Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards General Atomics Licensing Subcommittee
Docket Number:	(n/a)
Location:	teleconference

Date: Tuesday, May 2, 2023

Work Order No.: NRC-2387

Pages 1-109

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + + +
7	GENERAL ATOMICS DESIGN SUBCOMMITTEE
8	+ + + + +
9	TUESDAY
10	MAY 2, 2023
11	+ + + +
12	The Subcommittee met via Teleconference,
13	at 12:30 p.m. EDT, Vicki M. Bier, Chair, presiding.
14	
15	COMMITTEE MEMBERS:
16	VICKI M. BIER, Chair
17	RONALD G. BALLINGER, Member
18	CHARLES H. BROWN, JR., Member
19	VESNA B. DIMITRIJEVIC, Member
20	GREGORY H. HALNON, Member
21	WALTER L. KIRCHNER, Member
22	JOSE MARCH-LEUBA, Member
23	DAVID A. PETTI, Member
24	JOY L. REMPE, Member
25	
I	1

		2
1	ACRS CONSULTANTS:	
2	DENNIS BLEY	
3	STEPHEN SCHULTZ	
4		
5	DESIGNATED FEDERAL OFFICIAL:	
6	WEIDONG WANG	
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	3
1	AGENDA
2	Item Page
3	ACRS Chairman Introductory Remarks 4
4	NRC Staff Introductory Remarks 7
5	GA-EMS Introductory Remarks 9
6	Overview of GA-EMS FMR Design
7	FMR Principal Design Criteria Topical
8	Report - GA-EMS
9	Draft Safety Evaluation for the FMR Principal Design
10	Criteria Topical Report - NRC Staff 68
11	Public Comments
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
ļ	I

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	12:30 p.m.
3	CHAIR BIER: This meeting will now come to
4	order. This is a meeting of the General Atomics
5	Licensing Subcommittee of the Advisory Committee on
6	Reactor Safeguards.
7	I am Vicki Bier, chairman of today's
8	Subcommittee meeting. Here as members in attendance
9	are David Petti, Charles Brown. Jose is here. Joy
10	Rempe, Matt Sunseri, Ron Ballinger. Walt Kirchner I
11	think will be back in a minute, probably. Greg Halnon
12	is here.
13	Vesna, are you online? I can't really
14	see.
15	MEMBER DIMITRIJEVIC: Yes, I am.
16	CHAIR BIER: Yes.
17	MEMBER DIMITRIJEVIC: Hi.
18	CHAIR BIER: Great. Thank you. And how
19	about our consultants, Dennis Bley and Steve Schultz?
20	DR. BLEY: Dennis here.
21	CHAIR BIER: And it looks like Steve is
22	also here. Apologies. I have to keep taking my
23	glasses on and off for different distances. Okay.
24	Weidong Wang of the ACRS staff is the
25	Designated Federal Official for this meeting.
I	I

(202) 234-4433

During today's meeting the Subcommittee 2 will review the staff's draft safety evaluation on the General Atomics Fast Modular Reactor principal design criteria. The Subcommittee will hear presentations by and hold discussions with the NRC staff, General Atomics' representatives, and other interested persons regarding this matter.

8 Parts of the presentations by the 9 applicant and the NRC staff may be closed in order to 10 discuss information that is proprietary to the licensees and its contractors pursuant to 5 USC 552 11 (b)(C)(iv). 12

Attendance in the meeting that deals with 13 14 such information will be limited to the NRC staff and consultants, 15 its General Atomics, and those individuals and organizations who have entered into an 16 17 appropriate confidentiality agreement with them. Consequently, we will need to confirm that we have 18 19 only eliqible observers and participants in any closed part of today's meeting. 20

The rules for participation in all ACRS 21 including today's, were announced in the 22 meetings, Federal Register on June 13, 2019. 23

24 The ACRS was established by the Atomic Energy Act and is governed by the Federal Advisory 25

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

3

4

5

6

7

	6
1	Committee Act.
2	For background, the ACRS is intended to be
3	independent of the NRC staff. ACRS issues publicly
4	available letter reports that provide the Commission
5	our independent technical reviews of NRC staff
6	evaluations of the safety of proposed reactor
7	facilities.
8	It is required by the Atomic Energy Act
9	that ACRS participate in the reviews of submittals for
10	new reactor licenses. As part of our review, we
11	consider not only the staff's safety evaluations but
12	also the original submittals by the applicant.
13	As part of our review process, ACRS
14	members will ask questions and at times make
15	statements. However, these statements are individual
16	member opinions and should not be construed as ACRS
17	findings or opinions. ACRS opinions are only as
18	documented in our written letter reports.
19	The ACRS section of the U.S. NRC public
20	website provides our charters, bylaws, agendas, letter
21	reports, and full transcripts of all full and
22	subcommittee meetings, including the slides presented.
23	The meeting notice and agenda for this meeting were
24	also posted there.
25	So far we have received no written
l	I

(202) 234-4433

www.nealrgross.com

	7
1	statements or requests to make an oral statement from
2	members of the public.
3	The Subcommittee will gather information,
4	analyze relevant issues and facts, and formulate
5	proposed positions and actions as appropriate for
6	deliberation by the full Committee.
7	A transcript of today's meeting is being
8	kept and will be made available.
9	Today's meeting is being held in person
10	and over Microsoft Teams for ACRS staff and members,
11	NRC staff, and the applicant. There is also a
12	telephone bridge line and a Microsoft Teams link
13	allowing participation of the public.
14	When addressing the Subcommittee,
15	participants should first identify themselves and
16	speak with sufficient clarity and volume so that they
17	may be readily heard. When not speaking, we request
18	that participants mute your computer microphone or
19	phone by pressing star 6.
20	We will now proceed with the meeting. And
21	I'd like to start by calling up the NRR staff. And I
22	believe that will be, sorry, Candace De Messieres.
23	Sorry if I mispronounced that. Thank you.
24	MS. DE MESSIERES: Thank you, Chair Rempe
25	and also Member Bier for the opportunity to present to
I	I

(202) 234-4433

the Committee today.

1

2

3

4

5

6

So I'm Candace De Messieres, Chief of the Advanced Reactor Technical Branch 2 in the Division of Advanced Reactors and Non-Power Production and Utilization Facilities, or DANU, in the Office of Nuclear Reactor Regulation.

Later in this meeting after the General
Atomics design overview, the NRC staff will provide
you with a summary of our review of the General
Atomics Electromagnetic Systems, or GA-EMS, Fast
Modular Reactor Principal Design Criteria Topical
Report.

Like the light water-based general design 13 14 criteria contained in Part 50, Appendix A, the PDC 15 established necessary design, fabrication, the 16 construction, testing, and performance requirements 17 for structures, systems, and components that are important to safety. Accordingly, generation of 18 19 adequate PDC is a foundational step on the path to licensing. 20

In our review of the GA-EMS PDC Topical Report, the NRC staff leveraged the information in Regulatory Guide 1.232 that was reviewed by the ACRS in 2018 and provides guidance for developing generic advanced reactor design criteria, or ARDC, for

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	9
1	technology specific sodium-cooled fast reactor and
2	modular high temperature gas-cooled reactor PDC.
3	The staff also drew on its experience
4	reviewing PDC for other advanced non-light water
5	reactors, such as the Kairos Power fluoride salt-
6	cooled high temperature reactor.
7	Thank you again for the opportunity to
8	present to the Committee. And we look forward to
9	hearing your insights and feedback later in the
10	meeting. Thank you.
11	CHAIR BIER: Okay. I believe it is now
12	time for the General Atomics introductory remarks by
13	I'm not sure if that's oh, sorry, that's Aaron
14	Majors I believe. And I don't know if you're in the
15	room or online.
16	MR. MAJORS: I am online. Everyone hear
17	me clearly?
18	CHAIR BIER: Yes.
19	MR. MAJORS: Thank you so much. I just
20	want to start by saying thank you for taking the time
21	out to have this review, very needed. And we're
22	looking forward to hearing from the outcome of this
23	meeting.
24	I'd like to say just a couple quotes that
25	are apropos for safety. These authors are unknown.
I	1

(202) 234-4433

10 But no safety, know pain, but if you know safety, you 1 have no pain. Also, safety doesn't happen by 2 accident. 3 And those are the safety moments that we 4 5 live by here at General Atomics. General Atomics has a long history of developing extremely safe reactors. 6 7 And this history began with the TRIGA research in 8 reactors and has evolved into high temperature gas-9 cooled reactors is where we are today with our Fast 10 Modular Reactor, which is an answer to a growing market and the need for small, easily deployable 11 reactors that provide great stability through rapid 12 load following. 13 14 And main objective is the SO our 15 achievement of proper operating conditions and the prevention or mitigation of accident consequences to 16 protect our workers, the public, and the environment 17 from radiation hazards. 18 19 So we're really happy to be here and looking forward to the outcome. 20 Thank you. Okay. Thank you. 21 CHAIR BIER: We're 22 happy to have you here. So now the first part of the presentation 23 is the overview of the General Atomics Fast Modular 24 Reactor design. And I believe the presenter for that 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	11
1	is going to be John Bolin. Is that correct?
2	MR. BOLIN: That's correct.
3	CHAIR BIER: Excellent. Welcome.
4	MR. BOLIN: Okay. Let's see. Is this
5	displaying as just a single slide?
6	CHAIR BIER: Yes. We now see your slides.
7	MR. BOLIN: Okay. All right. So this is
8	going to be an overview of the conceptual design to
9	date. And I'll continue. And I am the safety and
10	licensing lead here at GA-EMS for the Fast Modular
11	Reactor.
12	So, before I go on to this goal, I wanted
13	to introduce our team. We have a very distinguished
14	team of collaborators, including a strategic
15	partnership with Framatome, on this Fast Modular
16	Reactor design. We have worked with Framatome in the
17	past on the gas turbine-modular helium reactor and
18	worked together and competed against each other on the
19	next generation nuclear plant.
20	We also have on our team EPRI. And EPRI
21	has, as part of their team, they have enlisted to help
22	Vanderbilt University.
23	We also have two other universities that
24	are collaborating with us, the University of
25	Wisconsin-Madison, under the leadership of Mike
I	I

(202) 234-4433

12 Corradini, and the University of Texas at Arlington. 1 2 And they're focused on the turbine machine design. 3 We also have the expertise of three 4 national labs, Idaho National Lab, with both their 5 BISON and ATR and TREAT expertise. And we also have Argonne National Lab, with their fast reactor fuel 6 7 design expertise, and Sandia National Lab, with their 8 MELCOR modeling expertise. 9 So the goal is to develop a Fast Modular 10 Reactor. It's 44 megawatts electric. And, you know, it's intended for flexible power generation and easily 11 dispatchable and carbon free. And we're targeting 12 commercial operations by 2035. 13 14 The team is developing key design 15 It is a fast spectrum reactor. attributes. We use 16 helium inert gas as coolant. We have pellet loaded 17 fuel rods. We are emphasizing site flexibility and small passive heat removal systems that will result in 18 19 safe, maintainable, and cost effective nuclear power generation. 20 The FMR project officially started on 15th 21 of December of 2021. It's a three-year program under 22 the ARDP, Advanced Reactor Concepts 2020 Program. 23 24 MEMBER REMPE: Hey, John. This is Joy. 25 know how ACRS members always are rude and You

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	13
1	interrupt people. I don't know if
2	MR. BOLIN: And I was going to say you
3	guys can ask me questions any time.
4	MEMBER REMPE: Things haven't changed over
5	years. But anyway, I don't know if you're too close
6	to the mic or there's some tapping sounds. But it's
7	hard to sometimes hear what you're saying. Do you
8	have an idea what it could be? And maybe
9	MR. BOLIN: It might be my coffee flask is
10	jiggling a little bit. So maybe that's
11	MEMBER REMPE: Okay. That would help.
12	Thank you. Sorry to interrupt. But it was getting
13	distracting. Thanks.
14	MR. BOLIN: Okay. All right. We'll see
15	if that's improved.
16	MEMBER REMPE: That is better. Thanks.
17	MR. BOLIN: Okay. I'll go on to the Next
18	slide. So the project objectives, you know, their
19	focus is to enable future deployment, development and
20	deployment. And so we're particularly interested in
21	verification of key metrics in fuel, safety, and
22	operational performance.
23	So, as stated here, we will look at the
24	technical feasibilities. I mean, basically the
25	conceptual design effort is to prove the technical
I	I

(202) 234-4433

```
www.nealrgross.com
```

	14
1	feasibility of the design, looking at high burn-up
2	fuel operation, passive safety features, and rapid
3	grid adaptability or load following.
4	The project obviously includes pre-
5	application licensing activities with the NRC. That
6	was a key desire of the DOE in their FOA. And the
7	project will also conclude with an initial cost
8	evaluation.
9	Like I said, the two focuses are on
10	verification, both experimental and numerical
11	verification. The experimental verification, we do
12	have a fuel fabrication campaign that will result in
13	a high burn-up irradiation test at, and transient test
14	at ATR and TREAT to begin the qualification of the
15	fuel design. And we'll go into that a little more in
16	the later slides.
17	We also have scaled tests of the reactor
18	vessel cooling system using the facility that
19	University of Wisconsin-Madison has to further verify
20	the passive cooling capability. In this case, the
21	RVCS test facility that they have is actually between
22	half scale and full scale of our RVCS design. So it
23	will be a very interesting test.
24	We're also doing numerical verification.
25	Part of this is the accident analysis work being done
	I

(202) 234-4433

	15
1	both, or being done at UW-M. They are developing a
2	MELCOR model. So that will support the design work
3	and pre-application licensing.
4	We are also doing, with Sandia, a MELCOR
5	model to simulate the FMR plant and to demonstrate
6	rapid load following capability, also load rejection
7	and basically a variety of operational transients.
8	Any questions so far? Okay.
9	Okay. This is the, this goes over our
10	effort to design the FMR core to improve safety
11	margin. Some of the things to note on this slide is
12	the core power density. Oh, and I should and so,
13	in this slide, I'm comparing numbers for the Fast
14	Modular Reactor, the gas turbine-modular helium
15	reactor, also designed by General Atomics, and the
16	AP1000 PWR.
17	So, I mean, the first state, of course, is
18	the output. The reactor output is quite low. It's
19	100 megawatts thermal, you know, 6 times lower than
20	the GT-MHR and much lower than the AP1000.
21	The power density is almost 15 megawatts
22	per meter cubed. That's higher than the GT-MHR but
23	much less than the AP1000.
24	The heat generated in the fuel, actually
25	our number is similar to AP1000. Most of the heat
ļ	I

(202) 234-4433

	16
1	does get deposited in the fuel, of course. Pressure
2	is 7 megapascals.
3	The other thing to note, it's not
4	explicitly mentioned here. So the outlet temperature
5	is not, you have to calculate the outlet temperature
6	based on these numbers. So the FMR has an outlet
7	temperature of 800 degrees C, while the GT-MHR had an
8	outlet temperature of 850 degrees C. So we cut back
9	the outlet temperature a little bit to improve safety
10	margin.
11	The other thing to note, of course, is
12	the, similar to the power density, the fuel rod
13	average linear power is quite low, much lower than the
14	AP1000.
15	And the other thing is the fuel height.
16	DR. BLEY: John?
17	MR. BOLIN: Yes.
18	DR. BLEY: This is Dennis Bley.
19	MR. BOLIN: Yes, Dennis.
20	DR. BLEY: I'm remembering back a long
21	time ago, probably from the '70s. Excuse me. You had
22	a fast reactor design way back then. And if you lost
23	force circulation, you had about 45 seconds I think,
24	if my memory is right, to get it back to prevent
25	significant damage. How does this reactor look if you
I	

(202) 234-4433

	17
1	lose force circulation?
2	MR. BOLIN: Well, there's two things that
3	are in our favor. First off, we are using SiGA
4	silicon carbide composite cladding. In fact, the
5	whole fuel assembly is a ceramic composite cladding or
6	ceramic composite material. And so it has a much
7	higher temperature capability. But also we have
8	greatly reduced the power density compared to the, I
9	think you're referring to the gas-cooled fast breeder
10	reactor
11	DR. BLEY: That's probably true.
12	MR. BOLIN: back in the '70s. So the
13	power density is much less.
14	And so, while I'm not going to present the
15	accident results, the passive safety, we have
16	engineered that so that we can safely cope with a loss
17	of force circulation, loss of force cooling.
18	DR. BLEY: Okay. Thanks. I look forward
19	to seeing more about that later.
20	MR. BOLIN: Sure. And like I said, so the
21	cladding material is a SiGA silicon carbine composite.
22	And we'll go into that a little bit more.
23	And the core height is also quite small
24	compared to the other two designs shown here. It's
25	only 1.8 meters in height. And this is the active
l	I

(202) 234-4433

	18
1	height. This is the fuel zone of the fuel assembly.
2	Okay. Any questions before I move on?
3	MEMBER PETTI: John, this is Dave Petti.
4	Are you going
5	MR. BOLIN: Hi, Dave.
6	MEMBER PETTI: Hi. Are you going to show
7	us some pictures of what a fuel assembly looks like?
8	MR. BOLIN: Yes, definitely.
9	MEMBER PETTI: Okay. Then I will wait.
10	Thanks.
11	MR. BOLIN: Okay. In fact, it's, part of
12	it is on the next slide here.
13	So the fuel design, it leverages both UO2
14	legacy fuel development and SiGA cladding development.
15	So we purposefully chose high density UO2 that's been
16	proven in LWRs and tested in fast reactors in order to
17	minimize the fuel development timeframe.
18	The silicon carbine composite cladding,
19	SiGA, it's undergoing testing and maturation to the
20	DOE accident tolerant fuel program. And in fact, SiGA
21	cladding is being irradiated presently in ATR.
22	The fuel design uses, actually uses the
23	ATF-LWR dimensions, you know, so that the cladding is
24	the same size as that being developed for ATF. But it
25	does have, the fuel design does have a large plenum
I	

