Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Joint Digital Instrumentation and Control Materials Structures Subcommittee Open Session
Docket Number:	(n/a)
Location:	teleconference
Date:	Thursday, June 22, 2023

Work Order No.: NRC-2447

Pages 1-162

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	JOINT DIGITAL I&C AND FUELS, MATERIALS AND
8	STRUCTURES SUBCOMMITTEE MEETING ON EPRI DIGITAL I&C
9	PERSPECTIVES
10	+ + + +
11	THURSDAY
12	JUNE 22, 2023
13	+ + + +
14	The Subcommittee met via Teleconference,
15	at 8:30 a.m. EDT, Charles H. Brown, Jr., Chair,
16	presiding.
17	COMMITTEE MEMBERS:
18	CHARLES H. BROWN, JR., Chair
19	RONALD G. BALLINGER, Member
20	VICKI M. BIER, Member
21	VESNA B. DIMITRIJEVIC, Member
22	GREGORY H. HALNON, Member
23	JOSE A. MARCH-LEUBA, Member
24	WALTER L. KIRCHNER, Member
25	JOY L. REMPE, Member
	I

	2
1	THOMAS ROBERTS, Member
2	MATTHEW W. SUNSERI, Member
3	ACRS CONSULTANTS:
4	STEPHEN SCHULTZ
5	DENNIS BLEY
6	
7	DESIGNATED FEDERAL OFFICIAL:
8	CHRISTINA ANTONESCU
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
l	1

	3
1	
2	AGENDA
3	Opening Remarks 4
4	Introduction to the Overall EPRI Digital Systems
5	Engineering R&D Strategy 7
6	Systems Engineering - A Modern Approach to the
7	Technology Life Cycle 42
8	Break
9	Implementation of Systems Engineering using the
10	EPRI Digitals Systems Engineering Framework 75
11	Risk Informing the Design and Operation of
12	Digital Systems including PRA integration 127
13	Public Comments
14	Closing Remarks
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	1

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	8:37 a.m.
3	CHAIR BROWN: Good morning, everyone.
4	This is a hybrid meeting of the joint Digital
5	Instrumentation and Control Materials Structures
6	Subcommittee. We will now come to order. I'm Charles
7	Brown, the chairman of the subcommittee. Can I be
8	heard, by the way? And, recorder, are you there?
9	Okay, thank you.
10	MEMBER BIER: And I hear you, Charlie.
11	CHAIR BROWN: Oh, okay, thank you. ACRS
12	members in attendance are Ron Ballinger, Jose March-
13	Leuba, Matt Sunseri, Consultant Steve, where is
14	your name on here? I didn't put you on here. I know
15	your last name is Schultz, but your name is not on
16	your list. Walt Kirchner, Joy Rempe, and online we
17	have Vicki Bier, Greg Halnon, and Vesna Dimitrijevic,
18	and, I think, Christina Antonescu of the ACRS staff is
19	the designated federal official for this meeting.
20	The purpose of this meeting is for the
21	electric power researchers to EPRI to brief the
22	subcommittee
23	(Audio interruption.)
24	CHAIR BROWN: systems engineering
25	framework. The framework is Board synthesized from
ļ	I

(202) 234-4433

1 systems engineering methods. It provides a fast way 2 to risk inform digital instrumentation, digital I&C 3 implementation to the nuclear industry worldwide. 4 EPRI will also discuss the current 5 utilization status of the framework in near term The ACRS was established by statute as 6 revision. governed by the Federal Advisory Committee Act, FACA. 7 8 That means the committee can only speak through its 9 published letter reports. 10 We hold meetings to gather information to support our deliberations. Interested parties who 11 12 wish to provide comments can contact our office requesting time. That said, we set aside 15 minutes 13 14 for comments from members of the public who are 15 listening to our meetings. Written comments are also 16 welcomed. The meeting agenda for today's meeting was 17 published on the NRC's public meeting notice website 18 19 as well as the ACRS meeting website. On the agenda for this meeting, and on the ACRS meeting website, are 20 instructions as to how the public may participate. No 21 request for making statements to the subcommittee has 22 been received from the public. 23 24 We are conducting today's meeting as a hybrid meeting. A transcript of the meeting is being 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

5

	6
1	kept and will be made available to all on the website.
2	Therefore we request that participants in this meeting
3	should first identify themselves and speak with
4	sufficient clarity and volume so that they can be
5	readily heard.
6	All presenters, please pause from time to
7	time to allow members to ask questions. Please
8	indicate the slide number you are on when moving to
9	next slide. We have the MS Teams phone line, audio
10	only, established for the public to listen to the
11	meeting.
12	Based on our experience from previous
13	virtual and hybrid meetings, I would like to remind
14	the speakers and presenters to speak slowly. We will
15	take a short break after each presentation at my
16	discretion to allow time for screen sharing as well as
17	the Chairman's discretion during the longer
18	presentations.
19	Lastly, please do not use any virtual
20	meeting feature to conduct sidebar technical
21	discussion, rather contact the DFO if you have any
22	technical questions so we can bring those to the
23	floor.
24	One other thing I would like to emphasize
25	is that this is a subcommittee meeting. And comments
ļ	

(202) 234-4433

	7
1	that EPRI receives, or anybody else hears from the
2	subcommittee meetings, anything they bring up is their
3	opinion, their thoughts, and what they are thinking
4	relative to whatever the presentation is.
5	The committee only speaks as a joint
6	committee thorough our full committee meetings when we
7	rewrite reports which summarize and then provide
8	recommendations and conclusions. So things we may
9	say, which may be a lot, those are individuals'
10	thoughts on the particular subject at hand. So keep
11	that in mind, please.
12	We will now proceed with the meeting. Mr.
13	Matt Gibson, the technical executive in the Electric
14	Power Research Institute Nuclear I&C program will make
15	some introductory remarks. Matt, you're on.
16	MR. GIBSON: Thank you, Charlie. And I
17	just want to thank the joint subcommittee for inviting
18	us to share our perspectives on digital I&C. EPRI
19	does a fairly high volume of research in this area,
20	and we create products for stakeholders that they can
21	use.
22	Today we're going to concentrate on our
23	digital systems engineering framework. Now we do
24	other research on, you know, our digital I&C in
25	general. We do research on alternate architecture
I	I

(202) 234-4433

	8
1	using different kinds of technology. We do detailed
2	research on wireless technologies, maintenance,
3	techniques that are effective for maintaining your I&C
4	systems. But predominately today we're going to talk
5	about the framework and the products that are related
6	to it.
7	So here we go. Don, Mary, you have
8	anything you want to add to that? No?
9	MR. WEGLIAN: No.
10	MR. GIBSON: All right. And let's see if
11	our technology is going to work today. Here we go, a
12	little bit of a delay. But, you know, we're all
13	familiar with the story of the elephant and the blind
14	men where someone the blind men touch the elephant,
15	you know. And they see the elephant through their
16	touch and only see part of the elephant.
17	You know, the man that touches the trunk
18	thinks he may be looking at one kind of animal. And
19	then when the leg is touched, maybe it's kind of a
20	plant or a tree. And the tail, you know, maybe it's
21	yet another kind of animal, but not an elephant.
22	So that's pretty analogous to what we have
23	faced with the emerging of technologies in the nuclear
24	industry. And if I can figure out how to do this,
25	there we go, I have the right button now.
I	I

(202) 234-4433

	9
1	What you'll see as we go through this is
2	each one of these topics are the elephant, right, you
3	know, your cybersecurity, your hardware reliability,
4	you functional reliability, automation, human
5	interactions, and systematic failures. We need a way
6	to put all that together in a single process, because
7	each one of them has a relationship with the other,
8	you know, whack-a-mole, maybe you can visualize that.
9	Systems engineering allows us to do that.
10	And every framework works on that principle. We're
11	going to go through that. And you'll see a lot of
12	things that, you know, maybe each of you know a lot
13	about individually, or maybe you know a lot about a
14	lot of this. But we want to give you a really good
15	situational awareness of where EPRI is with this, with
16	this idea and how it's being used
17	First off the history, so we didn't kind
18	of this overnight or about ten years ago. You'll see
19	this progression of the early products that we created
20	as we looked into these things. And you'll see that
21	progression in the light blue stuff. We start working
22	on hazards analysis.
23	The 509 report you see in the top left,
24	because I'll just refer to these as their last three
25	or four digits number-wise. It's a little easier,
	I

(202) 234-4433

www.nealrgross.com

	10
1	because I think you can see that okay. The 509
2	report, we did a blind study of different kinds of
3	hazard analysis methodology to see how well they work.
4	The way we did that was to take real
5	events that happened that we had root cause analysis
6	for, and ask a group of folks who had no knowledge of
7	that to use this methodologies to find those same
8	problems that had occurred in real life.
9	It's a very good product. We looked at
10	several different hazard analysis methods. All of
11	them had strength and weaknesses. When we post that,
12	and we pretty much asked, you know, gave that to the
13	industry as a tool, you know, use these. Use your own
14	judgement about what kind of thing you're trying to
15	achieve. Use the right method, right, the appropriate
16	method.
17	We also worked on hazards for
18	cybersecurity. You know, maybe that's a little
19	special. We created a cybersecurity procurement
20	methodology, digital instrumentation for the design
21	guy. You know, I think over the years, and kind of in
22	the last ten years, at least the I&C Committee has
23	probably seen something about the DDG as it was called
24	back then.
25	Well, as we progressed through
ļ	I

(202) 234-4433

	11
1	and continued to research this, we got several, you
2	know, pretty good epiphanies. You'll see about 2018,
3	2017, up in the top, middle, you'll see a report in
4	the HAZCADS, Revision 0.
5	Well, we had previously been working on a
6	hazard analysis methodology for cybersecurity. It was
7	clear to us, at about that time, you couldn't do
8	hazard analysis for cybersecurity, because it's the
9	same thing as the rest of the digital systems, all
10	right. Because the hazards that a digital system can
11	produce, or can cause, or be part of, are related to
12	its function.
13	Cybersecurity is a cause of that
14	malfunction. But it doesn't really produce different
15	hazards from an equipment and, you know, a plant
16	functional point of view. Certainly there are
17	different hazards in cyberspace about someone stealing
18	your information, or embarrassing you in public, and
19	things like that. But we're going to the context
20	here is in a plant functional area.
21	At that point we realized what we had was
22	a universal method to do hazard analysis that could be
23	applied to any cause, you know, your hazard, you
24	identify the hazard, you identify the risk sensitivity
25	of it. Now you could apply it. And that's where
ļ	I

(202) 234-4433

	12
1	HAZCADS, Revision 1 came from, roughly 2020.
2	Now the couple of takeaways for HAZCADS is
3	we continue to use the blind study method where we
4	took, or take, and continue to take real world events.
5	We present those to a team of people who are blind to
6	the event. They don't know really the outcome. They
7	get all the same technical data that, you know, they
8	would normally have, whoever made the original change
9	to a plan or the original new design, and then they
10	evaluate that and see if they can find a problem with
11	it.
12	And the success rate for HAZCADS really is
13	pretty close so 100 percent. And we said well, wow
14	how could that be that much of a difference? And it
15	really is not so much that HAZCADS is a perfect
16	process, as it's that the way we were going about it
17	before really didn't look at hazards systematically.
18	You know, it was kind of a person's knowledge.
19	We accessed a presentation from an
20	organization that said well, you know, we try to deal
21	with these problems by putting our best people in a
22	room for three weeks and have them think about it.
23	And they still miss the problems.
24	And I asked him, well, what method did
25	they use while they were in the room together for
I	I

(202) 234-4433

	13
1	three weeks?
2	Oh, they were just brainstorming, right.
3	So the takeaway there is the structured
4	methods pay off. They actually make a difference.
5	And we'll talk about HAZCADS in detail
6	today, just one of the more unique things about the
7	framework which is an overall systems engineering
8	framework. We also did some work on bringing systems
9	engineering to the forefront.
10	And usually when we you'll see at the
11	2016 column with the medium blue down at the bottom,
12	you'll see an 8018 report. We went out and looked at
13	other industries about, well, how do you do
14	engineering, and how do you achieve good results? And
15	what's your matrix, what's your performance matrix for
16	that good result?
17	That's some good input that's in that
18	report. Everybody uses that. The aerospace industry,
19	the critical process industries, transportation, you
20	know, Elon Musk, everybody uses systems engineering,
21	right.
22	And so we said, it has a high efficacy.
23	This is something that could really change the game.
24	If you look at how engineering is currently done by
25	licensees, and to some extent by vendors, not
I	I

(202) 234-4433

1 entirely, because it at the day they have to get stuff 2 to work, so do licensees. But what you'll see is that 3 maybe they're trying to do something that's more of a 4 check list process.

5 They're trying to make sure all the lists of things they have to do have been addressed. 6 And 7 they do good work, I'm not saying they don't. And they produce, some, you know, good and safe designs. 8 9 But they don't necessarily use the, excuse me, the iterative approach and the diagnostic approach that 10 systems engineering does. 11

And it actually tends to be multiple 12 In other words, if you've got HFE is in 13 processes. 14 its own process, cybersecurity is off doing its thing, you know, the safety people are hunkered down doing 15 their thing, you know, plan integration, big thing. 16 You know, what are the mechanical, what are 17 the seismic people doing? What are the electrical EMC 18 19 people doing, you know?

20 So we pulled all that together, all those 21 topics together into one process, that's the digital 22 engineering guide, and that's down at the bottom 23 center in dark blue under 1816.

24 || While we were doing that --

MEMBER SUNSERI: Can I just ask a

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	15
1	question?
2	MR. GIBSON: Sure.
3	MEMBER SUNSERI: I hear what you're
4	saying, and actually you're making me really nervous
5	now, because I think that before, if I was running my
6	plant I was buying parts for my plant, I was relying
7	on that vendor to, you know, send me a part, or
8	certified, say, for however you want to that.
9	But now you're saying that inherently, by
10	the way they develop them, there might be defects that
11	aren't detected through the systematic approach, that
12	they're sending me to my plant, and I'm installing
13	them? I don't know, that's kind of what I'm hearing
14	you say.
15	MR. GIBSON: Well, you think about the
16	history. There is a non-zero possibility that that
17	happens, right. I mean, we know that, and we have
18	events that show that.
19	CHAIR BROWN: We're talking about are
20	you talking about each part or are you talking about
21	a system that the vendor is sending you to operate?
22	(Simultaneous speaking.)
23	CHAIR BROWN: parts that's why I'm
24	I wanted to make sure.
25	MR. GIBSON: I mean, a part of the system
I	

(202) 234-4433

1 or whatever, I mean, you know, part of the strategy at 2 the plants is making sure the vendor's got the right 3 controls to send us stuff that is error-free, right. 4 And we do a lot of factory acceptance tests, and site 5 acceptance tests to validate that. So you're saying -- what I heard you say 6 7 is that there may be a hole inside those vendor 8 processes, because they're not using this systematic 9 approach to design and development. 10 MR. GIBSON: Sure. That is what I'm saying. 11 Well, that's unnerving. 12 MEMBER SUNSERI: MR. GIBSON: Well, remember that, in order 13 14 to do better, you have to recognize you have room to 15 That means you have to be a little qet better. 16 critical about what you're currently doing. That's 17 what we're doing here. I'm not trying to say that everybody is, you know, just some huge , you know, ice 18 19 berg sitting here that's the ruination of everything. What we're saying is this can be better. 20 And more importantly, it can be more efficient. 21 But there's more to your point. 22 If you look at the industry OE, the NRC's OE, the industries' 23 24 OE, I mean, those events happen all the time. You know, the factory acceptance tests do not detect all 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

16

	17
1	the errors, right. You know, they don't catch all the
2	problems, or they get to a factory acceptance test and
3	they have problems, which they should have not had by
4	the time they got to that spot in the process.
5	Well, anyway that's the kind of it's
6	just a thing you see in other industry. They get to
7	a good answer, the best answer maybe, but certainly a
8	good answer, fast and reliably. And that's kind of
9	what the industry is trying to head toward, is being
10	able to do better and do it quicker. Time is money.
11	All right. So we look back at this, we
12	also have cybersecurity in here. We have an
13	assessment methodology that's integrated into the
14	framework. One of our I think more of our
15	watershed researches is our investigation of off the
16	shelf certified equipment that's certified to non-
17	nuclear safety related standards in other industries,
18	other process industries.
19	And you'll see that, a little off to the
20	right, in the bottom in dark blue, safety integrity
21	level efficacy for nuclear power, 300-201-1817. We
22	did that research a little ahead of integrating the
23	DEG.
24	And what we did with that is our
25	hypothesis was if other industries are using self-
ļ	I

(202) 234-4433

standard, high reliability standard, and they're successful at it, and they have safe -- they can boil gasoline and not kill anybody, or at least not unless they violate some other rules, well, how does that work for us maybe for nuclear?

7 So we looked at that. And we pulled a really close to two billion hours of operational data 8 9 on high end logic solvers that had been certified by And if you're not familiar with 10 the SIL process. that, that's standards IEC 61508 and IEC 61511 is used 11 by most of the process industries for safety, and life 12 critical platforms, and for applications, 61508 for 13 14 platforms, and 61511 for applications.

So we looked at that. And the data was pretty striking, you know, it told us that this would be a pretty good thing. I mean, you could buy safety related, in our terminology, platforms ready to go.

Now you still have to put an application on them. You still have to integrate them. Remember, this is a stack, so to speak, of things you have to do. It's the basic platforms. The inner-workings of something like that can be proven to be highly reliable.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

We will mention here, because we'll talk

(202) 234-4433

25

1

	19
1	about it in some detail as we go through further parts
2	of this, we do use STPA, system-theoretic process
3	analysis, as part of HAZCADS (audio interference)
4	four. And we add some risk informed features through
5	HAZCADS. We'll touch that, you know, in more detail
6	as we go.
7	MEMBER MARCH-LEUBA: Will you go in more
8	detail on the risk informed cybersecurity?
9	MR. GIBSON: Yeah.
10	MEMBER MARCH-LEUBA: Because let me
11	just put it now. A few years ago, you will remember
12	the risk on cybersecurity was a teenager living in
13	their mother's basement trying to impress his
14	girlfriend. And in 2023 it's active warfare by state
15	activists. It has grown, like, ten orders of
16	magnitude. And I cannot tell you what it will be in
17	2024. So it is changing by the minute.
18	MR. GIBSON: Well, I'll give you an
19	analogy so you can chew on it a little bit as we
20	approach actually talking about this in detail.
21	From EPRI's research, safety and security
22	are the same thing, right. They're identical, there's
23	no difference between them. They the same word in
24	other languages, all right. You just have to use the
25	context to figure out which thing you're talking
ļ	

(202) 234-4433

	20
1	about, the nuance of it.
2	That's an important thing to understand,
3	because if we, in the industry, think we have a mature
4	review of safety, then we would never hook up your re-
5	application system and allow children to have access
6	to it, would we? No.
7	We would have a series of safety design
8	and other access control protocols that are safety
9	protocols, really. I mean, you just don't want
10	unintended actuations of the system. You don't want
11	unintended configuration changes to the system that
12	would cause it not to work. All that stuff are safety
13	things that people will be safety fitted out all the
14	time.
15	So as you think about safety and security
16	being the same thing, clearly we can use those same
17	effective protocols that help us with security or
18	safety things like, I mean, it's going to work for us.
19	We'll see it a little later.
20	MEMBER MARCH-LEUBA: Vicki, we're seeing
21	your hand, but let me
22	MEMBER BIER: Yes.
23	MEMBER MARCH-LEUBA: Let me continue,
24	because I'm online.
25	MEMBER BIER: That's fine.
I	I

MEMBER MARCH-LEUBA: Ι disagree that safety and security are the same thing. Security is there to prevent safety problems. You place a gate so that somebody doesn't come inside and cause a safety issue. So that's one thing. And then I always give an example in this microphone of the famous casino break-in where they broke in through the aquarium. And obviously we are not going to connect

9 a protection system to the Internet. Nobody would be 10 crazy enough to do that. But what EPRI and the industry need to be looking for is where they are the 11 12 aquariums at the plant. You are never -- the bad quy is never going to come in through the front door. 13 14 They're going to come in through the aquarium.

15 And you have to be remain ever vigilant, 16 and fund your departments, and continue to support 17 them, and do the best you can knowing that you're going to be penetrated. Eventually, the bad guys will 18 19 qet in.

> MR. GIBSON: Okay.

MEMBER MARCH-LEUBA: 21 You want to sav something about it? 22 MR. GIBSON: 23 No. I have a lot to say

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

24 about other things.

1

2

3

4

5

6

7

8

20

25

MEMBER MARCH-LEUBA: Vicki has a question.

	22
1	MEMBER BIER: Yeah. I just want to chime
2	in on, again, the same issue of are safety and
3	security the same thing. And I think one big
4	difference is that
5	(Audio interruption.)
6	MEMBER BIER: So one of the examples I
7	usually use, you know, like if San Francisco decides
8	they need a strict building code because they have
9	earthquakes, the earthquakes don't pick up and move to
10	Houston because the buildings in San Francisco are now
11	well protected.
12	But in security you definitely can have
13	people outwitting your defenses, circumventing your
14	defenses. It's kind of more of a, you know, a race.
15	So, you know, I'm happy to hear the rest of the
16	presentation obviously and, you know, may chime in
17	later. But I just wanted to put that comment out
18	there. Thanks.
19	MR. GIBSON: Thank you. So this is
20	conversational, so this is all good. When we get to
21	the other, where there's more detail and some other
22	stuff, we can dig a little deeper into that. The
23	framework elements though are, there's four of them.
24	I've touched on them. First of them is there used to
25	be industry standards.
l	I

(202) 234-4433

1 And this is another controversial but our research bears it The 2 statement, out. standards that you see, the current IEC, and some of 3 4 these are IEEEI, so IEC standards, I abbreviate them 5 here a little bit, are very effective. And they have (audio interference). I mean, they used hundreds of 6 7 thousands, if not millions of things, and they achieve 8 a high level of net functional reliability. 9 So, you know, our framework is really a 10 synthesis of those. You know, any standard, you know, you have to have a process that you make on that 11 12 standard so you can use it. And that's what we've It allowed some leverages of economy to 13 done here. 14 the scale. 15 Ιf looking for you're new advanced reactors, which is supplied to them too, where are we 16 17 going to get the people? You know, where are we going to get the equipment? How are we going to scale it? 18 19 Who's going to make 200 or 300 of these, you know, if you believed in these reports, but, I mean, in power 20 plants that are going to be built over time? 21 Well, that's with economy of the scale, 22 these standards, and equipment, and personnel with 23 24 qualifications to go with them, are literally, the order of magnitude, better than nuclear from just a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

23

24 1 mass. You know, just how much stuff, how many people, 2 how much training available, that kind of thing. The second part of that is used for 3 4 systems engineering, you know, again it's a single 5 process. It covers a complete life cycle, you know, from inception to retirement, including O&M phase. 6 7 It's well used. Again, we were able to find good 8 examples of how that works. 9 If you look at the standards that go with that, the IEC 15288 and 289, which was seven of those 10 standards are the up and coming nexus for most 11 When you add STPA to that as a 12 engineering work. diagnostic tool, you get a pretty compelling case for 13 14 using systems engineering on a regular, you know, as 15 a core value, core process. Another, just I'll touch on it here, and 16 17 we'll talk about it some more later probably, is the whole world is going away from software to systems. 18 19 For instance, if you look at the IEEE standard 1012, instance, the 2004 edition, it only covers 20 for You look at the 2012 edition, it covered 21 software. everything, software, hardware, people. 22 So the movement to look at the world 23 24 through systematic means, through functional reliability, is probably now almost a decade old. 25 And

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 it's reaching fruition. If you look at the front 2 matter of some of your traditional standards like IEEE 3 730 or 820 it'll say it's harmonizing 15288 or being 4 harmonized.

5 You know, not lastly, but the third part of that is risk informed engineers. 6 So, you know, 7 engineers can do anything, but they can't do 8 everything, right. That's kind of something to think 9 about. So at some point you have to make tradeoffs, 10 you have to understand resources. You have to actually understand what the real problems are too. 11

So risk informing the digital 12 I&C practitioners' tool kit so that they can make good 13 14 decisions, integrating risk informed elements of that are critical. 15 We do that for other things, or the industries do that. You know, they don't waste a lot 16 17 of time on things that are low consequence or low And so getting some feel of that and likelihoods. 18 19 letting that factor into your graded approaches, or even your solutions, how it's structured, is another 20 important part of our framework. 21

The fourth and last part is a capable workforce.

