Official Transcript of Proceedings NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on Reactor Safeguards Kairos Power Licensing Subcommittee
Docket Number:	(n/a)

Location: teleconference

Date: Tuesday, April 4, 2023

Work Order No.: NRC-2343

Pages 1-190

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

		1
1	UNITED STATES OF AMERICA	
2	NUCLEAR REGULATORY COMMISSION	
3	+ + + + +	
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS	
5	(ACRS)	
6	+ + + +	
7	KAIROS POWER LICENSING SUBCOMMITTEE	
8	+ + + +	
9	TUESDAY	
10	APRIL 4, 2023	
11	+ + + +	
12	The Subcommittee met via hybrid in-	
13	person and Video Teleconference, at 8:30 a.m. EDT,	
14	David Petti, Chairman, presiding.	
15	COMMITTEE MEMBERS:	
16	DAVID PETTI, Chair	
17	RONALD G. BALLINGER, Member	
18	CHARLES H. BROWN, JR., Member	
19	VICKI BIER, Member	
20	VESNA DIMITRIJEVIC, Member	
21	GREGORY HALNON, Member	
22	WALT KIRCHNER, Member	
23	JOSE MARCH-LEUBA, Member	
24	JOY L. REMPE, Member	
25	MATTHEW SUNSERI, Member	
I	1	

1	ACRS CONSULTANT:
2	DENNIS BLEY
3	STEPHEN SCHULTZ
4	DESIGNATED FEDERAL OFFICIAL:
5	WEIDONG WANG
6	ALSO PRESENT:
7	JOSEPH ASHCRAFT, NRR
8	BENJAMIN BEASLEY, NRR
9	NORBERT CARTE, NRR
10	CALVIN CHEUNG, NRR
11	ALEXANDER CHERESKIN, NRR
12	ANTHONIE CILLIERS, Kairos Power
13	AUSTIN CLARK, Kairos Power
14	DARRELL GARDNER, Kairos Power
15	VIJAY GOEL, NRR
16	MICHELLE HART, NRR
17	EDWARD HELVENSTON, NRR
18	MATT HISER, NRR
19	ANDREW LINGENFELTER, Kairos Power
20	AUGUSTUS MERWIN, Kairos Power
21	DREW PEEBLES, Kairos Power
22	SHEILA RAY, NRR
23	JEFFREY SCHMIDT, NRR
24	NICOLAS ZWEIBAUM, Kairos Power
25	

2

	3
1	P-R-O-C-E-E-D-I-N-G-S
2	8:30 a.m.
3	CHAIR PETTI: Good morning, everyone. The
4	meeting will now come to order.
5	This is a meeting of the Kairos Power
6	Licensing Subcommittee of the Advisory Committee on
7	Reactor Safeguards. I'm David Petti, Chairman of
8	today's subcommittee meeting.
9	ACRS members in attendance are Jose March-
10	Leuba, Joy Rempe, Matthew Sunseri, Ron Ballinger, Walt
11	Kirchner, and Greg Halnon. We anticipate Charlie
12	Brown will arrive once traffic subsides a little. And
13	Vesna Dimitrijevic and Vicki Bier may join us
14	virtually.
15	MEMBER DIMITRIJEVIC: Yes, (audio
16	interference).
17	CHAIR PETTI: Okay. Great. You're both
18	there. Great. Thank you.
19	Consultants Dennis Bley and Steve Schultz
20	are also online.
21	Weidong Wang of the ACRS staff is the
22	designated federal official of this meeting.
23	During today's meeting the subcommittee
24	will continue its review of the staff's safety
25	evaluation on Kairos Power Hermes Non-Power Reactor
I	

(202) 234-4433

```
www.nealrgross.com
```

preliminary safety analysis.

1

The subcommittee will presentations by and hold discussions with the NRC staff, Kairos Power representatives, and other interested persons regarding this matter.

Parts of the presentation by the applicant 6 7 and the NRC staff may be closed in order to discuss 8 information that is proprietary to the licensee and 9 pursuant USC 552b(c)(4). its contractors to 5 10 Attendance at the meeting that deals with such information will be limited to the NRC staff and its 11 consultants, Kairos Power, and those individuals and 12 organizations who have entered into an appropriate 13 14 confidentiality agreement with them. Consequently we 15 need to confirm that we have only eligible observers and participants in the closed part of the meeting. 16

17 The rules for participation in all ACRS meetings including today's were announced in the 18 19 Federal Register on June 13th, 2019. The ACRS section of the U.S. NRC public website provides our charter, 20 bylaws, agendas, letter reports, and full transcripts 21 of all full and subcommittee meetings including slides 22 The meeting notice and the agenda 23 presented there. 24 for this meeting were posted there.

We have received no written statements or

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

www.nealrgross.com

4

	5
1	requests to make an oral statement from the public.
2	The subcommittee will gather information,
3	analyze relevant issues and facts and formulate
4	proposed positions and actions as appropriate for
5	deliberation by the full committee.
6	A transcript of the meeting is being kept
7	and will be made available.
8	Today's meeting is being held in person
9	and over Microsoft Teams by ACRS staff and members,
10	NRC staff, and the applicant. There's also a
11	telephone bridge line and a Microsoft Teams link
12	allowing participation of the public.
13	When addressing the subcommittee the
14	participants should identify themselves and speak with
15	sufficient clarity and volume so that they may be
16	readily heard. When not speaking we request that
17	participants mute their computer microphone or their
18	phones by pressing *6.
19	We can now proceed with the meeting and
20	we'll call upon Kairos to begin.
21	Kairos?
22	MR. PEEBLES: Thank you, Mr. Chairman.
23	This is Drew Peebles. I'm a senior licensing manager
24	at Kairos Power. I'd like to thank the subcommittee
25	for the opportunity to continue to provide an overview
I	I

(202) 234-4433

	6
1	of the Hermes PSAR. I think we had some good
2	discussion at the past few meetings and look forward
3	to more of that.
4	First up is Chapter 5, so I'm going to
5	hand it over to the responsible director, Nico
6	Zweibaum.
7	MR. ZWEIBAUM: Good morning, everyone.
8	Rapid sound check just making sure that everyone can
9	hear me correctly.
10	CHAIR PETTI: You're fine. Go ahead.
11	MR. ZWEIBAUM: Thank you very much.
12	So as Drew Peebles mentioned, my name is
13	Nico Zweibaum. I'm the Director of Salt Systems
14	Design of Kairos Power and today I will be presenting
15	on Chapter of the Hermes preliminary safety analysis
16	report on heat transport system.
17	Next slide, please? So first for a
18	description of the primary heat transport system,
19	which is provided in Section 5.1 of the PSAR, the
20	PHTS, the primary heat transport system, is
21	responsible for transporting heat from the reactor to
22	the ultimate heat sink which is environmental air
23	during power operation and during normal shutdown. Of
24	note the PHTS operates near atmospheric pressure and
25	it does not provide a safety-related heat removal
I	1