(202) 234-4433

	19
1	similar to what you find in the legacy liquid metal
2	fast reactor fuel designs
3	MEMBER REMPE: John. Oh, I'm sorry. Go
4	ahead.
5	MR. BOLIN: Yes.
6	MEMBER REMPE: Okay. Did you finish your
7	last sentence? I didn't mean to cut you off.
8	MR. BOLIN: Yes. Go ahead.
9	MEMBER REMPE: Okay. Well, I was curious
10	if you could talk a little bit more about the end cap
11	welding. There's an image shown here (audio
12	interference) an end cap on with this SiGA material.
13	And apparently you've made it through leak testing and
14	pressure testing.
15	And how long has it been in the ATR? And
16	how long is it scheduled to be in the ATR? Are they
17	is it going through any PALM cycles in the ATR so
18	it's sort of having some ramp testing?
19	MR. BOLIN: I don't know the details of
20	that. I mean, we have made a lot of progress in the
21	end cap welding. And these are sealed rodlets that
22	have been hermetically tested and meet the hermeticity
23	requirements. And they will go through a few cycles
24	I believe. I don't know if it will go through a PALM
25	or not. And I don't know the details of that.
ļ	I

(202) 234-4433

	20
1	MR. MAJORS: It's six cycles that our
2	specimens will be in ATR.
3	MR. BOLIN: This is, I think she's
4	particularly, Joy is particularly asking about
5	that's and Aaron is correct. So the ATF, I don't
6	know about the ATF cladding that's being irradiated.
7	The FMR cladding will also be, go through, like Aaron
8	said, it will go through up to six cycles.
9	MEMBER REMPE: But you've not started that
10	test yet
11	MR. BOLIN: That hasn't started yet.
12	MEMBER REMPE: Okay.
13	MR. BOLIN: I'm going to
14	MR. MAJORS: It starts in December.
15	MEMBER REMPE: Oh, okay. So it starts
16	this December. And what is the peak temperature that
17	this end cap weld has survived to date?
18	MR. BOLIN: I don't know the answer to
19	that.
20	MEMBER REMPE: Okay. I just am curious.
21	I mean, it's not necessary for this PDR report, but,
22	or PDC report, but I just am
23	MR. BOLIN: Yes.
24	MEMBER REMPE: curious on how far,
25	because I know that was an issue for a lot of years.
I	

(202) 234-4433

	21
1	MEMBER PETTI: John, just a question on
2	the diameter of the UO2, because you mentioned about
3	fast and thermal. Is it the size of a thermal UO2 or
4	a fast reactor UO2 or somewhere in between?
5	MR. BOLIN: Well, I believe the fast
6	reactor UO2 was extremely small.
7	MEMBER PETTI: Right.
8	MR. BOLIN: So it's not like that. But
9	MEMBER PETTI: Okay.
10	MR. BOLIN: density obviously is much
11	less in the liquid metal fast reactor similarly. So
12	the UO2 pellet diameter is a little bit smaller than
13	a standard UO2 pellet, because we do have a somewhat
14	larger gap between the pellet and the cladding
15	MEMBER KIRCHNER: John, this is Walt
16	Kirchner.
17	MR. BOLIN: It's basically the same as an
18	LWR pellet.
19	MEMBER KIRCHNER: John, this is Walt
20	Kirchner. So I'm thinking back to the prior work that
21	GA did in this particular area. If I remember
22	correctly, you were looking at uranium carbide pellets
23	or platelets or different
24	MR. BOLIN: Correct.
25	MEMBER KIRCHNER: designs, not UO2.
	I

(202) 234-4433

	22
1	For this reactor with a longer lifetime, what is the,
2	what's the effective full power years of the UO2 in
3	terms of burn-up?
4	MR. BOLIN: I think I will cover that.
5	But it's 100 megawatt days per
6	MEMBER KIRCHNER: Metric ton?
7	MR. BOLIN: Yes.
8	MEMBER KIRCHNER: That's pretty high
9	compared to the UO2 that's used, because
10	MR. BOLIN: Currently licensed, correct.
11	It's higher than what's currently licensed. Fast
12	reactor oxide fuel tests get to that burn-up and
13	higher. But
14	MEMBER KIRCHNER: Doesn't it center quite
15	a bit? I thought that's why you were looking at
16	uranium carbide and not UO2 previously.
17	MR. BOLIN: Well, the reason we were
18	looking at uranium carbide, and we still are pursuing
19	that reactor design, the centering is going to be much
20	lower than you might expect because the UO2, peak UO2
21	fuel temperature is much lower than LWRs. So, and
22	I'll show you that. I think I show you that later.
23	I might be getting my presentations mixed up.
24	But, you know, it's probably about, well,
25	no, we'll see that, about 1,200 degrees C is the peak
Į	I

(202) 234-4433

	23
1	fuel temperature.
2	MEMBER KIRCHNER: And then the grid
3	material for the X bundle is what?
4	MR. BOLIN: Silicon carbide composite.
5	MEMBER KIRCHNER: Silicon carbide as well.
6	MR. BOLIN: Yes.
7	MEMBER KIRCHNER: Thank you.
8	MR. BOLIN: And the support tube is also
9	silicon carbide. And you can see a picture of silicon
10	carbide composite cladding and in the X-ray tomography
11	of a cladding tube, and then as Joy mentioned, the end
12	cap welding, which we think we have perfected. So,
13	and it's ready for testing.
14	MEMBER PETTI: John, the grid plate is
15	also silicon carbide?
16	MR. BOLIN: Yes.
17	MEMBER PETTI: Thank you.
18	MR. BOLIN: Okay. This goes into more
19	detail, a little bit more detail of the different
20	steps we've gone through to prepare for the ATR and
21	TREAT irradiation capsules. Like I said, we've
22	enlisted Argonne's help in looking at the BISON fuel
23	model, looking at fission gas release and swelling.
24	And all those eventual fuel failure mechanisms are
25	also part of their modeling efforts.

(202) 234-4433

	24
1	And so that's informed our fuel design and
2	analysis and, in particular, the analysis of these
3	test rodlets. We are looking at both standard size
4	rodlets and reduced diameter rodlets.
5	And like I said, we're going to do both
6	ATR irradiation for up to six cycles. And we've also
7	designed the rodlets with different size gaps to look
8	at performance, you know, both standard fuel rod
9	performance and performance where there would be
10	pellet clad interaction in possible failure. So
11	that's a design into the analysis and the
12	experimentation. So
13	MEMBER PETTI: So, John
14	MR. BOLIN: Yes.
15	MEMBER PETTI: just a question on the
16	clad. If this gets proprietary, let me know. But,
17	you know, the last time I looked at SiC-SiC cladding
18	for ATF, there were some seminal papers out of Oak
19	Ridge that, given the delta T across the clad, you get
20	some pretty serious tensile stress built up because of
21	differential or irradiation swelling across it. I
22	would imagine the lower power density helps you with
23	that
24	MR. BOLIN: Correct.
25	MEMBER PETTI: delta T. So, but, you
Į	1

(202) 234-4433

	25
1	know, they've gone to things like liners and stuff.
2	This is just SiC-SiC, nothing special?
3	MR. BOLIN: It's the standard ATF silicon
4	carbine composite cladding. So it has the monolithic
5	outside layer and the composite woven silicon carbide
6	fiber, infiltrated silicon carbide in the inner layer.
7	And you're correct. Certainly the, you
8	know, our power density is much lower than light water
9	reactors. So the thermal gradients are much lower.
10	Also, operating at a higher temperature is actually,
11	for silicon carbide is actually a benefit, too. So
12	swelling
13	MEMBER PETTI: Sure.
14	MR. BOLIN: swelling and irradiation
15	damage is less at higher temperatures. So we have
16	both of those factors in our favor.
17	MEMBER PETTI: Thanks.
18	MEMBER REMPE: Out of curiosity I'm
19	sorry. Is someone else do you want to go first?
20	DR. SCHULTZ: That was me, Steve, Joy.
21	You go ahead.
22	MEMBER REMPE: Oh, well, I was just
23	DR. SCHULTZ: I'll come in next.
24	MEMBER REMPE: Okay. I was curious about
25	the instrumentation and what you're trying to validate

(202) 234-4433

	26
1	with these, or verify with these tests. Are you, is
2	it just temperature or are you and then post-
3	irradiation examinations or are you going to try and
4	do any other type of measurements online that
5	MR. BOLIN: No, no other
6	MEMBER REMPE: tests?
7	MR. BOLIN: No other measurements online.
8	But we will look at, post-irradiation examination
9	we'll look at fuel physical changes and fission gas
10	release. So that will be looked at.
11	Actually, it's in that box right there.
12	The PIE will look at fission gas release and fuel and
13	cladding deformation. And particularly in the cases
14	where we have reduced gap between the fuel and the
15	cladding, you know, there's a possibility of cladding
16	fracture that also needs to be looked at.
17	MEMBER REMPE: Will you have temperature
18	instrumentation in the tests themselves?
19	MR. BOLIN: The fuel itself will not be
20	temperature monitored, no.
21	MEMBER REMPE: Okay. And just to caution
22	
23	MR. BOLIN: At least not in the ATR
24	capsule. I don't believe it's in the ATR capsule.
25	The TREAT capsule may have instrumentation for that
	I

(202) 234-4433

	27
1	transient test.
2	MEMBER REMPE: In ATR sometimes small
3	geometry changes that are within specifications can
4	lead to interesting changes in temperatures that you
5	don't expect. It's just a caution.
6	Anyway, Steve, go ahead.
7	DR. SCHULTZ: My question was related,
8	John. And that is, in the testing, are you going to
9	achieve those temperatures that you anticipate in the,
10	for the reactor design parameters? The first
11	question.
12	MR. BOLIN: Yes. In fact, we will have
13	higher fuel temperatures than FMR will experience.
14	We'll have higher temperatures.
15	DR. SCHULTZ: Good. And for the six
16	cycles of operation, what burn-up do you expect to
17	achieve in the fuel test?
18	MR. BOLIN: We will get close to 100
19	megawatt days for burn-up.
20	DR. SCHULTZ: Good. Thank you.
21	MR. BOLIN: It's a very, unfortunately I
22	think, but it is a very accelerated test.
23	DR. SCHULTZ: It certainly appears that
24	way. Thank you.
25	MR. BOLIN: Yes.
I	1

This just goes over the FMR test rodlets. And like I said, they are being fabricated. Actually, the rodlets have been fabricated. And they are going to be loaded with UO2 pellets actually next week. And then they'll be, the final end cap will be welded on and shipped to INL for insertion into ATR at the end of the year. So the fuel pellet processing is basically standard UO2 fuel pellet processing.

9 The other steps are part of the silicon carbide composite cladding fabrication. 10 The silicon carbide fiber is braided together, then infiltrated 11 with silicon carbide, and then both infiltration and 12 then deposition of an outside silicon carbide layer. 13 14 Pellets are then loaded. And then the final end cap 15 So this is obviously a key accomplishment is sealed. of our conceptual design effort is to actually make 16 these fuel rods and to have them tested. 17

We were particularly, it was particularly important to us to not just do a paper study on conceptual design, but to actually do, like we mentioned earlier, experimental verification of the design.

The other, of course, part of our defense in depth is the vessel system. We have a, the vessel is sized, you know, for normal operation A00

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	29
1	conditions. The design code, the ASME design code, of
2	course, is used. That is Section 3, Division 5, the
3	2021 edition.
4	Right now the thickness is adequate for
5	300,000 hours or 35 effective full power years based
6	upon the code. The code data does suggest very little
7	change out to, because of the temperatures that we're
8	at, very little change out to 60 years. And so a
9	future code revision should not have an impact on our
10	vessel design.
11	But we're also, one of the key problems
12	with gas-cooled reactors, helium gas-cooled reactors
13	is, of course, helium leakage. And so we pay
14	particular attention to using seal welds at all joints
15	to minimize helium leakage.
16	And another interesting thing is that a
17	lot of accidents and even load following, you know,
18	involve flow reductions. As we'll go over on the next
19	slide, we'll see, I'll discuss about the flow
20	reductions through normal operation. But all these
21	events, because we're using a Brayton cycle, the
22	pressure load on the vessel decreases during these
23	flow reductions.
24	MEMBER MARCH-LEUBA: John, this is Jose
25	March-Leuba. Just a layman question, you mentioned
I	1

(202) 234-4433

	30
1	earlier an exit gas temperature of 800 degrees C.
2	MR. BOLIN: Correct.
3	MEMBER MARCH-LEUBA: What materials are
4	you using for the hot leg and the vessel? And what
5	temperatures do they have to survive?
6	MR. BOLIN: Well, so, like the GT-MHR, we
7	do have a cross vessel that connects the reactor
8	vessel to the power conversion unit. And so it has,
9	the hot gas in on the inside of this cross vessel.
10	There's an insulated layer on the inside of this cross
11	vessel that then protects.
12	And then we have cold helium. Cold is a
13	relative term, you know. It's 509 degrees C on the
14	outside of this duct. And, you know, the layer that
15	connects to the cross vessel sees that 509 degrees C.
16	So all of the vessel materials are 509 degrees C or
17	lower.
18	MEMBER MARCH-LEUBA: The gas is the one
19	that has 7 megapascals. Somebody has to contain the
20	helium. I hope you have thought through this. I
21	don't know anything about this, but
22	MR. BOLIN: It certainly is something we
23	have dealt with on numerous, particularly the GT-MHR
24	gas-cooled reactor design has looked at this
25	extensively.
I	I

(202) 234-4433

	31
1	MEMBER MARCH-LEUBA: Yeah, and another
2	question I know even more about. You don't mention
3	anything about reactivity control. How do you plan to
4	control reactivity?
5	MR. BOLIN: We have both control rods, I
6	think boron carbide control rods and shutdown rods.
7	They will have also silicon carbide cladding.
8	MEMBER MARCH-LEUBA: But they're not shown
9	here in the picture, right? I don't see
10	MR. BOLIN: No, no. Just the upper drive
11	mechanisms are shown there.
12	MEMBER MARCH-LEUBA: Yeah, one important
13	concern when you go for the final certification will
14	be, priming along is the control rod has to be a
15	design, has to have a design temperature that is
16	higher than the fuel. In other words, you should not
17	have an accident when you can meld a control rod and
18	leave the fuel intact, because that would be bad.
19	MR. BOLIN: Yes.
20	MEMBER MARCH-LEUBA: So you're saying your
21	design
22	MR. BOLIN: That's why we are using
23	silicon carbide cladding for the control rods. I
24	don't know. Yeah.
25	MEMBER MARCH-LEUBA: And you said boron
I	I

(202) 234-4433

	32
1	carbide inside?
2	MR. BOLIN: Yes.
3	MEMBER MARCH-LEUBA: Okay.
4	MR. BOLIN: I guess my final comment was
5	that the conceptual design has been completed on the
6	reactor vessel internals. We're still working on the
7	details of the power conversion system, which I'm
8	going to discuss on the Next slide. And also this
9	shows the arrangement of neutron shields around the
10	core, of course. And there is a core shroud that
11	protects the vessel top head from the high temperature
12	gas exiting the core. So that's also an insulated
13	layer that protects the top head.
14	Cold helium coming into the reactor goes
15	all the way around the vessel and down the outside
16	core barrel and into the lower portion of the vessel
17	head and then up through the core.
18	MEMBER PETTI: John?
19	MR. BOLIN: Yes?
20	MEMBER PETTI: Just a question on your
21	outer reflector. Is it stainless steel like in sodium
22	systems? Or I know you guys had a design once with
23	beryllium carbide as an outer reflector.
24	MR. BOLIN: No, we're using zirconium
25	silicide is our reflector that's adjacent to the fuel.

(202) 234-4433

1 It is zirconium silicide. It's a product that we're developing that we think it is a better reflector. 2 Ι 3 mean, it's not as good as stainless steel, but, fortunately, it has higher temperature capability. 4 5 And it helps to minimize, then, fuel rod peakings 6 along the reflector edge. 7 MEMBER KIRCHNER: And the upper and lower 8 reflectors, are they the same or --9 The reflector that is right MR. BOLIN: 10 next to the fuel is always going to be zirconium silicide. Now, the outside reflector, outside of the 11 zirconium silicide, we'll be using graphite, and I 12 think, also, on the bottom. 13 14 MEMBER KIRCHNER: Upper and lower 15 reflectors are graphite? Well, below -- like I said, 16 MR. BOLIN: 17 there's always a zirconium silicide layer immediately next to the fuel, the core. So, both the upper and 18 19 lower part is, first, zirconium silicide, and then, graphite. In the core, I don't think that's the case, 20 but in the outer reflector that's the case. And the 21 lower reflector, that definitely is the case, yes. 22 MEMBER PETTI: But the inner reflector 23 24 has, like, an annulus of graphite? 25 MR. BOLIN: Yes -- no, no. The inner

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

33

	34
1	reflector is always zirconium silicide.
2	MEMBER BALLINGER: This is Ron Ballinger.
3	I understand 300,000 hours, but I don't
4	understand 540,000 hours. You say, "Code revision."
5	Is this talking about Division 5 again?
6	MR. BOLIN: Yes, but, right now, the
7	material, 316 stainless steel, is only allowed up to
8	300,000 hours.
9	MEMBER BALLINGER: Right.
10	MR. BOLIN: And so, future ASME Code
11	revision is intended to extend that to 540,000 hours.
12	MEMBER BALLINGER: And that's in process?
13	MR. BOLIN: Yes. And the data, of course,
14	already exist and shows very little change between
15	300,000 hours and 540,000 hours. So, it's not
16	expected to have any design impact.
17	MEMBER PETTI: What's the vessel material
18	again?
19	MR. BOLIN: 316 stainless steel.
20	MEMBER PETTI: Okay.
21	MR. BOLIN: Okay. So, the next slide goes
22	over a little bit on the power conversion system.
23	This is fairly standard for gas turbine design. It is
24	a direct Brayton cycle. I know it's maybe hard to
25	see. And I don't go into the details on the core
I	1

(202) 234-4433
side.

1

2

3

4

5

6

7

8

So, exit temperature from the reactor goes to the turbine, where, obviously, it goes down in temperature and pressure. It goes through the recuperator. So, the turbine outlet temperature is, basically, directing the reactor inlet temperature. So, there's a heat exchange between these two fluid streams.

9 From the recuperator, it goes to a precooler that cools the helium before going to the low 10 pressure compressor. And we have an intercooler in 11 So, from the low pressure compressor, 12 this design. you go to the intercooler. So, the heat that is added 13 14 during the compression process in the low pressure 15 compressor is removed by the intercooler, and that, 16 then, goes to the high pressure compressor, and then, goes to the recuperator, and then, to the reactor. 17

So, this provides a high efficiency. And like we said, it's the net -- the electrical output from the generator is 44 megawatts electric.

