Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safegaurds TerraPower NATRIUM Design Reactor
Docket Number:	(n/a)
Location:	teleconference
Date:	Wednesday, August 23, 2023

Work Order No.: NRC-2510

Pages 1-141

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	DESIGN CENTERED LICENSING: TERRAPOWER SUBCOMMITTEE
8	+ + + + +
9	WEDNESDAY
10	AUGUST 23, 2023
11	+ + + + +
12	The Subcommittee met via hybrid in-person
13	and Video Teleconference, at 8:30 a.m. EDT, Thomas
14	Roberts, Chairman, presiding.
15	
16	COMMITTEE MEMBERS:
17	THOMAS ROBERTS, Chair
18	RONALD G. BALLINGER, Member
19	CHARLES H. BROWN, JR., Member
20	VICKI BIER, Member
21	VESNA DIMITRIJEVIC, Member
22	GREGORY HALNON, Member
23	WALT KIRCHNER, Member
24	JOSE MARCH-LEUBA, Member
25	ROBERT MARTIN, Member
l	I

		2
1	DAVID PETTI, Member	
2	JOY L. REMPE, Member	
3		
4	ACRS CONSULTANT:	
5	DENNIS BLEY	
6	STEVE SCHULTZ	
7		
8	DESIGNATED FEDERAL OFFICIAL:	
9	KENT HOWARD	
10		
11	ALSO PRESENT:	
12	REED ANZALONE, NRR	
13	BRIAN JOHNSON, TerraPower	
14	NICK KELLENBERGER, TerraPower	
15	ED LYMAN, Public Participant	
16	CANDACE DE MESSIERES, NRR	
17	SCOTT MOORE, ACRS	
18	GEORGE PICCARD, TerraPower	
19	JESSE SEYMOUR, NRR	
20	MALLECIA SUTTON, NRR	
21	ERIC WILLIAMS, TerraPower	
22	GEORGE WILSON, TerraPower	
23	EMILY YOUNG, TerraPower	
24		
25		
ļ	I	

	3
1	C-O-N-T-E-N-T-S
2	
3	Opening Remarks and Objectives
4	By Thomas Roberts 4
5	TerraPower Nuclear Island and Energy Island
6	Interface TR Submittal
7	By Nick Kellenberger, Eric Williams, George
8	Wilson
9	NRC Staff Presentation Nuclear Island and Energy
10	Island Interface TR Review
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR ROBERTS: This meeting will now come
4	to order. This is a meeting of the ACRS Subcommittee
5	for the TerraPower NATRIUM Design Reactor. I'm Tom
6	Roberts, Chair of the Subcommittee.
7	ACRS members in attendance are Ron
8	Ballinger, Juan, or Jose March-Leuba, Matt Sunseri,
9	Dave Petti, Joy Rempe, Bob Martin, Vicki Bier, Greg
10	Halnon, and Charlie Brown. Members online are Walt
11	Kirchner and Vesna Dimitrijevic. Can you please
12	confirm you're online?
13	MEMBER DIMITRIJEVIC: Yes, we are here.
14	Good morning.
15	CHAIR ROBERTS: Good morning, Vesna. And
16	Walt?
17	MEMBER KIRCHNER: Yes, Tom. Good morning.
18	CHAIR ROBERTS: Yes, good morning. And
19	consultants, we have Steve Schultz in the room, and
20	Dennis Bley online. Dennis, can you confirm you're
21	there?
22	MR. BLEY: I'm here.
23	CHAIR ROBERTS: Thank you. Now, Kent
24	Howard of the ACRS staff is the designated federal
25	official for the meeting, over there.
Į	I

(202) 234-4433

Today the Subcommittee will discuss a topical report submitted by TerraPower, and reviewed by the NRC staff on the subject of independence between the nuclear island and the energy island of the NATRIUM design.

The topical report sets out to make the 6 7 case that all structured systems and components, or 8 SSCs, relied upon for reactor safety are on the 9 nuclear island. And events on the energy island are 10 sufficiently decoupled from the nuclear reactor that the energy island can be considered to be non-safety, 11 and not require use of reactor safety standards in 12 design and construction. 13

These are more detail on this from the applicant, as well as the contents of the direct safety evaluation from the NRC staff.

The ACRS was established by statute, and is governed by the Federal Advisory Committee Act, or FACA. The NRC implements FACA in accordance with regulations found in Title 10 of the Code of Federal Regulations, Part 7.

We hold Subcommittee meetings to gather information and perform preparatory work that will square deliberation at a full Committee meeting if necessary.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

The Committee can only speak to 2 published letter reports. As with any ACRS meeting, attendees should consider any remarks by ACRS members are their personal comments and not Committee positions.

The rule for participation in all ACRS meetings, including today's were announced previously in the Federal Register, and included on the ACRS section of the USNRC's public website.

10 This website provides our charter, bylaws, agendas, letter reports, and transcripts of all 11 full and Subcommittee meetings, including presented 12 material. 13

14 As stated on the website, members of the 15 public who desire to provide written or oral input to the Subcommittee may do so, and should contact the 16 designated federal officer five days prior to the 17 meeting as practicable. 18

19 We did not receive any written comments or requests to make oral statements from members of the 20 public regarding today's session. 21

22 Today's meeting is open to public attendance. And there will be time set aside during 23 24 the meeting for comments from members of the public attending or listening to our meetings. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

6

7

8

9

	7
1	Today's meeting is a hybrid meeting,
2	meaning there is both in person attendance and remote
3	capability via a Microsoft Teams link.
4	A transcript of today's meeting is being
5	kept. Therefore, we request that meeting participants
6	identify themselves when they speak, and speak with
7	sufficient clarity and volume so they can be readily
8	heard.
9	At this time, I ask all the attendees to
10	put their devices on mute, both the Teams computers
11	and cell phones, to minimize disruptions, and unmute
12	only when speaking.
13	We'll now proceed with the meeting. And
14	I'll call upon Mr. Nick Kellenberger from TerraPower
15	to make introductory remarks.
16	MR. KELLENBERGER: Good morning and thank
17	you, ACRS Subcommittee. We are excited for our first
18	Subcommittee meeting. We had a presentation earlier
19	this year on the overview of our plant, but this will
20	be the first, this is the first meeting on our, one of
21	our topical reports.
22	As the Chair said, I'm Nick Kellenberger.
23	I'm a licensing manager at Terra Power, and joined by,
24	to my left Eric Williams. He's the Senior Vice
25	President and design authority for the NATRIUM
I	I

(202) 234-4433

	8
1	reactor; George Wilson, who's our Vice President of
2	Reg Affairs and Licensing.
3	Also in the room, Emily Young, our manager
4	of deterministic safety analysis, and George Piccard,
5	who's our Site Director for Unit 1, first NATRIUM
6	plant. With that I'm going to turn it over to Eric to
7	walk us through the beginning. And then George will
8	take over near the end.
9	MEMBER MARCH-LEUBA: Sorry. These
10	microphones are very, very directional. All of the
11	people in the
12	MR. WILLIAMS: Okay. I'm going to go
13	ahead and talk. If there's any problems with the
14	audio, just stop me and let me know. So, my name is
15	Eric Williams. Thank you for the introduction. And
16	I'm happy to be here to talk about this topical report
17	today.
18	We've lined up a presentation that goes
19	through the topics here. We're going to go back and
20	look at the reactor overview of the design. But since
21	we were here recently and explained the reactor
22	overview recently to the ACRS I'm going to more focus
23	on what's important for the topical report discussion
24	today. So, going through and pointing out the key
25	features of the energy island and nuclear island
ļ	I

(202) 234-4433

	9
1	interfaces, and things like that.
2	Then we're going to talk about operation
3	flexibility, and how the energy island is designed to
4	operate and take care of transients. We're going to
5	talk about what we mean by transient separation, so
6	that will get into some of the structure that we're
7	using to look at licensing basis events, and all of
8	the licensing modernization project approach.
9	And then we're going to end with
10	regulatory impacts. And George is going to take that
11	portion at the end. And so, really all of the
12	discussion is really designed to set up that
13	discussion on regulatory impact. So, we'll jump right
14	in.
15	All right. So here's the look that we
16	usually portray if we're talking about the NATRIUM
17	safety features. Some of the main differences to
18	other technologies are kind of tabulated there on the
19	left.
20	It is a pool type metal field sodium fast
21	reactor. A lot of the experience in the United States
22	has been with loop reactors. There's been a lot of
23	international experience on pool reactors.
24	So, that's one of the key aspects here
25	that's important to talking about the thermal inertia
	1

(202) 234-4433

www.nealrgross.com

	10
1	that exists in the primary heat transport system.
2	Having the pool reactor in the large volume coolant in
3	the vessel is an important feature for that.
4	Metal fuel, and the specific design for
5	the NATRIUM reactor lead to a lot of the safety
6	features that we portray on this slide. The fact that
7	it's metal fuel, and it's metal coolant makes the two
8	very compatible with one another, which adds another
9	aspect to the safety case.
10	And the molten salt energy island is
11	another change that we've introduced into the design,
12	that we think adds a lot to the safety case. And
13	we're going to be talking a lot about that part today.
14	Other sodium fast reactors have had steam
15	gener had sodium steam generators, sodium water
16	steam generators. So that is one of the aspects that
17	we've eliminated by design. Because the sodium water
18	reaction is highly energetic.
19	What we now have are sodium salt heat
20	exchangers. So, we'll be introducing a lot about
21	those today in the discussion. And there is also an
22	exothermic reaction between sodium and salt that we've
23	mentioned before, much more benign reaction than
24	sodium and water. But still something that is
25	addressed in the design.
ļ	I

(202) 234-4433

And the large thermal inertia is something 1 2 that's going to come up a lot, not just in the primary 3 heat transport system, but the intermediate heat 4 transport system, and the salt system as well. 5 There's a lot of volume of coolant in those systems that can absorb heat. So, those are kind of the key 6 7 aspects for setting up today's discussion. We've got 8 a --9 MR. BLEY: Eric? 10 MR. WILLIAMS: -- fundamental safety --Oh, yes. 11 This is Dennis Bley online. 12 MR. BLEY: Ι don't know that we talked about it last time. 13 But 14 looking at this picture there's a lot of stuff inside 15 your pool. Can you say anything, just briefly, about 16 how you've set this up to be able to do maintenance 17 with such a compact design? MR. WILLIAMS: Yes, sure. So, all of the 18 19 components are designed to be removed main and replaced, or go through operation and maintenance. 20 kidnev shaped intermediate 21 So, even the heat exchangers are designed to come out. 22 The mechanical primary sodium pumps can be removed. 23 24 There's a maintenance port as well in the reactor vessel head that I don't think can be seen on 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

11

12 1 the diagram, that can be used to go in and hook up different machines to perform maintenance. 2 3 And then of course you've qot the refueling equipment that mates up with the reactor 4 5 vessel head to maintain the fuel assemblies. So, we are designing that for maintenance. 6 7 I think the picture gives the impression 8 of more congestion than there actually is. Certainly 9 in the center of the reactor vessel head, where the 10 control rods come in. That is a highly congested part right there just due to the control rods, 11 the That's the rotating plug that handles the refueling. 12 refueling equipment as well. 13 14 So there's some congestion in that area. But it's still a very large vessel. And we have the 15 16 equipment, you know. I think it looks a lot more 17 congested on the picture than it actually is. But --MR. BLEY: Okay. 18 19 MR. WILLIAMS: -- the cool pools reopen, 20 yes. MR. BLEY: Thank you. And at some point 21 in the future, if you guys have movies about this 22 operation will work it would be real helpful to see 23 24 that. MR. WILLIAMS: Yes, definitely. 25 Yes. We

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	13
1	can pull up the 3D model even, and rotate it around
2	and take a look inside.
3	MEMBER REMPE: Is the 3D model sufficient?
4	Or are you planning to do some sort of non-nuclear
5	prototype with all the widgets in there, and practice
6	maintenance as part of your development?
7	MR. WILLIAMS: We will be practicing some
8	maintenance in our test and fill facility. That's
9	designed to go on site in Wyoming as a way of
10	combining both some full scale testing of equipment,
11	as well as the facility needed to fill the actual
12	reactor with cilium eventually.
13	So, in that facility we'll be testing some
14	full scale prototypes. And some aspects of that will
15	be for maintenance operations as well, refueling, and
16	things like that.
17	MEMBER REMPE: Thank you.
18	MEMBER MARCH-LEUBA: While you were
19	discussing the figure, that bright red square on the
20	button, what is it?
21	MR. WILLIAMS: Yes. That's the heated
22	length of the fuel. So, you can kind of sense how
23	small that is compared to the amount of coolant that
24	you have.
25	(Off microphone comment)
I	I

(202) 234-4433

ĺ	14
1	MR. WILLIAMS: Yes.
2	MEMBER MARCH-LEUBA: capacity.
3	MR. WILLIAMS: Right.
4	MEMBER MARCH-LEUBA: And the vessel is low
5	pressure obviously. And is on air. It's not in a
6	large cooling pool like
7	MR. WILLIAMS: Right. You're actually
8	looking at two vessels. And hard to see. But you've
9	got a reactor vessel. And then surrounding that
10	reactor vessel is a guard vessel, and in between that
11	space is interim space using argon gas, so you
12	actually have two vessels there, and outside of that
13	guard vessel is air, and that is what cools the
14	reactor in emergencies, takes care of the decay heat
15	removal.
16	MEMBER MARCH-LEUBA: People contribute
17	sodium and moisture.
18	MR. WILLIAMS: Right.
19	MR. BLEY: Jose, if you can stay on the
20	mic it would help us out here.
21	MEMBER MARCH-LEUBA: I was talking into
22	the mic. So
23	MR. BLEY: It's clear now. It wasn't
24	then.
25	MEMBER MARCH-LEUBA: After seven years
I	

	15
1	here I thought you would understand me. I mentioned
2	that there is no, I don't see any credible path
3	mixture between the sodium and water. Because there
4	is no water.
5	MR. WILLIAMS: Right.
6	MR. BLEY: Yes. Thanks.
7	MR. WILLIAMS: So, on the right of the
8	slide we've got our fundamental safety functions.
9	I'll just touch upon some of the differences here.
10	So, in control I think it's important to
11	point out the motor driven control rod run back.
12	That's something that comes up a lot in discussion
13	energy island transients that we don't need to scram
14	the reactor on. We just need to do a power run back.
15	The control rods are designed to handle
16	those run backs, to avoid the scram. So, that takes
17	into account the transients, the time constants that
18	exist throughout the integrated plans, to be able to
19	run back the power and avoid the scram. So, that's
20	something that we'll be discussing today.
21	There's also of course the gravity driven
22	control rod scram. And then we talked about the
23	inherent reactivity feedback. That's also a form of
24	reactivity control that comes from the design of the
25	core restraint system and the fuel itself.
ļ	I

(202) 234-4433

	16
1	When we look at cooling, of course we call
2	this an in vessel primary sodium heat transport, or an
3	integrated reactor vessel. Meaning the entire primary
4	heat transport system is contained within the vessel.
5	That means the only primary fluid that
6	leaves this vessel is the cleanup systems, which are
7	small bore pipes that clean up the liquid sodium and
8	the cover gas inside the reactor vessel. All the
9	penetrations go through the reactor vessel head as
10	well.
11	There's also an intermediate sodium
12	system, because the primary coolant isn't leaving the
13	vessel. The intermediate heat exchangers give up heat
14	to an intermediate sodium system that carry the heat
15	out of the vessel and to the sodium salt heat
16	exchangers.
17	And within that system is also another
18	sodium to air heat exchanger that can run in both an
19	active mode and a passive mode.
20	And so, the active mode is what is going
21	to be used when we talk about a lot of the transients
22	today that run back the power down to five percent,
23	isolate from the energy island, and then remove heat
24	with these sodium air heat exchangers, using forced
25	flow mode.
	I

(202) 234-4433

	17
1	So, that's going to be the typical thing
2	that we'll come back to and refer to as the
3	intermediate air cooling system. It will also work in
4	natural draft flow as well.
5	So, there's some dampers that can open,
6	and just allowing natural draft you can get heat
7	removal there as well. And then the Yes.
8	MEMBER MARCH-LEUBA: Let me talk into the
9	microphone. You don't remember a part of your life
10	where you were not working on this design. But to us
11	it's new?
12	MR. WILLIAMS: Yes.
13	MEMBER MARCH-LEUBA: So, please try to
14	explain to us. So, those green heat exchangers I see
15	there are sodium to sodium?
16	MR. WILLIAMS: Yes.
17	MEMBER MARCH-LEUBA: And then the sodium
18	goes outside the vessel?
19	MR. WILLIAMS: The intermediate sodium.
20	MEMBER MARCH-LEUBA: The intermediate
21	sodium
22	MR. WILLIAMS: Right.
23	MEMBER MARCH-LEUBA: goes outside the
24	vessel and heats up the salt?
25	MR. WILLIAMS: That's right.
I	1

(202) 234-4433

```
www.nealrgross.com
```

	18
1	MEMBER MARCH-LEUBA: And that intermediate
2	sodium can also transfer heat to air in the
3	environment. Is that in site containment or is it
4	outside containment?
5	MR. WILLIAMS: Those exchangers are
6	outside.
7	MEMBER MARCH-LEUBA: Oh. So, it transfers
8	the heat to the environment?
9	MR. WILLIAMS: Yes. It does.
10	MEMBER MARCH-LEUBA: Try to
11	MR. WILLIAMS: Okay.
12	MEMBER MARCH-LEUBA: You see here to
13	MR. WILLIAMS: I will.
14	MEMBER MARCH-LEUBA: We don't know this.
15	MR. WILLIAMS: Okay.
16	MEMBER MARTIN: Yes. And I have a
17	question as well. Bob Martin, member. Regarding the
18	air cooling natural draft flow, that is strictly a
19	safety system, right?
20	MR. WILLIAMS: Yes.
21	MEMBER MARTIN: And during normal
22	operations you would isolate that? No. So, you get
23	parasitic heat losses?
24	MR. WILLIAMS: Yes. And that's okay.
25	That's okay. Yes. Yes. One of the key aspects to
	I

(202) 234-4433

```
www.nealrgross.com
```

	19
1	the reactor air cooling system, that's the third
2	bullet under cooling.
3	That's a system that's cooling the outside
4	of this guard vessel using air. Is that it's
5	primarily radiation heat transfer limited. So, it
6	runs on temperature to the fourth power. And so, it
7	takes the primary coolant heating up in order to kick
8	it into operation.
9	So, during normal operation you can accept
10	the parasitic heat loss. Of course, we'd like to sell
11	more electricity with that. But it's okay for the
12	benefit of having it always on, and nothing having to
13	move position or anything to kick it in other than the
14	fluid heats up. So, yes, that's the RAC erector
15	cooling system.
16	MEMBER PETTI: Just a question on the
17	height of the vessel.
18	MR. WILLIAMS: Let me think of the actual
19	number here. I think it's about, yes, between 50 and
20	60 feet tall, yes.
21	MEMBER BALLINGER: This is Ron Ballinger.
22	You're going to get beat up on the prototype versus
23	non prototype issue as we go along.
24	I seem to recall a very long time ago when
25	the French folks discovered that they couldn't find
I	

(202) 234-4433

	20
1	the fuel after the irradiation, because of the
2	distortion. And with a constrained core you can limit
3	that I'm assuming.
4	But how do you deal, that's one case where
5	without a test it's going to be tough. Is it going to
6	be tough, do you think, to justify not making a
7	prototype?
8	Because without the irradiation damage on
9	the fuel you won't get the distortion, limited as it
10	might be because of the core restraint system, to
11	verify that the darn control rods will go in when
12	they're supposed to?
13	MR. WILLIAMS: Yes, so a lot of, I mean,
14	our fuel, we're relying on the database provided by
15	the Fastbucks test facility for our fuel, and we've
16	set the design of the Type 1 fuel to be very close to
17	what was used at FFTF for that reason.
18	And then, we're supplementing that with
19	quite a lot of four mechanical tests. We have a lot
20	of full scale tests that look at distortion. We
21	distort assemblies in our facility in Bellview, and
22	look at withdrawal and insertion forces on those.
23	We also do multi assembly core mechanical
24	tests to get additional data on anything that is
25	different with the NATRIUM fuel. And so, I think
I	I

(202) 234-4433

	21
1	we're relying on the database from FFTF as well as the
2	attesting that we've done got in our plan to make the
3	argument that that prototype isn't needed.
4	And then, to go to our advanced fuel then
5	we need years of operation with a lead test assembly
6	program in NATRIUM to build it back. So, we're
7	starting with the bootstrap method using a fuel design
8	that's very, very close to FFTF.
9	MEMBER BALLINGER: You're satisfied you
10	can make that case?
11	MR. WILLIAMS: Yes.
12	MEMBER KIRCHNER: Eric, this is Walt
13	Kirchner. Just clarification. My memory for FFTF is
14	oxide fuel. Did you have, did they, did Argon send
15	metal fuel for irradiation
16	MR. WILLIAMS: Yes.
17	MEMBER KIRCHNER: experiments or data
18	in FFTF?
19	MR. WILLIAMS: Yes, they did. They did.
20	They were in the process of testing metal fuel. So,
21	they hadn't converted over to metal fuel or anything.
22	So it was an oxide fuel reactor with metal fuel
23	assemblies within it. So, we do have data on that.
24	And we've acquired those assemblies to do PIE on.
25	MEMBER REMPE: Now much fluence did they
I	I