(202) 234-4433

	7
1	function.
2	The members of ACRS may remember the
3	presentation on Chapter 6 a couple weeks ago that
4	mentioned the decay heat removal system, or safety-
5	related system, but the PHTS in contrast does not
6	provide a safety-related heat removal function.
7	In particular there is no driving force thanks
8	to the near-atmospheric pressure operation for
9	energetic releases during a pipe break. Again, the
10	PHTS is a non-safety-related system.
11	There are a number of parameters that are
12	shown here to further describe that system. It is
13	sized for a thermal duty of the reactor of 35
14	megawatts thermal. It is equipped with one heat
15	rejection radiator, or HRR. This is the heat
16	exchanger between the FLiBe salts and air. There is
17	one hot leg and two cold legs returning to the reactor
18	vessel. The nominal size for the piping in the PHTS
19	will be between 8 and 12 inches. The temperature of
20	the coolant entering the heat rejection radiator will
21	be somewhere between 600 and 650 degrees Celsius
22	depending on operating mode. The cold leg coolant
23	temperature will be 550 Celsius.
24	Nominal flow rate of the coolant in the
25	primary heat transport system will be 210 kilograms
ļ	I

(202) 234-4433

www.nealrgross.com

	8
1	per second and the design pressure here is (audio
2	interference).
3	MEMBER HALNON: So just a question for
4	clarification, make sure I have it in pictured my
5	in mind. So the hot leg let's say comes into the top
6	of the heat exchanger and out the bottom comes two
7	cold legs?
8	MR. ZWEIBAUM: The split for the two cold
9	legs happens closer to the reactor vessel. There's a
10	very simple notional diagram I believe on the next
11	slide, but that's
12	MEMBER HALNON: Okay.
13	MR. ZWEIBAUM: probably not going to be
14	sufficient. But, yes, it happens yes, you can see
15	it here. It's obviously very notional, but yes, it
16	would happen closer to the vessel.
17	MEMBER HALNON: Okay.
18	MEMBER MARCH-LEUBA: And this is Jose.
19	Can you remind me, on the top of your head do you know
20	what the freezing temperature is of FLiBe?
21	MR. ZWEIBAUM: Yes, it's around 460
22	degrees Celsius.
23	MEMBER MARCH-LEUBA: Sixteen?
24	MR. ZWEIBAUM: Four-six-zero. Sixty.
25	MEMBER MARCH-LEUBA: Oh, 60? So we have
ļ	1

(202) 234-4433

	9
1	like a little less than 100 degrees C to freezing?
2	MR. ZWEIBAUM: That's correct.
3	MEMBER MARCH-LEUBA: All right. Okay.
4	Thank you.
5	MR. ZWEIBAUM: Okay. Continuing on the
6	description of that system. Here the major subsystems
7	are listed starting with primary loop piping. That
8	piping transports reactor coolant which is FLiBe salt
9	between the reactor vessel and the heat rejection
10	radiator. This is a non-safety-related portion of the
11	reactor cooling boundary.
12	The primary salt pump, or PSP, is a
13	variable-speed cartridge-style pump which is located
14	on the head of the reactor vessel. Its inlet extends
15	downwards through the reactor coolant-free surface.
16	It has an anti-siphon function on the hot leg which is
17	performed by the geometric features of that downward-
18	facing inlet of the PSP. There is no safety-related
19	function for the PSP itself as a subsystem, however
20	there is a safety-related trip of that pump should a
21	leak occur on the hot leg to maintain reactor coolant
22	inventory level.
23	The heat rejection subsystem provides for
24	heat transfer from the reactor coolant to
25	environmental air, which is the ultimate heat sink.
Į	I

(202) 234-4433

	10
1	It consists of a heat rejection radiator, heat
2	rejection blower, and associated ducting and thermal
3	management. There is no safety-related function for
4	the heat rejection system, however there is a safety-
5	related blower trip upon tube failure to minimize
6	forced air ingress into the PHTS.
7	And finally, we do have a primary loop
8	thermal management function to provide non-nuclear
9	heating and insulation to the PHTS as needed for
10	various operations which again has not safety-related
11	function.
12	MEMBER HALNON: Just a quick question.
13	This is Greg. The environmental air reject for the
14	heat, is that do you have dimensions on the stack?
15	Is it high or it surface level? What is the release
16	there?
17	MR. ZWEIBAUM: So we'll provide more
18	details with the operating license application. The
19	factors that will get into that is not only for
20	thermal management and kind of heat balance, but
21	there's also considerations associated with tritium
22	and dilution and source term. So there is a
23	combination of factors that leads or will lead to
24	the specifics provided for that stack height.
25	MEMBER HALNON: Thank you.
I	1

(202) 234-4433

MEMBER MARCH-LEUBA: And this is Jose. Can you explain to us -- you have a safety-related function to prevent air going into the system. What will be the safety significance of air getting into the system?

MR. ZWEIBAUM: So there's really -- and 6 7 actually there was а request for additional 8 information by the NRC specifically on oxidation of 9 internals. There's really two regimes: reactor operation 10 During normal there is а technical specification around the quantity of air that could be 11 ingested into the primary heat transport system to 12 limit oxidation. During an accident that includes a 13 14 break in the heat rejection radiator the trip is 15 intended to limit forced air ingress. And then the natural convection that would result in some amount of 16 17 air introduced into the system and causing oxidation of reactor internals would be bounded by what we'll be 18 19 testing based on our materials qualification topical So this is all related to oxidation and 20 report. bounded by acceptable values up to seven days during 21 22 any postulated event.

23 MEMBER MARCH-LEUBA: So summarizing, is 24 more of a chemical reaction of the oxygen, not flow 25 blockage or prevention of circulation or change of

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	12
1	flow factors, things like that?
2	MR. ZWEIBAUM: That is correct.
3	MEMBER MARCH-LEUBA: Nothing
4	MR. ZWEIBAUM: That's correct. The
5	natural circulation that we are relying upon for decay
6	heat removal happens strictly within the reactor
7	vessel, so the PHTS which is described in Chapter 5 is
8	not involved in that function.
9	MEMBER MARCH-LEUBA: Thanks.
10	MR. ZWEIBAUM: Next slide? Our reactor
11	coolant, although part of the functional containment
12	function that was described in Chapter 6 is also
13	architecturally a part of a heat transport system, so
14	this is why it's also described in Section 5.1. This
15	is FLiBe, the liquid fluoride salt coolant that's been
16	described multiple times. Of note is its negative
17	temperature coeffience of reactivity as well as the
18	fact that it acts as a secondary barrier to fission
19	product release.
20	For thermal physical properties there is
21	a topical report, Reactor Coolant for the Kairos Power
22	Fluoride Salt Cooled High-Temperature Reactor, KP-TR-
23	005, that provides all of the thermophysical
24	properties. And another important aspect here is the
25	high heat capacity of the coolant, which from a safety
I	I

(202) 234-4433

	13
1	perspective provides large thermal inertia for
2	transients so that any transient don't result in any
3	kind of rapid evolution of temperature.
4	MEMBER KIRCHNER: This Walt Kirchner.
5	Could you tell us what we're looking at in the picture
6	on the right?
7	MR. ZWEIBAUM: Yes, so this picture I
8	believe was the first time that we did some static
9	exposure of a metallic coupon in FLiBe in our own salt
10	lab in Alameda, California. So we're looking at a
11	small trinket if you will that contains liquid FLiBe.
12	The red glow is because of the temperature that we
13	have to heat up the system to for melting of the salt
14	and then introduce that little machined Kairos Power
15	logo made of 3/16th stainless steel into the salt
16	there.
17	MEMBER KIRCHNER: Could you tell us what
18	happens with FLiBe sitting in exposed to air,
19	whether it's dry air or humid air, or water?
20	MR. ZWEIBAUM: In what context? With
21	materials and materials oxidation or just the chemical
22	reaction between FLiBe and other chemicals?
23	MEMBER KIRCHNER: Well, if you have a
24	break in this primary heat transport system what
25	happens with the FLiBe being exposed to air?
l	I