The other interesting thing that enables rapid load following is that we are using a GA product, a current magnet motor generator. It is a variable frequency generator. So, it can change its rotational speed as needed. So, we can change the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	36
1	flow rate to the reactor by controlling the frequency
2	and speed of the current magnet motor generator.
3	It goes through an AC/DC-AC frequency
4	converter to get to the grid frequency. And, of
5	course, that goes to the grid.
6	And so, this combination allows us to
7	change the speed of the generator, change the speed of
8	the turbine machinery, and thereby change the flow
9	rate through the core. But, at the same time, while
10	we're doing that, we're maintaining the frequency
11	that's being fed to the grid.
12	And so, it promotes both rapid load
13	following we're shooting for 20 percent per minute
14	load following changes, but, also, it promotes grid
15	stability. So, those are two things that we see as
16	being important to the market in the future, and
17	particularly, as the electric market gets more and
18	more intermittent renewable energy sources.
19	MEMBER MARCH-LEUBA: And this is Jose
20	again.
21	With those power rates 20 percent per
22	minute, have you analyzed what happens to the UO2
23	pellets?
24	MR. BOLIN: So, that is going to be part
25	of our modeling that is still ongoing.
ļ	I

(202) 234-4433

	37
1	MEMBER MARCH-LEUBA: Yes, because in the
2	life of the reactors, if you ramp up like that, you
3	will blow up the zirconium.
4	MR. BOLIN: Well, you know, the
5	MEMBER MARCH-LEUBA: Yeah.
6	MR. BOLIN: Yeah. And, I mean, there's
7	two things that are in our favor: lower power density
8	and the silicon carbide is quite strong. And although
9	sometimes it's viewed as a negative, the fact that
10	it's not very ductile also means it keeps its shape,
11	even if the pressure inside is increasing.
12	MEMBER REMPE: John, I just assumed that
13	the TREAT test would encompass that. That's not going
14	to you're not going to try to run the presentient
15	(phonetic) test to such changes?
16	MR. BOLIN: The TREAT test is a
17	reactivity-initiated accident. So, it is doing that,
18	a reactivity-initiated accident simulation, not a load
19	following test.
20	MEMBER REMPE: But the ramp and the change
21	in power, wouldn't that
22	MR. BOLIN: It should bound any reactivity
23	it should bound any load following change.
24	MEMBER REMPE: Yes, I would think it
25	would. Either that or it seems like you would want
	1

(202) 234-4433

to test that before you start doing load following in the reactor.

This 3 MEMBER BALLINGER: is а very 4 different paradigm. I mean, we've got to stop 5 thinking about zirconium cladding, because the zirconium, that's what the load following problem was 6 7 for in light water reactors. It was for zirconium 8 cladding. It only takes 10 or 20 degrees C to crack 9 the UO2 at delta T. So, it's really the silicon 10 carbide that's got to take it, and it's very rigid compared to zirconium, and there's no environment. 11 So, it's a different way of having to 12 It requires a heck of a lot more data 13 think of it. 14 and experiments, but it's a very different fuel 15 system. Yes, but I just think I 16 MEMBER REMPE: would rather test it out of the reactor. 17 I'll agree with you. MEMBER BALLINGER: 18 19 (Laughter.) MEMBER REMPE: Yes, ahead of time. 20 MEMBER BALLINGER: Yes. 21 MEMBER REMPE: And I would find some way 22 of doing it. 23 24 MEMBER BALLINGER: Yes. MEMBER REMPE: But it's not included in 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

1

2

www.nealrgross.com

38

	39
1	your plans?
2	Also, there's a lot of feedback, and I
3	don't know John, again, there's something with your
4	system, it looks like, according to the computers here
5	in the room.
6	MR. BOLIN: Oh, well, I mean, it could be
7	the fan in my laptop. So, I'm not sure I could
8	control that.
9	MEMBER REMPE: We did have that happen
10	with one of our members. Don't turn off your
11	computer. But, anyway, it started up recently, yes,
12	but anyway, you're going to have to have your managers
13	buy you a better computer.
14	(Laughter.)
15	MEMBER REMPE: But, anyway, yes, so you do
16	not have any plans to try and you're just going to
17	do it by analysis?
18	MR. BOLIN: Just do it by analysis for
19	now, yes.
20	CHAIR BIER: While we're paused here, I
21	also to check and see if Aaron had any comments or
22	clarifications that he wanted to add. Because
23	anything in the chat does not make it into the
24	transcript and the public meeting.
25	I guess maybe not right now.

(202) 234-4433

	40
1	MEMBER KIRCHNER: So, John, this is Walt
2	Kirchner.
3	So, on this one, you're probably not going
4	to try and put a bottoming Rankine cycle on this?
5	MR. BOLIN: No.
6	MEMBER KIRCHNER: No? Okay.
7	MR. BOLIN: The temperature coming out the
8	recuperator is on the order of between 150 and 200
9	degrees C. So, there's not much left to take out.
10	MEMBER KIRCHNER: Okay. Right.
11	MR. MAJORS: Chairman? Chairman, my
12	apologies, I was on mute talking. I'm sorry.
13	CHAIR BIER: Okay, go ahead, Aaron.
14	MR. MAJORS: I was just following up.
15	Someone had asked the question about the peak
16	temperature survival for the end caps. And I just
17	wanted to add I didn't get a chance to interject
18	because you guys were rapid-firing questions, which is
19	great. We're trying to transcribe all these questions
20	as well for our technical team. But I just wanted to
21	add some points of reference.
22	So, our high-temperature gas application
23	for joining our end caps is sufficient for normal
24	operating and accident performance. So, our end caps
25	are stable up to 1900 degrees Celsius for inert
I	

(202) 234-4433

	41
1	environments and 1750 for steam.
2	MEMBER REMPE: Thank you.
3	CHAIR BIER: Any other questions or
4	comments for Aaron?
5	MEMBER KIRCHNER: Could you share who your
6	fuel vendor is, or is that TBD?
7	MR. MAJORS: Fuel vendor is TBD.
8	MEMBER KIRCHNER: TBD? So, it's not one
9	of the fly rod manufacturers? I'm thinking of Orvis,
10	Sage, Winston. This is a joke. The technology that
11	you're describing is what's used to make graphite fly
12	rods for the cladding.
13	MEMBER BROWN: They'll use Loomis.
14	MEMBER KIRCHNER: Loomis? Okay.
15	(Laughter.)
16	MEMBER REMPE: And so, maybe this was in
17	the reading material that I've forgotten, but this
18	variable frequency generator, has anyone used it? Has
19	it been built? What's its status?
20	MR. BOLIN: This is a proven product at
21	GA-EMS. We have built an 8-megawatt version of both
22	the current magnet motor generator and the
23	frequency converter, we build that in modular fashion.
24	So, we have, I believe and, Aaron, you can correct
25	me I think we have 1-megawatt electric modules that
I	

(202) 234-4433

	42
1	we have built. And so, they're assembled in a modular
2	fashion.
3	And so, for the 44-megawatt, we will be
4	scaling both the current magnet motor generator up and
5	the frequency converter up. But we have already
6	proven the design at a reduced scale.
7	MEMBER REMPE: Okay. Thank you.
8	MR. BOLIN: And also on this slide, I
9	wanted to address we purposefully chose to use dry
10	cooling, even though that does have an efficiency
11	penalty. But that, clearly, will reduce the impact on
12	water resources and expands our siting options,
13	particularly, if you consider that a lot of the solar
14	and wind generation is going to be in possibly dry
15	areas of the West. So, that was a deliberate
16	selection on our part.
17	MR. FAIBISH: John, can I chime in? This
18	is Ron Faibish with General Atomics. Can I chime in
19	on something about silicon carbide?
20	MR. BOLIN: Sure.
21	MR. FAIBISH: I just wanted to add
22	there were a lot of questions about the cladding. And
23	we have had campaigns at HFIR in Oak Ridge on
24	irradiation and prototypical conditions of 800 degrees
25	C of (audio interference) and outlets.
I	

(202) 234-4433

	43
1	So, variability was both shown and this
2	was, actually, a campaign back for EM-Squared back
3	when we were actively pursuing that design. The
4	outlet temperature of 800 degrees C is very
5	applicable, obviously, for FMR.
6	And also, in addition to that, as John
7	mentioned, there is a campaign starting at ATL to do
8	additional testings. So, that's up and coming.
9	But I just wanted you to know that silicon
10	carbide has been exposed to irradiation and to high-
11	temperature conditions and showing good results. And
12	I think we're going to get more information to you, as
13	needed, from previous tests. So, I just wanted to
14	chime in on that.
15	Thanks, John.
16	MR. BOLIN: Thank you, Ron. Okay. Let's
17	move on. Well, let's see.
18	And, obviously, in a defense-in-depth, you
19	know, the third barrier we have is the containment.
20	Now, this is, unlike a lot of gas-cooled reactors,
21	this is, actually, a leak-tight containment. It is
22	below grade, like most gas-cooled reactors have been
23	below grade, but it is a leak-tight containment.
24	This was a deliberate selection to prove
25	safety and siting. Obviously, it also has an impact,
I	I

(202) 234-4433

	44
1	then, on fuel development and qualification.
2	Clearly, with TRISO fuel, there's a high
3	standard that TRISO fuel has to meet. And by having
4	a containment, we provide that extra defense for
5	potential fuel failures during severe accidents.
6	This also shows the arrangement of the
7	reactor. I don't know how I can get a pointer on
8	this. Let's see. There we go. Can you see that?
9	Yes, you can.
10	So, obviously maybe not obvious this
11	was the arrangement that was presented in the
12	proposal. So, it doesn't reflect concept design work
13	to date, but here is the reactor vessel. And around
14	the reactor vessel is the reactor vessel cooling
15	system, which we'll cover in the Next slide. And
16	then, in another compartment is the power conversion
17	unit, the power conversion vessel. We also have
18	which will also be covered in the next slide the
19	maintenance cooling system. So, that is an active
20	forced cooling system that is provided in case the
21	power conversion system is unavailable. It is non-
22	safety-related. Well, I'm getting ahead of myself.
23	And also, above
24	MEMBER PETTI: John, functionally, it's
25	like the shutdown cooling system in a HTGR?
Į	I

(202) 234-4433

	45
1	MR. BOLIN: Correct. Correct.
2	MEMBER PETTI: Thanks.
3	MR. BOLIN: Functionally, it's like the
4	shutdown cooling system.
5	It is also like the direct reactor
6	auxiliary cooling system of liquid metal reactors, and
7	EM-Squared had that kind of a system, a forced cooling
8	system.
9	And up above here, we have RVCS water
10	tanks, which I'll also discuss in the Next slide. So,
11	this is just a general arrangement of the structure,
12	the below-grade structure, of the containment. And
13	it's a Category 1 structure.
14	The need for containment heat removal,
15	cleanup, and venting, those are still under
16	investigation. It is something addressed as a
17	possibility in the PDCs as something that might be
18	necessary, but it's still under investigation.
19	Obviously, below-grade containment is
20	intended to also make us less vulnerable to airplane
21	crashes.
22	MEMBER PETTI: John, I wanted to go back
23	for a minute to the Brayton cycle.
24	MR. BOLIN: Go back to that slide?
25	MEMBER PETTI: No, no, just a question on
I	

(202) 234-4433

	46
1	it.
2	On the bigger machines, there was always
3	a lot of development to get it to work, but at these
4	smaller sizes, I know that you can get such components
5	for gas systems. What's the status for helium
6	systems? Are they commercially available or?
7	MR. BOLIN: No, they're not commercially
8	available. We have not identified a manufacturer.
9	Clearly, there are a variety of turbine manufacturers
10	that we could choose from, but no one is building
11	helium turbine machinery. Obviously, there are air-
12	driven
13	MEMBER PETTI: Right.
14	MR. BOLIN: turbine machines, but no
15	helium ones.
16	MEMBER PETTI: Thanks.
17	MR. BOLIN: Sure. Okay. So, like I
18	alluded to, we have residual heat is being removed by
19	both active and passive systems. Really, the first
20	line of defense is the power conversion system itself.
21	We are, in particular, designing the system so that,
22	if there is a grid disruption, that the power
23	conversion system will ramp down and provide house
24	loads and cool the reactor at house loads.
25	But if the power diversion system is the
Į	1

(202) 234-4433

1 source of the problem, then the maintenance cooling system is available to remove core residual heat after 2 reactor shutdown. And so, like we said, it is similar 3 function to 4 in the shutdown cooling system. 5 Basically, it's taking hot helium out of the reactor, 6 bringing it over helium-to-water heat exchanger, and 7 then, circulating that back into the reactor, and 8 basically, cooling the core. Details are still being 9 worked on. 10 And so, that water is cooled in a cooling tower by forced air. So, all that system is intended 11 to be not safety-related. 12 The safety-related system is the RVCS, 13 14 although it has, actually, also has a non-safetyrelated component to it. So, the RVCS, the Reactor 15 16 Vessel Cooling System, has two loops. The panel of 17 two loops surrounding the reactor has alternating tubes of one loop or the other loop. 18 19 The water in the RVCS circulates naturally by buoyancy-driven flow. The water goes into a tank. 20 So, this tank -- there's two tanks. 21 Like I say, everything is redundant. There's also two of these 22 cooling towers, and both of these cooling towers have 23 24 a -- there's a heat exchanger in the RVCS tank that is cooled by this cooling tower. So, it keeps the water 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

47

	48
1	in the tank cold during normal operation both
2	tanks. Like I said, there's another cooling tower
3	with heat exchangers that's cooling this tank.
4	In an accident where we lose power, you
5	know, for the safety-related portion of the system,
6	the cooling tower is not safety-related. The pump for
7	this water is not safety-related. So, this whole
8	cooling system of the tank is not safety-related. So,
9	during an accident where we lose all non-safety-
10	related systems, then the RVCS loses heat by boiling
11	off water from the water tank. And the water tank is
12	sized so that we have seven days of boil-off with just
13	one loop. And obviously, if we have both loops that
14	are functioning, then we have, you know, much longer
15	capacity to cool the reactor and vessel system.
16	Also, like many gas-cooled reactors, we
17	have an annular core arrangement that promotes passive
18	heat removal from the core through the reflector.
19	This, actually, like I said, this shows the zirconium
20	silicide reflector is this green. The blue is also
21	zirconium silicide. The central zone is also
22	zirconium silicide. And there is a graphite outer
23	layer outside of the zirconium silicide.
24	And there's three, yes, three fuel zones.
25	We have a three-batch core. And every 15 or more
ļ	I

(202) 234-4433

	49
1	years, we have a refueling and we replace one-third of
2	the core.
3	Let's see. I think that's all I need to
4	say about this slide. Any questions on this slide?
5	MEMBER KIRCHNER: So, John, this is Walt
6	Kirchner again.
7	MR. BOLIN: Yes?
8	MEMBER KIRCHNER: So, on this MCS, then,
9	you said that's not a safety-grade system. So, you
10	must have isolation valves to and from the helium
11	circuit?
12	MR. BOLIN: It is a
13	MEMBER KIRCHNER: Because you have a water
14	heat exchanger there.
15	MR. BOLIN: We have isolation valves on
16	the waterlines, definitely. But the MCS is in the
17	containment. So, we have a
18	MEMBER KIRCHNER: So, you're designing for
19	the potential that you would have a break in that line
20	
21	MR. BOLIN: We'd have a break in
22	MEMBER KIRCHNER: and the containment
23	would have the pressure rating
24	MR. BOLIN: Correct.
25	MEMBER KIRCHNER: to withstand that
I	

(202) 234-4433

```
www.nealrgross.com
```

	50
1	blowdown? Okay.
2	MR. BOLIN: Correct. So, the MCS is one
3	of our sources of primary coolant breaks. Now, there
4	is a flow shutoff valve downstream it will probably
5	be downstream of the circulator. Because, otherwise,
6	we'll get natural circulation through this maintenance
7	cooling system. So, we have a flow shutoff valve for
8	normal operation.
9	MEMBER KIRCHNER: Thank you.
10	MR. BOLIN: Okay. This is my last slide.
11	Or, no, it's not my last slide. Okay.
12	So, one of the things that has been a
13	concern with gas-cooled reactors is bypass flow. And
14	also, related to that is flow-induced oscillations.
15	I know that there is a PDC on power oscillations.
16	The coolant itself, of course, it doesn't
17	have a reactivity effect, but movement of core and
18	reflector structures can have some reactivity effect.
19	In particular, the bypass flow, you know, because the
20	I don't know if it was clear, but the fuel assembly
21	is relatively open. So, it's kind of an open bundle.
22	It does have brackets on the corners, but, basically,
23	as the flow comes up through the fuel assembly, it can
24	redistribute among the various fuel assemblies.
25	But, also, because it's open, it can also

(202) 234-4433

1 feed bypass flow paths. So, as you see here, around 2 the outer fuel assemblies, and also, all throughout 3 the inner fuel assemblies, there are gaps between 4 these blocks. And so, because of the open fuel 5 assembly, we can get bypass flow going from the fuel area into the central zone and into the other 6 7 reflector zone. And, in fact, this outer green zone 8 also has gaps in it, because it's going to be in 9 pieces.

And so, all these gaps contribute 10 to bypass flow. It has a benefit, though. These bypass 11 flow paths also improve heat transfer during loss-of-12 forced-cooling accidents. So, while our predominant 13 14 heat transfer method is by radiation heat transfer 15 from the fuel assemblies to the reflector, we also get a natural circulation from the upper plenum down 16 17 through the outer reflector bypass flow paths, and then, into the fuel and back up, into the fuel here 18 19 and back up.