24 MEMBER MARCH-LEUBA: Other thing is risk 25 informed theory. What's your ideas, your thoughts on

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 chasing the last hard to find software error that may be latent in there, and you've never seen it? Is that 2 3 something we can do with risk inform. I mean, because 4 if you know --

5 MR. GIBSON: Well, it's a -- all right, so it's part of it. All right, today in your PRAs, and 6 7 so I'm surrounded by PRA people, and you know who you 8 are, right, so if you want to weigh in you can 9 certainly do that. But to be risk informed, one of 10 the key, or if not the core things is likelihood, right. Everybody talks about, hey, you've got to have 11 12 consequences and likelihood. Only way to get to likelihood is to know how reliable your stuff is, 13 14 right.

So what this does, what risk informing 15 16 digital does is move the emphasis from deterministic, you know, duties, lists of things, and we'll be fine, to what do I need to do to increase my reliability. 18

19 I thought it was fascinating, you know, you brought it up, if I look at the Standards 20 Committee, most of the reliability is over with the 21 risk people. You know, I&C like it is, IEEE Committee 22 for nuclear I&C, there's no Reliability Committee. 23 24 All that's over in the risk people.

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

We collectively are going to the ANS

(202) 234-4433

17

25

27 1 conference here in a few weeks. John is presenting on stuff in the risk section on I&C reliability. 2 There are no I&C reliability presentations. 3 I looked 4 through the entire thing, there are none. 5 That's really а biq takeaway for As you go to risk informed, reliability 6 everybody. 7 analysis shoots to the top of the list. You know why, 8 it's because what risk people do. You know, you have 9 to know what your reliability of your components are 10 to predict the future. Because that's what risk does, right, you predict the future. 11 So if you have all this data, all these 12 pumps, and valves, and ten to the minus this and that, 13 14 you know, what their statistical reliabilities are. 15 And unless you take that and plug it into a PRA and 16 say, okay, I can predict the future now, because I'm 17 holding -- this condition's the same, right, I'm making sure I do my maintenance and all of that, but 18 19 it's all predicated on maintaining the reliability of those pieces of equipment at the same level that was 20 used to collect the data in. 21 Would anybody want to brief me on that? 22 MR. WEGLIAN: I'll weigh in. We're going 23 24 to get, oh, this is John Wedlian with EPRI. We're 25 going to get to this in a little bit. But most of the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	28
1	software errors that we encounter are actually errors
2	in requirements, not typos in the source code. And
3	our process is designed to find those. And one
4	approach is to change the design so that they can't
5	happen.
6	
7	And then the other approach, if you can't
8	do that, is to have control methods to prevent them.
9	But if you know ahead of time that it's a potential,
10	then you can design your testing to look for them.
11	But you can't do that if you don't recognize that it's
12	a potential in the first place.
13	So to your point, the latent error that
14	goes undiscovered until it happens is most likely an
15	error in requirements, because you didn't recognize
16	that that could have gone wrong. And therefore you
17	didn't test for it to make sure that it does the right
18	thing in that condition.
19	And that's what our process is designed to
20	do, to identify those things that can go wrong and add
21	it, either change the design so that it can't happen,
22	or apply control methods like testing to verify that
23	it does the right thing.
24	MEMBER MARCH-LEUBA: But to my previous
25	question, I like what you're doing, because it is
ļ	I

(202) 234-4433

deterministic. How does risk informed feed into that process?

3 MR. WEGLIAN: So if the function that 4 you're doing can't lead to a significant problem, you 5 know, for nuclear safety, if there's 20 systems that can back it up, then why would you spend a million 6 7 dollars to protect from that? So that's what risk identifies 8 does. It these are the important 9 functions, and you need to spend a lot of effort to 10 make sure those don't happen. And these are your functions that are not important, and you can do the 11 minimum on those. Because even if they fail it's not 12 a catastrophic effect on your plant. 13

MEMBER MARCH-LEUBA: Historically we change the likelihood by having redundancy and diversity.

Or this defense in depth, 17 MR. WEGLIAN: you get FLEX now. And the PRA, which is what we use 18 19 for the risk assessment for the nuclear safety part, at any rate, it accounts for all of that, right. 20 Ιt looks for what's proceduralized, right, what are the 21 operators actually going to do in an event, 22 what systems are available to them if a particular system 23 fails? And the PRA accounts for hardware common cause 24 failures as well, not just software, of course. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

29

1 And we can show with the PRA models that 2 any one system can fail completely, and we still have 3 success paths, right. And so our design basis 4 approach creates very reliable systems that we have, 5 you know, defense in depth to account for combinations of failures. We have very good designed plants. 6 And 7 we specifically look at what alternatives are there 8 for the function that may be lost to see which 9 failures are extremely important and which ones are 10 not.

And redundancy is not always the best 11 Sometimes adding additional equipment, 12 approach. hardware, integration of additional systems that do 13 14 something else, can add more complexity, can actually 15 increase the risk rather than reduce it. It depends on the situation in the plant and what you're trying 16 So just relying solely on redundancy is not 17 to do. always the best approach. 18

19MEMBERMARCH-LEUBA:Redundancyand20diversity.

21 MR. WEGLIAN: Right. Right, diversity is 22 another approach. But again, failures that we see can 23 also be caused by unanticipated interactions between 24 systems. So there isn't one answer that always works 25 100 percent. And an approach is designed to find for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

31 1 the particular system that you are trying to install, or modify, or build, or whatever it is, what is the 2 best approach for that situation. 3 4 And looking at two different plants, you 5 may come up with different answers. One may say we 6 want a diverse system that can do these functions, and another plant may say we do not want that. 7 We want 8 that, we want an operator action that can manually 9 start but not a completely redundant system that gets 10 added in. And our approach is designed to identify what the best approach is. 11 MEMBER SUNSERI: I know I'm kind of slow 12 on all this stuff, but I'm starting to get really 13 14 Because what I hear you talking about, when I lost. think about redundancy, diversity, defense, and FLEX, 15 all that stuff, that's about mitigation, right. 16 If we're depending on FLEX for this stuff, 17 then we're way -- I mean, that's like the last line of 18 19 defense in my mind. I thought we were looking at going for prevention, not mitigation, avoiding the 20 avoiding the avoiding 21 mistakes, errors, the malfunctions. 22 We are but your FLEX, as a 23 MR. GIBSON: 24 qood example, is a low probability, high confidence I would say you look at your risk profile, 25 event.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	32
1	there are things that happen often. And it graduates
2	from things that happen much less often.
3	All risk no risk says you won't have
4	any event. There's always some non-zero possibility
5	we'll have something bad happen. And so what people
6	do, for instance, with FLEX, is they say, well, this
7	says something that probably won't happen very often.
8	And when it does happen we just want to have this
9	extra capability out here to mitigate this, again,
10	high consequence and low probability.
11	So this is about risk, now. There's
12	nothing ever zero and nothing's ever perfect. It's
13	always about how perfect something is or how reliable
14	it is, and what the consequences are.
15	So this, what we're talking about fits
16	into that risk framework. And the things that you'll
17	see happen through this process drive the likelihood
18	of a problem that's consequential to a low state and
19	a low rate, right. It doesn't absolutely prevent it,
20	but nothing will. You know, when your duty is
21	reliability, there's always you have to recognize that
22	there's even a ten to the minus ten probability.
23	That's still a probability that it could happen.
24	CHAIR BROWN: Let me comment here for just
25	a second. We're now on Slide 5, and we're now at
	I

(202) 234-4433

	33
1	9:17. So we had a little delay on the start, but this
2	is part of the lead-in overall topic before we move
3	into each of the other groupings.
4	I think the conversation and discussion is
5	valid, and both Jose's point and Matt's point are
6	correct. But in my mind we've got to separate stuff
7	a little bit. I mean, you can't deal with if you
8	look at your design engineering guide there's 369
9	pages worth of things to look at and things to
10	consider.
11	And then you throw in the HAZCADS document
12	and the TAMs document, then there is tons of
13	information and things to do to make that right. By
14	the time you finish that, you've spent about three
15	years and \$5 million, and you don't have hardware yet.
16	So I'm being a little facetious when I say
17	that. There's got to be some balance between this
18	risk total domination of looking at things and what
19	are characteristics of the ways you can design things
20	based on what they do?
21	For instance, some systems, like a
22	protection system, you put in redundancy. And you use
23	an architecture, but you start with an architecture.
24	And then you work downwards to see if plant
25	architecture, then individual systems, how do they fit
Į	I

(202) 234-4433

	34
1	into the plant architecture now having protection
2	systems, safeguards, reactivity controls, pump
3	controls for the pumps. For the plants that are out
4	there and want to replace stuff, you look at those
5	individually.
6	You want to start a pump with software,
7	you know, have a controller that does that? Fine, go
8	do that. It's a single point control. If you have
9	250,000 lines of code to do that, that's a problem,
10	okay. You ought to have something simple doing that.
11	So there's a way to look at these things
12	as you go through it intellectually, you know,
13	engineering judgement-wise, but some things you just
14	can't do. You can't test even I tried testing
15	250,000 lines of I tried testing 50,000 lines of
16	code with a super computer back in the mid-'80s and
17	early '90s.
18	It took forever, and we never finished.
19	So we decided we have to look at are architectures
20	going to protect us from a redundancy, diversity
21	independence, deterministic processing all that stuff
22	with watchdog timers, et cetera, for the protection
23	system part. This is a very broad class of equipment.
24	One size fits all, in my mind, just doesn't do it.
25	But that's my input to the discussion.
I	I

(202) 234-4433
	35
1	That's all. I think we need to move on to the next
2	slide so we can get and look at these things
3	individually
4	MR. GIBSON: We're there.
5	CHAIR BROWN: as we go.
6	MR. GIBSON: The next slide, if I can get
7	it to work. Come on, there we go. All right. So
8	this framework that we had a good discussion about so
9	far, it fits in the implementation level. So, you
10	know, a model that you would use, let's say and
11	remember that these products are designed to be used
12	worldwide, both for this and then new reactors, not
13	just in the U.S.
14	And so the way these products are
15	designed, and they're deployed, they would be used to
16	actually do stuff at the implementation level. Now
17	there's going to be policy, there's going to be
18	regulation, company policies, whatever, whatever
19	authorities can decide what policies are, you know,
20	the domains these products are used.
21	There should be objective criteria that
22	are synthesized from policy. These are the
23	performance based objectives that you want to achieve,
24	and you want people to do it without necessarily
25	telling them in detail how to do it right. They've
ļ	

(202) 234-4433

	36
1	got to come back to you at some point with some
2	metrics, and some arguments, and such.
3	So this framework is aligned to fit in the
4	implementation level. And it does support safety case
5	style arguments, you know, claims arguments and
6	evidence in sort of a hierarchy-like way. You know,
7	you're down here doing stuff, you know, you say I did
8	these things, what are my objective criteria that meet
9	these policy objectives?
10	We've tested these in those scenarios, we
11	think they work well in making an argument that what
12	you've decided at the implementation level matches the
13	objectives of the authorities' policies that are in
14	place in your particular domain.
15	So you asked us how these are, so they're
16	constantly being updated. You know, we get a review
17	from people using them. They get improved. We would
18	think that the implementation level products would
19	change often. They would evolve. Your performance
20	objectives less often, but they can change based on
21	feedback and experience. And your policy level would
22	be the thing that would change the least often, just
23	sort of a decomposition stack, if you can see that in
24	here.
25	The other thing to take away from this
Į	1

(202) 234-4433

1 particular view is that the objective criteria, the 2 policy, the objective criteria, and all that sort of implementation 3 thing comes to the level as а 4 requirement. So if you have objective criteria, 5 published objective criteria that you should be using, you're going to have to synthesize it 6 into a 7 requirement so that these processes can use that requirement to decide what to do. And that's the way 8 9 this process gets policy and other exterior regulatory 10 quidance.

I've touched on this slide. You know, we 11 did this research, you know, on SIL. 12 We looked at about 12 different logic solvers that cover this two 13 14 billion hours. These platform visitors (phonetic) do, 15 in fact, achieve the level of reliability you would To be a SIL 3 it has to be redundant. 16 So expect. you're talking about the reliability of a redundant 17 system to achieve its safety objective. 18 That's 19 I mean, you know, I think the NRC owns a published. copy of that. And if you're interested in looking at 20 it, if you want you can. 21

Now NEI, they leverage that in NEI 17-06. And that's been endorsed in Reg Guide 1.250. They use SIL certifications for the dependability characteristics and for safety related digital things.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

37

So we have that. And if you've seen NEI 20-07, another NEI effort, they also are using constructs based on that research. So that's just kind of, you know, where it's being used and where it's headed.

5 We used the idea of SIL certification, a graduated reliability based on systematic controls, 6 7 and the premise that systematic controls drive 8 reliability for things that are systematic errors, 9 like software errors, design errors, manufacturing 10 errors. Those are systematic errors. And so those systematic controls drive error level. And this 11 research demonstrated that certainly is achievable on 12 a mass scale. 13

14 It correlates well with our data from our 15 other OE, worldwide for Korea, France, and China, 16 because we mined their data. You know, they're 17 members of EPRI so, you know, we take some time to get data from them that's not available anywhere else. 18 19 And you see that CCFs in general are very low. And then any that's, like good digital related CCF, that 20 would be just digital related CCF, is also even more 21 Most of the CCFs are at the application level. 22 rare. Who would have thought? 23 24 I'll give you a demonstration of that in

just a few minutes of one of the scenarios that we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

1

2

3

4

	39
1	used to test our STPA, HAZCADS methodology. And
2	you'll see how that might be relevant.
3	What else, that's about what wanted to say
4	with that.
5	It shows you that same sort of idea. You
6	know, our research tells us that we really have to
7	look at these domains of reliability independently.
8	You know, they're done by different people, at
9	different times, and different places.
10	Your platforms tend to be, especially if
11	you use industry standard SIL certified platforms,
12	there's a lot of them in the field. There's a lot of
13	data, which is the risk person's bread and butter,
14	there's a lot of data on their performance, right. So
15	you can have some confidence about how reliable they
16	are.
17	And if you're familiar with the concept of
18	reliability growth where, over time, something becomes
19	more reliable systematically, because you work the
20	bugs out, you know, you've tested it more, you can
21	have reliability growth in both the development phase
22	as well as the operational phase. So the platforms,
23	they benefit from that.
24	As you go up this pyramid though, at the
25	very top applications could be a one-off. It might be
I	I

(202) 234-4433

1 three people in the world that know what that 2 application does and may have been the only three people that ever looked at how it was made. You know, 3 4 it used to in a little screen there. But that's where 5 the real payoff is. It uses systematic methods to figure out where your application is. 6 And this 7 diagram --8 CHAIR BROWN: May I interrupt you for a 9 second? 10 MR. GIBSON: Sure. CHAIR BROWN: When I calibrate my SIL 11 platform I look -- what you mean is, like, I'll use an 12 example of a Common Q platform. It's got an operating 13 14 system that's been employed in safety systems. 15 MR. GIBSON: Yeah. It's got application code 16 CHAIR BROWN: 17 that has to be integrated into it. MR. GIBSON: That's right. 18 19 CHAIR BROWN: I'm just trying to put a perspective on these fancy words to make 20 sure everybody understands what you're talking about. 21 Ι mean, there are some common platforms across the board 22 that get incorporated, just like when you by a PC, 23 24 there's an operating system within it. You know, the Windows, and then there's all the application stuff 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

40

	41
1	you pour in that could completely destroy all its
2	operational capability. I say that with tongue in
3	check, because obviously there's always difficulties
4	that occur.
5	So that integration effort, when you're
6	just piling stuff in, is very important when you start
7	putting the application codes in.
8	MR. GIBSON: Yeah.
9	CHAIR BROWN: I just wanted to, I mean, we
10	can go on from here. I was just trying to put a cap
11	so we could move on to the next slide, just to make
12	sure what we're talking about.
13	MR. GIBSON: That's true, that's what a
14	platform is. That's the thing that's post your
15	application, you know, that's certainly not one of a
16	kind. There's multiple ones of that. It's not custom
17	made for your application, that sort of thing.
18	CHAIR BROWN: Yes, okay.
19	MR. GIBSON: All right. This kind of
20	wraps it up. You know, you really have a reliability
21	that starts with your components. And you have
22	system, and you can have facility level reliability.
23	You know, random failures and systematic errors
24	contribute to that reliability.
25	And as we look at common cause failures
	I

(202) 234-4433

1 some of the driving things we're looking at is that we can -- we first have to have a failure or systematic 2 3 error to have a common cause failure, you know. And 4 generally, when we talk about common cause we're 5 talking about common cause across redundancy 6 expectations of some sort.

7 There are other definitions, but this 8 includes emergent behavior, things that the system 9 does that nobody knew it would do. So systematic error could be -- the equivalent of that for a human 10 action would be an error of commission. It could do 11 new things that you didn't know it did that aren't 12 appropriate. 13

14 So if you want to achieve this systematic 15 reliability, yeah, random apply systematic SO 16 controls. And if you drive your reliability to a high 17 level, you drive your reliability to a high level, and it includes your CCF probability. Because, you know, 18 19 even your hardware today, you don't hear people talk about a systematic reliability or a hardware re-20 application system. Because when you see all our data 21 in a little while you see a lot of the problems are in 22 the hardware. They're not in the software, all right. 23 24 So what we see is, well, you know, you do these things and there's this assumption of 25 its

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

42

	43
1	reliability and of its design quality. Well, have you
2	ever been ask yourself this question, have you ever
3	been actually tested, if you ever went actually
4	looking for those systematic errors in the design in
5	a formal way?
6	So these things what I'm trying to do
7	is this ain't about software, this is about
8	functional reliability, the hardware, and the
9	software, and the people together in one place, and
10	the intersection that you have with those.
11	Anyway, that's the kind of idea. Your
12	functional reliability, you have to worry about that
13	at the equipment level but also at the life cycle.
14	Because after you make it, and it starts running, then
15	after a time goes by, I mean, you have to kind of get
16	a sense of its current state.
17	And we understand that pretty good. I
18	mean, we do surveillance tests and all that sort of
19	thing, you know, check on stuff to see if it's broken
20	down. And it also has relevance to a modern approach
21	too.
22	CHAIR BROWN: Somebody's got a question
23	right now. Vicki?
24	MEMBER BIER: I just wanted to, again,
25	chime in on the concept of reliability growth. I
ļ	I

(202) 234-4433

	44
1	think reliability growth has obviously served the
2	industry very well in numerous ways. You know, a lot
3	of things you identify a problem, you weed it out.
4	And so our hardware and our systems have gotten better
5	and better over time.
6	I'm not so sure that that concept applies
7	as well to cyber reliability. Because while we are
8	trying to improve our systems we can also have zero
9	day exploits where something that looked perfectly
10	safe yesterday all of a sudden we realize there is a
11	huge vulnerability that somebody just figured out how
12	to explore it. So I think in cyber it's not
13	necessarily just growth. You can have both ups and
14	downs in the process.
15	MR. GIBSON: Good comment.
16	CHAIR BROWN: Is that it, Vicki?
17	MEMBER BIER: Yeah, that's it. We can
18	move on. Yeah.
19	CHAIR BROWN: Okay. Thank you.
20	MR. GIBSON: All right. We're going to
21	get to a quick problem of the system of, you know,
22	systems engineering and how it plays into here.
23	First off, this is your basic layout of
24	systems engineering, requirements engineering, systems
25	analysis and control, functional analysis, design
I	1

(202) 234-4433

	45
1	synthesis.
2	You will notice that I think the big thing
3	I want you to see here is the iterative nature of
4	this. This is not a waterfall type of thing. You
5	might go through a systems engineering iteration where
6	you will go through it. It's not a might, you will go
7	through it several times during the development of a
8	change or a new system that you're designing, or a new
9	plant you're designing. It requires systems thinking.
10	And that's really something that we are
11	trying to develop some training for. And it's a new
12	skill, because you have to start thinking in the
13	whole, you have to be looking at the elephant in the
14	whole. You can't be just thinking of a silo, because
15	there is always going to be white space between your
16	silo and somebody else's silo. And that white space
17	could be very damaging.
18	So systems thinking helps you, even if
19	you're not a super-duper expert in every one of these,
20	if you're a super-duper expert in how things relate to
21	each other, which is what this is about, then you can
22	achieve high levels of system thinking.
23	Multiple disciplinary, the ability to see
24	relationships, to communicate across disciplines, the

ability to understand complexity, well, this is a 25

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	46
1	question for you guys. I know you all have opinions,
2	I'm not worried about you not having one. But what do
3	you think though one of the biggest challenges is to
4	risk informed approaches?
5	MEMBER SUNSERI: Well, you don't know what
6	you don't know in this area.
7	MR. GIBSON: Huh?
8	MEMBER SUNSERI: You don't know what you
9	don't know, you know, what happens on the inside these
10	circuits.
11	MR. GIBSON: Well, that's fine. Anybody
12	else want to what about risk people in here?
13	What's the biggest barrier to risk informing I&C or
14	anything else?
15	MEMBER REMPE: We're going to let Jose
16	answer that.
17	MR. GIBSON: I believe you all were
18	(Simultaneous speaking)
19	CHAIR BROWN: I could answer that, but you
20	probably don't want to listen to me anymore.
21	MEMBER MARCH-LEUBA: I've been chastised
22	before for using too much time and
23	CHAIR BROWN: Have at it, if you want to
24	say something.
25	MEMBER MARCH-LEUBA: So keep moving.
I	I

	47
1	MR. GIBSON: Ha, ha, has. Well, I'll tell
2	you the answer to that question.
3	CHAIR BROWN: My answer is no.
4	MR. GIBSON: It's Bullet 4, Bullet 4,
5	ability to communicate across disciplines, all right.
6	I mean, just stay at work. I mean, Mary, you know, of
7	course, I've known Mary and John awhile, but I didn't
8	really know them until we started this project, not
9	like I do today.
10	In order to risk inform digital, we had to
11	I&C-ify the risk people. And the risk people had to
12	risk-ify the I&C people. And we did these blind
13	studies we talked about. And this process required a
14	risk person and an I&C person to work together as a
15	team. And we
16	(Simultaneous speaking.)
17	MR. GIBSON: And we find that they don't
18	even talk to each other. Huh?
19	CHAIR BROWN: Communication is great, but
20	let me just ask a question, because I asked you this
21	question, and we said how do you risk inform? What
22	does that mean relative to digital I&C systems?
23	Let me pick a system, and I think there's
24	one coming up, a governor on a turbine generator set.
25	We developed digital I&C systems for the controllers.
ļ	I

(202) 234-4433

	48
1	And that embodied both the speed control and the over-
2	speed control. So there was a risk informed decision
3	made in that, how we did it.
4	But it's a single channel. You get data
5	in, you've got to go in, got to open a valve, close a
6	valve, trip this trip valve, or not trip this trip
7	throttle valve. It's the only decision you have to
8	deal with. You don't put redundancy in, because you
9	can't have two regulators both trying to or
10	governors trying to run the speed of the TG set at the
11	same time so you've got a single channel.
12	So how do you well, the first thing we
13	looked at was you don't want to combine the over-speed
14	with the speed control. So you have two separate
15	you take the same data, independent sensors come in,
16	independent sensors feeding two different processing
17	units with independent power supplies to make sure you
18	don't have redundant power supplies putting noise in
19	that triggers both of them.
20	And then you have a single output for the
21	speed control, and the other one's sitting on top of
22	it waiting to do something. So, I mean, that's an
23	architectural design approach for risk informing what
24	you're doing.
25	MEMBER MARCH-LEUBA: In your process of
I	1

(202) 234-4433

	49
1	thinking, you were implementing a PI.
2	CHAIR BROWN: Yeah.
3	MEMBER MARCH-LEUBA: It was then during my
4	service I used some redundancy and diversity.
5	CHAIR BROWN: Yeah.
6	MEMBER MARCH-LEUBA: That was my way of
7	asking him to give me the floor. Ha, ha.
8	(Laughter.)
9	MR. GIBSON: All right. Well, go ahead.
10	CHAIR BROWN: Have at it.
11	MEMBER MARCH-LEUBA: The bullet that is
12	missing in every risk informed or risk thinking is
13	completeness. That's my favorite one. And it is
14	missing always because it's impossible to do. So the
15	reason it is the most important one is because you
16	don't know what you don't know.
17	And if you didn't think of this failure
18	mechanism, you didn't want it, you're telling me your
19	core limit is in (audio interference) when there is
20	something which is in the (audio interference) that I
21	think of. If you don't consider the high tsunami,
22	Fukushima was a very safe facility. But they didn't
23	consider it.
24	And it's the issue with, in my opinion,
25	you should assume your system is going to fail. I