(202) 234-4433

	14
1	MR. ZWEIBAUM: Yes, so this is something
2	that we'll be continuing to investigate and bound from
3	I guess a reaction perspective. There's a number of
4	factors here, the main thing being the corrosion of
5	the materials exposed to the combination of FLiBe and
6	oxygen. And this is what we'll be testing for and
7	bounding from what we've committed to in our materials
8	topical report that's been submitted and approved by
9	the NRC.
10	MEMBER KIRCHNER: So what happens in if
11	you have a spill of FLiBe?
12	MR. ZWEIBAUM: Also (audio
13	interference)
14	MEMBER KIRCHNER: You don't have a
15	confinement, so just talk through what issues you have
16	with FLiBe exposed to air.
17	MR. ZWEIBAUM: Well, I guess the main
18	thing would be the release of radionuclides or
19	aerosols that would be contained in the FLiBe. And
20	this is something that we are also bounding in our
21	analysis, and it's part of our Chapter 13 analysis.
22	I think we have our manager of salt chemistry Gus
23	Merwin on the line if you have more questions related
24	to chemistry specifically.
25	MEMBER KIRCHNER: Well, is it toxic? Do
ļ	I

(202) 234-4433

	15
1	you have an occupational hazard if it's spilled?
2	MR. MERWIN: This is Gus Merwin, manager
3	of Salt Chemistry here at Kairos. I'd say the
4	chemical toxicity is sort of out of scope of the PSAR.
5	There's a so the beryllium hazards are assessed
6	separately into different regulatory domain.
7	I would note that there is no chemical
8	reaction between oxygen and FLiBe itself, so a pool of
9	FLiBe does not chemically react with oxygen. There is
10	the corrosion concerns that Nico Zweibaum mentioned,
11	and those are assessed as part of the materials
12	topical program.
13	For a salt spill scenario there is the
14	potential for radiological releases from circulating
15	activity which is handled as part of our postulated
16	event analysis.
17	MEMBER MARCH-LEUBA: And in that line of
18	questioning what happens to hot FLiBe falling onto a
19	concrete floor? Does it interact with the concrete?
20	Releases gases?
21	MR. MERWIN: The chemical reactions
22	between FLiBe and concrete are precluded by design.
23	There is a safety-related drip tray that precludes
24	chemical reactions between FLiBe and concrete.
25	MEMBER MARCH-LEUBA: Oh, so you have a
ļ	I

(202) 234-4433

16 1 metal barrier? But if it were to fail, is it really I mean, all this gas it goes -- it fizzles and 2 bad? produces lot of gases. 3 4 CHAIR PETTI: I don't think it's a good day. 5 Yes, I was -- on the trays -- I know you 6 7 -- I don't see any slides -- I mean are they basically 8 like below all the welds? Is that where they're 9 it really the whole putting -or is reactor 10 compartment in under a big steel tray above the --MR. MERWIN: This is Gus Merwin again. 11 We've not specified where the trays will be or their 12 geometric configuration, but the general bulk chemical 13 14 reactions are precluded by design. But I will note that for Kairos' internal learnings and investment 15 16 protections we have done experiments reacting FLiBe 17 with concrete as part of test program to develop prototype systems and those reactions are extremely, 18 19 extremely slow. We're talking about functionally chemically inert. The FLiBe does not want to form 20 oxides. It's the same reason there's no driver for 21 FLiBe reactions with air. So the reactions are over 22 the course of many hours and we probably freeze the 23 24 system before you get any bulk degradation of the 25 concrete.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	17
1	MEMBER BALLINGER: This is Ron Ballinger.
2	I guess I understand that part, but I've had some
3	experience when you drop something very hot on
4	concrete it's not the reaction with the concrete
5	that's the issue. It's the literally explosion of air
6	bubbles in the concrete that blows the concrete
7	surface away. Have you looked at that?
8	MR. MERWIN: That is a primary motivator
9	for why we precluded this by design.
10	MEMBER BALLINGER: Thank you.
11	CHAIR PETTI: Okay. Keep going. No more
12	questions here.
13	MR. ZWEIBAUM: Okay. This is
14	MEMBER REMPE: I guess I'm just kind of
15	wondering a little bit more about this tray. So you
16	plan to specify the thickness of the and the
17	material of the metallic tray as well as do you
18	need to have a lip to contain a certain amount of
19	FLiBe? I mean all of those things will be determined
20	based on some estimated release amount by the time of
21	the operating license. I haven't looked for that
22	specific detail anywhere, but that's the plan?
23	MR. MERWIN: Yes, that is correct.
24	MEMBER REMPE: And is that in Appendix A
25	also as something that you're expecting to get from
ļ	I

(202) 234-4433

	18
1	them?
2	MR. SCHMIDT: This is Jeff Schmidt from
3	Reactor Systems. I don't think it's specifically in
4	Appendix A that I remember other than it's precluded
5	by design and we just don't have the design details of
6	it.
7	MEMBER REMPE: But that's something a
8	level of detail you'll expect to iron out?
9	MR. SCHMIDT: Yes, I mean there's a as
10	they pointed out there's a Chapter 13 event, a salt
11	spill. So obviously we'll be looking at that and
12	where the salt goes from that salt spill. And they've
13	committed to looking at a variety of locations for
14	break sizes through the primary system.
15	MEMBER REMPE: You'll have to
16	MR. SCHMIDT: Yes.
17	MEMBER REMPE: think hard about does it
18	flow and spread out or does it I mean (audio
19	interference)
20	MR. SCHMIDT: Yes. No.
21	MEMBER REMPE: concrete interaction
22	concerns (audio interference)
23	MR. SCHMIDT: No, right. Right.
24	MEMBER REMPE: severe accident stuff in
25	the past. And I'll be looking at Chapter 13 a little
Į	

	19
1	bit more carefully on those kind of
2	MR. SCHMIDT: Yes, it is as they
3	pointed out it's precluded by design, by the design
4	details are not available.
5	MR. ZWEIBAUM: This is Nico Zweibaum
6	again, Director of Salt Systems Design. I would like
7	to note that by OLA we'll also have more definition of
8	plant layout including the specific routing of any
9	salt-containing system. So that will allow for a lot
10	better definition on location and sizes and geometry
11	of those drip trays. And this will all be part of the
12	operating license application.
13	MEMBER KIRCHNER: Yes, in particular; this
14	is Walt Kirchner, you point out in your own Chapter 6
15	that FLiBe is an external hazard for your decay heat
16	removal system.
17	MR. ZWEIBAUM: What we did point out in
18	Chapter 6 is that we are precluding water and FLiBe
19	interactions by design. And since the major system
20	containing water in the plant is our safety-related
21	DHRS, that system does include a leak barrier so that
22	should there be a leak in the primary barrier of that
23	water-containing system that the water is still
24	contained and not introduced into the reactor cavity
25	where it could come into contact with FLiBe. If that
I	I