So, the bypass flow has a negative effect during normal operation because it reduces the amount of flow through the core, but it has a positive effect during loss-of-forced-cooling accidents because it aids in the natural circulation of helium through the core.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	52
1	Any questions on this?
2	MEMBER KIRCHNER: Can you give us, John
3	this is Walt Kirchner just some estimate of steady
4	state? What's the centerline temperature in your peak
5	rod bundle, roughly? You know, compared to LWR, the
6	cooling is not as efficient as a forced-water
7	circulation system. So, I'm imagining that your delta
8	T that's building up with the UO2 pellet on the order
9	of diameter of an LWR fuel rod would have a centerline
10	temperature that's running significantly higher. Is
11	your power density so low
12	MR. BOLIN: Let's go back
13	MEMBER KIRCHNER: versus your surface
14	area, that the centerline uranium oxide temperatures
15	are low?
16	MR. BOLIN: Well, let's go back to the
17	chart I had.
18	So, yes, you can see here that the fuel
19	rod linear power is about it's not quite 10 times
20	lower, but it's close, almost 10 times lower linear
21	power than an LWR. So, the delta T in the fuel is,
22	correspondingly, 10 times lower. And so, our peak
23	fuel temperatures are running around, I think around
24	1200 degrees C.
25	MEMBER KIRCHNER: Okay. It doesn't quite
	1

(202) 234-4433

	53
1	scale like that. I'm sorry.
2	MR. BOLIN: Well, it doesn't quite
3	MEMBER KIRCHNER: You've got a helium
4	coolant and
5	MR. BOLIN: The helium the cladding
6	temperature is a lot higher.
7	MEMBER KIRCHNER: Yes.
8	MR. BOLIN: Yes, the cladding temperature
9	is obviously, the cladding temperature is higher
10	than the helium that's cooling it. But, if the
11	cladding temperature is around 800 degrees C, we have,
12	like I said, a much lower fuel delta T, and it,
13	correspondingly, lowers our peak fuel temperature.
14	MEMBER KIRCHNER: It would be useful to
15	have simple graphs at least for steady-state full-
16	power conditions what your centerline UO2
17	temperature; what your cladding temperature is; what
18	the coolant is.
19	MR. BOLIN: Yes, I have that.
20	MEMBER KIRCHNER: And then, for a loss of
21	I think Dennis asked earlier for a loss of
22	forced circulation, where this was a real issue for
23	some of the fast reactors, gas-cooled fast reactor
24	designs, what kind of temperature excursion you would
25	see in a loss-of-flow condition?
I	I

(202) 234-4433

	54
1	MR. BOLIN: Yes, I think that is a subject
2	that is best addressed later, I mean in a subsequent
3	discussion maybe. I actually do have some slides on
4	that, but it is for a different meeting. So, I didn't
5	put it in this package.
6	So, for accident conditions, we are
7	MEMBER KIRCHNER: These comparisons that
8	you're showing aren't very useful, actually.
9	MR. BOLIN: Well, yes, I mean, they're
10	MEMBER KIRCHNER: Because I think you get
11	my point. I mean, it's a rather complicated thermal
12	hydraulic set of conditions that doesn't extrapolate
13	well from gas to water.
14	MR. BOLIN: Correct.
15	MEMBER KIRCHNER: It depends on how much
16	surface area you have; what your ilium flow velocity
17	is
18	MR. BOLIN: So, the surface
19	MEMBER KIRCHNER: a whole number of
20	things. So, when you just do this apples-and-oranges
21	comparison, it's not terribly useful. It would be
22	much more for your benefit in making your case to show
23	what the actual operating conditions are for the fuel
24	and the cladding, and how the system responds in a
25	loss-of-flow condition.
ļ	

(202) 234-4433

	55
1	MEMBER MARCH-LEUBA: Yes, this is Jose.
2	Eventually, you're going to have to choose
3	your licensing basis events and run all the Chapter 15
4	analyses and figure out what your temperatures are
5	everywhere. But, before I invest money in the design,
6	I assume you have run some preliminary calculations
7	for what you consider to be the limiting event.
8	MR. BOLIN: Correct, we have.
9	MEMBER MARCH-LEUBA: And I would expect
10	that likely to be loss of pressure and when you lose
11	your gas.
12	MR. BOLIN: Correct.
13	MEMBER MARCH-LEUBA: And then, you started
14	cooling off by radiation. What temperatures you reach
15	are you going to be okay?
16	MR. BOLIN: Correct, we are. We've
17	designed it for that accident.
18	And as far as the surface area is
19	concerned, remember, our fuel rods have the same
20	geometry as the light water reactor fuel rods. So,
21	our fuel rod surface area is the same as the light
22	water reactor.
23	But that's about, you know, in the future,
24	you will need to present both normal operation and
25	accident condition fuel performance.
I	I

(202) 234-4433

So, we have -- and I know the NRC project management is also going to go over this -- but we have made a lot of progress in pre-application licensing with the NRC. We have prepared a Regulatory Engagement Plan, you know, that outlines our licensing strategy for this conceptual period. Obviously, the subject of this discussion is the principal design criteria. We submitted that;

9 got some requests for additional information, and we 10 responded to those and revised the Topical Report. 11 And that's the subject of this meeting, is the NRC's 12 Safety Evaluation on that Topical Report.

We have also submitted a QA program description Topical Report. We got some feedback early on, and then, made changes to that document. And that's undergoing review now.

And we've also submitted a Fuel Qualification Plan Technical Report. It's still a fairly early document. It's like a white paper. It's not a Topical Report.

21 And then, we have other documents that are 22 planned: a Source Term Methodology, LBE selection, 23 PRA, and safety classification.

24 CHAIR BIER: A quick question here. 25 You're expecting that the safety classification

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

	57
1	decisions will be made based on the PRA or they are
2	two separate processes?
3	MR. BOLIN: Well, we will not have a
4	complete PRA at the end of this conceptual design
5	period. But the safety classification will be
6	informed by the preliminary risk assessment work that
7	is being done by, actually, being done by Vanderbilt
8	University and also, historical PRA work that we've
9	done on gas-cooled reactors in the past. So, it will
10	be risk-informed safety classification. And the LBE
11	selection will also be risk-informed, but not based on
12	a complete PRA.
13	CHAIR BIER: Okay. Thanks.
14	MEMBER KIRCHNER: John, this is Walt
15	Kirchner.
16	MR. BOLIN: Yes?
17	MEMBER KIRCHNER: I started to digress or
18	regress. Your basic reactivity control in terms of
19	accident conditions is based on leakage? In other
20	words, the diameter of your core and power level were
21	chosen or are pretty much indirectly determined
22	depending on leakage?
23	You've gone away from reflector control to
24	control rod controls. So, in an offsite condition,
25	what's the primary shutdown mechanism for this? Is it
	I

(202) 234-4433

58 1 Doppler and leakage? Could you give us just a feeling 2 for your core design philosophy in terms of reactivity 3 control? 4 MR. BOLIN: Well, while Doppler is a 5 factor that can lessen the reactivity control requirements, we are still primarily relying 6 on 7 control rods and shutdown rods. So, we have control rods that will be, you know, partially inserted into 8 9 the core for power adjustment, but we also have shutdown rods that will be fully removed from the core 10 that will be used for shutdown, out-of-steam shutdown 11 rods. 12 So, leakage and Doppler and reactivity 13 14 coefficients, those will all play a factor, but we're still primarily relying on control rods and shutdown 15 16 rods. MEMBER KIRCHNER: I'm thinking to offsite 17 conditions. 18 19 MR. BOLIN: Yes. 20 MEMBER KIRCHNER: So, our fast sodium reactors, typically, are relying on leakage -- that 21 determines the maximum size of the core --22 and expansion. 23 24 MR. BOLIN: Yes, we're not relying on 25 expansion or --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	59
1	MEMBER KIRCHNER: Right.
2	MR. BOLIN: Like I said, leakage is not
3	I mean, it's there, but we're not relying on leakage.
4	MEMBER KIRCHNER: Are your reflectors,
5	your radial reflectors, positive or neutral? Or
6	negative?
7	MR. BOLIN: I don't know the answer to
8	that.
9	MEMBER KIRCHNER: It's just something to
10	think about.
11	MR. BOLIN: Okay.
12	MEMBER KIRCHNER: We'll ask in a future
13	engagement.
14	MR. BOLIN: Yes.
15	MEMBER KIRCHNER: Thank you.
16	MEMBER PETTI: So, John, then, what
17	determines the size? Why is it 110 megawatts? Was
18	there some accident that limited, you know
19	MR. BOLIN: Definitely. It definitely was
20	the depressurized loss-of-forced-cooling accident that
21	determined the size. And, in fact, we originally were
22	looking at 50 megawatts electric and 120 megawatts
23	thermal. And we ended up reducing the power to 100
24	megawatts thermal for the depressurized loss-of-
25	forced-cooling transient.
I	1

(202) 234-4433

60 1 MEMBER PETTI: And is it а vessel temperature or a peak silicon carbide temperature? 2 It was peak silicon carbide 3 MR. BOLIN: 4 temperature. 5 MEMBER MARCH-LEUBA: Am I to assume from what you said that your safety margin is 20 percent? 6 7 I mean, you cannot handle 50 megawatts electric, but 8 you can handle 40? I mean, that's very limited for an 9 advanced reactor. Yes, I'm just putting it in the record. 10 You don't have to answer it. But we're used to seeing 11 reactors that you can shoot them with a shotgun and 12 nothing happens to it. 13 14 MR. BOLIN: Yes. 15 Are you telling me MEMBER MARCH-LEUBA: 16 that you want to go out to 20 percent power operate and make it? 17 All right. Don't answer. I'll put the 18 19 bad things on the record, but you don't have to --20 I would say that the analysis MR. BOLIN: has improved during the conceptual design period, but 21 we have decided to stick with the 100 megawatts rather 22 than try to minimize our margin. 23 And silicon carbide has different --24 Just to calibrate us, 25 MEMBER KIRCHNER:

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	61
1	John, what do you use as a benchmark for your silicon
2	carbide structure as a thermal, like a thermal limit,
3	to determine, you know, it remains intact in a loss-
4	of-depressurization and loss-of-forced-circulation
5	event?
6	Because that's, typically, you know, if
7	you go back to the HTGR business that you all were
8	involved in, you know, sizing of the core was kind of
9	an inverse calculation of temperature of the vessel
10	and temperature of the TRISO particle fuel.
11	What limits here? If it's silicon
12	carbide, can you calibrate us? What temperature is
13	that?
14	MR. BOLIN: The temperature limit we have
15	been using is 1800 degrees C. So, we want our silicon
16	carbide to be below 1800 degrees C.
17	MEMBER MARCH-LEUBA: And that's because of
18	the welding on the top of the rod?
19	MR. BOLIN: No. No.
20	MEMBER MARCH-LEUBA: So, I thought that
21	was the number that we were given earlier.
22	MR. BOLIN: The cladding itself. No, it
23	doesn't, it doesn't
24	MEMBER PETTI: Decomposition? Because I
25	always thought decomposition was a little higher than
ļ	

(202) 234-4433

	62
1	around 2000.
2	MR. BOLIN: Yes, decomposition is higher
3	than that.
4	MEMBER PETTI: Yes.
5	MR. BOLIN: It's higher than that.
6	MEMBER PETTI: So, it's just a composite
7	
8	MR. BOLIN: It is degradation. I mean,
9	there's degradation of the cladding at 1800 C. And
10	so, we want to stay below that point. And we are.
11	MEMBER REMPE: I am confused because,
12	earlier, Aaron said that the peak temperatures for the
13	end caps for air are or I guess for helium was
14	1900 C?
15	MR. BOLIN: Correct.
16	MEMBER REMPE: So, what are the aren't
17	the end caps made of silicon carbide, too?
18	MR. BOLIN: Yes. Yes.
19	MEMBER REMPE: Was it 1800 or 1900?
20	MR. BOLIN: Eighteen hundred was just the
21	number we were using as a design
22	MEMBER REMPE: So, you have margin, is
23	what you're saying?
24	MR. BOLIN: Yes. Yes.
25	MEMBER REMPE: Unless there's not any
I	

(202) 234-4433

```
www.nealrgross.com
```

	63
1	steam in there.
2	MR. BOLIN: Right.
3	DR. SCHULTZ: John, this is Steve Schultz.
4	Just thinking about some operational considerations.
5	You mentioned the fuel cycle approach was going to be
6	such that the fuel assemblies would be in reactor for
7	a fairly extended period of operation. Any concerns
8	about the fuel assembly dimensional stability over
9	those long periods of time to high burnups as well?
10	In other words, are you going to have any problems
11	after many, many years moving assemblies when you do
12	your fuel management at infrequent intervals?
13	MR. BOLIN: Well, we will be moving fuel
14	assemblies every so, when we refuel every 15 years,
15	all the fuel assemblies get moved.
16	DR. SCHULTZ: We hope.
17	MR. BOLIN: Well, yes. And like I said,
18	15 years, we will have design gaps around the fuel
19	assemblies. And like I said, silicon carbide is very
20	rigid material. So, no deformation is
21	DR. SCHULTZ: So, the accommodation is
22	there in the design
23	MR. BOLIN: There is some
24	DR. SCHULTZ: for that type of an
25	approach?
ļ	I

(202) 234-4433

	64
1	MR. BOLIN: Correct. Correct.
2	MEMBER PETTI: How many dpa's, John,
3	about?
4	MR. BOLIN: Well, on average, it is 77.
5	MEMBER PETTI: And peak?
6	MR. BOLIN: No. And peak is about 100.
7	So, pretty aggressive. But it's been done before.
8	MEMBER PETTI: Yes. No, I'm not too
9	worried about it. There's data that shows that it's
10	okay. I'm more worried about how you qualify a 15-
11	year fuel cycle in ATR, which is like super-
12	accelerated for light water reactors. It's kind of
13	off the charts for this fuel.
14	MR. BOLIN: It's a subject of a
15	presentation I'm giving on Thursday.
16	MEMBER PETTI: Oh, good. I'm glad you've
17	got the answer.
18	DR. SCHULTZ: I am, too. That sounds
19	good.
20	MR. BOLIN: It's at INL. So, if you're in
21	the neighborhood
22	DR. SCHULTZ: Well, thank you, John.
23	MEMBER REMPE: Back in D.C., though, a
24	question. Since this is your last slide, what are you
25	guys going to do for fuel ultimate storage? Is it
l	I

(202) 234-4433

	65
1	going to be onsite? Are there any special concerns
2	about how you're going to store it onsite, and then,
3	ultimately, if we ever have a repository, transferring
4	it to the repository? Or at least
5	MR. BOLIN: So
6	MEMBER REMPE: Go ahead.
7	MR. BOLIN: So, we're still working on
8	that. We're going to store onsite within the reactor
9	building, similar to other gas-cooled reactor designs.
10	At least have a core's worth I think core and a
11	reload worth of storage onsite in a spent fuel storage
12	area. Because I don't want to say I don't know if
13	it's going to be a pool, a vault, or storage wells.
14	That's still being worked out.
15	Eventually, I think we'll use dry storage
16	on the outside of the reactor building, similar to
17	like what light water reactors are doing now. We may
18	be able to move fuel into dry storage casks fairly
19	early because of our low power density. So, that's
20	still being investigated.
21	I do have to show my last slide just to
22	acknowledge that this work was supported by the
23	Department of Energy, Office of Nuclear Energy, under
24	that contract for advanced reactor concepts.
25	So, let's see.
ļ	I

(202) 234-4433

	66
1	CHAIR BIER: So, we are remarkably close
2	to being on time. You did a good job anticipating how
3	many questions and comments you would get, I guess.
4	MR. BOLIN: Yes.
5	CHAIR BIER: If there are no more
6	questions on this presentation, this is probably a
7	good time to take a break, as scheduled, and be back,
8	I guess, at maybe 3:30, instead of 3:25. Is that okay
9	with people? I'm sorry, 2:30. I'm looking at the
10	wrong computer and doing the conversion in my mind of
11	time zones. You're right.
12	We're ahead of schedule. So, let's take
13	a break until 2:30, and then resume. Is that
14	agreeable to everybody?
15	(Whereupon, the above-entitled matter went
16	off the record at 2:12 p.m. and resumed at 2:32 p.m.)
17	CHAIR BIER: All right. Sorry for the
18	brief delay. Are people ready to move forward?
19	John, I believe you are up after the
20	break, also, for the principal design criteria, is
21	that correct?
22	MR. BOLIN: Correct. Can you hear me?
23	CHAIR BIER: Yes.
24	MR. BOLIN: And is my audio better?
25	CHAIR BIER: Well, it sounds fine so far.
	1

(202) 234-4433

	67
1	Okay.
2	MR. BOLIN: Okay. Because I have donned
3	a set of headphones and microphones. Hopefully,
4	that's going to
5	CHAIR BIER: That will probably help, yes.
6	MR. BOLIN: cut back on ambient noise.
7	CHAIR BIER: Thank you. We appreciate it.
8	And so far, you are not sharing your slides. I
9	believe you're planning to.
10	MR. BOLIN: No, I've not started sharing.
11	CHAIR BIER: Okay.
12	MR. BOLIN: Yes.
13	CHAIR BIER: That's fine.
14	MR. BOLIN: Yes. Let me pull up that
15	presentation.
16	CHAIR BIER: By the way, I thought your
17	slides were quite readable, which is nice. Sometimes
18	they're minuscule eye charts, but these were pretty
19	good. Thank you.
20	MR. BOLIN: There might have been a few
21	tests, eye tests, on there.
22	Okay. Let's see here. Okay. How is
23	that?
24	CHAIR BIER: It looks good. Thank you.
25	MR. BOLIN: Okay. This is an overview of
I	1

