus low temperature in a cask. CRC state points also consist of calculated isotopic concentrations, as opposed to the measured concentrations one would expect in a typical laboratory critical experiment. Furthermore, CRC state points are inherently complicated to model, given the large number of assemblies and axial zones with different initial enrichments and burnups necessary to accurately model the reactor core. All of these concerns introduce additional uncertainties into a validation approach that attempts to make use of CRC state points.

For the reasons stated above, the staff does not recommend using integral validation approaches, with CRC state points or any other available integral validation data, for burnup credit criticality validation. However, if integral validation is used, the applicant should account for additional uncertainties identified above, and consider the use of a $k_{\it eff}$ penalty to offset these uncertainties.

7. Loading Curve and Burnup Verification (Recommendation 5)

As part of storage and transportation operations, loading curves are used to display acceptable combinations of assembly average burnup and initial enrichment for loading fuel assemblies. Assemblies with insufficient burnup, in comparison with the loading curve, are not acceptable for loading, as shown in Figure A-8. Misloads have occurred in both dry storage casks and spent fuel pools, in which fuel did not satisfy allowable parameters (e.g., burnup, cooling time, and enrichment). Misloads occur due to misidentification, mischaracterization, or misplacement of fuel assemblies. This has resulted in unanalyzed loading configurations during storage of spent fuel in some cases. To date, the known dry storage cask misload events have not had significant implications on criticality safety.

For efficiency and economic purposes in power plant operations, it is desirable to ensure that the maximum power output is extracted from a fuel assembly before discharging it from the reactor. However, due to fabrication or performance issues, some fuel assemblies have been removed from the reactor before achieving their desired burnup. Once discharged from the reactor, these fuel assemblies are stored in the spent fuel pool. Because the spent fuel pool may contain assemblies with varying burnups, enrichments, and cooling times, the potential for a more reactive assembly to be misloaded exists. A misload can occur as a result of several factors, including assemblies with fabrication issues, errors in reactor records, or operator actions which impact fuel handling activities.

ISG-8, Rev. 2, specified that certain administrative procedures should be established to ensure that fuel designated for a particular storage or transportation system is within the specifications for approved contents. Burnup measurement was recommended in the guidance as a way to protect against misloads by identifying potential errors in reactor records or misidentification of assemblies being loaded into the system. As part of the overall initiative to revise ISG-8, the potential effects of misloaded assemblies on system reactivity were investigated.

Misloading of unirradiated fuel assemblies is unlikely for several reasons. First, storage and transportation system loading typically occurs when unirradiated fuel is not present in the spent fuel pool. Second, SNF is noticeably different than unirradiated fuel (color, deformation, etc.), and visually identifiable. Finally, there is an economic incentive involved with new fuel assemblies which would make permanent misloads of unirradiated fuel assemblies in dry storage casks or transportation packages unlikely.

Although misloading of unirradiated fuel assemblies is considered to be unlikely, it is conceivable that an assembly that has been irradiated to less than the target burnup value (i.e., underburned) could be misloaded into a SNF system. Misloading of one or more underburned fuel assemblies can cause an increase in the overall system reactivity. The amount of reactivity increase depends on several factors, including the degree of burnup in comparison to the loading curve, the cooling time, and the location of the assembly within the system.

A number of events involving misloads occurring within spent fuel pools and dry storage casks have been reported to the NRC. The majority of these misloads occurred as a result of inadequate fuel selection procedures or inaccurate parameter data (i.e., burnup, enrichment, cooling time). Using available misload data, the NRC Office of Nuclear Regulatory Research (RES), in a report titled *Estimating the Probability of Misload in a Spent Fuel Cask*, ³⁶ evaluated the likelihood of misloading fuel assemblies within a spent fuel transportation package. This report determined the probability of single and multiple assembly misloads for ranges of burnup values dependent on the available spent fuel pool inventory. RES determined that the overall probability of misloading a fuel assembly that does not meet the burnup credit loading curve is in the 10⁻² to 10⁻³ range, which is considered credible.

