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EXECUTIVE SUMMARY 

The Office of Nuclear Regulatory Research at the U.S. Nuclear Regulatory Commission (NRC) has an 
ongoing research effort to assess the regulatory viability of digital twins for nuclear power plants. As part 
of this activity, the NRC held a virtual workshop on condition monitoring and structural health 
management for nuclear power plants. The workshop was hosted by Idaho National Laboratory and was 
held on November 28–29, 2023. 

The 2-day workshop was composed of four technical and panel sessions with 20 presenters from a wide 
range of national and international organizations, including national laboratories, universities, government 
agencies, nuclear vendors, and advanced reactor developers. Technical presentations and panel sessions 
covered a broad technical scope including industry application of DT-enabling technologies for condition 
monitoring and predictive maintenance, diagnostic and prognostic tools for condition monitoring and 
structural health management, inservice testing and inspection, reliability integrity management 
considerations for advanced reactors, and emerging technologies for condition monitoring and structural 
health management. 

The workshop had three main purposes: (1) to gain a better understanding of industry activities and 
perspectives with respect to the application digital twin enabling technologies and prognostic tools for 
condition monitoring of nuclear power plant components, (2) facilitate the exchange of knowledge and 
research activities on topics such as on-line monitoring techniques, predictive maintenance, structural 
health monitoring, diagnostic and prognostic health management, and (3) become aware of these enabling 
technologies and how these technologies could be used for life cycle management of plant components.  

In the opening session, on Tuesday, November 28, Ms. Michele Sampson, Director of Division of 
Engineering, NRC Office of Nuclear Regulatory Research, made the introductory remarks. Technical 
sessions followed by panel discussion on specific topics took place on Tuesday and Wednesday. Some 
major takeaways from the workshop are as follows: 

• There is significant interest in DT technology applications for condition monitoring of active and 
passive systems, structures, and components in currently operating and future nuclear power 
plants.  

• Each DT enabling technology has challenges and considerations, such as qualification 
requirements for advanced sensors and instrumentation, verification and validation and 
uncertainty quantification for advanced modeling and simulation, explainability and 
trustworthiness for AI/ML; thus, early engagement with regulators is encouraged. 

• Application of advanced technologies for condition monitoring is expected to overlap with 
regulatory aspects in the near future, such as meeting in-service inspection and in-service testing 
requirements and safety assessment. 
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• Increased collaboration and coordination among stakeholders would enable information sharing, 
developing common solutions to shared challenges, and developing guidance and standards for 
application of DT technologies in condition monitoring.  

• DT technology could be a novel source of trusted information on performance monitoring and 
prediction, process optimization, and regulation. The technology serves as a tool for general 
integrated data sharing among vendors, licensees, regulators, and the public. Such an information 
source could both build public trust and improve regulatory efficiency. 

• Workshop participants identified several topics related to DT technology and safety that would be 
of interest for collaborative research: 

o Develop advanced sensors and an approach for optimizing instrumentation for condition 
monitoring using DTs 

o Develop diagnostics and prognostics models capable of running in real time as part of 
condition monitoring DTs 

o Develop tools to characterize the interface between condition monitoring DTs and human 
operators and end users 

o Establish a community of practice with a specific focus on developing guidelines for 
addressing regulatory aspects of condition monitoring DTs. 

All presentation slides from this workshop are available in the NRC’s Agencywide Documents Access 
and Management System, under Accession No. ML24008A291.  

https://adamswebsearch2.nrc.gov/webSearch2/main.jsp?AccessionNumber=ML24008A291
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Workshop on Condition Monitoring and Structural 
Health Management for Nuclear Power Plants 

1. DAY 1 PRESENTATIONS 
1.1 Session 1: Applications of Digital Twin Enabling Technologies for 

Condition Monitoring & Predictive Maintenance 
This session set the stage for the workshop with presentations and discussions on digital twins (DTs) 

for online monitoring in nuclear power plants. The speakers represented advanced reactor developers, 
technology vendors, national laboratory researchers, and regulators. The key observations from this 
session are as follows: 

• Ongoing efforts include developing proof-of-concept technology for a centralized operations-and-
maintenance (O&M) strategy with plant support center for prioritizing asset monitoring 

• Criticality assessment could determine priority of asset monitoring using DT 

• Real-time capability of a condition-monitoring DT is highly significant during startup, shutdown, and 
transients 

• Predictive capabilities in DT could recommend timely corrective actions 

• Current NRC efforts are focused on preparing to make a reasonable assurance finding on the use of 
DT technologies at nuclear power plants. 

1.1.1 Digital Twin Enabling Technology for Online Monitoring in Advanced 
Reactors – Ian Davis, Plant Monitoring & Diagnostics Engineering 
Manager, X-Energy 

This presentation covered X-energy’s Maintenance Strategy at a high level for the Xe-100 plant. The 
Xe-100 Maintenance Strategy includes a balanced and optimized combination of predictive, condition-
based, preventive, and reactive maintenance activities. In addition, this presentation discussed X-energy’s 
plans for handling large volumes of process data generated at Xe-100 plants and how modern approaches 
to big data enable a more efficient maintenance workforce. 

1.1.2 Digital Twins as Applied to New Reactor Designs Focusing on Predictive 
Maintenance – Brian Golchert, Principal Engineer, Westinghouse 

This presentation focused on DTs as applied to new reactor designs focusing on predictive 
maintenance. For existing plants, DTs are “back fitted” meaning that one builds the models, the reduced 
order model, and then ties them to existing operational data. For new designs, operational data (beyond 
proof-of-concept experiments) does not exist. A “blue sky” approach was presented to leverage the 
capabilities of simulation and improve the design process for new designs as well as using existing tools 
for predictive maintenance. 

1.1.3 Condition Monitoring at Nuclear Plants - Current Technology and 2030 
Outlook – Eric Helm, General Manager, Metroscope 

This topic presented a summary level view of current monitoring and diagnostics objectives and tools 
which were then contrasted with new objectives for small modular reactors (SMRs) and advanced 
reactors. The conclusion highlighted the need for a shifted focus on diagnostics, modeling, and inference 
technology to meet new industry demands. 
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1.1.4 Online Monitoring Using Cloud-Based Applications – Cody Walker, 
Research Scientist, Idaho National Laboratory 

This presentation described comparing cost and capabilities of cloud-based resources to other 
currently available resources to predict the condition of a safety relief valve as well as the architecture to 
connect a nuclear power plant to cloud computing resources, such as Azure and Amazon Web Services 
(AWS), and its predictive capabilities. 

1.1.5 NRC Regulatory Aspects for Nuclear Digital Twins – Thomas G. 
Scarbrough, Senior Mechanical Engineer, U.S. NRC 

This presentation focused on the regulatory role of the NRC staff in reviewing and approving any 
DT/ML/AI approaches used to meet the NRC regulations for the safe operation of nuclear power plants. 
Notably, NRC regulatory staff efforts are focused on preparing to make a reasonable assurance finding on 
the use of such technologies at nuclear power plants.  

1.2 Session 2: Diagnostic and Prognostic Tools for Condition 
Monitoring and Structural Health Management 

Overview: This session presented ongoing efforts at national laboratories, DT developers, and 
monitoring and diagnostics centers in diagnostics and prognostics capabilities for currently operating and 
future reactors. The key observations from this session are as follows: 

• Current efforts are focused on demonstrating how condition monitoring can improve reliability, 
prioritize maintenance issues, and enhance operational efficiency 

• Some industry efforts are focused on cost-benefit analysis of using DT technologies for condition 
monitoring 

• Virtual sensors technology based on real-time integration of data-based models and physics-based 
models could enable diagnostics with optimized sensor infrastructure 

• Ongoing research and development efforts sponsored by the Department of Energy are focused on 
DT development, machine learning (ML) models for non-safety systems, and visualization 
capabilities at currently operating fleet. 

1.2.1 Successful Application of Condition Monitoring Technologies into 
Nuclear Power Plants – Greg Alder, Director Plant Optimization, Curtiss 
Wright 

This presentation overviewed the commercial application of condition monitoring technologies for 
nuclear power plants including thermal performance improvement, equipment reliability monitoring, 
diagnosing plant issues, and degradation. 

1.2.2 Digital Twins for Prognostics and Health Management in Nuclear – 
Naresh Iyer, Principal Machine Learning Scientist, GE Research 

This talk summarized key findings of a recent ARPA-E program (GEMINA) targeting the application 
of AI-assured preventive maintenance DTs (PMDTs) toward reducing O&M costs for SMRs. The 
presenter showed a cost-benefit framework and analysis to help prioritize components when developing 
PMDTs and estimate a return on investment (ROI) from developing and applying PMDT technologies. 
The same framework is used to further demonstrate how employing AI-assurance techniques with help 
further reduce O&M costs over and above the baseline approach of migrating schedule or preventive 
maintenance to AI-driven predictive analytics. 
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1.2.3 Predictive Tools for Maintenance Optimization: Heat Exchanger Tube 
Failure Case – Richard Vilim, Nuclear Science and Engineering Division 
Department Manager, Plant Analysis, Control and Sensors, Argonne 
National Laboratory  

This presentation described a condition monitoring framework for optimizing maintenance 
scheduling for nuclear plant systems and how a DT is used to predict the health for components and 
structures. Methods and validation results for diagnosing incipient signs of component failure and 
equipment degradation and work on the ongoing application to light-water-reactor feedwater-tube failure 
was described. Work on the ongoing application to light-water-reactor feedwater-tube failure was also 
described. 

1.2.4 AI/ML Research to Support Plant Modernization – Craig Primer, LWRS 
Pathway Lead, Idaho National Laboratory 

This presentation provided an overview of some research and development efforts currently 
underway within the Department of Energy’s Light Water Reactor Sustainability (LWRS) program and 
presented focus areas that included data architecture and analytics as well as using ML for material 
management, equipment monitoring, and anomaly detection; natural language processing and computer 
vision for O&M; and addressing explainability of AI/ML.  

1.2.5 Nearly Autonomous Management and Control in Advanced Reactors – 
Abhinav Gupta, Center for Nuclear Energy Facilities and Structures, NC 
State University, Director 

This presentation provided a brief overview of recent research conducted at the Center for Nuclear 
Energy Facilities and Structures for developing AI/ML-based solutions for condition assessment of piping 
systems and described an ongoing Electric Power Research Institute (EPRI)-sponsored project on 
experimental validation of new developments including a demonstration of a piping system DT. 

2. DAY 2 PRESENTATIONS 
2.1 Session 3: Inservice Inspection and Reliability Integrity 

Management Considerations for Advanced Reactors 
Overview: This session focused on presenting an overview of the American Society of Mechanical 

Engineers (ASME), BPV Code, Section XI, Division 2, Reliability Integrity Management (RIM) for life 
cycle management of plant components. The presenters discussed challenges and issues with 
implementing RIM for advanced reactors and explored the nondestructive examination and monitoring 
needs for inservice inspection of advanced reactors. The key observations from this session are as 
follows: 

• Limited accessibility to liquid-sodium retaining components in sodium-cooled fast reactors (SFR) 
present unique challenges in meeting inservice inspection requirements 

• Ongoing cooperation between ASME and Japanese Society of Mechanical Engineers (JSME) is 
focused on developing fitness-for-service code for SFRs 

• Identifying material degradation mechanisms for specific materials and operating environments is the 
key starting point for implementing a RIM approach 

• A model-based approach using probabilistic risk assessment (PRA) models could be developed for 
assigning system reliability targets through PRA models. 
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2.1.1 Development of Fitness-For-Service Code for Sodium-Cooled Fast 
Reactors – Shigeru Takaya, Principal Researcher, Japan Atomic Energy 
Agency 

This presentation focused on developing a fitness-for-service code for SFRs. Note that SFRs are one 
of Generation IV nuclear energy systems and are now being developed throughout the world, including in 
the United States and Japan. Developing inservice inspection requirements suitable to SFRs is crucial to 
maintain nuclear power plant safety and suppress operation costs. SFRs have several desirable features 
such as excellent compatibility between purity-controlled sodium and structural materials while 
traditional volumetric and surface tests are not as easily performed as in light-water reactors due to the 
limited accessibility to liquid-sodium retaining components. Recently, the fitness-for-service code for 
SFRs is being developed through the cooperation between ASME and JSME. An overview of 
deliverables and current activity was also presented. 

2.1.2 Introduction to ASME Section XI, Division 2 Reliability and Integrity 
Management (RIM) – Tom Roberts, Principal Officer, POMO18 Consult 
LLC 

This presentation provided an overview of RIM, what is RIM and why it is needed for advanced 
reactors, a detailed description of the RIM process, specific monitoring and inspection challenges 
associated with advanced reactors, and how RIM could potentially address some of those challenges. 

2.1.3 Reliability and Integrity Management Program – Challenges and 
Opportunities – Chris Wax, Principal Technical Leader, EPRI 

This presentation’s goal was to expand upon the discussion of RIM programs and identify areas 
where industry guidance can supplement the ASME BPV Code to provide avenues for more effective and 
consistent program framework. The areas where challenges or gaps are identified can be clarified to 
support a reactor designer’s understanding of how their design decisions can impact RIM programs (and 
vice versa), support a future reactor owner’s ability to effectively implement a RIM program to reduce 
materials degradation impacts, as well as provide clarity and consistency for future regulator reviews of 
RIM programs. This presentation did not identify all the gaps (nor did it have complete answers for those 
that have been identified), but it was seen as a starting point for a coordinated industry effort to 
effectively and efficiently implement the RIM program. 

2.1.4 Assessment of Component Level and Plant Level Reliability Target 
Allocation to Support RIM – Diego Mandelli, R&D Scientist, Idaho National 
Laboratory 

This presentation focused on the RIM program as applied to advanced reactors. It showed a few 
effective methods to allocate reliability targets at the plant, system, and asset level by relying on plant 
PRA models as well as methods to demonstrate that the implemented RIM strategies (e.g., type and 
frequency of surveillance intervals) confidently assure the planned reliability targets.  

2.1.5 Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) 
Needs for Emerging Reactor Technologies – Pradeep Ramuhalli, 
Distinguished R&D Staff Member & Ryan Meyer, Research Engineer, Oak 
Ridge National Laboratory 

This presentation overviewed the technological advances around a nondestructive evaluation (NDE) 
and structural health monitoring for emerging reactor technologies. These technological advances have 
the potential to address some aspects of the RIM process and qualification requirements for these 
technologies. 
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2.2 Session 4: Emerging Technologies for Condition Monitoring & 
Structural Health Management 

Overview: This session highlighted use cases of some emerging technologies, such as advanced 
sensors, data analytics, ML, and AI, as part of DTs for condition monitoring in current and future 
reactors. The discussion focused on opportunities, challenges, gaps, and regulatory considerations of 
using DT technologies for condition monitoring. The key observations from this session are as follows: 

• Condition-monitoring DT use cases include a wide range of advanced sensors and instrumentations 
such as vibro-acoustics, piezoelectric accelerometers, vibration integrity monitoring, self-powered 
neutron detectors, eddy-current flow monitors, and embedded wireless sensors 

• Several emerging sensor and instrumentation technologies, especially for advanced reactors, such as 
SFRs, are currently in development and testing stages 

• Early regulatory engagement would enable faster adoption of condition-monitoring DT technologies. 

2.2.1 AI-ML Application for Structural Health Monitoring in Nuclear – Vivek 
Agarwal, Distinguished Staff Scientist, Idaho National Laboratory 

This presentation discussed applying AL and ML to structural health monitoring in nuclear power 
plants. AI and ML techniques are applied to passive assets (like concrete, secondary piping system, and 
others) and active assets (like pumps, motors, generators, and others) for aging management and health 
monitoring, respectively in nuclear power plants. In this effort, a physics-informed ML approach was 
developed for health monitoring of concrete structures containing reactive aggregates using the vibro-
acoustic modulation data. The developed approach was used to detect, localize, and estimate the extent of 
degradation in concrete structures due to alkali-silica reaction. The project outcomes were demonstrated 
on concrete specimens with different reactive aggregates, reinforcements, and slab sizes. 

Overall, the developed approach is generic and extendable to other degradation modes in concrete. In 
addition to structural health monitoring, ongoing research on risk-informed predictive maintenance 
strategy enables nuclear power plants to transition from labor-intensive, cost-prohibitive preventive-
maintenance strategy to a scalable predictive maintenance strategy. Researchers demonstrated integrating 
advanced data analytics, natural language processing, ML, AI, physics-informed modeling, risk models, 
and visualization techniques in this research. The developed approach is scalable across different plant 
assets and across the fleet. In collaboration with the nuclear industry, the research developed and 
demonstrated three aspects of AI technologies: performance, explainability, and trustworthiness. This 
effort provided advancements in (1) application of AI/ML in nuclear power plants for predictive 
maintenance, (2) user-centric visualization interface, and (3) quantitative and qualitative measures to 
achieve explainability and trustworthiness of AI/ML technologies. 

2.2.2 Sensor to Support Online Monitoring in Advanced Reactors – Jorge 
Carvajal, Fellow Engineer, Westinghouse 

This presentation focused on the potential application of advanced sensors for advanced reactor 
component condition monitoring. Some of the sensor technologies discussed were digital metal impact 
monitoring for loose part monitoring within the Reactor Coolant System (RCS), vibration monitoring for 
Reactor Coolant Pump (RCP) and control rod drive mechanism, eddy-current Steam Generator (SG) tube 
monitoring, and ex-core and in-core neutron flux detectors. 
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2.2.3 Online Monitoring to Enable the Long-term Health of Molten Salt Reactors 
– William Doniger, Postdoctoral Appointee - Chemical & Fuel Cycle 
Technologies Division, Argonne National Laboratory 

This presentation discussed Argonne National Laboratory’s work on online monitoring to enable the 
long-term health of molten-salt reactors. Key monitoring capabilities were discussed including salt 
chemistry, corrosion, particulate matter, and nuclear material accountancy. In-line electrochemical and 
optical monitoring approaches are key to achieving at or near real-time assessment of structural health. 
At-line salt sampling technologies facilitate more traditional analytical chemistry approaches while 
mitigating physical or radiological hazards to the operator. Examples of deployment in laboratory and 
industrial applications were also discussed. 

2.2.4 Progress Toward Practical Sensor Solutions for Online Monitoring of 
Advanced Reactors – Luke Breon, Senior Technical Leader, EPRI 

This presentation outlined the state of nondestructive evaluation sensors for high-temperature 
applications as well as work underway at EPRI in identifying and assessing the capabilities of such 
sensors for emerging reactor designs. Recent, relevant EPRI publications were also discussed. This 
presentation covered key results of a recent sensors workshop held jointly by EPRI, INL, and MIT and 
discussed a planned effort to assemble a platform to facilitate holistic industry collaboration relevant to 
sensors for high-temperature and high-radiation environments to help build, vet, and maintain a roadmap 
for sensor developments. 

2.2.5 Radiation-Endurance Advanced Sensor Systems for Online Monitoring in 
Nuclear Power Plants – Dan Xiang, Vice President/Founder, X-Wave 
Innovations 

Ultrasonic sensors have a long and successful history for sensing and characterizing materials, 
including measuring various physical parameters for process control, as well as detecting and 
characterizing the degradation and damage in materials and structures. Although there are numerous types 
of ultrasonic sensors capable of measuring various properties of interest, only a few ultrasonic sensors can 
survive the high temperature and high irradiation in nuclear reactor environments. It remains challenging 
to develop ultrasonic sensors to perform online monitoring in high-radiation and high-temperature 
environments. 

This presentation reported on the development of a high-temperature, radiation-endurance ultrasonic 
transducer and its applications in sensing physical parameters and structural condition monitoring. This 
sensor consists of high-temperature, radiation-endurance, piezoelectric elements and designed structures 
made of inorganic materials. It has been tested under elevated temperatures up to 800˚C as well as unclear 
irradiation (gamma and neutron) for an extended period with highly stable and repeatable output signals. 
This ultrasonic transducer was further adapted into advanced sensor systems and incorporated with 
specifically designed multi-channel data acquisition hardware and application software along with AI and 
ML toolbox to extend its applications for online monitoring of structural degradation and damage in 
nuclear power plants.  
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X-energy at a Glance

Founded in 
2009

Rockville, MD 
Headquarters

13 years of investment 
and development

Rooted in the nuclear 
community with proximity to 
the DOE and Nuclear 
Regulatory Commission 
(“NRC”)

50+ Years of 
R&D

~400+
Employees

Built upon years of R&D
in high temperature gas
reactors

Leading Gen IV nuclear 
development and 
licensing team

$1.2bn Federal 
Funding

~$610mm 
Investment

Selected for DOE's 
Advanced Reactor 
Demonstration Program

Capital invested to date 
with $120 million of 
committed capital

Reactor: Xe-100

We’re focused on Gen-IV High-Temperature Gas-cooled 
Reactors (HTGR) as the technology of choice, with 
advantages in sustainability, economics, reliability and 
safety.

Reactor: Xe-Mobile

To address the need for ground, sea and air transportable small 
power production. We’ve developed reactor concepts with potential 
civilian government, remote community and critical infrastructure 
applications.

Fuel: TRISO-X

Our reactors use tri-structural isotropic (TRISO) particle fuel, 
developed and improved over 60 years. We manufacture 
our own proprietary version (TRISO-X) to ensure supply and 
quality control.

Space Applications

NASA, DOE, and DOD are exploring our technology and 
fuel for nuclear thermal propulsion and fission power for the 
lunar surface.
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The Xe-100 Design Solution

• Proven High-Temperature Pebble Bed Reactor

• Derived from over 50 years of design and development to significantly 
reduce costs to enable competitive deployment

• Online refueling through an automated continuous fuel handling system

• Versatile Nuclear Steam Supply System (NSSS) that can be deployed 
for electricity generation and/or process heat applications

• Conservative design that does not require new material development 
and or code cases

• Steam pressure and temperature designed to provide steam to multiple 
Commercially Off The Shelf (COTS) Steam Turbine / Generator sets 
(typically those used in Combined Cycle Power Plants) 
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Intrinsic Safety: Our Fuel

Pebble Fuel Element
(60mm)

TRISO Fuel particle
(≈1mm)

• No safety related power or operator action required to ensure safety.