68 the Principal Design Criteria for the Fast Modular 1 2 Okay. There. Reactor. did use the NRC quidance 3 So, we in 4 adapting and developing our Principal Design Criteria. 5 The Req Guide 1.232, as you're aware, developed PDCs 6 for non-light water reactors by modifying and 7 supplementing 10 CFR 50, Appendix A, General Design And they did that in three categories: 8 Criteria. 9 sodium-cooled fast reactor, modular high-temperature 10 qas-cooled reactor, and then, а design-neutral advanced reactor design criteria. 11 So, we used the ARDC and the MHTGR-DC as 12 starting points, and then, in our Topical Report, we 13 14 modified the NRC rationale for adaptation of the GDC 15 to our application for the FMR-DCs. So, I'll just quickly go over some of the 16 key things about the FMR-DCs, and I've organized it in 17 the major categories of the design criteria. 18 19 first category is overall So, the requirements, FMR-DC 1 through 5. 20 So, FMR-DC 1 is the same as the GDC. 21 Likewise, FMR-DC 2 is also the same as 22 23 GDC. 24 FMR-DC 3 is the same as the ARDC. FMR-DC 4 made a slight change to the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	69
1	MHTGR-DC. We changed missiles. We expanded it or
2	made it more specific to include missiles originating
3	both inside and outside the reactor helium pressure
4	boundary. And we did that to explicitly cover any
5	missiles generated by the turbine machinery.
6	And then FMR-DC 5 is the same as the GDC.
7	The next category is multiple barriers,
8	FMR-DC 10 through 19. The FMR-DC 10 on reactor
9	design, the fuel design, as we went over previously,
10	the fuel design using SiGA cladding, it functions
11	similarly to light water reactors in that, you know,
12	that there's kind of a classic cladding function.
13	And so, we chose to use the SAFDL
14	terminology, both here and in other FMR-DCs. So,
15	where we may have been using a MHTGR-DC, we,
16	basically, chose to use the SAFDL terminology instead
17	of the I don't know how you pronounce it SARRDL
18	terminology.
19	Okay. Then, FMR-DCs 11, 13 through 15, 17
20	through 18, those are the same as the ARDCs and MHTGR-
21	DCs, but with minor terminology changes. So, they're,
22	essentially, the same as those.
23	FMR-DC 12, the suppression of reactor
24	power oscillations, the word "structures" was added to
25	address reflectors, but the word "coolant" was
ļ	I

(202) 234-4433

	70
1	deleted.
2	So, as mentioned, the helium coolant
3	itself is neutronically neutral or inert or
4	transparent. And so, helium density flow changes, in
5	and of itself, don't cause a reactivity change, but
6	MEMBER MARCH-LEUBA: This is Jose.
7	But, conceivably, you could have something
8	like u-tube momentarily-type oscillation of the
9	coolant between the reflector and the core, for
10	example. I don't know if you're supposed to go into
11	that. And that will, even though the helium is (audio
12	interference), it changes the temperature and has some
13	Doppler feedback. I don't suspect, I mean, it's even
14	remotely a problem, but you should analyze it.
15	MEMBER KIRCHNER: John, before you answer,
16	let me add on.
17	So, you have a fast reactor here, and you
18	have a reflector in the middle of it. Now, that's an
19	adaptation from the HTGR world. That's to push the
20	power out and to allow your passive heat rejection
21	system to take care of decay heat and manage the
22	vessel wall temperature, and a number of other
23	factors.
24	But, for a fast reactor now, does that
25	reflector decouple one part of the reactor from
	1

(202) 234-4433
71 1 another? In other words, do you have a tightlycoupled neutronic design or is this loose now --2 Ι 3 use that word loosely -- in terms of how the core 4 might behave with regard to power oscillations? 5 Because you're now running in a fast spectrum, not a 6 thermal spectrum. 7 MR. BOLIN: So, I think the coolant, in and of itself, is not a source of power oscillation. 8 flow is 9 possible But the а source of power 10 oscillation. So, I think that's why structures were added to address whether flow could cause 11 the reflectors to move, and therefore, cause a reactivity-12 generated power oscillation. 13 14 Now, that flow through the reflectors can 15 affect both position and temperature. So, I think 16 we're covered by that. 17 Since it is a fast-spectrum reactor, it tightly-coupled, should fairly 18 be and these 19 reflectors, like I said, this is zirconium silicide. So, it's a fairly heavy reflector. So, it doesn't 20 moderate like a lot of reflectors tend to do, you 21 know, graphite or water, or whatnot. 22 So, the coupling, I think the coupling is 23 24 tight, but we're still looking at whether there's really any significant oscillation or reactivity 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	72
1	feedback from the reflectors. Of course,
2	historically, Fort Saint Vrain had a power oscillation
3	issue with the fuel columns and their moving around.
4	So, I think that's why we don't want to totally ignore
5	the structures.
6	Okay? Then, the last DC in this category
7	is containment design. And we are using the same as
8	the SFR-DC because the FMR uses, like we discussed
9	earlier, a low-leakage pressure-retaining containment.
10	So, more in line with the SFR-DC and, certainly, not
11	the vented confinement of the MHTGR.
12	The reactivity control is FMR-DC 20
13	through 29.
14	FMR-DC 20 through 24 are the same as the
15	GDCs.
16	FMR-DC 25 is the same as ARDC with minor
17	terminology changes.
18	And then, FMR-DC 26, just like the ARDC
19	and MHTGR-DC, it combines GDC 26 and GDC 27.
20	FMR-DC 28 is the same as MHTGR-DC.
21	And FMR-DC 29 is the same as GDC.
22	Fluid systems, FMR-DC 30 through 46.
23	30 through 33 are the same as MHTGR-DC.
24	The FMR-DC 34, residual heat removal, it's
25	similar to MHTGR-DC, but we wanted to make sure that
I	I

(202) 234-4433

	73
1	it covered both the active, non-safety-related and
2	passive safety-related systems available to remove
3	residual heat. Also, similar to MHTGR-DC, it
4	incorporates the requirements in GDC 35.
5	And then, FMR-DC 36 and 37 are the same as
6	MHTGR-DC.
7	38 through 41 are the same as the ARDC.
8	DC-42 is the same as GDC.
9	DC-43, 45, and 46 are the same as ARDC.
10	And FMR-DC 44 is the same as MHTGR-DC.
11	So, all of these PDC selections are driven
12	by the design choices that we've made in the design.
13	And I believe this is the last slide of
14	DCs. It is reactor containment.
15	So, 50 through 53 are the same as ARDC.
16	54 is the same as SFR-DC.
17	And 55 through 57, they're the same as
18	ARDC, but with minor terminology changes.
19	And then, the next category is fuel and
20	radioactivity control.
21	60, 62, and 63 are the same as GDC.
22	And 61 is the same as ARDC.
23	And the same acknowledgment as the
24	previous presentation. It's supported by the U.S.
25	DOE, Office of Nuclear Energy, under that contract.
I	1

(202) 234-4433

	74
1	So, that was that.
2	CHAIR BIER: So, this is Vicki Bier. I
3	have a couple of very general, high-level questions.
4	One, could you discuss briefly, of the
5	modifications you described, which ones were kind of
6	the most crucial for safety versus just matching the
7	terminology to what's in your design?
8	MR. BOLIN: Well, let's see here.
9	MEMBER MARCH-LEUBA: How about DC 4 with
10	the missiles?
11	MR. BOLIN: Yes, that probably is the most
12	unique challenge from the FMR, is the missiles.
13	Because that, obviously, adds I mean, not that it
14	wouldn't have been considered, anyway, but it
15	certainly adds a design focus. I mean, not that we
16	would have ignored it, but, yes.
17	CHAIR BIER: Sure. One other, again,
18	high-level question. I know that the Reg Guide says
19	that it is possible for the applicants to identify
20	entirely new PDCs for unique features of the design
21	that are not adequately covered by the kind of
22	templates in the Reg Guide. And did you find any
23	situations where you were at least pondering that or
24	thought it might be worthwhile? Or do you think
25	you're close enough to the samples in the Reg Guide,
I	I

(202) 234-4433

75 1 that you were able to cover what you needed there? 2 I think, because the staff MR. BOLIN: 3 covered the two different, very different, advanced 4 reactors -- the sodium fast reactor and the MHTGR --5 that I don't think there were -- we did not identify any gaps in design criteria that we -- we did not 6 7 identify any gaps. 8 CHAIR BIER: Okay. So, in other words, 9 the reason why what you have looks a lot like the 10 samples in the Reg Guide is really just because the Reg Guide is pretty thorough and comprehensive, not 11 because you were just going through kind of a checkbox 12 process of "pick one from each column" kind of thing? 13 14 MR. BOLIN: Correct. Correct. 15 CHAIR BIER: Okay. MR. BOLIN: I mean, I think the Reg Guide 16 17 was extremely useful in this process. Well, thinking about the MEMBER REMPE: 18 19 historical approaches that GA has developed, where you start with the critical safety functions, are you 20 doing that or applying that approach with this design? 21 Is it just, you know, control radionuclide release --22 MR. BOLIN: It's the same critical safety 23 24 functions, correct. MEMBER REMPE: So, there's nothing that's 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	76
1	unique or different, then, when you think about this
2	design? I mean, sometimes chemical reactions comes in
3	with higher priority, but you just didn't see anything
4	else?
5	MR. BOLIN: No. I mean, obviously, we
6	still have some graphite. So, we do have graphite
7	concerns. But we don't have the graphite is not in
8	the high-temperature parts of the core.
9	We still have water ingress concerns, but
10	we don't have high-temperature, high-pressure steam.
11	So, a lot of our safety concerns from MHTGR are quite
12	a bit lessened.
13	MEMBER MARCH-LEUBA: This is Jose.
14	How about the very long cycle time, the
15	15-years recycle/reload, and the implications that you
16	may have on misalignment of fuel, clipping, phase-in,
17	moving, vibrations? And 15 is a long time before you
18	open and look inside to see what's going on.
19	MR. BOLIN: Yes.
20	MEMBER MARCH-LEUBA: I mean, does that
21	affect something?
22	MR. BOLIN: Certainly, we do expect to
23	have to shut down more frequently than every 15 years
24	for other maintenance and inspection reasons.
25	MEMBER MARCH-LEUBA: Yes, but do you
	I

(202) 234-4433

	77
1	expect to open the core? You'll probably be fixing
2	some pump outside of the core plenum.
3	MR. BOLIN: Well, that hasn't been
4	decided, whether
5	MEMBER MARCH-LEUBA: Yes. And if I
6	incorrectly wanted to
7	MR. BOLIN: And, you know, for the first-
8	of-a-kind prototype, it might be you might do some
9	fuel inspection.
10	MEMBER MARCH-LEUBA: I'm just trying to
11	think what is different. If I read correctly your
12	cartoons, the control rods are sitting outside, or the
13	shutdown rods for sure are sitting outside the vessel,
14	and they have to go through sealed?
15	MR. BOLIN: Well, the control rod drive
16	mechanism and connecting rod are out well, they're
17	not technically, that's still part of the vessel.
18	It's still part of the helium reactor pressure
19	boundary.
20	MEMBER MARCH-LEUBA: Then, enclosed? I'm
21	just wondering if there is some design criteria that
22	applies to those special configurations.
23	MR. BOLIN: Well
24	MEMBER MARCH-LEUBA: It certainly feels
25	let me put it this way; I'm the bad guy here it

(202) 234-4433

```
www.nealrgross.com
```

	78
1	simply feels that you took all the GDCs that were in
2	the design guide and went through to see if they
3	applied to you, instead of thinking about your design
4	and see what's missing. It's something very human to
5	do, and that's something we all do.
6	So, on the review, I'll be asking the
7	staff, when they're here, if they thought, what's
8	missing?
9	MR. BOLIN: Okay.
10	MEMBER MARCH-LEUBA: It's very easy, when
11	somebody gives you a paper, to correct the English,
12	but what's important is, what paragraph is missing in
13	that article? The same thing here.
14	MR. BOLIN: All right.
15	CHAIR BIER: For operational reasons, are
16	you anticipating that there would be periodic
17	shutdowns for reasons other than refueling, or that
18	it's just going to run flat-out and just adjust power
19	levels?
20	MR. BOLIN: I mean, it hasn't been worked
21	out specifically, but there is discussion of whether
22	we would want to shut down every five years for an
23	inspection, particularly, you know, power conversion
24	unit inspection and/or generator or control rod drive
25	motors, or a variety of things we might want to

(202) 234-4433

	79
1	inspect every five years. At least, particularly, we
2	have to consider increased inspection frequency for a
3	first-of-a-kind plant. So, that's being discussed.
4	MEMBER PETTI: Wouldn't Section 11
5	require, like, the vessel to be inspected?
6	MR. BOLIN: Yes, vessel inspection is
7	another example.
8	MEMBER HALNON: Yes, and don't
9	underestimate the power of the insurance agency.
10	MR. BOLIN: Well, yes. We tend to ignore
11	that until the very end.
12	CHAIR BIER: Are there other questions or
13	comments for John, or any other points that John wants
14	to add, before we transition to the staff?
15	(No response.)
16	CHAIR BIER: I guess one other question
17	that I have, I noticed that there was a Rev 1 of the
18	PDCs, which I guess was in response to the RAIs from
19	the staff; that some things got adjusted? Again, are
20	there any there that are noteworthy enough that you
21	want to call them out or discuss the value of those
22	changes?
23	MR. BOLIN: Well, it's interesting that a
24	lot of the changes were we had actually prepared
25	our DCs based on a draft of the Reg Guide. And then,
I	I

(202) 234-4433

	80
1	the Reg Guide changed. And so, there were
2	inconsistencies between our DCs and the Reg Guide.
3	So, a lot of the corrections were just making those
4	corrections to the revised Reg Guide.
5	CHAIR BIER: Okay. If there are no
6	further questions and comments, then, I guess we can
7	transition to staff. And I'm not sure if the primary
8	presenter is Reed Anzalone or Samuel Cuadrado. Which
9	of
10	MR. ANZALONE: It's going to be me.
11	CHAIR BIER: Okay. Thank you.
12	So, I guess, John, you can stop sharing
13	your slides, then. Thank you very much for the
14	presentation.
15	MR. BOLIN: Thank you.
16	MR. ANZALONE: Okay. Thanks. So, thank
17	you, everyone, for having us here today.
18	My name is Reed Anzalone. I'm a Senior
19	Nuclear Engineer in NRR's Division of Advanced
20	Reactors and Non-Power Production and Utilization
21	Facilities. I'm joined today by our Project Manager,
22	Sam Cuadrado, who is also with me in DANU.
23	So, I was the lead technical reviewer for
24	this effort, and I was assisted by Sheila Ray in our
25	Division of Engineering and External Hazards, who's
	I

(202) 234-4433

	81
1	here on the phone. She covered the electrical PDCs,
2	and Steve Jones, who is with me in DANU, covered the
3	containment PDCs, who wasn't able to make it. So, if
4	there are questions about those, I can address them.
5	Next slide, please.
6	So, quick agenda, and you'll see that a
7	lot of this should look very, very, very, very
8	familiar from the presentations that we just had from
9	General Atomics. I was laughing the whole time during
10	John's presentation because there is almost a one-to-
11	one correspondence between the topics covered. So, I
12	may go quickly through some of these. And, of course,
13	if you have questions, feel free to interrupt.
14	MEMBER MARCH-LEUBA: Is that the 100
15	percent rule to coordinate with the other presenter?
16	MR. ANZALONE: No. In fact, we
17	MEMBER MARCH-LEUBA: In fact, the
18	desirable?
19	(Laughter.)
20	MR. ANZALONE: We only got the slides
21	yesterday. So, I was happy to see that they matched
22	very well.
23	So, Sam will be talking a little bit about
24	the pre-application engagement. Then, it will go back
25	to me, and I'll talk about the Topical Report
ļ	

(202) 234-4433

	82
1	timeline. That's really just going to be for
2	reference, for anyone who might want to go back and
3	look at the correspondence that we had.
4	I'll touch a little bit on some of the
5	design features that we already talked about; talk a
6	little bit about the PDC guidance that's out there;
7	the PDC development approach that General Atomics
8	provided to us in their Topical Report, and then, I'll
9	go into the Fast Modular Reactor design criteria
10	themselves, including kind of highlighting the key
11	design choices and the effects that those had on the
12	PDCs. And hopefully, I can address the question that
13	you raised. And then, I'll just briefly touch on the
14	Safety Evaluation and conclusions.
15	So, Next slide. MR. CUADRADO DE JESUS:
16	Now, good afternoon. Sam Cuadrado.
17	So, this is a brief overview of the pre-
18	application engagement with General Atomics. You saw
19	a similar slide when John Bolin was doing the
20	presentation.
21	We got the pre-application letter
22	engagement plan last year in March. Accordingly,
23	we're reviewing a couple of documents, which include
24	this one that we see, the Topical Report which is the
25	topic of this meeting.
I	1

(202) 234-4433

```
www.nealrgross.com
```

We have a few qualifications in the Topical Report. Basically, it's only that we are providing feedback in the form of a white paper. And last month, we received the Quality Assurance Program Topical Report. That's currently going through the review process.

7 We expect a few more documents, a few more 8 submittals this year, and a couple more next year. 9 This year, for the summer, we've got the mechanistic 10 source term. By the end of the year, we should be getting the licensing basis event white paper. 11 And for the spring of next year, the safety approach on 12 the PRA and safety classification white papers. 13

So, back to Reed on this.