(202) 234-4433

	50
1	say, well, if it fails, I have another one that is not
2	like it that will take over. And then assume it's
3	going to fail. Don't try to convince me that you have
4	looked through the 250,000 license holders and found
5	only 50, because some of us have done (audio
6	interference) and know how
7	MR. WEGLIAN: That's a great lead in to a
8	little bit later when we get into the actual risk
9	assessment that we do. We assume everything fails.
10	That's our bounding assessment, is that we say
11	everything fails, and we start the risk assessment
12	from there, and say is it safe enough if everything
13	fails, and then at what level do we apply our control
14	methods based on how bad that is if everything fails.
15	So
16	MEMBER MARCH-LEUBA: Let's talk about
17	MR. WEGLIAN: we'll get to that.
18	(Simultaneous speaking)
19	MEMBER MARCH-LEUBA: example later. But
20	keep in mind completeness. It's against the
21	scientific method to gain the completeness.
22	MR. GIBSON: All right.
23	CHAIR BROWN: Also, Jose, interrupted me,
24	which is just fine, okay. Because we looked at now
25	what if those fail. There's are mechanical over-speed
I	I

(202) 234-4433

	51
1	trip also, okay. So we looked all the way to a long
2	plan.
3	There was one other major discussion in
4	there. Everybody wanted the just redundant power
5	supplies, auctioneer them, aid the basic voltage
6	the governor in the over-speed trip units. You've got
7	redundant power supplies, they're auctioneered.
8	(Simultaneous speaking.)
9	CHAIR BROWN: They're safe. Let me
10	finish. I recommended in that design, you know, you
11	ought not to do that. You ought to have four power
12	supplies, two auctioneered for one, two auctioneered
13	for the other independent thing. Everybody said no.
14	We don't need it. It's too complex. So they put them
15	together.
16	Three months later we had an operational
17	experience on a submarine where, guess what, they had
18	a they rode in parallel on the submarine. They had
19	a hunting on that one machine trying to figure out
20	what it was. One of the trouble shooting methods was
21	to pull out one of the power supplies. They did that
22	it immediately over-sped, and it over-sped past the
23	electronic over-speed controller.
24	Fortunately there was an operator standing
25	there to trip the trip throttles out. In other words,
I	I

(202) 234-4433

	52
1	the noise, whatever, they pulled the wrong power
2	supply, the noise was in there. It compromised both
3	the governor and the over-speed trip device. So they
4	went back and redesigned it an put four or five
5	supplies in.
6	My point being is your methods for, to me,
7	I don't know how but it was all software based.
8	And we go through and this is not a critical
9	comment, I looked at your HAZCADS in the other
10	documents. People just programmed it, and we looked
11	at the number of lines, and we did the best we could
12	in terms of doing software checks. But then it ran,
13	and it's been working beautifully now for ten years.
14	There's a lot of different factors in
15	here. How much analysis do you do, and how much
16	judgement do you do to get out? That's a risk
17	decision right there. So I just think you have to
18	throw in experience and understanding the systems
19	you're dealing with.
20	When you have a safety system where you
21	can run four different channels, that's another layer
22	of architecture that reduces your risk to problems.
22	And if yould mun it asymphronously, you have concrete

And if you'd run it asynchronously, you have separate
detectors feeding each channel, all that stuff falls
into trying to minimize the risk of a common cause

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	53
1	failure, even in the software which is, I mean, it
2	no. I just wanted to give an example real world of
3	some of this more esoteric
4	MEMBER KIRCHNER: If I were Matt, I would
5	have answered you, well, this is an iterative process.
6	And you go through the loop once, and then you put
7	experience in that way. And then you go through the
8	loop in the (audio interference), and that's what I
9	would have said.
10	CHAIR BROWN: Why don't we
11	MEMBER KIRCHNER: so we could go on to
12	the next
13	MR. GIBSON: Thank you, that completes my
14	slide.
15	CHAIR BROWN: Go on to the next slide.
16	MR. GIBSON: The DEG that we talked about
17	earlier, the system engineering process, you know,
18	what Walt was talking about, and that is part of the
19	reliability growth concept that gets back to what
20	you're talking about, as in you doing the iterative
21	approach, you converge each time you look through
22	here.
23	And this might sound like a lot of work.
24	When we benchmarked, other people could actually do
25	this faster than what we're doing in the nuclear

(202) 234-4433

	54
1	industry, by a lot. Because when you first start this
2	thing, you only get to deal with what you know. And
3	each time you loop through it, you know more. And
4	each time you know more, you use that information to
5	gradually converge and become more complete.
6	And so, you know, this is sort of like the
7	systems engineering loop based on I&C 15288. There's
8	topical guidance in the DEG about different things.
9	There's most topics like cyber, plan integration,
10	hazard analysis, testing, V&V, are all in the DEG.
11	And they're all used in each one of these loops.
12	You end up getting some architecture views
13	once you do your function analysis, and allocation,
14	and your relationship sets, or if you're getting V&V
15	and you transition to the O&M phase, the RO&M phase of
16	activity in the DEG as well. Somebody asked, and we
17	mentioned earlier about the feedback, I think. You
18	know, somebody made a comment about the cyber
19	landscape changes. This process incorporates that.
20	There's periodic feedback that you can
21	measure changes in the decisions you made. So you do
22	a bunch of iterations, and then you do the bigger loop
23	sitting out here where you iterate back. Right now,
24	you know, no cyber professional out there would not do
25	a periodic review of the threat landscape or the
I	

(202) 234-4433

55 threat capability. That's built into these processes 1 2 too. To trigger this process again, if you see 3 4 a delta -- but that'll go for reliability as well. 5 Let's say you operate this thing for a while. And all of a sudden you start getting failures. 6 That's going 7 to trigger you to look back at this using these same 8 tools and find out what's going on, right. Then you 9 restore your reliability to the target reliability 10 that you had when you started. All right. So --11 CHAIR BROWN: Before you go on, I meant to 12 make an announcement earlier. Dennis Bley, one of our 13 14 consultants, has also joined the meeting earlier. 15 Very good. MR. GIBSON: CHAIR BROWN: I didn't get him earlier, so 16 17 I apologize for that. Anyway, just to recap this, MR. GIBSON: 18 19 you know, there's seven phases in this idea, beginning with the neutral scope and all the way through to the 20 O&M phase. There's nine topical areas. And again, I 21 just, you know, I summarized those earlier. 22 You can see a lot of them here. But this is comprehensive in 23 24 that view. This is an example, all right, because the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	56
1	DEG is designed for you to use in day to day work. So
2	it has to be scalable. And so what we do is, in your
3	V model which really ends up being a process
4	decomposition stat, we allow people let's say in
5	this case you put it in a digital recorder.
6	And this recorder could be safety related.
7	I mean, power plants have safety related recorders.
8	You know, they're displaying something that's been
9	adjudged to have a high safety significance, or a
10	moderate safety significance.
11	So as you work yourself through this, you
12	say, well, okay, everything above Level B in this
13	decomposition I already know. I have bounding
14	technical requirements that's, you know, this is not
15	a new function, right, it's always been there.
16	And so the person doing the new design or
17	the design changes is not going to have to deal with
18	the things in Level B or in the context, I would say,
19	in Level B and E.
20	And we used this systems engineering
21	process to figure some stuff out. Your bounding
22	technical requirements you already got. But now
23	you've got to decide on your parameter values, you got
24	to decide you got to go do some bench evaluations,
25	you know, so that's your design synthesis. You get
I	

(202) 234-4433

	57
1	some hands on there and figure out what's going on.
2	You refine our parameter values with a feedback loop
3	on it.
4	So you converge in this recorder
5	modification or change-out to the point where you can
6	specify its configuration and any other things you
7	might want to put on it. And then you're able to go
8	to configure and install.
9	Now this is probably below the level that
10	you guys might normally think about. But I'm just
11	going to point out the DEG is for the least complex
12	mod in the facility all the way to the most complex,
13	including building (audio interference) design of it.
14	And this also demonstrates the system
15	engineering concept where you can do this loop
16	anywhere in the stack, at the top, in the middle, at
17	the bottom. You can do it at the consensual level,
18	you can do it at the detail design level. So these
19	iterations are ideal iterations are very important.
20	We talked already some about this. And
21	what you'll see is a heat map from one of our reports.
22	This is probably going to be the 4997 report where we
23	evaluated the different hazard analysis methodologies,
24	strengths and weaknesses. STPA scored pretty good,
25	but there are some things it didn't do.
	1

(202) 234-4433

	58
1	But then we said what combination of
2	hazard analysis methodology would be the most
3	effective? And so it turns out systems theoretic
4	process analysis and fault tree analysis would be
5	highly effective when combined in being a hazard and
6	risk analysis, a comprehensive one.
7	So, you know, our colleagues at Sandia
8	Laboratories worked with us on this particular phase
9	of the project. You know, you can find this stuff out
10	in some of their labs there. And this was a good
11	insight to combine it, so we did.
12	So HAZCADS, again, is our core hazard
13	analysis process with the bedrock analysis and
14	theoretic process analysis. I gave you some you
15	know, we sent you some pre-material. Well, I won't
16	try to teach you all the ins and outs of STPA, but if
17	you want to ask questions, that's great. We can try
18	to answer those. Here are the published handbooks.
19	It's an open source process, there's nothing secret
20	about it.
21	But in this architecture we do Steps 1
21 22	But in this architecture we do Steps 1 through 3 of HAZCADs, of STPA, I mean, in HAZCADS. We

step, and plus some more stuff, we do what we call the

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

59 1 downstream processes where we take the loss scenarios 2 and we combine them with reliability insights. And 3 then we use our liability, our cyber, our human 4 factors, and EMC downstream processes. 5 Now if we move back to I&C 61508 it says you have to give -- consideration shall be given to 6 the elimination or reduction of hazards which is fine 7 8 if you go through a risk process. I mean, this is how 9 61508 and 61511, it's how OSHA works. If you have a risk reduction, that's what controls mean. 10 When you say controls, you're talking about risk reduction. 11 That's what always that means. 12 Well, at some point if you cannot reduce 13 14 your risk with a, let's use 61508 and 61511 concepts, 15 if you go through and say you have a highly risky 16 process, you may be required to go back and redesign 17 your process to make it less risky if you're going to say this can't be mitigated with a protection system. 18 19 This has to be, you know, you'll say you have to make it inherently less risky so that you can 20 qet that last mile with your protection or your 21 So that's why 61508 had you go and 22 control system. try to eliminate and reduce your hazards before you 23 24 try to, you know, add a protection system to it. Now for this, we created and made up one 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

out of two RPS things, you know, we could use it for 2 a prop to work with. And what you'll see is, you know, what would look like a conventional block diagram on the left and how an STP analysis would look 5 on the right.

And what you'll see is a STPA is an 6 7 investigatory or diagnostic process. It gets back to 8 the concept about are you complete or not. Aqain, 9 each iteration, you're going to go through, and you're going to go through the STPA process, we're going to 10 ask questions about, you know, what if questions. How 11 will this happen? What would be the drivers for that? 12

And the structured way you see on the 13 14 right is called a control structure. And that's an 15 and equipment are all output of STPA. Humans 16 evaluated, all three at the same time with this. This 17 is a control base, a control structure. It's a functional control structure. 18

19 And then when we add the causal factors which you use the output of these, you know, the first 20 three steps, then you have a complete pathway between 21 what causes the problem and what the consequences of 22 the problem could be. And it gives you a real good 23 24 insight on how to address it from a control structure point of view. 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

1 MEMBER KIRCHNER: I had just a quick In application, at least to the current 2 question. 3 fleet, almost all of the, I think everyone in the 4 current fleet has some level of PRA. And that 5 accounts for the details of how that plant was built out and modified over time. Or at least I hope they 6 7 do. How do you reconcile -- it would seem to 8 9 me that the first thing you would use in your PRA, you look at vulnerabilities and then get into the weeds 10 say, your digital I&C functions, piece of of,

of, say, your digital I&C functions, piece of equipment, or platform, or something. Is that what actually happens or --

MR. GIBSON: Yes. Let's talk about that. Then John will really be down, so I'm not going to talk a lot, because I don't short circuit that.

But your PRA is a model, right. So it's 17 one of the models, and we'll talk about it in another 18 19 It's one of seven models we use in this slide. process. But like you saw in the previous slide when 20 we evaluated the fitness of PRA to finding all the 21 problems, not a probability of the problems but the 22 actual problems that could happen, we see it has 23 24 shortcomings. So by adding STPA to this, which we do, we combine the two together, we go out and look for 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

14

15

16

hazards.

1

62

2	And HAZCADS stands for hazards and
3	consequence analysis for digital systems. So we've
4	positioned HAZCADS in the spot, or STPA, in that spot
5	between the control systems and the equipment it
6	controls, all right. So the equipment it controls is
7	certainly going to most likely be in your PRA if
8	there's risk in it.

9 But what you don't have is the contribution from a detailed hazard contribution of 10 the control system because, you know, a lot of PRAs, 11 I think, some of that's just truncated today. 12 They just put a number in there, right, because it's a 13 14 black box.

So to just improve that situation, then they've got new stuff that allows you to integrate hazards analysis insights into your, what I'll call traditionally doing risk. And John will go into that in some detail here in just a little while.

20 So we used, this is a test scenario. It's 21 one of the test scenarios that we use to test the 22 processes that we have, you go to STPA and HAZCADS. 23 So the set up here is, the event is you have a turbine 24 control system locks a cooling detection, right. So 25 the old system, the one that's sitting there, has

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	63
1	pressure transmitters going into different logic areas
2	of your turbine control system.
3	And you can see on the diagram, if you
4	have your low pressure, low flow, and high temp, many
5	of those kinds of things that pass the set point,
6	you're going to shut the plant down. You're going to
7	have a turbine trip and probably a reactor trip.
8	That was a single point vulnerability,
9	because any of those flow loop transmitters or any of
10	those different process transmitters cause a turbine
11	trip. And plus, the turbine system itself was non-
12	redundant, right, so if it failed (audio
13	interference).
14	MEMBER KIRCHNER: So this is for the main
15	generator?
16	MR. GIBSON: Yes. Yeah, the turbine.
17	Yes.
18	MEMBER KIRCHNER: The actual diagram you
19	had was actually used? You mean you would take out
20	1,000 megawatts because you didn't put two sensors in?
21	MR. GIBSON: Absolutely. All of the
22	plants are like that. And they're kind of reasonably
23	reliable. You know, when I started working in the
24	industry in 1982 the plant I worked at, you know, it
25	would trip every quarter on some BS like this. I
ļ	I

(202) 234-4433

	64
1	mean, you know, let's be real.
2	MEMBER KIRCHNER: That's within the whole
3	INPO model that the liability and safety are
4	MR. GIBSON: We're talking the same thing,
5	you're going to push the reliability up. And that's
6	a good segue, because this is really the reliability
7	model.
8	MEMBER KIRCHNER: All right.
9	MR. GIBSON: That's what was the purpose
10	of it, right, improve the reliability and remove
11	simple vulnerability. And this is the proposed new
12	system logic. So now you had three different
13	transmitters for each of these parameters. And
14	there's five redundant, you know, for pressure flow
15	and temperature.
16	And then you had fault detecting voting
17	for those three inputs. And all that's not on this
18	diagram, that's actually on a tri-modular SIL
19	certified PLC. So we could have internal failures to
20	the PLC and would be extremely reliable, as we showed
21	in the SIL certification, at a software and a hardware
22	level, right. We're cooking with gas.
23	So we wanted, you know, to do your
24	controller routine, automatically remove fault in
25	instruments, okay. So there again, we're dealing with
I	I

(202) 234-4433

the single point vulnerability. But this logic that you see in here was intended to identify the fault in instrument by measuring the output. It was outside of calibrated range, et cetera, et cetera. There you go. We know when we have bad instruments, miscalibrated instruments, it gets bypassed. And so the voting logic can use the remaining instruments.

8 And the next to the last bullet tells you 9 that even if two instruments are faulted that the 10 logic uses the remaining valid instruments. If all three instruments are faulted, the logic is designed 11 to send a shutdown signal. Hey, something sounds 12 reasonable, on the surface of it, I suppose. 13 You 14 know, because if you've lost all your input you want 15 to, okay, I don't know what's going on.

16 Well, what, this thing quess was 17 calibrated, the flow transmitter, 0600 gallons a minute. The high out of range was 612 gallons per 18 The normal stat of 19 minute for your flow, the flow. cooling flow was approximately 550 gallons a minute. 20 And one pump in service, which is what it usually is, 21 is your redundant pumps. They're not running at the 22 same time, or in theory they're not. 23

Two standard cooling water pumps exists, but there you go, only one, again, at the time.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	66
1	They're routinely swapped though. Because you run
2	one awhile then you run the other awhile. So you get
3	even wear on the pumps.
4	But when you swap the pumps the in service
5	pump remains on momentarily while the outer service
6	pump is started. And when that happens the flow goes
7	above 612 gallons per minute. And guess what, you've
8	got a trip. So they did this VIG (phonetic) mod to
9	reduce the single point vulnerability.
10	They put a lot of new stuff that was
11	hideously reliable at that platform level. But they
12	didn't catch this. They didn't catch, through
13	reliability and hazard analysis, that there might be
14	a possibility that, that being a flow case, that all
15	the flow, the flow could be higher.
16	And then what they didn't ask themselves,
17	why do I care if the flow is high. Well, high flow is
18	not a bad thing. Why is there even a trip on high
19	flow? So if it goes off scale high, why am I worried
20	about that, especially if all three of them did it?
21	Well, if you talk about it you say what's the
22	likelihood of all three of the transmitters failing
23	simultaneously? We just put in three, so I wouldn't
24	have that problem, right.
25	So we used this as one of our diagnostic
Į	I

(202) 234-4433

	67
1	scenarios to test people to see if they could find a
2	problem with this design. And they did using the
3	HAZCADS and STPA methods. It was pretty compelling
4	watching that happen. Because they started going
5	through that iterative what if, what if.
6	And, Jose, your thing about completeness,
7	and we'll talk about that a little more in a couple of
8	minutes, this process does not achieve absolute
9	completeness. But the likelihood that you miss
10	something goes down dramatically. But your completer,
11	you're more complete than you would have been
12	otherwise, right, in a traditional methodology.
13	That's the idea of it.
14	MEMBER MARCH-LEUBA: So it forces you to
15	be a structure undedicated, and therefore you cover
16	more. It's never bad.
17	MEMBER KIRCHNER: Yeah. When you designed
18	this though, did you go back to get who was on your
19	design team? Did they have the experience to know
20	that we routinely start up one of these other pumps
21	and
22	MR. GIBSON: Well, you know, that's a good
23	question. Because if you think back to the
24	MEMBER KIRCHNER: This is one of the
25	fundamental problems with PIRTS for PRAs, you put all
ļ	I

(202) 234-4433

1 the like-minded people together, and you don't necessarily get that -- I shouldn't say that but 2 3 (audio interference) came out. The danger is that you 4 put together a lot of experts in the same area. And you don't get that diversity of views so that you 5 don't work completely --6 7 (Simultaneous speaking.) 8 MR. GIBSON: -- right there. The STPA 9 systems engineering process and in qeneral is 10 multidiscipline. And, you know, I don't have a slide to talk about this just for brevity, but it really 11 requires -- this kind of stuff requires a big culture 12 Because now it's team engineered. 13 change. 14 When we did these tests you had operations 15 people, I&C people, and risk people on the team doing 16 the analysis of that to find that problem. And that's 17 a good suggestion. MEMBER MARCH-LEUBA: And was that before 18 19 or after the bullet happened? MR. GIBSON: That was after, that was for 20 our tests. 21 I've never seen a MEMBER MARCH-LEUBA: 22 benchmark that fails when you know all the answers. 23 24 MR. GIBSON: Right. Well, they didn't 25 know what the answer was. But there were kept blind.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

68

	69
1	All these tests were blind tests.
2	MEMBER MARCH-LEUBA: This is an open
3	meeting, right? I'm not meeting everybody that comes
4	in. It is fully we cannot meet everybody, the
5	public
6	CHAIR BROWN: It's an open meeting.
7	MR. GIBSON: It's an open meeting. Yeah,
8	there are no secrets here.
9	So I wanted to share with you some
10	preliminary OE data that we've collected so far. We
11	do annual OE reports. So this is getting ready to
12	publish our 2023 OE report.
13	You're seeing in this, you know, just some
14	anecdotal stuff. And this particular one, out of
15	1,200 OE records, and this particular data set is the
16	NRC website, INPO's website, and some input from our
17	Chinese members. Because they were able to give us a
18	lot of data from their plants. They have a lot of
19	digital plants, and so they gave us some of their, you
20	know, basically their CR reports, their reviews.
21	We harvested those, this is what you see
22	from the data. These are a fair indicators by
23	category out of those 1,200 to give you a feel for,
24	you know, where your big issues are. And this is for
25	I&C now.
I	I

(202) 234-4433

	70
1	MEMBER KIRCHNER: And you say hardware,
2	that's why I'm asking.
3	MR. GIBSON: This is I&C. This is I&C
4	hardware.
5	MEMBER KIRCHNER: Hardware. How do you
6	define the hardware, I mean, if a relay fails that's
7	a piece of hardware.
8	MR. GIBSON: Yes. If it fails
9	(Simultaneous speaking.)
10	MR. GIBSON: it fails in any of its
11	physical attributes.
12	MEMBER KIRCHNER: Whatever, it doesn't
13	open when you want it to, or it doesn't close when you
14	want it too.
15	MR. GIBSON: Yeah.
16	MEMBER KIRCHNER: Et cetera, et cetera.
17	Okay. That's fairly straight forward, it's a piece of
18	hardware.
19	If a circuit card is pulled out and
20	replaced with a new one, it now makes the system work,
21	right? You've got 233 components on that card. They
22	may just throw the card away in today's world. They
23	may try to repair the card in the old days. And by
24	the time you finish trouble shooting, you might
25	replace three, four, or five individual parts. And
I	I

(202) 234-4433
	71
1	then you don't know exactly
2	MR. GIBSON: No, they're not inflated that
3	way. This is at a functional replacement unit.
4	MEMBER KIRCHNER: The function
5	(Simultaneous speaking.)
6	MEMBER KIRCHNER: Yeah, the circuit card
7	level type or the relay brief. That's why I used that
8	example. Okay.
9	MR. GIBSON: Yeah.
10	MEMBER KIRCHNER: That's good. So that's
11	good
12	(Simultaneous speaking.)
13	MEMBER KIRCHNER: reliable data.
14	MR. GIBSON: LRU, line replacement unit
15	level
16	MEMBER KIRCHNER: Yeah. That's good,
17	thank you. You answered my question. We can go on to
18	the next slide.
19	MR. GIBSON: So this is just some stuff,
20	you know, this is the things, the software. We break
21	it down by what we should, you know, this is both how
22	it was written up and also our secondary
23	investigation. Because we were able to talk to some
24	of these people too, you know, with some of our
25	members.
I	

(202) 234-4433

So 56 percent were application level 2 configuration problems in the software. And 3 parameters are also big here. You know, we parsed those differently, because we considered application level software being the design, you know, maybe it was a function block or some high level code in there. 6 That would be the application.