(202) 234-4433

	22
1	get in FFTF?
2	MR. WILLIAMS: I don't know off the top of
3	my head. You could maybe contact somebody back
4	MEMBER REMPE: Well, again, this, the
5	purpose of the meeting isn't on that. But that's
6	something to think about.
7	MR. WILLIAMS: Okay. We do have a,
8	George, remind us. We have a fuel qualification
9	topical report right now. Yes.
10	MR. PICCARD: Yes. We have several
11	reports, we just got back the draft form that will
12	talk about the new qualifications methodology and how
13	we're going to go through that, so it will be covered.
14	And it's on future topical reports in more detail.
15	MR. WILLIAMS: Okay. The last fundamental
16	safety function is contain. I don't think we're
17	talking too much about that today, because we're not
18	talking about releases.
19	But we have low pressure systems in the
20	plant. I think we mentioned that already. Low
21	pressure in the primary system that you see here. Low
22	pressure in the intermediate feed transport system,
23	and even in the salt system.
24	So, none of those systems are highly
25	pressurized. You won't get high pressure until you
I	1

(202) 234-4433

	23
1	all the way out to the steam generating system. So,
2	that helps quite a bit with the containment strategy.
3	We know that sodium has affinity for
4	radionuclides. So, we'll be factoring that into the
5	mechanistic source term analysis. And there's
6	multiple boundaries, you know.
7	There's an intact primary system like you
8	see here. And then there's, you know, a head access
9	area above the reactor vessel head. That's also
10	another layer of protection.
11	CHAIR ROBERTS: Eric, are we looking at
12	the containment right now, this thing, picture beside
13	
14	MR. WILLIAMS: Essentially those are the
15	guard vessel surrounding the reactor vessel is part of
16	that.
17	CHAIR ROBERTS: What do you
18	MR. WILLIAMS: And the seals
19	CHAIR ROBERTS: as containment?
20	MR. WILLIAMS: Yes. So, that's a, it's a
21	series of SSCs that are credited. The guard vessel is
22	part of that. The reactor vessel head is part of
23	that. And the isolation valves on those two systems
24	that come out of the primary system for the cleanup,
25	I think those are also part of that.
I	I

(202) 234-4433

	24
1	MR. WILSON: We'll have a functional, this
2	is George Wilson, TerraPower. We have a functional
3	containment design that will go from some of the EPZ
4	methodologies that we take credit for different
5	portions based on where we're at. So
6	MR. WILLIAMS: Yes.
7	MR. WILSON: It would follow the SECY
8	paper if that was approved, that SRM that was approved
9	by the Commission on how to describe and go through
10	the functional containment. So, that will be further
11	discussed later.
12	MR. WILLIAMS: So, taking all that into
13	account you have a pretty simplified response to
14	abnormal events. And that group of bullets you see
15	there is really what we would be crediting in say a
16	design basis accident scenario with reliable reactor
17	shut down.
18	Then you transition to natural circulation
19	cooling. You use the reactor air cooling system, or
20	indefinite asset emergency heat removal. You've got
21	the low pressure functional containment. Then
22	there'll be no reliance on the energy island for any
23	safety functions.
24	No safety related operator actions for AC
25	power as well. And we've kind of already discussed

(202) 234-4433

	25
1	our basis in the legacy US SFR experience. All right.
2	Go to the next one, Nick.
3	So, this just shows a bird's eye view of
4	the site that's laid out. I think last time we were
5	here we didn't have quite the topology, the way it
6	really looks in Wyoming. So, that's kind of a nice
7	feature that's been added.
8	I don't think anything is significantly
9	moved around though, since we last discussed with you.
10	We're mainly talking about here the, well, if we talk
11	about the nuclear island first, you can see Buildings
12	1, 2, 3, and 4 in the center of the slide.
13	1 is the control building, 2 is the fuel
14	handling building, 3 is the reactor building where the
15	vessel that we saw on the prior side is in the reactor
16	building below grade. And then the reactor ox
17	building, which is Building number 4.
18	We're going to be talking a lot about the
19	equipment in that building today, because we're
20	talking about these energy island transients. And I
21	wanted to point out the question that often comes up
22	is the nuclear island salt system isolation valves,
23	and where they're located.
24	They're actually located at, just outside
25	of Building number 4, in the salt piping that is going
ļ	I

(202) 234-4433

	26
1	out to the salt storage tanks. And that's identified
2	with Label 5. 5 shows you the piping train that comes
3	out of the sodium salt heat exchanger, and goes out to
4	the storage tanks that you see on the energy island.
5	So, those isolation valves, there'll be
6	one on the hot side and one on the cold side, those
7	exist just outside of Building number 4, as close as
8	practical to it. So, that's where the break is where
9	we talked about the interface between the nuclear
10	island and the energy island where that break occurs
11	physically.
12	MEMBER HALNON: So, Eric, intermediate
13	cooling, forced cooling, is that the two structures
14	just to the left of the Number 5 circle there?
15	MR. WILLIAMS: No. Those would be close
16	to Building 4. I think it's that grey
17	MEMBER HALNON: So, it's inside those
18	MR. WILLIAMS: Yes.
19	MEMBER HALNON: Inside the nuclear island?
20	MR. WILLIAMS: It is in the nuclear island
21	yes.
22	MEMBER HALNON: We just don't see it.
23	MR. WILLIAMS: Yes. You'll see it a
24	little bit better on the next slide.
25	MR. KELLENBERGER: Yes. It's these two
	I

(202) 234-4433

	27
1	tan towers to the left of 4. Those are the
2	MEMBER HALNON: Okay. So, that's the
3	separation you have?
4	MR. WILLIAMS: Right.
5	MEMBER HALNON: Okay. Thanks.
6	CHAIR ROBERTS: This is Tom Roberts. Can
7	you talk some more about those valves? Are they, you
8	know, giant valves that shuts, isolates the flow on
9	that sub pipe? How big a pipe is that?
10	MR. WILLIAMS: It's about a 36 inch pipe.
11	So, it is designed to isolate the salt system, isolate
12	the nuclear island from the energy island. So, when
13	we do our power run back we'll reduce power to about
14	five percent. And then we'll isolate from the energy
15	island. And we'll take care of all the decay heat
16	removal.
17	Say if you're in a, even during an outage
18	for refueling, or something like that. We'll come
19	down and take care of all the heat removal using the
20	intermediate air cooling system, those sodium to air
21	heat exchangers.
22	MEMBER MARTIN: A clarification. Bob
23	Martin. To the right of seven is that like a air
24	cooling ultimate heat sink?
25	MR. WILLIAMS: Yes. That's the forced
I	

(202) 234-4433

	28
1	cooling, cooling down
2	MR. WILSON: It is not an ultimate heat
3	sink. That is just a cooling tower for the turbine,
4	for the condenser.
5	MR. WILLIAMS: Yes.
6	MR. WILSON: That has nothing to do with
7	safety. So
8	MEMBER MARTIN: I wasn't using the
9	ultimate heat sink as a safety term. Because
10	obviously
11	MR. WILSON: It just
12	MEMBER MARTIN: heat loss
13	MR. WILSON: It's condenser cooling for
14	MR. WILLIAMS: Right.
15	MEMBER MARTIN: I'd like to And this is
16	your design? Not just a artist rendering, or anything
17	for
18	MR. WILLIAMS: Right, yes.
19	MEMBER MARTIN: Linkedin, or something?
20	MR. WILLIAMS: Right.
21	MEMBER MARTIN: Last month we were at
22	Comanche Peak. And one of the things that impressed
23	me was just really how compact everything was. And
24	here I see a control room over here on the left in a
25	very linear layout.
ļ	

(202) 234-4433

```
www.nealrgross.com
```

	29
1	And now, part of the, you know, part of
2	the point is all this independence, you know, by
3	seeking. So, it's very obvious where you need to draw
4	a line.
5	But I have to wonder, when it comes to,
6	you know, a big part of your safety case is built on
7	the hazards of, so you're going to have PRA, what have
8	you. You're going to have maybe a fair amount of
9	cabling, electrical.
10	And I wonder whether your, you know, total
11	length of these activities, and just maybe just a
12	thermal inertia that you have there. Plus your pool,
13	your intermittent loop, your salt, and then the steam.
14	And in, so I'm wondering about the
15	responsiveness of the plant overall. Again, an
16	independent, you know, if you're trying to get a
17	dependence you're going to be a lot decoupled.
18	But even, you know, there's a trade off,
19	right, with the responsiveness of the plant. You're
20	going to have something as simple as load follow,
21	which makes your, you know, of course operators
22	impatient. The answer is an automatic control.
23	But all these sort of thing is going to
24	factor into I would say your PRA. And have you
25	considered how the physical layout like this, you
	I

(202) 234-4433

	30
1	know, like the linear feet of your cabling and stuff
2	play into that? Is that on your mind?
3	MR. WILLIAMS: It's definitely on our
4	mind. I mean, we have built quite the integrated real
5	F5 model of this plant that takes into account all of
6	these interfacing systems.
7	We're also using that for the engineering
8	simulator, which is starting to come online. So,
9	we'll be running a lot of these transients to see
10	those different time constants and, you know, system
11	interaction type facts that come into play with these
12	things.
13	And right now it's actually looking very
14	beneficial from the standpoint of plant control. And
15	we'll get into a little bit of that when we get to a
16	slide coming up, about the difference between the
17	nuclear island operator and the energy island
18	operator.
19	But I think that that buffer of having the
20	salt tanks in the middle, in between these systems
21	does provide this very good divisional between the
22	two. So, it's not all so tightly coupled, because
23	those tanks kind of buffer things.
24	MR. WILSON: And this is George Wilson.
25	And we also have a human factor's evaluation topical
	I

(202) 234-4433

	31
1	report coming in that you guys will get a look at
2	potentially later on, to address some of the comments
3	that you brought up.
4	MEMBER BIER: Yes. That was going to be
5	my follow up. This is Vicki Bier. Which is, so Bob
6	kind of mentioned just the linear feet of cable and
7	your piping, or whatever that may make it vulnerable.
8	But also, are there actions that are going to require
9	people going back and forth between the different
10	locations? Or
11	MR. WILSON: Right now we're doing This
12	is George Wilson. We don't have any safety. We're
13	not taking credit for any operator actions. And we do
14	not have any safety related AC at all on the plant.
15	So the design itself addresses some of
16	your guys' questions, but will also address the human
17	factors. Like I said, there's topical reports that
18	are still being written, that's going to the NRC, that
19	you'll have, and so you will get a chance to have
20	additional questions to that.
21	MEMBER HALNON: Yes. And we went through
22	this in your last presentation about the location of
23	the control room, and whatnot. And you might think,
24	I understand that the picture itself, it's not a
25	quarter mile.
Į	I

(202) 234-4433

	32
1	MR. WILLIAMS: Right.
2	MEMBER HALNON: It's a pretty compact
3	plant. So, moving it 100 feet to the right is not
4	going to increase the responsiveness all that much, if
5	any. Because you may have to be walking around
6	buildings or through buildings at that point. So, we
7	did discuss some of this earlier on. So, really good
8	to see how responsive other topicals.
9	MR. WILLIAMS: Yes.
10	MEMBER REMPE: So, I have a different
11	question. I'm not sure if this is the place, or
12	later. But you always emphasize you're building upon
13	U.S. experience. And I'm thinking of the Japanese
14	experience in Monju.
15	And if your, some of this requires
16	instrumentation. And of course the leakage was from
17	somebody putting in a thermal couple that was not, was
18	susceptible to corrosion and leakage.
19	And are you going to have, and I looked
20	through the materials we were given at a different
21	level. But are you going to have some sort of
22	limitations to consider that you aren't going to have
23	some problems in the energy island that, and I'm
24	thinking co-located hazards, that if something were to
25	degrade, and that salt happens to have a problem, and
I	I

(202) 234-4433

	33
1	people are responding to it, that it might adversely
2	affect the nuclear island.
3	MR. WILLIAMS: Well, I don't, I think, you
4	know, most of the problems that would be initiated in
5	the energy island, you know, would simply result in a
6	power run back.
7	Because you want to, if it's a big enough
8	problem you'd want to shut down the energy island, and
9	go do the repair. I think the good thing about this
10	plant is that you don't have to scram the reactor to
11	do that. You can take a power run back, put the
12	system through a much milder transient, much safer
13	transient to go down in power on the nuclear island.
14	There's also quite a bit of time before
15	you have to do that. We'll talk about it in a minute,
16	which is a big improvement I think.
17	So, I don't, I can't see right now why a
18	maintenance issue or a failing piece of equipment on
19	the energy island would ever impact the safety of the
20	nuclear island.
21	From a reliability standpoint it is very
22	important though. And we are trying to design a very
23	reliable energy island, probably more reliable than
24	what concentrated solar plants would want, or need.
25	So, you know, we want the high capacity
ļ	

(202) 234-4433

	34
1	factors that nuclear plants expect, and so our energy
2	island will be designed with a high level of
3	reliability, so that will definitely be true now.
4	MEMBER PETTI: I understand that the
5	concentrated solar guys, the reliability is not very
6	good. What are you guys
7	MR. WILLIAMS: Yes. We're looking at the
8	OE from the concentrated solar industry.
9	MEMBER PETTI: I mean
10	MR. WILLIAMS: We're looking at the codes.
11	MEMBER PETTI: sold by them. It's
12	advisory.
13	MR. WILLIAMS: Yes. The codes that
14	they've applied to their systems, and different types
15	of failures that they've seen in the field. So, we're
16	in tune with all of that very closely. So, we're
17	taking that into account in our design.
18	And the interesting thing though is just
19	that that, with their low capacity factors they don't
20	really necessarily need the same reliability that we
21	do. So, that is something that we're paying attention
22	to.
23	MEMBER BROWN: Question. You mentioned
24	there's no safety related electrical systems at all.
25	And yet, the reactor protection system is scram
	I

(202) 234-4433
	35
1	supplant as part of the nuclear island. And it's got
2	four divisions. And how do you maintain
3	MR. WILSON: I meant that
4	MEMBER BROWN: power
5	MR. WILSON: there's no backup. We
6	don't have any safety related diesel generators, or
7	anything like that. We don't have any
8	(Simultaneous speaking)
9	MR. WILSON: That's right. You'll have
10	RPS. And you also have all the PAMs instruments.
11	MEMBER BROWN: Is there one system set up
12	to have redundant run back capability? In other
13	words, redundant systems to drive those? That seems
14	to be
15	MR. WILSON: There's logic
16	MEMBER BROWN: the primary thing. So,
17	that's what I'm talking about.
18	MR. WILSON: Yes. There's logic.
19	MEMBER BROWN: Like the SS4 division. And
20	just so the run back obviously is there to bring the
21	power down during operations if you have difficulties,
22	so you don't have to scram.
23	And I was curious. They didn't talk about
24	having any redundant channels or divisions for that.
25	It sounded like a one division, one off sort of.
Į	I

(202) 234-4433

	36
1	MR. WILSON: It may be later
2	(Simultaneous speaking)
3	MR. WILSON: We have a topic report to
4	talk about the nuclear island control system. We've
5	had interactions. And the RPS system will go through
6	the design review guide. But there's multiple
7	channels. And we have logic
8	MEMBER BROWN: Okay. All right.
9	(Simultaneous speaking)
10	MEMBER BROWN: Thank you.
11	MEMBER MARTIN: There's a question.
12	You've, of course already, George, mentioned, you
13	know, safety related components, what have you. We're
14	safety related this, that at this stage, at least of
15	your interaction with ACRS.
16	As far as I know, not seeing any kind of
17	safety classification methodology. I see, you know,
18	you go through a hazard, a PRA, what have you.
19	There's a methodology to making those claims.
20	All I hear is claims, arguments. But as
21	far as I know have you sent something to the staff
22	that explains the classification methodology?
23	MR. WILLIAMS: Yes. We've had
24	interactions with the staff, and how we've utilized an
25	AI 1804, and how we're doing our SSE classification,
I	I

(202) 234-4433

	37
1	how we're doing our design base and licensing basis
2	events. We've had all those interactions. And we've
3	written topical reports and white papers to the staff.
4	MEMBER MARTIN: Okay.
5	MR. WILLIAMS: So, there's a series of
6	topical reports that we still have to submit to the
7	staff. And the staff has received several topical
8	reports already.
9	MEMBER MARTIN: Okay. Maybe I'll save my
10	question for the staff.
11	CHAIR ROBERTS: Yes, this is Tom Roberts.
12	One more question. And I hope we can get it off the
13	slide. Part of what Joy was asking. Did you look at
14	potentially catastrophic events happening in the
15	energy island, like something, you know, something
16	blows up due to a chemical reaction? Or, you know, a
17	exothermic reaction of the salt with something?
18	I don't know. But, it's I don't really
19	see in the topical reports talk about how that would
20	not affect operations on the nuclear island.
21	MR. WILLIAMS: Well, our licensing basis
22	events are, and our initiating events that we're
23	screening are all driven by failure modes and effects
24	analyses on the equipment.
25	So, we are looking at from a fundamental
ļ	I

(202) 234-4433

	38
1	standpoint how each piece of equipment can fail.
2	We're not seeing anything like an explosive reaction
3	in the salt tanks, or anything like that. Because
4	salt isn't interacting with air.
5	You know, if you get a salt leak from a
6	tank it freezes in the air. It solidifies and comes
7	as this white powdery stuff that you clean up with a
8	shovel.
9	We are addressing the potential for
10	flooding from, you know, a catastrophic failure of the
11	tanks using berms that you don't actually see in this
12	diagram. But they would direct the flooding away from
13	the nuclear island.
14	And then it's about, you know, impact of
15	failures, you know, that have to go all the way
16	through the energy island salt piping, through the
17	nuclear island salt piping, and to the sodium heat
18	exchangers, sodium air heat, sodium salt heat
19	exchangers. Through those to the intermediate heat
20	transport system and through the IHX to the primary
21	pool.
22	So, it's all about kind of impact from the
23	energy island and make it through all of that to any,
24	you know, adverse any fundamental safety function,
25	which we're saying it cannot based on our simulations

(202) 234-4433

	39
1	that we've done.
2	So, we are looking at things like, you
3	know, salt hammer type events. If those isolation
4	valves close quickly, you know. Things like energy
5	island salt pump trips, and things like that.
6	So, all of those things that can happen on
7	the energy island are being studied. They're part of
8	the design. And we have a design requirement that
9	they shall not impact the nuclear island.
10	So we'll be continuing to, you know, if
11	anything changes we'll be continuing to look at that,
12	but we're not seeing anything like an explosion in the
13	tanks or anything of that nature, because we don't see
14	a precursor for that.
15	CHAIR ROBERTS: Okay. Thank you. Yes, in
16	theory an explosion in the energy island could affect
17	habitability in the control room, or any of a number
18	of direct mechanical effects on the nuclear island.
19	So, I'm glad to hear you're looking at that.
20	MR. WILLIAMS: Yes.
21	MEMBER MARCH-LEUBA: And, Tom, this time
22	I wanted to answer the previous question. Is it okay?
23	MR. ANZALONE: Yes, thanks. Is there a
24	microphone up here? Okay.
25	MEMBER REMPE: I think it's the top one.
Į	1

(202) 234-4433

	40
1	MR. ANZALONE: Okay. Thanks. Yes. I
2	just wanted to clarify that we're going to be talking
3	about the safety. Oh, sorry. Reed Anzalone from the
4	staff. We're going to be talking about the safety
5	classification process in our presentation. So, happy
6	to address the question then.
7	MEMBER MARCH-LEUBA: Thank you.
8	MR. WILLIAMS: Thank you. So, just to get
9	off this slide, you know, Building 6 is where the
10	steam generator equipment is. And Building 7 is where
11	the turbine haul is. So, we'll go to the next slide.
12	And this one is looking at the three
13	central nuclear island buildings, as if we're standing
14	at the energy island looking back towards the nuclear
15	island.
16	So, if you're looking, if you ever go back
17	and flip back and forth between the two slides, you're
18	looking backwards to the nuclear island here.
19	So, in the middle you see the reactor
20	building. You can see the reactor vessel, guard
21	vessel. Below grade there, you can see the pipes for
22	the intermediate heat transport system that come out
23	of the reactor vessel head. And they make their way
24	over to the reactor auxiliary building, above grade.
25	And that is where the sodium salt heat
	1

(202) 234-4433

	41
1	exchangers live. They're above grade in that
2	building. There's two of them per train. And there's
3	two trains.
4	And so, that's where the intermediate heat
5	transport system interfaces with the nuclear island
6	salt system, and transfers heat from the sodium to the
7	salt.
8	There is also some discussion in the
9	topical report about drainage. You know, in cases
10	where you need to go into a long term outage you would
11	drain. You could drain both the sodium and the salt
12	system from, sodium from that heat exchanger. So,
13	there's drain tanks for both of those.
14	If there was a leak in the sodium salt
15	heat exchanger you would also initiate a drain, so
16	that you could, you know, terminate that interaction
17	between sodium and salt, and go in and take care of
18	the leak.
19	So, the sodium and salt drain tanks are
20	both below grade in the reactor ops building. So,
21	that's where those will be physically located.
22	You can see the salt piping going out to
23	the thermal storage system over there on the left.
24	That is where those NSS isolation valves will be
25	located.
	I

(202) 234-4433

And you can see the intermediate air 2 cooling heat exchanger up at the top there, above the That's what we call the air reactor ops building. heat exchangers of the intermediate air cooling system.