(202) 234-4433

	20
1	makes sense.
2	CHAIR PETTI: Okay. Keep going.
3	MR. ZWEIBAUM: Shall we proceed? Okay.
4	So on the design basis for the PHTS the
5	structure systems components that are part of the
6	reactor cooling boundary will be designed to ASME
7	B31.3 and Boiler Pressure Vessel Code Section 8, Codes
8	and Standards.
9	Consistent with PDC 2 failure of the non-
10	safety-related PHTS components during seismic events
11	will not affect the performance of nearby safety-
12	related SSEs.
13	Consistent with PDC 10 adequate coolant
14	flow will be maintained to assure SARRDLs will not be
15	exceeded under any condition of normal operation.
16	Consistent with PDC 12 the PHTS is
17	designed with features that ensure power oscillations
18	cannot result in conditions exceeding SARRDLs.
19	Consistent with PDC 16 and 60 the reactor
20	coolant provides control of the release of radioactive
21	materials during normal operations and postulated
22	events through the accumulation of radionuclides.
23	Consistent with PDC 33 the casing for the
24	primary salt pump, PSP, is designed with geometric
25	features to prevent reactor coolant from being
I	1

(202) 234-4433

	21
1	siphoned below the pump casing inlet elevation to
2	maintain reactor coolant inventory in the event of a
3	break in an external portion of the PHTS.
4	Consistent with PDCs 33 and 70 the PHTS is
5	designed with features that support maintaining
6	reactor coolant inventory and maintaining reactor
7	coolant purity by eliminating air ingress.
8	The PHTS will be designed according to 10
9	CFR 20.1406 to the extent practicable to minimize
10	contamination and support eventual decommissioning.
11	CHAIR PETTI: This is their last slide,
12	members, Chapters 5. Any questions?
13	(No audible response.)
14	CHAIR PETTI: If not, we'll turn to staff.
15	MR. HISER:
16	Thank you. My name is Matt Hiser. I am
17	a senior project manager in the NRR's Division of
18	Advanced Reactors and Non-Power Production and
19	Utilization Facilities. I've been one of four project
20	managers focused on Hermes and I'd like just to offer
21	a few introductory slides sort of for all the
22	presentations today hopefully to make it a little more
23	efficient, a little less repetitive on the material
24	that we're going to cover and the regulatory basis.
25	So the four chapters that we're going to
ļ	1

(202) 234-4433

	22
1	cover today are Chapter 5, as Kairos has already
2	jumped into; Chapter 7 on Instrumentation and Control;
3	Chapter 8 on Electrical Power Systems; and then
4	Chapter 11 on Radiation Protection and Radioactive
5	Waste Management. And towards the bottom of this
6	slide I just have sort of included a rough common
7	agenda for each chapter, so we'll sort of have a brief
8	overview in more than a slide or two of the PSAR
9	information and the relevant principal design criteria
10	for that chapter. Then if there are some topical
11	reports that are referenced for that chapter, those
12	will be noted. And then the bulk of each chapter
13	we'll discuss the staff's technical evaluation and
14	then wrap up with findings and conclusions.
15	Next slide? And so just to cover sort of
16	the common regulatory basis; and you guys saw these
17	slides in about every chapter a couple weeks ago, so
18	we thought we'd boil it down to one slide up front.
19	These are the relevant regulations: 50.34a, which
20	describes what expected in a preliminary safety
21	analysis report, or PSAR; 50.35, the expectations for
22	the agency, the findings that need to be made for
23	issuance of a construction permit; and then the common
24	standards in 50.40; and finally, the guidance, NUREG-
25	1537, Part 2, the SRP and acceptance criteria. Those
I	1

(202) 234-4433

www.nealrgross.com

	23
1	are all applicable guidance and regulations. And
2	we'll have noted for each chapter if there are other
3	regulations or guidance or PDCs that are applicable to
4	that chapter.
5	So with that I'll happily turn it over to
6	Alex Chereskin to cover Chapter 5.
7	MR. CHERESKIN: Good morning. This is
8	Alex Chereskin from the NRC staff. Can everyone hear
9	me?
10	(No audible response.)
11	MR. CHERESKIN: Okay. Thanks.
12	I'll be covering the NRC staff's review of
13	Chapter 5 for the primary heat transport system.
14	Next slide, please? This slide covers the
15	overview of the staff's review of Chapter 5. And to
16	start off the primary heat transport system is a non-
17	safety-related system. A general overview, not to
18	repeat too much of what Kairos just said, but it
19	includes the primary salt pump, heat rejection
20	subsystem and the associated piping. And the purpose
21	is to transport heat from the reactor core to the
22	ultimate heat sink through the heat rejection
23	radiator. It's also meant to manage thermal changes
24	and provide normal heat removal. And the design will
25	provide for potential in-service inspection,
I	I

(202) 234-4433

maintenance, and replacement activities.

1

2 slide, please? Next These are the design criteria that are applicable 3 principal to 4 Chapter 5. I will get into more detail on the next 5 couple of slides for each of these PDCs, but in general they cover -- PDC 2 discusses the requirement 6 7 for safety-related systems, structures, and components 8 to be protected against the effects of natural 9 phenomena; PDC 10 requiring that specified acceptable system radionuclide design limits are not exceeded; 10 PDC 12 for ensuring power oscillations aren't possible 11 or can be reliably readily detected; 12 PDC 16 and 60 which deal with controlling the release of radioactive 13 14 materials to the environment; PDC 33 requiring a 15 system to maintain coolant inventory; and also PDC 70 16 which deals with reactor coolant purity based on 17 design limits that I will get into on a subsequent slide. 18

Next slide, please? So this slide just covers a list of applicable topical reports to this section. And as they come up in the subsequent slides we can add more detail, but I don't have much to say on this specific slide.

24 So next slide, please? This slides 25 contains the staff evaluation of PDC 2, which as I

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 mentioned requires safety-related systems, structures, and components be protected against the effects of 2 3 natural phenomena. And so information in the PSAR notes that the PHTS piping and supports are designed 4 5 in accordance with ASME Code B31.3 and the heat 6 exchanger is designed in accordance with ASME Code --7 Section 8 standards. And the design of the nonsafety-related primary heat transport system will be 8 9 such that a failure of that system would not affect 10 the performance of safety-related SSCs due to something like a design-basis earthquake. In the PSAR 11 it notes that the sufficiently small pipe thickness 12 will be used so that the failure of these pipes would 13 14 not impact the vessel nozzles and the staff had found 15 that the preliminary design information provided for the primary heat transport system is consistent with 16 17 PDC 2. Next slide, please? 18 19 MEMBER MARCH-LEUBA: Can we --20 MR. CHERESKIN: Yes. Sorry. 21 MEMBER MARCH-LEUBA: -- go to the previous slide with the topical reports? 22 MR. CHERESKIN: 23 Yes. 24 MEMBER MARCH-LEUBA: Yes, notice that the 25 last two, 13 14 are not approved yet or reviewed.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

25

	26
1	That's correct, right?
2	MR. CHERESKIN: Those were recently
3	issued, I think maybe last month.
4	MEMBER MARCH-LEUBA: And there's an SE out
5	on them?
6	MR. CHERESKIN: Yes.
7	MEMBER MARCH-LEUBA: That's what I but
8	it doesn't say A.
9	CHAIR PETTI: This slide is a little old.
10	MR. CHERESKIN: Yes, that was
11	CHAIR PETTI: At the time they did the
12	review it was not A, but today it's A.
13	MR. CHERESKIN: That is correct. They're
14	A today. It was just a matter of timing.
15	MEMBER MARCH-LEUBA: I was just going to
16	comment that the issue of going between CP and OL,
17	we're kind of pushing things to next year and we need
18	to keep a mental picture of what's missing. And if
19	something were to change what would effect on our
20	conclusions?
21	MR. CHERESKIN: It's understood.
22	MEMBER MARCH-LEUBA: But fix the slides,
23	what is says, and that way it won't make a problem.
24	MR. CHERESKIN: I think we covered this
25	slide. I think I went through my notes here.
l	I