• TRISO fuel has 40+ years of prototype and full-scale demonstration 
reactors. This is a proven safety approach.

• The low reactor power density and self-regulating core design (i.e., if 
cooling stops the core shuts down), ensures the reactor is intrinsically safe.

Why is this important?

• The U.S. DOE describes TRISO fuel as “the most robust 
nuclear fuel on Earth,” it retains waste and fission products 
within the fuel during ALL conditions, even worst-case accidents 
and cannot melt.

• We manufacture our own proprietary TRISO encapsulated fuel 
(TRISO-X) to ensure supply and quality control.

Physics, not mechanical systems, ensures 100% safety
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Progression of Maintenance

Effectiveness

Reactive

“Break-fix”
Run-to-failure

Preventative

Calendar-based
Runtime-based

Condition-based
Continuous

Automated Readings
Automated Analysis

Instrumented
Automated Readings

Manual Analysis

Operator Rounds
Manual Readings
Manual Analysis

Predictive

Simple
Advanced (AI/ML)

Instrument Loop Replacement upon failure

Oil Analysis every 3-6 months on pump motors

Leak detected during Operator Round

Engineer trends process variables over time

ML model forecasts pump bearing failure in 3 months.

APR software notifies staff of instrument drift
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Collaboration b/w SE’s, Maintenance, I&C and M&D (and EPRI)

Asset Criticality Assessment

EPRI Resources
Monitored Asset List

Maintenance Analysis
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Centralized O&M Strategy with the Plant Support Center (PSC)

• The PSC is location agnostic.
• Centralizing certain staff reduces O&M costs.
• Can support multiple Xe-100 sites.
• Any staff that can be centralized, WILL be 

centralized.
• Centralized staff will NOT conduct field 

maintenance.
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Modern Data Infrastructure Enables Condition Monitoring

Securely…

– Collect and transfer data from the plant(s)

– Place that data in a secure environment for the life of the plant

– Clean and organize the data for easy analytics and visualization

– Create visualizations for plant staff (e.g., M&D Analysts, Maintenance Technicians, Engineers, Licensing, 
Regulators, Customers, Executives, etc. 

– Use the data for both basic & advanced analytics, trending, model building and training, performance
& maintenance optimizations

Data Protection: Security is paramount. Appropriate security measures will be woven through the components of our 
system. We will treat all data with care and have measures in place to prevent adverse situations. 

Move

Store

Transform

Analyze

Visualize
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X-energy Proof of Concept Data Pipeline

Data 
Source

Move

Store

Transform

Analyze

Visualize

Analyze

https://www.snowflake.com/en/
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Plant Monitoring Systems

Data Lake &
Warehouse

Monitoring & Diagnostics
and

Fleetwide Business Intelligence
Distributed Control System

Manual Data Collection

Extract & Load

Xe-100 Long-term Data Strategy

Client Dashboards

Trending & Forecasting

Alerts & Notifications

Enterprise Asset 
Management Integration
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Data Lake &
Warehouse

Monitoring & Diagnostics
and

Fleetwide Business Intelligence
Xe-100 Plants

Extract & Load

Xe-100 Long-term Data Strategy

Client Dashboards

Trending & Forecasting

Alerts & Notifications

Enterprise Asset 
Management Integration
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Brian Golchert
Principal Engineer, Westinghouse

Virtual Workshop of Condition Monitoring and Structural Health Management for Nuclear Power Plants, November 28-29, 2023

Digital Twin as Applied for New Reactor Designs Focusing on 
Predictive Maintenance
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Introduction
• The development of new reactor designs present an opportunity to leverage new 

‘digital’ tools
• Digital twins and AI/ML are often mentioned to potentially accelerate/improve 

new design development and implementation
• However, the ‘value’ of these new tools is often unclear and not documented.

• This presentation will focus on potential applications of digital twins to new 
designs (with emphasis on predictive maintenance) and will hope to present 
some of the potential value of these applications
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Take a step back, what is a Digital Twin?
• Multiple, diverse definitions exist for digital twins

• For this work, let us assume a digital twin is some combination of simulation 
coupled with live data that runs really, really fast and allows for prognostication 
of future events based on past history and simulation

• This has been done for years (simulators and other focused analysis/simulation) 
but has been recently been sped up to near real time.

4
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What can a Digital Twin do?
• A digital twin links key design parameters with (potentially virtual) sensors

• This allows a simultaneous coupling of live data, simulation and machine 
learning.

• Properly designed, a digital twin can predict future states…

5
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Assessing the Value of a Digital Twin
• The eVinci program (as well as many other new designs) has a series of 

experiments designed to prove/verify some of the underlying concepts related to 
the commercial eVinci design

• Westinghouse has a pending federal funding award (ARPA-E Meitner Plus Up 
funding) to show the value associated with a digital twin of the ‘first’ completed 
eVinci experiment (Electrical Demonstration Unit [EDU])

• The lessons learned from this work will then be applied to the next test reactor 
and then to the commercial units (including predictive maintenance)
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Size Considerations
• Existing nuclear power plants are HUGE

• One can ‘easily’ build a digital twin of a single component (pump, valve, heat 
exchanger, etc.) because those components are physically separated from each 
other

• For new designs, particularly micro-reactors, this is not often the case
– Requires more intimate coupling of neutronics, structural, and fluids
– This coupling should include material degradation effects (both structural and 

thermal) due to the high temperatures and fluence

7



8

Westinghouse Non-Proprietary Class 3 © 2023 Westinghouse Electric Company LLC. All Rights Reserved.

New designs do not have operational data
• A lot of ‘predictive’ tools in the nuclear industry rely on existing operational data 

including many predictive maintenance software
• This operational data does not exist for new designs
• One can only leverage so much data from first of a kind testing

• What does one do?

8
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Start from Simulation and then Update
• Lots of tools are available to model nuclear systems but no one really ‘trusts’ 

them without experimental justification
• To build an initial digital twin of a new design, it is suggested that one perform 

coupled detailed structural, reactor physics, and fluid dynamical analysis of the 
system.

• This will allow correlations (reduced order models) to be built between sensor 
locations and key design parameters.

• Building these reduced order models allows almost near real time execution of 
the digital twin

9
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Next step
• Once one has a simulation based a digital twin complete, then the test facility 

(and/or commercial unit) starts providing sensor readings.

• It is expected that these reduced order models based on these sensor readings 
might require adjustment/improvement.

• From a Westinghouse perspective, it is expected that something like a Bayesian 
interpretation of the sensor data related to the reduced order models would be 
used to adjust these relationships between the sensor readings and the key 
design parameters.

10
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Example:  Electrical Demonstration Unit (semi proof of concept)

• The commercial eVinci design has 
multiple ‘snowflakes’ (hexagons) 
that use heat pipes to remove heat 
generated in the core block

• The EDU has one seven heat pipe 
hexagon

• The image to the right is a CAD 
image of the EDU

11

EDU image from a CAD 
drawing
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Electrical Demonstration Unit
• More than 70 thermocouples,
• More than 40 heaters (their amperage is now a sensor)
• 7 heat sinks (heat pipes which link directly to the experimental design 

parameters)

• As was previously mentioned, there needs to be a different approach to build a 
digital twin for a micro-reactor as opposed to a commercial unit

• Digital twins for commercial unit components are relatively independent but with 
70 thermocouples, 40 heat sources and 7 heat sinks in a small test facility, each 
sensor can be reading the influence of multiple heat sources/sinks
– This effect may apply to the commercial unit as well

12
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Design requirement(s)
• Now that the locations of the sensors have been determined, how do these 

measurements relate to design requirements?
– (Note that a digital twin built after the design phase cannot usually evaluate 

functional requirements which are often geometric)

• Design requirements are frequently a temperature or pressure limit. 

• Design requirements for test facilities are often different than for a commercial 
plant

13
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Design requirements (cont)
• Since EDU was a ‘proof of concept’ that heat pipes can transfer the heat, there 

are very few measurable design requirements.

• With the ARPA-E Plus Up work will just start with temperature measurements 
(related to the design requirement on the previous slide)

• Once the sensors and design requirement have been determined, Reduced 
Order Models (ROM) are created based on:
– Simulation results
– A part of the experimental data is used to build the ROM

14
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ROM creation
• A lot of ‘sensor’ data is now available to correlate to design requirements

– An over-determined system

• ROM ‘can’ be built for each sensor for each design requirement but this leads to 
a really complex system
– For test reactors and microreactors, the temperature measured at one sensor does 

not just measure the heat from one heat source/sink
– Optimization tools are required at this point to develop importance functions to 

develop the ROM

15
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Calibrating ROM with test data
• It cannot be assumed that the simulation based reduced order models will 

completely/accurately represent the test/operational data.

• Hence, a method needs to be in place to ‘improve’ the ROM.

• Bayesian inference can be used starting with simulation data to update the ROM 
to more accurately reflect the operational performance.

• The test data that was not used to build the ROM is then fed into the twin as 
‘live’ sensor data for further calibration

16
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Extending the thought process
• In theory, digital twins are ‘useful’ when data exists
• However, one can make the argument that digital twins are extremely cost 

effective (provide value) during the design cycle
– Use simulation to reduce tests
– Use existing commercial software like ANSYS OptiSlang to optimize design 

parameters such as sensor placement/location that may lead to reduced 
maintenance costs

• This thought paradigm can be extrapolated from test facilities to commercial 
design and then backed up by digital twins based on test facilities 

17
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Take a step back and think about it
• In the ‘old’ days, everyone designed experiments and new reactors based on 

subject matter expert knowledge (the SMEs are our original digital twins)

• Suppose, our experts said we need 70 thermocouples but simulation only shows 
you need 50?
– Leveraging a digital twin can lead to significant cost savings in the design process 

and in predictive maintenance costs.

18
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Using a Digital Twin for Predictive Maintenance
• Once you have built it, a digital twin that can effectively monitor the performance 

of your system/component/design
• As the digital twin monitors the sensor readings and update the ROMs, the 

‘deviation’ between the sensor reading and the ROM prediction becomes the 
first indicator of an issue with a component potentially requiring preventative 
maintenance
– Care must be taken when updating the ROMs.  

• Is the ROM just being re-calibrated or is the sensor data indicating there might be an 
issue?  

• Malfunctioning sensor?
– It may not be prudent to update the ROMs if there is an issue with the component or 

the sensor.

19
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Adding on to the Digital Twin for Predictive Maintenance
• One of the key benefits is that a digital twin can run fast
• However, running tools that can perform analyses to determine the potential effect of 

deviations tend to run slow so they cannot directly included in the digital twin
• However, these tools can be on ‘standby’

– If a significant deviation is noted by the digital twin, the current operating state could be 
evaluated

• Adding a little additional computation and some statistical inference, one can potentially 
compute when a component/system may fail based on the current state.  Examples:
– Using xLPR would be a one way of predicting weld failure (which would lead to predictive 

maintenance adjustments)
– Using Neutron Noise technology from sensors outside of the vessel to determine if there is an 

issue inside the vessel
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A trained digital twin is a powerful tool to help with predictive 
maintenance for new designs
• Building a system model that is continually updated based on operational data 

provides a lot more ‘comfort’ to trust the results
• Since simulation (with reduced order models) can possibly be run off-line faster 

than real time, it is possible to predict potential future states before they actually 
occur.

• This leads to ‘trends’ in component behaviour that could be utilized to improve a 
preventative maintenance

• In addition, changing operating conditions (as part of autonomous control) could 
lead to cost effective changes in operating conditions.

• Caveat emptor:  A digital twin/predictive maintenance is only as good as the 
sensor data
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Questions?
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Condition Monitoring at Nuclear Plants
Current Technology and 2030 Outlook

Virtual Workshop on Condition Monitoring and Structural Health Management for Nuclear Power Plants

Presented by Eric Helm, Giancarlo Lenci

Nov 28, 2023



Areas affected:
• Reliability
• Availability
• Performance
• Repairs
• Component replacements
• Asset life

The High Stakes of Condition 
Monitoring at Nuclear Plants

What is the cost of a wrong or late diagnosis?

2Nov 28, 2023



Steam cycles of nuclear 
plants typically run with 3-5 

active faults

Condition Monitoring of the Plant State
Uses Knowledge of Simultaneous Equipment Problems

Condition monitoring requires 
looking for new faults while 

knowing the state of active faults

Metroscope Technology:
Physics-based models with an 

AI engine determine plant 
state quantifying faults and 

their impacts

3Nov 28, 2023



Conclusions-First Software Technology

Automated Diagnosis of 
Simultaneous Faults

Embedded investigation tools,
collaborative workflow

70 plant units and growing,
87% accuracy at catching faults

Physics-Based, AI-powered, embeds a plant-tailored quantitative fault matrix

4Nov 28, 2023



Industry M&D Challenges Today

M&D Challenge Impact on Plant Metroscope Approach

Burden of data volume and complexity
Analyzing large volumes of sensor data leads 
to slower decision-making

AI and digital twin technology efficiently 
summarizes diagnoses live

Stretched for availability of staff with 
knowledge and expertise

Need for specialized knowledge limits the 
speed and accuracy of fault identification

Automation and embedded OE provides 
training basis not a burden

Manual root cause analysis is time 
consuming and error prone

Leads to prolonged operation at reduced 
efficiency

Inferences automatically identify faults 
accurately reducing time and errors

Instrument uncertainty creates doubt
Uncertainty in measurements leads to 
inaccurate diagnostics and more verification 
actions

Digital twin tuned against as-built plant and 
distinguishes faults from sensor drift

Late diagnosis leads to expensive corrective 
action

Unplanned or long outages and greater 

damage leads to high repair costs

Early detection minimizes costs and 
increases overall efficiency

And How Metroscope Addresses Them

5Nov 28, 2023



Challenge BenefitsMetroscope solution

• 19 months of unexplained losses

• ~2MWe → ~30000 MWh losses

• Detection of an unknown leak

• Automatic calculation of overall impact

• Monitoring the evolution of the fault

• Maintenance evaluation 

Use Case:
Emergency Valve DRT Opening

• ~$1.4 M of savings

• Fleet knowledge of failure mode
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Inference Result is Explainable and Actionable
1. Plant State is understood in terms of fault causes

2. Fault magnitudes and impacts are quantified physically

3. Symptoms are explained in terms of simultaneous faults

Sensors
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Challenge BenefitsMetroscope solution

• Detection at 9 kg/s is typical

• HP Feedwater heater tube bundle 
damage accelerates quickly

• Early-stage detection - Tube 
rupture was detected successfully 
at just 3 kg/s

Use Case:
Heat Exchanger Tube Rupture

• Optimize maintenance planning 
and timing, time to better prepare 
for outage

• $80 K/unit/year

• Extend the life of the heat 
exchanger (~$5 M)
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A Framework for Condition Monitoring
With Inference as a Central Step

Data Historian (KPIs)

Physical Modeling Machine Learning

Inferential Engine

End user interfaceUX

Root Cause Analysis

Early detection

Storage 

C
LO

U
D

SE
R

V
ER

S

Site operators Monitoring center Corporate
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Overview of Commonly Encountered Plant Tools
Aiming at O&M Cost Reduction

Monitoring Diagnostics

Detect Problems 
Early

Characterize Condition
Identify Causes of 

Anomalies
Rule out Other 
Explanations

Reduce impact and 
cost

Reduce 
Maintenance 

(Condition-Based)

Optimize 
Planning

Speed up Action
Eliminate Wasted 

Action

Pattern Recognition / 
Anomaly Detection

EAM - Component Health Index
Single Fault Tree 

Analysis
Plant knowledge

Goal

Impact

Commonly 
Encountered Tool
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Monitoring Diagnostics

Detect Problems 
Early

Characterize Condition
Identify Causes of 

Anomalies
Rule out Other 
Explanations

Reduce impact and 
cost

Reduce 
Maintenance 

(Condition-Based)

Optimize 
Planning

Speed up Action
Eliminate Wasted 

Action

Pattern Recognition / 
Anomaly Detection

EAM - Component Health Index
Single Fault Tree 

Analysis
Plant knowledge

Improved models
Remaining Useful Life 

Calculations
Highly accurate fault inference (automation)

Goal

Impact

Improvements

Commonly 
Encountered Tool

Areas of Industry-Wide Tool Improvement
Seeking a More Comprehensive Condition Monitoring
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2030 Outlook: Advanced Reactor Goals

Monitoring Diagnostics

Design sensors and 
models to monitor in place 

of inspection

Automate orders and 
supply chain actions

Automated plant fault state and impacts 
estimated

Fewest manual inspections 
/ PMs

Lowest effort planning 
and work order 

execution
Speed up Action

Semi-automate 
operator action

Goal

Impact

What Tools are 
Needed? Modeling Ecosystem + Diagnostic Inference
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The Path toward Autonomous Operations

• Nuclear systems already use automation to maintain key 
variables around setpoints

• The challenge is to execute smart autonomous decisions 
in case of mode transitions or faults

→ Idea: build upon existing automated diagnostics 
technologies to inform autonomous operations

13Nov 28, 2023



Next Steps for Advanced Reactors

• Envision optimal sensor placement and full process 
coverage from Metroscope, including auxiliary systems

• Achieve automation or semi-automation, including:

o Maintenance

o Controls

• Implement advanced control strategies rather than 
simple state machines to prevent wear from frequent 
maneuvers

Reactor Core

Primary Coolant

Intermediate Loop (if Present)

Power Conversion Loop

Cooling Towers / Other Heat Sink

Heat Storage (if Present)

Steam Generator (if Present)

Intermediate HX (if Present)

Turbine-Generator

Condenser

Cooling Fluid
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Virtuous Cycle: Designing for Automation

• Much greater savings than retrofitting 
an existing design

• Virtuous cycle of design simplification 
due to progressive risk reduction

• Savings in construction, operation, 
and maintenanceEngineer Optimal Sensors 

for Automated 
Diagnostics and Control

Reduced Risk Crediting 
Automation Benefits

Initial Design

Lower-Cost Design
Virtuous Cycle

15Nov 28, 2023



Conclusions

• Condition monitoring in the steam cycle requires simultaneous fault diagnosis

• Metroscope technology automates diagnosis via physical modeling and AI

• Autonomous operations need technologies that are aware of the plant’s state, 
including faults

• Technologies that are broken by faults would not be helpful

• Savings can be substantial if the technology is baked into design, due to risk reduction

• Needs a modeling ecosystem and appropriate types of inference for full coverage of 
failure modes

16Nov 28, 2023



Online Monitoring Using Cloud-
Based Applications

Cody Walker, PhD
Research Scientist at 
Idaho National Laboratory
November 20, 2023



Outline

• Architecture for nuclear power plant-to-cloud computing
• Safety relief valve problem
• Online model training
• Speed testing
• Predictive capabilities
• Overall costs

2



Online Monitoring Using Cloud Services Will Require 
Additional Sensors, Systems and Choices

• The end-goal of online monitoring 
is predictive maintenance

• Cloud computing may be a 
cheaper way to achieve that goal

3



Monitoring a Safety Relief Valve (SRV) 
Using Multiple Thermocouples.
• SRVs (also known as a pressure relief valve) 

are highly reliable, nonpowered ways to 
relieve pressure

• Used in systems that may build up pressure 
under accident conditions

• Common stressors include: 
− Wear (mechanical stress, cavitation, 

corrosion, erosion)
− Temperature (rate of corrosion, spring 

rate, etc.)
• Data were taken over 14 months
• Monitoring locations include pilot stage, 

second stage valve body, and downstream 
discharge.
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A/B Model Testing Allows for Continual Updating 
While Maintaining a Stable Model for Use. 

• Models for this research:
− Feedforward Neural Network (FNN)
− Long Short-Term Memory (LSTM)

• Preprocessing cleaned the data before 
model training or updating

• Pre-trained Model A is used to 
diagnose the current state of health and 
to predict future parameter values

• Model B is Model A but it is being 
continually updated with new data

• Model B eventually replaces Model A 
and a new model begins updating.
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Cloud Computing has Elastic Resources and Can 
Scale Up or Down Depending on Demand

Local HPC (CPU) HPC (GPU) Microsoft Azure

Processor Intel CITM i7-9700 CPU @ 
3.00 GHz

2 Intel Xeon 8268 CPUs @ 
2.90 GHz
24 cores per CPU

NVidia Tesla V100 32 GPU 28–112 Gb Memory
8–32 Cores

Installed RAM 32 Gb 8 Gb RAM per core 32 GB RAM 14 Gb Memory

Cloud Computer Speed Testing (in seconds)
Test Local HPC (GPU) HPC (CPU) HPC (multi-CPU) Azure

Loading Data 3.26 ± 0.10 2.87 ± 0.02 N/A N/A 14.67 ± 0.29
Preprocess 34.89 ± 0.10 37.94 ± 0.02 N/A N/A 38.00 ± 0.29
Train FNN 1 8.09 ± 2.01 27.57 ± 5.59 7.18 ± 1.97 11.14 ± 2.51 7.12 ± 2.14
Update FNN 2 0.97 ± 0.06 2.62 ± 0.2 1.04 ± 0.027 — 1.07 ± 0.03
Train LSTM 1 103.67 89.62 126.68 162.47 96.07
Update LSTM 2 8.78 7.76 14.5 — 8.72

A/B Model Testing
Test FNN (RMSE) LSTM (RMSE)

Model 1 Test A 1.361 ± 0.679 1.411
Model 1 Test B 2.559 ± 1.264 2.792
Model 2 Test B 0.593 ± 0.300 0.504

Resources Compared 

Resources Had Comparable Results

Updated Models Reduced Data Drift
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Updating Models with Recent 
Data Reduces Model Drift

• A large seasonal component can be seen in 
the temperature measurement

• Model A was trained on the first 10 months of 
data, validated in 1.5 months, and tested on 
~1.5 months

• Model B was also trained on Test 1 before 
being tested on Test 2

• Results show that updating with more recent 
data can reduce model drift when using time 
series data.