It's connected to, there's one of those 6 7 connected to each of the intermediate heat transport 8 loops. So, there's two of those in the design. And 9 like I said earlier, they can run in forced flow cooling mode, where there is actually blowers blowing 10 air across the coils of the heat exchanger. 11

It can also run in natural draft mode, 12 where the dampers open and just allow natural draft 13 14 air flow over the coils. And that's the system that's 15 used in a lot of these run backs, and certainly in refueling mode. Yes, guestion. 16

17 MEMBER KIRCHNER: Eric, this is Walt A couple of questions. Kirchner. The sodium salt 18 19 heat exchangers, you mentioned earlier that sodium salt mixtures are exothermic. 20

Since these are solid systems, in terms of 21 solid liquid during normal operation, is there the 22 potential for propagating a, energy back into the 23 24 primary vessel?

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

MR. WILLIAMS: They're actually not solid.

25

1

3

4

5

	43
1	There is a drain tank in the intermediate heat
2	transport system. So, there's a cover gas on that
3	drain tank.
4	MEMBER KIRCHNER: Yes. I see you have an
5	argon, a pre surface argon cover gas.
6	MR. WILLIAMS: Right. Right. And we can
7	detect the leak in a number of ways. And either
8	initiate a run back, or if it propagates to, you know,
9	a loss of heat transfer at the IHX, then it would be
10	picked up by one of the scram set points in the
11	nuclear island, if that were to happen.
12	MEMBER KIRCHNER: I'm not so much worried
13	about it leaking into one of your compartments.
14	Although that would be a concern from a fire
15	consideration.
16	But my concern would be, any energy
17	transfer due to an exothermic reaction between the
18	salt and the sodium. That could pressurize the
19	system.
20	MR. WILLIAMS: Yes. That is something we
21	are looking at though. That will be looked at in our
22	models for any sort of pressure wave that could make
23	its way back to the IHX. So, that would be something
24	that we would definitely look at.
25	MEMBER KIRCHNER: Yes. I think that would
Į	I

(202) 234-4433

	44
1	be important. The other Achilles heel these systems
2	in the past has been the air cooling system for decay
3	heat removal.
4	So, can you tell us a little bit more
5	about this? This intermediate air cooling, is that
6	sodium to air?
7	MR. WILLIAMS: That's right. Sodium to
8	air. So, you have your intermediate heat transport
9	loop. And you have a leg that comes off of the main
10	pipe. And it goes out to this sodium air heat
11	exchanger. Like I said, there's one in each loop.
12	And it's always running through there.
13	And so, what needs to happen is, for natural draft air
14	cooling the dampers would open to allow more air to
15	flow. If it's going into forced cooling mode then the
16	dampers open and the blowers turn on to remove heat
17	from that heat exchangers.
18	So, it's one of the workhorse components
19	that we have. Because it's always used in a run back.
20	It's always used as the main go to system for taking
21	care of decay heat when you're not in a, you know,
22	emergency situation.
23	MEMBER KIRCHNER: Right. So, this system
24	would have isolation valves on it should you get a air
25	a leak to air. I mean, the concern would be a fire or

(202) 234-4433

	45
1	other energetic events that could result from leaks in
2	the system.
3	MR. WILLIAMS: Yes, yes. If there were to
4	be a leak in the system that would probably be a drain
5	dilute kind of situation.
6	MEMBER KIRCHNER: Okay. Thank you.
7	MEMBER MARCH-LEUBA: You mentioned the
8	intermediate air cooling has AC power blowers? But
9	they're not required for decay heat.
10	MR. WILLIAMS: Right.
11	MEMBER MARCH-LEUBA: Only during
12	MR. WILLIAMS: Right.
13	MEMBER MARCH-LEUBA: the low power.
14	MR. WILLIAMS: Right, yes. Only during
15	low power
16	MEMBER MARCH-LEUBA: The decay heat safety
17	removal is the air ducts?
18	MR. WILLIAMS: Yes. It's the air ducts.
19	So, that would be reactor air cooling ducts. You're
20	seeing two of them there in the reactor building.
21	MEMBER MARCH-LEUBA: So, I'm going back to
22	my, everything above grade is susceptible to missiles
23	that can impact. You can live without that? Can you
24	live without the air cooling ducts?
25	MR. WILLIAMS: We can live without a
I	I

(202) 234-4433

1 certain, we can take a certain amount of degraded 2 performance in the reactor air cooling system. It's 3 actually very robust in fact to say pressure drops and 4 things like that. 5 As long as you have that radiation heat transfer going between the guard vessel and the 6 7 reactor vessel, then the system performs very well. We will, I mean, obviously be quantifying how much 8 9 degradation we can handle. 10 And, you know, in the PRA, you know,

looking at, it's part of the aircraft impact analysis 11 that we have to do, so there's a lot. At some point, 12 you can, you know, block up all the air ducts, and 13 14 you know, you'll probably bring in then, some 15 equipment from off site to unblock the duct or something, you know, in that beyond design basis 16 regime, but we're still working through all that. 17

You mentioned time MEMBER MARCH-LEUBA: 18 19 constant will play a significant factor; you're talking --20

MR. WILLIAMS: No, yes. 21 Right. Eric, one last question. 22 MEMBER HALNON: Since the fuel is in sodium, the spent fuel's in 23 24 water, can you just talk to me about how that transition is done, so that you don't get a problem --

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	47
1	MR. WILLIAMS: Oh, yes.
2	MEMBER HALNON: when you insert it in
3	water?
4	MR. WILLIAMS: Storage, yes. That's very
5	carefully. So, fuel comes out. Obviously, I should
6	have mentioned this. But the fuel actually goes into
7	an in vessel storage location outside of the reactor
8	core barrel when it is done in the core.
9	And it cools off there for a cycle, inside
10	the vessel, before it even comes out. So that's a,
11	you know, a unique feature I think of a lot of sodium
12	bass reactors, pool reactors especially I think.
13	So, it cools off a little there, comes out
14	of the vessel. And then it gets transferred to an X
15	vessel storage tank, which is filled with sodium. And
16	it goes there during the outage. And you collect all
17	of your assemblies there.
18	And then after the outage you go in and
19	process them. And what you would do to put them into
20	the spent fuel pool is, you would take them out, and
21	they would go through a pool immersion cell, PIC,
22	which is a pit. It's probably one of those that you
23	see below grade over in the field handling building.
24	And it goes into that container. And what
25	we do is we blow initially dry nitrogen over that, to
ļ	I

(202) 234-4433

	48
1	just blow off any sodium that is remaining, and
2	gradually turn up the humidity on the nitrogen very
3	slowly and carefully until any water in the nitrogen
4	is able to react with the sodium in any crevices or
5	things like that, until it's all removed.
6	And then finally when that is performed it
7	gets moved over to the spent fuel pool. So, and
8	during that whole migration, you know, it is handled
9	very carefully, taken through systems that have
10	barriers between it and air through inerted
11	environments, so that there's no chance of contact
12	with, the sodium on the fuel assembly with the air in
13	the reactor.
14	So yes, sometime I'm sure we'll go through
15	that whole process in detail. Yes. All right. I
16	think that
17	CHAIR ROBERTS: This is Tom Roberts. I
18	was going to point out that we're about 40 minutes
19	into, essentially into the presentation with five
20	slides done. So, just
21	MR. WILLIAMS: Okay.
22	CHAIR ROBERTS: keep that in mind and
23	try to maybe pick up the pace a little bit, and hold
24	the questions if possible. Thank you.
25	MR. WILLIAMS: Yes.
	I

(202) 234-4433

	49
1	MEMBER REMPE: We always blame the
2	Subcommittee.
3	MR. WILLIAMS: Okay. So now we're looking
4	back towards the energy island. You can see in the
5	picture to the right the energy island salt piping
6	that's coming back.
7	You've got pipes going from the cold salt
8	tank that go back to the nuclear island. And pipe
9	that goes from the sodium salt heat exchanger to the
10	hot salt tank. So, they're all contained within that.
11	One thing I wanted to point is, you see
12	several of the green lines that are coming, going into
13	the steam generator building. That's because we have
14	five steam generator trains, and the hot salt tank has
15	five pumps that go into, one per steam generator
16	train.
17	Off the cold salt tank, you also see quite
18	a few pumps and lines there. That's the attemperation
19	pumps that come off of the cold salt tank and go over
20	and mix into the salt coming out of the hot salt tank.
21	And then you can see a process flow
22	diagram down there at the bottom left. A lot of the
23	typical equipment that you see in a steam generator is
24	contained on this.
25	There are again five of these steam
l	1

(202) 234-4433

	50
1	generator system trains. So, if we just take from the
2	left to the right, you can see hot salt coming out of
3	the tank there.
4	It goes into both the super heater and a
5	reheater. The reheater takes some cold reheat from
6	the turbine extraction, and sends it back as hot
7	reheat.
8	The evaporator starts to bring the
9	feedwater up to saturation in the steam drum. And
10	then that goes over to the super heater to super heat
11	the steam, and send that off to the turbine.
12	We also use some of the salt to preheat
13	the feedwater over there on the right. And so that
14	essentially completes that circuit.
15	We have looked at, you know, transients
16	where you lose that cold salt, that salt return to the
17	cold salt tank. And we can go quite a bit of time
18	without that cold salt return before we have to do
19	anything on the nuclear island to adjust power, or
20	take the plant down, rather.
21	So, that is something that we've looked at
22	with our transient analysis. And we'll continue to
23	be, you know, checking that as we go through the rest
24	of the design.
25	MEMBER HALNON: Are the two tanks, hot and
	I

(202) 234-4433

	51
1	cold, are they identical?
2	MR. WILLIAMS: Yes.
3	MEMBER HALNON: And so the same?
4	MR. WILLIAMS: Yes.
5	MR. SCHULTZ: Eric, the transient analysis
6	that you did associated with the Energy Island, those
7	calculations are done with what methodology? Staff
8	had some comments during their audit associated with
9	the pedigree of the evaluation.
10	MR. WILLIAMS: Yes. Those were done as
11	part of our integrated plant analysis work,
12	specifically looking at all of the ASME design
13	transients, level A, B, C, D. And some of those then
14	get run over in the SAS code as part of looking at
15	these transients from a DBA perspective.
16	So we kind of used the best estimate
17	methodology to look at the ASME design transients and
18	then those factor in. If something like that were to
19	make its way into a DBA, then we would look at a
20	different methodology for safety analysis.
21	The transients that were looked at by the
22	staff, I think we had one calculation that used SAS,
23	but most of them were using 3D.
24	MR. SCHULTZ: Okay. The staff just
25	mentioned that they hadn't taken a look at those in
Į	I

(202) 234-4433

	52
1	terms of code review and so forth.
2	MR. WILLIAMS: Okay.
3	MR. SCHULTZ: That could be something that
4	is done in the future?
5	MR. WILLIAMS: Yes.
6	MR. SCHULTZ: Thank you.
7	MR. WILLIAMS: Yes. Those were
8	preliminary. This topical report, which was submitted
9	in October of '22, was based on a conceptual design of
10	the plant.
11	So I think it did a really good job of
12	showing us these various time constants that exist in
13	the system and how robust the design is to have this
14	sort of independence between Energy Island and Nuclear
15	Island. We know that we will be repeating these
16	analyses as we proceed through the design.
17	MR. SCHULTZ: The staff mentioned all that
18	in their audit report and also came to the same
19	conclusions regarding the results. Thank you.
20	MR. WILLIAMS: All right. Let's go to the
21	next slide. We'll talk a little bit now about
22	operational flexibility. These are really the talking
23	points for the next slide, so why don't I just speak
24	to this as we look at the picture on the next slide.
25	We're kind of seeing two sides of the view
	I

(202) 234-4433

	53
1	here. The side on the left is the view from the
2	Nuclear Island operator and the side on the right is
3	from the view of the Energy Island operator.
4	On the Nuclear Island side, we're going to
5	have licensed reactor operators controlling reactor
6	power. This allows the Nuclear Island operator to
7	really focus on the safety of the plant.
8	As long as the cold salt tank is flowing
9	appropriately into the sodium-salt heat exchangers,
10	we're not going to be affecting any of what we call
11	the interface parameters between the Energy Island and
12	the Nuclear Island that would cause a scram or
13	anything like that. So that's kind of the view from
14	the Nuclear Island standpoint.
15	From the Energy Island standpoint, the
16	grid operator is able to then control the turbine to
17	meet the electricity demand of the grid. As long as
18	the Energy Island operator is managing the inventory
19	between the hot and cold salt tanks, they won't be
20	triggering a runback.
21	They can manage that any way they want.
22	They can turn back electricity production. They can
23	increase electricity production. Whatever is required
24	to maintain a certain minimum cold salt tank level,
25	they can do that without recourse through the Nuclear
	I

(202) 234-4433

	54
1	Island.
2	And so one of the things we look at is
3	what does that cold salt tank minimum level need to
4	be. For example, you would take the height of salt
5	required to provide net positive suction head to the
6	cold salt pumps.
7	Add to that the amount of salt that you
8	need to do a runback, to consume the runback, and add
9	to that the amount of salt you need to consume to
10	isolate the two systems from one another. And then
11	say to the Energy Island, don't go below that.
12	That would be a way of giving that Energy
13	Island operator flexibility to meet the grid demand
14	without impacting the Nuclear Island at all, and
15	always maintaining the reserve that you need to do a
16	proper runback without having to scram the plant.
17	MEMBER HALNON: Eric?
18	MR. WILLIAMS: Yes.
19	MEMBER HALNON: When everything is working
20	right, that sounds great. What happens when, say, the
21	dispatch calls for more power than what the Energy
22	Island can produce?
23	Are those controls and limits things that
24	cause some kind of action? You can control your
25	operators on-site and you can train them, but you're
I	I

(202) 234-4433

	55
1	not going to train the dispatcher.
2	MR. WILLIAMS: Yes. That all has to be
3	control bands, alert levels, response times, all of
4	that has to be factored into what the grid operator is
5	doing. I don't know if we want to say any more about
6	how the grid operator would react to those things.
7	At some point they hit a limit and they
8	can't provide any more electricity. Or if they're up
9	at the maximum electrical output of 500 megawatts
10	electric and the grid still demands more but they've
11	depleted the hot salt tank, then they would have to
12	dial that back.
13	MEMBER HALNON: I guess I was more
14	thinking of low-power operation where you're a little
15	overambitious in saying, you've got a big hot salt
16	tank there. I can grab more than what you're
17	producing right now and hopefully meet the curve
18	somewhere in the middle before you run out of hot
19	salt.
20	We can talk later, but it would be
21	interesting to talk through those types of scenarios
22	to see how the systems would react. It's probably
23	controls on the Energy Island to find the dispatch,
24	but that interface was a big deal in commercial
25	reactors between the grid operator and the control
I	1

(202) 234-4433

	56
1	room.
2	MR. WILSON: This is George Wilson. We
3	have monthly meetings with PacifiCorp to go over this.
4	We talk with their compliance people and their grid
5	people. We're coordinating all this now and looking
6	at it.
7	We haven't finalized the procedures, but
8	we're starting to talk about compliance because it's
9	also new for them to get a nuclear plant on their
10	grid. There's additional standards that are going to
11	apply to them now. So we're still working with them,
12	doing the coordination. George's group is leading.
13	MEMBER HALNON: I guess my point is if
14	there's some things beyond your control that you need
15	to look at from the Energy Island and how that might
16	affect the Nuclear Island.
17	MR. WILLIAMS: That's a good point.
18	MEMBER KIRCHNER: This is Walt. Just to
19	kind of add onto your line of questioning, Eric or
20	George, could you give us a feeling of what's the net
21	output from the reactor versus the net output from the
22	steam plant, from the Energy Island?
23	And what's the time constant between the
24	two? Where I'm going with this is, what's the steady
25	state, and then what would be the peaking factor? How
I	I

(202) 234-4433

	57
1	would that feed back on the reactor system?
2	Or Greg went through a scenario where
3	you're dumping, you're reducing power. You mentioned
4	500 megawatts of electric for the Energy Island.
5	What's the equivalent from the reactor? How much can
6	you store?
7	How are you sizing that hot tank such that
8	when you look at that operational interface, you're
9	going to have a time constant that will run the
10	reactor itself up and down in terms of thermal
11	transients?
12	MR. WILLIAMS: So the design is for the
13	reactor to run a steady-state, full-thermal power.
14	We're not cycling back to any sort of load following.
15	We're doing the load following purely on the Energy
16	Island side.
17	MEMBER KIRCHNER: Yes.
18	MR. WILLIAMS: So in thermal equilibrium,
19	the reactor is putting out the equivalent of 345
20	megawatts electric. And the Energy Island is
21	providing 345 megawatts electric to the grid for a
22	period of time, between four or five hours let's say,
23	you can go up to 500 megawatts electric or you can go
24	down to 100 megawatts electric.
25	If you're in a daytime scenario and all of
I	I

(202) 234-4433

58 1 the renewables are online and you want to dial back the system, you can dial it back as low as 2 100 3 megawatts electric. That's just a limitation of your 4 turbine design. 5 You can change that, if you want, with a different design. All of the equipment beyond those 6 7 tanks are designed in size for 500 megawatts electric, 8 whereas all of the equipment on the Nuclear Island 9 side before the tanks is all designed for 345 10 megawatts electric. Okay. Thank you. 11 MEMBER KIRCHNER: MEMBER MARCH-LEUBA: From the top of your 12 head, in units of power for 500 megawatts electric 13 14 operation, how big is the hot tank? Four hours, 12 hours, 48 hours? 15 MR. WILLIAMS: Yes. It's between four and 16 five hours. 17 Only four to five MEMBER MARCH-LEUBA: 18 19 hours? 20 MR. WILLIAMS: Yes. MEMBER MARCH-LEUBA: For the renewable 21 it's 12, right? The nighttime is 12? 22 MR. WILLIAMS: Right, but the peaks really 23 24 only last for that period of time. The peak in the evening and then the peak in the morning, we have 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	59
1	people that are waking up. Yes.
2	MEMBER MARCH-LEUBA: Obviously, it doesn't
3	compromise the tanks?
4	MR. WILLIAMS: Right, no. That's
5	optimized for Wyoming. If you went to somewhere else,
6	you might have a different
7	MEMBER MARCH-LEUBA: And you would just
8	have to change the size of the tanks?
9	MR. WILLIAMS: You can change the size of
10	the tanks. You can have additional pairs of tanks if
11	you need more storage. You can have additional
12	turbines if you want lower turndown.
13	There's a lot of optionality on the Energy
14	Island and a lot of flexibility. It's the Nuclear
15	Island we want to standardize and run full-power all
16	the time. So yes, very flexible.
17	MEMBER MARCH-LEUBA: Do you envision
18	having to sell megawatts electric at a loss? There's
19	sometimes in which nobody wants your power.
20	MR. WILLIAMS: Right, yes. We're not
21	designing for that.
22	CHAIR ROBERTS: Following up on Greg's and
23	Jose's questions, it looks like from the reactor
24	safety perspective, your biggest concern would be a
25	low demand, which is going to basically drain the cold
I	I

(202) 234-4433

	60
1	tank and fill the hot tank. Is there some minimal
2	level that is essentially a tech spec that if you go
3	below that, you do have a reactor safety concern?
4	MR. WILLIAMS: I think the power runback,
5	what happened before that. I'm sure there are even
6	lower limits that would be tech specs on the tanks
7	perhaps.
8	CHAIR ROBERTS: Tech spec would seem to
9	imply safety-grade instrumentation and that kind of
10	thing to measure it. I was trying to understand how
11	you can maintain the separation when the cold tank
12	level really is a factor in reactor safety.
13	MR. WILLIAMS: Yes. I guess in a future
14	slide here we're going to talk about the interface
15	parameters a bit. And actually, on this next slide is
16	where we have them listed. These are the things that
17	we would be looking at from a safety perspective.
18	If you go to the next one here, this is
19	where we start talking about separation. These are
20	the parameters that we really think of in terms of
21	something that would start to have an effect, would
22	start to propagate through the IHD and then to the
23	PHD.
24	We've looked at all the failures that
25	could occur out there in the Energy Island, all the
	I

(202) 234-4433

1	way to complete loss of salt flow, which is probably
2	the most bounding of all of them. Just have all of
3	the salt tanks stop running. That would be even worse
4	probably than hitting a low level in the tank or
5	something like that.