NUREG/CR-6955, *Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask*, ³⁷ evaluated the effects of single and multiple misloaded assemblies on the reactivity in a storage or transportation system. This evaluation covered the misloading of unirradiated and underburned PWR fuel assemblies in a GBC-32 high-capacity storage and transportation system. The scope of this report included varying the degree to which misloaded assemblies were underburned to determine the change in reactivity when including actinide-only and actinide and fission product burnup credit. This was done over a range of enrichments up to 5.0 weight percent ²³⁵U, while placing between one and four misloaded assemblies into the most reactive positions within the system. All assemblies within the system, with the exception of the misloaded assemblies, were assumed to undergo a cooling period of 5 years. The misloaded assemblies were evaluated at 90, 80, 50, 25, 10, and 0% (unirradiated) of the minimum assembly average burnup value required by the loading curve.

The evaluation in NUREG/CR-6955 concluded that for the particular system design and fuel assembly parameters used, a reactivity increase between 2.0 and 5.5 percent in k_{eff}

could be expected for various misloaded systems. Given the operational history and the accuracy of the reactor records, this information can be used along with the misload probability to determine an appropriate method of addressing assembly misloads as part of the criticality evaluation. Applicants may perform a misload analysis in lieu of a confirmatory burnup measurement.

Misload Evaluation

The applicant's misload evaluation should be based on a reliable and relatively recent estimate of the discharged PWR fuel population, and should reflect the segment of that population that is intended to be stored or transported in the cask or package design. Note that this population may consist of the entire population of discharged PWR fuel assemblies, a specific design of PWR fuel assembly (e.g., W17x17 OFA), or a smaller, specific population from a particular site. An acceptable source of discharged fuel data as of this writing is the 2002 Energy Information Administration (EIA) RW-859 Nuclear Fuel Survey, ³⁸ although more recent data may be available.

An applicant's misload analysis should evaluate both a single severely underburned misload and a misload of multiple moderately underburned assemblies in a single SNF system. The single severely underburned assembly should be chosen such that any assembly average burnup and initial enrichment along an equal reactivity curve bound 95% of the discharged fuel population considered unacceptable for loading in a particular storage or transportation system with 95% confidence. Applicants should provide a statistical analysis of the underburned fuel population to support the selection of severely underburned assemblies.

The 95/95 criterion for evaluations of single high-reactivity misloads, along with the administrative procedures for misload prevention (see the next section), is reasonably bounding as more reactive misloads are unlikely. The assembly average burnup and initial enrichment that match this 95/95 criterion are dependent upon the loading curve for the storage or transportation system. Applicants are likely to seek a level of burnup credit that results in qualification of the greatest possible amount of the fuel population for storage or shipment in the system. Therefore, assemblies matching the 95/95 criterion will be those of relatively high enrichment and low burnup (e.g., 5 wt. % U-235 and 15 GWd/MTU). Based on the data available in the 2002 EIA RW-859, the number of discharged assemblies of greater reactivity is very small, even for cases where all discharged assemblies of a given burnup and initial enrichment are located in a single spent fuel pool.

For the evaluation of the application system with multiple moderately underburned assemblies, misloaded SNF should be assumed to make up at least 50% of the system payload, and should be chosen such that the assembly average burnups and initial enrichments along the equal reactivity curve bound 90% of the total discharged fuel population. Such an evaluation is reasonably bounding for cases of multiple misloads in a single SNF system based upon the considerations in the following paragraph.

The 90% criterion is based on the total discharged fuel population, and not the specific loading curve for the system design. The distribution of discharged fuel peaks within a relatively narrow band of burnup for each initial enrichment value. The curve that represents a reactivity which bounds 90% of the discharged population is expected to pass through burnup and enrichment combinations that are below this peak. However,

the population along this curve is still large enough to represent possible misload scenarios involving multiple assemblies. Below the 90% criterion curve, with few exceptions, the numbers of assemblies for each burnup and enrichment combination drop significantly. Thus, it is reasonable to expect that misloading of multiple assemblies of the remaining 10% of the discharged population would be less likely. Although there are larger numbers of low burnup assemblies for specific initial enrichments, facilities that have a significant number of these assemblies can reduce the likelihood of misloading multiples of these assemblies in the same system with proper administrative controls.

The recommendation for misloading at least 50% of the system is based on consideration of the history of misloads in dry SNF storage operations as well as the fact that systematic errors can result in misloading of multiple assemblies. Misloads that have occurred in dry SNF storage operations have typically involved multiple assemblies. The most significant of these incidents resulted in less than 25% of the cask capacity being misloaded. While the probability of a multiple-misload scenario decreases with increasing number of assemblies involved, systematic errors can increase the likelihood of such misloads. Considering these factors, there is reasonable assurance that a scenario that involves misloading at least 50% of the cask capacity would bound the extent of likely multiple-misload conditions. The implementation of the administrative procedures recommended in this ISG for preventing misloads provides additional assurance against more extensive misload situations.