15 MR. ANZALONE: All right. Next slide. 16 So, just quickly on the review timeline, really, all 17 I wanted to highlight here was that we did ask a round RAIs and we got prompt responses, and then, 18 of 19 subsequently, General Atomics rev'd the Topical Report to incorporate those responses. 20 And then we issued the Draft SA in March. 21

Next slide. Well, go ahead.
MEMBER BALLINGER: I have a question. I
see that the Fuel Qualification Plan Technical Report,
it says, "under review." Do we know when we're going

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

14

	84
1	to get that?
2	MR. CUADRADO DE JESUS: Yes. That is for
3	a white paper there. It was just some feedback. So,
4	they provided some "asks," some questions for us to
5	provide them feedback. I placed that information for
6	you guys to get access to it. But we plan to provide
7	feedback to them by November of this year.
8	MEMBER BALLINGER: So, we have access to
9	this?
10	MR. CUADRADO DE JESUS: You have access to
11	the request, yes, to the Technical Report.
12	MS. DE MESSIERES: This is Candace de
13	Messieres.
14	I just wanted to clarify that this is a
15	Technical Report, not a Topical Report.
16	MR. CUADRADO DE JESUS: Yes, yes, yes.
17	MS. DE MESSIERES: So, I just wanted to
18	make sure that that was clear.
19	MR. CUADRADO DE JESUS: Yes, but you can
20	see the Technical Report and the questions that they
21	want us to answer, to provide feedback. It's in
22	SharePoint for you guys.
23	MEMBER MARCH-LEUBA: But it has been
24	provided on the docket? I mean, we can see it?
25	MR. CUADRADO DE JESUS: Yes, it's on the
I	

(202) 234-4433

	85
1	docket.
2	MEMBER MARCH-LEUBA: But, typically,
3	Technical Reports are part of the SAR.
4	MEMBER HALNON: Yes, we, typically, don't
5	we separate white papers from Technical Reports.
6	This has both. Is it a white paper or is it an
7	actually approved since they don't have a QA
8	program yet, it can't be a Technical Report that they
9	would reference.
10	MR. ANZALONE: No, it's a white paper.
11	MEMBER HALNON: Okay.
12	MR. ANZALONE: It's just called a
13	Technical Report.
14	MEMBER HALNON: Yes, that's the title.
15	(Laughter.)
16	MR. CUADRADO DE JESUS: Yes, but it's on
17	the docket, so you guys can see it.
18	MR. ANZALONE: So, it's not going to be,
19	you know it doesn't get that stamp of finality
20	that's
21	MEMBER HALNON: It won't be referenced out
22	of the SAR
23	MR. ANZALONE: No.
24	MEMBER HALNON: whenever that comes.
25	CHAIR BIER: Just for completeness or
	1

	86
1	clarification, Weidong, if I understand correctly,
2	this is not in the SharePoint for this meeting, but
3	it's available through NRC, is that correct?
4	MR. WANG: Correct. That is, the staff
5	has created a SharePoint, but I think that Sam has
6	MR. CUADRADO DE JESUS: Yes, in
7	SharePoint, there's a folder related to General
8	Atomics.
9	MEMBER HALNON: So, on your next slide,
10	Rev 2 was transmitted. They make it Rev 1.
11	MR. ANZALONE: I think it should be Rev 1.
12	Sorry.
13	Okay. Next slide. So, just talking a
14	little bit about the design features, I know we've
15	just, literally, had a presentation from them. I just
16	wanted to kind of go through the things that we
17	thought were particularly noteworthy in our review.
18	So, one is, obviously, the core
19	arrangement, which is different from the other gas-
20	cooled reactors that we've seen recently at the NRC,
21	which, you know, they're using, essentially, what
22	looks like an LWR core with the fuel rods and UO2
23	cladding, the silicon carbide. But the arrangement is
24	a little bit more like a fast reactor core with a
25	tight space in between the rods and triangular
	I

(202) 234-4433

	87
1	tension, the hexagonal assemblies.
2	And when you compare that so, I was
3	thinking about things in terms of the basis for what's
4	in Reg Guide 1.232. So, that's the MHTGR, which was
5	a prismatic block gas-cooled reactor using TRISO fuel.
6	So, obviously, pretty different there.
7	The other thing that's big that you can
8	see on this slide is the gas turbine. I think that's
9	been covered pretty well.
10	And then, the MHTGR used steam generators
11	rather than having the power conversion system
12	directly on the primary circuit.
13	Next slide. The thing that I'll highlight
14	here, you see the containment. John talked a little
15	bit about that. So, there is an actual containment
16	building versus like a functional containment or
17	confinement approach.
18	And the other thing is the RVCS cooling
19	system, which is a little different from the passive
20	cooling system that was in the MHTGR design.
21	Yes, that's everything I wanted to cover
22	on this slide.
23	So, then, the key design features, and on
24	a future slide, I'll kind of talk about how these feed
25	into the PDCs. So, it just sort of sums up everything
ļ	

(202) 234-4433

	88
1	that I covered in the last couple of slides. I don't
2	think I need to really talk any more about this.
3	Next slide. MEMBER KIRCHNER: Can you
4	just pull your microphone up? Maybe we can hear it
5	better. Yes, great.
6	MR. ANZALONE: All right. Sorry. Thanks.
7	Oh, that is much louder.
8	MEMBER MARCH-LEUBA: There's people on the
9	other side of the phone line that would love to see
10	how this works.
11	MR. ANZALONE: Yes. Thanks. That's much
12	better.
13	So, just a little bit of what we used for
14	guidance in evaluating PDCs and you know the kind of
15	conclusions that we're trying to reach. So, both of
16	these quotes are from Part 50, Appendix A.
17	And that first one, the first statement
18	there is kind of the conclusion that we're trying to
19	reach: that the Principal Design Criteria established
20	the necessary design, fabrication, construction,
21	testing, and performance requirements.
22	And then, the second statement there talks
23	about this is the guidance that Part 50, Appendix A,
24	gives in establishing PDCs. So, the GDCs in Appendix
25	A aren't directly applicable to non-light water
I	I

(202) 234-4433

	89
1	reactors, but they are considered to be guidance in
2	establishing PDCs for non-light water reactors.
3	Next slide. And then, also, we have Reg
4	Guide 1.232, which we talked about a little bit. That
5	was issued in April of 2018. I think most of the
6	members were on the Committee when it was issued.
7	And it documents three sets of acceptable
8	PDCs. So, there's the advanced reactor DCs, which are
9	supposed to be generic and technology-inclusive, and
10	there's an asterisk there because it's technology-
11	inclusive for certain technologies that we had in mind
12	when we were writing them. I don't think that you
13	could make one that is, you know, wholly generic that
14	would be of value really.
15	Then, there is the sodium-cooled fast
16	reactor DC, which really, I think, were made with the
17	PRISM reactor in mind, and the MHTGR-DCs, which were
18	made with the MHTGR which is a TRISO-fueled, helium-
19	cooled, as I mentioned, prismatic block, graphite-
20	moderated, high-temperature gas reactor.
21	So, that slide
22	CHAIR BIER: Before you move on, when
23	these design criteria were developed, did you envision
24	in advance that people might be mixing and matching,
25	based on what fits their circumstance?
	1

(202) 234-4433

	90
1	MR. ANZALONE: Yes. And actually, there's
2	one one of the points coming up, especially PDC 16
3	talks about containment design criteria. That
4	explicitly in it says, "We envisioned that people
5	would pick the one that best suits their design here."
6	So, I think that was, clearly, a consideration.
7	And the thing that I want to kind of point
8	out and this gets a little bit at Jose's question
9	the FMR kind of neatly straddles all of these
10	categories. It falls kind of in between all of them.
11	So, I don't think that there's any real aspect of the
12	design that is so exotic that it wouldn't be well-
13	encompassed by these design criteria.
14	And then, that is something that we
15	thought about, as we were going through and doing the
16	review, is, you know, are these adequate? And the
17	answer that we keep coming back to was, yes, it looks
18	like this covers what it needs to.
19	MEMBER MARCH-LEUBA: And an impracticality
20	if that's a word when we do the full Chapter 15-
21	type analysis and Chapter 19, it will mean something.
22	It will pop up there.
23	MR. ANZALONE: Mm-hmm. And one thing that
24	I think is interesting about this particular review is
25	that they came to us with these PDCs very, very early
ļ	I

(202) 234-4433

	91
1	in the project. I mean, this was the second thing
2	that was submitted after the Regulatory Engagement
3	Plan. So, really, it's the PDCs came, and then, the
4	design I mean, it got to a certain level of
5	maturity to be able to establish what the PDCs ought
6	to be, but, ultimately, they will have to design the
7	reactor to meet these PDCs.
8	MEMBER HALNON: But is it, I mean, written
9	generically enough to create a fourth category in
10	regards to the Reg Guide?
11	(Laughter.)
12	MEMBER HALNON: I mean, when I went
13	through it, it seemed like there were pretty generic,
14	directly written to advanced reactors of this type.
15	MR. ANZALONE: So, I don't know that
16	that's really necessarily worth doing. Because I
17	think there's this vision that people would kind of
18	mix and match. The vast majority and I have a
19	summary slide as a backup slide the vast majority
20	are just straight from the ARDC with minor
21	modifications here and there.
22	MEMBER HALNON: Okay.
23	MR. ANZALONE: So, I think it's, you know,
24	within the envelope of stuff that we would expect
25	people to do with this Reg Guide.
ļ	I

(202) 234-4433

	92
1	CHAIR BIER: And presumably, any future
2	designs may also have their own unique tweaks and not
3	fit exactly with
4	MEMBER HALNON: But when I got done
5	reading it, one of the things that just popped into my
6	mind, it just felt like the fourth category was just
7	written, but I understand what you're saying. They're
8	close enough to all these other things.
9	MR. ANZALONE: Yes.
10	MEMBER HALNON: There's nothing really
11	unique or brand-new in there that would warrant a
12	special
13	MEMBER MARCH-LEUBA: If anything worries
14	me along this design, it's the high temperature. But
15	they'll eventually know how to do it.
16	MR. ANZALONE: All right. Next slide.
17	And General Atomics covered this in their
18	presentation, but the concept that was conveyed to us
19	in the Topical Report was that they would start with
20	the Advanced Reactor Design Criteria. Then, if that
21	wasn't fully applicable, they would go look at the
22	other ones for direct adoption, and then, take the one
23	that was the most applicable and adapt or refine it to
24	match with the design.
25	Okay. Next slide. So, then, talking
I	I

(202) 234-4433

1 about the key design feature effects on the Principal Design Criteria. So, the fuel and the core really 2 3 kind of lead to the use of SAFDLs rather than SARRDLs, 4 which John mentioned in his presentation. And that 5 also, I think, goes along with the Containment Principal Design Criteria that they ended up using and 6 7 the containment design. We generally kind of think of 8 those as going together. SAFDLs go with functional 9 containment; SARRDLs go with leak-tight containment or 10 controlled leakage. The neutron spectrum fast, I think the big 11 takeaway there that we wanted to make sure 12 was included was to consider the effect of structures on 13 14 reactivity feedback, which, otherwise, I think the ARDC includes this, but the GDC, if that were to be 15 16 adopted directly, does not. 17 And actually, that was an RAI that we Because, originally, what was in the Topical asked. 18 19 Report didn't include structures in that PDC, and we wanted to make sure that that was in there. 20 The helium coolant, so for that, the big 21 thing there was -- they're all out of order on my 22 paper here -- that affects a whole bunch of the 23 24 Principal Design Criteria. The big effect is to remove considerations related to coolant inventory 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

93

	94
1	control, and that's consistent with the modular high-
2	temperature gas reactor design criteria. And that
3	means there's no PDC 35, which relates to emergency
4	core cooling systems. And the emphasis is placed on
5	the residual heat removal systems.
6	And then there's also they decided to
7	change, to be consistent, the reactor helium pressure
8	boundary, instead of reactor coolant pressure boundary
9	or reactor coolant boundary in the PDCs.
10	There wasn't any particular effect for the
11	gas turbine on the primary coolant. DC 4 has the
12	consideration of missiles generated from either inside
13	or outside the containment. That was actually
14	included originally in the MHTGR-DC 4. So, I wanted
15	to note that there.
16	The residual heat removal and John
17	mentioned this on his slides so, they adopted the
18	MHTGR passive residual heat removal PDCs, but, then,
19	they adapted them to remove passive, so that it would
20	encompass both their passive system and the active
21	non-safety-related system.
22	And that seemed appropriate to us to do.
23	You know, it just made it broader, so that it covers
24	a wider scope of systems; whereas, the MHTGR-DC really
25	just, specifically, covers the passive residual heat
ļ	I

(202) 234-4433

	95
1	removal systems.
2	And then, for containment, I already
3	mentioned that they got the leak-tight containment
4	building, and they adopted the standard containment
5	PDCs.
6	Next slide. So, I've, basically, already
7	covered most of these in what I just said, but we can
8	quickly go through this.
9	So, I listed out all of the design
10	criteria, and then, highlighted ones that I think are
11	worth mentioning, either because they had to make a
12	particular choice about where they went with it or
13	they've modified it in an interesting way.
14	So, I just finished talking about PDC 4.
15	It's noteworthy because they wanted to include
16	missiles generated inside the reactor helium pressure
17	boundary.
18	Next slide. So, 10, we've got the
19	MEMBER BROWN: Can I ask you a question
20	about the missiles?
21	MR. ANZALONE: Sure.
22	MEMBER BROWN: They show in their prior
23	generation a gas turbine-driven, you know, the heated
24	helium-driven TGs. Is that a very high speed? Is
25	that a very, very high-speed? I mean, all plants have

(202) 234-4433

	96
1	a missile issue relative to their turbine generator
2	sets you have to consider. So, this looked like a
3	high-speed one, which would make it more critical in
4	terms of covering it. Is that the reason for the
5	emphasis here?
6	MR. ANZALONE: No. I think the reason is
7	just that, like, it is noteworthy that they have a
8	power conversion system that is inside containment.
9	MEMBER BROWN: Oh, okay. All right.
10	MR. ANZALONE: And it's part of the
11	reactor coolant boundary.
12	MEMBER KIRCHNER: It's part of the primary
13	cooling boundary.
14	MEMBER BROWN: Yes. Okay. So, that part
15	I missed. I missed that it was inside the coolant,
16	the primary boundary.
17	MR. ANZALONE: Yes.
18	MEMBER BROWN: My brain fried on it.
19	(Laughter.)
20	MEMBER BROWN: Thank you.
21	MR. ANZALONE: Go ahead.
22	So, I already mentioned the use of SAFDLs
23	rather than SARRDLs. I will also mention that
24	Criterion 10 uses, talks about heat removal, rather
25	than coolant. So, I think the effect that you were
Į	I

(202) 234-4433

	97
1	talking about of, you know, potentially, oscillatory
2	coolant behavior I think that talking about heat
3	removal is appropriate there.
4	The same thing with we talked about power
5	oscillations. Coolant isn't mentioned there, but it
6	talks about the core. And so, I think that's
7	appropriately considered, enveloped by that design
8	criterion. And it does have structures in there in
9	talking about power oscillations.
10	So, if there's an effect of the
11	reflectors, that's covered under that design
12	criterion. Whether that effect is caused by the
13	behavior of coolant affecting the structures or it's
14	something in the inherent behavior of the structures.
15	MEMBER MARCH-LEUBA: Yes, I sense some
16	real thinking that you worry about the structures
17	because of mechanical vibrations or displacement;
18	whereas, it could be a temperature oscillation. I
19	find it very unlikely that will happen, but
20	MR. ANZALONE: Yes.
21	MEMBER MARCH-LEUBA: you have to
22	consider that it will happen.
23	MR. ANZALONE: No, but, I mean, actually,
24	I will say, part of the reason that we asked about
25	structures was, you know, knowing fast reactors and
ļ	

(202) 234-4433

	98
1	that they're, basically, a coupled system, we felt
2	like that was important to include. We didn't know at
3	the time when we asked that question that all of the
4	structures are going to be made out of silicon
5	carbide. And so, they don't really move very much
6	during power maneuver.
7	MEMBER MARCH-LEUBA: But you have those
8	unusual bowing effects. It's an oscillation
9	configuration, a crucial thing.
10	MR. ANZALONE: But we think it's covered
11	by just making sure that structures are considered in
12	there.
13	MEMBER MARCH-LEUBA: Okay.
14	MR. ANZALONE: Thirteen, that was one
15	where they used the helium pressure boundary instead
16	of the reactor coolant boundary. And I know it's
17	instrumentation and control, but, really, the main
18	distinguishing feature between all the different DCs
19	was what the coolant system looked like.
20	Containment design. John already covered
21	that, I think in sufficient detail.
22	And electric power systems, they used the
23	MHTGR design criterion, but they modified it to go
24	with SAFDLs instead of SARRDLs. That's appropriate to
25	be consistent with the other DCs.
ļ	I

(202) 234-4433

99 1 MEMBER MARCH-LEUBA: Do we envision safety-grade power? Or there is nothing that needs to 2 3 be driven? MR. ANZALONE: I can't remember off the 4 5 top of my head. I'm going to phone a friend. 6 (Laughter.) 7 MR. ANZALONE: To Sheila, do you think you 8 can answer that question? Or John? 9 MR. BOLIN: John can answer it. 10 We don't see a need for Class 1E backup electrical generation. 11 Does that --12 13 MEMBER MARCH-LEUBA: Yes. But you usually 14 have a couple of batteries for the control room, 15 right? MR. BOLIN: Correct. Correct. We'll have 16 17 Non-safety grade? MEMBER MARCH-LEUBA: 18 19 MR. BOLIN: Or, you know, there will be containment isolation valves, other isolation valves 20 miqht need to function. 21 that Whether they're electrical, by battery, or some other means is still 22 to be determined. 23 24 MR. ANZALONE: Next slide. So, 26. Ι want to highlight here we have had some challenges 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	100
1	with some applicants in PDC 26. I'm not going to go
2	into that in detail here. But here, they adopted the
3	PDC, the language in advanced reactor design criteria.
4	As is, with one modification, to be
5	consistent with the GDC, they included the effects of
6	xenon. We don't think that xenon is going to be
7	particularly important in a fast reactor, but there
8	wasn't any reason not to include it.
9	MR. BOLIN: And I'll second that. We have
10	recently found that also to be the case, that xenon is
11	really not of any it has no impact to speak of.
12	MR. ANZALONE: But it's included in the
13	design criterion.
14	MR. BOLIN: But it's there. It's there.
15	MR. ANZALONE: So, if somehow it's found
16	to have an effect, it's covered. More broad is
17	actually okay.
18	So, consistent with the all of the sets of
19	design criteria in the Reg Guide, got rid of PDC 27
20	and incorporated it into 26.
21	MEMBER MARCH-LEUBA: Now that I see, I'm
22	asking not PDC, but criteria limits. Is there an
23	issue with rod ejection here? We have 7 megapascal.
24	Will that be a licensing basis event?
25	MR. ANZALONE: I would think so.
ļ	I

(202) 234-4433

	101
1	MEMBER MARCH-LEUBA: Okay.
2	MR. ANZALONE: We haven't looked at the
3	we haven't gotten in the level of detail of
4	understanding the control rod design or the control
5	rod drive systems.
6	MEMBER MARCH-LEUBA: It's likely my lack
7	of familiarity with fast reactors, but even events on
8	fast reactors bothers me a lot.
9	MEMBER KIRCHNER: It's a high-pressure
10	envelope and the control rod mechanism is part of the
11	envelope, inside the envelope. So, it's the same as
12	a PWR when it comes to rod ejection.
13	MEMBER MARCH-LEUBA: Mm-hmm.
14	MR. ANZALONE: But that is a distinction
15	to sodium fast reactors which are not high-pressure.
16	For the reactivity limits, they went with
17	the modular high-temperature gas reactor design
18	criterion because it fit the best with the coolant
19	system design that they have. Again, that was the
20	biggest distinguishing feature between all of them.
21	Next slide. So, getting into fuel
22	systems, I think John already I think we covered
23	this. So, 33 and 35 were removed, and that's
24	consistent with the modular high-temperature gas
25	reactor design criteria, and like I said, reflects a
	I

(202) 234-4433

focus away from coolant inventory control and towards residual heat removal. And then, those residual heat removal PDCs were adjusted to not specifically mention passive systems.