And so they all come down to either a loss of or reduced heat removal from the intermediate heat transport system because of something that happened out in the Nuclear Island salt system or an increase in heat removal on the intermediate heat transport system.

And so these are the parameters that we 12 would probably be looking at more, not so much the 13 14 tank levels but things closer to the sodium and salt heat exchanger, such as a loss of salt flow that would 15 be detected in the Nuclear Island salt system, a high 16 salt temperature coming out of the sodium-salt heat 17 exchanger, or low salt pressure that might indicate a 18 leak. 19

On the increased heat removal side on the 2.0 21 IHD, you can have increased salt flow from a pump over-speed condition or low salt temperature that 22 23 might be introducing an overcooling transient on the 24 primary system.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So these are actually the parameters that

(202) 234-4433

6

7

8

9

10

11

25

	62
1	we would look at. They kind of decouple ourselves, if
2	you will, from the Energy Island. Things that happen
3	on the Energy Island can be taken care of by the
4	Energy Island operator. They can be taken care of
5	with power runbacks.
6	You would have to propagate out to these
7	parameters to start impacting the primary system
8	through all those time constants. And so when we ran
9	our transients and showed those to the staff, we were
10	looking at transients and examples of these different
11	parameters that get triggered.
12	And then you have things even further out
13	beyond the tanks like turbine trips, steam generator
14	malfunctions, equipment like that that would be
15	further away from the sodium-salt heat exchanger that
16	would probably start to trip equipment on the Energy
17	Island due to asset protection, and eventually would
18	trigger one of the runbacks at points to go back and
19	run the system back normally.
20	MEMBER PETTI: I don't think you answered
21	the question. I understand these events, what they
22	could do, and how they could challenge it, but I

the salt level in the cold tank is also really low. It's sort of an operational condition that

thought Tom's question was the case of low power and

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

23

24

25

63 you could somehow get into a different problem. 1 Ι guess I didn't see how these transients capture that 2 3 question. 4 MR. WILLIAMS: Yes. If we think about 5 operating the plan and delivering electricity from the grid where you've depleted the cold salt tank level 6 7 down to the lowest that you're allowed, you would 8 still have, based on what I was talking about a few 9 slides ago about sizing that minimum level, you would still have enough salt to do the runback and to 10 isolate the system and still have enough for net 11 positive suction ahead of the pumps. 12 So that level was designed to only allow 13 14 the Energy Island to operate when it's reserving that 15 amount of salt to go ahead and do a runback of the 16 It's not designed to go below that. plant. 17 That kind of gets back to Greg's question over there. You would have to stop producing 18 19 electricity if you got to that level. You'd have to manage that inventory within the limits provided to 20 the Energy Island. 21 This is George Wilson. 22 MR. WILSON: We developed we'll develop 23 haven't it but system 24 operating procedures, conditions, and limits. It'll be in those system operating conditions and limits 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	64
1	that you'll have normal operating bands. We just have
2	not done those.
3	So to address your question fully, all
4	that stuff will be covered when we have our operating
5	procedures when we've completed them.
6	MEMBER HALNON: And that comes back,
7	George, to a fundamental question on the operator.
8	Even though you say that there's no events that the
9	operator has to respond to, is there a condition where
10	the operator is required to maintain a certain
11	operating envelope to maintain pre-existing conditions
12	so that no response is such as required?
13	The fundamental question is if they're
14	required to keep it within an operating band, is the
15	operator not in essence responding to a license-based
16	event by maintaining the operational boundaries, if
17	you will, in place?
18	MR. WILLIAMS: This is George Wilson. If
19	you do it by design, I can have design intake have the
20	systems take action. I wouldn't have to rely on an
21	operator. It would be a fall-back, but I could have
22	the system take action. As Eric was saying, transient
23	runbacks and you essentially get a scram.
24	George, did you want to add?
25	MR. PICCARD: Yes. George Piccard from

(202) 234-4433

	65
1	plant operations. I will just add to that there is
2	little difference in how you would maintain with a
3	design margin and then an operational margin and other
4	types of operational primers of the amount of salt you
5	want to reserve in the cold tank.
6	You have to have a certain amount of water
7	in the tank. It would be the same type of procedural
8	guidance. You would have a design basis and then an
9	operational margin.
10	Some additional operational margins before
11	you load the dispatcher to actually control anything,
12	you would have even more margin to how much salt
13	reserve you'd have in the cold tank. You wouldn't
14	allow them to be able to control the turbine during
15	start-up or shut-down or any type of other transient
16	or any type of maintenance.
17	There would always be an override where
18	the operators have to give control to the load
19	dispatcher to be able to control the turbine. Any
20	signal that comes from the plant would override
21	anything that came from the load dispatcher. They're
22	not going to be able to control the turbine any time
23	that you don't want them to control the turbine.
24	MEMBER HALNON: Okay. Well, I think we'll
25	explore it more but again, a combination of operating

(202) 234-4433

1 procedures, technical specifications, operator training, and system interactions with those operators 2 3 pre-existing, pre-transient conditions. You have to 4 set up those conditions. It would be an interesting 5 period of discussion when we get into the operators. MR. PICCARD: 6 There would be a tech spec 7 probably for the minimal amount of salt in the cold 8 tank. Remember that's only there to allow the worst-9 case scenario runback to allow you get below five 10 percent power. Not a whole lot of heat is required It doesn't have anything to do with the 11 for that. safety case. 12 MEMBER HALNON: There's no effect from the 13 14 Energy Island to the Nuclear Island, yet this is an 15 effect. So we have to explore that connection and how 16 that impacts the safety. Okay. I've qot a clear 17 picture of where we're going. Thanks. MEMBER REMPE: Just a note of procedure. 18 19 When you're not up front, you need to say your name every time you talk for the court reporter. 20 And you probably should say it now. 21 Thank you. That was George Piccard. 22 MR. PICCARD: Okay. I think we can move 23 MR. WILLIAMS: 24 a little quicker. The next three slides are really background type of information just to show and talk 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

66

1 a little bit about that we do have a robust procedure following NEI identify licensing basis 2 18-04 to 3 events. 4 And so the events that we've talked about 5 here would all be initiating events screening. That 6 would be looked at as part of the PRA. We're really 7 talking about those events in the green shaded region here mostly today. This is a nice slide that reminds 8 us of all of the different families of events that are 9 out there being considered. 10 So the next slide shows us the defense 11 line scheme that we use on NATRiUM. 12 I don't think defense lines come directly from NEI 18-04. 13 They're 14 more of a TerraPower methodology for being able to 15 consider defense-in-depth adequacy in the earliest 16 design phases. 17 So looking at defense lines, tracking them as design requirements in our configuration management 18 19 of the design has really helped the safety analysts, PRA people, and the engineers on the design really 20 being able to talk the same language. 21 When we look at these defense lines, we're 22 going to see a lot of the Energy Island systems, the 23 24 runback taking care of Defense Line 2 functions, but no Defense Line 3 or 4 functions on the Energy Island. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

67

1	That's part of the independence that we have in the
2	design. The Defense Line 3 is where the safety
3	systems are. The Defense Line 4 is more of the
4	mitigation systems.

And then the next slide kind of shows a little bit of what we were talking about there and a framework for thinking about Energy Island event responses versus Nuclear Island event responses and how we look at deterministic safety analysis.

10 A lot of the typical events that you would 11 think of in an operating nuclear power plant that 12 happen on the balance of the plant side, those same 13 type of events on NATRiUM would really have no impact 14 on the Nuclear Island. They can't really affect the 15 Nuclear Island until an interface parameter like we 16 were talking about on the prior side gets triggered.

And in all cases, if the defense line 2 function fails, like the runback is designed to happen but it doesn't happen fast enough, there's still the reactor protection system set points on the Nuclear Island to protect the reactor. So there's always that defense line 3 protection in the plant.

All right. This one really talks about the types of transients that we looked at. They all fall into that decrease or increase in heat removal

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

5

6

7

8

9

	69
1	from the Nuclear Island salt system.
2	And it's really the thermal inertia and
3	the intermediate heat transport system and the primary
4	heat transport system that provides the adequate time
5	to respond to the event via signals monitored within
6	the Nuclear Island.
7	So in fact, I think the deterministic
8	safety analysis will look at a pretty extreme loss of
9	heat transfer at the sodium-salt heat exchanger and
10	really use that to bound any possible thing that could
11	happen on the Energy Island, and show that the reactor
12	is designed with adequate safety margin.
13	We looked at a couple of transients in
14	detail here. The power runback, which is really
15	something that we want to perform to avoid the scram,
16	begins with reactor power being decreased by the
17	insertion of control rods at a predetermined rate.
18	And being able to do that there's
19	different timing that can happen with that. We're
20	designing those control rods to be able to perform
21	that runback in time to avoid the scram.
22	That involves looking at a lot of
23	different transients. Depending on how the runback
24	gets triggered, there's different time constants and
25	different interactions between the systems. We're
I	

(202) 234-4433

70 making sure that the control rods are designed in all 1 2 cases to avoid that scram. Then the IAC and RAC provide the system 3 4 heat removal. These are what would normally happen in 5 the plant. We're not talking about DBA-type assumptions here. We have both intermediate air 6 7 cooling and reactor air cooling able to provide heat 8 removal. The 9 primary sodium the pump and 10 intermediate sodium pump get decreased through their targeted flow settings as part of the power runback. 11 And then finally, when you get down to about five 12 percent power, then you isolate from the Energy Island 13 14 using the NSS isolation valves. 15 In the case of a scram, if one of the 16 reactor protection set points gets triggered, then the 17 reactor power gets decreased. The control rod is dropped by gravity, in this case, as opposed 18 to 19 running them in on the motors. The IAC and RAC also provide heat removal 20 The PSPOPs get ramped down. 21 here. And then you isolate when you get down to five percent power. 22 If we were to look at this same transient 23 24 from a DBA perspective, then you wouldn't take credit for the intermediate air cooling. You would only take 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433
	71
1	credit for reactor air cooling. Instead of the PSPOPs
2	ramped down, they would be coasting down. And we
3	don't take credit for the NSSI isolation.
4	These are kind of the scenarios that were
5	included in our transient analysis that we showed the
6	staff and the different examples of each of these that
7	were presented.
8	MEMBER MARCH-LEUBA: Is only the scram
9	safety grade?
10	MR. WILLIAMS: Only scram is safety grade.
11	MEMBER MARCH-LEUBA: What are the
12	implications with ATWS? We cannot get to the reactors
13	by designing that scram very reliable. Is there more
14	than one way of getting the rods in? Do you have a
15	way to push the rods in if they don't go by gravity?
16	MR. WILLIAMS: Yes. We have a scram
17	follow function. That is also motor-driven here.
18	MEMBER MARCH-LEUBA: Is it safety grade?
19	MR. WILLIAMS: I am not sure.
20	MS. YOUNG: This is Emily Young from
21	TerraPower. The scram follow function is one of our
22	DL4 functions for our defense-in-depth. If our
23	gravity drop doesn't work for whatever reason, then
24	we'd go into that feature.
25	So it's not necessarily going to be a
	1

(202) 234-4433

	72
1	safety-related feature. It's just going to be a
2	defense-in-depth adequacy feature for us.
3	MEMBER BROWN: I thought the topical
4	report read that if you scrammed, you automatically
5	initiated the drop-in. That's the way I read it. If
6	I read it wrong, just tell me, but that's what I saw,
7	that there wasn't a differentiation.
8	MS. YOUNG: This is Emily Young. I'll
9	double check and get back.
10	MEMBER BROWN: Okay. That's the best way
11	to do it. You don't want to wait until you don't have
12	any rods.
13	MEMBER MARCH-LEUBA: The question I was
14	going to mention is to eliminate errors from your
15	analysis, you have to demonstrate that your scram is
16	on the line of 5 or whatever number you choose. So I
17	guess it's only if the components are safety grade.
18	MEMBER MARTIN: Real quick, what power
19	level does the Energy Island generate power to the
20	grid?
21	MR. WILLIAMS: You mean during start-up?
22	MEMBER MARTIN: Yes, during start-up.
23	Obviously you would have a procedure unlike what it is
24	for shutdown.
25	MR. WILLIAMS: George, our start-up
	I

(202) 234-4433

	73
1	narrative?
2	MR. PICCARD: Yes. George Piccard,
3	TerraPower. The way the start-up narrative currently
4	reads is that we would actually put the steam
5	generators into a hot standby mode.
6	You don't need to necessarily have the
7	same type of get to a certain power and then roll
8	the turbine. You would have a light-water reactor
9	typically at maybe 25-30 percent power.
10	Depending on where the salt tanks were
11	whether you had a long shutdown or a short shutdown,
12	you could bring the reactor up to power, low power.
13	You could stay on the intermediate air cooling system
14	or you could put more heat into the salt tanks.
15	So there's a lot more flexibility in the
16	start-up than you would have at the light-water
17	reactor. I don't think right now we actually know
18	when is the ideal time to start rolling the turbine at
19	what power level, but I would imagine it would be
20	similar, 20 percent to 50 percent power.
21	You'd want to start putting your heat
22	somewhere. So it's just a matter of how much capacity
23	you have for where your heat goes and when you want to
24	start using it.
25	If you don't want to roll your turbine and
I	1

(202) 234-4433

	74
1	you still want to bring the power up, we also have
2	steam dump valves. So there's a tremendous amount of
3	flexibility of when you actually want to start
4	generating electricity. You just don't have to do it
5	at a certain point during start-up.
6	MEMBER BROWN: Is this Nuclear Island a
7	true nuclear island? You don't even need the Energy
8	Island at all; it can support itself?
9	I thought all the electrical power that
10	was generated in the Energy Island is not self-
11	supporting. Is it independent?
12	You don't have to have the grid to run the
13	plant, but you have to have the Energy Island to
14	operate the plant without electricity, but you don't
15	have any diesel generators.
16	So there's some point in here where you
17	need other power for doing something, I would think.
18	It sounds like if all the lights go out, you don't
19	care anywhere in the entire, whole plant.
20	MR. WILSON: This is George Wilson. We
21	have a diesel generator. It's not safety grade.
22	MEMBER BROWN: Okay.
23	MR. WILSON: I don't have any safety-
24	related backup power.
25	MEMBER BROWN: That's fine. What I was
I	1

	75
1	really getting to is you don't have to have the grid
2	in order to operate via a stable, low-power
3	conditioning. You're self-supporting?
4	MR. WILLIAMS: Yes. You can dump the
5	steam, I think, which is what George was saying there.
6	MEMBER BROWN: As well as run your
7	turbines, if you needed to. You could generate your
8	own electrical power from the Energy Island; is that
9	correct also?
10	MR. WILSON: This is George Wilson. We're
11	going to re-validate it if we're going to backfeed
12	from generator output back and give houseloads back
13	into what you can.
14	That is something that's still being
15	evaluated where we'll potentially backfeed in there.
16	Right now our sodium pumps would be powered from the
17	grid. So if you would lose the grid, you would lose
18	your sodium pumps.
19	MEMBER BROWN: All right. Thank you.
20	MEMBER KIRCHNER: This is Walt Kirchner.
21	Along those lines, you initially had indicated five
22	steam generator trains. Have you decided on your
23	turbine equipment yet?
24	If you had five turbines I'm not saying
25	that's what you're doing you could do a cold blast
I	

(202) 234-4433

	76
1	start of the plant by yourself without off-site power.
2	MR. WILSON: This is George Wilson.
3	That's something that we've talked with some people
4	that are interested in our plant, actually doing a
5	backfeed and doing a cold start off of our salt tanks.
6	That's not something that we've put into the design
7	yet, but that is something we're evaluating.
8	MR. WILLIAMS: Emily, you want to add
9	something?
10	MS. YOUNG: Yes. Emily. Again, a point
11	of clarification, you are correct. The scram follow
12	would initiate immediately following a scram signal
13	generation, correct. Scram follow, yes, for freezing.
14	And then also there was a question about
15	unprotected events. I just want to make a point of
16	clarification that we do have some unprotected events
17	that we are looking at for the LMP process in terms of
18	discussing the cliff edge effect, but those are
19	currently screened out of our BDBE region.
20	Their frequency is what we're clarifying
21	as an OQE, an other quantified event. So we will look
22	at those.
23	But the scram follow events where we don't
24	have gravity drop and motor drive-in, those events are
25	categorized as a beyond-design-basis event per the LMP
I	I

(202) 234-4433

	77
1	currently. So they will be on our list of assessed
2	events in our LBE list.
3	MR. WILLIAMS: Thanks, Emily.
4	All right. I'll turn this over to you,
5	George.
6	MR. WILSON: My name is George Wilson.
7	I'm going to talk about what I call the interface or
8	the separation between the Energy Island and Nuclear
9	Island, the potential regulations that wouldn't fully
10	apply to our design.
11	The first thing we have to look at is the
12	NRC's definition in 10 CFR 50.2 of what safety-related
13	means. And then we look at what the NEI 18-04
14	difference in safety-related, their definition.
15	The NEI's is actually based on function
16	and frequency. The NRC's is to do with boundary and
17	has three criteria. Right now we need to either show
18	how we're going to meet the intent of 50.2 or take an
19	exemption of 50.2 and use the classification and the
20	definition and NEI 18-04 for our definition of safety-
21	related.
22	I'll focus on the bottom two first. For
23	10 CFR 55, licensed operator reaction, if you look
24	into the guidelines and the definitions in 10 CFR 55,
25	this is one of the actions. We require an operator to
ļ	I

(202) 234-4433

	78
1	have a license.
2	The scope of 55.2 says any individual who
3	manipulates the controls of any utilization facility
4	licensed under 50.52 and 54 of this chapter. The key
5	word there is control
6	When you go into the definitions in 10 CFR
7	50.54, the definition is controls when used with
8	respect to a nuclear reactor means an apparatus and
9	mechanism, the manipulation of which directly affects
10	the reactivity or power level of the reactor based on
11	the fact of the inertia that you can operate the
12	turban.
13	It has to go through the salt tanks and
14	then it has to go through the intermediate heat
15	transfer system. Finally, it gets to the primary heat
16	transfer system. The time lapse that it takes, there
17	is no direct reaction between operating the turbine
18	and the impact of the reactor.
19	It can be minutes or even hours before you
20	would see an impact back onto the reactor power based
21	on where you were at. So with that, it is our
22	intention to allow the turbine generator to be
23	operated by the grid operator just like they would in
24	a fossil fuel plant.
25	MEMBER MARCH-LEUBA: When you say grid
	1

(202) 234-4433

	79
1	operator, do you mean somebody located in Atlanta?
2	MR. WILSON: Well, it would be someone
3	located in the grid operations of
4	MEMBER MARCH-LEUBA: Remotely?
5	MR. WILSON: Remotely, right. It would
6	just be operated remotely. Our turbine will be
7	designed with a different ramp rate. Our plant can
8	truly load follow because there is no you operate
9	the turbine and reactor at a different power level.
10	So it is our intentions with our design to
11	allow our turbine to be operated remotely. There will
12	be constant communication with our control room and
13	our operators, but it would be the intention to allow
14	our turbine to be operated.
15	MEMBER MARCH-LEUBA: And of course, this
16	is a plant that will be doing the safety analysis
17	because all you do is get bored of the computer with
18	numbers. You could consider cybersecurity, attacks,
19	and all this kind of stuff you have to make sure
20	that the Energy Island truly does not feed back into
21	the nuclear?
22	MR. WILSON: Right. We have to have air
23	gaps. We will meet the NRC's requirement. NEI will
24	be doing the cybersecurity. We'll also have to meet
25	the requirements of the CIP standards because there is
	I

(202) 234-4433

	80
1	a bright line between when FERC standards roll over
2	and it's the first isolation point after the turbine.
3	So we'll have to meet all the requirements
4	for cybersecurity and physical security. We've had to
5	look at allowing to reach out to the grid operator to
6	do the turbine. It will be something new for the NRC.
7	We've already bridged that with
8	MEMBER MARCH-LEUBA: You're completely
9	opening the firewall to the grid operator?
10	MR. WILSON: To a certain extent. I'm not
11	going to go into that.
12	MEMBER BROWN: To a lesser extent unless
13	you open the LAN.
14	MEMBER BALLINGER: This is Ron Ballinger.
15	When you say control power remotely, will you be
16	allowing people to remote control other
17	characteristics like reactor power? Can you do that?
18	MR. WILSON: I just know right now we
19	would allow the I don't know about decay bars. Is
20	that what you're talking about, reactor power?
21	MEMBER BALLINGER: Yes.
22	MR. WILSON: We're still working with
23	PacifiCorps on what we're going to do, but there would
24	be no issue with them changing. You're just changing
25	the output of your turbine that you're putting into
ļ	l

(202) 234-4433

	81
1	the grid. If I'm putting a reactive load out, I would
2	have to maintain reliability.
3	We're still working those details out with
4	who would be our grid operator of PacifiCorp. That
5	would be our intention to allow them to. There will
6	be direct communications all the time, but that's
7	something that the industry is actually very
8	interested in.
9	MEMBER HALNON: So in the spirit of
10	helping move along, this has been done for 50 years.
11	The case is that they're saying it doesn't affect the
12	reactor.
13	If it doesn't affect the reactor and it
14	doesn't affect reactor safety, then what the grid
15	operator does is independent of all that. The certain
16	extent is within the limits we've already talked
17	about.
18	MEMBER MARCH-LEUBA: The problem, Greg, is
19	the US is a juicy target for the bad guys. If a
20	hacker in North Korea gets control of your Energy
21	Island, it's not a safety concern, but you'd make it
22	to CNN. And you will have to go testify in front of
23	Congress.
24	MEMBER HALNON: I think we can argue that
25	point as well. I don't think it's that juicy of a
ļ	I

(202) 234-4433

	82
1	target, but go on.
2	MR. SCHULTZ: Steve Schultz, just a
3	question. I understand the turbine operation issue
4	associated with operator licensing. The other
5	elements associated with the Energy Island, are those
6	functions for the tanks and so forth performed by a
7	licensed operator?
8	MR. WILSON: Right now we're still
9	developing our reactivity manipulations control
10	program. If you look at the NRC's conditions, it said
11	we didn't look at 54(j). We will have definitions.
12	We'll have that just like any other reactor.
13	You have to have a reactivity
14	manipulations control program and start looking at the
15	indirect impacts and what would have to be controlled
16	by a licensed operator or overseen by the operator.
17	So we're still fully evaluating that.
18	But right now, if there would be, it would
19	be some of the stuff with the salt tanks and nothing
20	with the rest of the plant on the Energy Island side.
21	We're still looking at that. We haven't fully
22	developed that. That's one of the conditions the NRC
23	has put in our top drawer.
24	MEMBER HALNON: Understood. Thank you.