7



Current Prices for Cloud Computing Could Be Cost 
Effective for On-line Monitoring

Cost Comparison Current Onsite Cost Cloud Cost
Installation Cost N/A $2,081,480.00
Annualized Cost $3,942,100.00 $2,619,389.00

Hardware

Number 
of Items 
Saved Item Cost Total Cost Annual Costs Monthly Costs Assumptions

Servers 18 $4,500.00 $81,000.00 $16,200.00 $1,350.00 Replaced every 
5 years

Network 
Elements 
(e.g., routers)

30 $800.00 $24,000.00 $4,800.00 $400.00 Replaced every 
5 years

Software
Commercial 
Software Base Cost $200,000.00 $200,000.00 $30,000.00 $2,500.00 Maintenance 

contracts
Purpose-Built 
Software Base Cost $500,000.00 $500,000.00 $75,000.00 $6,250.00 Contract 

programming
IT Support 
Staff Average 
Salary

17 $150,000.00 $2,550,000.00 $2,550,000.00 $212,500.00 —

Offsite 
Backup — — — $3,600.00 $300.00 —

Cybersecurity — — — $20,000.00 $1,666.67 —
Operational 
Staff 35 $150,000.00 $5,250,000.00 $262,500.00 $21,875.00 Fraction of their 

time

Manual 
Sensor 
Reading

8 $85,000.00 $680,000.00 $680,000.00 $56,666.67

Headcount for 
manual sensor 

reading/ 
recording

Facilities Costs

Electricity — — — $300,000.00 $25,000.00 Yearly cost of 
electricity

Total — — — $3,942,100 $328,508 —

Total Cloud Costs Initial Costs Annual Costs
Sensors $300,000.00 $136.00
In-building Network $1,131,480.00 $176,278.00
Network Aggregation Equipment $50,000.00 $15,000.00
Installation and Cloud Set-up $600,000.00 $60,000.00
Total $2,081,480.00 $251,414.00

Direct Cloud Costs Cost
Number of 

Applications Total
Storage of 500 
Gb/year $567.00 25 $ 14,175.00
Total Model 
Retraining $28,152.00 25 $703,800.00
Application Hosting $6,000.00 25 $150,000.00
IT Personnel $150,000.00 10 $1,500,000.00
— — Total $2,367,975.00

Current Estimated Costs to Maintain On-site Diagnostics Estimated Installations to Enable Cloud Computing

Estimated Reoccurring Costs

Total Cost Comparison
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NRC Regulatory Aspects for 
Nuclear Digital Twins

Thomas G. Scarbrough
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Regulatory Aspects 
related to DT Technology

• The regulatory role of the NRC staff will be to review and approve any DT/ML/AI approaches 
used to meet the NRC regulations for the safe operation of nuclear power plants.  

• NRC regulatory staff efforts are focused on preparing to make a reasonable assurance finding 
on the use of such technologies at nuclear power plants.  

• Along those lines, the NRC staff can best focus our current efforts if we are able to obtain 
information via early engagement on the possible applications of these technologies.  

• The more prepared the NRC staff are for a particular type or method of application, the more 
efficient and effective the NRC staff can be in terms of time and resources to reach our safety 
finding.
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Implementation of DT Technology
Background

• NRC specifies regulatory requirements for applicants and licensees of nuclear power plants to 
establish IST programs for pumps, valves, and dynamic restraints (snubbers) to provide 
reasonable assurance of operational readiness to perform their safety functions in nuclear 
power plants that use water in their cooling systems.

• ASME established provisions for IST programs for pumps, valves, and dynamic restraints that 
perform safety functions for water-cooled reactors in the ASME OM Code.

• NRC incorporates by reference ASME OM Code in 10 CFR 50.55a with applicable conditions for 
water-cooled nuclear power plants.

• Current US water-cooled nuclear power plants typically operate for 18 to 24 months before 
shutting down to perform refueling activities and to test components that cannot be tested 
during plant operation.
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Implementation of DT Technology
Current Activities

• Some new and advanced designs of nuclear power plants vary significantly from current water-cooled 
reactors with less opportunities for testing components during plant operations or refueling outages.  

• Condition monitoring rather than specific testing of components might be needed or proposed by new 
and advanced reactor applicants or licensees based on the reactor design or operations.

• ASME is preparing a new OM-2 Code for IST programs in new and advanced reactors for components 
that (1) generate, allow, throttle, or isolate fluid flow; (2) provide pressure relief; or (3) establish 
dynamic restraint to ensure the structural integrity of piping systems and their components. 

• Scope of OM-2 Code is broader than pumps, valves, and dynamic restraints for ASME OM Code because 
new and advanced reactors might use different components than current water-cooled reactors.

• OM-2 Code allows condition monitoring of components that could include DT technology where 
justified by applicant or licensee and approved by NRC.

4



Implementation of DT Technology
Future Activities

• ASME is planning to issue new OM-2 Code in 2024.

• NRC is preparing a Regulatory Guide to accept ASME OM-2 Code with applicable conditions.

• Applicants and licensees for new and advanced reactors may specify use of ASME OM-2 Code 
as accepted in the NRC regulatory guide for IST programs in their licensing applications.

• Applicants and licensees for new and advanced reactors may propose the use of DT technology 
as part of their IST condition monitoring programs for review and approval by the NRC.

• Licensees of current water-cooled nuclear power plants might request use of ASME OM-2 Code 
as part of their IST programs.
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Acronyms

• AI/ML:  Artificial Intelligence / Machine Learning

• ASME:  American Society of Mechanical Engineers

• CFR:  Code of Federal Regulations

• DT:  Digital Twins

• IST:  Inservice Testing

• NRC:  U.S. Nuclear Regulatory Commission

• OM Code:  Operation and Maintenance Code
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Successful Application of 
Condition Monitoring Technologies 
into Nuclear Power Plants 
NRC-INL Workshop – November 28, 2023
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Curtiss-Wright – Long History of Innovation

It all started on 
the sands of Kitty Hawk over 
100 years ago
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Envisioning the Possibilities – Condition Monitoring

“Having a longer reaction window gives us time to plan for maintenance and repairs. That’s the brass 
ring we’re ultimately striving for: we want to get out of reaction mode and into predictive mode.” 

We went from 27 engineers down to four, but we needed advanced software technology to make it 
possible. The best megawatts saved are the ones you don’t lose in the first place. The Curtiss-Wright 
tools generate information to prevent a shutdown or minimize power reductions.”

“I’m surprised an open 3” valve would lose that much generation, but that’s the highest value steam 
we’ve got that was blowing through it so it makes sense.”

Everything was 
running well until 
it wasn’t!

C
on

di
tio

n

Time

Optimum Action 
Point Too Late to 

React
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Achieving the Possibilities – Condition Monitoring Process

• Time Based PM’s
• Condition Monitoring 

Tasks

Long Term 
Asset Management

Plant Health
Meetings

• Risk Grids
• Project Prioritization

• CBM process
• M&D Center/COLM
• Equipment Inspections
• System Health

(CMT’s) Condition 
Monitoring Tasks

Results Analysis & Corrective Action

Feedback for 
Improvement

• Establish
 Critical
 Important
 Run-to-Repair

6

5

Identify Criticality of 
Each Plant 
Component

1
Establish Optimum 

PM Tasks 2

PM Implementation
(Time Based & CMT’s) 3

Monitor System & 
Component Health 4

Daily & Outage Work 
Management Process 

(Just-in Time)

“The process of monitoring a parameter of condition in machinery in order to identify a significant change which is indicative of a developing fault.”
-- Wikipedia
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Achieving the Possibilities – Drivers

 Business Drivers 
– Client assets
– Advanced, competitive technology

 Outcomes: Condition Monitoring
– Improve reliability and availability
– Lower maintenance costs
– Increase MW production 
– Diagnostics and asset health management
– Prioritizes maintenance issues 
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Achieving the Possibilities - Awareness

 The starting point: Awareness!
 Understanding the Business Model

– Regulated and De-regulated
– Operation and Maintenance Support
– Management Commitment

 Data Quality / Reliability
 Mechanisms for Early Fault Detection and Resolution
 Asset Risk Management
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Achieving the Possibilities - Modeling Methods

Methods for 
Modeling

Empirical

Parametric Non-Parametric

First Principles

Design-based
Physics-based

Trending
Polynomial fit
Linear Regression
Neural Net

Similarity Based
IMS
Kernel Regression
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Achieving the Possibilities - Curtiss-Wright’s FAMOS Suite

 Fleet Asset Management & Optimization Solutions
– An integrated solution set
– Applications for analyzing and optimizing plant performance 
– Condition monitoring and predictive analytics
– Insight and analytics into critical plant data
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Condition Monitoring Catch – Nuclear Fleet #1

 Steam generator feedpump outboard bearing failing

“Having a longer reaction 
window gives us time to 
plan for maintenance and 
repairs. That’s the brass 
ring we’re ultimately 
striving for: we want to 
get out of reaction mode 
and into predictive mode.” 
– FAMOS customer

www.cw-connect.com/resources/curtiss-wright-receives-entergy-
premier-vendor-award-implementation-condition-monitoring
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Condition Monitoring Catch – Nuclear Fleet # 2

 Software Predicated Best Achievable Performance – FWH 4A:
– Generation: 1112.8 MWe
– Extraction Steam Pressure to FWH 4A: 142.8 psia
– FWH Shell Steam Pressure 135.4 psia

 Software Simulated FWH 4A Bellows Leakage:
– Generation: 1106.5 MWe
– Extraction Steam Pressure to FWH 4A: 140.0 psia
– FWH Shell Steam Pressure 127.74 psia

“We went from 27 engineers 
down to four, but we needed 
advanced software technology 
to make it possible. The best 
megawatts saved are the ones 
you don’t lose in the first place. 
The Curtiss-Wright tools 
generate information to 
prevent a shutdown or 
minimize power reductions.”
– FAMOS customer

www.cw-connect.com/resources/case-study-exelon
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Condition Monitoring Catch – Nuclear Fleet #3

 Main steam bypass valve open – 8MW impact

“I’m surprised an open 3” 
valve would lose that 
much generation, but 
that’s the highest value 
steam we’ve got that was 
blowing through it so it 
makes sense.”
– FAMOS customer

www.cw-connect.com/resources/video-cycle-isolation
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Dissolved O2 in Condensate from Leak at Condensate Pump

www.cw-connect.com/solutions/performance-operations/famos/pdp

“Before we acquired FAMOS, we had a reactive approach for resolving issues. Now FAMOS is our primary solution for 
performance monitoring and diagnostics, and we can catch issues before they cause equipment to fail. We are more 
proactive and much more productive because we can analyze how well equipment is performing before problems occur.” 
– FAMOS Customer
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Generator Bearing Issue

www.cw-connect.com/solutions/performance-operations/famos/equipment-anomaly-detection
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Ignoring Condition Monitoring Alerts

WANTED

for Ignoring Condition Monitoring
$MASSIVE Production Loss

You 
Don’t 

Want…

Your 
Face 
Here
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Example – Ignored Catch Results

 The CWP 1A Motor CH A Vibration began trending up in March. In April, it was noted by PdP that 
the vibrations increased ~1 mil above normal and were continuing to rise. 
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Cooling Water Pump Vibration – Ignored Catch Results

 After returning the unit to service following an outage, the vibrations continued to ramp higher. In 
September, the CW pump studs failed due to fatigue and the pump was forced offline, resulting in 
a two-day outage. Loose pump supports and worn-out anchors were found by plant staff after the 
outage.

 PdP found the anomaly and noted that there was an issue with the pump six months prior to the 
actual failure and even prior to the scheduled outage. The replacement energy costs for the forced 
derate and subsequent additional outage, was $1,204,158. 
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The Possibilities are Endless – Condition Monitoring
“Having a longer reaction window gives us time to plan for maintenance and repairs. That’s the brass 
ring we’re ultimately striving for: we want to get out of reaction mode and into predictive mode.” 

“We went from 27 engineers down to four, but we needed advanced software technology to make it possible. The best 
megawatts saved are the ones you don’t lose in the first place. The Curtiss-Wright tools generate information to prevent a 
shutdown or minimize power reductions.”

“I’m surprised an open 3” valve would lose that much generation, but that’s the highest value steam 
we’ve got that was blowing through it so it makes sense.”

“Before we acquired FAMOS, we had a reactive approach for resolving issues. Now FAMOS is our primary solution for 
performance monitoring and diagnostics, and we can catch issues before they cause equipment to fail. We are more 
proactive and much more productive because we can analyze how well equipment is performing before problems occur.”

 Extends equipment lifespans by catching and addressing problems early.
 Minimizes unplanned downtime, saving both time and money.
 Enhances safety by reducing the changes of equipment failures leading to accidents.

The Power of Condition Monitoring!
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http://famos.scientech.com

Greg Alder
Curtiss-Wright Nuclear Division
Plant Optimization
+1-208-497-3337
galder@curtisswright.com
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Digital Twins for Prognostics and Health 
Management in Nuclear

Presented at 

Virtual Workshop on Structural Health Management for Nuclear Power Plants 

Session 2: Diagnostic and Prognostic Tools for Condition Monitoring and Structural Health Management

Wednesday, November 28, 2023

Presenter: Dr. Naresh Iyer, Principal Scientist, GE Research
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Agenda

• Context setting

• GEMINA program: an overview

• Cost analysis for prioritizing development of PMx Digital Twins

• Humble AI: assurance-based Digital Twins to enhanced cost savings

• Summary and conclusions
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55

Decarbonization
front and center of GE’s energy transition strategy

Commitment to substantial progress 
in combatting climate change in the 
near term, while securing a path to 
lower-carbon emitting world in the 
future

Coal-to-Gas 
Switching

Natural Gas to 
H2

Wind

Smart Modular 
Reactors

Nuclear for H2

Carbon 
Capture

DECARBONIZATION

P R E D I C T I V E  M A I N T E N A N C E  D I G I T A L  T W I N S  G E  R E S E A R C H  
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But… Nuclear needs to be cost competitive for 
adoption

66

64%15%

6%

10%

2%
3%Financing

Construction

Fuel

O&M

Waste

Decomissioning

A MAJOR CHUNK OF NUCLEAR 
ELECTRICITY COSTS COMES FROM CAPEX 
& OPEX

P R E D I C T I V E  M A I N T E N A N C E  D I G I T A L  T W I N S  G E  R E S E A R C H  

Three Reasons
1. High LCoE (One of a kind

plants are expensive)
2. Nuclear Waste &
3. Safety impressions
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COMPETITIVE 
LCOE

DESIGNED TO
MITIGATE LOCA

REDUCED
STAFF

$

P R E D I C T I V E  M A I N T E N A N C E  D I G I T A L  T W I N S  G E  R E S E A R C H  

Reducing CAPEX & OPEX in future BWRX-300 Fleet
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G E H  D i g i t a l  S o l u t i o n s  f o r  N u c l e a r  P o w e r  P l a n t s

O&M cost reduction

Remote monitoring

Predictive maintenance

Automation

Optimized scheduling and 
central crews
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GEMINA: overview
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PROGRAM IMPACT

TECHNOLOGY SUMMARY

Carbon free nuclear energy can be cost-competitive…

O&M costs can be reduced through AI and automation…

…IF we can mature AI to be trustable for nuclear applications!

AI-enabled predictive maintenance to reduce O&M labor costs 
to $2/MWh in an Advanced Nuclear Reactor

TE
A

M

ARPAE GEMINA

Metric From To (estimated)

Automation
 labor costs

None
Automated workorders …  Planning staff by 50% (10FTE)
Online calibration …  Tech staff 75%, admin 25% 
(16FTEs)

Predictive 
Maintenance
 labor & 

mat’l

Alarms
Forced outages & trips … AI-driven predictive algorithms
 Labor headcount 35%

Runtime 
Assurance

Human
Humble & explainable AI … quantify uncertainty to 
establish trust in the models & encourage automation

PROGRAM TARGETS

The information, data, or work presented herein was funded in part by the Advanced Research Projects 
Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001290.   The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the United States 
Government or any agency thereof.

AI-enabled Predictive Maintenance Digital Twins 
for Advanced Nuclear Reactors

Technology Summary

▸ Reactor Operations – Physics-informed machine learning, sensor optimization

▸ Reactor Health – Causal, humble & explainable AI for predictive maintenance

▸ Decision Making – Autonomous risk-informed decisions for reconfiguration & 
maintenance
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WHAT WHY CAPABILITIES

Cost impact model • Prioritization based on 
maintenance (labor and material) 
costs

• Derive performance targets for 
health algorithms to achieve net 
positive ROI

• Real cost data from existing fleets 
over several years

• System level as well as plant level 
ROI analysis

• Sensitivity analysis w.r.t. various 
assumptions or estimates

Operational/Health Digital 
Twins for servo driven 
FMCRD mechanism

• Servo driven mechanisms are new 
designs with limited ops 
experience

• FMCRDs key means to accomplish 
load following, i.e. heavier usage

• Allows to inject relevant failure 
modes under realistic operational  
profiles

• Effects of noise and varying severity 
levels

Health Twins • Early detection allows for 
opportunistic maintenance

• Minimize CMs, reduce PM 
frequencies

• A number health twins under 
development (see next chart) as 
applicable to BWRX-300

Humble-AI (HAI) for 
runtime assurance

• How much to trust a prediction in 
the runtime

• Evidence based explanations

• HAI for all types of health 
prediction methods

• Actionable predictions

Assessment of current 
regulatory guidance 
towards DTs

• Understand current guidance As 
applicable to predictive 
maintenance digital twins 

• Identify gaps and constraints

• Comprehensive analysis
• Active discussions with NRC, EPRI, 

and other OEMs

Approach and Outcomes

Cost Calculator

Sensitivity

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy 
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001290.   The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Approach and Outcomes
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Component Selection
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Predictive Maintenance Target Selection
Focused on Nuclear Power Generation 

• Target component selection from 3 independent 
analyses:

✓ Leg 1: Frequency analysis from operational data

✓ Leg 2: Downtime analysis from operational data

✓ Leg 3: Corrective action cost analysis from maintenance 
data

✓ ….and prior knowledge of BWRX300 design simplification

• Down select critical components from above for reactor 
and BOP

• ID critical failure modes for selected components to 
target for modeling

1 2

3
4
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Target Selection - Outcome

Condensate System + Heat exchanger, condenser, 
steam generator

Condenser System + Heat exchanger, condenser, 
steam generator

Control Rod Drive System + Rod drive mechanism, 
hydraulic control unit

Feedwater System+ Pumps, eductors

Feedwater System+ Valves, dampers

Main Generator Output Power System + 
Transformers, shunt reactors

Main Generator System + Generators, inverters, 
motor generators

Main Turbine System + Turbines (steam, gas)

Main/Reheat Steam System + Valves, dampers

Medium Voltage Power Sys. (601V-35kV) + 
Transformers, shunt reactors

Nuclear Fuel Services System + Fuel assembly
Le

g 
1

+2

Le
g 

3

Systems

Subsystems

Initial focus
1. FMCRD
2. Valves
3. FW pump
4. I&C
5. Heaters & Heat exch.

P R E D I C T I V E  M A I N T E N A N C E  D I G I T A L  T W I N S  G E  R E S E A R C H  

BWRX-300 Design

& suspect vulnerabilities

1 2

3

4
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53%

12%

12%

8%

15%

Condenser System+Heat exchanger, condenser, steam generator

Human Performance

Degraded Heat  Transfer Capabilit y

Leakage

Clogged/Blocked

Others

5%

20%

11%

26%5%

10%

23%

Condensate System+Heat exchanger, condenser, steam generator

Degraded Heat  Transfer Capability

Leakage

Flow Induced Damage or Condition

Human Performance

Clogging/  Blocking

Erosion/ Pitt ing Corrosion/Cracked or
Fat igue

Other

35%

4%18%

41%

2%

Nuclear Fuel Services System + Fuel Assembly

Clogged/Blocked

Leakage /Binding/Rubing

Corrosion

Human Performance

Other

23%

13%

34%

11%

10%

9%

Medium Voltage Power Sys. (601V-35kV) + Transformers, shunt 

Defect ive Circuit

Open Circuit or Loss of Continuity

Human Performance

Insulation breakdown

Short/Ground

Other

33%

34%

12%

10%

11%

Control Rod Drive System + Rod drive mechanism, Hydraulic Control 
unit

St ructural Deformat ion

Human Performance

Clogged/Blocked

Leakage

Other

5%

1%

5%

6% 5%
18%

38%
5%

5%
4%

30%

Main/Reheat Steam System + Valves, dampers

Leakage

Human Performance

Equipment  Aging - Metallic Parts; Normal
Wear

Excessive Vibrat ion

Binding/Rubbing/ Interference

Other

14%

24%

17%

13%
11%

6%

13%

17%

Main Generator System + Generators, inverters, motor generators

Leakage

Excessive Vibrat ion

Out of Adjustment/Calibration

Insukat ion breakdown

Ruptured/cracked/fatigue

Human Performance

Other

15%

18%

44%5%
4%
4%

24%

Main Generator Output Power System + Transformers, shunt

Short /  Ground - Unspecified

Human Performance

Electrical Breakdown

Sediment/particulate Contamination

Insulation Breakdown

Other

12%

25%

45%

7%

5%
7%

12%

Main Turbine System+Turbines (steam, gas)

Ruptured, Cracked or Fatigued

Human Performance

Excessive Vibrat ion

Out of Adjustment/calibration

Abnormal Wear/Binding/Rubbing

Other

8%

63%10%

6%

6%
4%12%

Feedwater System+Pumps, eductors

Human Performance

Excessive Vibrat ion

Binding, Rubbing or Interference

Pitt ing Corrosion

Leakage

Other

11%

9%

41%7%
2%

30%

Feedwater System+Valves, dampers

Binding, Rubbing or Interference

Leakage

Human Performance

Excessive Vibrat ion

Ruptured/Cracked/fat igue

OTH

7% 6%

Failure Causes for Top Offenders
Analysis of INPO reports of Existing BWR fleets

P R E D I C T I V E  M A I N T E N A N C E  D I G I T A L  T W I N S  G E  R E S E A R C H  

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy 
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001290.   The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any agency thereof.



The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), 
U.S. Department of Energy, under Award Number DE-AR0001290.   The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or any agency thereof.