5 Next slide. There wasn't anything, in particular, that I wanted to highlight about these, 6 7 but I saw that, on John's slides, he mentioned that 8 containment heat removal, cleanups, and events were 9 things that they were considering. We think that 10 those are encompassed by these design criteria, the way that they're written. 11

Next slide. So, here, 54 I think is 12 interesting because they referenced the sodium fast 13 14 reactor design criteria. They made a change to it to 15 remove reactor, to signify that there are more 16 structures inside. So, normally, it says, "reactor 17 containment," but they want to say, hey, we've got a lot inside containment, aside from just the reactor. 18 19 The power conversion system is inside containment. So, it just says, "containment," rather than "reactor 20 containment." 21

But, aside from that, the interesting thing about SFR-DC 54 is that it talks about not necessarily having to isolate systems that penetrate containment where you wouldn't expect a release path.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	103
1	And that's key for them to be able to have the water
2	tanks for the RVCS outside of containment with lines
3	that go into containment. And because you wouldn't
4	expect a release pathway to go through those pipes,
5	that's acceptable. And that's consistent with the
6	SFR-DC.
7	MEMBER MARCH-LEUBA: And with 55, the
8	helium pressure boundary doesn't cross containment,
9	does it?
10	MR. ANZALONE: No, it does not.
11	MEMBER MARCH-LEUBA: I mean, there might
12	be some feedline.
13	MR. ANZALONE: Yes.
14	MEMBER MARCH-LEUBA: But that wouldn't
15	enter part of the pressure containment?
16	MR. BOLIN: I will correct. There is a
17	system that has helium in it that is connected to the
18	pressure boundary that does cross the containment
19	boundary, and that's the helium purification system.
20	MR. ANZALONE: Right.
21	MEMBER MARCH-LEUBA: Yes, but that would
22	be a small line.
23	MR. ANZALONE: Yes.
24	MR. BOLIN: It will be a small line, and
25	it certainly will have isolation valves on it.
ļ	I

(202) 234-4433

	104
1	MR. ANZALONE: Well, and that's what the
2	design criterion says, that you need to do this when
3	you have reactor helium systems penetrating it.
4	MR. BOLIN: And we will do that.
5	MR. ANZALONE: And then, the next slide.
6	So, nothing particular with these. They all adopted
7	the advanced reactor design criterion as written.
8	Next slide. So, I just wanted to talk
9	briefly about the conclusions and the Safety
10	Evaluation. So, we think that they, appropriately,
11	considered the Reg Guide and developed a sufficient
12	set of PDCs that were appropriate for establishing the
13	requirements for the FRM design. And like I said,
14	they came early. So, these will be criteria that
15	we'll open to, as they continue interactions with us.
16	And what the SE says is that they
17	establish the necessary design, fabrication,
18	construction, et cetera, that 10 CRF 50, Appendix 50,
19	kind of establishes as the requirement for Principal
20	Design Criteria.
21	And then, I wanted to make note that the
22	Topical Report can be used by future applicants for
23	the FRM, but the way that we do Topical Reports, you
24	know, you have to justify the applicability of the
25	Topical Report when you come in and you use it. And
ļ	I

(202) 234-4433

	105
1	so, there isn't a specific limitation and condition
2	that says it has to be like this reactor. But we
3	expect that, if somebody were to use this Topical
4	Report and reference it, they would have to justify
5	that if it was substantially different in any way, why
6	it was okay to use this design.
7	MEMBER MARCH-LEUBA: By "somebody," do you
8	mean like a different company?
9	MR. ANZALONE: Well, presumably so,
10	it's for the FRM design. So, I don't know some
11	other company bought that design from General Atomics
12	or if they spun off a subsidiary or
13	MEMBER MARCH-LEUBA: Doesn't GA own the
14	intellectual property on the Topical Report? I mean,
15	nobody can use it without GA's permission. Well, it's
16	static.
17	MR. ANZALONE: And that's my last slide.
18	I have some backup slides that go over some of these
19	in more detail.
20	CHAIR BIER: So, again, a different
21	version of the same question that I asked John earlier
22	with regard to the RAIs. How many of those subsequent
23	changes to Rev 1 were because the Reg Guide itself
24	changed? How many were kind of minor editorial
25	improvements? And were there any that you thought
I	I

(202) 234-4433

	106
1	were really (audio interference)?
2	MR. ANZALONE: I don't think there were
3	any that specifically so, the one that I mentioned
4	earlier, which was including structures in the power
5	oscillations, that was an RAI, and that was, we think,
6	important to capture something that was missing.
7	I think most of the rest of them were,
8	hey, you said you're using this design criterion from
9	the Reg Guide, but the words that you're using don't
10	match up. And that could reflect what John said, that
11	they were using the draft version of the Reg Guide.
12	I think that covers pretty much all the RAIs between
13	those two.
14	CHAIR BIER: Are there any other questions
15	for Reed and Sam? Sorry. Yes, are there other
16	questions for Reed and Sam? Are there in the room or
17	online?
18	MEMBER KIRCHNER: I'd just make an
19	observation or two.
20	I mean, you asked both the applicant and
21	the staff my take, the major thing that's different
22	here is that, you know, this concept is straddling the
23	MHTGR and the fast, as has been pointed out, the fast
24	reactor PDCs and the MHTGR. So, the MHTGR, as we
25	know, is a functional containment approach SARRDLs,
I	I

(202) 234-4433
if I got the acronym right, where this is SAFDLs and a containment.

And I think the main issue that I see 3 4 coming is where the systems straddle the containment 5 boundary for this reactor. So, you've got quasi-6 passive systems, if I could call them that. The MHTGR 7 was meant to be a passive decay heat removal. Here, 8 you've got a combination of passive/active/quasi-9 maybe depending on what design active systems, 10 approaches we see presented, but you would really hear about containment bypass, which is not in the MHTGR 11 That, essentially, is confinement 12 designs. and reliance, mainly, on the functional containment. 13 So, 14 I think that's interesting from my vantage point, 15 looking at how they picked and choose, and how you reviewed their use of the Reg Guide. 16

That would be the two areas I would zeroin on for this particular design. And it begs the question, like Charlie was asking, you know, which systems are active in terms of which ones might need electric power, or will they fail safe, so to speak, without power?

23 MEMBER PETTI: Well, it just seems to me 24 that there's sort of a body of knowledge of MHTGR and 25 there's a body of knowledge to fast sodium systems.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

www.nealrgross.com

107

1 And this kind of sort of puts them together. There's an intersection, if you will. So, when one thinks 2 3 about accident response, you know, there may be 4 something there that, when you look at them in 5 accident space, something new comes up that you necessarily at them 6 wouldn't see looking each 7 separately. So, it's just something that, when you 8 get into the details, you have to be looking for. 9 Additional questions or CHAIR BIER: 10 comments from members or consultants? Anybody on the line? 11 If not, then we are going to take comments 12 from the public somewhat earlier than is indicated on 13 14 the agenda. 15 We'll wait another 30 seconds or so, in 16 case anybody is trying to unmute. 17 (No response.) CHAIR BIER: Okay. It sounds like we have 18 19 no public comments for today. So, at this point, we have time for member 20 discussion. And I forget if that should be public or 21 not public. 22 MEMBER REMPE: We can go off the record 23 24 until regular order. But hope someone will show up tomorrow at 8:30 for us. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

108

	109
1	CHAIR BIER: Okay, you got that message,
2	Court Reporter? I don't believe there is a need for
3	a closed session. So we will see you at 8:30 in the
4	morning tomorrow, or whoever it is. Thank you.
5	(Whereupon, the above-entitled matter went
6	off the record at 3:39 p.m.)
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	I

General Atomics Electromagnetic Systems

Fast Modular Reactor (FMR) Distinguished Design Team Goal

The goal is to advance General Atomics Electromagnetic Systems (GA-EMS) Fast Modular Reactor 44 MWe (FMR) for flexible and dispatchable carbon-free electricity generation, targeting commercial operations by 2035.

- The Team will develop and verify key-design attributes such as fast-spectrum neutron, inert helium gas coolant, pellet-loaded fuel rod, site-flexible, small and passive heat removal systems, that will result in a safe, maintainable, and cost-effective nuclear power generation.
- The FMR project was officially awarded on 15 December 2021 as a three-year program under Advanced Reactor Demonstration Program (ARDP)/Advanced Reactor Concepts-20 (ARC-20).

GA-EMS is working with a distinguished team to this effort with a strategic partner in Framatome (FRA) as well as collaboration with Electric Power Research Institute (EPRI), Idaho National Laboratory (INL), Argonne National Laboratory (ANL), Sandia National Laboratories (SNL), University of Wisconsin-Madison (UWM), and University of Texas-Arlington (UTA).

The project objective is the FMR conceptual design with verifications of key metrics in fuel, safety, and operational performance.

- The project will verify the technical feasibilities of high-burnup fuel operation, passive safety features, and rapid grid adaptability.
- The project includes pre-application licensing activities with Nuclear Regulatory Commission (NRC).
- The project will conduct an initial cost evaluation.

Experimental verification:

- (i) Fuel fabrication campaign, high-burnup irradiation tests and transient tests to qualify the fuel design.
- (ii) Scaled tests of the Reactor Vessel Cooling System (RVCS) to verify the passive cooling capability.

Numerical verification:

- (i) Accident analysis to support the design work and the pre-application licensing.
- (ii) FMR plant simulator to demonstrate the rapid loadfollowing capability.

FMR Core Designed to Improve Safety Margin

	EAAD		A D1000
	FMR	GT-MHR	AP1000
Reactor core heat output, MWt	100	600	3400
Reactor core power density, MW/m ³	14.97	6.6	109.7
Heat generated in fuel, %	-	-	97.4
Nominal system pressure, MPa	7	7.07	15.5
Coolant total flow rate, kg/s	66	320	14,301
Coolant nominal inlet temperature, °C	509	491	279.4
Coolant temperature rise in core, °C	291	359	27.4
Fuel rod average linear power, kW/m	2.34	0.39 ^{a)}	18.8
Heat flux hot channel factor, F _Q	1.52	-	2.6
Fuel assembly geometry	Hexagonal	Hexagonal ^{b)}	Square ^{c)}
Number of fuel assemblies	198	102 ^d)	157
Fuel rods per assembly	120	210 ^{a)}	264
Fuel material	UO ₂	UC _{0.5} O _{1.5}	UO ₂
Cladding material	SIGA	SiC ^{e)}	ZIRLO
Core active height (cm)	180	793	426.72

a) Stack of fuel compacts, b) Solid block with coolant channels inside, c) 17×17, d) Fuel blocks, e) TRISO fuel particle coating

Fuel Leverages UO₂ Legacy and SiGA[™] Cladding Development

- High density UO₂ proven in LWRs and tested in fast reactors
- Silicon carbide composite cladding (SiGA) undergoing testing and maturation through DOE Accident Tolerant Fuel (ATF) program
- Fuel design uses ATF-LWR dimensions with large plenum like legacy liquid metal fast reactors

Cladding tube

Endcap welding

Numerical and Experimental Verification of Fuel Design

FMR Test Rodlets Fabricated Using ATF Established Procedures

Vessel System Designed to Minimize Helium Leakage

- Conceptual sizing calculation for normal and AOO conditions
 - Design code is Section III, Division 5, 2021 Ed.
 - Thickness is adequate for operation up to 300,000 hours (~34 EFPY), will be extended to 540,000 hours (~60+ EFPY) (code revision)
 - Proven use of seal welds at joints to minimize helium leakage
- Flow reductions during accident conditions reduces pressure loads
- Conceptual design complete on reactor vessel internals

Power Conversion System (PCS) based on a Direct Brayton-Cycle

- Dry Cooling Tower
 - Reduces impact on water resources and expands siting options

High-Efficiency Cycle that supports fast maneuvering capability

Containment Improves Safety and Siting

- The Containment System (Category I Structure, SSE-qualified) includes below-grade, leak-tight Containment Vessel (multi-barrier, defense-in-depth)
- Need for containment heat removal, cleanup, and venting under investigation

Below grade containment that is less vulnerable to airplane crashes

Residual Heat Removed By Active and Passive Systems

- Reactor Vessel Cooling System (2-loops)
- Maintenance Cooling System
- Annular core arrangement promotes passive heat removal

Core Bypass Flow Effects Normal Operation and Accidents

 Core bypass flows through central and radial reflectors improves heat transfer during loss of forced cooling accidents

Progress in Pre-Application Licensing with NRC

GA-EMS has issued four documents and submitted them to NRC and DOE.

- Revision of the PDC document was issued following NRC's RAIs.
- The QA document was also revised following NRC's recommendations.

Acknowledgements

This work was supported by the U.S. Department of Energy - Office of Nuclear Energy under Contract Number DE-NE0009052 for Advanced Reactor Concepts-20 (ARC-20).

General Atomics Electromagnetic Systems

Principal Design Criteria Adapted From NRC Guidance

- Regulatory Guide (RG) 1.232 established guidance for developing PDC for non-light-water reactors by modifying / supplementing 10 CFR 50, Appendix A, General Design Criteria (GDC) in three categories:
 - Sodium-cooled fast reactors (SFR-DC)
 - Modular high-temperature gas-cooled reactors (MHTGR-DC)
 - Design-neutral advanced reactors (ARDC)
- ARDC and MHTGR-DC used as starting point
- NRC rationale for adaptation of GDC modified for application to FMR-DC

I. Overall Requirements – FMR DC 1 – 5

- FMR-DC 1: Quality standards and records: Same as GDC
- FMR-DC 2: Design bases for protection against natural phenomena: Same as GDC
- FMR-DC 3: Fire protection: Same as ARDC
- FMR-DC 4: Environmental and dynamic effects design bases: Modified from MHTGR-DC
 - "missiles" changed to "missiles originating both inside and outside the reactor helium pressure boundary" to cover turbomachinery
- FMR-DC 5: Sharing of structures, systems, and components: Same as GDC

II. Multiple Barriers – FMR-DC 10 – 19

- FMR-DC 10: Reactor design: Fuel design using SiGA cladding functions like LWRs so SAFDL terminology used here and in other FMR-DCs
- FMR-DC 11, 13 15, 17 18: Same as ARDC and MHTGR-DC with minor terminology changes
- FMR-DC 12: Suppression of reactor power oscillations: The word "structures" added to address reflectors. The word "coolant" was deleted.
- FMR-DC 16: Containment design: Same as SFR-DC because FMR uses low-leakage, pressure-retaining containment

III. Reactivity Control – FMR-DC 20 – 29

- FMR-DC 20 24: Same as GDC
- FMR-DC 25: Protection system requirements for reactivity control malfunctions: Same as ARDC with minor terminology changes
- FMR-DC 26: Reactivity control systems: Combines GDC 26 and GDC 27 same as ARDC and MHTGR-DC
- FMR-DC 28: Reactivity limits: Same as MHTGR-DC
- FMR-DC 29: Protection against anticipated operational occurrences: Same as GDC

IV. Fluid Systems – FMR-DC 30 – 46

- FMR-DC 30 33: Same as MHTGR-DC
- FMR-DC 34: Residual heat removal: Similar to MHTGR-DC. Both active non-safety-related and passive safety-related systems available to remove residual heat. Incorporates requirements in GDC 35.
- FMR-DC 36 and 37: Same as MHTGR-DC
- FMR-DC 38 41: Same as ARDC
- FMR-DC 42: Inspection of containment atmosphere cleanup systems: Same as GDC
- FMR-DC 43, 45, 46: Same as ARDC
- FMR-DC 44: Same as MHTGR-DC

V. Reactor Containment and VI. Fuel and Radioactivity Control

- V. Reactor Containment FMR-DC 50-57
- FMR-DC 50 53: Same as ARDC
- FMR-DC 54: Same as SFR-DC
- FMR-DC 55 57: Same as ARDC with minor terminology changes
- VI. Fuel and Radioactivity Control FMR-DC 60 64
- FMR-DC 60, 62, 63: Same as GDC
- FMR-DC 61: Same as ARDC

Acknowledgements

This work was supported by the U.S. Department of Energy - Office of Nuclear Energy under Contract Number DE-NE0009052 for Advanced Reactor Concepts-20 (ARC-20).

General Atomics – Electromagnetic Systems Fast Modular Reactor Principal Design Criteria

Samuel Cuadrado de Jesus, NRR/DANU

Reed Anzalone, NRR/DANU

Sheila Ray, NRR/DEX

Steve Jones, NRR/DANU

Agenda

- General Atomics Electromagnetic Systems (GA-EMS) Fast Modular Reactor (FMR) pre-application engagement
- GA-EMS FMR principal design criteria (PDC) topical report (TR) review timeline
- GA-EMS FMR design features
- PDC guidance
 - General Design Criteria (GDC)
 - Regulatory Guide (RG) 1.232
- GA-EMS PDC development approach
- Fast modular reactor design criteria (FMR-DC)
 - Impacts of key design choices on PDCs
 - FMR-DC overview
- Safety evaluation (SE) conclusions

GA-EMS FMR Pre-Application Engagement

Documents Submitted

Submittal	Document	Review Status
03/2022	Pre-Application Regulatory Engagement Plan	N/A
06/2022	PDC TR	Draft SE issued
02/2023	Fuel Qualification Plan Technical Report	Under review (white paper)
04/2023	Quality Assurance Program TR	Pending acceptance determination

Documents Expected

Submittal	Document
06/2023	Mechanistic Source Term Technical Report
12/2023	LBE Selection White Paper
05/2024	Safety Approach and Mini-PRA White Paper
05/2024	Safety Classification White Paper

*FMR demonstration expected by 2030 and deployment by mid-2030s

GA-EMS FMR PDC TR Review Timeline

- Submitted 06/06/22 (ML22154A555)
- Accepted 07/07/22 (ML22181B173)
- Requests for Additional Information (RAIs) issued 10/5/22 (ML22321A310)
- RAI response received 11/7/22 (ML22311A472)
- Revision 2 of TR transmitted 01/05/23 (ML23005A292)
- Draft SE issued 03/17/23 (ML23076A196)

GA-EMS FMR Design Features

Source: REP, ML22087A510

United States Nuclear Regulatory Commission Protecting People and the Environment

GA-EMS FMR Design Features

Source: TR, ML22154A556

GA-EMS FMR Key Design Features

Feature	Design
Fuel	UO ₂ pellets in silicon carbide fuel pins
Core arrangement	Pins in triangular pitch arranged into hexagonal bundles
Neutron spectrum	Fast
Coolant	Helium
Power conversion system	Gas turbine on primary coolant
Residual heat removal	Reactor vessel cooling system (water-fed, gravity-driven passive system)
Containment	Leak-tight containment building

PDC Guidance – 10 CFR 50 Appendix A GDC

"The principal design criteria establish the necessary design, fabrication, construction, testing, and performance requirements for structures, systems, and components important to safety; that is, structures, systems, and components that provide reasonable assurance that the facility can be operated without undue risk to the health and safety of the public."