It is possible that SNF systems designed for specific parts of the fuel population (e.g., particular sites or fuel types), will have loading curves that already bound 90% of the discharged fuel population. In these cases, the misload analysis for multiple assemblies does not need to be performed.

A SNF storage or transportation system should be designed to have a limited sensitivity to misloads, such that increases in $k_{\rm eff}$ when considering misloads are minimized. In any case, the applicant should demonstrate that the system remains subcritical under misload conditions including biases, uncertainties and an administrative margin. The analysis should use the design parameters and specifications that maximize system reactivity as is done for nominal loading analyses. The administrative margin is normally 0.05. However, for the purposes of the misload evaluations, a different administrative margin may be used given two conditions. First, the administrative margin should not be less than 0.02. Second, any use of an administrative margin less than 0.05 should be adequately justified. An adequate justification should consider the level of conservatism in the depletion and criticality calculations, sensitivity of the system to further upset conditions, and the level of rigor in the code validation methods.

An administrative margin is used with criticality evaluations to ensure that a system that is calculated to be subcritical is actually subcritical. This margin is used to ensure against unknown errors or uncertainties in the method of calculating $k_{\rm eff}$ as well as impacts of system design and operating conditions not explicitly considered in the analysis. Allowance for using different administrative margins is given in criticality safety practices in other regulated areas. Experience with identified code errors and an understanding of uncertainties in cross section data and their impacts on reactivity indicates that an administrative margin of at least 0.02 is necessary for analyses to show subcriticality with misloads.

Taking credit for burnup reduces the margin in the analyses and makes them more realistic. Additionally, reducing the administrative margin for misload analyses further reduces the margin for subcriticality. This reduction in overall criticality safety margin necessitates a greater justification for a lower administrative margin. This justification should demonstrate a greater level of assurance that the various sources of bias and bias uncertainty have been taken into account and that the bias and bias uncertainty are known with a high degree of accuracy. The principles and concepts discussed in FCSS ISG- 10^{39} are useful in understanding the kinds of evaluations and evaluation rigor that should be considered for justification of a lower administrative margin. These concepts include assurances of the consistent presence and amount of conservatism in the evaluations which may be relied upon, the quality and number of benchmark experiments as they relate to the application and the misload cases, and evaluation of the sensitivity of k_{eff} to other system parameter changes.

Administrative Procedures

Along with the misload analysis, administrative procedures should be established, in addition to those typically performed for non-burnup credit systems, to ensure that the system will be loaded with fuel that is within approved technical specifications. Procedures considered to protect against misloads in storage and transportation systems that rely on burnup credit for criticality safety may include:

- verification of the location of high reactivity fuel (i.e., fresh or severely underburned fuel) in the spent fuel pool both prior to and after loading,
- qualitative verification that the assembly to be loaded is burned (visual or gross measurement),
- verification, under a 10 CFR Part 71 quality assurance program, of the system inventory and loading records prior to shipment for previously loaded systems,
- quantitative measurement of any fuel assemblies without visible identification numbers,
- independent, third-party verification of the loading process, including the fuel selection process and fuel move instructions, and
- minimum soluble boron concentration in pool water, to offset the misloads described above, during loading and unloading.

The majority of these recommendations are intended to ensure that high reactivity fuel is not present in the pool during loading, or is otherwise accounted for and determined not to have been loaded into a SNF storage or transportation system. The verification of the system inventory and loading records is intended to ensure that the contents of previously loaded systems are as expected prior to shipment. This verification should be performed under an approved 10 CFR Part 71 quality assurance program. Quantitative measurement of SNF without visible identification is recommended since there is no other apparent way to demonstrate that such assemblies are tied to a specific burnup value. Independent, third party verification of the fuel selection process means verification of correct application of fuel acceptability standards and the fuel move instructions. Soluble boron is recommended as an unloading condition, to ensure that misloads are protected against when future unloading operations occur, since the conditions of such operations are currently unknown and may inadvertently introduce unborated water into the system. Soluble boron is typically present during PWR SNF loading operations for dry storage or transportation systems. An appropriate soluble

boron concentration during loading and unloading would be that required to maintain system k_{eff} below 0.95 with the more limiting (in terms of k_{eff}) of the single severely underburned or multiple moderately underburned misloads described previously.