Cost analysis for PMx
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GEMINA: Cost inefficiencies and targets

• Primary goal of the program is to bring this cost down to under $2/MWh
• AI-based Predictive Maintenance is a critical driver
• Key question is whether expected savings from PMx are even achievable?

Need ROI analysis for PMx

The need for an ROI analysis for AI-based PMx

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy 
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001290.   The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any agency thereof.
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PMx Cost Impact Analysis

18

Net savings from application of PMx strategies

S = (S1 + S2 + S3) – (C1 + C2 + C3 + C4)
where,

S1 : savings from reducing unnecessary PvMx or calendar-based scheduled 
maintenance (PvMs)

S2 : savings from preventing online failures requiring corrective Mx (CMs)

S3 : savings from preventing secondary damage from online failures

C1 : costs of developing and implementing PMx solutions

C2 : costs from maintenance and other actions taken from failure 
prognostics

C3 : costs from errors in component condition-assessment

C4 : costs from wasted useful life of components

Formulation
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Data for cost modeling

19

Actual cost data for system/asset of interest

Multiple years of actual Mx cost data across multiple 
sites, multiple units, of similar generation capacity

Costs categorized by multiple groupings
Preventive Mx v/s Reactive Mx costs

Material v/s Labor costs

System v/s subsystem Mx costs

Multiple years of data capturing actual operational costs 
of unscheduled outage events at these sites 
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$0.28 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0% 3% 6% 9% 13% 16% 19% 22% 26% 29% 32%

0.1 0% 4% 7% 10% 13% 17% 20% 23% 26% 30% 33%

0.2 1% 4% 8% 11% 14% 17% 21% 24% 27% 30% 34%

0.3 2% 5% 8% 12% 15% 18% 21% 25% 28% 31% 34%

0.4 3% 6% 9% 12% 16% 19% 22% 25% 28% 32% 35%

0.5 3% 7% 10% 13% 16% 19% 23% 26% 29% 32% 36%

0.6 4% 7% 10% 14% 17% 20% 23% 27% 30% 33% 36%

0.7 5% 8% 11% 14% 18% 21% 24% 27% 31% 34% 37%

0.8 5% 9% 12% 15% 18% 22% 25% 28% 31% 34% 38%

0.9 6% 9% 13% 16% 19% 22% 26% 29% 32% 35% 38%

1 7% 10% 13% 17% 20% 23% 26% 29% 33% 36% 39%

CM Catch-ratio
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$0.37 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0% 4% 8% 12% 16% 20% 23% 27% 31% 35% 39%

0.1 2% 6% 10% 14% 18% 22% 26% 29% 33% 37% 41%

0.2 4% 8% 12% 16% 20% 24% 28% 32% 35% 39% 43%

0.3 6% 10% 14% 18% 22% 26% 30% 34% 37% 41% 45%

0.4 8% 12% 16% 20% 24% 28% 32% 36% 40% 43% 47%

0.5 10% 14% 18% 22% 26% 30% 34% 38% 42% 45% 49%

0.6 12% 16% 20% 24% 28% 32% 36% 40% 44% 48% 51%

0.7 14% 18% 22% 26% 30% 34% 38% 42% 46% 50% 53%

0.8 16% 20% 24% 28% 32% 36% 40% 44% 48% 52% 56%

0.9 18% 22% 26% 30% 34% 38% 42% 46% 50% 54% 58%

1 20% 24% 28% 32% 36% 40% 44% 48% 52% 56% 60%

CM Catch-ratio

P
M
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Baseline AI-based PMx
• Coverage = 100%
• True Detection rate for PMDT = 80%
• False Detection rate for PMDT = 5%

→ Expected O&M Cost Savings = 19% - 27%

* Catch-ratios = fraction of 
events that are feasible for 
detection and avoidance using
AI-based PMx

AI-based PMx with High Confidence Coverage
• High confidence coverage = 75%
• True Detection rate for high confidence PMx = 98%
• False Detection rate for high confidence PMx = 2.5%

→ Expected O&M Cost Savings = 25% - 37%

ASSUMPTIONS
• Designed Generation Capacity: ‘N’ MW
• Capacity Factor : 0.94
• Available PM catch ratio* = 30%
• Available CM catch ratio* = 80%

PMx Cost Impact: Outcomes
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Humble AI: assurance-based AI
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Detection versus confident detection

22

Humble AI: Justification-based reliability for ML models*

*  Iyer, N., Virani, N. and Yang, Z., 2020, April. Justification-based reliability in machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 04, pp. 6078-6085)

The most confident 
predictions find 

reliable support in 
feature spaces
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Time-series fault classification [TEP Dataset]

November 21, 2023Presentation Title
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Summary and Conclusions

• A critical barrier to the adoption of nuclear power tends to be cost

• Digital Twins to enable Predictive Maintenance are critical to impacting 
O&M costs

• A key barrier to the implementation of AI-based PMx Digital Twins tends to 
be lack of tools to reliably model and verify the savings

• The talk described a tool/model developed to carry out a cost-benefit/ROI 
analysis of implementing AI-based PMx Digital Twins

• Stratifying decision making according to high-confidence versus low-
confidence predictions helps significantly improve savings from AI-based 
PMx

• Investments in technologies that assess reliability of AI predictions are 
very beneficial since it helps significantly improve magnitude of expected 
cost-savings relative to baseline model





PREDICTIVE TOOLS FOR 
MAINTENANCE 
OPTIMIZATION: HEAT 
EXCHANGER TUBE 
FAILURE CASE
R. VILIM, Y. LI, A. DAVE
Nuclear Science and Engineering Division 
Argonne National Laboratory Condition Monitoring and Structural Health

Management for Nuclear Power Plants Virtual 
Workshop
November 28, 2023



ECONOMICS AS A DRIVER OF ADVANCED O&M

 Current O&M costs are not competitive, and 
scheduling of related tasks is not optimal with 
respect to electricity generation demands

 Flexible operation while potentially improving 
revenue can stress the plant and increase O&M 
costs

 Need to pursue alternative opportunities

Need to develop advanced maintenance strategies

Current Fleet in US is Not 
Competitive on an O&M Basis 



WHAT ARE THE OPPORTUNITIES?

 Automate procedures that are now performed manually for greater efficiency
 Consolidate these advanced capabilities in a remote monitoring center for cost 

savings
 Stage development in a progression of advanced capabilities

– Health monitoring
– Remaining useful life prediction
– Maintenance schedule optimization



HEALTH MONITORING

 Obtain more information from sensors by taking a 
system level approach to monitoring

 Create “virtual” sensor readings from knowledge of 
system P&ID

 Build system level model from P&ID and then solve 
for process variables not available as measurements 
i. e. virtual sensors

 Use to improve reliability and specificity of 
component health diagnosis

Virtual sensors – Inter-Component

Virtual Sensors Created from P&ID for
Two Parallel FW Heaters

Physical
Virtual

Sensor Type



HEALTH MONITORING

 Diagnostics for system rather than individual 
components
– Fewer sensors needed
– Greater fault specificity

 Move from standalone component diagnostics 
to an engineered plant system having tens of 
components

 Actionable fault diagnoses generated for the 
system rather than simple detection of an 
anomaly

System level monitoring VENT
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HEALTH MONITORING

 Need to predict conditions within component

 Collect measured operating history as boundary  
conditions

 Distribute boundary condition based on geometries

 Calculate intra-component state based on CFD 
simulations

Virtual sensors – Intra-Component

Virtual Sensors

Geometry–based 
boundary condition 
distribution

Measured 
operating  
history

Intra-Component 
state



PREDICTION OF REMAINING USEFUL LIFE

 High temperature operation and cycling 
can lead to material damage 

 Obtain material damage prediction from 
high fidelity fluid-structure simulation

 Need to turn this into a real-time 
prediction of component health for use in 
reducing inspection frequency and  
informing inspection location

Mechanistic tracking of degradation 

Mechanical 
Strain, %

Temperature, C

Model for predicting FW heater tube 
low cycle fatigue

Heater 
Tube 



PREDICTION OF REMAINING USEFUL LIFE
Reduced order model for mechanistic degradation

Degradation Captured By 
Surrogate Model Remaining Useful Life Estimated 

Based on Cumulative Damage



MAINTENANCE SCHEDULE OPTIMIZATION

 Maintenance and asset management 
procedures executed on a periodic basis 
are an over expenditure of resources

 Schedule maintenance on an as-needed 
basis to reduce work orders for cost savings

 Developed Markov Decision Process that 
optimizes execution of maintenance tasks

How it all fits together

Tasks enabling optimization of maintenance 
Scheduling [LPI Inc. 2020]

Sequential flow tasks in maintenance scheduling



REMOTE MONITORING 
CENTER
 Feed sensor data to a remote  monitoring 

and diagnostic center

 One engineer can monitor multiple 
systems in multiple plants
– Current anomaly detection paradigm has an 

engineer monitoring a single system

P&ID for Digital Twin Fault Diagnosis
Algorithm and Remote Monitoring Center



SUMMARY

 Automate procedures that are now performed manually for greater efficiency
 Consolidate these advanced capabilities in a remote monitoring center for cost 

savings
 Stage development in a progression of advanced capabilities

– Health monitoring
– Remaining useful life prediction
– Maintenance schedule optimization



https://www.anl.gov/nse/ai-ml



AI/ML Research to Support Plant 
Modernization

Craig Primer
Plant Modernization

Pathway Lead

November 2023
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Overview of Plant Modernization Pathway

Plant Modernization Research Objectives and Goals

Develop modernization solutions that improve reliability and 
economic performance while addressing the US nuclear industry’s 

aging and obsolescence challenges

I&C Architecture  
(Digital 

Infrastructure)

A multi-layered, 
sustainable digital 

foundation to enable   
Plant Modernization 

Data Architecture & 
Analytics 

Advanced  monitoring, 
and data processing to 
replace labor-intensive 

plant support tasks

Human & Technology 
Integration

Tools and methodologies 
that maximize efficiency  

while ensuring safety 
and reliability are 

maintained

Deliver a sustainable 
business model that 

enables the US nuclear 
industry to remain cost 

competitive

Integrated Operation 
for Nuclear

LWR fleet electric 
market 

competitiveness

Objectives

Research Areas

Outcomes

The LWRS Program Plant Modernization pathway conducts R&D, provides guidance for 
full-scale implementation and communicates the results to other nuclear power 
stakeholders that significantly reduce the technical and financial risks of modernization

Goal - Extend life and 
improve performance of 
existing fleet through 
modernized technologies 
and improved processes 
for plant operation and 
power generation



Data 
Architecture
 & 
Analytics

Eliminating unnecessary 
O&M costs by automating 
and optimizing critical 
support activities

Data 
Management

Data Collection

Data Analytics

Appropriate 
Action Taken 
Based on Data



AI/ML
Research 
Focus Areas

ML for Material Management
ML for Equipment Monitoring
ML for Anomaly Detections

NLP Applications
Computer Vision Applications

AI/ML Explainability
Overview of AI, ML and subsets of ML



Digital Twin Informed ML for Material Management
Developed technology to locate and estimate alkali-
silica reaction (ASR) damage using physics-informed 
machine learning approach

Digital Twin and Deep Learning Model used in Secondary 
Piping Degradation Detection Research

Concrete Structure Health Monitoring Using Vibroacoustic Testing and Machine 
Learning, INL/EXT-20-59941

Concept for Integrated Multi-Modal Online Piping Monitoring System along with 
Data Fusion and Advanced Data Analytical Algorithms Using High- Resolution 
Fiber Optics Sensors, INL/EXT-20-59810

Low-Cost Phase-Sensitive Distributed Fiber 
Sensors FS-laser Direct 

Writing

Digital Twin and AI
DT DataSensor Data Deep Learning 

Neural Network

5

https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Concrete_Structure_Health_Monitoring_Using_Vibroacoustic.pdf#search=INL%2FEXT%2D20%2D59941
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Concrete_Structure_Health_Monitoring_Using_Vibroacoustic.pdf#search=INL%2FEXT%2D20%2D59941
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Concept_Integrated_Multi-Modal_Online_Piping_Monitoring.pdf#search=INL%2FEXT%2D20%2D59810
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Concept_Integrated_Multi-Modal_Online_Piping_Monitoring.pdf#search=INL%2FEXT%2D20%2D59810
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Concept_Integrated_Multi-Modal_Online_Piping_Monitoring.pdf#search=INL%2FEXT%2D20%2D59810


ML for Equipment Monitoring
• Developed a scalable risk-informed predictive 

maintenance strategy using machine learning 
approaches, risk modeling, visualization, and multi-
band heterogeneous wireless architecture.

• Developed a hybrid model of circulating water 
pump (CWP) motor (basis for digital twin) to 
capture different operating dynamics.

66

Risk-informed Predictive Maintenance Strategy

Physics-based model of CWS

Scalable Technologies Achieving Risk-Informed Condition-Based Predictive 
Maintenance Enhancing the Economic Performance of Operating Nuclear Power Plants, 
INL/EXT-21-64168

https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Scalable%20Technologies%20Achieving%20Risk-Informed%20Condition-Based.pdf#search=INL%2FEXT%2D21%2D64168


AI/ML Explainability

7

Explainable Artificial Intelligence Technology for Predictive Maintenance, 
INL/RPT-23-74159

User-centric visualization with performance and explainability metrices

LWRS Program researchers developed methods to 
address the explainability, performance, and 
trustworthiness of AI/ML to enhance the interpretability 
of outcomes.

One method uses objective metrics like Local 
Interpretable Model-agnostic Explanations (LIME) and 
Shapley Additive Explanations (SHAP).

Another method employs user-centric visualization of 
AI/ML outcomes together with objective metrics to 
support expert interpretation.

In collaboration with Public Service Enterprise Group 
(PSEG), Nuclear LLC, performed initial demonstration 
of the technical basis on circulating water system 
(CWS) for a waterbox fouling problem.

https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/ExplainableArtificialIntelligenceTechnology.pdf#search=INL%2FRPT%2D23%2D74159


AI/ML Applications for Anomaly Detection

• Unsupervised ML Methods
−Developing equipment-agnostic 

anomalies detection methods by holistic 
inference of process conditions

• Semi-Supervised ML Methods
−Developing methods to couple text-mined 

information from sparse condition reports 
to equipment and process sensors data 
for equipment and process reliability 
analysis

8

Recurrent neural 
networks were used 
to predict dry well 
cooling fan failure 
using surrounding 
sensors 

Clustering methods were 
used to detect High-
Pressure Coolant Injection 
(HPCI) system steam leak 

Extending Data-Driven Anomaly Detection Methods…, INL/RPT-23-73933
Software - Automated Latent Anomaly Recognition Method, (ALaRM) 

Feature Extraction for Subtle Anomaly Detection Using Semi-Supervised 
Learning, Annals of Nuclear Energy, vol. 181, pp. 109503, 2023

https://doi.org/10.1016/j.anucene.2022.109503

https://doi.org/10.1016/j.anucene.2022.109503


NLP Applications for Process Improvement

• Natural Language Processing and Deep Learning 
Methods:
− Demonstrating and evaluating the automation of the 

condition reports screening process (which is the 
review and classification of condition reports according 
to their impact on nuclear safety).

− Evaluating the automation of document review, 
sampling, trending, analysis, and reporting.

• Natural Language Processing and Clustering Methods:
− Developing an inventory optimization method by 

coupling work demand information with parts inventory 
to reduce the minimum stocking requirements. 
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Condition report 
screening is a 
process that 
involves several 
staff on daily or bi-
daily basis for 
several hours a 
week.

Developing AI/ML 
methods to optimize 
the stocking 
requirements in a 
plant

Software: Machine Intelligence for Review and Analysis of Condition 
Logs and Entries (MIRACLE)

Explainable Artificial Intelligence Technology for Predictive Maintenance, 
INL/RPT-23-74159

https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/ExplainableArtificialIntelligenceTechnology.pdf#search=Explainable%20Artificial%20Intelligence%20Technology%20for%20Predictive%20Maintenance


Computer Vision Applications for Process Improvement

• Computer Vision and Deep Learning Methods:
− Developing methods to automatically identify a fire in a video stream 

to augment the effectiveness of the fire watch program 
− Developing and evaluating the automation of logging analog gauges 

(i.e., a method to recognize gauges in oblique angles and read their 
values)

− Demonstrating methods for drones to autonomously recognize and 
navigate their environment in a nuclear power plant. 

10

Drones can automate 
several activities in a plant 
including operator and 
security rounds, and 
inspections of hazardous 
locations.

Example of 
AI/ML’s ability to 
accurately identify 
fire and smoke.

Automated gauge reading impacts a wide 
spectrum of activities in a plant including 
operator rounds, gauges calibration, and 
peer verification, and improves data 
fidelity for online monitoring.

Automating Fire Watch in Industrial Environments through Machine 
Learning-Enabled Visual Monitoring,   INL/EXT-19-55703 
Software - Modelling Framework for Fire and Smoke Detection in 
Imagery

Software - Route-operable Unmanned Navigation of Drones 
(ROUNDS)  

Patent - Automated Gauge Reading And Related Systems, Methods, And 
Devices

https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Automating_Fire_Watch_in_Industrial_Environments_through_Machine.pdf#search=INL%2FEXT%2D19%2D55703
https://lwrs.inl.gov/Videos/Forms/Video/videoplayerpage.aspx?ID=113&FolderCTID=0x0120D520A8080047417E4C3EC1B242A9FC0E4D32D70693&List=fdfbb9e6-234b-496c-9032-065cd095af5d&RootFolder=%2FVideos%2FROUNDS%2C%20November%202020%2FAdditional%20Content&RecSrc=%2FVideos%2FROUNDS%2C%20November%202020


AI/ML
Research
Summary

ML for Material Management
ML for Equipment Monitoring
ML for Anomaly Detections

NLP Applications
Computer Vision Applications

AI/ML Explainability

• Show great promise for automating 
many manually performed activities

• Are demonstrating new approaches to 
enhance efficiency

Artificial intelligence, 
machine learning, 

associated methods and 
data handling techniques 
are relatively new in the 
nuclear power industry.

• Adoption must align with the nuclear 
safety culture of the industry.

• Some uses demonstrate ability to 
rapidly transition to safety important 
uses.

Collaborative efforts with 
owner-operators and 

others emphasize many 
non-safety uses.

• Human factors issues in AI/ML 
implementation vital to adoption and 
safe use.

Trust in automation, 
understandability affect 

usability.



Sustaining National Nuclear Assets

lwrs.inl.gov
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Autonomy in Advanced Nuclear Reactors

Resource: https://www.industryweek.com/technology-and-iiot/article/22026918/where-do-digital-twins-fit-in

Development of a Nearly Autonomous 
Management and Control (NAMAC) System 
for Advanced Reactors

NAMAC, “Development of a Nearly Autonomous 
Management and Control (NAMAC) System for 
Advanced Reactors,” (2018) URL NAMAC - ARPA-E

Autonomous 
Control 
System

Digital Twin 
Technology

Condition 
Monitoring of 

SSCs

2

https://arpa-e.energy.gov/?q=slick-sheet-project/management-and-control-system-advanced-reactors
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P
R
O
G
N

S
I
S

DIAGN SIS

Mechanics-based 
Simulation Models

Sensor Data

As-Built Design

Source: https://enviosystems.com/2021/03/01/how-digital-twins-
can-help-reduce-global-carbon-emissions/

Maintenance History

As-Built v/s As-Designed Digital Twin



Importance of Condition Monitoring

4

Resource: https://www.world-nuclear-news.org/Articles/French-regulator-gives-update-on-corrosion-
issue

The Civaux nuclear power plant (Image: EDF)December 2021, maintenance checks on the 
primary circuit of Civaux 1 revealed stress 
corrosion cracking (SCC) near the welds on 
pipes of the safety injection system.

12 reactors shut down as a result of the 
issue – for investigation or repair.

EDF had to lower its 2022 nuclear output 
forecast yet again in November 2022, to 275-
285 terawatt-hours (TWh) extension of four 
reactor outages for repairs linked to 
corrosion problems.                                                 
(Resource: https://www.reuters.com/business/energy/edf-says-leak-civaux-reactor-not-
due-welding-2022-11-08/)

Another SCC was found in Penly power plant 
in early 2023, “a crack extending over 155 
mm, or about a quarter of the circumference 
of the piping”.                   (Resource: 
https://www.lemonde.fr/en/economy/article/2023/03/08/large-crack-discovered-on-
nuclear-power-plant-further-complicates-situation-for-france-s-edf_6018624_19.html)

https://www.reuters.com/business/energy/edf-says-leak-civaux-reactor-not-due-welding-2022-11-08/
https://www.reuters.com/business/energy/edf-says-leak-civaux-reactor-not-due-welding-2022-11-08/
https://www.lemonde.fr/en/economy/article/2023/03/08/large-crack-discovered-on-nuclear-power-plant-further-complicates-situation-for-france-s-edf_6018624_19.html
https://www.lemonde.fr/en/economy/article/2023/03/08/large-crack-discovered-on-nuclear-power-plant-further-complicates-situation-for-france-s-edf_6018624_19.html


Degradation in Nuclear Piping Systems

Corresponding 
reduction in 

structural 
stiffness

Resource: K. M. Hwang, H. Yun, and C. K. Lee, “Development of New Methodology for Distinguishing Local Pipe Wall Thinning in Nuclear Power Plants,” World 
Journal of Nuclear Science and Technology, vol. 2, no. 4, Oct. 2012, doi: 10.4236/wjnst.2012.24030.

 25% thickness reduction Minor

 50% thickness reduction Moderate

 75% thickness reduction Severe

Flow-assisted Corrosion and Erosion

Stress and Fatigue due to operational vibrations

5

https://doi.org/10.4236/wjnst.2012.24030


Pump-induced vibrations in pipe systems:
• Harmonic in nature

• Large amplitude of vibration

• Frequency of the harmonic excitation depends on 

the pump speed in RPM.