(202) 234-4433

	27
1	Next slide, please? All right. So this
2	is the staff evaluation of PDC 10 which requires that
3	the SARRDLs aren't exceeded during normal operations
4	or unplanned transients. And the staff had found that
5	the preliminary information in the PSAR is consistent
6	with PDC 10. As Kairos noted, the coolant properties
7	are found in the cited topical report on this slide.
8	Additionally there's a chemistry control system that
9	can maintain FLiBe composition. There's also a
10	proposed technical specification to maintain the
11	coolant within allowable limits.
12	And this all rolls up to the coolant
13	being resistant to thermal hydraulic instabilities due
14	to its high heat capacity. And I would note that the
15	actual evaluations of thermal hydraulics to
16	demonstrate consistency with this PDC are found in
17	Chapter 4 of the staff SE. And then Chapter 6 of the
18	staff SE actually evaluates the decay heat removal
19	capabilities of the system.
20	Next slide, please? So this is the staff
21	evaluation of PDC 12 requiring coolant systems to
22	ensure power oscillations that could result in
23	exceeding SARRDLs aren't possible or can be reliably
24	and readily detected and suppressed. And the staff
25	had found that the preliminary information in Chapter

(202) 234-4433

	28
1	5 is consistent with PDC 12 as the primary heat
2	transport system can limit and suppress inlet
3	temperature and mass fluoride oscillations and limited
4	train gas in the coolant, maintain coolant
5	specifications.
6	And as I mentioned on the previous slide,
7	the resistance of the coolant to thermal hydraulic
8	instabilities. And also similar to the last slide,
9	other sections of the staff's safety evaluation
10	contain the full evaluations of consistency with PDC
11	12, Chapter 4 for the nuclear design and Chapter 7 for
12	the required instrumentation and controls.
13	Next slide, please? Okay. So this slide
14	combines the evaluation for PDCs 16 and 60 as they are
15	pretty similar. And the function of the FLiBe to be
16	consistent with these is also very similar. PDC 16,
17	which requires a functional containment to control
18	release of radioactivity and PDC 60 requiring the
19	plant design to control the release of radioactive
20	materials including during postulated events in the
21	PSAR.
22	In Chapter 5 it describes the ability of

In Chapter 5 it describes the ability of FLiBe to retain fission products that may escape from the fuel and credits FLiBe as a radionuclide barrier in the safety analysis. And the staff had found that

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 the preliminary information in the PSAR is consistent with these PDCs as the ability of FLiBe to retain 2 radionuclides was previously evaluated by the staff in 3 4 the cited topical report here, the Mechanistic Source 5 Term Topical Report, which contains the methodology for evaluating the ability of FLiBe to retain fission 6 7 products with a KP-FHR design. Additionally Chapter 8 14 in the PSAR contained a proposed tech spec to limit 9 circulating activity which also supports assumptions 10 made in that topical report.

Next slide, please? This slides contains the staff's evaluation of PDC 33 which requires a system to maintain coolant inventory to protect against small breaks in the safety-related portion of the coolant boundary. And so on this slide we have a discussion of the anti-siphon features for when the loss of the reactor coolant.

And so just to expand on that a little bit 18 19 because I know we've had some discussions a couple weeks ago on this topic, there are a couple different 20 anti-siphon features, and I think Kairos was talking 21 about some of them during their presentation starting 22 with the pump -- the primary salt pump suction inlet 23 24 being above the required coolant level. So when the coolant drops below that it would help to break the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	30
1	siphon in the hot leg.
2	And additionally for the cold legs if
3	there is a break in the primary heat transport system,
4	gas flowing out of the covered gas system would also
5	help to break the siphon from the cold leg as the
6	argon gas could flow out of the cold leg as the
7	coolant level decreases breaking the siphon. And
8	that's facilitated by the cutout features in the core
9	barrel which is mentioned in Section 4.3.
10	And so the information on these design
11	features is the preliminary information is
12	consistent with PDC 33. It's also consistent with the
13	guidance given in NUREG-1537. And I think that's
14	actually all I had on that slide. Sorry about that.
15	Next slide, please? Okay. So this slide
16	contains the staff evaluation of PDC 70. PDC 70
17	requires a system to maintain purity of the reactor
18	coolant based on design limits that consider chemical
19	attack, fouling and plugging passages, radionuclide
20	concentrations, and air or moisture ingress due to
21	leaks. And the preliminary information in the PSAR
22	and also the RAI response that Kairos mentioned
23	describes how the primary heat transport system is
24	designed to either withstand or mitigate fouling, air
25	ingress, chemical attack, and also manage radionuclide
	I

(202) 234-4433

concentrations.

1

2 staff had found this preliminary The 3 information is consistent with PDC 70 as there is 4 coolant purity control and temperature monitoring that 5 can detect the fouling or plugging of passages, the previously discussed ability of FLiBe to retain 6 7 radionuclides combined with the circulating activity 8 limits, and the ability to also remove those 9 radionuclides from FLiBe. As discussed previously there are the Material Qualification Topical Reports 10 which assess chemical attack and FLiBe. 11

And the last bullet here that I wanted to 12 cover is the ability of the primary heat transport 13 14 system to limit forced air ingress due to the design 15 features that Kairos described during their 16 presentation in order to remain within bounds of 17 qualification testing, and as described in Chapter 13 of the PSAR, the availability of compensatory measures 18 19 after I believe the seven days that Kairos described.

Next slide, please? I think this is one 20 of the last 21 slides here covering testing and And the PSAR states that the design of 22 inspection. PHTS allows for inspection, maintenance, 23 the or 24 replacement activities and it states that any testing be the OL 25 inspection will submitted with or

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	32
1	application. And so this is a future review item for
2	the NRC staff to look at these programs at the time of
3	the operating license application.
4	This might be my last slide.
5	Next slide, Ed? Oh, sorry.
6	And so this slide is just the technical
7	findings in conclusion here that the preliminary
8	design information in the PSAR is consistent with the
9	applicable criteria in NUREG-1537 and the PDCs
10	discussed on the previous slides and that the
11	information in Section 5 of the PSAR is sufficient for
12	issuance of a CP in accordance with 10 CFR 50.35 and
13	50.40 with the rest of the reviews being left for the
14	operating license application.
15	Next slide, please? All right. And that
16	was the last slide. Are there further questions?
17	MEMBER HALNON: Yes, Alex, this is Greg.
18	Given the unique nature and I guess first-of-a-kind-
19	type reactor this is, can you are you going to
20	handle technical specifications in the same way that
21	you would normally do it? In other words, I'm looking
22	at PDC 70, to maintain reactor coolant purity. I
23	mean, clearly there were tech specs proposed for
24	radionuclide inventory of the FLiBe. Are you going to
25	go deeper than that to make sure that in this
ļ	I