8 Configuration parameters are also usually 9 application level parameters. Well, not always, but they are just things, you know, parameters you set in 10 the software to do what it does, firmware, 14 percent, 11 operating system software, two percent. You see out 12 there where the problems are. 13

14 And it really jives up with our other --15 we try to double check all our OEs when we connected, 16 because it just doesn't make sense. Because for the 17 job, what kind of trend do we see. And it really matches with our reliability pyramid, or pretty good. 18

19 We also search for software, CCFs of all Because that's a -- and we define 20 sorts, you know. the CCF as a loss of redundancy in our data. 21 So if you have two redundant things that were supposed to, 22 you know, keep a function going and they both fail, 23 then that would be a CCF in the definition for this 24 data. And so you see, you know, our hardware CCFs are 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

4

5

7

	73
1	running about twice the software CCFs.
2	And you see how it's broke down.
3	Manufacturer software, they fit five. Broadcast
4	storms, we consider that a I'm going to call it
5	failure on the network. Over-range transmitters,
6	which we just saw an example of that, that's a
7	software CCF, if you want to call it that.
8	We are kind of, as we go forward, trying
9	to advocate for functional, view that functionally.
10	Because had that system been implemented in hardware,
11	you still could have the same CCF, right. It wouldn't
12	have mattered that it happened to be a software basis.
13	It was a design. And then incorrect computer
14	parameters are one of those are also redundant.
15	MR. GIBSON: We're good?
16	CHAIR BROWN: I would have determined
17	whether anybody needs a break or are we satisfied with
18	proceeding? Break? Did I hear you say that, Matt?
19	MEMBER MARCH-LEUBA: How are we doing on
20	the presentation? It's already 10 o'clock.
21	CHAIR BROWN: We are 25 slides through 63.
22	And we've got one hour. We're supposed to go to
23	12:30, is our cutoff. That's what the agenda says.
24	So we do have to kind of keep things moving.
25	MEMBER MARCH-LEUBA: Let's have a break,
ļ	I

(202) 234-4433

	74
1	but let's ask our EPRI friends to talk a little
2	faster.
3	CHAIR BROWN: Yeah. Ha, ha, ha.
4	MR. GIBSON: You know you can't win, you
5	know, Charlie gives these instructions to practice.
6	You have to speak slow.
7	(Simultaneous speaking.)
8	PARTICIPANT: Did he say this?
9	MR. GIBSON: He did.
10	MEMBER REMPE: You're correct, he said
11	that. But we'd like to revise that.
12	(Laughter.)
13	(Simultaneous speaking.)
14	MR. GIBSON: I have my instructions.
15	MEMBER REMPE: We're learning, okay.
16	MR. GIBSON: I'm almost done talking.
17	CHAIR BROWN: I'm declaring a break, we
18	will return here at 10:25.
19	(Whereupon, the above-entitled matter went
20	off the record at 10:13 a.m. and resumed at 10:25
21	a.m.)
22	CHAIR BROWN: We're going to resume the
23	meeting now. We are now unrecessed, and Matt, you're
24	back on, or whoever.
25	MR. GIBSON: Thank you, Charlie. So,
I	

(202) 234-4433

we've had some good discussion. We're going to look digital systems engineering framework 2 at the 3 components. We're not going to do a deep dive on these. You have what we handed out earlier, and you have the materials, these are all week long courses if you want to really understand how they work. Look at 6 that thing, I'm finding out --- go back.

8 I'm using a little wheel from now on. 9 There we go. So, this is just an I chart, we're not 10 going to talk about it much other than it's in your slide deck. And it is an enumeration of the pieces of 11 And so, these are all --- the DEG is the framework. 12 at the top, and there's all those things that make up 13 14 the pieces of it that we can use in whole or in part.

15 This is a diagram that shows you the data 16 flow, the flow between these. Your DEG is your 17 anchor, you can see the HAZCADS is in green, that's where we do our hazard analysis, the DEG calls for a 18 hazard analysis. 19 Systems engineering calls for a hazard analysis, so HAZCADS is one of those. 20 For 21 simpler mods, or changes, or designs you can substitute FMEAs there for that instead, but 22 it wouldn't come out into these other processes. 23

24 DRAM is your liability, basically what I would call your hardware and software liability, your 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

4

5

7

	76
1	TAM, cyber security assessment methodology takes care
2	of the cyber stuff. HFAM, human factors, Mary will
3	cover that a little bit more in a minute, and EMCAM.
4	Now, it should be noted, you'll see in this slide
5	there's I&C standards scattered out through here.
6	And DEG, HAZCADS, and DRAM in particular
7	implement a process hazard analysis frame work, or
8	implementation I guess you would say, and a layer of
9	protection analysis as it's described in IC61511. So,
10	there we go, that's the framework itself. That's the
11	pieces, how it's laid out, and you see the
12	enumeration. Now, we're going to do a deep dive today
13	on HAZCADS and HFAM, just because we don't have an
14	unlimited amount of time.
15	But I do want to make a statement here
16	about models. All right, so our research really has
17	told us, not only in this research, but in the other
18	research we do on alternate I&C architectures, which
19	we're not covering today, but we have done modeling
20	analysis in that too. You've heard the old saying
21	that all models are wrong, but some are useless
22	useful.
23	Thank you, John, I appreciate that, that
24	does change the context of that statement a lot. The
25	whole statement of that though, is what that person,

(202) 234-4433

Box I think the name of the guy was that said that, what he's really trying to say is all models are wrong, but they can be useful if they answer a question. They're not going to answer all questions, but to answer a question accurately, or reasonably accurately, then they can be useful.

7 And what you see here is a list of the 8 seven models that we use in the frame work. Systems 9 engineering, fault freeze, STPA, reliability analysis, 10 exploit sequences, which is the modeling methodology for the TAM, and the reliability analysis, which we 11 And so, those models taken together try 12 use in DRAM. to answer the questions that need to be answered in 13 14 order to get good designs done, and safe designs done.

And to deal with the questions we have in 15 risk informing performance base. You'll see here how 16 17 we connect the model to the product. And if you look at the questions you need to answer for what could go 18 19 wrong, what are the consequences, how likely is something to go wrong, what performance is needed, 20 elements of informed 21 those are the kev risk 22 performance based.

And the framework elements attempt to answer those questions. And that's always a work in progress, but it's certainly well formed at this

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

www.nealrgross.com

77

	78
1	stage.
2	MEMBER REMPE: I may miss when you get to
3	how you put it in the PRA, do you include uncertainty
4	in the answers to those questions?
5	MR. GIBSON: Of course, of course.
6	MEMBER REMPE: That's good, just checking.
7	MR. GIBSON: Of course. Although exactly
8	how to do that is a subject of some research we're
9	doing.
10	MEMBER REMPE: I think it would make it
11	more difficult, but I'll miss that part, so you can go
12	by.
13	MR. GIBSON: Okay, that means you can get
14	four or five minutes, Mary. But anyhow, one of the
15	key models we use that you might not have seen before
16	is relationship sets. And you can see the idea of
17	them, there are four we modeled the whole system,
18	we describe the system as system elements. You can
19	view that construct throughout, because we do
20	configuration management at the system element level.
21	We do different characteristics, and
22	functional composition, decomposition at the system
23	level. Hardware, software, human, and equipment under
24	control are the four founding system elements.
25	Everything should be able to be mapped to those, and
I	

(202) 234-4433

	79
1	included in those. And there are five relationship
2	sets. Functional ones, connectivity ones, spatial
3	ones, programmatic, and acquisition.
4	Again, we're not going to go into a super
5	amount of detail other than to say you can see from
6	this Venn diagram a little bit how the relationship
7	sets work. Because each relationship set type,
8	meaning your relationship sets in a design, but there
9	will be one of these five types, and they'll have a
10	bounding criteria developed for each one. That
11	bounding criteria determines what system elements go
12	in it.
13	What this lets you do is evaluate, and
14	visualize dependencies, degrees of independence, and
15	all these sorts of architectural characteristics. And
16	you can evaluate with relationship sets, so it becomes
17	an architectural view. Maybe not the only one, but a
18	valuable one that allows you to understand when things
19	are connected in some way, either through their
20	functional connection, a data and control flow
21	interconnection.
22	The fact that they're in the same cabin,
23	or under the same roof, or they're spatially in the
24	same spot, they are in the same calibration program,
25	they're in the same cyber security password change
I	I

(202) 234-4433

program, whatever they're in that they share that, and 1 you can see that relationship here. And acquisition 2 3 where you can tell whether these system elements have 4 common acquisition characteristics coming from the 5 same vendor, or using the same products. They have these different kinds of things 6 7 in common relationship through the acquisition 8 process. That's relationship sets. 9 Just, could MEMBER KIRCHNER: you 10 elaborate on equipment under control, that could be safety related components, why put a fourth category 11 there? 12 MR. GIBSON: Well, because a control 13 14 system, remember the context of HAZCADS in the digital 15 engineering framework are control and monitoring 16 systems. So, those things in and of themselves don't 17 do anything, they're a paperweight. So, they have to Fluid, mechanical, electrical, control something. 18 19 they have to do something. That phrase equipment under control is what the I%C standards use in that 20 context to describe the things you're controlling. 21 22 Now, one concept there is that your control system inherits the risk importance of the 23 24 things you're controlling. Because obviously if you're opening and closing a valve, you're starting a 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

80

	81
1	pump, whatever that is, whatever the risk importance
2	of that component under control is, your control and
3	monitoring system inherits that risk, it has to be
4	commensurate with that risk of that component.
5	MEMBER KIRCHNER: I get that part, I'm
6	just trying to understand your universe that you're
7	creating, and whether it adds a degree of complexity.
8	Why wouldn't you equipment under control would be
9	a special subset of hardware, or perhaps software.
10	MR. GIBSON: Well, I guess the best way to
11	describe that is because the context is different.
12	So, what this lets me do, is because equipment under
13	control is a different context in the plan, it's the
14	thing that makes something happen. So, I can look at
15	these relationship sets, and see all the digital human
16	things that are associated with that equipment under
17	control.
18	And that helps me like say equipment
19	under control will typically appear in your PRAs under
20	basic events. Sometimes that's aggregated, but let's
21	say you have a pump or a valve, and you have that in
22	your PRA. Well, now I can tell if that equipment
23	under control is here, if it's populated in any of
24	these relationship sets, maybe even with another piece
25	of equipment under control, now I can see a dependency
ļ	1

(202) 234-4433

	82
1	that would have escaped me earlier.
2	The second reason we do that is because
3	the SCPA process is modeled that way. You always talk
4	about the process that you're controlling, and then
5	you draw up control structures. And this lets us
6	allocate the process under control to equipment.
7	MEMBER KIRCHNER: How do we fit that in
8	the world of NRC regulations where you have safety
9	related, you have things that are under tech spec, and
10	so on. So, it
11	MR. GIBSON: Well, remember this is a
12	technical process. So, if there's, let's say you have
13	something that's safety related. Well, remember, even
14	today when you have 50.69, there are things that are
15	more risk significant, and some things are less risk
16	significant.
17	MEMBER KIRCHNER: Yeah
18	(Simultaneous speaking)
19	MR. GIBSON: Right. So, this kind of all
20	works with that. But you don't really care at this
21	point. What this is, is how are these things related
22	to each other? So, let's say you have a piece of
23	equipment that happens to be of some categorization,
24	and it would show up here as equipment under control.
25	And that would help you understand the criticality of
l	I

(202) 234-4433

83 1 the I&C that's actually attached to that thing, and 2 trying to do something with it. MEMBER KIRCHNER: What about the equipment 3 4 that isn't under control. Is that caught up in the hardware, or for example we've seen debates over ---5 especially with the newer designs coming in, what 6 7 makes the DRAM list, and what doesn't. So, what is 8 under control, maybe not in the same way you use this 9 definition, but what requires special attention, 10 etcetera, etcetera, and what doesn't. I'm trying understand 11 just to has been identified in the (simultaneous speaking) 12 I&C universe that has special controls that ---13 14 MR. GIBSON: This is anything that the scope of this evaluation, relationship says based on 15 what you're trying to do, right, and what's the 16 17 system, the subsystem of your design, or the plant if you use at the whole plant level. You have multiple 18 19 relationship sets, really powerful tool. So, let's say you're doing an advanced reactor, and it's using 20 alien technology, nobody's ever seen this before. 21 22 You use this same process, right? Because at some point the control and monitoring function has 23 24 to control and monitor something. And the thing it controls and monitors are these equipment under 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	84
1	control, and that's what actually makes the world
2	turn. They're the things that pump the water, the
3	steam, make the temperature go up and down, do
4	whatever. The actuator, the prime mover if you want
5	to use that word for it.
6	MEMBER KIRCHNER: I'm just struggling with
7	what's in the universe of equipment under control.
8	CHAIR BROWN: Yeah, Dennis, speak up, I
9	see you were queued, so go ahead.
10	DR. BLEY: Yeah, I just wanted to sneak
11	in. I'm trying to maybe I can pull Walt and Matt a
12	little bit together. If we go to your forces through
13	elements map, do you intend those to be orthogonal or,
14	and I don't know, for function under control I think
15	it would make it clearer. But if it's a pump that's
16	under control, that's also hardware.
17	Does it fit in both categories? That's
18	sort of what Walt's getting at I think in part
19	MR. GIBSON: It does not fit in both categories.
20	The hardware is the control monitoring hardware, not
21	the equipment it is controlling. And we reduce it to
22	this this might look like a little bit of an
23	abstraction, these elements, when you do these are the
24	actual tag, and make, model, number ID that are being
25	affected.
I	I

(202) 234-4433

85 1 This is not an abstraction. That's one of 2 our problems that we're curing with this, is if you do a lot of high level stuff, even PRAs for that matter, 3 4 and you truncate, and you combine functions, all of a 5 sudden you've got a basic event that might have a lot of stuff underneath it, right? What we have to do is 6 7 connect that to the real equipment plant, the real 8 hardware elements, software elements, the human 9 actions that go into it. Because otherwise it's hard to make our 10 hazard analysis turn outward, right? We don't know 11 12 what we actually have to do. You throw a little bit of 13 DR. BLEY: 14 jargon around, I think I heard you say that in your four elements, the hardware that's listed there is 15 16 hardware that controls other things. 17 MR. GIBSON: Yes, it's part of the control system, in this case the digital control system. 18 19 Okay. Well, it's probably DR. BLEY: clear in the documents, it's not clear in the view 20 graph, I think is where some of these questions are 21 If we go over to your diagram that I 22 coming from. suppose is helping to give us clarity, I have to admit 23 24 it doesn't give me clarity. And this is a cartoon, or 25 this is something that you think is real а

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 representation? 2 And then how do you qarner useful 3 information out of such a, as you called it, a Venn 4 diagram? 5 MR. GIBSON: Well, the Venn diagram is mainly just one way you can view this. 6 And what 7 happens is, is when you do your relationship set 8 analysis, there's a worksheet in these processes where 9 you create a relationship set. You give it names, you give it a taxonomy, you develop the bounding criteria, 10 which are a structured narrative about what things go 11 in it, what things don't. 12 It then has to be populated with real 13 14 component IDs about what you're dealing with. And so, 15 that's what it really looks like. you And if 16 visualize it, it's going to look a lot like this. 17 Let's say you had a complete design, and you had relationship sets, you could create a visualization 18 19 that had all that detail on it, which would be more detailed this. This is 20 than just trying to demonstrate the concept of it more than anything else. 21 DR. BLEY: I think it would help --- well, 22 it would help me, and it might help members of the 23 24 committee who are with you here, to explain --- can you keep that other slide up? To explain the value of 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

86

	87
1	these five relationship types. Functional I kind of
2	get, they're providing the safety, or other functions
3	in the plant. Spatial, I'm guessing you're talking
4	about where the equipment is actually located.
5	Which would (simultaneous speaking) me if
6	I were doing some kind of event analysis that depends
7	on spatial proximity. Programmatic, I suppose would
8	help me if I'm looking at ways to change the program
9	to improve things, or do you have other things in mind
10	there?
11	MR. GIBSON: I'll try to hit those
12	quickly. Functional, again, is what it does. So, if
13	you have a function, this would allow you to associate
14	system elements to a function, enumerate them in
15	there, and if you have another function, let's say it
16	was a diverse function.
17	DR. BLEY: I'm sorry, stay on that first
18	one. So, you kind of have an arbitrary number, 15
19	functional relationship sets, and each one of those
20	would tie together the things that are associated with
21	that one function, true?
22	MR. GIBSON: Well, typically what we're
23	trying to say is if you had a function (audio
24	interference) so say you had two functions. Let's
25	say you had a primary function, and a defense in depth
Į	I

(202) 234-4433

1 function, or a diverse function. Then you would be 2 able to see once you populate the system elements if 3 there was any dependencies, or any lack of 4 independence between those two.

5 You would see the sharedness of them, the connectivity of them. Or if they were in the same 6 7 spot, like say if you had them both in the same 8 cabinet, then you're going to share hazards. These allow our hazards to be correlated to our architecture 9 10 is what they do at the end of the day. Because we use these same ones in cyber security too by the way. 11

Because when you evaluate a cyber threat, 12 13 or а dependency, you use these same sort of 14 relationship sets to know what control measures you 15 have to put in place to protect, detect, or respond to 16 that particular threat.

DR. BLEY: Okay, I'm sort of getting it. Now, let's jump to acquisition. And the only thing that comes to mind there would be if you're looking for maybe common cause effects because you're coming through the same acquisition source, or what are you really looking for with the acquisition sets?

23 MR. GIBSON: All right, so remember, this 24 is used for everything, not just trying to proof a 25 particular function. So, an acquisition relationship

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	89
1	set will let you immediately understand let's say you
2	had a certain brand of instrument transmitter in your
3	plant, and you got them all from the same vendor.
4	These relationship sets will immediately allow you to
5	visualize the dependency that you have on that
6	particular vendor, and that particular type of
7	transmitter across multiple systems.
8	DR. BLEY: Okay, that's pretty much what
9	I said but in different words. I'm done with this
10	one, and thanks for your help.
11	MR. GIBSON: Thank you.
12	MR. WEGLIAN: If I could weigh in now,
13	something that Walter asked about that I want to make
14	sure is clear. So, we're designing a digital I&C
15	system, so hardware and software are in that context.
16	They're the hardware and software of the digital I&C
17	system. The equipment under control is what it's
18	affecting, pumps, valves, breakers, things like that.
19	You asked about other equipment, and I'm
20	going to give an example, a new design reactor has
21	liquid core, and has a freeze plug. And it's a
22	passive system that if it loses power it's going to
23	melt, and it's going to go somewhere else. That's not
24	controlled by the digital I&C system, so that would
25	not be equipment under control of the digital I&C
ļ	I

(202) 234-4433

	90
1	system because there's no feedback into that system.
2	So, that would not be part of this. Now,
3	if it's part of the design it will be incorporated in
4	the PRA for its function, and its probability of
5	failure, maybe it plugs, or something like that. So,
6	it'll be part of the risk assessment, but would not be
7	any of the elements of this part because the digital
8	I&C system does not have an effect on that component?
9	MEMBER KIRCHNER: Just one last thing
10	then. On spatial what I was thinking was things that
11	were cohabiting in the same cabinets, or I was
12	thinking under the same zone of influence whether it
13	be a fire, or a blow down or
14	MR. WEGLIAN: Equipment qualification,
15	that kind of thing.
16	MR. GIBSON: It's also your HVAC, your
17	support systems have a spatial air conditioning,
18	environmental conditioning, it's all spatially
19	oriented, right? So, you want to make sure that you
20	can track dependencies. We've looked at this pretty
21	hard, and we think this is bound (audio interference)
22	hard to miss a dependence if you go through this
23	relationship set process.
24	Anyway, this is a much bigger picture of
25	it. Because you can see where we come down to DEG, we

(202) 234-4433

create relationship set as part of the architecture development. There's several steps in there, interface analysis, functional allocation, we do relationship set development in functional analysis. The key thing there is when we do hazard analysis, you will see where we put the dots.

7 When we do STPA we have to connect the 8 results of the STPA analysis to some actual physical 9 something, software, hardware, something, or person. 10 So, that we understand what the cause of factors could be, and also what sort of control measures we have to 11 12 apply to it, otherwise we'll lose our way here. And then John talked about this a little bit, but when we 13 14 do HAZCADS it's possible that when we have, for 15 instance, an unsafe control action, it looks 16 independent when we look at it at the level we're 17 doing it.

dependence in could have a the 18 You 19 background like spatial dependency, or acquisition dependency that not obviously comes out. So, in order 20 to properly do the risk we use relationship sets to 21 group the UCAs together where they have dependencies 22 with each other. And then we can put it in a PRA, do 23 24 bounding analysis on it, and that kind of thing without worrying what didn't we think of. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

What dependency is working out there that could cause a problem that we didn't think could be there? You pull it down though, and this is really an important thing to take away here. We create loss scenarios. That's the complete thing that happens because an event that would occur. We apply control methods, or we identify the control methods we're going to use.

9 That gets allocated back to these system 10 elements, because you've got the control, whatever it 11 is has to apply to something real, software, hardware, 12 person, equipment under control. And that gets pushed 13 back to the requirements development phase. And this 14 loop is iterative, and drives completeness of your 15 design, something we don't do today very well.

16 This process drives your design to be 17 complete after you've looped through this a bit. Let me see if I can --- there we go, it's on automatic 18 19 This is a simplified version of this thing. pilot. This is the conceptual phase in the work flow. 20 The DEG does the design, it does the whole design, 21 the initial design, it just stays the conceptual phase, 22 maybe the initial conceptual phase. 23

And then we push the output of that into the HAZCADS. And it does, it evaluates for hazards,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

www.nealrgross.com

92

and the criticality of those hazards, and downstream processes like DRAM and all these others. They work on some topic specific issues, and we bring those control methods in the requirements back to the DEG for another loop, because now the design gets updated.

Every time you go through this the design 6 7 gets updated, that's the idea of it. So, you do this 8 a few times, and then your design is arguably a high 9 reliability design, statistically a highly, highly 10 reliable design. The likelihood of you having a problem is going to be low. One of the things you 11 asked about as far as the industry on this, I'm not 12 sure how familiar you are with a lot of this. 13

14 The EB1706, if you search for it online 15 you can download it, it's a bulletin document. That's 16 the efficiency bulletin that implements the standard 17 design process. Industry, that's a read, mandatory bulletin by the C&Os in the nuclear industry in the 18 19 U.S. And so, we have the standard design process, and NISP-EN-04 is the digital system addendum to that. 20 And then the DEG is called by the NISP as the way to 21 do those activities in the NISP. 22

23 So, the industry has adopted the DEG, or 24 is in the process of it, I mean it's a long term, 25 multi-year thing. But they'll be doing that, they've

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

94 1 already all got training. We've trained about 600 industry folk on that, and about 50 or so NRC folk on 2 3 that. 4 DR. SCHULTZ: Matt, how are you defining 5 the industry here? It sounded like when you mentioned the C&Os that you were talking about the existing 6 7 nuclear, and I'm concerned about the emerging nuclear 8 industry. The new plants in advanced design who use 9 this. 10 MR. GIBSON: That's true. We define the industry in this as the extant plants. 11 The people 12 that own plants, license these today, your typical utilities that own plants. They're the ones who are 13 14 the members of the insight community who made this 15 proclamation everybody would do it, and that's essentially all of the utilities in the United States. 16 17 DR. SCHULTZ: But you see the need for this to be grasped and utilized by the advanced plant 18 19 designers who are going to need this technology 20 capability. MR. GIBSON: We do. Those advanced plant 21 designers, most of them are members of EPRI, they get 22 to see this stuff too, and they're in various stages 23 24 of trying to figure out how to get their hands around it. Part of it is the dilute between what they do to 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	95
1	satisfy regulations, and what they have to do for a
2	good design, which hopefully are the same, but not
3	always.
4	For instance like Rolls Royce SMR, who
5	will eventually sell reactors in the United States, or
6	try to. They are in today (audio interference).
7	DR. SCHULTZ: So, EPRI can push on that,
8	but the NRC can push on that as well.
9	MR. GIBSON: Yeah, that's really everybody
10	at some point has to say this is the way forward or
11	not. We produce these things, we research them, we
12	think they're valuable, we think they're effective, we
13	think they can solve a problem with it. It's really
14	up to our other stakeholders that adopt it. We can't
15	say hey, you must do this, because that doesn't work
16	for us.
17	MEMBER KIRCHNER: Does this reconcile what
18	the NSAG (phonetic) train of documents coming from
19	IAEA
20	MR. GIBSON: Which ones?
21	MEMBER KIRCHNER: There's a lot of designs
22	they're saying they're doing their safety to NSAG,
23	don't hold me to this, 12 is the one that comes to
24	mind.
25	MR. GIBSON: I think that's in the same
I	

(202) 234-4433

1 sort of arc. The IAEA has included the DEG as a recommended method to do systems engineering for I&C, 2 3 so that's there. They've also had some 4 recommendations on the TAM for cyber. You get the 5 Canadian Nuclear Regulator has included the TAM in their regulation statement as being a valid way of 6 7 doing what they require. So, it's kind of growing out like weeds, 8

9 it's not instantaneous that everybody's doing it. But IAEA is aware of this, we participated on technical 10 committees, and all that stuff, shared this stuff with 11 So, they're doing stuff. And they have the them. 12 same, IAEA is a big bureaucracy too, and that's not 13 14 meant to be derogatory, it's meant to just recognize 15 how much it takes to change direction on something like that. 16

You've got to let a lot of people agree, 17 there's a lot of talking, and it takes maybe sometimes 18 19 All right, so that's what the industry is vears. doing, you've seen that. (Simultaneous speaking). 20 There we go, I think it's the last slide in this 21 This is our users group. 22 section. So, we have a users group that is created to further the digital 23 24 systems engineering framework.