Misload analyses are included in this revision of ISG-8 as an alternative to burnup confirmation using measurement techniques. A number of misloads have occurred within spent fuel pools and casks as a result of human errors or inaccurate assembly data. Efforts have been made to evaluate the criticality effects of misloading assemblies into a spent fuel transportation cask. Using credible bounding assumptions, a misload analysis could be generated to account for potential events involving loading, while maintaining an appropriate safety margin.

8. References

- 1. U.S. Nuclear Regulatory Commission, Spent Fuel Project Office Interim Staff Guidance 8, Rev. 2 Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks, U.S. Nuclear Regulatory Commission, September 27, 2002.
- 2. U.S. Nuclear Regulatory Commission, Spent Fuel Project Office Interim Staff Guidance 1, Rev. 2 Classifying the Condition of Spent Nuclear Fuel for Interim Storage and Transportation Based on Function, U.S. Nuclear Regulatory Commission, May 11, 2007.
- 3. J. C. Wagner, Computational Benchmark for Estimation of Reactivity Margin from Fission Products and Minor Actinides in PWR Burnup Credit, NUREG/CR-6747 (ORNL/TM-2000/306), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, October 2001.
- 4. G. Radulescu, I. C. Gauld, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Isotopic Composition Predictions*, NUREG/CR-7108 (ORNL/TM-2011/509), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, April 2012.
- D. E. Mueller, J. M. Scaglione, J. C. Wagner, and W. J. Marshall, *An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses Criticality (k_{eff}) Predictions, NUREG/CR-7109 (ORNL/TM-2011/514), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, April 2012.*
- C. V. Parks, M. D. DeHart, and J. C. Wagner, Review and Prioritization of Technical Issues Related to Burnup Credit for LWR Fuel, NUREG/CR-6665 (ORNL/TM-1999/303, U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, February 2000.
- 7. Staff Requirements Memorandum COMDEK-09-0001, Revisiting the Paradigm for Spent Fuel Storage and Transportation Regulatory Programs, U.S. Nuclear Regulatory Commission, February 2010.
- 8. J. C. Wagner and C. V. Parks, *Recommendations on the Credit for Cooling Time in PWR Burnup Credit Analyses*, NUREG/CR-6781 (ORNL/TM-2001/272), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, January 2003.
- 9. C. J. Withee, Memorandum to M. Wayne Hodges, "ISG-8, Rev. 2, Supporting Document," U.S. Nuclear Regulatory Commission, September 27, 2002.
- 10. M. D. DeHart, Sensitivity and Parametric Evaluations of Significant Aspects of Burnup Credit for PWR Spent Fuel Packages, ORNL/TM-12973, Lockheed Martin Energy Research Corp., Oak Ridge National Laboratory, May 1996.
- 11. J. C. Wagner and C. E. Sanders, Assessment of Reactivity Margins and Loading Curves for PWR Burnup-Credit Cask Designs, NUREG/CR-6800 (ORNL/TM-