(202) 234-4433

	33
1	situation the secondary systems that are supporting
2	those types of attributes of the PDC will be
3	maintained in spec? I guess what I'm thinking about
4	is there going to be the auxiliary systems that we
5	talked about in Chapter 9 that may have tech specs
6	requirements, non-safety systems, but tech spec
7	requirements?
8	MR. CHERESKIN: So I think I'll answer
9	that in two parts.
10	And, Ed, I might ask you to chime in
11	because I believe you did the full review of Chapter
12	14 here.
13	But given that these are only proposed
14	tech specs at this time obviously there's no final
15	proposed no final technical specifications or a
16	final staff finding on it. But I would note that even
17	in the proposed tech specs in Section 3.3 there are
18	some of the proposed tech specs, for example, for
19	inner gas system pressure. And so I mean there's at
20	least something in here in the preliminary information
21	that indicates that could be a possibility. But
22	again, the final determination of that would obviously
23	be made with the operating license.
24	MEMBER HALNON: Okay. So there wouldn't
25	be tighter controls placed on a first-of-a-kind
	I

(202) 234-4433

1 through tech specs? It would be through other means?
2 Or do you think that those discussions -- I mean, they
3 have to be had, I understand that, but I'm curious how
4 deep we're going to go with that.

5 I realize that there were a lot proposed 6 high-level tech specs, but some of these things --7 when we talk about maintain reactor coolant purity, 8 chemical attack, fouling and plugging -- so those 9 radionuclide concentrations, those just beq of limits being put somewhere, being monitored consistently and 10 inspectable, if you will, from the standpoint of 11 normal operations. 12

So I quess it's -- again we're going to 13 14 start from pretty much scratch looking at the PSAR 15 going to the FSAR, but I was just curious how deep 16 we're going to go with the tech specs and requirements 17 being the first-of-a-kind. Is it going to be more stringent than you think down the road when all these 18 19 things are proven? That's probably more of а statement than a question. You don't have to answer. 20 MR. this is Ed 21 **HELVENSTON:** Yes, Helvenston from the staff. I'll just clarify that in 22 PSAR Chapter 14 Kairos did list a number of the 23 24 probable subjects of what the tech specs are going to There were some things related to coolant purity 25 be.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

and other items, but it's understood that perhaps that list could be considered to cover some of the most significant items, but we certainly, at least from the staff's standpoint, don't consider that to be a comprehensive list.

We will do a much more detailed review of 6 7 the tech specs at the operating license application 8 and we'll certainly consider the level of importance 9 to safety of various systems in those tech specs. And 10 I think just because something is not necessarily safety-related, that doesn't automatically preclude it 11 not having a tech spec limit on it if necessary. 12

MEMBER HALNON: As these progress I'm just 14 interested in how those support systems will be 15 controlled, the cooling systems in the same way. So like I said, more to be talked about later. Thanks.

17 MR. HISER: And this is Matt Hiser. Ι just wanted to offer one -- I think Alex was trying to 18 19 mention this. There is an indication in their PSAR of inert gas system pressure, argon purity in the covered 20 So that's a non-safety-related system, 21 but qas. they've indicated they probably will have tech specs 22 associated with those items. And to Ed's point and 23 24 Alex' point, there may be more as they finalize the 25 design. And then as we go through the review process,

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

13

16

36 they may find that additional tech specs on non-1 safety-related aspects of the design are needed to 2 3 ensure safety. If that's helpful. MEMBER HALNON: Yes, it is. Are all the 4 5 attributes of PDC 70 sort of like -- I mean, this is probably an easy one to look at, like moisture ingress 6 7 and air moisture, measurement of that in the gases and 8 whatnot. Are each one of those items going to kind of 9 filter down into some limits somewhere in tech specs 10 or is it too early to really go through that discussion? 11 MR. CHERESKIN: It might be a little early 12 to determine if it would end up in somewhere like tech 13 14 specs because there are also things like chemistry 15 control programs which might not be explicit in the 16 tech specs. And so I think it's a little premature to 17 say exactly where they would end up, but I think the design criterion is pretty clear that purity limits 18 19 need to be based on those factors. And so I think they would be somewhere. 20 21 MEMBER HALNON: Okav. Yes, it's like fouling and plugging. I mean, how do you measure it? 22 How do you make sure that PDC 70 is being met from a 23 24 fouling perspective? I know in light water reactors we do eddy currents and we do heat transfer and 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

whatnot. We have plugging limits and all those types of things. Are those types of things going to be part of this as well? Again, you have to get the actual heat exchanger design in front of you to be able to talk about that. So, I got it. Thanks.

6 CHAIR PETTI: I had a question, but it may 7 be more for Kairos. A chemistry control system, does 8 it actually remove stuff from the coolant? Ι 9 understand the whole keeping the composition correct, 10 but there's going to be fission products in it. What I'm really worried about is the uranium. When you get 11 beryllium you get uranium with it. And that's going 12 to see the neutron field and could produce a mixed 13 14 hazardous waste. It may make it difficult. It 15 depends on the numbers. I've not run the numbers, but 16 the presence of uranium in beryllium has historically 17 been a problem with the disposal. This is more solid beryllium, blocks for instance, that are used in some 18 19 reactors.

And so if the chemistry system can clean up some of that, they may be helping themselves in terms of at the end of the day with the way -- with what -- how to disposition the FLiBe. I just -- I don't know what functionalities that system has. MR. MERWIN: This is Gus Merwin, Manager

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

www.nealrgross.com

37

	38
1	of Salt Chemistry. Appreciate the question. As
2	stated in the PSAR and mainly in Chapter 9, the
3	chemistry control system is only credited for ensuring
4	the salt is within those tech specs that were just
5	discussed. The circulating activity tech spec as part
6	of I believe in the environmental report, is stated
7	that the FLiBe will be ensured to be low-level
8	radiological waste. And so we are aware of those
9	effects. They're monitored. And we will ensure the
10	FLiBe has a disposal path.
11	CHAIR PETTI: But saying that it's low-
12	level waste, doesn't the presence of beryllium make
13	it a RCRA mixed waste? I'm not an expert in this
14	area. I always thought it was the combination of the
15	two that did it.
16	MR. MERWIN: Yes, as part of our ER we did
17	ensure that there was a disposal path in partner with
18	a vendor for disposal of radiological materials. And
19	they specifically were aware of the chemical form and
20	the chemical composition of the waste.
21	CHAIR PETTI: Okay.
22	MEMBER KIRCHNER: You know there are
23	pointers to control this is Walt Kirchner I
24	think it's Chapter 9 has pointers to controlling
25	chemistry. You also have to be concerned about
I	I

(202) 234-4433

	39
1	transmutation products accumulating. So it suggests
2	to me that the system will have the ability to strip
3	out impurities.
4	CHAIR PETTI: Yes, if the system can take
5	out some of that stuff that helps a lot. Again, not
6	credited per se, but what is it actually going to do?
7	MEMBER KIRCHNER: Well, there's two ways
8	to look at this. What's credited in terms of an
9	accident scenario?
10	CHAIR PETTI: Right.
11	MEMBER KIRCHNER: And then what do you
12	need to do to maintain the system?
13	CHAIR PETTI: Yes, I mean the other thing
14	I mean I'm sure they're doing this, but the
15	assumptions on how much fission products gets out is
16	very high compared to what I think they're going to
17	see. You want to make sure you design the system to
18	see what you're going to see, not just what the safety
19	limit is. Otherwise, what good is your system?
20	Any other questions?
21	(No audible response.)
22	CHAIR PETTI: Okay. Let's
23	MR. HISER: I just want to make one
24	clarification on the discussion earlier about topical
25	reports and dash A. So typically the way it works is
l	