You can see the members, who are members

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

of it down on the right. So, that gives you some idea of --- and they had to pay to be part of this, I'll just say that out loud because it's a measure of their interest, it's not something they get for their EPRI membership. So, that's going pretty good, we have our next meeting in September, it's been about a year and a half now since we introduced this.

So, we get a lot of feedback from all of 8 9 those companies about these products, and as we do 10 changes to them, they get a look at the drafts, and give feedback, and we ask them what they think, and do 11 tests, and different sort of engagements to get real 12 world feedbacks on these products as we change them. 13 14 And we're doing that right now, there'll be a mass 15 update in the first guarter of '24.

Because like I said, we've talked to 600 16 17 people now, we've got a big list of improvements we can make on usability. Remember, this something that 18 19 people asked us to do, so it's a level of a process. So, when somebody says you ought to do this a little 20 better, or that diagram doesn't work exactly right, 21 it's not clear, we update all of that in these 22 So, we're doing that. 23 products.

24 CHAIR BROWN: Does this encompass all of 25 the current nuclear power plant owners? I read

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

	98
1	through the list.
2	MR. GIBSON: It's pretty close in the U.S.
3	Plus you've got Bruce Power in Canada, you've got a
4	few
5	CHAIR BROWN: Does it have all the U.S.
6	companies?
7	MR. GIBSON: Not entirely.
8	CHAIR BROWN: I don't know all
9	MR. GIBSON: I think the only company
10	missing though, to be fair, is I think there has just
11	been a merger between Vistra and somebody else.
12	CHAIR BROWN: Energy Harbor.
13	MR. GIBSON: Energy Harbor, yeah. Energy
14	Harbor wasn't a member, but now they are, because now
15	they're one company. So, I think NextEra is the only
16	one missing off of this.
17	MEMBER REMPE: So, I'm curious about
18	MR. GIBSON: Progress is gone, it's part
19	of Duke nowadays.
20	MEMBER REMPE: Before you move on, I'm
21	curious why Curtiss-Wright, I mean most of them are
22	plant owner operator organizations, and Curtiss-Wright
23	has joined in because?
24	MR. GIBSON: They use these products,
25	Westinghouse are members too.
ļ	

(202) 234-4433

	99
1	MEMBER REMPE: Yeah, that makes sense too,
2	but Curtiss-Wright I think of making components more
3	than how are they using it, is it to help them
4	make changes to future components that they're going
5	to sell to the plants, or is there anything
6	MR. GIBSON: I'm not 100 percent versed on
7	everything Curtiss-Wright does, but I think they do
8	make systems. I mean Curtiss-Wright
9	MEMBER REMPE: So, they're selling
10	systems, and getting an edge
11	CHAIR BROWN: They made a lot of I&C
12	systems in the nuclear program.
13	MEMBER REMPE: So, they're improving their
14	product to hopefully sell it to the plants is their
15	angle. I'm surprised then that they don't have any
16	competition trying to join in, it's just them.
17	MR. GIBSON: Well, I mean people ask us
18	about it all the time. I expect this list over time,
19	I expect it to get more international members over
20	time. I guess just (audio interference) point in
21	time. All right, he's pointing at you, John, so it's
22	your turn now.
23	MR. WEGLIAN: Okay, so I'm going to talk
24	about HAZCADS in detail. This is a flow chart, you
25	kind of start out in the upper right corner with the
ļ	

(202) 234-4433

	100
1	DEG provides information, and HAZCADS over in the
2	left. We perform STPA, system theoretic process
3	analysis, that's the last time I'm going to say all
4	those words, I'm going to say STPA from now on.
5	And what we're looking for is unsafe
6	control actions. He showed earlier the control
7	system. And what STPA focuses on is not internal
8	errors that can happen within your control system, but
9	errors that can happen at the level of implementing
10	something in the plant. I happen to work on
11	developing software within EPRI, I'm here to tell you
12	ever software has bugs in it, every single one.
13	But does it matter? There's a lot of bugs
14	that just don't matter. So, what we're focusing on is
15	when it's time to start a pump, open a valve, flip a
16	breaker, something like that, can that be unsafe?
17	That's what the unsafe control actions are. Looks at
18	the effect on the plant, when can those be unsafe?
19	And then we have a question, does that affect anything
20	in the PRA?
21	We have other consequences that we
22	consider beyond just nuclear safety, because this is
23	a process, the plant wants to know is there going to
24	be an economic impact? Is there going to be
25	environmental impact, reputation harm, something along
	1

(202) 234-4433

101 1 those lines? So, there are some consequences that we assess that have nothing to do with the PRA. 2 3 And so, we have a separate process where 4 the plant makes a heat map essentially, risk matrices 5 to define their risk reduction targets, RRTs, which is 6 the output of HAZCADS for these consequences that are 7 not assessed by the PRA. So, we have this other 8 process for that, we call that pathway one. If it is 9 in the PRA, then we ask well, how many systems are 10 affected? And that takes us to pathway two, three, 11 or four, that's not important for us. I'm just going 12 to block all of those, and say we use the existing PRA 13 14 model to assess the impact of a complete failure of 15 the digital I&C on the equipment under control to give 16 a bounding risk reduction target. Again, what works 17 well with this process is that STPA looks at the equipment under control, and that happens to be the 18 19 equipment that's already in the PRA. We already have basic events for the 20 breaker didn't open or close, the valve didn't open, 21 the diesel failed to continue running because of the 22 over speed trip, or whatever it is. 23 Those kinds of 24 things are already in our PRA, so we can use the 25 existing PRA to do our risk assessment for the systems

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	102
1	that happen to be modeled in the PRA. So, our
2	MEMBER DIMITRIJEVIC: Hi, this is Vesna
3	Dimitrijevic, I am the PRA expert in residence. So,
4	the question for me here is that you assess the impact
5	of complete failure by looking at the reduction
6	target, which that doesn't match, because risk
7	reduction is assuming complete success of that
8	equipment.
9	(Simultaneous speaking.)
10	MR. WEGLIAN: I'll get in a slide or two
11	to how we define the risk reduction target. So, if
12	you could just hold that until I get to where we
13	actually define those levels, if you still have a
14	question feel free to ask it then.
15	MEMBER DIMITRIJEVIC: All right.
16	MR. WEGLIAN: I'm just trying to show you
17	the overall process at this point.
18	CHAIR BROWN: Is that okay, Vesna?
19	MEMBER DIMITRIJEVIC: Excuse me?
20	CHAIR BROWN: Is that okay?
21	MEMBER DIMITRIJEVIC: Yeah, no, that's
22	fine.
23	CHAIR BROWN: Okay, I didn't hear you say
24	okay.
25	MR. WEGLIAN: Okay. So, we get from
I	I

(202) 234-4433

either pathway one, or two, three, or four, we get a bounding risk reduction target, and we feed that into our downstream processes, DRAM, TAM, HFAM, EMCAM. And what they do with that, they may decide to change the design, and put new requirements on the design, and that gets fed back into the DEG, that's the up branch.

7 For things where they're not going to 8 change the design, they're going to control that risk 9 defined by the RRT by defining control methods. And 10 if they're unable to meet that risk reduction target for some reason, maybe it's too costly, after these 11 downstream processes have gone, they identify through 12 scenarios, they feed 13 loss and that into the relationship sets, we come up with combinations of 14 UCAs that can fail at the same time. 15

I need the downstream processes to do this 16 first before I can refine risk assessment, because 17 before I got to that point I can't tell you which UCAs 18 can fail together for the same reason, or same 19 inherent cause. So, I need those downstream processes 20 to do that. Once they do, then I can refine the risk 21 reduction target for the areas where they weren't able 22 to meet the bounding risk assessment. 23

I can now, what we call pathway five, I can redo my risk assessment, again, we'll see that in

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

a slide or two for these combinations of UCAs based on the relationship sets to say is there a more refined risk reduction target that they can use for that? So, here's where we're getting to the risk ranking. We do this bounding risk assessment. Our first approach is 6 we assume everything fails.

7 Not just software common cause, but any 8 failure that it can do. And then we look at the 9 change in risk if those failures occur. So, we're 10 looking at a change, so this is a delta risk, delta CDF, delta LERF assessment. And if we say that 11 failure of everything associated with the I&C system, 12 the equipment that it controls, if that's less than a 13 14 1E minus 6 per year delta CDF, and less than 1E minus 7 in LERF, I give that a risk reduction target of 15 16 delta.

17 That's the lowest that it can get. And each order of magnitude higher delta CDF that I get, 18 19 I increase my risk reduction target up to a maximum of risk reduction target of alpha is delta CDF between 10 20 to the minus 4, and 10 to the minus 3 per year. 21

I want to interject right 22 MR. GIBSON: there while you guys are absorbing this. 23 The risk 24 reduction target translates to a reliability target. So, ultimately if you want to reduce the risk, you 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	105
1	want to increase the reliability to ensure the risk
2	reduction range.
3	MR. WEGLIAN: Yeah, so your seal equipment
4	would be expected to provide, for example, three
5	orders of magnitude of reliability if you had an alpha
6	RRT.
7	CHAIR BROWN: What does that mean, orders
8	of magnitude, it's a thousand times better than
9	something else?
10	MR. WEGLIAN: Yes.
11	MEMBER DIMITRIJEVIC: Okay, so let's
12	discuss the risk reduction here. So, basically the
13	intervals, you know, If you go to the Reg Guide 1174,
14	right?
15	MR. WEGLIAN: Yes.
16	MEMBER DIMITRIJEVIC: So, let's discuss
17	this. So, this is only applicable for specific
18	control action, right? Not in the general for the
19	equipment.
20	MR. WEGLIAN: It is for the entire design
21	that is being evaluated. The digital I&C design
22	MEMBER DIMITRIJEVIC: I mean that is
23	absolutely I mean everything in the plant depends
24	on the control and stuff. So, I assume you're
25	analyzing specific control actions, because there is
	I

(202) 234-4433

	106
1	not any you know, if you don't have a control in
2	the plant how can you have that specific amount 10 to
3	magnitude 6, so I'm not sure about this. The second
4	thing when it comes to this digital I&C, but what I
5	wanted to discuss is this reduction factor.
6	So, if you fail all control, and your
7	difference that you're only increasing CDF let's say
8	to less than 10 to minus 6, how is this risk
9	reduction? It measures risk increase, so it's more
10	(audio interference) risk achievement factors instead
11	of risk reduction factors. So, this is actually
12	showing you the total increase in that CDF is smaller
13	than 10 to minus 6.
14	How is this connected to risk reduction?
15	So, this is actually I have two questions. One is
16	that, and the second one is what are you measuring,
17	impact of what?
18	MR. WEGLIAN: So, let me tackle the if the
19	risk reduction target is a delta. When I was at a
20	utility I worked on a boiling water reactor, and our
21	RHR system had three trains. Train charlie only
22	provided water into the core, and there were nine
23	other ways to get water into the core, so that one
24	train was very low risk if it were to fail, because it
25	had so much redundancy.
ļ	I

(202) 234-4433
So, if I was doing a mod that only affected that train I would expect if it failed completely, my delta risk would be less than 10 to the minus 6, and this process would then say for that mod the risk reduction target is so low that the minimum level of activities that we would do on any mod at all is sufficient. You don't have to do anything additional to that.

9 If I'm replacing the RPS system at the 10 plant that I came from, I'm going to guess that would be a risk reduction target of a bravo. And so, you 11 would have more controls on that based on that mod. 12 And so what we're doing is we're saying if anything 13 14 under control can fail, then we fail it in the PRA 15 model. And we look at what is that change in risk based on that failure and what ---16

17 MEMBER DIMITRIJEVIC: Okay, all right, now I understand actually what you are doing. But I just 18 19 want to tell you that you are using the wrong name based on the PRA principles. Okay, so what you are 20 doing, you are not looking at total digital control of 21 RHR, or God forbid, the plant, you're just looking at 22 one specific control. If that specific control fails, 23 24 you're increasing that CDF less than 10 to minus 6. 25 But see if you want to analyze risk

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

reduction you have to analyze if you make this totally reliable, what would be improvement in this? So, therefore maybe you should call this risk reduction factor, because that is something like a risk reduction factor.

6 MR. WEGLIAN: Yeah. It is not the risk 7 reduction factor, it's the risk reduction target. So, 8 this is the target that the downstream processes have 9 to meet with their reliability. That's what we're ---10 that's how we defined it.

MEMBER DIMITRIJEVIC: Yeah, but you're not 11 reducing risk if you're not going to pay attention to 12 this control of that bravo, or whatever charlie train. 13 14 So, you're not reducing any risk, so that's why RR is wrong, because you are not reducing. 15 You're just 16 going to say risk impact is small. So, that's a 17 different thing. And also you're only analyzing one control action on that single train. So, it's not 18 19 total.

20 MR. WEGLIAN: If the mod was only for that 21 train, that's what we would assess. If the mod 22 affected all of RHR, all three trains, then I would 23 expect the risk reduction target to be bravo, or 24 alpha, and they would spend a lot more on that. 25 MEMBER DIMITRIJEVIC: Yes, that is, yeah

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	109
1	
2	MR. WEGLIAN: So, it depends on the scope
3	of the mod.
4	MEMBER DIMITRIJEVIC: All right, okay. I
5	just made my comment just to tell you that your name
6	is confusing, and
7	(Simultaneous speaking.)
8	MR. WEGLIAN: Okay, that's why it's a
9	target. Because the downstream processes get that as
10	an input and say your control methods have to meet
11	that level of risk reduction. So, where it actually
12	gets implemented
13	MEMBER DIMITRIJEVIC: That's not reducing
14	risk. You're not paying attention. You're saying I
15	don't need to spend the money on control of charlie,
16	that's not reducing any risk. So
17	(Simultaneous speaking.)
18	MR. WEGLIAN: They would do more on
19	charlie than they would on delta.
20	MEMBER DIMITRIJEVIC: Okay, all right. I
21	made my comment for the record.
22	MR. WEGLIAN: And if the risk if the
23	delta CDF, or delta LERF exceed 10 to the minus 3 for
24	delta CDF, or 10 to the minus 4 for delta LERF, we say
25	that design is too risky. With this process you can't
I	1

(202) 234-4433

```
www.nealrgross.com
```

come up with enough control methods to get that level of risk reduction, and therefore you have to change the design in some way. That might be diversity and redundancy, right?

You might have to put in a new system that compensates for that. You may have to add human actions that can compensate for that. But whatever it is, if you get to that high level, it's unacceptable at the bounding risk assessment. And this is before we've done any refinement. This is the first time through.

If the delta CDF and delta LERF are too 12 they have to change the design within our 13 hiqh, 14 process to get it so that we believe that the 15 equipment that's available for purchase is of high 16 enough reliability to be able to achieve these kinds of reductions. 17 So, here's an anticipated concern of If I look at the risk reduction target of 18 yours. 19 alpha, a change in CDF between 10 to the minus 4 and 10 to the minus 3, that's really high. 20

And we would not allow a risk informed application that had something in that range, that's true. But we're not saying that that is the increase in risk when we install this system. What we're saying is that would be the change in CDF or LERF if

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

the entire system were to fail. That's also the current risk of your current system, what you have installed right now.
That is the change in risk, the change in CDF, the change in LERF if that existing system were to fail, that's what you're living with today. And what we believe is that digital I&C upgrades will

8 reduce the risk compared to the existing analog 9 systems as demonstrated by every other safety related 10 industry that's gone digital, and they have improved 11 safety with that change.

We believe that soon will be true in the 12 nuclear industry. So, don't look at this and say that 13 14 this is the change in risk of the system, that is not 15 the case. This is we're defining a target level based on delta CDF and delta LERF that we set the bar for 16 17 how our control methods, how strong they need to be to get us back to where we think it's very small, in 18 19 reality an improvement in risk over the existing 20 system.

21 So, after HAZCADs it gets fed down to 22 DRAM, TAM, HFAM, EMCAM, and they're going to assign 23 control methods to protect against these various types 24 of failures. DRAM looks at random failure and 25 systematic failures. HFAM is going to look at human

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	112
1	factors, Mary is going to be talking about that
2	shortly.
3	The TAM looks at cyber security. EMCAM is
4	based on electromagnetic compatibility. This is where
5	those relationship sets also become important.
6	Because if the relationship set tells them that these
7	are important because of spatial relationship, then
8	their control methods will focus on equipment
9	qualification, right? The temperature, humidity,
10	those kinds of things.
11	Is it protected against a fire that can
12	happen in the same location? Is it seismically
13	mounted in the same location, same orientation? Those
14	kinds of things would address a relationship set on
15	spatial, but may not address a functional. Functional
16	is will all my aux feed water pumps fail to start,
17	even motor driven and turbine driven, because of the
18	control system doesn't think it needs it, right?
19	That's a functional, and you would do
20	different control methods for that kind of failure
21	than the spatial. So, they get to tailor their
22	methods for what relationship sets are defined. Is
23	there a question?
24	DR. BLEY: Yeah, Dennis Bley. This is
25	very systematic, it makes a fair amount of sense to
1	

(202) 234-4433

	113
1	me, it's also a lot of overhead, especially if you go
2	back in some of the earlier stuff you didn't talk
3	about in detail of using the Levinson methodology. If
4	one uses this process to look at a proposed change, is
5	there any relief on the traditional V&V kind of
6	process that has to go on, or is this an add on on top
7	of it?
8	MR. WEGLIAN: We anticipate that this new
9	approach will replace what they're doing today. So,
10	we're not just saying do everything you're doing
11	today, and do more. We're saying what you're doing
12	today is an inefficient process, replace that process
13	with this new design approach.
14	DR. BLEY: I think I'd probably agree with
15	you, but how do you get there from here? EPRI can't
16	do it, NRC could do it, but IEEE, and all the other
17	folks have to get on board as well.
18	MR. WEGLIAN: Yeah.
19	MR. GIBSON: I'm going to take that
20	question. One of the challenges is that people won't
21	turn loose what they currently do even when they get
22	permission to do it. The industry is trying to adopt
23	DEG, and are in the process of doing it. The biggest
24	complaint we hear from folks is well we just added it
25	to what we were doing, we didn't replace it. Even
	1

(202) 234-4433

114 though that's the premise of it, that's what the C&Os 1 wanted to have happen. 2 3 Because the internal auditors in the 4 plants don't know how to evaluate risk informed stuff, 5 this kind of thing, they don't know what good looks Your QA inspectors want to see a checklist, 6 like. 7 they want to say let me see your RFA, we're all done, 8 you're good, move on. This requires more of an 9 understanding of what kind of performance output you 10 might get from this system. And they're in the process of figuring 11 that out. That's a thing that we all have to get 12 aliqned if we want to see a different way of doing 13 14 this ultimately. That's the best answer I can give Everybody has a part to play --15 you there. 16 (Simultaneous speaking.) 17 DR. BLEY: You essentially repeated my I don't know how we're going to get there. question. 18 19 MR. GIBSON: I'm sorry, I spoke over you. What was that? 20 Say that again, Dennis? 21 CHAIR BROWN: 22 DR. BLEY: Ι said Matt essentially reiterated my question, and didn't answer how we're 23 24 going to get there. MR. GIBSON: I'm glad I could be of help. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

But the last part I wanted to say is everybody has a NRC has a part, the industry has a part, the part. vendors have a part. If everybody looks at the other person and says I can't do anything until the other person does something, then you aren't going to move anywhere, right? 6

7 MR. WEGLIAN: We do have some companies out there that are looking at this, trying to use it, 8 9 and comparing it to the existing process, and we hope 10 to leverage lessons learned there to one, improve our process, and demonstrate to the industry that it 11 works, and gives you a good --- really what we need is 12 13 a success story.

14 When somebody does this process, and says look at this, I saved 10 million dollars by doing 15 16 this, everybody else is going to flock to it, right? 17 We're already doing training, as he's mentioned, over 500 people have gone through DEG training. 18 And so 19 they're getting trained up on the process, we need to start actually implementing it, get some 20 success stories. 21

And then if we build it, they will come. 22 Once they see that they have a benefit, that they will 23 24 qet a better product at a cheaper price, I think that we will see a bow wave of people heading our way to 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	116
1	try to get up to speed on this process.
2	DR. BLEY: Well, we thought that would
3	happen with PRA 25, 30 years ago, it's been a very
4	slow process. Charlie, this is an information brief
5	for us, are we expecting at any time to hear any
6	thoughts from the staff at a later date?
7	CHAIR BROWN: No, not right now.
8	DR. BLEY: Okay, it'd be real interesting
9	to see how well they're following this, and what
10	they're up to.
11	CHAIR BROWN: Well, the reg guides as
12	they're presently configured, they drive you with
13	different well it's not, I don't want to call it
14	a standard.
15	DR. BLEY: It's just different.
16	CHAIR BROWN: Yeah. And I'd like to
17	introduce one other thought process in there in terms
18	of making sure the stuff works right, and all that
19	kind of stuff there, is in some configurations the
20	commercial plants have a different configuration than
21	the world I came out of. Nobody wanted to shut down
22	a reactor plant while a submarine was (audio
23	interference) just don't want inadvertent shutdowns.
24	Those are potentially non-fun events, so
25	you look very heavily at making sure you have systems
ļ	I

(202) 234-4433

1 in place that when something fails you don't compromise, or shut down the plant. The commercial 2 3 plants have a little bit more flexibility in terms of 4 they don't want to shutdown, but they can err in the 5 direction of failures that drives you towards a shutdown as a mode of protection. 6 7 So, there's a little bit of difference in 8 thought process. You're still going for the same 9 thing, equipment that's very, very reliable, does what 10 it's supposed to do whenever you ask it to do it, but I just want to throw in there's a balance in here. I 11 think the commercial world is compatible with where 12 you're all going, and what you're trying to do. 13 14 It's just a matter of overcoming the inertia in the manufacturers who build this stuff for 15 16 the applicants, that they want to accept the process in order to deliver their product, and it should be 17 better than what they were delivering before. Chris? 18 19 Yeah. MR. COOK: So, this is Chris Cook, branch 20 chief Office of Research --21 (Simultaneous speaking.) 22 Get closer to your mic 23 CHAIR BROWN: 24 please. Member Bley, I just 25 MR. COOK: Thanks.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

www.nealrgross.com

117

wanted to respond to your question about what the staff was doing, or was partially doing. In the Office of Research we've been watching the DEG quite closely. About two years ago I think it is, Matt, we had training that we offered for the staff that was 6 going through.

7 So, they went through a multi-day class to 8 try to understand all the pieces, parts, and 9 We've also been components that were in there. 10 looking at individual components. Just last month we had some intensive training for inspectors, as well as 11 the technical assistance NRC staff on the TAM, 12 methodology that you saw that's a part of this going 13 14 through. So, trying to understand those components.

15 Because we understand that we've been 16 seeing it. I think we mentioned at the ACRS meeting 17 just recently on the cyber that the TAM was applied at Global Three and Four as well as Columbia Generating 18 19 Station. So, trying to get people ready for that, and So, definitely in the Office of 20 understand it. Research we're trying to --- and those are just our 21 past activities. 22

We have current activities right 23 now 24 dealing with both STPA, they're going on. We also have activities where we're looking at trying to 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

assemble what we're calling some operating experience. We really get to that HAZCADS as well trying to understand the self certifications. Dr. Alverson (phonetic) here has been leading some of that effort.

5 So, anyway, we have a lot of, I think 6 cross connections, connection points. We're seeing 7 this, we're definitely trying in the Office of 8 Research to be ready, that's what we see our job as 9 being so that when NRR, or when our inspectors come across it, that it isn't the first time, that they've 10 already had it available to them. So, that's really 11 --- we're doing a lot, but I'm not able to say we're 12 looking at changing this specific reg quide to put 13 14 this in here.