"These General Design Criteria establish minimum requirements for the principal design criteria for water-cooled nuclear power plants similar in design and location to plants for which construction permits have been issued by the Commission. The General Design Criteria are also considered to be generally applicable to other types of nuclear power units and are intended to provide guidance in establishing the principal design criteria for such other units."

PDC Guidance – RG 1.232, "Guidance for Developing Principal Design Criteria for Non-Light-Water Reactors"

- Issued April 2018 (ACRS letter March 2018)
- Documents three sets of acceptable PDCs:
 - Advanced reactor DC (ARDC) generic, technology inclusive*
 - Sodium-cooled fast reactor DC (SFR-DC) sodium-cooled fast reactors (e.g., PRISM)
 - Modular high temperature gas-cooled reactor DC (MHTGR-DC) TRISO-fueled, helium-cooled, graphite-moderated HTGR

* For sodium/lead/gas-cooled fast reactors, modular high temperature gas reactors, fluoride high-temperature reactors, and molten salt reactors

GA-EMS Approach to PDC Development

- Start with ARDC, considering underlying safety basis
- If ARDC not fully applicable, assess SFR-DC and MHTGR-DC for direct adoption
- If SFR-DC or MHTGR-DC not directly applicable, apply DC that is most representative of FMR
- Adapt or refine selected DC

Key Design Feature Effects on PDCs

Feature	Design	Effect on PDCs	
Fuel	UO ₂ pellets in silicon carbide fuel pins	Use of specified acceptable fuel design limits (SAFDLs)	
Core arrangement	Pins in triangular pitch arranged into hexagonal bundles	instead of specified acceptable system radionuclide releaders design limits (SARRDLs)	
Neutron spectrum	Fast	Consider effect of structures on reactivity feedback	
Coolant	Helium	Removal of coolant inventory control considerations consistent with MHTGR; use of reactor helium pressure boundary in lieu of reactor coolant pressure boundary	
Power conversion system	Gas turbine on primary coolant	No particular effect	
Residual heat removal	Reactor vessel cooling system (water-fed, gravity-driven passive system)	Adoption of MHTGR passive residual heat removal PDCs	
Containment	Leak-tight containment building	Adoption of containment PDCs	
FMR-DC – I. Overall Requirements

Criterion	Title	Basis PDC	Modified?
1	Quality standards and records.	ARDC	Ν
2	Design bases for protection against natural phenomena.	ARDC	Ν
3	Fire protection.	ARDC	Ν
<mark>4</mark>	Environmental and dynamic effects design bases.	MHTGR-DC	N
5	Sharing of structures, systems, and components	ARDC	Ν

FMR-DC – II. Multiple Barriers

Criterion	Title	Basis PDC	Modified?
<mark>10</mark>	Reactor design.	ARDC	Y - uses "heat removal" instead of "coolant"
11	Reactor inherent protection.	ARDC	Ν
<mark>12</mark>	Suppression of reactor power oscillations.	ARDC	<mark>Y - removes "coolant"</mark>
<mark>13</mark>	Instrumentation and control.	ARDC	Y - uses "helium pressure boundary" instead of "reactor coolant boundary"
14	Reactor helium pressure boundary.	MHTGR-DC	Ν
15	Reactor helium pressure boundary design.	MHTGR-DC	Ν
<mark>16</mark>	Containment design.	<mark>SFR-DC</mark>	N N
17	Electric power systems.	MHTGR-DC	Y - uses SAFDLs instead of SARRDLs
18	Inspection and testing of electric power systems.	ARDC	Ν
19	Control room.	MHTGR-DC	Ν

FMR-DC – III. Reactivity Control

Criterion	Title	Basis PDC	Modified?
20	Protection system functions	ARDC	Ν
21	Protection system testability and reliability.	ARDC	Ν
22	Protection system independence.	ARDC	Ν
23	Protection system failure modes.	ARDC	Ν
24	Separation of protection and control systems.	ARDC	Ν
25	Protection system requirements for reactivity control malfunctions.	ARDC	Ν
<mark>26</mark>	Reactivity control systems.	ARDC	Y - includes effects of xenon
<mark>27</mark>	[None - incorporated into 26 consistent with RG 1.232]	<mark>N/A</mark>	N/A
<mark>28</mark>	Reactivity limits.	MHTGR-DC	N
29	Protection against anticipated operational occurrences.	ARDC	Ν

FMR-DC – IV. Fluid Systems (1)

Criterion	Title	Basis PDC	Modified?
30	Quality of reactor helium pressure boundary.	MHTGR-DC	Ν
31	Fracture prevention of reactor helium pressure boundary.	MHTGR-DC	Ν
32	Inspection of reactor helium pressure boundary	MHTGR-DC	Ν
<mark>33</mark>	[None - not applicable consistent with MHTGR-DC]	N/A	N/A
<mark>34</mark>	Residual heat removal.	MHTGR-DC	Y - includes both passive and active systems
<mark>35</mark>	[None - not applicable consistent with MHTGR-DC]	<mark>N/A</mark>	N/A
36	Inspection of passive residual heat removal system.	MHTGR-DC	Ν
<mark>37</mark>	Testing of residual heat removal system.	MHTGR-DC	Y - includes both passive and active systems
38	Containment heat removal.	ARDC	Ν
39	Inspection of containment heat removal system.	ARDC	N

FMR-DC – IV. Fluid Systems (2)

Criterion	Title	Basis PDC	Modified?
40	Testing of containment heat removal system.	ARDC	Ν
41	Containment atmosphere cleanup.	ARDC	Ν
42	Inspection of containment atmosphere cleanup systems.	ARDC	Ν
43	Testing of containment atmosphere cleanup systems.	ARDC	Ν
44	Structural and equipment cooling.	ARDC	Ν
45	Inspection of structural and equipment cooling systems.	ARDC	Ν
46	Testing of structural and equipment cooling systems.	ARDC	Ν

FMR-DC – V. Reactor Containment

Criterion	Title	Basis PDC	Modified?
50	Containment design basis.	ARDC	Ν
51	Fracture prevention of containment pressure boundary.	ARDC	Ν
52	Capability for containment leakage rate testing.	ARDC	Ν
53	Provisions for containment testing and inspection.	ARDC	Ν
<mark>54</mark>	Piping systems penetrating containment.	<mark>SFR-DC</mark>	<mark>Y - removes "reactor"</mark>
55	Reactor helium pressure boundary penetrating containment.	ARDC	Y - uses "helium pressure boundary" instead of "reactor coolant boundary"
56	Containment isolation.	ARDC	Ν
57	Closed system isolation valves.	ARDC	Y - uses "helium pressure boundary" instead of "reactor coolant boundary"

FMR-DC – VI. Fuel and Reactivity Control

Criterion	Title	Basis PDC	Modified?
60	Control of releases of radioactive materials to the environment.	ARDC	Ν
61	Fuel storage and handling and radioactivity control.	ARDC	Ν
62	Prevention of criticality in fuel storage and handling.	ARDC	Ν
63	Monitoring fuel and waste storage.	ARDC	Ν
64	Monitoring radioactivity releases.	ARDC	Ν

Safety Evaluation Conclusions

- GA-EMS appropriately considered RG 1.232 and developed a sufficient set of PDCs appropriate for establishing requirements for the FMR design.
- PDCs establish the necessary design, fabrication, construction, testing, and performance design criteria for safety-significant SSCs to provide reasonable assurance that an FMR could be operated without undue risk to the health and safety of the public. (10 CFR 50 App A)
- This TR can be used by future FMR applicants, but if the reactor design differs from that discussed in the TR use of the PDCs in the TR must be justified.

FMR-DC Summary

- Directly adopted from RG 1.232
 - From ARDC: FMR-DC 1, 2, 3, 5, 11, 18, 20, 21, 22, 23, 24, 25, 29, 38, 39, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 60, 61, 62, 63, 64
 - From SFR-DC: FMR-DC 16
 - From MHTGR-DC: FMR-DC 4, 14, 15, 19, 28, 30, 31, 32, 36
- Modified from RG 1.232
 - FMR-DC 10 (ARDC 10), 12 (ARDC 12), 13 (ARDC 13), 17 (MHTGR-DC 17), 26 (ARDC 26), 34 (MHTGR-DC 34), 37 (MHTGR-DC 37), 54 (SFR-DC 54), 55 (ARDC 55), 57 (ARDC 57)

ARDC 10	FMR-DC 10
Reactor design.	Reactor design.
The reactor core and associated coolant,	The reactor core and associated coolant
control, and protection systems shall be	heat removal, control, and protection
designed with appropriate margin to	systems shall be designed with appropriate
assure that specified acceptable fuel	margin to assure that specified acceptable
design limits are not exceeded during any	fuel design limits are not exceeded during

condition of normal operation, including

the effects of anticipated operational

occurrences.

fuel design limits are not exceeded during any condition of normal operation, including the effects of anticipated operational occurrences.

Basis: Helium inventory control is not necessary to meet SAFDLs due to reactor system design; consistent with MHTGR-DC (which use SARRDLs instead) and other FMR-DC

ARDC 12

FMR-DC 12

Suppression of reactor power oscillations.

. Suppression of reactor power oscillations.

The reactor core; associated structures; and associated coolant, control, and protection systems shall be designed to ensure that power oscillations that can result in conditions exceeding specified acceptable fuel design limits are not possible or can be reliably and readily detected and suppressed. The reactor core;, associated structures;, and associated coolant, control; and protection systems shall be designed to ensure that power oscillations that can result in conditions exceeding specified acceptable fuel design limits are not possible or can be reliably and readily detected and suppressed.

Basis: Helium coolant does not have a significant effect on reactivity for the FMR

ARDC 13

FMR-DC 13

Instrumentation and control.

Instrumentation and control.

Instrumentation shall be provided to monitor variables and systems over their anticipated ranges for normal for accident conditions, as appropriate to ensure adequate safety, including those variables and systems that can affect the fission process, the integrity of the reactor core, the reactor coolant boundary, and the containment and its associated systems. Appropriate controls shall be provided to maintain these variables and systems within prescribed operating ranges.

Instrumentation shall be provided to monitor variables and systems over their anticipated ranges for normal operation, for anticipated operational occurrences, and operation, for anticipated operational occurrences, and for accident conditions, as appropriate, to ensure adequate safety, including those variables and systems that can affect the fission process, and the integrity of the reactor core, the reactor coolant helium pressure boundary, and the containment and its associated systems. Appropriate controls shall be provided to maintain these variables and systems within prescribed operating ranges.

Basis: More appropriate to say "reactor helium pressure boundary" than "reactor coolant boundary" for FMR, consistent with MHTGR-DC and other FMR-DC

ARDC 26

FMR-DC 26

Reactivity control systems.

Reactivity control systems.

A minimum of two reactivity control systems or means shall provide:

(1) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate margin for malfunctions, that the design limits for the fission product barriers are not exceeded and safe shutdown is achieved and maintained during normal operation, including anticipated operational occurrences.

(2) A means which is independent and diverse from the other(s), shall be capable of controlling the rate of reactivity changes resulting from planned, normal power changes to assure that the design limits for the fission product barriers are not exceeded.

(3) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate margin for malfunctions, that the capability to cool the core is maintained and a means of shutting down the reactor and maintaining, at a minimum, a safe shutdown condition following a postulated maintaining, at a minimum, a safe shutdown condition following a postulated accident.

(4) A means for holding the reactor shutdown under conditions which allow

A minimum of two reactivity control systems or means shall provide: (1) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate margin for malfunctions, that the design limits for the fission product barriers are not exceeded and safe shutdown is achieved and maintained during normal operation, including anticipated operational occurrences.

(2) A means which is independent and diverse from the other(s), shall be capable of controlling the rate of reactivity changes resulting from planned, normal power changes (including xenon burnout) to assure that the design limits for the fission product barriers are not exceeded.

(3) A means of inserting negative reactivity at a sufficient rate and amount to assure, with appropriate margin for malfunctions, that the capability to cool the core is maintained and a means of shutting down the reactor and accident.

(4) A means for holding the reactor shutdown under conditions which allow for interventions such as fuel loading, inspection and repair shall be provided. for interventions such as fuel loading, inspection and repair shall be provided.

Basis: GDC 26 includes explicit consideration of Xe burnout; while Xe is not expected to be a significant reactivity contributor in the FMR it is not incorrect to explicitly include it

MHTGR-DC 34	FMR-DC 34
Passive residual heat removal.	Passive r Residual heat removal.
residual heat from the reactor core to an ultimate heat sink at a rate such that specified acceptable system radionuclide release design limits and the design conditions of the reactor helium pressure	• • • • • •
During postulated accidents, the system safety function shall provide effective cooling.	During postulated accidents, the system safety function shall provide effective core cooling.
interconnections, leak detection, and isolation capabilities shall be provided to ensure the system safety function can be accomplished,	Suitable redundancy in components and features and suitable interconnections, leak detection, and isolation capabilities shall be provided to ensure the system safety function can be accomplished, assuming a single failure.

Basis: The MHTGR included a passive residual heat removal (RHR) system because of the low core power density. FMR has multiple RHR systems including active non-safetyrelated systems and passive safety-related systems, and the DC should be broad enough to apply to all of them.

MHTGR-DC 37

FMR-DC 37

Testing of passive residual heat removal system.

The passive residual heat removal system shall be designed to permit appropriate periodic functional testing to ensure (1) the structural and leaktight integrity of its components, (2) the operability and performance of the system components, and (3) close to design as practical, the performance of the full operational sequence that brings the system into operation, including associated systems, for AOO or postulated accident decay heat removal to the ultimate heat sink and, if applicable, any system(s) necessary to transition from active normal operation to passive mode.

Testing of passive-residual heat removal system.

The passive residual heat removal system(s) shall be designed to permit appropriate periodic functional testing to ensure (1) the structural and leak-tight integrity of its components, (2) the operability and performance of the system components, and (3) the operability of the system as a whole and, under conditions as the operability of the system as a whole and, under conditions as close to design as practical, the performance of the full operational sequence that brings the system into operation, including associated systems, for AOO or postulated accident decay heat removal to the ultimate heat sink and, if applicable, any system(s) necessary to transition from active normal operation to passive mode.

Basis: The MHTGR included a passive residual heat removal (RHR) system because of the low core power density. FMR has multiple RHR systems including active non-safetyrelated systems and passive safety-related systems, and the DC should be broad enough to apply to all of them (same as FMR-DC 34).

SFR-DC 54

FMR-DC 54

Piping systems penetrating containment.

Piping systems penetrating the reactor containment structure shall be provided with leak detection, isolation, and containment capabilities that have redundancy, reliability, and performance capabilities necessary to perform the containment safety function and that reflect the importance to safety of preventing radioactivity releases from containment through these piping systems. Such piping systems shall be designed with the capability to verify, by testing, the operational readiness of any isolation valves and associated apparatus periodically and to confirm that valve leakage is within acceptable limits.

Piping systems penetrating containment.

Piping systems penetrating the reactor-containment structure shall be provided with leak detection, isolation, and containment capabilities that have redundancy, reliability, and performance capabilities necessary to perform the containment safety function and that reflect the importance to safety of preventing radioactivity releases from containment through these piping systems. Such piping systems shall be designed with the capability to verify, by testing, the operational readiness of any isolation valves and associated apparatus periodically and to confirm that valve leakage is within acceptable limits.

Basis: There are other major SSCs other than just the reactor within containment (e.g., the power conversion system) so it is appropriate to remove the word "reactor"

ARDC 55	FMR-DC 55
	Reactor coolant- helium pressure boundary penetrating containment.
and that penetrates the containment structure shall be provided with containment isolation valves, as follows, unless it can be demonstrated that the containment isolation provisions for a specific class of lines, such as instrument lines, are acceptable on some other defined	Each line that is part of the reactor coolant-helium pressure boundary and that penetrates the reactor containment structure shall be provided with containment isolation valves as follows, unless it can be demonstrated that the containment isolation provisions for a specific class of lines, such as instrument lines, are acceptable on some other defined basis:

Basis: More appropriate to say "reactor helium pressure boundary" than "reactor coolant boundary" for FMR, consistent with MHTGR-DC and other FMR-DC

ARDC 57

Closed system isolation valves.

Each line that penetrates the containment structure and is neither part of the reactor coolant boundary nor connected directly to the containment atmosphere shall have at least one containment isolation valve, unless it can be demonstrated that the containment safety function can be met without an isolation valve and assuming failure of a single active component. The isolation valve, if required, shall be either automatic, or locked closed, or capable of remote manual operation. This valve shall be outside containment and located as close to the containment as practical. A simple check valve may not be used as the automatic isolation valve.

FMR-DC 57

Closed system isolation valves.

Each line that penetrates the containment structure and is neither part of the reactor coolant-helium pressure boundary nor connected directly to the containment atmosphere shall have at least one containment isolation valve unless it can be demonstrated that the containment safety function can be met without an isolation valve and assuming failure of a single active component. The isolation valve, if required, shall be either automatic, or locked closed, or capable of remote manual operation. This valve shall be outside containment and located as close to the containment as practical. A simple check valve may not be used as the automatic isolation valve.

Basis: More appropriate to say "reactor helium pressure boundary" than "reactor coolant boundary" for FMR, consistent with MHTGR-DC and other FMR-DC