(202) 234-4433

	40
1	NRC issues the final safety evaluation and then the
2	vendor develops a dash A version, it may be a month or
3	two after, that incorporates the SE. I just want to
4	be clear, we don't have a dash A yet, but we have a
5	final SE out. So they're approved
6	MEMBER MARCH-LEUBA: I wouldn't worry
7	whether a revision 4 was in the future. You're
8	revision 4 is in the past.
9	MR. HISER: Right. Yes. Correct. I just
10	want to make clear for the record what we don't
11	have a dash A today, but we will certainly by the time
12	this CP is issued or down the line.
13	MEMBER MARCH-LEUBA: All they do is
14	prepend the SER
15	MR. HISER: Right.
16	MEMBER MARCH-LEUBA: and topical report
17	and make the conforming changes to the
18	MR. HISER: And stick dash A in the tape.
19	Just wanted to make sure that was 100 percent clear.
20	MEMBER MARCH-LEUBA: Revision 4 is in the
21	past. That's important.
22	MR. HISER: Yes, yes.
23	CHAIR PETTI: Okay. Then let's now talk
24	about the memo.
25	Walt?
ļ	I

	41
1	MEMBER KIRCHNER: Okay. While we're
2	bringing the memo up I think the good thing here is
3	that Kairos is building a prototype to demonstrate
4	some of the key features of their design approach.
5	So I'm not going to read my memo to you.
6	Basically I would be repeating what Kairos and the
7	staff have already presented. So let me get to the
8	bottom line.
9	CHAIR PETTI: Oh, yes. Hold on, Walt.
10	Just so that the court reporter doesn't have to record
11	this part of the memo reading discussion. Thank you.
12	(Whereupon, the above-entitled matter went
13	off the record at 9:20 a.m. and resumed at 9:36 a.m.)
14	MR. CILLIERS: Good morning, everyone.
15	This is Anthonie Cilliers. I'm the Director of
16	Instrumentation, Controls & Electrical. And I thank
17	you for the opportunity to be able to present this
18	Chapter 7 of the PSAR on instrumentation and control
19	systems to you. Next slide.
20	So the chapter consists of a couple of
21	systems, the first system notably being the reactor
22	protection system. It's a safety related system that
23	provides protective, protection for reactor operations
24	by initiating signals to mitigate the consequences of
25	postulated events and ensure a safe shutdown.

(202) 234-4433

	42
1	The second one, the plant control system,
2	is a non-safety related system. And that's
3	responsible for controlling the plant parameters
4	during normal operations and providing data to the
5	main control room control consoles.
6	The main control room provides means for
7	the operators to monitor the behavior of the plant and
8	control room performance of the plant. The remote
9	onsite shutdown panel provides a separate means to
10	shut down the plant and to monitor plant parameters in
11	response to postulated event conditions.
12	Of course, the system receives its inputs
13	from various sensors throughout the system that are
14	used to provide information about the plant parameters
15	as inputs to the plant control system as well as the
16	reactor protection system as safety related inputs
17	into that system.
18	Sensors that are provided into the RPS are
19	safety related as I've said. And the plant control
20	system receives its inputs from non-safety related
21	sensors, as well as has access to the safety related
22	sensor data through safety related isolation device or
23	data diode. Next slide.
24	I want to start off with taking you
25	through the architectural system. Since we have
	I

(202) 234-4433

	43
1	presented this work to the committee previously, we
2	have made a couple of changes in form of change
3	packages, not fundamental design changes, but as
4	details developed in the development of our reactor
5	protection system we've added that information.
6	Notably, you will find that you'll see on
7	the right-hand side the red box where the reactor
8	protection system is. And I apologize. This is
9	really small. But I believe you've got a printout,
10	larger printout that you could be looking at.
11	So, on the right-hand side of the reactor
12	protection system, we've moved the data diode into the
13	reactor protection system itself. So you'll see the
14	data diode there. And the reason for that is it is
15	built into the architecture of the HIPS platform that
16	we are using as our reactor protection system.
17	The reactor protection system is an FPGA
18	based system. The HIPS platform I think you're all
19	aware of the HIPS platform architecture. And it's
20	both in hardwired, one-way communication. So we've
21	moved that data diode, instead of being a separate
22	device, to being part of the architecture.
23	You will also note that we have added the
24	thermal management systems as systems on the little
25	(audio interference).
I	

(202) 234-4433

	44
1	MEMBER SUNSERI: We're getting a bit of
2	feedback. If participants could mute themselves, we
3	could keep moving. Thank you.
4	MR. CILLIERS: Thank you. You will also
5	note that in the previous version of the architecture
6	we had four non-safety related systems that were
7	tripped. But we added the thermal management systems
8	of both the reactive thermal management system as well
9	as the primary loop thermal management system trips to
10	that as well. And that makes logical sense, because
11	those are heaters, and when we trip the system, we do
12	not want to add heat while we are trying to remove
13	heat at the same time.
14	So those are the big changes to the
15	system.
16	Jumping back to the reactor protection
17	system on the right-hand side, it receives four inputs
18	from safety related instrumentation. And you'll find
19	those four inputs are directly related to protecting
20	the safety systems of the reactor.
21	So that would be the temperature of the
22	coolant in the reactor, the level of the coolant in
23	the reactor, as well as the flux that's being created
24	inside the reactor during operations. And for that
25	flux monitoring, we do have a maximum flux trip, as
ļ	I

(202) 234-4433

	45
1	well as a rate of change trip.
2	In addition, you'll see the PHSS bubble
3	there. And that has been defined the inert gas
4	pressure sensor that will be tripping on, as stated in
5	previous chapters as well, to trip the reactor on any
6	break in the inert gas system to prevent air increase
7	or limit air increase into the system.
8	I think it's key to note that the
9	separation between the reactor protection system and
10	the plant control system is absolute. The only link
11	between the two systems is through the physical
12	operation of the plant itself. And that is
13	specifically to prevent any adverse effects of the
14	plant control system to affect the reactor protection
15	system's safety functions.
16	So, basically, the reactor protection
17	system removes power from the safety related relays,
18	which will then remove electricity from all of the
19	active systems. Notably, it will trip the shutdown
20	elements into the core. It will trip the primary salt
21	pump. It will prevent heaters from heating up the
22	plant and a number of other systems that stop

functioning until the reactor protection system finds

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

I think we can move to the next slide, or

that the parameters have returned back to normal.