15 thing that That's one we have been thinking about, is how should our guidance --- Member 16 Kirchner was talking about how does this relate to 17 RITNIS (phonetic) and how does this relate to all 18 19 these other categories, outstanding question. So, anyway, that's been very much on my mind set. Another 20 one of my staff, Mauricio Gutierrez is really working 21 at trying to look at some of that, how we get into the 22 guidance, and how do we do it in trying to do it. 23 24 We're also leveraging the MOU that we have

25 with EPRI to look at it as well as the MOU that we

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

	120
1	have with LWRS. DOE as part of their modernization
2	strategy, they're doing it, that's a lot of what this
3	has been tied into. And I'm going to conferences as
4	well to talk about it. So, anyway, that's just sort
5	of a snapshot, sorry to advertise about the branch.
6	But that's really where I felt like we're doing
7	(Simultaneous speaking.)
8	CHAIR BROWN: No, no, that's fine.
9	DR. BLEY: Thank you, I wanted to push in
10	one more area. Have they given you, or have you had
11	the opportunity to sit in on any of the trial
12	applications EPRI has been organizing?
13	MR. GIBSON: You were on the proof test.
14	MR. COOK: Thank you for that, it's
15	helped. So, what we had a couple summers ago was a
16	multi month long program called the proof test that
17	EPRI organized to actually go through and do some of
18	that testing. So, I had a couple of my staff
19	participate in that activity to learn how this would
20	go through by using a specific case. So, having that
21	case, and doing it.
22	We've done this under the MOU so that it's
23	really we can bring our technical insights, EPRI is
24	sort of bringing in the information that's in there.
25	So, Matt, I don't know if you had anything else you
I	

(202) 234-4433

121 wanted to add about the proof test, or anything else 1 on that. 2 3 MR. GIBSON: No. Generally the proof test 4 was again, another test to gather information on 5 usability, performance characteristics. We had eight people over three months do this process on lock 6 7 changing to see how they did it, what performance they 8 had. 9 And that was really critical MR. COOK: 10 for us, because that showed us okay, that began our understanding. When you guys were looking at some of 11 the functional sets, how do these pieces and parts 12 13 come together, that was a start. Then we went to 14 training, now we're trying the more we understand it, 15 but we're still waiting to see how do we walk through 16 or review, that's different. 17 I think the only one that's there in that part is perhaps the cyber security, because they're 18 19 actually now to the point of inspecting results, products that have come out after the TAM has been 20 So, that part is right there, but we 21 implemented. haven't necessarily walked through a design. 22 I think we're starting on one, that's right now with NRR, so 23 24 I'm going to talk about it in the review. I think that has some components that were 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

122 1 in there, that was funded by a DOE study, or DOE had a large part to do with that from my understanding of 2 3 the DEG. 4 MEMBER REMPE: It just sounds like this would be a great thing to try and get through LWRS as 5 6 a pilot project that would help with the conversation 7 of what is needed in the regulatory environment to It doesn't sound 8 make something like this happen. 9 like the research folks should have to be struggling 10 on this alone. I mean, have you guys had those discussions, or? 11 We do a collaboration with MR. GIBSON: 12 To date I don't think that collaboration has 13 LWRS. 14 coalesced around a regulatory thing. So, that's 15 something, light water reactor sustainability program. 16 MEMBER REMPE: DOE is what he was talking 17 about. CHAIR BROWN: A DOE program. 18 19 MR. GIBSON: Well, INL runs that, but there are other DOE outfits that are attached to it 20 But it hasn't really concentrated on the 21 too. regulatory elements of it very much so far. Although 22 I think that's an area of improvement. 23 24 MEMBER REMPE: Well, if you had a pilot, it seems like that would come up in the discussion, or 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	123
1	something. But anyway, listening to the discussion
2	here it sounds like something that's needed.
3	MR. WEGLIAN: Okay, I need to give Mary
4	some time, so I need to finish up. I mentioned this
5	already with the control methods. I didn't mention
6	the word causal factors, but that's one of the things
7	that these downstream processes look for. What can
8	cause the unsafe control actions to occur? And then
9	they tailor the control methods to address those
10	causal factors.
11	And then there's a process for scoring the
12	controlling methods against the risk reduction target
13	that comes out of HAZCADS. So, the idea is given a
14	risk reduction target of alpha, they have strong
15	control methods that drive down the potential risk.
16	Bravo does not require as strong of control methods,
17	and charlie even less, and delta would be the minimum.
18	And we think those would equate to charlie
19	would be about a SIL level one, and on the graphic
20	here, SIL is safety integrity level, and SC is
21	systematic capability. So, even if the letters are
22	the same, they actually represent something different.
23	But one gives it a target, and the other gives it the
24	capability that it has to address that.
25	The acceptance criteria, as mentioned
I	1

(202) 234-4433

	124
1	earlier, is kind of tied to the Reg Guide 1.174 with
2	the 10 to the minus 6 saying that was a very small
3	change. If we're very high delta CDF, delta LERF,
4	then we say we have to change the design before we go
5	
6	DR. BLEY: Go back to the other I want
7	to make sure I understand something on the previous
8	slide real quick. I'm just trying to connect the dots
9	between you're a, B, C, and D, and your triangle.
10	MR. WEGLIAN: The time delay is really
11	and now I've got to do it again.
12	DR. BLEY: Okay, A is the lowest of the
13	CDF
14	MR. WEGLIAN: A is the largest, delta
15	DR. BLEY: Largest risk?
16	MR. WEGLIAN: Yes, if it fails.
17	DR. BLEY: Okay, I'm just trying to
18	connect the SIL, SC3 levels to your risk, which is
19	what you were doing, and I just couldn't merge the two
20	specifically.
21	MR. WEGLIAN: Yeah, SIL3 is the highest
22	level of SIL that is widely commercially available.
23	The process allows for a SIL4, but in practice nobody
24	goes to that level.
25	DR. BLEY: Because it's not very reliable?
ļ	

(202) 234-4433

	125
1	MR. WEGLIAN: It's not that it's not
2	reliable, it's just if other industries need more than
3	a SIL3, they change their design as well. And so, the
4	SIL3 equipment is available for purchase right now,
5	SIL4 would be hard to find. That doesn't mean that
6	nobody could make it.
7	DR. BLEY: Is it better than SIL3, or
8	MR. WEGLIAN: SIL3 is higher than SIL2,
9	which is higher than SIL1.
10	DR. BLEY: Hold it, that's not consistent
11	with A, which is the highest risk.
12	MR. WEGLIAN: You are correct, we went
13	with A, B, C, D to not conflate those two.
14	MEMBER KIRCHNER: SC stands for what?
15	MR. WEGLIAN: Systematic capability.
16	MEMBER KIRCHNER: So, nothing to do with
17	seismic?
18	MR. WEGLIAN: No, not seismic.
19	CHAIR BROWN: Can I just ask a question?
20	The lowest risk, the 10 to the minus 6 and whatever is
21	a D?
22	MR. WEGLIAN: Correct, which is
23	PARTICIPANT: And the SIL level one is
24	CHAIR BROWN: SIL1 sounds like a D which
25	is the highest
ļ	1

	126
1	MR. GIBSON: Well, let's fix this, because
2	this is a concept that we have to fix. The A, B, C,
3	D are just sensitivities, they aren't risk. No real
4	risk is involved here.
5	CHAIR BROWN: No, but the ranges
6	MR. GIBSON: But bear me out. So, when
7	you have a low risk delta, meaning the risk change is
8	the least, that's small, that's not saying the risk is
9	small or big, it's just that the delta change is
10	small, that gives you to a D. If you have a big
11	change in risk, you can get a
12	(Simultaneous speaking.)
13	CHAIR BROWN: I got it. So, SIL3 is the
14	highest quality you can get, most reliable.
15	MR. GIBSON: Which brings that down to a
16	high level
17	CHAIR BROWN: Takes you up into the change
18	in risk is the smallest
19	MR. GIBSON: You bring it back to where it
20	should be by applying that capability.
21	CHAIR BROWN: All right, sorry, I got it
22	now.
23	MR. WEGLIAN: All right. So, if our delta
24	CDF, delta LERF is too high we say you have to change
25	the design. If you're at an alpha or bravo, we're
I	I

(202) 234-4433

127 1 saying if it were to fail that's a high change, so we need strong control methods to drive us down to back 2 3 to where we say it's a very small change in risk, or 4 improvement in risk is what we actually expect. 5 Charlie, now we're actually within the range of the Region Two in the Reg Guide 1.174, SIL1 6 7 is probably appropriate for that. And if you're in a 8 delta, you're already a very low change in risk if it 9 were to fail, and so the minimum requirements are 10 required. You don't need to buy any SIL equipment at Whatever commercial off the shelf normal stuff 11 all. should be efficient. 12 CHAIR BROWN: You can go to RadioShack. 13 14 MR. WEGLIAN: That would be fine. Norfolk 15 Wire, that's where I would go. Coming back to here, 16 I don't want to spend a lot of time on this, because 17 again, I need to give Mary some time. But this process goes through the first time, and my downstream 18 19 processes can identify things that can fail at the That's at the relationship set level. 20 same time. I now know combinations of UCAs that I 21 identified through STPA that can fail for a common 22 cause, a common reason, a common loss scenario is the 23 24 terminology for STAP. And I can take those, and I can plug that back into the PRA model, and get a refined 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	128
1	risk reduction target for control methods that are
2	hard to meet at the bounding assessment where we
3	assume everything failed.
4	Now that I have more information about how
5	the system can fail, I can group those things, and do
6	a more refined assessment, and say these ten UCAs can
7	happen due to they're all in the same room, right? A
8	fire can fail all of those together. What is the risk
9	reduction if those all fail, I can give them a new
10	number that maybe is easier for them to meet, but I
11	need this process to go through the first time.
12	Because when I first get it as a PRA
13	person, I have no knowledge of when UCAs can fail
14	together, I have to assume they can all fail. Special
15	note on software common cause, our operating
16	experience both nuclear, and non-nuclear indicates
17	that most of the systematic failures are a result of
18	latent design defects due to inadequate requirements.
19	Usually his example of the flow pump over
20	ranging, the requirements were wrong. The
21	requirements should have been that the range on that
22	
22	pressure transmitter could have been high enough for

It's an inadequate requirement, or uncontrolled system interactions where they didn't realize that two

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	129
1	systems working together could lead to something.
2	It's very rarely a typo in the software
3	that would have something like that. Because that
4	usually gets caught in testing. Misapplication of
5	diversity as a means to address the potential for
6	software common cause can actually contribute to
7	additional system complexity, which can actually
8	increase the potential for latent errors. I'm not
9	saying don't use diversity.
10	What I'm saying is blindly applying
11	diversity as the only means to address risk may
12	actually make the risk worse. We have to be smart
13	about it, and our approach is designed to make you
14	smarter in how you address these kinds of things. Use
15	diversity when it's appropriate, use something else
16	when that's more appropriate.
17	So, HAZCADS identifies and risk ranks
18	these potential systematic errors, all of them, not
19	just software common cause, which would be a subset of
20	those errors. And then the other tools in the
21	framework establish the control methods to address
22	those. Here's just a summary of everything I said.
23	We use STPA to identify what could go wrong, what
24	could be unsafe through interactions of the system?
25	That's what we focused on. We start with
I	I

(202) 234-4433

	130
1	a bounding risk assessment. We revised our
2	requirements, or we apply control methods to account
3	for these errors, but we do that commensurate with the
4	risk, right? If it's very low risk, we don't have to
5	do a lot, if it's very high risk we do have to do a
6	lot.
7	And if needed, we refine the risk
8	assessment based on our identified loss scenarios if
9	we couldn't meet the bounding risk reduction target
10	for a particular control method. That's the end of my
11	presentation.
12	MS. PRESLEY: Are you guys ready for the
13	next phase of this?
14	CHAIR BROWN: Are you the human factors
15	part here?
16	MS. PRESLEY: I am. So, we're going to
17	talk
18	CHAIR BROWN: Before we do you, since
19	you're now going into this amorphous area of human
20	factors, and the other part has been kind of hardware,
21	and designs, and software, and stuff like that. So,
22	this is short, it's just something I observed in going
23	through the DEG, and looking at the TAM thing, the
24	cyber part, but let me talk about the DEG first.
25	If it's not obvious, and I think Chris may
I	1

(202) 234-4433

remember this, he may not since he's not in NRR as thoroughly, but when we've been focusing on the digital I&C systems, whether they be in new applicants, or otherwise, the focus has been to start with defining the architecture. Don't try to say you're going to meet all the positions in every Reg Guide, and every IEEE standard, and tell me you've got a safe system.

9 architecture is the The boundary 10 conditions for defining whether that system is going to be safe or not, because it tells you where your 11 soft spots are. And when I read the DEG, it mentioned 12 architecture, but in a very generic manner in about 13 14 422 places. So, it's just a lot of listings in case 15 you go through it. What I missed on the lead in to 16 your whole thing, which is what we've been trying to 17 qet the staff to emphasize with applicants in the req guides, there ought to be a preamble of some type. 18

19 That says look, you've got to define what does my plant look like. Which parts are safety 20 related, which parts are safety critical, which parts 21 And then you start layering out 22 etcetera, etcetera. how complex what you need to do relative to all the 23 24 stuff you have both been talking about in terms of the I'm just making this as 25 development process. an

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

www.nealrgross.com

131

observation.

1

2 To me the architecture is the fundamental 3 stone you start with, and if you start talking about 4 processes with individually the piece parts throughout 5 it, you lose the focus. The first point or place you would ever talk about a system or plant architecture 6 7 is in section 4.2.8 where you have a notional diagram, 8 figure 4.4 which shows a giant plant with safety 9 systems, and other plant systems, etcetera, and a network, and everything else. 10

Unfortunately all the data that comes from 11 all the systems goes into a giant network which is all 12 jumbled up in server software, which is not very 13 14 reliable or safe. That's a different thing. The one redeeming value, it shows data diodes coming from the 15 safety systems out to the outside world. 16 The 17 downside, it shows safety systems communicating back and forth, not out just to the systems they've got to 18 19 shut down the plant with.

20 My point being that's pretty late in the 21 point in the system, in your process rather, to start 22 thinking about the overall plant architectural. I 23 just think you all ought to emphasize how important 24 knowing what your plant looks like, what the piece 25 parts you're dealing with that you're going to have

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	133
1	digital control systems control before you start
2	talking about all the little nuances.
3	Which I don't disagree with, they're all
4	there, but it's just a matter of how you structure it
5	to get people thinking in my view properly. Now,
6	that's my observation, that's my personal comment, and
7	that
8	MR. GIBSON: That's good, all feedback is
9	good.
10	CHAIR BROWN: And that's what we tried to
11	do in PTP 719, Reg Guide 1.152, 1.62, etcetera,
12	etcetera. Know what you're looking at overall so that
13	you know where to pay attention. That's just a
14	suggestion when you're going down the path for
15	whatever revisions you're going with. And I would
16	hope you would fix up that overall notional plant to
17	be a little bit more
18	MR. GIBSON: It's top of my list, Charlie,
19	to make that notional plant a little different.
20	CHAIR BROWN: You had safety A, and safety
21	B, and you showed them communicating back and forth,
22	and that's not a very good idea. Good way to shut
23	everything or compromise its ability to shut
24	everything down. Anyway, so that just was a good
25	place before we get into the human factors, because I
ļ	

(202) 234-4433

	134
1	hope you're going to address in human factors, when
2	you have to go to backup systems for human factors.
3	Shutting down the plant when your systems
4	fail totally in compromise. Is the answer to that yes
5	or no?
6	MS. PRESLEY: Maybe not at the level of
7	detail you wish, just because of the time constraints.
8	CHAIR BROWN: There's a big controversy on
9	whether using diverse software systems is a good
10	compromise, and you can through your switches, and
11	trips, and breakers, which is really
12	MR. GIBSON: So, really to answer that,
13	this is process oriented. So, when you do a hazard
14	analysis and HAZCADS, model the operator, you're going
15	to create a loss scenario, and one of the loss
16	scenarios is going to be you lose whatever. And now
17	the operator has to take action, and you're going to
18	evaluate that.
19	CHAIR BROWN: He's got a manual switch
20	somewhere, what does it do, and how does it get it
21	done? Because two wires going down to the contactor
22	is a lot different than another computer with quote
23	diverse software.
24	MR. GIBSON: That's right.
25	CHAIR BROWN: And I think that's the kind
	1

(202) 234-4433

	135
1	of thought process in the human factors area I think
2	needs to be addressed. I didn't really see that when
3	I I mean, I didn't read 369 pages in 10 hours, it
4	just didn't work out very well for understanding. So,
5	kind of a thoughtful I have no problem with the
6	document system, in covering the other part of it.
7	MR. GIBSON: Good feedback.
8	CHAIR BROWN: So, I'm done with that part.
9	MR. GIBSON: Party on there, Mary.
10	MS. PRESLEY: Okay. So, we just got the
11	
12	CHAIR BROWN: No, I'm not done. The TAM
13	part, there's all kinds of stuff in your TAM cyber
14	security which is all kinds of good stuff, and you
15	finally got talking to data diodes part way through it
16	somewhere. That's actually the highest level of
17	protection you can have because it's an air gap. But
18	that's not in the preamble area. What's the
19	structure?
20	How do you structure protecting yourself
21	cyber wise for critical components? And the air gap
22	approach is being the best, and how do you deal with
23	others where you don't need it? It should have been
24	up in the front, and then lead in to how you address
25	in other areas. It's just how you approach doing it,
l	1

(202) 234-4433

	136
1	and define it, and make it clear that an air gap
2	it doesn't help you on physical access.
3	People can come in and screw up your
4	software when they make mods, that's always been the
5	case whether it's hardware or software, but now we've
6	got the electronic path that complicates everything.
7	So, the emphasis on the highest quality down to the
8	lowest, how do you deal with it. Where do you use
9	software to protect your virus system, blah, blah,
10	blah, whatever, those are for other ways. Anyway, now
11	I'm done.
12	MS. PRESLEY: All right.
13	MR. GIBSON: Now you can start.
14	MS. PRESLEY: Okay. So, John just went
15	through HAZCADS, and now we're going to look at one of
16	the downstream processes, which is the HFAM, the human
17	factors assessment methodology, and it's a risk
18	informed approach for human factors engineering. And
19	here on the left you can see very simply what John was
20	talking about. We have these reliability targets that
21	come from HAZCADS, and they go into the human factors
22	engineering process.
23	And then the human factors engineering
24	process feeds back HSI design, but also feeds back on
25	function allocation, and task attributes as you go

(202) 234-4433

	137
1	through the design loop. So, the risk informed
2	approach has the benefits of being graded, and it
3	allows us to really right size what's a human ability
4	versus (audio interference). I'm going to try to
5	power through some of this so you can get through all
6	of it.
7	So, these are the key activities that are
8	typical in a human factors engineering, an HFE
9	process. I'm not going to go through those
10	activities, and HFAM doesn't change the general
11	process. But what we do is make it more usable, and
12	accessible to the user, and we integrate it with the
13	systems engineering process.
14	So, some of the key features is where are
15	the touch points that the human factors process hits
16	with the systems engineering process, particularly the
17	EPRI DEG. How do you integrate the risk insights from
18	HAZCADS into the process? And then we provide a two
19	phased graded approach. The first phase looks at the
20	scope of the design based on the DEG.
21	And that allows you to allocate your
22	resources appropriately at the beginning of the
23	project, and pick the right tools that you need to do
24	the human factors engineering. Not every project

requires a dedicated HFE expert, but we do want to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

	138
1	make sure that the right skills are applied at the
2	right time, the right level of detail for the design.
3	So, that's the first phase.
4	And then the second phase, once we get
5	more into the detail of the design, and have unsafe
6	actions to look at, we use the risk reduction targets,
7	or the reliability targets, that's more clear, from
8	HAZCADS. And that will tell us how much level of
9	effort we need to put into each UCA target in terms of
10	HFE design to protect against unsafe human actions.
11	CHAIR BROWN: So, straight to graded
12	approach, it's kind of a screening process in a way,
13	before you do the more detailed phase two type stuff,
14	is that the way I would read that?
15	MS. PRESLEY: You still have to go through
16	the whole process, but so you're not screening out.
17	What you're doing is trying to figure out what level
18	of detail you need to go to, so yeah.
19	CHAIR BROWN: I call that screening,
20	you're just screening what level of stuff needs to be
21	done. That's fine, I got it.
22	MS. PRESLEY: Yeah. And then the other,
23	I guess for me the holy grail, because I'm an HRA
24	background, we've been able to bring the HRA tools,
25	and the data, and the experience with HRA, and use it
	I

(202) 234-4433

And then this helps on the PRA side, because then there'll be consistency between the design process, and what your design says a human can do, and what your PRA credits. So, to do that --- so, that's the HFAM side, and those are all the slides we had on the actual HFAM piece. The next is the HRA research that we're going and doing on the PRA side.

And this is important because currently 12 HFAM references the existing HRA methods, which are 13 14 pretty good, but they're not optimized or developed 15 for digital systems specifically. So, now we're going 16 through the process to understand what's different for 17 digital systems in the area of what data do you need to collect as an analyst, what human failure modes you 18 19 might be susceptible to.

What new performance shaping factors you 20 might susceptible level 21 be to, what the of difficulties you might have, and we recognize that 22 digital is all over the map. So, it can be from very 23 24 focused modification of replicating an analog with 25 just a digital all the way to new reactors maybe

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

139

remotely controlled, totally different control room structure.

So, what we call digital from a human 3 4 perspective can be across this very broad range. And so, we're taking a graded approach at our digital HRA 5 research. So, that's why you see design A, mini mods. 6 7 The humans will perform very similar to existing 8 plants you may have. And then our existing methods 9 and processes are totally applicable.

10 You may have plants that may have maybe computerized procedures, or maybe more automation than 11 our traditional plants, and our existing methods are 12 pretty good, but may need some augmentation in those 13 14 That's maybe design B. And then design C areas. 15 would be these totally new and different concepts of 16 operation where our existing methods may not be so 17 adequate.

CHAIR BROWN: Do you try to address in the 18 19 digital systems the actual components that may be used that the operator or the human has to execute with? 20 For instance, a lot of it is people use a push button 21 to do something, or you have a mouse and click, or you 22 have a touch screen that maybe doesn't respond when 23 24 the operator hits close, and it doesn't close. Touch screens can be touchy. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

	141
1	MS. PRESLEY: Sure, those are
2	CHAIR BROWN: And some touch screens have
3	a sensitivity of and this is the way they're
4	designed, if your hand gets close you don't
5	necessarily even have to it happened to my son in
6	law in the car when he went to change his screen, he
7	didn't touch it, it just changed as he moved his hand
8	towards it. So, are you trying to take the new parts
9	that he has to deal with, and how that affects his
10	human actions?
11	MS. PRESLEY: Yes, we're looking at the
12	physical systems
13	CHAIR BROWN: Okay, thank you, that
14	answers my question.
15	MS. PRESLEY: And a really good example of
16	that particular thing is that we have some OE that
17	shows there was one design that they were looking at
18	touch screens, and the second checker to verify would
19	put their finger where they were looking, and that
20	would inadvertently activate what they were trying to
21	second check. So, those are definitely part of the
22	HRA.
23	But equally part of the HRA is how does it
24	change your concept of operations, or how you work
25	together as a team? So, if you're on a physical
I	

(202) 234-4433

	142
1	display board, it's easy for the shift supervisor to
2	see you are on this part of the board, so I know what
3	you're looking at. So, you have some situational
4	awareness of what people are doing.
5	You don't necessarily have that same
6	situational awareness, or that second checking
7	function maybe when people are just sitting behind
8	their screens. So, we're looking across the board at
9	how human performance changes when your interface
10	changes. All right. So, there's three general data
11	sets
12	DR. BLEY: We can't hear you out here,
13	Charlie.
14	CHAIR BROWN: It got fixed, don't worry
15	about it, something popped up on the screen, that's
16	all.
17	MS. PRESLEY: All right, so I'm going to
18	keep going. There's three major sources that we're
19	looking at for our initial evaluation of the HRA
20	stuff. And as you can imagine, because digital is a
21	broad set, we have a broad set of data, so we have
22	experimental data from places like INL and Halden.
23	Those look at broad range of scenario types and design
24	features, but they're small sample sets, so it's
25	largely qualitative data.

(202) 234-4433
1 We have literature review, and OE review from nuclear and non-nuclear sources, again, broad 2 3 range of desiqn types, but they're not large 4 statistical data sets. And then we have training 5 simulation data of which we've collected the first set from the Korean simulator studies. And 45000 data 6 7 points, great statistical data set, excites the nerds 8 like me, but it's on one specific design.