Equation of motion:

Harmonic load function:

Resource: https://www.mechsol.com/case-study/nuclear-generator-stator-cooling-
pumps-specialized-vibration-testing/

Operational Pump Loads

6
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Simple Piping System
Acceleration-time series 

Power Spectral Density

Uncertainty in 
Degradation Severity

Minor

Moderate

Severe

[20% − 30%]

Potential degradation 
hotspot locations to 
create AI database

PSDmax[45% − 55%]

[70% − 80%]
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Initial Implementation of MLP ANN

Activation functions ReLU and Softmax

Learning Rate 0.001

Batch Size 8

Optimizer Stochastic gradient descent

Epochs 2000

Dropout 0.5

Validation split 30%

PSDmax

Training feature
Accuracy of 

predicting degraded 
locations

45%

1 Explore signal processing and feature 
extraction for better degradation sensitive 
quantities

2 Investigate MLP ANN architecture and 
key parameters

3 Develop a sensor placement strategy

Next Steps:
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Signal Processing and Feature Extraction

Vector of Degradation 
Sensitive Quantities

Unlike existing SHM 
studies, where a 
considerable difference 
is noted at peak values 
of response
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Sensor Placement Strategy

K0

K0K0K0

X

Y

Z

                                           

   

Considered 4 sensor locations at the elbow joints (most sensitive to 
degradation), instead of all the 9 sensors.

High errors
Low cost

High economical and computational cost
Low errors
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Results from Simple Piping System

ANN Model Predict Locations Predict Locations and 
Severity

1 QoI (PSDmax)
45% 29%

9 Sensors

Vector of 4 QoIs
97% 97%

9 Sensors

Vector of 4 QoIs
96% 96%

4 Sensors

*QoI: Quantity of interest
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Realistic Piping-equipment System

Representative of US Nuclear 
Regulatory Commission
NUREG/CR-1677
Vol. 1, Problem 4

ANN Model Predict 
Locations

Predict 
Locations 

and Severity

1 QoI (PSDmax) 14% 5%

Vector of 4 QoIs 99% 99%

*QoI: Quantity of interest
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Experimental Breeder Reactor II (EBR-II) 
was built in 1964 and decommissioned in 
1994 by ANL.

Sodium-cooled fast reactor

EBR-II Z Piping-equipment System

Hotspot degradation 
locations at elbows and 
nozzles

ANN Model Predict 
Locations

Predict 
Locations 

and Severity

Vector of 4 QoIs 99% 97%

*QoI: Quantity of interest
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Results from EBR-II Z Piping System

No. of sensors ANN Model Predict Locations Predict Locations 
and Severity

12

1 QoI:PSDmax 86% 74%

Vector: 4 QoIs 99% 97%

8 Vector: 4 QoIs 98% 97%

*QoI: Quantity of interest
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Cases that were predicted erroneously

12 sensors 8 sensors

Correct location but, 
wrong severity level 6 3

The other elbow joint or,
an adjacent close location 6 1

A location very far from 
actual degradation 8 12

< 2% of total 630 test cases
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Detect degraded locations and severity

Provide recommendations to avoid high-
cyclic fatigue
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Fatigue
Continuous vibrations over long periods of time can 
cause fatigue to build up at certain structural 
discontinuities of the piping-equipment systems. 

Fatigue is the weakening of a material caused 
by cyclic loading that results in progressive, 
brittle and localized structural damage. 

Once a crack has initiated, each loading cycle will grow the crack a small amount. 

This can occur even when: 
the cyclic loading stresses           the material’s yield strength.

Resource: https://gfycat.com/acrobaticniceblacklab
Introduction to fatigue testing in structural steel

https://gfycat.com/acrobaticniceblacklab


Diagnosis:

Predict degraded location and severity

Obtain stresses in high T.Ratio range

Check “safe” values as per ASME Design 
Criteria for fatigue

Potential recommendations

Strategic Recommendations for Operator Actions

Location: Nozzle 1

Transmissibility Ratio plots 

Obtain pump operating speed at 
maximum stress

20

𝐏𝐏 = 𝟖𝟖𝟖𝟖𝟖𝟖 𝐑𝐑𝐏𝐏𝐑𝐑

22 ksi

N = 3 x 105

1

N = 3 ×  105

P = 882 RPM 

Avoid pump 
speeds at 882 

RPM

2

Pump operation at 
882 RPM

Allowable hours: 6

ℎ =
𝑁𝑁

𝑃𝑃 × 60
 ≈ 6
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Lab Setup

Waveform Generator

Data Acquisition 
System

Shake TableVibrator System

Power Amp

Laptop for Data 
Collection

Pipe System

Fixed Base

Accelerometers
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Overlays of BIM and 3D Scans of Pipe Parts

18” Pipe
Elbow
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Degradation Implementation

Minor Moderate Severe

Hand-held Dremmel
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Sources of Error in Experimentation

Experimental 
Setup

Shake Table 
Loading

Piping system 
assembly

Accelerometer 
alignment

Heat effects

Data

Noisy, insufficient data

Non-uniform 
degradation
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Conclusions
The condition monitoring framework can predict degraded 
locations and severity from the simulated sensor data with 
more than 95% accuracy.

Illustrated benefits of using the proposed vector of 
degradation sensitive features versus a single quantity

Proposed a cutting-edge technique to combine the condition 
monitoring framework with fatigue-life assessment for nuclear 
piping-equipment systems, by providing a strategy-based 
recommendation on “safe” pump operating speeds and 
duration.
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Ongoing 
Research

Validation of experimental sensor data with simulated sensor data

Training with simulated data (large database) and testing 
with experimental data.

Signal processing and feature extraction of non-stationary 
signals
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Development of Sodium-Cooled Fast Reactors (SFRs)

Generation IV International Forum
https://www.gen-4.org/gif/jcms/c_40962/home
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Importance of Fitness-for-Service (FFS) Code

 In-Service Inspection rules provided by FFS code are important for safe
and stable operation of plants.

Effective and efficient ISI is crucial to suppress operation cost which is 
one of major power generation cost factors.

 ISI rules also affect design of nuclear power plants because the accessibility 
to the components where ISI is required needs to be considered 
appropriately in the design.

ISI rules need to be developed rationally by considering relevant features 
of reactor type and design of an individual nuclear power plant.
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Features of SFRs

LWR（PWR） SFR（Monju） Features of SFRs
Operating Conditions

Coolant Water Sodium ・Opaque and chemically active
・Excellent compatibility with structural materials

Reactor Outlet Temp. ~320℃ ~530℃ ・Operation in Creep regime
Difference in Temp. 
between Reactor Outlet and 
Inlet

~30℃ ~130℃ ・High thermal stress

Operating Pressure ~16 MPa ~1 MPa ・Low pressure
Dimensions（Reactor Vessel）

Inner Diameter ~4 m ~7 m ・Large diameter
Thickness ~200 mm ~50 mm ・Thin wall thickness
Inner Diamter／Thickness ~20 ~140 ・High ratio

 SFRs have several different features from the conventional Light Water Reactors (LWRs).
 It is not reasonable to apply the ISI rules of conventional LWRs to SFRs directly.

Negligible corrosion, low pressure, 
easy detection of leaked sodiumDifficulty in conducting traditional NDE                 
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Previous FFS Code for SFRs
Historically, ASME Boiler and Pressure Vessel 

(B&PV) Code, Section XI, Division 3, existed 
until the 2017 edition.

 It was developed as part of the Clinch River 
Breeder Reactor Plant Project in the U.S..

The code revision was suspended due to the 
cancellation of the project, thus several parts, 
including acceptance standards for 
examinations of Class 1 Components, were left 
as being in the course of preparation.

It was practically difficult to apply it to SFRs.
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Development of ISI Rules for SFRs in ASME and JSME
Code Case to Sec. XI, Div. 3 (~2017)

• ASME/JSME Joint Task Group for System Based Code (SBC) was 
established in 2012 in the ASME B&PV Code Committee.

• Code Case N-875 that provides alternative ISI requirements, including 
acceptance standards, to Sec. XI, Div. 3 was developed based on the SBC 
concept, and was issued in 2017.

FFS Code for SFRs in JSME (~2021)
• FFS code for SFRs was concurrently being developed in JSME as well as 

Leak-Before-Break (LBB) Assessment Guidelines for SFRs, and their first 
edition were approved in 2021.

Provisions Specific to SFRs for New Sec. XI, Div. 2 (On going)
• New Sec. XI, Div. 2 covering all types of nuclear power plants was issued in the 

2019 edition. Based on the results of the activities above in ASME and 
JSME, provisions specific to SFRs are now being developed.
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System Based Code Concept

System Based CodeConventional
Margin accumulated but how much 
is not clear.

Target reliability is determined first.

LOAD

DESIGN

INSPECTION

TOTAL
INTEGRITY

MATERIAL

etc…...

APPROPRIATE

EXCESSIVE

LOAD

DESIGN

INSPECTION

TOTAL
INTEGRITY

MATERIAL

etc…...

APPROPRIATE Design to required 
reliability

Margin exchange

Expansion of 
technical options

Asada, Y., Tashimo, M. and Ueta, M., 2002, “System Based Code—Principal Concept,” 
Proc. 10th International Conference on Nuclear Engineering, ICONE10-22730.
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Alternative ISI Requirements to Sec. XI, Div. 3

Examination category Section XI, Division 3 Code Case N-875
Liquid-metal-retaining welds in Class 1 

vessels protected by guard vessels
 Continuous monitoring
 VTM-2

 Continuous monitoring*

Liquid-metal-retaining welds in Class 1 
vessels not protected by guard vessels

 Continuous monitoring
 VTM-2

 Continuous monitoring*

Liquid-metal-retaining welds in Class 1 
piping protected by guard pipe or tank

(Heat transport loop piping)

 Continuous monitoring
 VTM-2

 Continuous monitoring*

Liquid-metal-retaining welds in Class 1 
piping not protected by guard pipe or tank 

(Heat transport loop piping)

 Continuous monitoring
 VTM-2

 Continuous monitoring*

Internal components  VTM-3  None

Conditions developed by using the SBC concept 

* Acceptance standards 
were newly prepared.
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Alternative ISI Requirements to Sec. XI, Div. 3 (Cont’d)

Acceptance Standard for Continuous Monitoring

Once leakage is indicated, it is required to conduct a confirmation of leakage in
accordance with the procedure predetermined by the Owner. If the
confirmation takes longer time than the determined time, it is conservatively
evaluated that the leakage is confirmed.

• In case of confirmed: Immediate shutdown of the system

• In case of unconfirmed: Repair of the leak detectors to meet the minimum
percentage of required working leak detectors
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Alternative ISI Requirements to Sec. XI, Div. 3 (Cont’d)

• Stage I: Structural reliability evaluation
- It shall be shown that the SSC has the

reliability equals to or greater than
Reliability Target without ISI.

• Stage II: Evaluation of detectability of flaws
- It is ensured to shut the plant down safely

before the flaw reaches the maximum
acceptable size.

- Either direct or indirect detection. Flexible
selection of suitable ISI technologies
according to the plant features

 Conditions for application of the alternative ISI requirements based on
the SBC concept
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Alternative ISI Requirements to Sec. XI, Div. 3 (Cont’d)
 Determination of Failure Modes

• Degradation mechanisms that can potentially produce flaws during service is
evaluated based on the list of potential degradation mechanisms provided in
the CC as well as operating and research experience.

• Failure modes are determined based on the identified degradation
mechanisms.

• Failure modes not addressed in the design code are also considered, if
necessary.
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JSME FFS Code for SFRs
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 General Rules, and ISI Requirements of Class 1 Components and their Supports
are provided in the 1st Edition approved in 2021.

Parts examined ISI requirement

Primary coolant 
boundary welds

Sodium retaining parts
 Continuous monitoring (CM-1)
For small diameter pipe
 Continuous monitoring (CM-2)

Cover gas retaining parts  Continuous monitoring (CM-3)

Distinction
based on

influence of 
failure

• Leak detection sensitivity high enough to demonstrate Leak-Before-Break (LBB) 
is required for CM-1 for ensuring the shutdown of the plant in safe.

LBB concept applied to ISI  
• LBB Assessment Guidelines for SFRs were also developed at the same time.
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JSME LBB Assessment Guidelines for SFRs

Developed by considering the following 
features of SFRs:
• Operation at elevated temperatures

- Effect of crack growth by Fatigue-
Creep damage

• Usage of liquid sodium as a reactor 
coolant
- Leak rate assessment method for 

sodium
• Low pressure system

- Applicability to components with large 
diameter and thin wall thickness

- Secondary stress is dominant.
The sensitivity is to be determined 

so that Cd is smaller than Ccr.
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Installation of Sodium Leak Detectors (Example)

Thermal insulator

Blower

Cell linerGuard Vessel

Blower

Na

1ry Coolant System Cell
(N2 atmosphere)

Containment Vessel 
pressure meter

Containment Vessel 
radiation monitor

Gas sampling type 
leak detectors

SID: 
Sodium Ionization Detector

DPD: 
Differential Pressure Detector

CLD

Sodium level meter 
in Guard Vessel

Containment 
Vessel (Air)

CLD: 
Contact Leak Detector
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Sodium Leak Detectors (Examples)
• SID (Sodium Ionization Detector)

Best suitable to detect sodium leak in the inert 
gas atmosphere (Sensitivity: ≧1×10-10 g Na/cc)

• DPD (Differential Pressure Detector)
Applicable to either the inert gas or air atmosphere.

Cable

Ceramic

Electrode Brazing• CLD (Contact type Leak Detector)
Applied to portions where leaked sodium 
accumulates such as valves and bottom of tank.

http://www.cea-jaea-collaboration.net/napocket/pocketbook/page37.html

https://jopss.jaea.go.jp/search/servlet/search?5065316

http://www.cea-jaea-collaboration.net/napocket/pocketbook/page37.html
https://jopss.jaea.go.jp/search/servlet/search?5065316
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Proposal of Provisions Specific to SFRs for Sec. XI, Div. 2
ASME Sec. XI, Div. 2,
“Reliability and Integrity Management (RIM)”
• New fitness-for-service code for all types of nuclear 

power plants published in 2019
• Basic concept shared with SBC (Several key parts of 

CC N-875 were incorporated in Div. 2)
• Technology-neutral requirements with supplements 

for specific types of nuclear reactors (currently only for 
LWR and HTGR) 

• Development of the supplement for liquid-metal 
(Sodium) cooled reactors is now one of the top 
priority action items of Sec. XI committee.

• ASME/JSME Joint Working Group on RIM Processes 
and SBC has prepared draft provisions based on 
ASME Sec. XI, Div. 3, CC N-875, and JSME FFS 
codes as well as LBB Assessment Guidelines for 
SFRs, and the draft is now under consideration by WGs.

RIM Program
Scope Definition

Damage Mechanism
Assessment

Plant and SSC
Reliability Allocation

Identification and Evaluation
of RIM Strategies 

Evaluation of Uncertainties

RIM Program Implementation

Performance Monitoring
and RIM Program Update
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Summary
 SFRs are expected as Generation IV nuclear energy systems.
 Effective and efficient ISI is crucial for safety, stable operation, and 

economic efficiency. Thus, ISI rules needs to be determined by 
considering relevant features of SFRs.

 The following FFS codes for SFRs have been developed as the 
result of the collaboration between ASME and JSME so far.
• Code Case N-875 in ASME
• FFS Code & LBB Assessment Guidelines for SFRs in JSME

 Currently, for the new Sec. XI, Div. 2, provisions specific to SFRs 
are being prepared based on the results above by the continuous 
collaboration between ASME and JSME.



Introduction to ASME Section XI, Division 2
Reliability and Integrity Management (RIM)

USNRC - DOE - INL
WORKSHOP ON STRUCTURAL HEALTH

MANAGEMENT FOR NUCLEAR POWER PLANTS
NOVEMBER 28 - 29, 2023



Today’s Topics

• Outline the process of Reliability Integrity Management 
(RIM)

• What is RIM and why it is needed for advanced 
reactors?

• The RIM process concepts.

• Operational (monitoring) inspection challenges for 
advanced reactor designs.

• Example of RIM use & application of MANDE.

2



Outline of RIM

• Section XI, Division 2 Reliability Integrity 
Management (RIM) overview.

• What is RIM?

• Why is RIM essential to AR*, SMR* and MR* 
designers and not just to future 
Owners/Operators?

• What is important about RIM that AR, SMR & MR 
designers should consider throughout the design 
phase?

• How do Risk Informed Performance Based 
approaches integrate into the RIM process?

3

*
• AR = Advanced Reactors.
• SMR = Small Modular Reactors (i.e., <=300 MWe per unit)  

independent  of technology
• MR = Micro Reactors  (Info Link)  
https://www.energy.gov/ne/articles/what-nuclear-microreactor

https://www.energy.gov/ne/articles/what-nuclear-microreactor


Challenges for Advanced Design Reactors  - Historical Perspective

• ASME Section XI Division 1, and similar 
international inservice inspection 
standards (e.g., French RSE-M), are not 
well suited for most advanced design 
reactors currently in development.

• ASME Division 1 was developed 
primarily for light water reactor 
technology (e.g., BWRs & PWRs).

• ASME XI Division 1 tends to be “weld 
centric” in terms of what is inspected.
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Reliability Integrity Management (RIM) 

An ASME Section XI Sub-Group – developed the new 
ASME XI Division 2 Reliability Integrity Management (RIM)

• RIM is a detailed process to establish operational 
monitoring criteria for expected degradation mechanisms 
that are expected to occur, regardless of the reactor 
technology,  (e.g., Molten Salt, HTGR, Liquid Metal, etc.)

o RIM is "technology neutral“ process – applicable 
to any reactor design and technology.

o RIM criteria may be established by deterministic 
or probabilistic methods.

o RIM requires Monitoring and NDE (MANDE) to 
be assigned to SSC, based on credible 
degradation mechanisms in concert with an 
SSC’s contribution to risk for safe plant 
operation. 

5

LINK TO WEBPAGE 

https://aris.iaea.org/

https://aris.iaea.org/


Reliability Integrity Management Basic Process Overview Concepts 

6

1. RIM scope 
definition and SSC 
selection based on 

PRA

2. Degradation 
Mechanism 
Assessment

3. Plant and SSC 
Reliability Target 

Allocation

4. Identification 
and establishment 
of RIM strategies 

and MANDE

INPUTS:
• Licensing & Safety 

Requirements
• Plant Level PRA
• SSC Level PRA 

Contribution to Risk

INPUTS:
• Assess Damage 

Mechanisms (DMs) 
relevant to the specific 
technology.

• Examples - creep, 
corrosive coolants, 
deterioration of non-
metallics, such as 
graphite.

INPUTS:
• Selected SSC Reliability 

Target value feeds into 
the required System and 
Plant Required Reliability 
needed to meet safety 
objectives. 

• Established by 
Frequency/Consequence 
(F/C) Curve  

INPUTS:
• MANDE is selected to 

monitor or inspect for 
DMs relevant to the 
specific reactor 
technology.

During design and operations During design and operations During design and operations During design and operations



Reliability Integrity Management Basic Process Overview Concepts 

7

5. Evaluation of 
Uncertainties

6. RIM Program 
implementation

7. Continuous 
monitoring and 

RIM Program and 
MANDE updates 

INPUTS:
• Both PRA models as well as 

selected MANDE have 
associated uncertainties.

• These uncertainties must be 
accounted for to assure the 
fidelity of the required 
reliability of an SSC to meet 
its performance objectives,

During design and operations During operations During operations

INPUTS:
• Program is initially 

implemented based on 
initial PRA, assigned RT 
values and selected 
MANDE. 

INPUTS:
• As the plant is operated, 

the RIM program is 
updated and adjusted 
using the same processes 
employed during the 
initial development of 
the RIM Program but 
using newly gained 
insights from OE.



RIM Process Description: Part I (During Design)

• Any SSC that could affect plant reliability must be 
scoped into the RIM program.

o Non-Safety Related SSC* classified under 
historic SSC classification guidance as Non-
Safety Related, but that are deemed risk 
significant, are required for inclusion in the RIM 
programs.

• This contrasts with the existing ASME XI Div. 1 Class 
1, Class 2, Class 3, Class MC, Class CC, etc. ISI 
approach, with each class having different graduated 
criteria based on the Class of an SSC, rather than its 
risk significance. 

8

* Using NEI 18-04 guidance such SSC would be classified as Non-Safety Related with Special Treatment (NSRST)



RIM Process Description: Part I (During Design)
A ranking for risk contribution, known as a Reliability Target Value, is assigned to each SSC.  

9

Figures from NEI 18-04



RIM Process Description: Part I (During Design)

• As part of initial design as well as during 
operations, SSCs that are deemed risk 
significant are scoped into the RIM Program.

o This determination is established by the 
RIM Expert Panel (RIMEP) 

o RIMEP must use accepted PRA criteria to 
make this determination at the plant, 
system and SSC level.

o This applies to passive components that 
would not normally be considered in 
traditional PRA evaluations.

• A ranking of relative risk, known as a Reliability 
Target Value, is assigned to each SSC.  

10

Figure from INL Report INL/PT-22-68899  Link:  https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_64127.pdf

https://inldigitallibrary.inl.gov/sites/sti/sti/Sort_64127.pdf


RIM Process Description: Part I (During Design)

• An SSC’s Reliability Target value is the assigned 
numerical index that must be maintained for an SSC within 
the program to assure it will:

o Perform its required function over its expected life cycle 

o Not challenge safe plant operation or reduce overall 
Plant or System Reliability criteria

11



RIM Process Description: Part I (During Design)

• As part of the RIM process, the 
RIMEP and a second RIM prescribed 
expert panel called the MANDE 
Expert Panel (MANDEEP) are 
required to perform an SSC 
Degradation Mechanism Assessment 
(DMA) 

o The DMA establishes what 
credible degradation mechanisms 
might apply to an SSC for a 
specific reactor technology over 
the life of the SSC (e.g., Creep, 
Stress Corrosion Cracking, Flow 
Induced Vibration, coolant 
chemistry excursions, etc.). 