24 MEMBER HALNON: Understood. Thank you. 25 MR. WILSON: When we looked at 10 CFR

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	83
1	Appendix B, Appendix B states that this appendix
2	applies to all activities affecting the safety-related
3	functions of those structure systems and components.
4	During our classifications of the way that
5	we do the SSCs, based on when we do the licensing
6	basis events, currently there is no safety-related or
7	non-safety related with special treatment systems,
8	structures, or components located on the Energy
9	Island.
10	Therefore, on the classification you
11	heard the NRC staff; they'll talk about it a little
12	bit more their Appendix B would not apply to
13	anything on the Energy Island. The other two
14	regulations are kind of lumped together.
15	One of them would be a limited work
16	authorization of 10 CFR 50.10 and 10 CFR 50.65.
17	Requirements for monitoring effectiveness of the
18	maintenance at power plants, known as the maintenance
19	rule. 10 CFR 50.10 and 50.65 have the same language
20	in there. So 50.10 actually borrows the maintenance
21	rule language for some of the criteria.
22	When we looked at the maintenance rule
23	language specifically, we focused on (b)(2). It says
24	non-safety related structures, systems, or components.
25	It you look at item number 3, it says whose failure
	I

(202) 234-4433

could cause a reactor scram or actuation of a safetyrelated system.

3 To get additional clarification for that, 4 the NRC's Reg Guide 1160, which actually references 5 the NUMARC 93-01 standard -- and if you go into the NUMARC 93-01 standard, item number 3, which is more 6 7 clarity to the regulations, states systems, 8 structures, and components identified in the 9 licensee's analysis whose failure would cause a 10 reactor scram or actuation of a safety-related system. Based on that clarification, the salt system could 11 cause a reactor scram if a runback did not happen. 12

So we said that it meets that criteria of the maintenance rule. It is our intention based on using the LMP process to go after an exemption of this based on our risk-informed performance-based approach because, as I stated earlier, there's no safetyrelated or non-safety related with special treatment systems in the Energy Island.

So really, the intent of the maintenance rule was to keep those systems robust so that you made sure you can do your safety system. So it is our intention to go after an exemption of 10 CFR 50.65 just for that criteria and have those systems, structures, and components in the Energy Island of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

84

	85
1	maintenance rule.
2	That's all I have. If there's no
3	questions, thank you guys for your time. We greatly
4	appreciate your time. We're here if you have any
5	other questions.
6	MEMBER MARCH-LEUBA: Out of curiosity,
7	could you tell us something of your schedule? What
8	are your plans?
9	MR. WILSON: The plan is we'll be
10	submitting our construction permit application in
11	March of 2024 for the NRC to review.
12	MEMBER MARCH-LEUBA: Your vision is to be
13	operating the plant when?
14	MR. WILSON: We'll start preconstruction
15	activities the first quarter of '25. Full operations
16	Nick, you can help me here I think it's 2030.
17	MEMBER MARCH-LEUBA: Thanks.
18	CHAIR ROBERTS: It's Tom Roberts. It's
19	now 10:05. We're about 25 minutes behind schedule.
20	To help that along, I figure we'd take about a ten-
21	minute break. Looking around, I think there's
22	agreement to do that.
23	I think we have enough time towards the
24	end of the schedule here to make up the time. We'll
25	reconvene at about 10:15 this morning. We'll go with
I	

(202) 234-4433

	86
1	the NRC staff and then proceed from there.
2	(Whereupon, the above-entitled matter went
3	off the record at 10:06 a.m. and resumed at 10:16
4	a.m.)
5	CHAIR ROBERTS: It is now 10:15 and we're
6	coming back into session. We now have the NRC staff
7	presentation. Candace de Messieres will start the
8	presentation for the staff.
9	MS. DE MESSIERES: Thank you, Chairman
10	Rempe and Member Roberts, for the opportunity to
11	present to the committee today. I am Candace de
12	Messieres, Chief of Advanced Reactor Technical Branch
13	2 in the Division of Advanced Reactors and Non-Power
14	Production and Utilization Facilities, or DANU, in the
15	Office of Nuclear Reactor Regulation.
16	During this meeting, the NRC staff will
17	provide you with a summary of our review of
18	TerraPower's topical report titled Regulatory
19	Management of NATRiUM Nuclear Island and Energy Island
20	Design Interfaces.
21	As we've been discussing, this topical
22	report pertains to the decoupling strategy to ensure
23	independence of operation between nuclear and Energy
24	Island systems for the NATRiUM design.
25	The topical report contains TerraPower's
l	I

(202) 234-4433

87 1 evaluation for regulations and requests NRC approval of the topical report such that the NATRiUM reactor 2 3 licensees can utilize the regulatory evaluation via 4 reference and licensing submittals. 5 I'll emphasize that this review is part of ongoing pre-application engagement with TerraPower. 6 7 Our review conclusions rely on key preliminary design 8 and analysis aspects and assumptions. 9 These aspects and assumptions, which 10 include implementation of key design features and assignment of SSC safety classifications, will be 11 confirmed as part of future licensing reviews and are 12 reflected in our topical report safety evaluation in 13 14 the form of limitations and conditions. 15 I will now turn it over to the NATRIUM 16 Project Management and Technical Leads, Mallecia 17 Sutton, Senior Project Manager, and Reed Anzalone, Senior Nuclear Engineer, as well as Jesse Seymour, 18 19 Senior Reactor Engineer Examiner, to present details of our review. 20 Thank you again for the opportunity to 21 present to the committee. 22 We look forward to your observations and feedback. 23 24 MS. SUTTON: Good morning. I'm Mallecia Sutton. I'm glad to be here with you guys. Let me go 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	88
1	to the next slide, please.
2	I'll provide a review of the time line of
3	this topical report. We had a pre-engagement
4	application public meeting on November 17th of 2021 to
5	discuss the potential of submittal. The initial
6	submittal was a white paper titled Energy Island
7	Decoupling Strategy, which was submitted on February
8	4th.
9	At the staff review, we had another
10	discussion with TerraPower where they voluntarily
11	withdrew the submittal because we didn't have
12	sufficient information to conduct a review.
13	After further discussion, TerraPower
14	decided to submit its topical report, why we're here
15	today, titled Regulatory Management at NATRiUM Nuclear
16	Island on October 4th of 2022. Staff accepted the
17	topical report on November 16th.
18	We conducted an audit to understand the
19	transient analysis discussed in topical report to
20	demonstrate compliance with 10 CFR 50.54(j). The
21	staff will discuss more detail. The audit ran from
22	January 23, 2023 to March 10, 2023. Then staff
23	finalized the draft safety evaluation report, which
24	was issued on August 10, 2023.
25	With that, I'll turn it over to Reed to go
Į	I

(202) 234-4433

```
www.nealrgross.com
```

	89
1	over the staff's evaluation of the topical report.
2	Thank you.
3	MR. ANZALONE: Thanks, Mallecia. I think
4	I can tell the microphone is working, which is always
5	a concern for me.
6	I think TerraPower did a pretty good job
7	of going over the purpose of the topical report. I'm
8	not going to talk about that anymore. I'll just focus
9	on our strategy for the review.
10	What we wanted to do in this review, given
11	where we are in the design and licensing design
12	process with TerraPower, what we wanted to focus on
13	was those key aspects of the NATRiUM design and
14	analysis presented in the topical report, and kind of
15	use that as the context for the regulatory evaluations
16	that they were doing. And then propose appropriate
17	limitations and conditions that would be necessary for
18	those evaluations to be acceptable.
19	And really, that's kind of the structure
20	of this presentation too. We're going to talk about
21	the key aspects of the design and analysis. We're
22	going to look at the regulatory evaluations, and then
23	we're going to talk about the limitations and
24	conditions.
25	Next slide. I say basically the same

(202) 234-4433

	90
1	thing on this slide. Next slide, please.
2	So I also have a little design overview
3	that I put together that I think goes along with what
4	TerraPower did. We can walk through this pretty
5	quickly.
6	These figures are taken from the topical
7	report. There's the primary heat transport system.
8	There's the intermediate loop going between the
9	intermediate heat exchanger and the sodium-salt heat
10	exchanger.
11	There's the thermal salt storage system
12	with the hot and cold salt tanks. And the separation
13	between the Nuclear Island and Energy Island is those
14	isolation valves there on the thermal salt storage
15	system.
16	Also on the Energy Island there's the
17	steam generating system. Those are the same diagrams
18	that TerraPower presented earlier.
19	Keep going.
20	So on the Nuclear Island, we've got these
21	safety systems, the reactor air cooling system, and
22	the intermediate air cooling system. The one thing I
23	wanted to talk a little bit more about on this slide
24	was the audit, which TerraPower touched on a little
25	bit, what they shared with us. I wanted to just
I	

(202) 234-4433

	91
1	mention the key audit findings.
2	We looked at the analysis that they
3	performed concerning the Energy Island/Nuclear Island
4	interface and the ability of the Nuclear Island to
5	respond to transients on its own. Those Energy Island
6	events and TerraPower mentioned this that have
7	the greatest possibility to affect the Nuclear Island
8	are the ones that occur physically closest to the
9	Nuclear Island.
10	Events that occur further out from that
11	interface can really all still be boiled down to
12	changes at the Nuclear Island/Energy Island interface.
13	The question is just how long does it take for those
14	changes to propagate through.
15	Even then, once you have those changes
16	that you see at the Nuclear Island/Energy Island
17	interface, how long does it take those to propagate
18	through to where they have an effect on the core?
19	TerraPower talked a bit about the thermal
20	inertia of the various systems. We see that those are
21	really significant towards making the case for Energy
22	Island/Nuclear Island independence.
23	The design of the primary heat transport
24	system, the fact that they're using a pool-type SFR,
25	the intermediate heat transport system and how big it

(202) 234-4433

	92
1	is. And then the really big thing is the thermal salt
2	storage system, which pretty much effectively
3	insulates changes in turbine power from affecting
4	reactor power, as we've discussed.
5	Next slide.
6	MR. SCHULTZ: Reed, before you go on, this
7	is Steve Schultz.
8	MR. ANZALONE: Sure.
9	MR. SCHULTZ: I meant to ask TerraPower
10	about this. You talked about the time frames that are
11	available for the interaction between the Energy
12	Island and the Nuclear Island qualitatively. Can you
13	quantify that a bit, the power and so forth?
14	MR. ANZALONE: It really depends on the
15	specific transient, what's going on, and what system
16	you're talking about. But it is minutes to hours, not
17	seconds. I think that's pretty much the only level I
18	can it really depends on the particular
19	MR. SCHULTZ: That's fine. I wanted to
20	get the minutes and the powers on the record. Thank
21	you.
22	MR. ANZALONE: Okay. I think George
23	mentioned that during the last little bit of
24	MR. SCHULTZ: Thank you.
25	MR. ANZALONE: So I'm going to touch on
ļ	I

(202) 234-4433

	93
1	the safety classification using NEI 18-04, which is
2	the risk-informed, performance-based technology
3	inclusive guidance for non-light-water reactor
4	licensing basis development. That's a mouthful so I'm
5	just going to say NEI 18-04 LMP from now on.
6	We endorsed that in Reg Guide 1.233.
7	TerraPower is following those approaches as endorsed
8	in the Reg Guide.
9	It's a risk-informed, performance-based
10	safety classification approach that's laid out in NEI
11	18-04, which is highly integrated with other aspects
12	of the process including the selection and analysis of
13	licensing basis events and evaluation of adequacy. I
14	think TerraPower later in the presentation showed some
15	of those pieces all together.
16	It's a slightly different definition for
17	safety-related SSCs than in 50.2, which George touched
18	on. The 50.2 definition talks about safety-related
19	SSCs should be those needed to ensure the integrity of
20	the reactor coolant pressure boundary, the capability
21	to shut down the reactor and maintain it in a safe
22	shutdown condition, or the ability to prevent or
23	mitigate the consequences of accidents which could
24	result in off-site releases comparable to the 50.34
25	limits.
	1

(202) 234-4433

	94
1	We think that conceivably you could use
2	the LMP process to demonstrate compliance with that
3	50.2 definition of safety-related, but you may or may
4	not. So you might need to take an exemption from
5	50.2. I think TerraPower is considering that as well.
6	Go to the next slide, please, Candace.
7	CHAIR ROBERTS: Reed, Tom Roberts. I'm
8	just trying to understand some examples of what might
9	not meet the definition of 50.2, if it were shown to
10	be safety-related per LMP.
11	MR. ANZALONE: I think there's a question
12	of whether what TerraPower has in their reactor design
13	constitutes a reactor coolant pressure boundary,
14	quote/unquote, because it's operating at atmospheric
15	pressure.
16	They have made a distinction historically
17	between reactor coolant boundary versus reactor
18	coolant pressure boundary. Other more exotic designs
19	might deviate a little bit even further away from
20	those definitions in 50.2.
21	So NEI 18-04 and our Reg Guide kind of
22	leaves open the possibility that you might need an
23	exemption from 50.2. Does that answer the question?
24	CHAIR ROBERTS: I think so. Is that the
25	case here? It seems like integrity of the coolant
	I

(202) 234-4433

	95
1	boundary is going to be required regardless of what
2	you call it.
3	MR. ANZALONE: Yes. It's just a matter of
4	wording. I think they would propose an alternate
5	definition. I believe there was a public meeting we
6	had with them some time last year where they talked
7	about changing that to just say reactor coolant
8	boundary or primary coolant boundary instead of
9	reactor coolant pressure boundary.
10	CHAIR ROBERTS: It gets into more
11	semantics than technical? That's what I'm trying to
12	understand.
13	MR. ANZALONE: Yes. I would agree with
14	that.
15	CHAIR ROBERTS: Okay. Thank you.
16	MR. ANZALONE: So the NEI 18-04 process
17	uses this definition for the different safety
18	classifications that are available. There's the
19	safety-related SSCs and those are the SSCs selected
20	for the required safety functions to mitigate design-
21	basis events within the frequency consequence target
22	curve. I have a slide coming up where I'm going to
23	explain what that actually means.
24	And SSCs selected for required safety
25	functions to prevent high consequence beyond design-
I	I

(202) 234-4433

	96
1	basis events from entering the design-basis event
2	region beyond the frequency consequence target. I'll
3	talk about those more when we get to the next slide.
4	There's also this concept of non-safety
5	related with special treatment, which is roughly
6	analogous to Part 50. Those are the non-safety
7	related SSCs that are performing risk significant
8	functions or needed for defense-in-depth.
9	I think that conceptually you can think
10	about you might have multiple SSCs that can do a
11	safety function. You would have one you would
12	designate as safety-related and then you would have
13	another that you would designate potentially as non-
14	safety related with special treatment.
15	And then the final category is non-safety
16	related with no special treatment, which as TerraPower
17	has discussed, they're trying to get all those Energy
18	Island SSCs to be in that final category.
19	Next slide, please, Candace.
20	Here's the frequency consequence target
21	curve from NEI 18-04. I'm just going to use this to
22	try to help explain those safety-related SSCs.
23	If you can advance it a little bit, that's
24	the design-basis event region, which is those events
25	that have a frequency between 1E minus 4 and 1E minus
	I

(202) 234-4433

www.nealrgross.com

	97
1	2. The high consequence beyond design-basis events
2	are those in the beyond-design basis event region.
3	So that's between five times ten to the
4	minus seventh and ten to the minus fourth. Those are
5	beyond the 50.34 dose limit. The safety-related SSCs
6	are used to keep the DBEs within the frequency
7	consequence target. The high-consequence BDDE is
8	within the frequency consequence target.
9	Also if you can advance it one more
10	time, Candace only the safety-related SSCs are
11	available to keep design-basis accidents below the 10
12	CFR 50.34 dose limit.
13	Those design-basis accidents are DBE
14	events that have been stylized to use very
15	conservative assumptions. There's a deterministic
16	analysis that's done to show that they stay below the
17	50.34 limit using only safety-related SSCs.
18	MEMBER MARTIN: This is Bob Martin. Is
19	their power showing preliminary results for dose
20	consequences
21	MR. ANZALONE: Yes.
22	MEMBER MARTIN: and their methodology?
23	Is there a slide, maybe somewhere else because it's
24	not here, of how they compare to the curve?
25	MR. ANZALONE: There are some results
	I

(202) 234-4433

	98
1	from, I want to say, earlier this year. Those were at
2	the time considered proprietary.
3	MEMBER MARTIN: We're okay seeing that,
4	right?
5	MR. ANZALONE: Yes since this is a public
6	meeting. Yes, everything was inside the target curve.
7	MEMBER MARTIN: They submitted a topical
8	on those consequences and methodology?
9	MR. ANZALONE: They will be submitting a
10	topical and on the deterministic safety analysis. The
11	safety classification process was one of the key
12	things that we were considering in our review of the
13	topical report in addition to the design.
14	So now I'll talk a little bit about the
15	regulations that were covered in the topical. I think
16	George actually did a great job overviewing these
17	during TerraPower's presentation.
18	They looked at 50.10 and 50.65, which are
19	the LWA rule and the maintenance rule which, as he
20	said, have identical requirements for some of them.
21	They looked at Appendix B and Part 55.
22	Next slide.
23	The LWA rule provides a requirement that
24	no person may begin the construction of a production
25	or utilization facility on a site on which the
	I

(202) 234-4433

	99
1	facility is to be operated until they've been either
2	issued a construction permit or a limited work
3	authorization.
4	50.10(a)(1) provides the scoping criteria
5	that defined what constitutes construction in the
6	context of the rule. Those scoping criteria were
7	chosen to encompass those SSCs that have a reasonable
8	nexus to radiological health and safety or common
9	defense and security.
10	If you go to the next slide, Candace.
11	Criteria 2, 3, and 4 were chosen based on
12	the language in the maintenance rule, which had
13	already been around for some time at this point.
14	Basically, when the Commission was promulgating the
15	LWA rule, there was a desire to try to use agreed-upon
16	definitions for what had a reasonable nexus to health
17	and safety.
18	They just basically lifted those criteria
19	from the maintenance rule because there was guidance
20	and they had been used for some time. Then also,
21	criteria 1 is safety-related SSCs.
22	And then there are several additional
23	criteria. Those necessary to comply with Part 73,
24	which is the security regulations, those needed to
25	comply with 50.48 and criteria 3 of the general design

(202) 234-4433

	100
1	criteria, which are fire protection regulations and
2	those needed for on-site emergency facilities.
3	If you could go to the next slide?
4	MR. MARCH-LEUBA: Not allowing testing?
5	You have testing at the end of the first paragraph.
6	MR. ANZALONE: I have to say I don't
7	actually know off the top of my head.
8	MR. MARCH-LEUBA: I think if they come and
9	ask you that you would tell them, yes, go ahead and
10	test all you want. Okay.
11	MR. ANZALONE: So I'm going to walk
12	through all the criteria in 50.10(a)(1). First I'll
13	talk about TerraPower's evaluation and then I'll talk
14	about what we thought about that evaluation.
15	So criteria 1 they said wasn't applicable
16	because those Energy Island SSCs are non-safety
17	related with no special treatment. We said that was
18	reasonable.
19	It's consistent with the NEI 18-04 safety
20	classification definition, but we did have a
21	limitation regarding the definition of safety-related.
22	I've already talked about how there's a distinction
23	between the 50.2 definition and the NEI 18-04
24	definition.
25	Criteria 1 here actually specifically
ļ	

(202) 234-4433

	101
1	refers back to 50.2. Rather than saying safety-
2	related, it says safety-related SSCs as defined in 10
3	CFR 50.2.
4	So if it just said safety-related, it
5	wouldn't necessarily be an issue. But if they're
6	getting an exemption from 50.2, they would also need
7	to get an exemption here. And that's what the
8	limitation tries to make clear.
9	Criteria 2 TerraPower determined wasn't
10	applicable because Energy Island SSCs aren't used to
11	mitigate accidents or transients or used in the EOPs,
12	the emergency operating procedures. We thought that
13	was consistent with the plant design.
14	We wouldn't expect non-safety related SSCs
15	to participate in mitigation or prevention of
16	accidents or transients, but we haven't reviewed
17	TerraPower's emergency operating procedures. They're
18	still under development. So we added a limitation and
19	condition on the topical report to address that.
20	Criteria 3 isn't applicable because the
21	NSD SSCs wouldn't be capable of preventing safety-
22	related SSCs from fulfilling their safety functions.
23	We thought this was consistent with the NEI 18-04
24	safety classification definition. And I'll also note
25	I think I have a slide that talks a little bit more

(202) 234-4433

	102
1	about this later.
2	There was a comment or a staff position in
3	the Reg Guide endorsing NEI 18-04 that says basically,
4	if an SSC provides a central support to a higher
5	classified SSC, so if you had an SSC providing support
6	to a safety-related or non-safety related with special
7	treatment SSC, we would expect that support in SSC to
8	be classified the same as the higher classification
9	SSC.
10	And finally, on this slide criteria 4, and
11	George talked about this, they determined that it was
12	applicable because the failure of an Energy Island SSC
13	could eventually cause a reactor trip and they planned
14	to seek an exemption. And that they would use the
15	same exemption basis for 50.10(a)(1)(4) and
16	50.65(b)(2)(3) because those are the same language.
17	We agreed with TerraPower's determination
18	that the criteria was applicable. We thought it was
19	reasonable to use the same exemption basis for the two
20	regulations that have the same language, but we didn't
21	take a position on the prospective exemption. We'll
22	review that when we get it.
23	Next slide.
24	Criteria 5 TerraPower said wasn't
25	applicable because there wouldn't be any physical
l	I

(202) 234-4433

security program SSCs on the Energy Island. And that if they had any SSCs that were identified as critical digital assets for the cybersecurity program, they wouldn't be installed on the Energy Island prior to the construction permit.