9 So, we have to question how generalizable 10 that is. So, we're trying to take these three types data sets, and synthesize them into lessons 11 of learned, and pull that into our HRA methods. And then 12 the last slide on this particular piece is a special 13 14 note on human errors of commission, and this is very 15 similar to the systematic failures for software, software common cause failures. 16

17 When you have humans interacting with a system, and they have the ability to 18 --human 19 cognitive errors of commission are when humans do something they shouldn't do, but they're probably 20 doing it because they have a good reason to do it. 21 So, maybe their procedures tell them to do it, 22 or their instrumentation is misleading, but they're doing 23 24 the wrong thing, or they're fighting against the don't understand 25 automation because they the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

automation.

1

So, in the PRA traditionally we don't take 2 3 an unbounded look for these types of errors. If we 4 have a specific cause to suspect we will include it in 5 the model, and one example are fire, we look for spurious operations, or multiple spurious operations 6 7 where humans can be misled. But typically we don't 8 just go and search for these in an unbounded fashion. 9 But with automation, and more automation, conversation around errors of commission 10 the is definitely increasing. We see an uptick in this, and 11 standards, discussion 12 in the of we see new heavily. 13 incorporating it more So, we have to 14 question whether or not PRA process is the right place 15 to consider this. And from our perspective, STPA is actually designed to look for these types of errors. 16 if 17 So, we're looking for them appropriately through the design process, then we 18 19 should be able to use that process as the right tool to address errors of commission, and then only include 20 them in the PRA, again, when we have a very specific 21

cause. For instance if we were unable to mitigate one
that was, or design one out that we found through the
STPA design process.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So, that's the end of my human factors

(202) 234-4433

25

	145
1	piece. I'm quicker than the boys. Any questions on
2	that? I know I didn't answer your question on the
3	backup.
4	CHAIR BROWN: No, you did fine. You said
5	that no, you're looking at the combination of the
6	things, and that's all you can do, appreciate that.
7	MS. PRESLEY: All right. Okay, so then
8	the last bit is how we look at digital systems in the
9	PRA. So, the life cycle of the design goes from
10	design, implementation, all the way through
11	operations, and configuration management. And I think
12	I have an animation. So, we've checked the box for
13	design and implementation in terms of consideration of
14	risk through HAZCADS and the associated downstream
15	processes.
16	And we did that through sensitivities, and
17	through matching our control measures with our risk
18	reduction targets, or our reliability targets. Now we
19	need to make sure we have a coherent approach for the
20	operations and configuration management. Basically
21	what I call your assessment PRA, or your living PRA
22	that you use after the fact.
23	And when I say coherent approach, I mean
24	you can't go through this rigorous design process and
25	say okay, I have a design that's acceptable, it's risk
ļ	I

(202) 234-4433

1 acceptable, we believe that this is a low risk design, and it goes through all of that, and then you put in 2 3 maybe a conservative, or an arbitrary value in your 4 PRA that says sorry, we have a problem. So, we need 5 to make sure that the insights from the PRA on the back end match the qualitative, all the work that went 6 7 into the design end so there's parity. 8 All right. So, what do we have on putting 9 it into the PRA? Right now, as you can see, a lot of We don't have a coherent process, or a 10 bubbles. systematic process for including these elements in the 11 It's kind of all over the board, and especially 12 PRA. if you look at it internationally, what people model 13 14 in the PRA, and how it's modeled in the PRA, and what 15 data, or assumptions are used is really quite all over the board. 16 17 So, what we're working on right now is a first cut at how do you include digital systems in the 18 19 PRA model, and then what do you put in numerically as So, our research is going to capture the 20 well. current state of knowledge, and we're really relying 21 heavily on the foundational data, qualitative and 22

24 done.

25

23

And then we're going to make sure it also

quantitative, and that work that Matt's group has

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309 146

(202) 234-4433

	147
1	matches the use cases, because all models are useful,
2	some models are useful.
3	MR. GIBSON: All models are wrong, some
4	are useful.
5	MS. PRESLEY: All models are wrong, some
6	are useful. But they need to match the use case, and
7	what you're trying to make a decision using the PRA
8	models. So, that's the piece we need to match up, is
9	the data, and how are you using your models, and what
10	kinds of decisions you're making with your models.
11	DR. BLEY: Mary?
12	MS. PRESLEY: Yes, sir.
13	DR. BLEY: It's Dennis Bley.
14	MS. PRESLEY: Hi Dennis.
15	DR. BLEY: Hi. I'm not sure it will help
16	you, but you ought to take a look at the research NRC
17	funded back 10 to 15 years ago on this area. None of
18	it came to real fruition, but you might find some
19	useful nuggets in that work.
20	MS. PRESLEY: Yeah, so part of this effort
21	is looking at existing references, including the stuff
22	that EPRI did I think around that same time frame
23	you're talking about. If you have specific
24	references, Dennis, I think I know what you're talking
25	about, but if you have specific ones, maybe offline I
ļ	I

(202) 234-4433

	148
1	can ask you.
2	DR. BLEY: Yeah, that's fine, do that.
3	There was several projects at Brookhaven, one at
4	another lab, and then there was one at an outside
5	contractor that I'm aware of, and they all had some
6	aspects that you might find useful.
7	MS. PRESLEY: Okay, thank you so much for
8	that. All right, so our proposed approach, and again,
9	this is in progress, and still pretty early in
10	progress, is based on defining these use cases, and
11	then relooking at the data and existing guidance and
12	lessons learned from HAZCADS. And there's a couple of
13	things before I go into some of the detail I want to
14	make clear as ground rules for our research.
15	So, incorporation of the design into the

1 o the PRA has to be consistent with the insights of the 16 17 design process, we already talked about that one. Ιt has to be consistent with the overall PRA modeling 18 Which means same sort of level of detail, 19 approach. same sort of types of assumptions. So, we cannot be 20 21 --- we cannot have major mismatches, very large 22 conservatisms, or screening out things that we shouldn't be screening out, or putting too much in. 23 Because the value of the PRA is that it 24 25 lets us look across systems and compare. So, we need

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	149
1	to have parity in the modeling approach between
2	digital systems and how we deal with the rest of the
3	equipment, and human actions in the PRA. And then the
4	third is that you need to make sure you're continuing
5	to reflect the as built, as operated plant.
6	Okay, so the first piece is digital
7	systems should be modeled at a reasonable level of
8	detail. There's sometimes modelers get very
9	enthusiastic, and model in extreme levels of detail.
10	Practically this has issues with model complexity,
11	being able to verify the model, being able to run the
12	model. Second, model level should be consistent with
13	the boundary conditions of the data.
14	So, you can't go into the super, super
15	subcomponent level if your data is not collected at
16	that level. So, this has implications for when we
17	think about software. For example, when we talk about
18	reliability, we're going to talk about functional
19	reliability, and software shouldn't be separated from
20	the hardware, because software is implemented through
21	the hardware. And typically when we collect data, we
22	collect it at the functional level.
23	So, trying to take that functional level
24	stuff, and then decompose it artificially causes
25	issues, as you can imagine. The second piece of this
I	I

(202) 234-4433

1 proposed approach is based on the fundamental assumption that our control methods that we've used 2 3 through HAZCADS and its downstream processes reduce 4 the risk to acceptably low levels. So, this is 5 important because we're making a qualitative statement 6 when we do the design process.

7 We're saying that I have reduced my risk 8 substantially, and now I'm in that low acceptable risk 9 So, while we may not have specific numbers, region. 10 we qualitatively are saying that we have made that much of an impact on our risk when we apply certain 11 sets of control measures. And that's the piece that 12 needs to be coherent with whatever data or information 13 14 we put into the PRA.

15 And that's for both the functional 16 reliability, and the common cause failures. And 17 that's because what we've done on the design side, that reflects our best estimate idea of what the 18 19 actual risk and importance of these actions are. Okay, so what does that --- yes. 20

21 MEMBER DIMITRIJEVIC: Hi, this is Vesna 22 Dimitrijevic. So, you have here the chicken and egg 23 problem, right? I mean you use the PRA to design and 24 define your targets, and then you put in things in the 25 PRA, which will change your input in design.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	151
1	MS. PRESLEY: Well, this is assessment
2	PRA, so this is after the design is done, and been
3	implemented. So, this doesn't feedback then this
4	might influence the next modification you might make,
5	but this doesn't
6	MEMBER DIMITRIJEVIC: Are we talking here
7	about existing plant, or the new designs?
8	MS. PRESLEY: Either way, this is after a
9	design has been complete and implemented. Whether
10	it's an existing reactor or a new reactor, at some
11	point you'll have finished the design, you'll have
12	implemented it into your plant, and now you'll have to
13	have a PRA that you can use to make your operational
14	decisions, or have on file for your safety case, or
15	whatever. But this is at the end of the life cycle
16	part of the operations.
17	MEMBER DIMITRIJEVIC: You guys are aware
18	that your targets are not relative, but absolute, and
19	so therefore they will work fine for today's industry.
20	But if you apply your lowest requirement target to the
21	increase of 10 to minus 6, that's not going to happen
22	in most of the new designs are coming with such
23	low numbers that increase of 10 to minus 6 will mean
24	thousand times increase in existing core damage.
25	So, I mean, and I was going to bring this

(202) 234-4433

in then, the relativity of these risk measures are --they have to be reexamined for the new designs, because that's one of the big discussions, that we're using absolute or the relative risk measures. another thing here where you have to have this process of using these risk targets in design, and then trying to incorporate some of the important things like human actions back. I mean, that can change totally the risk targets. So, I have a lot of concerns about your categories, and how that will work. And about this, as I said, egg and chicken problem, so just want to raise that. MS. PRESLEY: Thank you. So, I just want to make it MR. WEGLIAN: clear that what Mary is talking about right now is after the design is done, and it has been installed into the plant, what does the PRA look like to assess the system that is now installed in the plant? So, in the slide she's going over right now, there's no feedback into the system design anymore. Because not only is the system design done, it's been installed. This is when the new digital I&C system is now part of the plant. And for a new reactor, this

would be when the plant is built, this is what they're

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

www.nealrgross.com

But

going to have with them.

1

2

3

4

5

6

7

17

MEMBER DIMITRIJEVIC: Okay, I just pointed out that this can change your targets, and Ι understand that you're saying that. But these are also maintenance, and ITAAC, the other things going there that this impacts the importance, and that importance can change totally.

8 MS. PRESLEY: So, I'm going to talk to 9 your second point in the next slide. But for your 10 first point on new reactors, and them having a different risk profile, that's part of the research 11 that we're looking at in use cases, is how would that 12 change in an advanced reactor, and does that change, 13 14 and what does that look like? So, that's definitely on our radar. 15

16 CHAIR BROWN: We need to keep moving, I would like to get through your last slide.

MS. PRESLEY: All right. 18 So, the 19 consequences of --- so, risk is likelihood times consequence. So, the first piece is making sure the 20 consequence is captured in the model. And long story 21 short, you have a cause effect relationship for the 22 potential unsafe action. And if that potential unsafe 23 24 action survives to the final design, you need to make sure that the consequences associated with that are 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	154
1	incorporated in the PRA somehow.
2	So either if it has a non-unique
3	consequence, you can map it to an existing portion of
4	the model, an existing basic event. But if it has
5	unique consequences, for example a new common cause
6	failure grouping that you didn't have in your model
7	before, you need to make sure that that consequence is
8	reflected in your model. And that failure can be
9	hardware, software, or human error.
10	These potential unsafe actions need to be
11	incorporated logically from a consequence perspective
12	into the model. And this is the piece, Vesna, the
13	logic has to be reassessed as the PRA evolves to
14	reflect the as built, as operated plant. So, as you
15	change your human actions, or change something in your
16	PRA, you may see a difference in consequence.
17	And if you have impacted your risk
18	reliability targets, then you have to go back and say
19	well, if your targets have increased you have to
20	go back and say well, are my control measures still
21	adequate? So, you do definitely need to make sure
22	you're looking at that consequence, and that those
23	assumptions that you made remain valid. So, the
24	second piece is the likelihood.
25	And of the two, consequence or likelihood,
I	1

(202) 234-4433

consequence is more important. Because likelihood, we have kind of two ways we can look at likelihood, and our current research is investigating both approaches. Likely one will be useful in some areas, and the other will be useful in others, and that's the use case piece.

7 But the first way is to create some 8 generic failure rates based on the available data, and 9 the qualitative insights that we have gained through 10 the I&C research. And the second way is to actually not quantify this at all, but similar to the way 11 HAZCADS approached it, keep the events in the model, 12 and use sensitivity studies to understand if risk has 13 14 changed.

15 And then when risk does change, to see if 16 our control measures are still adequate. So, there's 17 two ways we can look at likelihood, and that's the direction that our research is going right now. 18 But 19 I want to emphasize in the long term, industry needs to start gathering data, and we need to do that in a 20 consistent, and that 21 way that is the boundary conditions of the data match what we put into the 22 model. 23

24 So, we have a way to collect data, 25 transfer that data directly into the model. So,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

uncertainty, I'm sure this has come up, completeness uncertainty certainly has come up. Uncertainty is not new, PRA does not create uncertainty, PRA exposes uncertainty, and digital is not the only place where uncertainty exists. So, we want to just recognize that up front.

7 And we also want to recoqnize that 8 conservative treatment is not the answer to 9 all time. fact if uncertainty the And in 10 inappropriately applied it can mask risk insights. So, in this particular place we recognize that we 11 don't do risk based decision making, we do risk 12 informed decision making, and that constitutes the 13 14 other pertinent information.

15 And the two particularly important pieces here are performance monitoring, so that's the data 16 17 collection piece. So, when we make certain assumptions if we put a number in the model, or when 18 19 we say a control measure is adequate, but we need to monitor the data in the OE to make sure that those 20 assumptions that we make hold, and that if they don't, 21 we have a way to respond to them. 22

The second piece is defense in depth and safety margins. So, this is where I know, Matt, John said flex, and you reacted. So, we actually have many

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

layers of defense in depth built not the process. From the DRAM we have first of all you design it out. If you can't, can you protect, can you detect, can you respond to a fault? And then if all of those fail you have multiple functions, you have diversity in your functions.

7 And then if that fails, you have FLEX. 8 So, we're looking at accrediting defense in depth 9 across the board, not just at the small level. So, 10 those are the pieces that help flesh out the picture of how digital uncertainty is considered in the PRA 11 Yeah, I can skip this one. process. So, the last 12 slide is about looking at the whole elephant. 13

14 And just within EPRI getting our I&C guys, 15 our human factor, our cyber, our PRA, our HRA all talk 16 in the same language and with the same vision required a real cultural shift. 17 And we ran into all these things where digital is different because, you know? 18 19 And every time we did that, we're like well, no, it's not really different, we're coming up against the same 20 issues we have in other areas. 21

But maybe it's more pronounced, and so we've refined our methods and tools. But it's still the same overall process, it's still the same types of uncertainties, and complexities that we already deal

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

	158
1	with in risk informed world in general. So, that's
2	it.
3	MEMBER DIMITRIJEVIC: Mary.
4	MS. PRESLEY: Yes, ma'am.
5	MEMBER DIMITRIJEVIC: All right, so a
6	couple things, I just want to make a couple wise guy
7	remarks. So, one of the things because you brought up
8	Mark bringing up the FLEX equipment, and he had a
9	really good question, are you concentrating on
10	mitigation, or just prevention? And he didn't say
11	prevention, there is a better word for that. But it
12	is important in this process if you're using the PRA,
13	you are not using initiating events, the fault trees,
14	which are already there, integrated in the PRA.
15	And the digital I&C will play a lot of
16	function in the preventing actual events, not just
17	mitigating them. And so, maybe that should be
18	considered in one of those processes. The other
19	thing, which is why I said the wise guy remark, you
20	said that this is a risk informed, and not risk based
21	process, so I mean you can tell to Charlie how does
22	safety classification impact the total risk
23	classification.
24	Because there is not any connection
25	between those two. So, I just thought that Charlie
I	I

(202) 234-4433

	159
1	would be thrilled to know that. Okay.
2	MS. PRESLEY: All right. Well, I will let
3	John answer how initiating events are touched.
4	MR. WEGLIAN: So, I didn't go over it in
5	this. There is another part of HAZCADS that looks
6	explicitly at UCAs that can cause a plant trip. So,
7	as an initiating event. It's a lot more complicated
8	than what I've shown before. It's still tied to a
9	delta CDF and a delta LERF, but we bias the initiating
10	event frequency. You can't set it at a frequency to
11	true in the same way that we do the probabilities, so
12	it has to be a different approach.
13	So, we bump up the frequency based on the
14	plant data, and in expectation of how many additional
15	trips you would have from the UCA. I can go offline
16	if you want some more information on that. But we do
17	take that into account, that if it could be an
18	initiating event, how that can be an impact on the
19	model.
20	MEMBER DIMITRIJEVIC: You know a lot of
21	the initiating events have fault trees associated with
22	them, but they're already there, integrated in the PRA
23	model. So, I mean that's why I just wanted to say
24	something which you may have forgotten.
25	MR. WEGLIAN: So, most of what well,
ļ	

(202) 234-4433

	160
1	yeah, if you had a failure of main feed water for
2	example, that might have a developed fault tree. But
3	if it's just a generic plant scram, if you're looking
4	at the RPS system and it inserts a scram, most plants
5	that's a single basic event based on plant history.
6	And so we handle both approaches.
7	Actually it's easier if it's a developed
8	fault tree, because there's usually a basic event you
9	can set to true, and you don't have to attack the
10	frequency directly.
11	MEMBER DIMITRIJEVIC: That's true.
12	CHAIR BROWN: We've got two minutes.
13	MR. GIBSON: We're done.
14	CHAIR BROWN: You're done, okay. At this
15	time, before I go around and ask for comments from the
16	participants here, I'm automatically connected already
17	to the phone. Is there anybody on the phone line that
18	has been listening that would like to make a comment
19	in the public, or on Teams? Hearing none, I will call
20	one last query to the members here. Anything else?
21	MEMBER SUNSERI: I thought it was a good
22	presentation. I mean, I learned something, I wasn't
23	trying to bash, or flex, I was just pointing out that
24	that's way down in the chain of events. But I thought
25	it was interesting.
I	I

(202) 234-4433

	161
1	CHAIR BROWN: Okay, good, thank you.
2	Greg, and Vicki, you all have any comments? I think
3	Dennis is gone.
4	MEMBER HALNON: Yeah, I'm good Charlie.
5	CHAIR BROWN: Okay. Vicki?
6	MEMBER BIER: I agree with Matt, it was a
7	good presentation. I see a lot of pluses and some
8	concerns, but not show stopping ones. So, it sounds
9	good, I appreciate the opportunity to learn about it.
10	CHAIR BROWN: Thank you. I don't think
11	I've missed anything administratively, I haven't done
12	this in a while. Okay, one more just closing comment
13	from me is I really do appreciate you all coming in,
14	and taking your time to present this to us. I thought
15	it was very comprehensive. And providing the other
16	documents to give us a little bit of feel for how
17	you're incorporating this, and what you're doing with
18	it I thought was valuable.
19	And it's good for us to know this as we're
20	working with the staff and everything, so I do want to
21	thank you very much for that. And I forgot to ask
22	Chris, did you want anything else? You're good, okay.
23	You looked like you wanted to say something.
24	MR. GIBSON: No, I was going to say it was
25	our pleasure, so thanks a lot for having us.

(202) 234-4433

	162
1	CHAIR BROWN: All right, with that, this
2	meeting is adjourned exactly on time for once.
3	(Whereupon, the above-entitled matter went
4	off the record at 12:30 p.m.)
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
I	

EPRI Digital I&C Perspectives

EPRI Digital Systems Engineering Framework and Related R&D

Matt Gibson-EPRI Technical Executive Mary R. Presley-EPRI Technical Executive John Weglian-EPRI Principal Technical Leader

Joint Digital I&C and Fuels, Materials and Structures ACRS Subcommittee Meeting on EPRI Digital I&C Perspectives

June 22, 2023

Looking at the Whole Elephant

How to address design requirements, risks, and hazards from various sources in one integrated process

II. Introduction to the Overall EPRI Digital Systems Engineering R&D Strategy

How we got Here- A Development History

EPRI

EPRI's Digital Framework Elements

EPRI's *high-quality engineering process* uses the same modern methods and international standards used in other safety related industries to reduce implementation cost

Utilize Industry Standards	Use the same proven design and supply chain structures that non- nuclear safety related industries use (IEC-61508/61511/62443). This leverages the <u>economies-of-scale achieved in other</u> <u>industries.</u>
Use of Systems Engineering	Use of a modern, high performance, <u>single</u> engineering process that leverages systems engineering in the transition to team- based engineering for conception, design, and implementation (IEC-15288,IEC-15289, IEC-12207,STPA).
Risk Informed Engineering	Making effective engineering decisions via hazards and risk analysis to integrate all digital engineering topics into a <u>single</u> engineering process (STPA,FTA)

Modern Methods to Support Nuclear Fleet Sustainability and Advanced Reactor Design

EPCI

Policy Level vs. Implementation Level Activities

EPRI Products are Used at the Implementation Level (what you actually do)

Performance Objectives provide the Interface between Policy and Implementation. Supports a safety case argument.

Safety Integrity Level (SIL) efficacy for Nuclear Power

- EPRI research on field failure data from SIL certified logic solvers revealed no *platform level* Software Common Cause Failures (SCCF) after over 2 billion combined hours of operation for IEC-61508 SIL certified PLC's (3002011817)
- Indicates that using <u>existing</u> SIL certifications, at the *platform level*, has a high efficacy for use as surrogates for some existing design and review processes.
- Leveraged for NEI 17-06/RG-1.250 and NEI 20-07 in US
- Correlates well with EPRI review of global OE (Korea, France, China, etc.) that indicates:
 - Safety related software is no more problematic than other CCF contributors when subjected to deliberate safety and reliability design processes.
 - There have been no events where diverse <u>platforms</u> would have been effective in protecting against SCCF

EPC

Production Data and OE Quantity and Quality Dive Maturity and Reliability

Digital Reliability Model Reliability Axioms

- Common Cause Failures must **first** have a failure or systematic error (including emergent behavior)
- Achieved Systematic and Random Reliability is inversely proportional to the likelihood of a CCF
- Reliability is best achieved via a cost, likelihood, and consequence equilibrium
- Net Functional Reliability is the prime objective (at the system/facility level)
- Focused Models can provide actionable reliability Insights (FTA, STPA, Relationship Sets)

Functional Reliability is an Equipment Level Challenge
Functional Reliability is a Lifecycle Challenge

III. Systems Engineering- A Modern Approach to the Technology Life Cycle

Systems Engineering - Discovery, Iterations & Refinements

- <u>Systems Thinking</u> is the key skill required to use Systems Engineering
- It is multidisciplinary and requires teamwork
- Requires ability to see system relationships in a holistic manner
- Ability to communicate across disciplines
- Ability to understand complexity

Digital Engineering Guide (DEG) – Systems Engineering

- Lifecycle Phase Based using Perform/Confirm method
- Iterates through the SE process for each phase in a <u>non-linear fashion</u>. Synthesized from the IEC-15288
 Framework
- Includes the topical guidance for each phase
- Iteratively converges on the final synthesized design
 The DEG Addresses:
 - Division of Responsibility (DOR)
 - Requirements Development
 - Hazard Analysis, Reliability Analysis (including CCF) and Mitigations
 - Architecture Development including Relationship Sets
 - Functional Allocation (including Human/System Allocation)
 - Verification and Validation (V&V)
 - Testing
 - Transition to the O&M Phase

Choosing a Hazard Analysis Method

- Hazards and Consequences Analysis for Digital Systems (HAZCADS) evolved from analysis, experimentation, and testing to find an effective methods or combination of methods that would provide usable hazard insights for the design process
- Comparative analysis and testing concluded:
 - STPA showed the most promise in terms of a holistic approach to diagnosing the systematic errors of a nuclear plant and the related controls.
 - While STPA is strong in many areas it:
 - does not diagnose component level reliability failures
 - does not prioritize or rank the importance of the identified UCA's
 - Is not a design synthesis tool but rather a design diagnostic tool
- EPRI has integrated STPA with a Systems Engineering based design process that achieves design synthesis that can then be analyzed by STPA via HAZCADS.
- HAZCADS combines the results of STPA and FTA to provide riskinformed prioritization of UCA's and the associated loss scenarios.
- Loss scenarios are limited to topical areas of interest which reduces combinatorial growth. This insight is combined with reliability analysis and relationship analysis to fully develop control methods that address each loss scenario.