12



RIM Process Description: Part I (During Design)

o The RIMEP and MANDEEP are responsible for 
determining and assigning MANDE 

o Any MANDE selected must be “performance 
demonstrated”  before being used.

o This assures that any MANDE selected is 
effective in detecting the degradation 
mechanism. 

o RIM is not focused exclusively on weld 
examinations. Any credible degradation 
mechanism must be accounted for in MANDE 
selection (e.g., general corrosion).

13

NOTE: Some reactors have used CO2 as a coolant



RIM Process Description: Part I (During Design)
o MANDE that is assigned is chosen for the purpose of detecting credible degradation 

mechanisms expected to occur in a particular reactor technology.

o Because DMs may not be limited to just weld locations, MANDE application needs to be 
accounted for in the design of an AR to employ RIM.

o Based on the previous example of corrosion phenomena in a CO2 environment, a system 
may need to be outfitted with installed transducers to be able to detect changes in wall 
loss due to general corrosion effects.

o Regardless of the method of MANDE selected, a provision of RIM is that MANDE must be 
performance demonstrated.

• That is to say, what is the “confidence level” of the MANDE chosen to be able to 
reliably detect changes in wall thickness of any SCC exposed to CO2 as in the noted 
example. 

14



Advanced Reactor Designer Considerations Summary:
• Integrating RIM considerations during efforts is 

essential and should include:

o Establishing what the population of risk 
significant SSCs are for inclusion of the RIM 
Program,

o Determining credible degradation mechanisms 
for RIM scoped SSCs,

o Assigning Reliability Target values for SSC,

o Demonstrating MANDE selected for SSC within 
the RIM Program.

15
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RIM Process Description: Part II (During operations)

• RIM is an on-going  “Living Program”.
• It applies over the entire plant life cycle of risk significant SSC:

o The periodicity for prescribed MANDE is based on several 
factors :
▪ Expected SSC degradation mechanisms,  
▪ Required Reliability Target value assigned to an SSC 

and,
▪ Operating conditions (e.g., longer fuel cycles than PWR 

or BWR)

16



RIM Process Description: Part II (During operations)

As operating experience is gained, the RIM Program must be updated.

▪ RIM can therefore be thought of as an ongoing aging 
management program.

• As OE is obtained, the same seven RIM process steps used during 
design must be used to update and maintain the RIM program over the 
life of the SSC.

17



Summary
• Advanced nuclear reactors have varied designs and intended purposes.

o Alternative approaches to existing ISI activities was needed to 
accommodate these technologies.

o Nuclear technology is moving to designs other than commonly 
employed LWRs.

o Some planned reactors to be used in applications other than power 
production (e.g., medical isotope production, desalination, industrial 
process heat, etc.)  

o RIM was developed accommodate these new designs and 
applications.

18
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Operating Environments for Advanced Reactors
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New Fuels, Coolants, Conditions = New Material Challenges

Adapted from Y. Guerin, G. S. Was, and S. J. Zinkle. Materials Challenges for Advanced Nuclear Energy Systems. MRS Bulletin V34(1), (2009).
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The Challenge for Advanced Reactors

High Temperature Materials 
Qualification

Materials Testing in New Reactor 
Environments

Materials Management Programs to 
Ensure Operational Integrity

RIM
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Materials Management Programs
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Materials Management Programs
 For the operating, light-water reactor fleet, 

license holders use a deterministic approach 
to assure as-designed safety margins through 
a selection of mandated examinations and 
tests
– ASME Section XI, Division I

 Developed and evolved with over 50 years of 
operating experience guiding the requirements

– NEI 03-08 Materials Initiative
 Industry requirement, endorsed by NRC, to 

proactively manage aging and degradation of 
materials

 To support a broader range of reactor 
specifications/designs, a performance-based  
alternative approach to define examinations 
and tests is now available
– ASME Section XI, Division II

The legacy Section XI, Division I ISI program requirements is a poor fit for many new designs
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Reliability and Integrity Management Process
Challenges and Opportunities
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RIM Program – Challenges and Opportunities

 ASME Section XI, Division 2 provides a general overview of the 
RIM Process
– It is not meant to be a prescriptive definition of the program, rather a 

framework for a technically justified process to identify strategies to 
preclude, mitigate, or reduce materials degradation impacts

 Further definition of pieces of the process can support the 
industry in creation of consistent programs and make for more 
effective and efficient regulatory review
– These areas tend to fall outside of, or go beyond, the purview of the Code
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Advanced Reactor Materials Management - The RIM Process

01

02

03

04

05

RIM Program 
Scope Definition

Degradation 
Mechanism 
Assessment

Plant and SSC 
Reliability Target 

Allocation – 
Originating from 

PRA
Evaluation of 
Uncertainties

Identification and 
Evaluation of RIM 

Strategies

06

RIM Program 
Implementation

07

Performance 
Monitoring and 

RIM Program 
Updates

ASME Section XI, Division II
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RIM Process

Materials 
Degradation

Degradation Mechanism 
Assessment

Probabilistic 
Risk Assessment

Program Scope Definition

Plant and SSC Reliability 
Target Allocation

Accounting for 
Uncertainty

RIM Strategies

Identification and 
Evaluation of RIM 

Strategies

Program Implementation

Continuous Learning from 
OE and Research Results
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RIM Program – Materials

OpportunitiesChallenges

High Temperature Alloys
Only 6 codified for Class A service in Section III, 
Division
Mechanical qualification does not include 
environmental compatibility

Materials Degradation in Advanced Reactor 
Environments

Knowing where to inspect, what to inspect for, 
and how often to inspect - understanding of the 
mechanisms and how they manifest is pivotal

Nonmetallic Materials
New class of materials necessary for some 
advanced reactor technologies
May be used as moderator and/or structural 
components

High Temperature Alloys
Can we utilize the RIM program to allow for expedited 
deployment, even though environmental gaps may be 
present?

Materials Degradation in Advanced Reactor Environments
Materials Degradation Matrices, Issue Management 
Tables, and prioritized research

Nonmetallic Materials
ASME Section III Task Group on Graphite Design Analysis
ASME Section III Working Group on Nonmetallic Design 
and Materials
ASME Section XI Nonmetallic Component Degradation 
and Failure Monitoring Task Group
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RIM Program – Probabilistic Risk Assessment

Opportunities

Scope Identification
What risk metrics will the new technologies use? 
Core Damage Frequency (CDF)/Large Early 
Release Frequency (LERF) may not be appropriate

Risk-Informed and Performance-Based
Initial PRA is important and understanding how 
each of the passive component reliability targets 
impact risk is pivotal
Circular process of identifying reliability target, 
selecting RIM Strategy, and assessing risk impact

Reliability Target Allocation
Correlation of qualitative condition monitoring to 
quantitative failure probability

Scope Identification
Industry and Regulator need to further define 
appropriate risk metrics to support scope 
identification

Risk-Informed and Performance-Based
Slight paradigm shift from current fleet experience – 
building off risk-informed processes that have been 
successful in past
Consistent approach to assessing risk impact and 
identifying/accounting for uncertainties

Reliability Target Allocation
PRA workshop to identify a consistent approach to 
efficient utilization of the PRA and reliability target 
allocation

Challenges
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RIM Program – RIM Strategies

OpportunitiesChallenges
RIM Strategy Definition/Selection

Design decisions, material selections, chemistry 
requirements, monitoring and non-destructive 
examinations (MANDE), evaluation 
methodologies, modeling techniques, and more

Advanced Monitoring and NDE Techniques
Novel approach development needed to support 
unique operating environments
Advancing sensor and monitoring methodologies 
for high temperature applications

Performance Demonstration
Current NDE is demonstrated for effectiveness 
and accuracy to ensure modalities detect 
degradation
New process for novel approach demonstration 
required

RIM Strategy Definition/Selection
Aggregate strategies to support expert panel 
selection
High temperature flaw evaluation techniques Code 
activities – design inputs vital

Advanced Monitoring and NDE Techniques
Integrated and coordinated industry effort to 
advance technology capability and readiness (Luke 
to cover more)

Performance Demonstration
Defining the process to clarify requirements for 
demonstration of MANDE effectiveness will support 
the industry and Regulator
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RIM Process Phases
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RIM Process Phases

RIM is NOT a design code, rather 
an input to be accounted for

•Review the design and designate RIM 
inputs, as applicable – Program can be 
built based off design decisions, 
assuming site is built as-designed

•RIM Strategies during the design phase 
may include influencing materials 
selection and manufacturing techniques 
to preclude or reduce likelihood of future 
degradation

Validation and documentation of 
“design program” inputs

•Materials selection and proposed 
fabrication practices match design 
proposal

•Field change notices or applicable repairs 
that occur during construction shall be 
captured

•Capture necessary pre-service inspection 
results

Final validation of the inputs 
from the design and construction 
phases to ensure changes to 
critical inputs are accounted for

•Reconvene the Expert Panels (including 
the future RIM Program Owner)

•RIM Program is risk-informed and 
performance-based – as a living program, 
OE and research results need to be 
incorporated into program and necessary 
revisions performed

Design Construction Operation

Reactor Technology Designer/Vendor RIM EP and MANDE EP

Owner/Operator RIM EP and MANDE EP
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Questions?
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RIM: A Two Game Mindset
Home game: Design phase
− Decision space: Choose an optimal design and RIM strategy for each SSC  reliability target
− Objective: Maximization/minimization of plant level figure of merits (O&M costs, reliability, availability)

Type and frequency of surveillance, 
inspection, and maintenance activities

SSC 
reliability 

target

Regulatory and/or economic constraints
Reliability engineer perspective

RIM strategy

2



RIM: A Two Game Mindset
Home game: Design phase
− Decision space: Choose an optimal design and RIM strategy for each SSC  reliability target
− Objective: Maximization/minimization of plant level figure of merits (O&M costs, reliability, availability)

Type and frequency of surveillance, 
inspection, and maintenance activities

RIM strategy
SSC 

reliability 
target

Regulatory and/or economic constraints

=
?

YES: Update RIM strategy

Condition based data Actual SSC reliability 
performance

Reliability engineer perspective

System engineer perspective

Away game: Operating phase
− Decision space: Check reliability performance and update RIM strategy (if needed)
− Objective: Demonstrate that RIM strategies assure the planned reliability targets3



Home Game: System RIM Optimization
• System: Reactor Cavity Cooling System (RCCS) for an HTGR
• RCCS function

− Protects the concrete walls of the reactor cavity
− Removes thermal radiation from the reactor vessel and  

releases this heat to atmosphere
• Design types

− Pebble bed modular reactor (PBMR): water cooled
− High temperature gas-cooled reactor (HTGR): air cooled

• Starting point: Reliability modeling performed by K. Fleming in 
PBMR Passive Component RIM Pilot Study*

• Our goal
− Include RIM economic aspects 
− Identify optimal RIM posture for the RCCS

• Focus: Two groups of components
− Standpipes and connecting pipes

*Reference: Karl Fleming, Steve Gosselin, Ron Gamble, 
“PBMR Passive Component Reliability Integrity Management 
(RIM) Pilot Study”, Prepared for PBMR (Pty) Ltd., Technology 
Insights, 2007 

Source: AREVA
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Home Game: System RIM Optimization
• RCCS RIM strategies

− Types (Probability of detection [POD])
− Frequency

• RCCS inspection cost model
− Fixed costs (apparatus and personnel training)
− Variable costs (per inspection session): 

• Inspection time [per pipe] 
• Number and skills of personnel required

• Analysis steps
− Evaluation of all scenarios 
− RIM scenario = NDE & OLLD option for standing 

and connecting pipes
• Number of RIM scenarios: 9801

− Perform multi-objective optimization
• Optimal RIM scenarios in the Pareto frontier 

(red dots)

Non-Destructive 
Evaluation (NDE)

On-line leak detection 
(OLLD)

Types • Phased_array
• EddyCurrent + ultrasonic
• Do_nothing

• Visual
• Imaging_spectra 
• Do_nothing

Frequency 3,6,9,15 years 1.5, 3, 4.5, 6 years

NDE and OLLD maximized

No NDE inspection
Imaging spectra every 1.5 years

Do nothing

System reliability target

5



• Issue in previous application: How can system reliability target be set?
• Starting point: Full plant PRA model
• Optimization problem

− Decision space: RIM options for each asset
− Objective function: Minimize costs
− Constraint: Frequency of event sequence

• Approach: Two-level optimization

Home Game: Plant RIM Optimization

Plant

Sys 6

Sys 7

Sys 3

Sys 4
Sys 1

Sys 2
Sys 5

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼

𝐸𝐸𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝐼𝐼𝑠𝑠𝑒𝑒 
𝑓𝑓𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝐼𝐼𝑠𝑠𝑓𝑓

seq2
seq3

seq1
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Home Game: Plant RIM Optimization

Plant

Sys 6

Sys 7

Sys 3

Sys 4
Sys 1

Sys 2
Sys 5

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼

𝐸𝐸𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼 𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝐼𝐼𝑠𝑠𝑒𝑒 
𝑓𝑓𝑓𝑓𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝐼𝐼𝑠𝑠𝑓𝑓

seq2
seq3

seq1

Level 1: Locally optimize each system 
(failure probability vs. RIM costs)
• Multi-objective optimization
• Model: system fault tree(s) + system cost
• Output: optimal combinations of basic 

events

Level 2: Event sequence optimization
• Single-objective optimization (genetic 

algorithm)
• Model: event sequence PRA model
• Decision space: optimal combination of 

basic events for all systems

7



Away Game: Plant Is Operating

• Scenario 1: Periodic assessment of stand-by safety injection pump
− Data (qualitative): Historic instances of pump performance (i.e., initial start-up and 8-hours operation)
− Actual reliability performance (e.g., pump failure rate) estimated using Bayesian updating methods
− Compare estimated and target failure rate

• Update RIM strategy (e.g., frequency of preventive maintenance)

Condition based data Actual SSC reliability 
performance

System engineer perspective

Classes
• Periodic surveillance data
• Continuous on-line monitoring data
• Prognostic data 

Data types
• Qualitative (e.g., SSC operating or not)
• Quantitative (e.g., temperature or vibration 

data, NDE inspection, remaining useful life)

• Challenge: Translate equipment condition-based data into a reliability value
− To be compared to assigned reliability target

8



Away Game: Plant Is Operating

− Data (qualitative and quantitative)
• Historic instances of identified flaws
• Crack depth temporal profile
• Probability of detection (POD) of NDE system

− Actual reliability performance estimation
• FW estimated using actual and historic trends
• 𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 estimated using Bayesian updating methods
• Actual reliability performance and SSC physical 

degradation:
𝜆𝜆𝑓𝑓𝑎𝑎𝑎𝑎 = 𝑓𝑓 𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝐹𝐹𝐹𝐹,𝑃𝑃𝑃𝑃𝑃𝑃,∆𝑇𝑇  

       = 𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(1 − 𝑃𝑃𝑃𝑃𝑃𝑃)
𝐹𝐹𝐹𝐹
∆𝑇𝑇

− Update RIM strategy (i.e., 𝑃𝑃𝑃𝑃𝑃𝑃, or ∆𝑇𝑇) if needed time

∆𝑇𝑇

BOL

Failure window (FW)

failure

* Xie M., Wang Y., Xiong W., Zhao J., Pei X. (2022). A Crack Propagation Method for Pipelines with 
Interacting Corrosion and Crack Defects. Sensors (Basel), 22(3):986. doi:10.3390/s22030986.

Failure

NDE assessment Fix or monitor crack 
propagation (i.e., 𝐹𝐹𝐹𝐹)

Flaw detected: 
update 𝜆𝜆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

• Scenario 2: Periodic NDE assessment of flaws/cracks in piping systems*



Summary Of This Talk
Home game: Design phase
− Optimization methods designed to determine an optimal RIM strategy for each SSC (i.e., reliability target)

SSC 
reliability 

target

Regulatory and/or economic constraints

=
?

YES: Update RIM strategy

Condition based data Actual SSC reliability 
performance

Reliability engineer perspective

Away game: Operating phase
− Reliability modeling designed to demonstrate that RIM 

strategies guarantee the planned reliability targets

RIM strategy

System engineer perspective
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Outline

• Background
• Emerging Reactor Technologies
• In service inspection (ISI) Framework for LWRs

• Needs and challenges for NDE and SHM for Emerging Reactors

• Examples of recent R&D efforts

• Open research needs

• Summary
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ISI Role and Effectiveness for LWRs
• Defense-in-depth:  Multi-layered approach to maintaining safety and high reliability

– No one action, system, or component is depended upon to maintain safety
– An integrated number of actions, systems, and components with multiple backups
– In service inspection (ISI) using nondestructive evaluation (NDE) is one component of 

defense-in-depth
• Effectiveness affected by:

– Unknown degradation progression rates – failures may occur between planned inspections
– Variable crack initiation times
– Degradation outside of initial inspection sample
– ASME NDE methods applied may not always be targeted for appropriate degradation processes

• Unpredicted (or undiscovered) degradation leads to augmented ISI programs and 
mandated requirements exceeding those in ASME Boiler & Pressure Vessel Code Section XI
– Stress corrosion cracking (SCC) in stainless steel (SS) and Alloy 600/82/182 welds
– Boric acid corrosion
– Flow-accelerated corrosion
– Thermal fatigue
– Other forms
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Nominal Operating Parameters of Non-LWRs
SFR LFR MSR SCWR GCR

Temperature 
(oC)

Core Inlet 290-610 550-650 350 250-587

Core outlet 704*** 465-780 700-1000 625 530-850

Maximum ~825+, 705++ 814+ 1300***, 947** 1900+ 1238+

Primary loop 
(Inlet/outlet)

338/485 405/561 570-650 /700-
1000

Secondary Loop 
(Inlet/outlet)

282/443 392/541 450-600 /633-690

Pressure Range 
(MPa)

Reactor Vessel ~0.1-0.2 ~0.1 ~0.1 – 0.5 26 ~5-9

Flow Rate (kg/s) Primary loop 174,128 (l/min) 2150-16200 1418 96-320

Neutron Flux

Peak fast fluence 
n/cm2

6.8x 1012*

4.0x 1023 (limit)
3.7 x 1023 0.33-1 x 1021*

3 x 1023**

Flux (average) 
n/cm2-s

2.35 x 1015

Power density 
(MW/m3)

Average 17-210 69 Varies from 67-
300

4-6.5

* Reactor vessel
** Graphite moderator
***Coolant maximum
+ Fuel
++ Reactor Vessel Wall
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Operating Experience for Non-LWR Passive Components
• Sodium reactors

– Cause: Manufacturing defects, defective welds, fatigue cracking, 
erosion, sodium deposits, contamination, …

– Effect: Sodium leak, sodium-water interaction, sodium contamination, 
level fluctuations, …

• HTR
– Cause: Material incompatibility, moisture intrusion, manufacturing 

issues, … 
– Effect: cracking, chloride corrosion, failure of nut/bolts, plugging of 

pressurization lines, mechanical jamming, …

• LFRs, MSR
– Cause: Material choice, high coolant velocity, coolant contamination 
– Effect: irradiation hardening, cracking, corrosion/erosion,…

• Issues identified from OE have been largely addressed through 
design modifications in current concepts and selection of 
improved materials

– Some Non-LWR operational concepts also include periodic 
replacement of critical passive components

J.G. Marques, Energy Conversion and Management, 2010
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Potential NDE and SHM Needs and Issues in non-LWR

• Wide variation in materials
– Stainless steel, F/M steel, ceramics, 

graphite, Ni-base superalloys,…

• Locations vary for potential degradation
– Welds and joints
– Bends/elbows
– Tubing

Components Materials Potential Degradation 
Modes

Desired 
Measurements

• Reactor vessel
• Core structure, 

shields
• Reflectors, 

absorbers, 
moderators

• Piping and tanks
• Heat exchangers, 

steam generators
• Turbines, 

compressors
• Valves, pumps

• Austenitic 
stainless steel

• Ni-base 
superalloys

• F/M steels
• ODS F/M steels
• Ceramics, 

composites, 
polymers

• Graphite
• Concrete

• Thermal and 
mechanical 
fatigue cracking

• Creep/irradiation 
creep/creep-
fatigue

• Oxidation/corrosio
n

• Embrittlement
• Stress corrosion 

cracking
• Void swelling

• Cracking and 
corrosion

• Creep
• Coolant 

parameters 
(temperature, 
pressure, flow, 
chemistry, level)

• Neutron flux
• Contamination 

(coolant and 
cover gas)

• Loose-parts

• Data on material performance over 
non-LWR lifetime is limited
– Tests ongoing for material qualification, 

codes and standards development

• NDE and SHM measurement challenges
– Potential access limitations 
– Measurement parameter sensitivity
– Deployment issues for in-situ 

measurements 
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ISI for Reliable Degradation Detection
• Most effective technique - continuously monitor all plant 

components 100% of the time

• Next best method - examine all components during each 
refueling outage (or periodically)
– Not economically viable – plants would spend more time 

being inspected than making power
– Would require very large population of skilled NDE and crafts 

personnel; especially for many plants in simultaneous outages
– In practice, a subset of components, selected based on risk 

and OE, are inspected periodically 

• Structural health monitoring (SHM) may be needed for Non-
LWRs that may have longer refueling cycles
– Continuous monitoring of a subset of components
– Component selection based on contribution to risk, and 

perhaps limited accessibility

SPACE

TI
M

E NDE provides data as 
a function of discrete 
times at discrete 
locations

On-line monitoring (SHM) sensors provide data as 
a function of time at discrete locations

Fundamental differences in 
data structure  between 
Nondestructive Evaluation 
(NDE) and Structural Health 
Monitoring (SHM))
(After Thompson [2009])
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SHM Systems for Nuclear Power May Require High Temperature, 
Rad-tolerant Sensors

• Sensor materials selection is key to subsequent 
sensor reliability
– Example: Prior research has shown viability of 

AlN and BiT composites for high-temp, in-reactor 
ultrasonic measurements

Figure  . Relationship between piezoelectric coefficient d33 and the maximum use 
temperature (for most materials, TC) for piezoelectric ceramics. Reproduced from  M. 
Akiyama, et al, Advanced Materials 21 (5), 593-596 (2009).