We felt like that was consistent with the design, but we kind of expect that that would be constrained in scope to the Nuclear Island. We didn't have a lot of detail on the security program. We're going to have to look at those further when we have those details.

Criteria they judged 12 6 to be nonapplicable because fires on Energy Island would not 13 14 prevent the ability to maintain and achieve shutdown, which is really the focus of 50.48. We thought that 15 16 that was an adequate evaluation because those Energy 17 Island SSCs are non-safety related with no special treatment, as TerraPower talked about quite a bit 18 19 today, and can be achieved and maintained solely using Nuclear Island systems. 20

And then finally, criterion 8 they determined was not applicable because the on-site emergency facilities would not be located on the Energy Island. We felt like that was consistent with the plant design and could be a design goal, but we

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	104
1	hadn't seen that flushed out yet to the point where we
2	could say definitively yes. The on-site emergency
3	facilities are not on the Energy Island. So we had a
4	limitation condition there.
5	Next slide.
6	MEMBER HALNON: So the end result of all
7	of this was this evaluation in combination with the
8	limits and precautions, limits and conditions, and
9	their exemptions? They can build Energy Island
10	without a limited work authorization?
11	MR. ANZALONE: If it appears it's going in
12	that direction.
13	MEMBER HALNON: Okay. So this is a hurdle
14	that they jumped over, and it looks like there's a
15	clear road ahead but there's still some
16	MR. ANZALONE: Yes. I would agree with
17	that.
18	So I'll talk a little bit about the
19	maintenance rule but really, fundamentally the
20	evaluation was basically the same as for 50.10. The
21	maintenance rule requires licensees to have a program
22	that monitors the performance or condition of certain
23	SSCs or demonstrates that they'll be able to perform
24	their intended functions through appropriate
25	preventative maintenance.
Į	I

(202) 234-4433

	105
1	The scope of the SSCs are basically the
2	same as the several regulations that we already talked
3	about in 50.10. 50.65(b)(1) is similar to but not
4	identical to 50.10(a)(1)(i) in that it doesn't say
5	safety-related SSCs as defined in 50.2. It says
6	safety-related SSCs to include all of the stuff that's
7	in the definition in 50.2, so it's a little bit
8	different there, but then the other criteria in 50.65
9	are the same as the ones in 50.10.
10	Next slide.
11	So TerraPower didn't evaluate 50.65(b)(1),
12	which is the note about safety-related, so we didn't
13	disposition that in our safety evaluation. The other
14	criteria we evaluated the same as in our evaluation
15	under 50.10.
16	Next slide.
17	Appendix B provides quality assurance
18	requirements for the design, manufacture, and
19	construction of certain SCCs, and it applies to all
20	activity is affecting the safety-related functions of
21	SSCs that prevent or mitigate the consequences of
22	postulated accidents that could cause undue risk for
23	the health and safety of the public.
24	Next slide.
25	So TerraPower asserted that all the Energy
	I

(202) 234-4433

Island SSCs will be non-safety related with no special 1 treatment, and that SSCs classified as non-safety 2 3 related with no special treatment under that NEI 18-04 4 process wouldn't be capable of affecting the safety-5 related function of the SSCs used for prevention or mitigation. 6 7 We considered the role that we would 8 expect non-safety related SSCs to play, and determined 9 that the evaluation was acceptable. That's the staff 10 position that I mentioned earlier, that support SSCs should be classified at the higher level of the SSCs 11 that they support. 12 Now I'm going to turn it over to Jesse --13 14 MEMBER MARCH-LEUBA: Hold on. 15 MR. ANZALONE: Sure. 16 MEMBER MARCH-LEUBA: Let me just make a 17 comment. This is not a criticism. Appendix B is good. Appendix B is also painful and expensive to be 18 19 brought in. From a public presentation point of view, 20 they don't need to do any QA on the Energy Island. 21 I'm sure TerraPower is going to do some ISS standard 22 or something like that. 23 24 So from a public presentation point of view, we should say that the QA that they're planning 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433
107 to do is sufficient and doesn't need to be expanded to 1 the Appendix B's standards. I'm just suggesting that 2 3 because I'm sure you're going to use QA. It's an 4 expensive plant. 5 MR. ANZALONE: Point taken. Thank you. MEMBER HALNON: The QA is going to be 6 7 essentially -- it's required by the construction 8 codes, right? 9 Which is not nothing. MR. ANZALONE: 10 MEMBER HALNON: No. You've got all kinds of steps on there. 11 All right. MR. ANZALONE: Now Jesse is 12 going to talk a little bit about Part 55. 13 14 MR. SEYMOUR: Thank you, Reed. 15 My name is Jesse Seymour. I'm an operator 16 licensing examiner and technical reviewer at NRR. Т 17 reviewed the Part 55 related portion of the topical 18 report. 19 In topical report, the TerraPower describes that the NATRIUM design removes direct 20 interaction between the reactor and the turbine 21 generator, which results in operation of the turbine 22 generator not constituting an apparatus or mechanism. 23 24 This manipulation directly affects the reactivity or power level of the reactor. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	108
1	TerraPower also states in the topical
2	report that NATRiUM design would allow for a non-
3	licensed operator based upon that to operate the
4	turbine generator. From an operator licensing
5	perspective, this is much different than the current
6	large light-water reactor practice in which turbine
7	generator operations have historically been considered
8	to be control manipulations, and therefore restricted
9	to being only performed by licensed operators.
10	In evaluating TerraPower's position, a key
11	consideration is TerraPower's description of the
12	NATRIUM thermal storage system as providing a
13	significant thermal energy storage capacity that can
14	be used to support electrical generation such that the
15	reactor power wouldn't be directly correlated to
16	turbine manipulations.
17	MEMBER HALNON: Jesse, did you look at
18	this from just the turbine generator set or for the
19	whole Energy Island perspective?
20	MR. SEYMOUR: I'll address the Energy
21	Island aspect a little further into this. The primary
22	consideration was who could operate the turbine. So
23	again, when you're looking at the Energy Island,
24	obviously there's other things that could potentially
25	be seen coming off the system, drawing salt energy.
	I

(202) 234-4433

www.nealrgross.com

	109
1	MR. HALNON: Levels of the salt tanks was
2	what I was it seems like the closest connection to
3	effects on the Nuclear Island. That's what I was
4	curious about, whether or not we're talking about an
5	exemption for the entire Energy Island or just what
6	you have to run the turbine with.
7	MR. SEYMOUR: So the focus of topical
8	evaluation is going to be on the turbine generator
9	operation itself and whether the turbine constitutes
10	a control. When we get to the broader discussion of
11	the Energy Island, that's covered more so by the
12	50.54(j) discussion I'll be going through later on.
13	MR. HALNON: Okay.
14	MR. SEYMOUR: One thing I do want to throw
15	in there is this is part of the reason that we wanted
16	to judge the exemptions on their own merits when those
17	come in. Those will more, we would expect, very
18	clearly define the scope of what would be exempt and
19	what wouldn't.
20	We evaluated these considerations within
21	the context of the regulations of 10 CFR Parts 50 and
22	55, the associated regulatory history, and the
23	relevant statutory requirements. As I'll discuss in
24	detail in the next slide, the word direct is used in
25	the definition of control is central to understanding
I	

(202) 234-4433

	110
1	the meaning of key regulations involved here and
2	evaluating the assessment of the topical report.
3	Next slide, please.
4	The Atomic Energy Act defines operators
5	under Section 11 as being individuals who manipulate
6	the controls of utilization facilities. The Atomic
7	Energy Act also mandates under Section 107 that
8	individuals who operate utilization facility controls
9	must be licensed by the NRC.
10	Thus, there is a statutory driver behind
11	why only licensed operators will operate the controls
12	of the facility. Very importantly, though, the Atomic
13	Energy Act does not define what those controls
14	actually consist of, which leaves that definition to
15	instead be made by the NRC via regulation.
16	From the inception of operator licenses
17	back in 1956, manipulation of the controls of the
18	utilization facility has been restricted to licensed
19	operators under the Regulation 50.54(i). That
20	specific regulation is very closely linked to the
21	Atomic Energy Act provisions that I discussed.
22	It's worth noting that the original 1956
23	definition of controls was much broader than the
24	modern version and formally encompassed mechanisms
25	which by manipulation or failure to manipulate singly
ļ	I

(202) 234-4433

1 in combination could result in the release of or energy materials in 2 atomic or reactor amounts 3 determined by the Commission to be sufficient to cause 4 danger to the health and safety of the public. So 5 again a very, very broad definition in its original form. 6

7 In 1963, the Atomic Energy Commission 8 narrowed that definition significantly on the basis 9 that a regularly narrow interpretation of what was 10 truly controlled would be more consistent with the 11 Commission's original intent.

An amended definition of controls remains unchanged in its present day and is limited to the scope of apparatus and mechanisms, the manipulation of which directly affects the reactivity or power level of the reactor.

Separately, 50.54(j) was also introduced in 1963, which also addresses the manipulation of apparatus and mechanisms other than the controls, the operation of which may affect the reactivity or power level of a reactor and states that those shall be manipulated only with the knowledge and consent of a licensed operator present at the controls.

24 Notably, those types of operations are 25 permitted to be conducted by individuals other than

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	112
1	licensed operators provided that the provisions or
2	consent and oversight are still met.
3	The key takeaway here is that the
4	regulations recognize the distinctions between an
5	apparatus or mechanism, whose manipulation directly
6	affects the reactivity or power level of the reactor,
7	and those that are not direct in nature, with separate
8	requirements governing each of those.
9	As mentioned earlier, the word direct and
10	the definition of controls is the key here. The
11	implication of the use of the word direct was that
12	controls can be interpreted to mean apparatus and
13	mechanisms that when manipulated affect reactor power
14	level reactivity without also needing something
15	intermediate to make that happen.
16	Manipulations of that type fall under the
17	scope of 50.54(i) and their performance is going to be
18	restricted to licensed operators and senior operators.
19	Again, there's a very direct tie back to the Atomic
20	Energy Act on that.
21	Thus the presence or absence of a
22	significant intermediary between any given
23	manipulation and the reactivity or power level effects
24	on the reactor is the key factor that we as a staff in
25	our judgement identified as being the essential
ļ	I

(202) 234-4433

113 1 determinant of whether given operations fall under the scope of 50.54(i). 2 3 Based upon that perspective, we evaluated 4 the implications of NATRIUM's described design and determined that the thermal storage system would act 5 as a significant intermediary between manipulations 6 involving Energy Island steam loads and reactivity 7 8 effects on the reactor. 9 This led to our conclusion in the safety 10 evaluation. Manipulations of NATRiUM apparatus and mechanisms that affect Energy Island steam loads do 11 not directly affect the reactivity or power level of 12 the reactor, and therefore do not fall under the scope 13 of 50.54(i). 14 15 not address The topical report does 16 compliance with 50.54(j) though. This was 17 incorporated into the limitations and conditions that will be discussed later in the presentation. 18 19 Unless there's questions, I'll go ahead and turn it back over to Reed. 20 So you're talking about 21 MEMBER HALNON: the thermal storage system doesn't affect reactivity, 22 but it sounds like it could cause a reactor scram or 23 24 runback. How is that not affecting reactivity? MR. SEYMOUR: The distinction made here is 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	114
1	you have a category of things that directly are
2	discussed to affect reactivity, and you have a
3	category of things that the operation of which may
4	affect reactivity.
5	The distinction is that one set of things
6	falls under (i) in 50.54(i) and the other falls under
7	(j). What we're saying here in the topical is that
8	there is very well a subset of things that could fall
9	under (j). We'll cover that in a limitation that we
10	put on there.
11	MEMBER HALNON: So that's all being dumped
12	into (j)?
13	MR. SEYMOUR: That's correct, yes. So
14	it'll still be necessary for TerraPower to show how
15	they're going to comply with (j) or to go through and
16	seek some type of an exemption.
17	I would mention, and I'll build upon this,
18	during the audit we did query TerraPower on how they
19	want to pursue compliance with (j). Again, this was
20	done in audit so it's not something that's necessarily
21	reflected in safety evaluation.
22	They did provide us with a copy of their
23	draft reactivity plan. At the point that we looked at
24	it, it was still in a very rudimentary state, being
25	flushed out. But that plan was intended to, I
I	I

(202) 234-4433

	115
1	believe, eventually show how they're going to comply
2	with 50.54(j) for Energy Island operations.
3	MEMBER HALNON: So you get another bite at
4	the apple to discuss how the thermal systems could
5	affect reactivity?
6	MR. SEYMOUR: That's right. Ultimately
7	the applicability is still there for 50.54(j), which
8	puts that into a regime where you either have to
9	comply or seek an exemption from it.
10	MEMBER HALNON: Okay.
11	MR. SEYMOUR: Again, there's a significant
12	difference between (i) and (j). With 50.54(i), as I
13	talked about, there's almost a straight line going
14	back to the Atomic Energy Act.
15	MEMBER HALNON: Yes. It seems like
16	there's a success route there. It's just a matter of
17	what the documentation is going to be?
18	MR. SEYMOUR: That's correct.
19	MEMBER HALNON: Okay.
20	MR. SEYMOUR: I'll turn it over to you,
21	Reed.
22	MR. ANZALONE: I think that's one of the
23	themes of what we're talking about here. There's a
24	success path. We're kind of outlining what that
25	success path looks like, but that path has to be
	I

(202) 234-4433

	116
1	walked.
2	Now I'm going to talk a little bit about
3	the limitations and conditions, which kind of provide
4	the contours of that path. The first limitation is
5	about key aspects of the NATRiUM design.
6	That states that applicants referencing
7	the topical would need to use a plant design that's
8	substantially similar to what was discussed in the
9	topical and that deviations that could affect the
10	safety evaluation conclusions need to be justified
11	when the topical report is referenced.
12	I think in general in the topical report
13	process, this is one of these things that's kind of
14	assumed would happen that you need to justify the
15	applicability of the topical report to your plant when
16	you reference it. But we wanted to put this in as
17	limitations to underscore the importance of those
18	design features that enable the independence of the
19	Nuclear Island and Energy Island.
20	While those regulatory evaluations that we
21	talked about were really relatively high level, we did
22	make our determinations in the context of the NATRiUM
23	design and its capabilities. Part of the reason we're
24	doing this too and putting it specifically as a
25	limitation in the condition is that there is interest
I	I

(202) 234-4433

	117
1	in applying similar approaches to decouple the Nuclear
2	Island and Energy Island that's been expressed to us
3	by other industry organizations.
4	So we wanted to kind of outline, here are
5	the things that you need to happen in the design to
6	make something like this possible.
7	Next slide.
8	So limitation condition 2 talks about the
9	safety classification process. This is sort of a
10	similar theme to the first one. They use NEI 18-04 in
11	the topical report to do the safety classification.
12	We relied on that to make our
13	determinations, but also the design process is
14	iterative. NEI 18-04 identifies that it would be
15	intended to be applied iteratively as the design
16	matures. Eric mentioned this in their presentation.
17	They've done these analyses. They are
18	doing these analyses. They're going to continue to do
19	these analyses and reconfirm as the design matures
20	that the Energy Island SSCs continue to be non-safety
21	related with no special treatment for the conclusions
22	in our safety evaluation to remain applicable.
23	So limitation 3, this is the one talking
24	about the difference in the definition between 50.2
25	and NEI 18-04 for safety-related. And I think I
	I

(202) 234-4433

118 1 already covered that one. I'll move on. Limitation 4, there are other definitions 2 in the regulations of construction. Part 51, which is 3 4 the environmental regulations, also has a definition 5 of construction that's similar or possibly identical safety 6 to Part 50. I'm in licensing, not 7 environmental, so I'm not actually that familiar with the environmental regulations. 8 We just wanted to make it clear that the 9 10 evaluation applies to the Part 50 definition of construction that TerraPower evaluated. It doesn't 11 apply to any other places that construction might be 12 defined. 13 14 Five, and I already talked about this. We haven't reviewed EOPs for NATRiUM and TerraPower 15 didn't discuss them in sufficient detail to ensure 16 17 they don't rely on Energy Island SSCs. Six and 7, similar to 5. We're going to 18 physical 19 need information more on the and cybersecurity programs to ensure that the Energy 20 Island doesn't include SSCs that fall under the scope 21 We think the design supports it, 22 of those programs. we didn't have enough to be able to 23 but say 24 definitively. Now Jesse is going to talk about 8 and 9. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	119
1	MR. SEYMOUR: Thanks, Reed.
2	As mentioned earlier, the topical report
3	does not address the requirements of 50.54(j).
4	Therefore, we did not provide any safety evaluation of
5	the implications of NATRiUM's design as it relates to
6	that specific regulation.
7	Again, 50.54(j) deals with apparatus and
8	mechanisms, the operation of which may affect
9	reactivity. It does not require a licensed operator
10	to do those things, but a licensed operator at the
11	controls has to provide knowledge and consent.
12	Thus, any NATRiUM facility licensee or
13	applicant for an operating license or combined license
14	that references this topical report, in the absence of
15	receiving an exemption, must ensure that manipulation
16	of any Energy Island apparatus or mechanism which may
17	affect the reactivity or power level of the reactor is
18	only permitted with the knowledge and consent of a
19	licensed operator or senior operator.
20	Beyond that, 55.31(a)(5) requires that
21	reactivity manipulations for operative licensed
22	applicant experience requirements must involve
23	operating the controls which, as discussed earlier,
24	are associated with direct reactivity or power
25	changes.
I	I

(202) 234-4433

1 Therefore, any apparatus or mechanism 2 determined to not be a control must logically also be 3 excluded from being acceptable for applicant 4 experience credit under 55.31(a)(5). Again, this was 5 important to point out because historically we've 6 accepted those loading changes as a reactivity 7 manipulation for that type of credit.