- 2002/6), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 2003.
- 12. Horizontal Burnup Gradient Datafile for PWR Assemblies, DOE/RW-0496, U.S. Department of Energy, Office of Civilian Radioactive Waste Management, May 1997.
- 13. J. C. Wagner, M. D. DeHart, and C. V. Parks, *Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses*, NUREG/CR-6801 (ORNL/TM-2001/273), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 2003.
- 14. R. J. Cacciapouti and S. Van Volkinburg, *Axial Burnup Profile Database for Pressurized Water Reactors*, YAEC 1937 (May 1997). Available as Data Package DLC-201 from the Radiation Safety Information Computational Center at Oak Ridge National Laboratory, http://www.rsicc.ornl.gov/ORDER.html.
- 15. J. C. Wagner and C. V. Parks, *Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup Credit*, NUREG/CR-6761 (ORNL/TM-2000/373), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 2002.
- 16. C. E. Sanders and J. C. Wagner, *Study of the Effect of Integral Burnable Absorbers on PWR Burnup Credit*, NUREG/CR-6760 (ORNL/TM-2000/321), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 2002.
- C. E. Sanders and J. C. Wagner, Parametric Study of the Effect of Control Rods for PWR Burnup Credit, U.S. Nuclear Regulatory Commission, NUREG/CR-6759 (ORNL/TM 2001/69), Oak Ridge National Laboratory, February 2002.
- 18. M. D. DeHart, *Triton: A Two-Dimensional Transport and Depletion Module for Characterization of Spent Nuclear Fuel*, ORNL/TM-2005/39, Version 6, Vol. I, Sect. T1, January 2009.
- 19. J. J. Duderstadt and L. J. Hamilton, *Nuclear Reactor Analysis*, John Wiley & Sons Inc., 1976.
- 20. H. R. Dyer and C. V. Parks, *Recommendations for Preparing the Criticality Safety Evaluation of Transportation Packages*, NUREG/CR-5661 (ORNL/TM-11936), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 1997.
- 21. J. J. Lichtenwalter, S. M. Bowman, M. D. DeHart, and C. M. Hopper, *Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation and Storage Packages*, NUREG/CR-6361 (ORNL/TM-13211), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, March 1997.
- 22. NUREG-1617, Standard Review Plan for Transportation Packages for Spent Nuclear Fuel, U.S. Nuclear Regulatory Commission, March 2000.
- 23. NUREG-1567, *Standard Review Plan for Spent Fuel Dry Storage Facilities*, U.S. Nuclear Regulatory Commission, March 2000.
- 24. NUREG-1536, Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility, U.S. Nuclear Regulatory Commission, July 2010.
- I. C. Gauld, G. Ilas, and G. Radulescu, Uncertainties in Predicted Isotopic Compositions for High Burnup PWR Spent Nuclear Fuel, NUREG/CR-7012 (ORNL/TM-2010/41), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, January 2011.
- 26. G. Ilas and I. C. Gauld, *Analysis of Experimental Data for High-Burnup PWR Spent Fuel Isotopic Validation—Vandellós II Reactor*, NUREG/CR-7013 (ORNL/TM-2009/321), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, January 2011.
- 27. G. Ilas, I. C. Gauld, F. C. Difilippo, and M. B. Emmett, *Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation-Calvert Cliffs, Takahama, and Three Mile Island Reactors*, NUREG/CR-6968 (ORNL/TM-2008/071), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, February 2010.

- 28. G. Ilas, I. C. Gauld, and B. D. Murphy, *Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation-ARIANE and REBUS Programs (UO₂ Fuel)*, NUREG/CR-6969 (ORNL/TM-2008/072), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, February 2010.
- I. C. Gauld, Strategies for Application of Isotopic Uncertainties in Burnup Credit, NUREG/CR-6811 (ORNL/TM-2001/257), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, June 2003.
- 30. M. Benedict, T. H. Pigford, and H. W. Levi, *Nuclear Chemical Engineering*, Second Edition, McGraw Hill, 1981.
- 31. ANSI/ANS-8.1-1998 (R2007), *Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors*, American Nuclear Society, La Grange Park, Illinois.
- 32. D. E. Mueller, K. R. Elam, P. B. Fox, *Evaluation of the French Haut Taux de Combustion (HTC) Critical Experiment Data*, NUREG/CR-6979 (ORNL/TM-2007/083), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, September 2008.
- 33. B. T. Rearden, *TSUNAMI-3D: Control Module for Three-Dimensional Cross-Section Sensitivity and Uncertainty Analysis for Criticality*, ORNL/TM-2005/39, Version 6, Vol. I, Section C9, January 2009.
- 34. ANSI/ANS-8.27-2008, *Burnup Credit for LWR Fuel*, American Nuclear Society, La Grange Park, Illinois.
- 35. G. Radulescu, D. E. Mueller, and J. C. Wagner, *Sensitivity and Uncertainty Analysis of Commercial Reactor Criticals for Burnup Credit*, NUREG/CR-6951 (ORNL/TM-2006/87), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, September 2008.
- 36. Estimating the Probability of Misload in a Spent Fuel Cask, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, June 2011.
- 37. J. C. Wagner, *Criticality Analysis of Assembly Misload in a PWR Burnup Credit Cask*, NUREG/CR-6955 (ORNL/TM-2004/52), U.S. Nuclear Regulatory Commission, Oak Ridge National Laboratory, January 2008.
- 38. *RW-859 Nuclear Fuel Data*, Energy Information Administration, Washington, D.C., October 2004.
- 39. Justification for Minimum Margin of Subcriticality for Safety, FCSS ISG-10, Rev. 0, U.S. NRC, July 2000.