Under-sodium Viewing Ultrasonic Phased Array 
(Larche et al 2017)

Sol-gel High-Temperature Composite 
Transducers 

(courtesy C. Lissenden, B. Tittman)

Probe-Array 
End Connector 

End

High temperature (>550oC) Monolithic Ultrasonic 
Transducer (Ramuhalli et al 2018)



99

NDE and SHM Methods for Non-Metallic Non-LWR Components 
are Needed

Source: Y. Katoh (2013), “Continuous Fiber Ceramic 
Composites for Fluoride Salt Systems”

New techniques will be needed for inspecting/monitoring and characterizing materials such as SiC/SiC 
composites and graphite
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Advanced Technologies (AM, AI, …) Enable Robust  Structural 
Health Monitoring of Metals, Concrete, and Composites

Model based Assessment of Structural Health 
Monitoring (SHM) (Ramuhalli et al, 2018)

Flaw

Before Enhancement After Enhancement

Data Enhancement for Flaw Detection  from Ultrasonic 
Phased Array Measurements (Ramuhalli et al 2010)

Component Design and Inspection/Monitoring 
Requirements per Code (if available!)

Remaining Fatigue Life Estimate for 
Structural Components (Ramuhalli et 

al 2012)

316L sheathed sensor 
in AM 316L build High Temperature Compatible 

Embedded Sensors

Integrated Sensors 
for SHM 

(Courtesy Dr. C. Lissenden, Dr. 
B. Tittmann (PSU)

Physics-informed Machine Learning Applied for Structural 
Component Diagnostics (Rathod et al 2021, 2022)

Flaw Size/Shape Estimation

Ultrasonic Data 
(Input)
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Example of AI/ML Application: NDE/SHM of Concrete with Alkali-
Silica Reaction(ASR)
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=0.8946, RMSE=0.0570%

ASR Expansion prediction 
based on ultrasonic NDE data 

ASR expansion

Machine Learning: 
ASR Expansion 

Prediction

• Objective: predict ASR expansion using ultrasonic 
NDE/SHM

• AI-assisted analysis: Improved ASR expansion prediction 
compared to baseline analysis (regression)

H. Sun & S. Sabatino, Machine Learning for Processing Ultrasonic Data 
from Long-Term Monitoring of Concrete with Alkali-Silica Reaction (ASR), 
Oak Ridge National Laboratory, ORNL/SPR-2023/2948, 2023
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Data-driven and Physics-Inspired Algorithms for Diagnostics and 
Remaining Life Estimation

Data shown from:
 Ramuhalli et al, ANS NPIC-HMIT 2012

Acoustic and Magnetic Measurements

Prognostic Result: RUL

M
on

ito
re

d 
Q

ua
nt

ity

Time

Failure Threshold Region

Increase in 
Loads

Diagnostic/Predictive Model Selection

Roy, Ramuhalli et al, ANS NPIC-HMIT 2015
Dib, Roy, et al, ANS NPIC-HMIT 2017

High Temperature 
Creep: Models and 

Measurements
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Predicted Time-to-Failure, with 
Uncertainty, for Fatigue Damage

Measurement 
Instants

Measurement 
Instant

Predicted TTF 
using 1 

Measurement

Predicted TTF 
using 3 

Measurements

Predicted DI 
using 1 

Measurement

Predicted DI 
using 3 

Measurements

Ramuhalli et al, ANS NPIC-HMIT 2012
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NDE Qualification by Performance Demonstration
• NDE reliability influenced by many factors including equipment, materials and surface 

condition, flaw size and orientation, procedures, …

• Several studies performed beginning in early 1980s to improve the reliability of UT

• These studies led to the development of a performance demonstration process to qualify 
UT performed on LWRs

• The requirements for performance demonstration are in Appendix VIII of Section XI, Div. 1

• EPRI administers performance demonstrations for the industry through the performance 
demonstration initiative (PDI)
– Qualification of personnel, equipment, and procedures…
– Performance demonstration to show acceptable level of performance for flaw detection, 

sizing, and low false call rate
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POD Curves for Flaws in Reactor Pressure Vessel Nozzles

Quantifying Performance of NDE 
– Probability of Detection (POD) for Dissimilar Metal Welds

• Program for Inspection of Nickel-alloy 
Components (PINC) – [NUREG/CR-7019]

• Program to Assess the Reliability of Emerging 
NDE Techniques (PARENT) - [NUREG/CR-7235  
(ML17159A466)]

• POD analysis of PDI data is summarized 
in EPRI report: MRP-262 Rev. 3 (EPRI 
report number – 3002010988)

Cross-section of nozzle to 
pipe weld

Empirical quantification of 
performance can be resource 
intensive
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Reliability Integrity Management (RIM)
• Determination of plant and SSC reliability requirements (3) 

• Evaluate RIM strategies to Achieve Reliability targets (4)… a variety of 
strategies could be applied, e.g.
– Through design…
– Through operation…
– Through implementation of monitoring and NDE (MANDE)…

• The ability of proposed MANDE to meet reliability target(s) must be 
demonstrated
– This implies quantification of performance and influence on system reliability 

• Evaluate uncertainties in Reliability Performance (5)
– Identify strategies to address uncertainties in RIM strategies to provide 

added assurance that reliability targets will be met
– Defense-in-depth philosophy is maintained

From Fleming et al. (2008)*
*Fleming, KN, Fletcher, J, Broom, N, Gamble, R, & Gosselin, S. "Reliability and Integrity Management Program for PBMR Helium Pressure Boundary 
Components." Proceedings of the Fourth International Topical Meeting on High Temperature Reactor Technology. Fourth International Topical Meeting on High 
Temperature Reactor Technology, Volume 2. Washington, DC, USA. September 28–October 1, 2008. pp. 127-133. ASME. https://doi.org/10.1115/HTR2008-
58036

https://doi.org/10.1115/HTR2008-58036
https://doi.org/10.1115/HTR2008-58036
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Measurements Are Usually Easier than Interpretation

• Most NDE methods for microstructure 
characterization provide relative and not absolute 
information
– Classical inverse problem: non-uniqueness

• Correlative analyses provide vital insights into 
measurement change with degradation

• Approaches for quantifying material state from 
NDE/SHM measurements and its remaining useful 
life are needed

Density and Ultrasonic Velocity Change with 
Dose in Stainless Steel Blocks

Garner et al, INL/CON-14-33001, 2015

MBN Peak Value Change with Tensile Strain in 304 SS 
(Ramuhalli et al, 2015)
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Quantitative Evaluations of NDE/SHM Performance 
and Reliability Will be Necessary

• Several Factors Conspire to Elevate Importance and Necessary Rigor for Quantitative 
Treatment of NDE/SHM for Emerging Reactors
– Desire for increased operational autonomy requires information to be available in a way 

machines can process
– Desire to reduce uncertainty in safety margins to improve economics
– Increased reliance on risk-informed frameworks for decision making

• Performance and Reliability Characterization Drivers
– Potential novelty and diversity in materials and material microstructure; fabrication history
– Harsh environments seriously challenge available sensors and instrumentation
– Delineating effects of multiple stressors
– Insufficient information for inverse models and damage accumulation models
– Damage threshold for failure (especially if defining degradation with respect to precursors)



1919

Immersion

Contact

Role of Modeling & Simulation/Digital Twins for Passive Components

• NDE/SHM empirical performance demonstration 
challenges for emerging reactors -

– Empirical performance demonstrations for NDE/SHM need 
to account for operational factors

– Accounting for potential harsh environmental effects
– Variation in potential system designs/concepts limits ability 

to pool resources

• Modeling & Simulation can provide insights to 
inspection performance

• Digital Twins may provide pathway to incorporate 
factors associated with reactor operations into 
quantitative NDE/SHM performance evaluation

Specular Amplitude

Tip Amplitude

Guided Wave

Source: Dib et al, IWSHM (2018)
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Ongoing Research Needs for NDE/SHM for non-LWRs
• Quantitative Evaluation of Performance and Reliability of SHM and NDE for various mechanisms

– Measures of degradation severity or component health are needed
– Measurement uncertainty quantification and its effect on reliability (account for impact of factors 

associated with reactor operations)
– Concurrent damage mechanisms – detection sensitivity and selectivity
– NDE/SHM of novel materials and AM manufactured materials

• Sensors and instrumentation survivability
– Online calibration of aging sensors for in-situ monitoring to correct measurement drift
– Optimal sensor placement for in-situ monitoring

• Inverse methods for quantifying material condition from NDE/SHM, estimating remaining service life
– Physics-informed AI/ML: Relating material changes to measured quantities and vice-versa, and 

assessing component health change over time
– Failure/Acceptance criteria – acceptable and rejectable damage thresholds. 

• Human factors
– Inspection and data analysis can vary with operator
– Resulting analysis information will need to be presented to operators
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Summary
• Emerging reactor concepts present many unique challenges not present with LWR fleet; a 

greater emphasis on SHM will be present in emerging reactors although it is still applicable 
to existing fleet of LWRs

• NDE plays (and will continue to play) a critical role in defense-in-depth for nuclear power 
plants

• Rigorous quantification of NDE/SHM performance is more important and more challenging 
for emerging reactors

• Performance demonstration of NDE/SHM performance is just as important and more 
challenging for emerging reactors

• As emerging reactor concepts mature, new challenges to assessing degradation level and 
growth rates are foreseen; Research (nationally and internationally) is addressing many of 
these challenges

– Sensing: what, where, and how to measure; sensitivity & fidelity; applications to non-metals and AM materials
– Sensors and instrumentation for in-vessel/in-containment use
– Inverse models for rapid, robust data analysis
– Qualification of sensors and instrumentation, systems, methods, and procedures and personnel
– Data and testbeds for testing and qualifying methods and developing analysis methods are necessary
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Structures, Systems, and Components (SSCs)

2

Passive SSCsActive SSCs



• Age-related deterioration of nuclear plant concrete structures 
might lead to premature closure or prevent second license 
renewal process

• Current structural health monitoring (SHM) in the nuclear 
industry is strictly an offline process and lacks application of 
advanced technology solutions

• Multi-institute concrete SHM research effort would 
integrate monitoring techniques to

• Detect, localize, and estimate Alkali-Silica Reaction 
degradation mode in concrete structures

• Develop diagnostic and prognostic models
• Apply Bayesian technique to integrate different sources of 

uncertainties

• Concrete SHM research would enable science- and data-
based decision-making on structural health.

Structural Health Monitoring

V. Agarwal, G. Cai, A. Gribok, P. Nath, R. Hansley, K. Neal, Y. Bao, S. Mahadevan, “Monitoring, Modeling, and 
Diagnosis of Alkali-Silica- Reaction in Small Concrete Samples,” INL/EXT-15-36683, September 2015.



Alkali-Silica Reaction (ASR) Degradation 
• ASR is an intrinsic chemical reaction that forms a gel in 

concrete pores, expands, and causes stress and cracking of 
concrete

• Can be associated with corrosion of steel reinforcement bars 
and other steel structures embedded in the concrete

• Water containing sulfate or chloride causes ASR

Challenges
• Extent of ASR occurrence

− location throughout the plant
− position within the thickness of the concrete wall

• Extent to which ASR has reduced mechanical properties of 
concrete

Kreitman, K., 2011, “Nondestructive Evaluation of Reinforced Concrete Structures Affected by Alkali-Silica Reaction 
and Delayed Ettringite Formation,” M.S. Thesis: University of Texas at Austin, Austin, Texas.



Multimodal Measurements and Automation 
Developed technology to locate and estimate 
alkali-silica reaction (ASR) damage using 
physics-informed machine learning approach.

Miele, S., Pranav, K., Mahadevan, S., and Agarwal, V. Diagnosis of Internal Cracks in Concrete Using Vibro-acoustic 
Modulation and Machine Learning. Structural Health Monitoring Journal, vol. 21, no. 5, pp. 1973-1991, 2022. 

input coherent

coda



• Develop a three-dimensional sensing approach 
to understand internal wall thinning due to 
corrosion in secondary piping system 

− Smart film to sense chemo-mechanical state of 
inner wall of pipe structure. 

− Vibro-acoustic sensing to detect changes to 
inner wall of pipe due to material loss.

− Simulate sensing approach on a subscale 
cooling circuit testbed. 

Corrosion in Secondary Piping System in Nuclear

K. A. Manjunatha, V. Agarwal, A. L. Mack, D. Koester and D. E. Adams, "Total Unwrapped Phase-Based Diagnosis of Wall 
Thinning in Nuclear Power Plants Secondary Piping Structures," in IEEE Access, vol. 10, pp. 113726-113740, 2022.



Predictive Maintenance Strategy

7

• Developed a scalable risk-informed predictive 
maintenance strategy using machine learning 
approaches, risk modeling, visualization, and 
multi-band heterogeneous wireless architecture.

• Developed a hybrid model of circulating water 
pump (CWP) motor (basis for digital twin) to 
capture different operating dynamics.

• INL collaborated with Public Service Enterprise 
Group (PSEG) Nuclear LLC and PKMJ 
Technical Services (now part of Westinghouse 
Electric Company).

Risk-informed Predictive Maintenance Strategy

Physics-based model of CWS

V. Agarwal, K. Manjunatha, et al. Scalable Technologies Achieving Risk-Informed Condition-Based Predictive 
Maintenance Enhancing the Economic Performance of Operating Nuclear Power Plants. INL/EXT-21-64168



• National Instrument platform for data acquisition
• 8 Channel with piezoelectric accelerometers
• Accelerometers Installed

− Pressure Vessel
− Hydraulic Shuttle Irradiation System (HSIS) Piping 
− Flanges (multilevel)
− Spaced ≈ ¾ of the pressure vessel circumference

Advanced Test Reactor Acoustic Measurement 
Infrastructure (AMI)

Door to
Nozzle Trench

V. Agarwal and J. A. Smith, "Real-time in-pile acoustic measurement infrastructure at the advanced test 
reactor", Nuclear Technology., vol. 197, no. 3, pp. 329-333, Mar. 2017.



• Application of recursive short-term fast 
Fourier Transformation allows develop of 
acoustic signatures of the reactor under 
different operating conditions

• Application of machine learning approaches 
to automate diagnosis and prognosis of 
reactor state of operation

• Enable predictive maintenance strategy and 
enhance reliability of reactor operation 

Recursive Short-Time Fast Fourier Transformation 
(STFFT)

J. A. Smith and V. Agarwal, "Recursive Use of the Short-Time Fast Fourier Transform for Signature Analysis in 
Continuous Processes," in IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1-11, 2023.



Artificial Intelligence Lifecycle and Guiding Principles

10
V. Agarwal, C. Primer et al. Data Architecture and Analytics Requirements for Artificial Intelligence and Machine 
Learning Applications to Achieve Condition-Based Maintenance, INL/RPT-22-70350



Scalability Aspect of AI/ML

Cloud computing would help achieve cost-effective 
scalable predictive maintenance strategies to alleviate 
nuclear power plants from developing onsite storage, 
computing and analytics capabilities and resources.

Proposed high-level architecture of the hybrid cloud. 

11

Federated Transfer learning approach would allow 
nuclear plants to achieve scalability of AI/ML 
approaches by ensuring data privacy and security. 
Also enable distributed AI/ML approach for resilience.

Federated Transfer Learning AI/ML Approach

C. Walker, V. Agarwal, et al. Assessment of Cloud-based Applications Enabling a 
Scalable Risk-informed Predictive Maintenance Strategy. INL/RPT-23-74696

V. Agarwal, K. Manjunatha, et al. Scalable Technologies Achieving Risk-Informed 
Condition-Based Predictive Maintenance Enhancing the Economic Performance 
of Operating Nuclear Power Plants. INL/EXT-21-64168



Interpretability of Artificial Intelligence and Machine 
Learning Technologies for building Trust Among Users

12

User-centric visualization with performance and explainability metrices

LWRS Program researchers developed methods to 
address the explainability, performance, and 
trustworthiness of AI/ML to enhance the interpretability 
of outcomes.

One method uses objective metrics like Local 
Interpretable Model-agnostic Explanations (LIME) and 
Shapley Additive Explanations (SHAP).

Another method employs user-centric visualization of 
AI/ML outcomes together with objective metrics to 
support expert interpretation.

In collaboration with Public Service Enterprise Group 
(PSEG), Nuclear LLC, performed initial demonstration 
of the technical basis on circulating water system 
(CWS) for a waterbox fouling problem.

C. Walker, V. Agarwal, N. Lybeck, A. Hall, L. Lin, R. Hall, R. Boring, T. Mortensen. Explainable Artificial Intelligence 
Technology for Predictive Maintenance. INL/RPT-23-74159



In Conclusion connecting to the Digital Twin Framework

Source: https://www.nrc.gov/reactors/power/digital-twins.html
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State of Knowledge of On-Line Component Conditioning Monitoring & 
Structural Health Sensor Types
• Digital Metal Impact Monitoring System (DMIMS): loose parts monitoring within RCS
• Vibration Integrity Monitoring System (VIMS): vibration monitoring for RCP and control rod drive mechanism 
• Eddy current SG tube monitoring: steam generator tube inspection
• Neutron Flux noise: remote condition monitoring process using the ex-core and in-core neutron flux 

detectors

DMIMS cabinet

VIMS cabinet Pegasys Robot
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Advanced Sensors for On-Line Component Conditioning Monitoring
Sensors must be able to operate reliably in harsh environments (high 

temperature and radiation)

• New sensors for Gen III Reactor and Fuel storage applications
– In-Rod Sensor 
– Dry-Cask applications

• Advanced Reactors (Gen IV and Micro Reactors)
– Distributed fiber sensing
– Eddy Current Flow Monitoring System
– In-Core Neutron Flux Detectors
– Fuel integrity monitoring system
– Helium leak detector
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In-Rod Sensor System
• Overview

– Real-time transmission of critical parameters
 Center line fuel pellet temperature
 Rod internal pressure
 Fuel pellet stack elongation

– Fuel rod penetration not required
– Signal wirelessly coupled to transceiver in thimble 

tube

• Benefits
– Non-intrusive real-time data instead of the typical 

“cook and look” significantly accelerates development
– Reduction or elimination of post irradiation 

examination

Sensor system plant configuration

Pressure sensor assembly installed at ORNL HFIR



6

Westinghouse Non-Proprietary Class 3 © 2023 Westinghouse Electric Company LLC. All Rights Reserved.

Dry-Cask Sensor System
• Overview

– Wireless transmission of critical parameters (temperature, 
pressure) without adding penetrations to the spent fuel 
storage steel cask

• Benefits
– Provides direct measurements (cladding temperature, 

pressure) without cask penetration
 Reduce surveillance
 Allow direct measurements that may lead to degradation 

mechanisms (SCC, e.g.)

Sensor system configuration
Sensor response from configuration on the left figure Transceiver placed in the exterior of the cask

while sensor at same elevation inside cask
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Distributed Fiber Sensing
• Overview

– Fiber optic sensors can provide measurement 
such as temperature and strain under harsh 
environmental conditions

• Benefits
– Distributed measurements with a single fiber 

compared to a single measurement from a 
single sensor

• Applications
– Heat pipe temperature
– Spent fuel storage steel canister structural 

health eVinci Microreactor



8

Westinghouse Non-Proprietary Class 3 © 2023 Westinghouse Electric Company LLC. All Rights Reserved.

Eddy-Current Flowmeter 
• Overview

– The Eddy Current Flowmeter (ECFM) is an electromagnetic sensor that measures the 
velocity of liquid sodium flow through the heat pipes of the eVinci Microreactor.

– A current induced into the center primary coil results in a voltage difference across the 
secondary coils that is directly proportional to the sodium flow velocity.

• Benefits
– Near real-time indication of heat pipe failure

Heat pipe sodium flow path Experimental setup
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Thank you!

Questions?
carvajjv@westingouse.com

412-342-1743

mailto:carvajjv@westingouse.com
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Molten Salt Reactors

ADVANCED EQUIPMENT AND SENSORS FOR MOLTEN 
SALT SYSTEMS
Molten salt systems present a broad number of operational challenges due to the high temperatures, 
corrosivity, and radioactivity of the salt media. MSR-relevant equipment and sensors suitable for 
economical deployment must have excellent longevity, stability, and performance over multi-year durations.

Salts under study
Chloride salts 
Fluoride salts
Be-bearing salts
U/TRU-bearing salts

Fuel reprocessing salts
MSR fuel salts

Hoyt et al. JNMM (2021)

Each group of sensors has a different range of developmental costs 
and expected performance profiles.

Process Monitoring Technologies



MANY TYPES OF MONITORING TOOLS COULD POTENTIALLY 
SUPPORT MSR OPERATIONS AND STRUCTURAL HEALTH

Under DOE NE’s Advanced Reactor 
Safeguards program we conducted a 
comprehensive assessment of available 
monitoring tools relevant to MSRs.

Most technologies are still at an insufficient 
technology readiness level to permit 
deployment.

Key monitoring capabilities for MSRs:
 Corrosion 
 Salt chemistry 
 Particulates
 Nuclear material accountancy

Molten Salt Process Monitoring and Safeguards Instrumentation 
Assessment Sheet

TRL

PM 
impact

safeguards 
impact



Argonne has demonstrated a variety of monitoring technologies to enable safe operations and material 
accountancy for nuclear-relevant systems. Deployable sensors for salt composition, redox state, particle 
concentrations, etc. have been created.