So consistent with that, applicants for 8 9 operator or senior operator licenses at a NATRIUM facility where the facility licensee references its 10 topical will not be able to rely upon manipulation of 11 apparatus and mechanisms that affect Energy Island 12 steam loads, including the turbine generator, for the 13 14 of satisfying those operator license purposes 15 experience requirements.

16 I'm going to turn it back over to Reed 17 again.

MR. ANZALONE: I'll just talk about this 18 19 last limitation, which is pretty simple. The topical discussed the basis 20 report for the proposed exemptions. We reviewed it for information, but we're 21 not taking a perspective on the exemptions that we 22 haven't received yet in the safety evaluation. 23

24 MR. BLEY: Excuse me. This is Dennis 25 Bley. Could you back up one slide and go over that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

121 1 last point you made? It kind of slipped past me. I didn't fully understand it. 2 This is Jesse. 3 MR. SEYMOUR: Sure. When 4 a licensed operator applicant applies for a license, 5 one of the requirements is that they have to show they conducted five significant reactivity manipulations. 6 7 Those can either be done on an actual plant, or with a few more restrictions it can be done on a simulator. 8 9 One of the keys is that they have to 10 utilize the controls of the facility. Historically, with the existing large light-water fleet, we have 11 accepted credit for those occurring, moving the rods, 12 berating, diluting, manipulating recirculation pumps 13 on the reactor side. And then over on the secondary 14 side changing turban loading has been something that 15 16 we've accepted for credit before. 17 So based upon this topical report and our evaluation of it, again, it creates a little bit of a 18 19 logical disconnect if you were going to say that the turbine and its manipulation does not constitute a 20 control on the one hand, but then on the other hand 21 allow that to still be credited for those types of 22 applications. 23 24 Essentially, what that condition and

limitation is saying there is that you can't have your

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	122
1	cake and eat it too, for lack of a better way to put
2	it.
3	MR. BLEY: Okay. I think I get it now.
4	Thank you.
5	MR. SEYMOUR: If you could go to the next
6	slide, please?
7	So the high-level conclusions. The
8	topical report is acceptable for referencing future
9	licensing submittals subject to our limitations and
10	conditions, which we think delineate that path where
11	it would be acceptable. The plant design and Energy
12	Island's safety classification, they are integral part
13	of our evaluation.
14	With that, I will open it up to any
15	questions.
16	MEMBER HALNON: On the cybersecurity side
17	when we drew the bright line back in 2010-ish time
18	frame for operating plants, are you going to carry
19	that same scope, I guess, for lack of better terms,
20	for the NRC to be into the construction as well?
21	I assume that when Vogel was constructed,
22	the NRC looked at the compliance with the New York
23	side as well, like they do in the operating plants.
24	Is that going to carry forward in these advanced
25	reactors as well?
I	

(202) 234-4433

	123
1	MR. SEYMOUR: I'm not a cybersecurity
2	expert so I can only comment so much, but that is
3	basically my understanding of where things are. We've
4	talked with the cybersecurity people about this.
5	MEMBER HALNON: Okay. So obviously,
6	there's no major change in how we're going to be
7	looking at it in the future then?
8	MR. SEYMOUR: Not to my understanding, but
9	I could be proven wrong.
10	MEMBER HALNON: Okay.
11	MR. MARCH-LEUBA: My concern with the
12	cyber is this starts defining political components.
13	Nothing in the NEI is a political component.
14	Therefore, a cybersecurity plan is not required.
15	MEMBER HALNON: Well, by the NRC's
16	standard. The NERC standard would put them into a
17	more special category.
18	MR. MARCH-LEUBA: I've always said you
19	guys have to be looked for aquariums. And the EI
20	sounds to me like an aquarium. I will tell you the
21	story after. Or just Google cybersecurity attack on
22	a casino with an aquarium.
23	MS. de MESSIERES: This is Candace de
24	Messieres of the NRC staff again. I just wanted to
25	reiterate we did explicitly put that limitation and
ļ	

(202) 234-4433

	124
1	condition in the topical safety evaluation just
2	because we do need more information in this area, so
3	more to come.
4	MR. SCHULTZ: Reed and Jesse, this is
5	Steve Schultz. Just to confirm in general, during the
6	presentations today from TerraPower, your review of
7	your overall evaluation, and the limitations and
8	conditions, things are aligned between you and
9	TerraPower, associated with their actions that they
10	see they need to take in regard to the exemption
11	requests?
12	MR. SEYMOUR: Yes, I would say so.
13	MR. SCHULTZ: And other follow-up actions
14	associated with the limitations and conditions?
15	MR. SEYMOUR: Yes.
16	MR. SCHULTZ: And with regard to the
17	exemptions, it doesn't seem as if they're high
18	hurdles, the Part 50 exemptions that TerraPower is
19	moving forward to obtain.
20	MR. SEYMOUR: I think I would agree with
21	that. Like I said, they laid out a lot of the basis
22	for the exemptions in the topical report, so we're
23	kind of aware of where they're going to go.
24	MR. SCHULTZ: So your limitations and
25	conditions are aligned with that as well?
	1

(202) 234-4433

	125
1	MR. SEYMOUR: Yes.
2	MR. SCHULTZ: Thank you.
3	CHAIR ROBERTS: Are there any other
4	questions from the members online?
5	MEMBER KIRCHNER: No, thank you, Tom.
6	CHAIR ROBERTS: Thanks, Walt.
7	Hearing none, I have one final question
8	for the staff. Is there anything in this topical
9	report you think was innovative or kind of ground-
10	breaking or just kind of the normal process of doing
11	business with the pre-application phase?
12	MR. SEYMOUR: I would say the whole
13	concept is kind of innovative and ground-breaking, but
14	I think that's mostly just because nobody has really
15	had a technology that seemed to us to be capable of
16	doing this previously.
17	I think for a lot of the reasons that
18	Jesse and I have laid out, it's not something that you
19	could do with a large light-water reactor with the
20	current designs that are in the operating fleet. So
21	it took somebody coming up with a design that was
22	capable of doing this and then trying to put into
23	practice.
24	I think there is some ongoing things that
25	TerraPower is going to need to make sure of. I'm
I	I

(202) 234-4433

confident that they are going to do that because this is one of their key design principles, to maintain the separation between the Energy Island and the Nuclear Island.

5 But as they go through the process, 6 they're going to have to continue to try to reinforce 7 that separation to be able to make sure that these 8 things can actually be followed through as they're 9 described in the topical report. I'll leave it at 10 that.

MR. BLEY: This is Dennis. Could I ask a question of TerraPower? Throughout this discussion, you talked a lot about using the LMP. We've heard some complaints from people about how arduous that is.

15 So I have two questions for you. One is, 16 can you describe a little bit how you found the use of 17 the LMP in your projects so far?

18 Two, do you have any comments on the 19 limitations and conditions the staff has placed in 20 their review? Were they surprises to you or are you 21 pretty comfortable with them?

22 MR. JOHNSON: This is Brian Johnson on the 23 line, Manager of Nuclear Safety Licensing leading up 24 the risk reliability efforts and a lot of the LMP 25 implementation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

3

4

127 1 I will agree. I think the LMP is somewhat arduous, but I think it's a worthwhile and good way to 2 3 establish a positive safety case that's thorough early 4 on. 5 I think it's also going to be something we want to leverage to defend things like our safety 6 7 classifications so that they don't drag on, that we 8 have an agreed-upon systematic basis for making those 9 determinations, rather than ad hoc determinations 10 based on whatever negotiation we can do, whatever precedent exists. 11 So that experience of developing the PRA 12 and going through the LMP, I think, has been overall 13 14 good and that we have gotten significant insight from 15 that process. I'm not going to speak directly to the 16 17 limits and conditions of the topical here, but I did want to say that has been our overall experience with 18 19 LMP. Yes, it's a lot of work, but it gives worthwhile 20 insights. MR. WILSON: This is George Wilson of 21 TerraPower. We expected that we were going to get 22 limitations and conditions on the topical report for 23 24 where we were at. We just wanted to make sure that the NRC 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

128 1 was open, our logic was there, and the regulatories flow past so that we can continue through the process. 2 3 So we expected the limitations and the conditions that 4 we received. 5 MR. BLEY: Gentlemen, thanks. 6 CHAIR ROBERTS: Are there any other 7 questions for the staff or the applicant? Now is the 8 time on the agenda for comments from members of the 9 If anybody online would like to make a public. 10 comment, please go ahead and unmute yourself, state your name and organization, and make your comment. 11 Hearing none -- there is a hand, okay. 12 What does the hand mean? 13 14 MR. LYMAN: Ed Lyman. CHAIR ROBERTS: Yes, hello. Go ahead. 15 16 MR. LYMAN: This is Ed Lyman from the 17 Union of Concerned Scientists. I'd just like to bring up one point. I've heard from a reliable source that 18 19 the estimated capital cost of this project has doubled from original estimates. 20 I don't know if that means from the \$4 21 billion that was originally stated, meaning you would 22 be up to \$8 billion. Clearly, the molten salt storage 23 24 aspect is a substantial contributor to that capital 25 cost.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

I would anticipate there may be design 1 changes along the way to try to address the capital 2 3 cost increase that could impact the conclusions now 4 that we've reached here. So I'm just raising that as 5 an issue, perhaps for the committee to keep in mind, but some of these redundancies may go away. 6 Thank 7 you. 8 CHAIR ROBERTS: Thank you. Are there any 9 other members of the public that would like to make a 10 statement? Hearing none and seeing no additional 11 for 12 hands raised, now is time the Committee I quess I'll start by suggesting from 13 discussion. 14 what we heard today, I would suggest that we would not need to write a letter because of various reasons. 15 One is the limitation condition number 2 16 17 in the topical report. Basically you can go through this whole line of reasoning on the actual design as 18 19 it's produced. nothing really that's 20 There's being committed to at this point other than acknowledging 21 that the process leads to the types of interaction 22 that you've heard today. I'd be interested from the 23 24 members if people see it that way or have different views. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

MEMBER MARCH-LEUBA: I'm a proponent of not writing those when it's not needed. Whenever there is a new and novel concept in its first application, I think in years later will have value. The energy out from Nuclear Island is the first time I've seen it implemented. I think having a position for FCRS is okay.

8 MEMBER HALNON: I absolutely hate agreeing 9 with Jose, but I think that it serves a couple of 10 purposes. One is there's a couple of items that I 11 think we still need to keep our eye on.

That is the requirement for the operators to maintain pre-existing conditions prior to a transient in order for that operating envelope to say within the bounds of where it needs to be so that they don't have to respond to an accident condition.

That's more on the nuclear side than Energy Island side, but I'm interested in the how tech specs would roll out, procedures, EOPs, and those types of things before we could say that we agree, there's a clear distinction here where there's no license operators on Energy Island.

23 Secondly, to Jose's point, it's a 24 progressive aspect of our committee to give a green 25 light, if that's what we're going to be, which I think

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

1 we should be, to a novel concept to move forward with. I think we concluded, or at least I concluded in my 2 mind, that both the staff and the applicants have done 3 4 a good job to lay groundwork for future work that has 5 a clear success path, but there's still some hurdles to get beyond. 6 7 Not just the exemptions, but some of the other analyses that have to be done. I think there's 8 9 a good aspect to putting a green light on that, but also the cautionary aspect of some things that still 10 need to be shaken out. 11 I agree with the members MEMBER REMPE: 12 who have spoken, except that I have more problems with 13 14 agreeing with Greg than Jose. 15 MEMBER PETTI: I'm just concerned with how 16 we write such a letter. It's kind of like a green 17 light but putting your foot on the break because there's these issues out there that you really can't 18 19 evaluate until the design gets more mature. So if we do it, it's going to have to be 20 really carefully worded. Is it viewed as a full green 21 The staff didn't give them the full green 22 light? This is kind of a blinking yellow at best. 23 light. 24 We don't usually write letters like that.

I think we're going to see this is all going to come

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	132
1	back again. It's sort of an issue of when is the
2	optimal time.
3	MEMBER REMPE: There are some things that
4	we will be evaluating as we go forward. It's not
5	really cautions. It's just, hey, there's some
6	outstanding.
7	I'm sorry I interrupted you, Vesna. Go
8	ahead.
9	MEMBER DIMITRIJEVIC: That's okay because
10	that's the limits of my ability to participate in this
11	discussion. This is just conceptual, the approach.
12	So I don't really think that there is a
13	reason for us to write the letter before the design is
14	complete. They're still going to talk with us about
15	human factors that we don't completely understand yet
16	until the PRA is completed.
17	So basically, what they have been saying
18	is technically that Energy Island can be separated
19	from Nuclear Island. And therefore, the components
20	there would not require the same certification, but
21	this is just concept until these other things are
22	complete.
23	MEMBER BROWN: This is Charlie. Are you
24	finished, Vesna?
25	MEMBER DIMITRIJEVIC: Yes.
I	

(202) 234-4433

MEMBER BROWN: I quess I would agree with Tom and Vesna. They've just laid out a concept for They've given us the plant how we would like to go. concept for how to get separation, but there's a whole pile of additional items that need to be evaluated relative to exemptions and the limitations and conditions, which we don't have any closure on at all. I would prefer to have some more detail of how they're actually going to finish rowing the boat through these rapids before we write a letter on it because right now, all we can say is maybe. So I would vote for no letter at this particular time. That would be my position. MEMBER BALLINGER: This is Ron Ballinger. From the standpoint of the technical side, I agree We don't need a letter. with Tom. But what we're talking about here is something which has a much larger implication going forward.

19 What we're talking about here is basically spending reserve for these plants. 20 In the future, it's like putting a battery on the grid in effect, and 21 not having the transmission lines from a freaking --22 excuse my French -- from a wind turbine somewhere. 23 24 So going forward, having the Energy Island separated from the Nuclear Island has implications 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

134 1 which we may want to at least point out. I don't know whether we want to do that in a letter or not, but 2 3 this concept has larger implications, although people 4 say it's existed for a long time. What's the 5 difference between that and pump storage, I quess. If you go just a little 6 MEMBER HALNON: 7 bit further, Ron, it may not be an Energy Island. Ιt 8 may be a chemical plant. You don't want to put 9 nuclear licensed operators at a chemical plant because they could indirectly affect reactivity by changing 10 their chemical processing. So it's got further 11 implications even broader than that. 12 It's also -- correct me if I'm wrong --13 14 this is the first licensing action that TerraPower has 15 asked for. Is that correct? This is the first time. 16 PARTICIPANT: 17 MEMBER HALNON: To show progress in the advanced reactor world, I think it's important that we 18 19 show the committee is engaged and going forward. Yes, we don't give a complete green light, I agree, to the 20 separation of Energy Island from Nuclear Island. 21 I think it's even beyond conceptually when 22 we see a clear path. There's regulatory hurdles to 23 24 over, but they're regulatory hurdles, not qet necessarily physical. There might be one or 25 two

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

135 1 physical ones that we pointed out. I think it's important for us to endorse a potential path forward 2 3 for not just energy islands but chemical process 4 plants, hydrogen plants. 5 MEMBER BALLINGER: In theory, they could shut that down from the salt loop to the Nuclear 6 7 Island, and just run the turbine and generate power 8 until they ran out of heat. 9 Yes, until the tank is MEMBER HALNON: 10 empty. MEMBER REMPE: Okay. The letter would not 11 occur until October Full Committee week if it were to 12 So I would recommend that you take a vote 13 occur. 14 through the subcommittee and then during P&P September 15 Full Committee, it will become an official committee decision on this. 16 17 So why don't you give a recommendation to go forward or not to go forward from the subcommittee. 18 19 And then you'll have to present it at full committee in September. 20 If it does not go forward, you need to 21 have a paragraph that could go into them needing 22 summary notes. I don't think there's more than a 23 24 subcommittee could do right now. You might want to take a vote and decide what the consensus or the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	136
1	majority is.
2	MEMBER MARCH-LEUBA: The subcommittee does
3	both, right?
4	MEMBER REMPE: You can have a soft P&P and
5	have a recommendation for the subcommittee. That's
6	what I'm trying to say. I hear both sides of the
7	aisle and I'm kind of stepping in to help you out
8	here.
9	CHAIR ROBERTS: Okay. So our subcommittee
10	vote would be to enter P&P with a recommendation to
11	either write a letter or not write a letter for
12	presentation at the October meeting?
13	MEMBER REMPE: If there is going to be a
14	letter, then there would be a presentation in October.
15	The one question I didn't hear asked is did the staff
16	or the applicant request a letter from ACRS?
17	It does cost the applicant to take time to
18	do a presentation. You can do it remotely. You don't
19	have to fly in or anything.
20	MS. SUTTON: Neither the staff nor the
21	applicant requested a letter. I know we do have a
22	proposed date for October 4th if it was needed. So I
23	guess we will know in September if we will support a
24	full committee.
25	MEMBER REMPE: And there's nothing that
	I

(202) 234-4433

	137
1	having to wait until that October are there
2	decisions being made by the applicant or the staff
3	other than you can't issue your SC without our letter
4	if we're going to have a presentation? But there's
5	nothing like a real operating plant. Sometimes we're
6	delaying something but we're not really.
7	MS. SUTTON: There's no ground-breaking.
8	There's no construction being done, no construction
9	activities. So at this time we just have several
10	topical reports. We have six in house that we're
11	reviewing that will potentially come to the
12	subcommittee.
13	MEMBER HALNON: Is it required that we
14	have a full committee presentation? Since the
15	subcommittee is the full committee, why can't we just
16	say let's have a one-hour deliberation and then go
17	into letter writing?
18	MEMBER REMPE: Are there any members not
19	present today?
20	MEMBER HALNON: That is an option.
21	MEMBER MARCH-LEUBA: What we do in this
22	case is we ask the staff to make a summary
23	presentation of ten to 15 minutes, and have the
24	applicant on the phone in case there's a question.
25	MEMBER HALNON: Just in case there's some
I	I

(202) 234-4433

	138
1	lingering questions.
2	MEMBER MARCH-LEUBA: They don't have to
3	travel.
4	MEMBER REMPE: Absolutely, yes. They
5	don't have to. Anyway, I'd take some sort of vote on
6	the recommendation.
7	CHAIR ROBERTS: Let's go ahead and take a
8	vote. The vote would be on whether a P&P coming up in
9	two weeks, whether it's the recommendation of the
10	subcommittee that the full committee meet to
11	deliberate a letter.
12	Does that make sense? A yes vote would be
13	to proceed with a letter and a no vote would be to not
14	proceed with a letter. How would you vote?
15	MEMBER KIRCHNER: I personally would make
16	a summary and not do a letter. My reasons would be
17	that I think we would find ourselves repeating all the
18	limitations and conditions that the staff has
19	discussed as parent of their deliberations in FC.
20	I'm not sure that this would really
21	again, we're at a conceptual phase. There are lots of
22	questions yet that will depend on the details that
23	will be forthcoming for the applicant. So I guess at
24	this point, I would not write a letter, just put a
25	summary entry into our record.
ļ	

(202) 234-4433

	139
1	CHAIR ROBERTS: Thanks, Walt.
2	Vesna?
3	MEMBER DIMITRIJEVIC: Same here. I
4	already said that, a summary note.
5	CHAIR ROBERTS: Let's get a show of hands
6	in the room of who would write a letter? And who
7	would proceed with writing a summary and the P&P but
8	not form a letter?
9	The vote is five plus two, so seven to
10	four to proceed on the basis of not writing a letter.
11	I'll draft a paragraph for the P&P coming up in two
12	weeks, and then we'll have another discussion and
13	another vote at that point.
14	MEMBER MARCH-LEUBA: Procedurally, you
15	would present a recommendation of the subcommittee to
16	the full committee. Hopefully, nobody will change
17	their mind. The decision would be on the full
18	committee.
19	CHAIR ROBERTS: Okay. Thanks, Jose.
20	MEMBER MARCH-LEUBA: The staff and
21	applicant can probably assume that you won't write the
22	letter, but you won't know until September.
23	MS. SUTTON: This is Mallecia. I just want
24	to clarify. Is the vote to actually write a summary?
25	And if no summary, then we'll have the October
	1

(202) 234-4433

	140
1	meeting? No letter but the summary of the meeting?
2	MEMBER REMPE: Just to clarify, this
3	summary is just, hey, the subcommittee met. We
4	discussed this. The general people were favorable.
5	We supported the LNCs, the limitations and conditions,
6	whatever comments. You're done.
7	CHAIR ROBERTS: This is our record that we
8	made a decision not to do a letter.
9	MS. SUTTON: I just wanted to make sure we
10	are on the same page. Thank you.
11	MEMBER BROWN: You're clean.
12	MR. MOORE: This is Scott Moore, the
13	Executive Director. We prepare a summary for each full
14	committee meeting. It would go into that. The summary
15	is publicly available in ADAMS. It would describe
16	whatever the full committee decides to do on this.
17	The full committee could still decide to
18	write a letter, as Jose has pointed out, but it's
19	unlikely given that you've got, I think, everybody
20	here. You can see it in the summary and so can the
21	public.
22	MEMBER REMPE: Sometimes an applicant or
23	licensee likes that summary saying that even though
24	they didn't write a letter, they supported it.
25	MEMBER BROWN: Our summary can have a
I	I