Criteria	Sub Criteria	FMEA	FTA	HAZOP	STPA	PGA
Traditional use for safety analysis	None					
Potential for Identification of Non-Traditional Equipment Failure Modes and System Behavior	New failure modes unique to cyber components are identified					
	New interactions enabled by cyber design features are identified and characterized					
	New system effects from cyber-related failure modes and interactions are characterized					
	The interrelationships between cyber and non-cyber system elements are identified					
Potential for System Characterization and Risk Prioritization	Potential for system characterization					
	Potential for risk prioritization					
	None					
Suitability for Software Implementation		FTA-EMI	EA S		STP	
Implementation Criteria Traditional use for	None Sub Criteria None	FTA-FMI	EA S	ſPA-FME/	A STP	A-FTA
Criteria Traditional use for safety analysis Potential for Identification of Non-	Sub Criteria	FTA-FMI	EA S	TPA-FME/	A STP	A-FTA
Criteria Criteria Traditional use for safety analysis Potential for Identification of Non- Traditional Equipment Failure Modes and System	Sub Criteria None New failure modes unique to	FTA-FMI	EA S	TPA-FME	A STP	A-FTA
Criteria Criteria Traditional use for safety analysis Potential for Identification of Non- Traditional Equipment Failure Modes and System	Sub Criteria None New failure modes unique to DI&C components are identified New interactions enabled by DI&C-design features are	FTA-FMI	EA S	TPA-FME	A STP	A-FTA
Criteria Criteria Traditional use for safety analysis Potential for Identification of Non- Traditional Equipment Failure Modes and System	Sub Criteria None New failure modes unique to DI&C components are identified New interactions enabled by DI&C-design features are identified and characterized New system effects from DI&C- related failure modes and	FTA-FMI	EA S	TPA-FME	A STP	A-FTA
Criteria Traditional use for safety analysis Potential for Identification of Non- Traditional Equipment Failure Modes and System Behavior Potential for System Characterization and	Sub Criteria None New failure modes unique to DI&C components are identified New interactions enabled by DI&C-design features are identified and characterized New system effects from DI&C- related failure modes and interactions are characterized The interrelationships between DI&C and non-DI&C system	FTA-FMI	EA S	TPA-FME	A STP	A-FTA
Criteria Traditional use for safety analysis Potential for Identification of Non- Traditional Equipment Failure Modes and System Behavior Potential for System	Sub Criteria None New failure modes unique to DI&C components are identified New interactions enabled by DI&C-design features are identified and characterized New system effects from DI&C- related failure modes and interactions are characterized The interrelationships between DI&C and non-DI&C system elements are identified Potential for system	FTA-FMI	EA S	TPA-FME	A STP	A-FTA

HAZCADS Basis: Hazard Analysis via STPA

IEC Std. 61508-1 (2010) requires a determination of hazards of the Equipment Under Control (EUC) and the EUC control system, and "consideration shall be given to the elimination or reduction of the hazards."

STPA HANDBOOK NANCY G. LEVESON IOHN P. THOMAS MARCH 2018

For the determination of hazards and their causes, HAZCADS and DRAM/TAM/etc. apply the four-part Systems Theoretic Process Analysis (STPA). Insights from this diagnostic process are pipeline back to the DEG for aggregation and requirements updates.

Systems and STPA

Notional 1002 RPS Concept

STPA Control Structure

The STPA Control Structure is a Diagnostic Model

Example of Test Scenarios Real Event

Old System Logic

Problem with Existing TCS Design:

- The existing TCS design contained a single point vulnerability
- Failure of a single cooling flow transmitter could cause a turbine trip

EPC

Proposed Solution Based on System Requirements:

- Replace the single flow differential pressure transmitter with three differential pressure transmitters providing input to a 2003 coincidence trip logic
- The digital controller will detect and automatically remove a faulted instrument from the logic
- The logic is designed to identify a faulted instrument by measuring the output either high or low outside the calibrated range
- When one instrument is faulted, it is automatically bypassed, changing the voter logic to use the remaining two instruments
- If a second instrument is faulted, it is also automatically bypassed, and the voter logic uses the remaining valid instrument
- Finally, if all three instruments are faulted (e.g., all sensors out of range), the logic is designed to send a shutdown signal (turbine trip)

The issue:

- The flow transmitters have a range of 0 600 GPM
- The high out-of-range instrument setpoint for the DP transmitters corresponds to 612 GPM.
- Normal stator cooling flow is approximately 550 GPM with one pump in service
- Two stator cooling water pumps exist, only one is running at a given time
- The stator cooling water pumps are routinely swapped during power operation such that wear on the pumps is even
- To swap the pumps, the in-service pump remains on momentarily while the out-of-service pump is started
- When both pumps are in service, the stator cooling flow routinely exceeds 612 GPM

EPC

The result:

- The design team did not consider both stator cooling water pumps running simultaneously when developing system requirements
- During the first stator cooling water pump swap, all three of the stator cooling water flow transmitters simultaneously over-ranged
- The <u>design deficiency based on inadequate requirements</u> resulted in an unanticipated turbine protection system behavior that caused a main turbine trip and subsequent automatic reactor trip.
- The problem was found during HAZCADS blind study tests.

EPRI

Preliminary I&C OE Research Data-2023

Preliminary 2023 results indicate failure initiator statistics (~1200 OE records reviewed):

- Hardware 58%
- Software 18%
- Bad/Loose Connections 13%
- Human Error 8%
- Foreign Material 4%

Failure Initiators by Categories - All Events

EPRI

Preliminary I&C OE Research Data-2023

Approximately 18% of digital I&C events were initiated by software.

A breakdown of software-initiated failures by software classification is provided below and in the graph to the right:

- Application Software: 56%
- Configurable Parameter: 28%
- Firmware: 14%
- Operating System Software: 2%

Preliminary I&C OE Research Data-2023

The table on the right provides a preliminary picture of I&C failures resulting in a hardware or software CCF (loss of redundancy).

A breakdown of software CCFs is provided below (out of ~1200 OE events):

- Manufacturer Software Defect: 5
- Broadcast Storm: 3
- Over-ranged Transmitters: 3
- Incorrect Configurable Parameter: 1

IV. EPRI Digital Systems Engineering Framework

Digital Systems Engineering Framework Components

EPRI ID	Title	Description
3002011816	Digital Engineering Guide: Decision Making Using	Core Systems Engineering method Synthesized from IEC-15288, IEC-12207, and
	Systems Engineering (DEG)	IEC 15298
3002016698	HAZCADS: Hazards and Consequences Analysis for	Risk Informed Digital Hazards Analysis using STPA and FTA. Implements Process
	Digital Systems - Revision 1	Hazards Analysis (PHA)/Layers of Protection analysis (LOPA) for IEC-61511
3002018387	DRAM: Digital Reliability Analysis Methodology	Random and Systematic reliability analysis. Synthesized from IEC-61508 and
		identifies Loss Scenarios and control measures forms part of LOPA
3002012752	Cyber Security Technical Assessment Methodology:	Technical cyber assessment method. Identifies Exploit Sequences and develops
	Risk Informed Exploit Sequence Identification and	the associated control measures
	Mitigation, Revision 1 (TAM)	
3002018392	HFAM - Human Factors Analysis Methodology for	Integration of HFE and HRA to risk-inform HFE. Evaluates and scores HFE designs
	Digital Systems: A Risk-Informed Approach to Human	on a task basis with HRA tool sets.
	Factors Engineering	
3002023438	Digital Systems Engineering: Digital I&C Lifecycle	Provide guidance on the overall system lifecycle and provide detailed guidance
	Strategy Guide	on elements of IEC-15288 not covered by the DEG
3002015755	Digital Systems Engineering: Configuration	CM guidance for digital system. Develops the strategy and methods to identify
	Management Guideline	and manage hardware and software configuration items.
3002015758	Digital Systems Engineering: Requirements	Provides guidance on engineering actionable, bounded, and testable
	Engineering Guideline	requirements
3002028391	Digital Systems Engineering: Test Strategies and	Provide guidance on testing digital components and systems
	Methods	
3002026367	Digital Systems Engineering: Network Design Guide	Provides Guidance on wired and wireless network design via detailed use cases
	(Fall 2023)	
3002023743	EMCAM: Electromagnetic Compatibility Assessment	Provides a Risk informed and Graded approach to EMI/RFI
	Methodology (Fall 2023)	
TBD (2024)	DMG: Digital Maintenance and Management Guide	O&M Phase Guide on maintenance of digital equipment
	(Spring 2024)	

RRT= Risk Reduction TargetSTPA=System Theoretic Process AnalysisUCA= Unsafe Control ActionFTA= Fault Tree Analysis

DEG —Synthesizes the Systems Engineering framework from IEC-15288. Includes all relevant Lifecycle topics. Takes strategic input from the Lifecycle guide

HAZCADS –Uses STPA/FTA to identify hazards and associated UCA . FTA and Risk Matrices develop a Risk Reduction Target (RRT) which informs the downstream processes. Implements a PHA/LOPA from IEC-61511.

DRAM – Identifies Hardware and Software reliability vulnerabilities and develops loss scenarios. Develops and Scores protect, detect, and respond/recover control methods using the RRT

TAM –Identifies cyber security vulnerability classes. Develops Exploit Sequences. Develops and Scores protect, detect, and respond/recover control methods using the RRT

HFAM – Develops human actions and interfaces. Identifies and scores Human Reliability using the RRT

EMCAM – Identifies EMC vulnerability classes. Develops and scores protect, detect , and respond/ recover control methods using the RRT

LOPA= Layers of Protection Analysis EMC= Electromagnetic Compatibility

Use of Models for Engineering within the Framework

The Digital Engineering Framework Currently leverages <u>seven</u> distinct models:

Model	Question to be Answered
Systems Engineering	What are the key systems elements, the functional allocation of those elements, and what is the reliability of those elements? (DEG)
Fault Trees	What are the Risk Sensitivities within a Dependency Scope? (HAZCADS, PRA)
STPA	What are the Systematic Hazards and Pathways? (HAZCADS, DRAM, TAM, HFAM, EMCAM)
Relationship sets	What are the system element dependencies and degree of independence across multiple relationships? (DEG)
HRA	What is the reliability of Human Actions? (HFAM)
Exploit Sequences	What are the exploit objectives, pathways to those objectives, and the method of exploit? (TAM)
Reliability Analysis	What are the failure frequencies that impact Probability of Failure on Demand-PFD? (DRAM)

- EPRI continues to leverage or develop additional models as the "questions" become better defined.
- Performance based design requires the design questions to be defined and bounded.

To be useful, a model must answer a key question

Relationship Sets

Relationship sets are an architecture view and contain all system elements scoped within the new design or design change.

There four of system elements

- Hardware
- Software
- Human
- Equipment Under Control
- There are five relationship set types:
- Functional
- Connectivity
- Spatial
- Programmatic
- Acquisition

Models the Relationship Between System Elements

Workflow- Conceptual Phase

Diagnostic Process to Identify Digital Hazards & Risk Sensitivities and Refine Requirements

Models System and Plant level Hazards and criticality (Risk Sensitivity)

Identifies Hardware, Software, and Human Reliability Vulnerabilities and Mitigations associated with Hazards

US DEG Implementation

- IP-ENG-001 (Standard Design Process)- Main Procedure
- NISP-EN-04 is the Digital Specific Addendum to the SDP under the same mandatory Efficiency Bulletin (EB 17-06)
- Same process phases as IP-ENG-001, tailored with DEG-specific supplemental information for digital implementations. Including Cyber Security.
- Provides the user with "what to do"
- DEG provides detailed guidance using a modern engineering process with digital design considerations, information item guidance, and division of responsibility methods to improve "skill of the craft,"
- Provides the user with "How to Do"
- Digital Training/Tech Transfer completes the framework

2017)

Supplemental Funded: Digital Systems Engineering User Group - 3002022140

A forum for information sharing of digital specific material

Operational Experience Lessons Learned Interactive community

Current Activities:

- Harmonization of the DEG,HAZCADS,DRAM,TAM,EMCAM,HFAM, and Digital Lifecycle Strategy Guide. Improves coordination between products and updates with current OE.
- ✓ Roll out of the member sharing website.
- Nuclear Digital Project Experience Baseline 2022 published. Updated annually, members of this supplemental can download EPRI Technical Report <u>3002023748</u>. This report provides a baseline of installed digital equipment across members.

Fall Meeting 2023 September 19th & 20th

Current Members to Date

Framatome		
Constellation Energy		
Dominion Energy South Carolina, Inc.		
Dominion Energy, Inc.		
Duke Energy Corp.		
Entergy Services, Inc.		
Evergy Services (Wolf Creek)		
Callaway (Ameren)		
Palo Verde		
Sargent & Lundy Engineers		
Southern Company		
Tennessee Valley Authority (TVA)		
Vistra Corp. (Comanche Peak)		
Westinghouse Electric Company, LLC		
Xcel Energy		
PSEG (Salem/Hope Creek)		
South Texas Project (STP)		
NPPD (Cooper)		
Enercon Services		
Curtiss Wright		
Bruce Power		

Common Design Packages

Cyber Security Evaluations

Member Feedback

V. Risk Informing the Design and Operation of Digital Systems including PRA integration

HAZCADS: Hazards and Consequences Analysis for Digital Systems - Revision 1 3002016698

Risk Ranking

- HAZCADS uses a <u>bounding risk assessment</u> process, when the risk is calculated quantitatively through a PRA model
 - This approach evaluates all failures including any common cause (not just software common cause failures)
- The risk sensitivity assessment is based on the change in risk if the UCAs occurred

RRT	Change in Core Damage Frequency – CDF (per year)	Change in Large Early Release Frequency – LERF (per year)
D	$\Delta CDF \le 1E-6$	$\Delta \text{LERF} \le 1\text{E-7}$
С	$1E-6 < \Delta CDF \le 1E-5$	$1E-7 < \Delta LERF \le 1E-6$
В	$1E-5 < \Delta CDF \le 1E-4$	$1E-6 < \Delta LERF \le 1E-5$
А	$1E-4 < \Delta CDF \le 1E-3$	$1E-5 < \Delta LERF \le 1E-4$
Change the Design	ΔCDF > 1E-3	$\Delta LERF > 1E-4$

Anticipated Concern: An RRT of "A" Is Really High!

- Delta risks of 10⁻⁴/yr to 10⁻³/yr are really high and normally would not be allowed for riskinformed applications
- True, but <u>this is not the increase</u> <u>in risk of the system</u> – this is the risk if the entire system fails
- This is also the <u>risk of the current system</u> were it to completely fail
 In reality, we expect digital I&C upgrades to reduce risk compared to the existing, analog systems as demonstrated in other safety-related industries

RRT	Change in Core Damage Frequency – CDF (per year)	Change in Large Early Release Frequency – LERF (per year)
D	$\Delta CDF \le 1E-6$	ΔLERF ≤ 1E-7
С	1E-6 < ΔCDF ≤ 1E-5	1E-7 < ΔLERF ≤ 1E-6
В	1E-5 < ∆CDF ≤ 1E-4	1E-6 < ΔLERF ≤ 1E-5
А	1E-4 < ΔCDF ≤ 1E-3	1E-5 < ΔLERF ≤ 1E-4
Change the Design	∆CDF > 1E-3	$\Delta LERF > 1E-4$

Downstream Processes (after HAZCADS)

- The RRT from HAZCADS is used by the "downstream processes" in the EPRI digital framework
- Each downstream process assigns control methods to protect against a type of failure
 - DRAM: Assigns control methods to account for random and systematic errors
 - HFAM: Assigns control methods based on human factors
 - TAM: Assigns control methods based on cyber security
 - EMCAM: Assigns control methods based on electromagnetic compatibility

EPCI

Control Methods

- DRAM, TAM, HFAM, and EMCAM:
 - Determine causal factors for the UCAs
 - Establish control methods that are aimed at addressing those causal factors
 - Score the control methods against the RRT from HAZCADS
- This process may impose new design requirements or add implementation requirements on the system

RRT Acceptance Criteria

Special Note on Software Common Cause Failures

- I&C Operating Experience (OE) (nuclear and non-nuclear) indicates that most systematic failures are a result of:
 - Latent design defects due to inadequate requirements
 - Uncontrolled system interactions
- Misapplication of diversity as a means to address the potential for software CCF can contribute to <u>additional system complexity</u>, which could <u>increase the potential for latent errors</u>
- HAZCADS identifies and risk ranks the potential systematic errors (not just software CCFs) and the other tools in the EPRI digital framework establish control methods to address them

Summary of EPRI's DI&C Risk-Informed Approach

- 1. Identify what can go wrong (what could be unsafe) in the system
- 2. Establish a <u>bounding risk assessment</u> of the identified potential errors
- 3. Revise system requirements and/or assign control methods to the system commensurate with the risk
- 4. If needed, refine the risk
 assessment based on
 identified loss scenarios that
 cannot meet the RRT

HFAM - Human Factors Analysis Methodology for Digital Systems: A Risk-Informed Approach to Human Factors Engineering 3002018392

HFAM = Part of the DEG Framework

What is a Risk-Informed HFE Approach?

How HFAM applies information about risks to analysis and design activities to:

- 1. Apply a <u>graded approach</u> to determine required HFE activities
- 2. Design the system to fit human abilities and limitations
- 3. Give adequate prominence to human error in system design - prevent or mitigate unsafe control actions.
- 4. "Design Out" potential system errors to avoid:
 - unnecessary interactions
 - ✤ instructions that are hard to understand
 - ✤ poor use of visual design
 - bad or no error trapping
 - subjecting the human to extreme physical or mental stress or workload

5. Develop evidence to demonstrate that the system will be safe and will not be or cause a hazard to people or environment.

Key Features of HFAM*

- Integrated with a comprehensive systems engineering process (EPRI DEG)
- 2. Integrated with risk insights from HAZCADS
- Provides a graded approach with
 2 levels of gradation
 - Phase 1 based on the scope of the design within the DEG
 - Phase 2 based on the RRTs from HAZCADS
- Integrates the use of HRA methods to assess the reliability of human tasks

Stakeholder Treatment of **Function** Verification HF Important Task Analysis **Requirements** Analysis & **HSI Design** and Human Analysis, HF Allocation Validation Actions Impacts Graded Approach Phase 2 Graded Approach Phase 1

EPR

*Human Factors Analysis Methodology for Digital Systems: A Risk-Informed Approach to Human Factors Engineering [EPRI 3002018392; 2021]

Digital HRA Research

- What's Different?
- Plant Orientation & Data Collection
- Identification of Human Failure Events
- Definition & Task Analysis

Quantification

Graded approach to method development, starting with current methods

Data Sources in Use Today

Three major sources for initial evaluation

- Halden & Idaho National Lab experimental data (broad range of design features, but qualitative or small samples)
- Literature and operational experience review (broad range of design features, but qualitative or small samples)
- Training simulation data* (large quantitative data set, but based on one design / concept of operations)

*Data to Support Human Reliability Analysis (HRA) for Digital Environments: Data and Analysis from Korean Simulator Studies; EPRI 3002020751; 2021 How can we combine data to understand the reliability of human interactions in a digital environment?

- To be useful in human factor engineering?
- To be useful in validating or updating HRA methods?
- With data in a useful format, what else could we inform?

A Special Note on Human Errors of Commission – Using the Right Analysis Tools for the Right Tasks

- In the PRA, human cognitive errors of commission (EOC) are typically "ground-ruled out" unless a specific cause is identified
 - Other processes are used to minimize the likelihood and protect against EOCs
 - When modeled, limited treatment of consequences are considered
- Consideration of expanded treatment of EOCs in new standards for plants with large amounts of automation
- But...STPA is designed to find these types of systematic errors
 - Use HRA experience with EOCs to build loss scenarios
 - Design out high-consequence errors and provide adequate control methods for other potential unsafe actions
- Not necessarily something we need to "quantify" in the PRA, but is a candidate to be integrated in other ways

PRA Enhancements for Digital Technology for the O&M Phase

A PRA Look at Digital Systems

Coherent approach to assess and address risk across lifecycle

 We have an effective tool for risk informing the design and implementation phases – HAZCADS [EPRI <u>3002016698</u>] and associated processes

A PRA Look at Digital Systems (2)

- We need something equally useful for "day-to-day" use once the digital I&C mods are installed
 - Simple to build, simple to understand, and "roughly right" modelling and data that can be implemented and used now and refined over time
- <u>Research</u>: Capture current state of knowledge, data and use cases
- Consensus: Socialize with international technical community
- Continuous improvement: Reflect additional operating experience as it becomes available
- Consistency: Iterate as HAZCADS and related processes are refined

Coherent approach to assess and address risk across lifecycle

EPRI

Proposed Approach (In Progress)

Research in progress

- Collecting/developing examples and use cases to test proposed approach
- Re-look at the data, existing guidance and lessons from HAZCADS
- Ensure consistency with RIDM framework
- Ensure plant reflects "as built, as operated", including change management
- Incorporation of the design into the PRA should
 - Be consistent in insights from the design process
 - Be consistent with overall PRA modelling approach
 - Continue to reflect the "as-built, as-operated" plant

Proposed Approach (In Progress) (2)

- Digital systems should be modeled at a reasonable level of detail adequate to support decision making
 - Over decomposition introduces unnecessary modeling complexity
 - Modeling level should match boundary conditions of collected data
 - Software should not be separated from hardware (all software is implemented through a hardware system) → Functional Reliability
- <u>Fundamental Assumption</u>: Control Methods implemented through the design process reduces the risk to acceptably low levels of risk
 - Both for functional reliability and common cause failures
 - Qualitative analysis reflects the best state of knowledge (best-estimate); this is key for consistency between design and assessment phases

Capturing Consequence of Digital Failures* in the PRA

Cause and Effect Relationship

- The cause-effect relationship of potential unsafe control actions (UCAs) that survived to final design should be retained in the PRA or documentation:
 - UCAs with non-unique consequences should be mapped to existing basic events for documentation
 - UCAs with unique consequences can be included explicitly in the model
- Logic reassessed as the PRA evolves to reflect the as-built, as-operated plant

*Can be hardware, software or human error; systematic or random.

Considering Likelihood

Two potential approaches for capturing likelihood of a functional failure (research currently investigating both approaches):

- 1. Create "generic" failure rates based on available data + qualitative insights and include that probability in the model.
 - Data from existing EPRI and industry research and databases
 - Qualitative insights based on strength of the implemented control methods, per the downstream processes
- 2. Do not quantify in base model, but use sensitivity studies to understand if risk has changed
 - Control methods were determined to be adequate at the design stage to mitigate against base RRT level
 - Sensitivity studies can be used to understand if the control methods continue to be adequate due to other changes in the model/plant
- Long term industry data gathering needs to be put into place and match the boundary conditions of data application
 - Normal data updates at the equipment or function level will indicate if there is a performance issue and the control methods need to be re-evaluated.

Consistency with Processes for Treatment of Uncertainty

- Risk-Informed Decision Making (RIDM) is the process of using risk information with other pertinent information to make decisions
- NUREG-1855 and EPRI companion document (1026511) provides guidance on how to deal with uncertainties in risk informed decision making
 - Recognizes that conservative treatment does not lead to best decision making; can mask insights or be overly burdensome
 - Provides guidance for dealing with large uncertainties through the RIDM process
 - In this case, performance monitoring through data updates is key to ensuring the system behaves as expected
 - Defense-in-depth is key to understanding the reliability at the plant facility level

Modelling DI&C in the PRA – Summary

- Software reliability is directly proportional to the systematic controls and the design/implementation constraints.
- By adding the risk-ranking (RRTs) to what could go wrong (UCAs), HAZCADS provides the designers the information they need to assign the appropriate level of control methods to obtain an adequate baseline risk
- If the design is adequately reliable, PRA should be used to ensure the as-built, as-operated plant continues to remain adequately reliable
- Performance monitoring through data gathering should match the PRA modelling through appropriate boundary conditions
 - Do we have the right data collection frameworks in place?
- Research is still in progress

Data, cause-effect relationship is important; explicit quantitative modelling is not

Looking at the Whole Elephant

...digital is new, but not really...

Together...Shaping the Future of Energy®