MOLTEN SALT SENSOR SYSTEMS

Electrochemical Monitoring of Salt 
Composition

Windowless Optical 
Monitoring of Composition

Automated 
Salt Sampling

Particulate 
Monitoring



Temperature gradient driven 
transport

Decomposition Reactions

Dissolution/Precipitation 
Reactions*

Displacement Reactions

FUNDAMENTAL CHEMICAL MECHANISMS 
CONTROLLING THE STRUCTURAL HEALTH OF MSRs
Many thermodynamic and kinetic 
phenomena govern the evolution of the 
chemistry within an MSR

 Homogeneous reactions in the bulk salt
 Heterogeneous reactions at the 

salt/structure interface

The rates of these reactions are controlled 
by a wide variety of factors
 Chemical Kinetics
 Mass Transfer
 Charge Transfer

The corrosion rate is ultimately 
controlled by the combined rates of the 
underlying chemical mechanisms

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ⇌ 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀𝑀𝑀 ⇌ 𝑀𝑀𝑀𝑀2+ + 𝑀𝑀2−

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 + 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀 ⇌ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑁𝑁𝑁𝑁𝑀𝑀𝑀𝑀

𝑀𝑀𝑀𝑀 ⇌ 𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑀𝑀. )

2𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀3 ⇌ 2𝑆𝑆𝑆𝑆𝑀𝑀𝑀𝑀2 + 𝑀𝑀𝑀𝑀2

𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀2 + 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀3 ⇌ 𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀3 + 𝐹𝐹𝐹𝐹𝑀𝑀𝑀𝑀2 

3𝑀𝑀2+ ⇌ 𝑀𝑀0 + 2𝑀𝑀3+

�𝑀𝑀0
ℎ𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙

⇌ �𝑀𝑀0
𝑐𝑐𝑜𝑜𝑙𝑙𝑐𝑐 𝑙𝑙𝑙𝑙𝑙𝑙

HETEROGENEOUS REACTIONS

Redox Reactions 

𝐹𝐹𝐹𝐹2+ + 2𝐹𝐹− ⇌ 𝐹𝐹𝐹𝐹0 

2𝑀𝑀+ + 2𝐹𝐹− ⇌ 𝑀𝑀2 

𝑀𝑀𝐶𝐶2+ + 2𝐹𝐹− ⇌ 𝑀𝑀𝐶𝐶0 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀+ + 𝐹𝐹− ⇌
1
2𝑀𝑀2 𝑠𝑠𝑠𝑠𝑀𝑀. + 𝑀𝑀𝑀𝑀𝑀𝑀(𝑠𝑠𝑠𝑠𝑀𝑀. )

Disproportionation Reactions*

HOMOGENEOUS REACTIONS

*Can occur both heterogeneously and homogeneously



OPERATIONAL ENVELOPES FOR MSR CHEMISTRY
Regions of optimal chemical conditions can be defined in terms of the salt chemistry operational envelope. 
The operational envelope is constrained by structural metal oxidation at high salt redox potentials, oxide 
precipitation at high oxide concentrations, and various material interactions at low redox potentials. 

Pourbaix diagram data taken from:
Brown et al. J. Appl. Electrochem. 43 (2013)

Guo et al. J. Electroanal. Chem (2021)
Guillaumont R, Mompean FJ, NEA Amsterdam (2003)

and from recent experiments at ANL 

UO2

U3O8

U(OCl2)

UCl3

UCl4

Operational Envelope

U

MgCl2-KCl-NaCl-UClx at 500 °C

Pourbaix diagram and associated operational envelope for 
Chloride-salt-cooled reactors with dissolved uranium fuel salt.



MULTIPHYSICS SIMULATIONS FOR CHEMISTRY AND CORROSION
Multiphysics simulations can be used to define the allowable limits of the operational envelope for 
specific molten salt systems. These simulations are informed by many fundamental thermochemical 
and thermophysical properties that must be accurately measured.

Local Cr 
depletion/deposition rate

i
(A m-2)

2.7×10-2

1.1×10-2

-5.5×10-3

Molten Salt Chemistry Simulations using Argonne’s 
Molten Salt Chemistry and Transport code (MOSCATO)

Thermophysical Properties (M. Rose, et al.)

Salt/Alloy Thermodynamic and Mass Transfer Properties
Cr2+/Cr0 ThermodynamicsFe2+/Fe0 ThermodynamicsCr2+, Fe2+ Diffusion 

Coefficients.

Density Viscosity Thermal Diffusivity

6.0×10-4 8.0×10-4 1.0×10-3 1.2×10-3 1.4×10-3
1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

D
Zr

4+
 (c

m
2 /s

)

1/T (1/K)

Properties of Corrosion Control Species Alloy Properties



FUNDAMENTAL THERMODYNAMIC DATA FOR SALT-
ALLOY SYSTEMS
Fundamental properties for the salt and alloy are essential to properly quantify corrosion processes. Accurate 
thermodynamic properties and rate-controlling diffusion and reaction rate constants must be known.

Typical measurements during Cr2+ and Fe2+ property testing in 
MgCl2-KCl-NaCl

Guo et al. J Electroanalytical Chem (2021)

Development of Electrochemical Sensors for  
Corrosion Products

Fundamental Properties for Corrosion Products



HIGH-THROUGHPUT IN SITU CORROSION ASSESSMENTS OF 
SALT-ALLOY SYSTEMS

 Electrochemical sensors have been 
deployed in many static salt-alloy systems 
for monitoring of corrosion.

 Many alloys can be rapidly evaluated in 
high-throughput static exposure tests.

 In general, the most common corrosion 
products of ASME code qualified alloys for 
MSRs are compounds containing 
chromium, iron, and nickel.

High-throughput salt capsule testing apparatus with in situ monitoring
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Moving beyond static testing, Argonne has developed Modular Flow Instrumentation Testbeds (MFITs) and 
other molten salt flow systems to support the development of sensors for in-line and on-line flow conditions. 

TESTBEDS FOR FLOW SYSTEM MONITORING

 Flow rates: 0.01 to 1 L/s 

 Radiological operations: >13 months of active 
    operations in total

• Flow rates: 0.01 to 0.5 L/s

• Salt level sensor for making flow rate 
determinations.

Mini-MFIT for Coolant Salts MFIT for Fuel-Bearing Salts

 Engineering-scale flow loop with suite of 
corrosion monitoring and control capabilities                    
(coming online soon…)

Secondary Effects Loop



ELECTROCHEMICAL SENSORS

FLOW LOOP MONITORING

Multielectrode array sensors 
installed onto the ORNL 

FASTR loop

Argonne has successfully operated electrochemical sensors in several molten salt loops. Success is 
contingent on extensive signals processing and shielding measures to achieve noise-free signals in 
industrial-scale environments.

Salt potential vs. time

Cr2+ concentration vs. time

Instrumentation for distributed electrochemical sensors at 
the Kairos Power Engineering Test Unit

https://www.ans.org/news/article-5541/kairos-power-begins-loading-14-tons-of-flibe-
into-molten-salt-test-loop/ 

Typical data from monitoring 
of thermal convection loop

https://www.ans.org/news/article-5541/kairos-power-begins-loading-14-tons-of-flibe-into-molten-salt-test-loop/
https://www.ans.org/news/article-5541/kairos-power-begins-loading-14-tons-of-flibe-into-molten-salt-test-loop/


WINDOWLESS OPTICAL MONITORING

OPEN-ORIFICE GRAVITY FLOW CELL 
A windowless optical cell has been designed to enable long-duration 
on-line spectroscopic monitoring of molten salt compositions
 Gravity flow and Venturi effect prevent fluid flow through holes in flow cell wall
 Orifices provide windowless optical access to fluid flowing in sampling loop

Operating MechanismOpen-orifice flow cell Benchtop Raman Spectroscopy Demonstration



SALT SAMPLING

AUTOMATED SALT SAMPLE EXTRACTION
Salt sampling will be a crucial component of 
molten salt process monitoring and 
safeguards
Argonne’s automated salt sampling 
technology uses a Helmholtz resonator 
chamber to generate salt droplets for off-line 
analysis

 Consistent sample generation 
 Wide range of achievable sample sizes
 No moving parts (freeze valve compatible)
 Reduced containment risks compared to 

pressure-driven flow

High throughput sampling eliminates errors 
from inhomogeneity and achieves high 
accuracy measurements

Batch-operated HR pneumatic salt sample generator

Left: XRF measurements for individual LiCl-KCl salt microsamples with 
uranium content ranging from 0.125 to 5.0 wt.%. Right: Mean peak 

height values for each uranium concentration.

Launiere  et al. United States: N. p.10,416,045 (2019)



PARTICLE MONITORING SENSORS

 Precipitated solids including oxides 
and noble metals are a significant 
challenge for MSRs

 Argonne has developed particle 
monitoring technologies to elucidate 
the presence of solids within the 
process media

 The presence of particles can be a 
substantial challenge for operations of 
molten salt process equipment

– Clogging
– Surface dross
– Erosion corrosion

 The sensors have been demonstrated 
over a range from 0.0 to 10% wt% for 
a variety of oxide materials

Experimentally measured effective resistivity as a function of particle loading 
with comparison to theoretically calculated curve (left: full concentration 

range, right: low concentration range, 0.0 to 1.0 wt%)

Guo et al. ANL/CFCT-23/1 (2022) 



VORTEX SEPARATION OF PRECIPITATED PARTICLES
 Particle management is crucial to avoid 

clogging and erosion corrosion in molten 
salt reactors

 Generate accelerations of 1000s of g’s to 
facilitate the removal of very small particles 
from the salt (< 10 micron)

 Argonne has demonstrated these 
separators as part of a large-scale salt 
purification flow sheet that includes step-
wise dehydration and reactive metal 
contacting

Salt-particle separator installed onto transfer line under 
receiver vessel lid

Guo et al. ANL/CFCT-23/1 (2022) 



Information from multiple types of sensors 
will ultimately be needed to ensure long-
term health of MSRs

Argonne has developed an automated 
monitoring and control platform called 
ILEX to enable multimodal monitoring of 
complex molten salt systems
• Facilitates repeatable flow conditions and sensor 

manipulation with minimal operator intervention.

• >1,000 flowing salt experiments completed
• >3,000 electrochemical sensor 

measurements recorded since January 2023 

• Has been deployed for remote sensor operations at 
industrial partners

AUTOMATED MONITORING AND CONTROL

Argonne’s ILEX Process Monitoring and Controls Software



DISCUSSION
Monitoring and characterization molten salt coolants will be a crucial to reactor 
structural health. The exact form that the required monitoring approaches will take 
will be dependent on many vendor-specific factors.

Many questions remain:

 Where will monitoring need to be done?
– Primary & secondary coolant systems
– Hot and cold regions
– Specific regions of safeguards relevance 

 How accurate will the monitoring tools need to be to ensure the salt is kept in the 
prescribed operational envelope?



CONCLUSIONS
Argonne has developed a wide variety of technologies 
for MSRs and associated fuel processing systems

Future work is being directed toward:
 Application of multimodal sensors to additional nuclear-relevant 

fluoride and chloride salts
 Development of additional spectroscopy capabilities within the 

windowless optical cell
 Development of purification and salt processing systems
 More forced convection studies in the Modular Flow 

Instrumentation Testbed and in Argonne’s engineering-scale 
flow loop

 Development of novel process chemistries and fuel cycle 
approaches

 Sensor deployability and user experience improvements

Molten salt flow loop and purification system enclosures
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High-Temperature NDE Applications

Up to 200◦C 
Available with current 

technology

Up to 350◦C – LWRS 
Monitor Existing cracks:
Do I need to repair now?

~650◦C and beyond
–advanced reactors

Continuous operations
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EPRI R&D for High-Temperature Sensors

Explore sensor prototypes
• Thermal limit testing
• Thermal cycling
• Long-term thermal endurance

Guide, promote advanced 
sensor development
• Directly installed UT for 600 C
• UT phased array for 350 C
• Ultrasonic process sensors

Adhesive mounting and 
coupling
• Practical bonding & coupling
• Advanced strategy testing
• Limited irradiation testing 

(NSUF)

Networking with 
stakeholder communities

•Advanced reactor developers
•Sensor technology developers
•National Labs
•Adjacent industries
•MISSION: Sensors
• Synergy, non-redundancy, road-

mapping

Conducting yearly workshops since 2021  
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Current Testing

 Bulk-wave ultrasonics up to 1472 ᵒF / 800 ᵒC
 Ultrasonic Phased array up to 662 ᵒF/ 350 ᵒC
 Adhesives up to 700 ᵒF/ 371 ᵒC
 Embedded sensors in flexible circuitry 350 ᵒF / 180 ᵒC
 Ultrasonic process sensors
 NDE alternatives (strain-based FFS)

 High-temperature infrastructure (20+)

– Box furnaces 2192 ᵒF/ 1200 ᵒC
– Convection Ovens  932 ᵒF/ 500 ᵒC
– Hotplate 1472 ᵒF 800 ᵒC

Bulk Wave Probe for 550 ᵒC 

Phased array probe for 350 ᵒC 
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Selections from Relevant Recent Publications
 3002026401_Sensors for High Temperature Applications

– coming 12/2023

 3002026548_Sensors for Extreme Environments Wireless Dry_Cask Storage 
Internals Monitoring 
– 2023, free to the public

 3002026618_The State of Sensors for Advanced Reactor Applications
– 2023

 3002023836_Feasibility of Monitoring Fitness for Service by External 
Component Strain
– 2022  (3x follow-on efforts)

 3002018479_Sol-Gel Spray-On Technology for High-Temperature Ultrasonic 
Sensors
– 2020, free to the public
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Sensors and Robotics Workshop

Attendees: (appx 80)Agenda:
 Technical presentations

– Innovative technology
– Current sensors
– Non-LWR fission designs
– ITER
– Robotics technologies
– Manipulators
– Automation

 Industry open discussions

 Advanced reactor developers
 Sensor Developers
 Robotics technology providers
 Automation technologists
 Support vendors
 National Laboratories
 Universities
 EPRI

Joint EPRI/INL/MIT workshop, October 10 & 11, 2023
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MISSION: SENSORs

Support Groups:
NEI
Labs
EPRI
ANS

University

Sensor Experts Network to Support Operation of new Reactors 

Many stakeholder groups are 
impactful for sensors, I&C
Progress efforts must consider 
all stakeholders together for 
an efficient, responsible, and 
feasible solution
How to coordinate?

End Users
(Reactors, 

Developers)

Selection Strategy

Qualification

Regulator

Standardization

Sensor Technology Infra-structure

Deployment

…
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SENSORs Mission & Platform

 Provide technical information exchange among stakeholder groups
– Raise technical questions and establish holistic context
– Identify common challenges

 Strategize major development directions
– Explore potential solution options
– Solicit buy-in from adjacent stakeholders
– Combine development goals into synergistic direction
– Identify standardization opportunities

 Maintain sensors roadmap
– Touch-base on progress, emerging needs & information
– Follow technical developments, update gap closure
– Focus development on the most responsible approach
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MOTIVATION

DOE seeks advanced sensors and sensing technologies, capable of surviving in substantial 
radiation fields for online monitoring and control of nuclear power plants, and other 
nuclear applications with demonstrated

– Accuracy
– Reliability 
– Resilience 
– Ease of replacement and upgrade 
– Directly support existing power reactors, test reactors, advanced reactors, and other similar 

systems.

XII Proprietary Information2

Our Solution 
Radiation Endurance Ultrasonic Transducer (REUT) based sensor 
systems that sustain high-temperature and radiation environments 
for nuclear power plants. REUT design utilizes selected radiation 
resilient materials, material engineering and harnessing knowledge 
of acoustic propagation in materials.



REUT SENSOR TECHNOLOGIES DEVELOPMENT

• REUT sensor design/development

• REUT-based sensor technologies development for nuclear reactors 

– Temperature sensor

– Multi-point temperature sensor

– Fluid viscosity sensor

– Flow rate sensor

– Liquid level sensor 

– Structural health monitoring (AE sensor & GW sensor)

– Wireless REUT embedded sensor

• Single-channel and multi-channel data acquisition development

• Application software and signal processing algorithms development

• Machine learning toolbox development

* DOE SBIR Phase II programs (grant # DE-SC0020019 and DE-SC0021863)

3 XII Proprietary Information

XII-developed REUT sensor and X-1067PR 
Ultrasonic pulser/receiver



REUT DESIGN & DEVELOPMENT

XII Proprietary Information4

• Designed, developed and assembled REUT-I and REUT-II prototypes using 
stainless steel, ceramics and high-temperature piezo element (LiNbO3). 

• Designed, fabricated and tested multiple REUT metal backing designs. 

• Demonstrated REUT to generate and detect acoustic/ultrasonic signals of 
different frequencies. 

• Demonstrated REUT performance at high-temperature up to 1,000 ⁰C. 

• Demonstrated REUT performance subjecting to thermal cycles up to 800 ⁰C. 

• Demonstrated REUT performance subjecting to Gamma irradiation 700 Mrad 
and fast neutron 1015 n/cm2 for 7 hours

Backing development Assembly development FEA simulation Testing Improvement

US Patent 11,620,973 “High 

Tolerance Ultrasonic Transducer”



REUT SENSOR SYSTEMS/APPLICATIONS 

DEVELOPMENT

5

Temperature sensors Fluid viscosity and level sensors 

Fluid temperature, pressure and flow 
sensors 

Structural health monitoring sensors 

XII Proprietary Information



REUT STRUCTURAL HEALTH MONITORING (SHM)
Passive AE SHM :
• REUT sensors with ¾”-8 thread mounting 

• LiNbO3 and ZnO piezo-element were used

• Signal processing technique were developed 
for AE monitoring  and source localization 

• AE sensing and localization were tested for 
temperatures up to 150ºC 

Active Guided Wave SHM :
• Same AE setup for GW SHM

• Signal processing techniques were developed 
to detect changes in the structure and 
determine damage location.

Benefits:
• Combination of GW and AE sensing for active 

and passive SHM 

• Continuous AE monitoring and damage 
localization at high temperatures

• Periodic GW SHM to verify the damage and 
its location

• Easy to install and operate 

XII Proprietary Information6

With delay line

Direct mount



MULTI-CHANNEL DATA ACQUISITION HARDWARE

• Passive AE model (Xplore-8R) 
• Passive and Active Dual model (Xplore-8TR)
• Support up to 8 transducers 
• Up to 8 transducers in receiving mode 

concurrently
• Transmission mode in Xplore-8TR support 

up to 8 transducers in sequentially
• Low Noise with EMI Shield and Input / 

Output Isolation
• Software controlled gain adjustment of 

receiving amplifier
• Either negative pulse up to 1MHz or 

arbitrary waveform generator (AWG) up to 
1MHz

• On-board high voltage power module and 
high voltage amplifier

• Computer control of DAQ settings via USB

XII Proprietary Information7



APPLICATION SOFTWARE DEVELOPMENT

• SHM software with maximum 
likelihood estimation provides 
accurate estimation of 
damage/defect location. 

• Signal processing algorithm 
automatically estimates the 
ultrasonic velocity.

• Artificial Intelligence/Machine 
Learning (AI/ML) toolbox 
incorporated in the software is 
able to distinguish true AE from 
other acoustic events.  

XII Proprietary Information8



FIELD TEST OF CISCC IN SPENT NUCLEAR FUEL DRY-STORAGE 

CANISTER 

9

Orano DSC Field Test Setup

8-Channel DAQ Box

Spark Plug AE Source

Data Recording



WIRELESS REUT DEVELOPMENT

• Developed wireless REUT scheme to eliminate 
permanent wire connections to sensors 

• Reduce sensor system maintenance, especially 
electrical connections failure 

• Wireless wall thickness or material degradation 
monitoring applications

• Can be adopted for the other REUT applications of 
temperature, viscosity and GW SHM applications  
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Ceramic PCB

Pending US Patent #63,460,833

(a) Sensor coil                            (b) Interrogator coil



FINE TUNE PULSER/RECEIVER COIL PARAMETERS
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Coil 1

Coil Shape Ring Inductance 0.8uH
Coil 
Diameter

25.4 Resistance 0.084 
Ohm

Number of 
turns

3 Impedance @ 
1kHz

0.084 
Ohm

Coil 2

Coil Shape Ring Inductance 1.52 uH
Coil 
Diameter

25.4 Resistance 0.091 
Ohm

Number of 
turns

5 Impedance @ 
1kHz

0.172 
Ohm

Coil 3

Coil Shape Ring Inductance 3.2 uH
Coil 
Diameter

25.4 Resistance 0.127 
Ohm

Number of 
turns

8 Impedance @ 
1kHz

0.128 
Ohm

Coil 4

Coil Shape Ring Inductance 4.95 uH
Coil 
Diameter

25.4 Resistance 0.145 
Ohm

Number of 
turns

10 Impedance @ 
1kHz

0.148 
Ohm

Wirelessly interrogated pulser echo signals captured with 
interrogation coils in the table: a) coil 1, b) coil 2, 3) coil 3 and 4) coil 4

(a) (b) 

(c) (d) 

  

 

This wireless REUT sensor system was tested to measure 

the thickness of two specimens, and an accuracy of 0.005 

inches (0.127mm) was achieved.



SINGLE-CHANNEL DATA ACQUISITION DEVICE DEVELOPMENT

• X-1061 PR
– Negative pulse: 400 Vp-p 

max

– Low-noise amplification

– Receiver gain: 60dB

• X-1067 PR
– Adjustable square pulse 

width

– Pulse amplitude: 100, 200, 
300, 400 Vp-p

– Operation frequency range: 
100KHz – 20MHz

– Receiver gain: 60dB

XII Proprietary Information12

Both X-1061PR and X-1067 PR can be digitally controlled through a USB port

Rev. 0

Rev. 1



ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TOOLBOX

13

XII Machine Learning Toolbox:
• Feature Extraction

– Waveform (AE/non-AE) signal feature analysis

• Synthetic Data Generation
– Generate synthetic data for expand dataset and improve ML model performance

• Feature Selection
– Increase model training efficiency and optimize the workflow for following modules

• Hyperparameter Tuning
– Tuning parameters for different ML models and selecting models with better performance on a partial dataset

• Model Training
– Training and validating the selected model with full dataset, provide final ML models for end users

Feature Extraction Synthetic Data Generation

XII Proprietary Information



TAKE AWAYS

• The REUT design allows to continuously operate at high-temperature (e.g., 800ºC or 
higher) and high-irradiation environments of nuclear reactors

• REUT sensor systems are developed and demonstrated for online structural heath 
monitoring:
– Passive AE detection of corrosion, cracking, creep, etc.
– Active GW detection and quantification of defect size, location, etc.
– Wireless, embedded sensing wall thickness and material property degradation, etc.

• Single-channel and multi-channel data acquisition devices are developed for REUT 
sensor systems

• Applications software packages with signal processing algorithms are developed for 
REUT online monitoring applications

• AI/ML toolbox is developed to enhance and expand REUT online monitoring 
capabilities

XII Proprietary Information14
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