(202) 234-4433

	141
1	caveat that we reviewed all the stuff and it's not
2	unreasonable, but no closure on things, however Tom
3	can phrase it in a happy manner.
4	MR. KELLENBERGER: So we would know in
5	September whether we need to come back for the full
6	committee in October?
7	CHAIR ROBERTS: No surprises.
8	MEMBER REMPE: We'll make sure to let you
9	know.
10	CHAIR ROBERTS: Are there any other
11	comments that the members or consultants would like to
12	make?
13	MEMBER HALNON: Just thank you to
14	TerraPower for coming in. We greatly appreciate face-
15	to-face communications when we can get it, so we
16	appreciate it very much that you were here.
17	CHAIR ROBERTS: I'd like to reiterate what
18	Greg said. I appreciate the presentations from both
19	TerraPower and NRC staff. They were excellent. I
20	think our questions got answered to the extent that it
21	could be answered given the preliminary nature of the
22	concept design.
23	With that, this meeting is adjourned.
24	(Whereupon, the above-entitled matter went
25	off the record at 11:29 a.m.)
ļ	I

Staff Review of NATD-LIC-RPRT-0001, "Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces"

Mallecia Sutton, Senior Project Manager, NRR/DANU Reed Anzalone, Senior Nuclear Engineer, NRR/DANU Jesse Seymour, Senior Reactor Engineer (Examiner), NRR/DRO

Agenda

- Review Chronology
- TR Overview and Review Strategy
- Safety Evaluation Overview
 - Plant design and transients
 - Safety classification using NEI 18-04
 - Regulatory evaluations
 - Limitations and conditions
- Conclusions

Review Chronology

- Pre-Application Public Meeting
 - November 17, 2021
- Submittals on Decoupling Strategy
 - White Paper: "Energy Island Decoupling Strategy" February 4, 2022 (voluntarily withdrawn)
 - Topical Report: "Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces" October 4, 2022
- TR Accepted
 - November 16, 2022
- Audit Conducted
 - January 23, 2023 March 10, 2023
- Final Draft Safety Evaluation Issued
 - August 10, 2023

TR Overview and Review Strategy

• Purpose of TR:

- "The independence of operation between the systems contained within the NI and the plant systems composing the EI is a key aspect of the Natrium design philosophy. The NI boundary conditions have been intentionally designed so the interrelationship with the EI does not impact the NI safety case."
- "[E]valuate regulatory impacts of the Natrium design interfaces with respect to the interaction of NI and EI systems"
- Review Strategy
 - Examine key aspects of Natrium design and analysis presented in the TR
 - Assess regulatory evaluations in the context of these key aspects
 - Propose appropriate limitations and conditions necessary for evaluations to be acceptable

Safety Evaluation Overview

- Sections 1-4 Introduction and Background
- Section 5 Staff Evaluation
 - Section 5.1 Natrium Plant Design and Transients
 - Section 5.2 Natrium Safety Classification of SSCs
 - Section 5.3 Regulatory Analyses
- Section 6 Limitations and Conditions
- Section 7 Conclusions

Plant Design and Response to Transients

Images sourced from NATD-LIC-RPRT-0001, "Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces" (ML22277A824)

Safety Classification Using NEI 18-04*

- NEI 18-04 endorsed in RG 1.233, "Guidance for a Technology-Inclusive, Risk-Informed, and Performance-Based Methodology to Inform the Licensing Basis and Content of Applications for Licenses, Certifications, and Approvals for Non-Light-Water Reactors"
- Risk-informed, performance-based safety classification is integrated with other aspects of NEI 18-04 process, including selection and analysis of licensing basis events and evaluation of defense-in-depth adequacy
- Different definition for safety-related SSCs than 10 CFR 50.2

*NEI 18-04, "Risk-Informed Performance-Based Technology Inclusive Guidance for Non-Light Water Reactor Licensing Basis Development", Revision 1 (ML19241A472)

Safety Classification Using NEI 18-04

From NEI 18-04, Rev. 1 (ML19241A472)

Protecting People and the Environment

Role of F-C target in Safety Classification

From NEI 18-04, Rev. 1 (ML19241A472)

Overview of Regulations Covered in TR

- 10 CFR 50.10, "License required; limited work authorization"
- 10 CFR 50.65, "Requirements for monitoring the effectiveness of maintenance at nuclear power plants"
- 10 CFR 50 Appendix B, "Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants"
- 10 CFR 55, "Operators' Licenses"

10 CFR 50.10 ("LWA rule") Overview

- 10 CFR 50.10(c): "[n]o person may begin the construction of a production or utilization facility on a site on which the facility is to be operated until that person has been issued either a [construction permit]... or a limited work authorization [LWA]"
- 10 CFR 50.10(a)(1) provides scoping criteria defining construction.
- Rule issuance FRN (72 FR 57415) notes that scoping criteria were chosen to encompass "those SSCs that have a reasonable nexus to radiological health and safety or common defense and security".

11

United States Nuclear Regulatory Commission Protecting People and the Environment

10 CFR 50.10(a)(1)

Activities constituting construction are the driving of piles, subsurface preparation, placement of backfill, concrete, or permanent retaining walls within an excavation, installation of foundations, or in-place assembly, erection, fabrication, or testing, which are for:

(i) Safety-related structures, systems, or components (SSCs) of a facility, as defined in 10 CFR 50.2;(ii) SSCs relied upon to mitigate accidents or transients or used in plant emergency operating procedures;

(iii) SSCs whose failure could prevent safety-related SSCs from fulfilling their safety-related function;

(iv) SSCs whose failure could cause a reactor scram or actuation of a safety-related system;

(v) SSCs necessary to comply with 10 CFR part 73;

(vi) SSCs necessary to comply with 10 CFR 50.48 and criterion 3 of 10 CFR part 50, appendix A; and (vii) Onsite emergency facilities, that is, technical support and operations support centers, necessary to comply with 10 CFR 50.47 and 10 CFR part 50, appendix E.

10 CFR 50.10(a)(1) Evaluation

Criterion	TerraPower	Staff
(i)	Not applicable because EI SSCs are NST.	Reasonable, consistent with NEI 18-04 safety classification definition. See L&C 3 regarding definition of "safety-related."
(ii)	Not applicable because EI SSCs are not used to mitigate accidents or transients or used in EOPs.	Consistent with plant design. Would not expect NST SSCs to participate in mitigation or prevention. Not enough information on EOPs. See L&C 5.
(iii)	Not applicable because NST SSCs would not be capable of preventing SR SSCs from fulfilling safety functions.	Consistent with NEI 18-04 safety classification definition.
(iv)	Applicable because failure of EI SSCs could eventually cause a reactor trip. Plan to seek exemption. Exemption basis would be the same for 10 CFR 50.10(a)(1)(iv) and 10 CFR 50.65(b)(2)(iii).	Agree with determination that criterion is applicable. Reasonable to use same exemption basis for 10 CFR 50.10(a)(1)(iv) and 10 CFR 50.65(b)(2)(iii). Not taking a position on prospective exemptions. See L&C 10.

10 CFR 50.10(a)(1) Evaluation

Criterion	TerraPower	Staff
(v)	Not applicable because no physical security program SSCs are on EI; CDAs will not be installed on EI prior to CP.	Appears consistent with design, but not enough information to support. See L&C 6.
(vi)	Not applicable because fires on EI will not prevent ability to maintain and achieve safe shutdown.	Adequate because EI SSCs are NST and safe shutdown can be achieved and maintained solely with NI systems.
(vii)	Not applicable because onsite emergency facilities will not be located on El.	Consistent with plant design, but not enough information to support. See L&C 7.

10 CFR 50.65 ("Maintenance Rule")

- Requires licensees to have a program that monitors the performance or condition of certain SSCs or demonstrates the performance or condition of these SSCs through appropriate preventative maintenance, to provide reasonable assurance that they are capable of fulfilling their intended functions.
- Scope of SSCs considered under the Maintenance Rule are in 10 CFR 50.65(b)
 - 10 CFR 50.65(b)(1) is similar to 10 CFR 50.10(a)(1)(i)
 - 10 CFR 50.65(b)(2)(i) through (iii) are identical to 10 CFR 50.10(a)(1)(ii) through (iv)

10 CFR 50.65 Evaluation

- TerraPower did not evaluate 10 CFR 50.65(b)(1).
- TerraPower determined criteria (i) and (ii) are not applicable. Staff discussions and conclusions are the same as for 10 CFR 50.10(a)(1)(ii) and (iii).
- TerraPower determined criterion (iii) is applicable and plans to seek an exemption. Staff discussion and conclusions are the same as for 10 CFR 50.10(a)(1)(iv).

10 CFR 50, Appendix B

- Appendix B provides QA requirements for the design, manufacture, and construction of certain SSCs.
- Appendix B applies to "all activities affecting the safety related functions" of SSCs that "prevent or mitigate the consequences of postulated accidents that could cause undue risk to the health and safety of the public."

10 CFR 50, Appendix B Evaluation

- TerraPower asserted that all EI SSCs will be NST, and SSCs classified as NST under the NEI 18-04 process are not capable of affecting the SR functions of SSCs used for prevention or mitigation.
- Staff considered the role of NST SSCs and determined TerraPower's evaluation was acceptable
 - RG 1.233 Staff Position C.2 states, in part: "The staff expects that SSCs that provide essential support (including required human actions) for SR or NSRST SSCs will be classified in a manner consistent with the higher-level function, even if the supporting SSC is not explicitly modeled in the PRA."

10 CFR 55

- TerraPower states that the Natrium design removes direct interaction between the reactor and the turbine generator
 - Turbine operations would not be an apparatus or mechanism whose manipulation directly affects the reactivity or power level of the reactor
 - Natrium design should allow for a non-licensed individual to fully operate the turbine generator
- Staff evaluated that the nature of the TSS is consistent with Natrium not treating turbine generator operations as a "control" as defined under 10 CFR 50.2 and 10 CFR 55.4
 - A key consideration is the term "direct" and its specific meaning within the definition of "controls"

10 CFR 55

- The AEA Section 11 defines operators as individuals who manipulate the controls of utilization facilities; definition of "controls" is left to the NRC
 - Section 107 further mandates that individuals who operate utilization facility controls must be licensed by the NRC.
- Manipulation of the controls is restricted to licensed operators under 10 CFR 50.54(i)
 - Definition of "controls" in Parts 50 & 55 dates back to 1963 (28 FR 3197)
 - Narrowed from an earlier, broader definition; FRN notes that "this [current] narrower interpretation... is in accord with the original Commission intent."
- The "direct" aspect of a "control" means they cause reactor power level or reactivity changes without needing something intermediate to make that happen
 - Natrium TSS is a significant intermediary from a reactivity standpoint

L&C 1 – Key Aspects of Natrium Design

- Applicants referencing TR must use a plant design that is substantially similar to what was discussed in TR. Any deviations from plant design discussed in TR that could affect SE conclusions must be justified when the TR is referenced.
- Staff underscores the importance of the design features that enable the independence of the NI and EI. While the regulatory evaluations may be relatively high-level, the staff's determinations were made in the context of the Natrium design and its capabilities.

L&Cs 2&3 – Safety Classification; Definition of "Safety-Related"

- L&C 2
 - Staff's conclusions rely on the use of the NEI 18-04 process for safety classification and a determination that all EI SSCs are classified as NST.
 - Design process is iterative; so is NEI 18-04. As design matures, TerraPower will need to ensure EI SSCs continue to be NST for conclusions to be applicable.
- L&C 3
 - Definition of SR in NEI 18-04 is different from that in 10 CFR 50.2.
 - Some regulations explicitly reference 10 CFR 50.2 definition rather than simply saying "safety-related."
 - Use of NEI 18-04 may require exemptions from 10 CFR 50.2 and regulations that refer to it.

L&Cs 4-7 – Evaluation of 10 CFR 50.10 and 10 CFR 50.65

- L&C 4 TerraPower did not address definitions of "construction" outside of 10 CFR 50.10; this limitation makes the scope of the TR clear.
- L&C 5 Staff has not reviewed EOPs for Natrium and TerraPower did not discuss in sufficient detail to ensure they do not rely on EI SSCs.
- L&Cs 6&7 TerraPower did not discuss physical and cyber security programs or onsite emergency facilities in sufficient detail for staff to ensure the EI does not include SSCs that fall under the scope of 10 CFR 50.10(a)(1)(v) and (a)(1)(vii).

L&Cs 8-9 – Evaluation of 10 CFR 55

- L&C 8 10 CFR 50.54(j) not addressed in TR.
- L&C 9 Since manipulating the EI does not directly change reactivity or power, operator licensing experience requirements under 10 CFR 55.31(a)(5) are not satisfied by operating the EI.

L&C 10 – Prospective Exemption Requests

- TR discussed basis for proposed exemptions.
- Staff reviewed for information but did not take a position on prospective exemptions in the SE.

TR is acceptable for referencing in future licensing submittals, subject to limitations and conditions.

Plant design and EI SSC safety classification [assumptions] are integral parts of staff's evaluation.

Abbreviations

- BDBE Beyond design basis event
- CFR Code of Federal Regulations
- CP Construction permit
- CDA Critical digital assets
- DBA Design basis accident
- DBE Design basis event
- EI Energy Island
- EOP Emergency operating procedure
- F-C Frequency-consequence
- FR Federal Register
- FRN Federal Register notice
- IAC Intermediate air cooling system
- IHT Intermediate heat transport system

- L&C Limitation and/or condition
- LWA Limited work authorization
- NEI Nuclear Energy Institute
- NI Nuclear island
- NSRST Non-safety related with special treatment
- NST Non-safety related with no special treatment
- PHT Primary heat transport system
- QA Quality assurance
- RAC Reactor air cooling system
- RG Regulatory guide
- SGS Steam generation system
- SHX Sodium/salt heat exchanger

- SSC Structure, system, or component
- SE Safety evaluation
- SR Safety related
- TR Topical report
- TSS Thermal salt storage system

August 17, 2023

TP-LIC-LET-0094 Project Number 99902100

U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 ATTN: Document Control Desk

Subject:Submittal of Presentation Material for Advisory Committee on Reactor
Safeguards Subcommittee Meeting

This letter provides the TerraPower, LLC presentation material for the August 23, 2023 Advisory Committee on Reactor Safeguards Subcommittee meeting (Enclosure 1).

This letter and enclosures make no new or revised regulatory commitments.

If you have any questions regarding this submittal, please contact Ryan Sprengel at rsprengel@terrapower.com or (425) 324-2888.

Sincerely,

Ryon Spreyel

Ryan Sprengel Director of Licensing, Natrium TerraPower, LLC

Enclosure 1: TP-LIC-PRSNT-0014, Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces

cc: Mallecia Sutton, NRC William Jessup, NRC Nathan Howard, DOE Jeff Ciocco, DOE

ENCLOSURE 1

TP-LIC-PRSNT-0014, Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces

NATRÍUM

Regulatory Management of Natrium Nuclear Island and Energy Island Design Interfaces

a TerraPower & GE-Hitachi technology

TP-LIC-PRSNT-0014

SUBJECT TO DOE COOPERATIVE AGREEMENT NO. DE-NE0009054 Copyright© 2023 TerraPower, LLC. All Rights Reserved.

Table of Contents

- Natrium[™] Reactor Overview
- Operational Flexibility
- Transient Separation
- Regulatory Impacts

Control

Natrium Safety Features

- Pool-type Metal Fuel SFR with Molten Salt Energy Island
 - Metallic fuel and sodium have high compatibility
 - No sodium-water reaction in steam generator
 - Large thermal inertia enables simplified response to abnormal events
- Simplified Response to Abnormal Events
 - Reliable reactor shutdown
 - Transition to coolant natural circulation
 - Indefinite passive emergency decay heat removal
 - Low pressure functional containment
 - No reliance on Energy Island for safety functions
- No Safety-Related Operator Actions or AC power
- Technology Based on U.S. SFR Experience
 - EBR-I, EBR-II, FFTF, TREAT
 - SFR inherent safety characteristics demonstrated through testing in EBR-II and FFTF

Control

- Motor-driven control rod runback and scram follow
- Gravity-driven control rod scram
- Inherently stable with increased power or temperature

Cool

- In-vessel primary sodium heat transport (limited penetrations)
- Intermediate air cooling natural draft flow
- Reactor air cooling natural draft flow always on

Contain

- Low primary and secondary pressure
- Sodium affinity for radionuclides
- Multiple radionuclides retention boundaries

Contain

NATRIUM

2

3

Control Building 1 **Fuel Handling Building** 2 **Reactor Building** 3 **Reactor Auxiliary Building** 4 Salt Piping 5 Steam Generation 6 **Turbine Building** 7

SUBJECT TO DOE COOPERATIVE AGREEMENT NO. DE-NE0009054 Copyright© 2023 TerraPower, LLC, All Rights Reserved.

6

Operational Flexibility

Operational Flexibility

- Scope of NI command and control
 - Licensed Reactor Operator controls reactor power
 - Allows NI operators to focus on safely operating the nuclear heat source
- Reactor power independent of turbine output
 - Grid Operator controls turbine output based upon grid demand
 - Reactor remains at full power while turbine output variations are accommodated via salt tank inventory management
- Requirements related to salt tank levels, controlled bands, alert levels, and response times will be verified by initial modeling and reflected throughout design process
- Immediate reactor plant response to changes in El heat rejection systems are not necessary

Operational Flexibility

 Molten salt storage tanks change the direct correlation between reactor power and steam demand

TerraPower NATRIUM

Transient Separation

El Initiated Transients

- All failures associated with the EI are grouped into:
 - Loss of or reduced heat removal of IHT system via NSS:
 - Loss of salt flow
 - High salt temperature
 - Low salt pressure
 - Increased heat removal of IHT system via NSS:
 - Increased salt flow
 - Low salt temperature

Event Type Line Diagram by Frequency

Decreasing Frequency

All Events

Normal Ops

Screening

SUBJECT TO DOE COOPERATIVE AGREEMENT NO. DE-NE0009054 Copyright© 2023 TerraPower, LLC. All Rights Reserved.

Transient Separation

Defense-in-Depth

- Plant safety analyses only model PIEs that directly impact the NI
- All DL3 and DL4 functions are performed by NI systems

TerraPower NATRIUM

Transient Separation

- With operational flexibility, most events on the EI that would affect the NI in a typical nuclear power plant have no immediate impact
- El events can lead to PIEs if resulting change to an *interface parameter* occurs
- Plant design ensures that El SSCs are not required to perform any DL functions other than very few selected DL2 functions on the El
 - Enables no safety-related DL3
 SSCs on the El

Plant Response to El Transients

- Decrease or increase in heat removal from NSS leads to increased sodium temperature or decreased sodium temperature in IHT respectively
- Thermal inertia in IHT and PHT provides adequate time to respond to the event via signals monitored within NI
- Power runback:
 - Reactor power decreased by insertion of control rods at predetermined rate
 - IAC and RAC provide system heat removal
 - PSP/ISP flow decreased to target flow settings
 - NSS isolation
- Reactor SCRAM:
 - Reactor power decreased by control rod drop via gravity
 - IAC and RAC provide system heat removal
 - PSP/ISP ramp down
 - NSS isolation

Regulatory Impacts

Regulatory Impacts

- Future Exemption Requests
 - 10 CFR 50.2, "Definitions"
 - 10 CFR 50.10, "License required; limited work authorization"
 - 10 CFR 50.65, "Requirements for monitoring the effectiveness of maintenance at nuclear power plants"
- Requirements not applicable to NST SSCs on the EI
 - 10 CFR 50 Appendix B, "Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants"
- Turbine operation by a Licensed Operator is not required – 10 CFR 55, "Operators' Licenses"

Questions?

Acronym List

- AOO Anticipated Operational Occurrence
- BDBE Beyond Design Basis Event
- CCF Common Cause Failure
- CFR Code of Federal Regulations
- DBA Design Basis Accident
- DBE Design Basis Event
- DID Defense-in-Depth
- DL Defense Line
- EBR Experimental Breeder Reactor
- EI Energy Island
- EPZ Emergency Planning Zone
- F-C Frequency-Consequence
- FFTF Fast Flux Test Facility
- HXs Heat Exchangers
- IAC Intermediate Air Cooling System

- IHT Intermediate Heat Transport System
- ISP Intermediate Sodium Pump
- NI Nuclear Island
- NSS Nuclear Island Salt System
- NST Non-Safety-Related with No Special Treatment
- PHT Primary Heat Transport System
- PIE Postulated Initiating Event
- PRA Probabilistic Risk Assessment
- PSP Primary Sodium Pump
- QHO Quantitative Health Objectives
- RAC Reactor Air Cooling System
- SFR Sodium Fast Reactor
- SHX Sodium-Salt Heat Exchanger
- SSC Structure, System, and Component
- TREAT Transient Reactor Test