(202) 234-4433

23

24

25

	46
1	if there's any questions.
2	MEMBER BROWN: Yes, let me ask one. Can
3	you go back to that again?
4	MR. CILLIERS: Yeah, sure.
5	MEMBER BROWN: And I'm looking at your
6	I think you've got another slide where you show the
7	RPS trip logic. Is that
8	MR. CILLIERS: That's correct
9	MEMBER BROWN: Okay. I'll save my one
10	comment for that.
11	We've got a safety related system for the
12	RPS, do all the right things on the relays. But
13	there's no safety related power supply. Is it not
14	I couldn't tell from Chapter 8 whether that was a dual
15	redundant power supply fed from separate somethings.
16	Whether it's safety related, it's not
17	but there's no dual power supply anywhere. It's a
18	single power supply. That was the implication I got
19	from the other diagrams in Chapter 8.
20	So I guess that's a question that's
21	hanging out there that I guess should be addressed at
22	some point.
23	MR. CILLIERS: I think it's very important
24	to note that we do not create any electrical supply
25	for safety functions. In fact, we remove electrical
	1

(202) 234-4433

	47
1	supply for the activation of safety functions.
2	So the reactor protection system actively
3	keeps the system alive while in operation and removes
4	the voltage from those relays to shut the reactor
5	down. The same would happen in the event of a loss of
6	power. We would automatically shut down.
7	That being said, we do have, and we'll
8	talk about it in Chapter 8, but we do have a backup
9	power supply system, because clearly as an investment
10	protection system we would not want to lose
11	electricity supply to our systems. We would rather
12	take it away with the reactor protection system. Also
13	yep.
14	MEMBER BROWN: I understand that point.
15	The backup system, though, is just another set of
16	generators that replaces the grid.
17	What I was talking about was the UPS power
18	supply that you have feeding the RPS. And what
19	you're, from a safety standpoint, you're saying it
20	doesn't, you're just setting yourself up for a plant
21	shutdown in case you lose the UPS.
22	MR. CILLIERS: That is correct
23	MEMBER BROWN: And that's okay. I got it.
24	I got it. I just, it was just a matter of
25	reliability. I'm not questioning the duality that
I	1

(202) 234-4433

	48
1	you've got in the RPS at this point. Okay?
2	MR. CILLIERS: Correct.
3	MEMBER BROWN: And you're willing to
4	accept that is all I'm saying.
5	MR. CILLIERS: Yes, we do.
6	MEMBER BROWN: Okay. All right. Go on
7	then.
8	MEMBER HALNON: Yeah, this is Greg. A
9	real quick question on the reactor trip or vessel
10	level monitoring. Is that perceived to be straight
11	vessel level, or is that going to be triggered off of
12	the inventory management system type parameters, such
13	as when the PSP gets tripped based on leakage
14	detection or something to that effect? I guess the
15	question is, is it going to be an indirect or is it
16	just vessel level? So
17	MR. CILLIERS: It is a safety related,
18	direct indication of the vessel level inside the core.
19	So we have a vessel level indication directly from the
20	core itself.
21	MEMBER HALNON: Okay. So, if the PSP gets
22	tripped because the inventory management system
23	determines that there's a leak, how will the reactor
24	get tripped?
25	MR. CILLIERS: The reactor will be tripped
I	I

(202) 234-4433

through the same systems that, the inputs that's coming into the reactor protection system. So it's very important to note that, as I said, there's a separation of operations between the reactor protection system and the plant control system.

All parameters that would trip the reactor 6 7 is when any parameters move outside of the boundary 8 that may challenge the safety systems of the reactor, 9 in other words, if the temperature goes higher than a specific set point, if the level goes lower than a 10 specific set point, or the neutrons or the pressure in 11 If any of those does not happen, the 12 the system. safety systems are not being challenged and the plant 13 14 will continue basically operation in normal until that 15 happens.

I have to add to that, if anything happens 16 17 on the plant control system side where the pump is tripped or any of those systems are tripped, the plant 18 19 control systems also maintain full functionality until you're able to shut down the reactor itself or shut 20 down various systems around that, although those will 21 not be deemed as safety functions because it's not 22 within the scope of challenging any of the safety 23 24 systems that we're protecting with the reactor 25 protection system.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

	50
1	MEMBER HALNON: Okay. So the reactor
2	trips will protect from safety limits or whatever
3	MR. CILLIERS: Correct.
4	MEMBER HALNON: whatever margin, and
5	the plant control system may also trip the reactor
6	based on parameters going so far out that, even though
7	they haven't challenged the reactor safety limits,
8	they are not a good place to be operating. Is that
9	correct?
10	MR. CILLIERS: That is correct. That is
11	absolutely correct.
12	So any of the trips, like you mentioned,
13	the primary salt pump trip would result in a sequence
14	of events all coming from the reactor, the plant
15	control system while in operation.
16	MEMBER HALNON: Okay. So there will be a
17	distinction between non-safety trips and safety trips
18	in other words.
19	MR. CILLIERS: Correct.
20	MEMBER HALNON: Okay. Thanks.
21	MEMBER BROWN: Okay. I have one other
22	are you done?
23	MEMBER HALNON: Yes.
24	MEMBER BROWN: Okay. I have one other
25	question, this is Charlie Brown again, relative to the
l	

	51
1	power supply routine.
2	I understand the backup goes away. Right
3	now you show in Chapter 8 a UPS for that. And then
4	you show in the Chapter 8 discussion, as well as the
5	figure, that it can maintain itself for 72 hours on a
6	UPS performance basis.
7	So, even though you lose the grid and you,
8	if your other backup power supply doesn't come on,
9	you've still got RPS systems in place for any other
10	things that happen in the reactor to take care of at
11	least for a three-day period while you're taking other
12	actions. Is that I'm just trying to connect the
13	dots between Chapter 8 UPSs and the concept.
14	I have no problem with the idea that if
15	you lose power you shut down the reactor, that the UPS
16	does shut down the reactor. And that's a reliability
17	issue. And that's, if you accept that, that's okay.
18	But is the 72 hours accurate?
19	MR. CILLIERS: I believe so, yes. I
20	believe
21	MEMBER BROWN: All right. That's fine.
22	I just wanted to make sure. There's little subscripts
23	under the UPS in the figure. So thank you.
24	MR. CILLIERS: Yeah, I know it's very
25	small.
I	I

(202) 234-4433

	52
1	The purpose of that 72 hours is, of
2	course, we would like to have power during any event.
3	Although we do not rely on it, it's better to have it
4	and to be able to monitor the system continuously.
5	But it doesn't provide any safety functions.
6	MEMBER BROWN: I got that. I'm not
7	questioning that issue.
8	MR. CILLIERS: All right.
9	MEMBER BROWN: Thank you. Okay. Go
10	ahead.
11	MR. CILLIERS: Okay. Next slide.
12	So the plant control system consists of
13	three larger systems. The one is the reactor control
14	systems. We perform the functions associated with the
15	reactivity control and power level adjustments.
16	Members
17	MEMBER BROWN: Oh, can
18	MR. CILLIERS: Sorry?
19	MEMBER BROWN: Can I interrupt you again
20	for
21	(Simultaneous speaking.)
22	MEMBER BROWN: Don't flip slides. I just
23	noticed on the RPS slide that's in Rev. 2, as opposed
24	to Rev. 0, there is a new acronym called HRCS, but
25	it's not listed in the acronym table. And I keyworded
	I

(202) 234-4433

	53
1	it for all of Rev. 2, and it's not listed anywhere.
2	So I have no idea what HRCS is as a
3	MR. CILLIERS: That's the heat rejection
4	control system.
5	MEMBER BROWN: Oh, okay. Well, you might
6	mention it in the text somewhere, because it
7	MR. CILLIERS: Thank you for that. That
8	was a system that was added a little later.
9	MEMBER BROWN: Okay. Thank you. Sorry to
10	interrupt.
11	MR. CILLIERS: Thank you. So the three
12	systems in the plant control system, this is a non-
13	safety system. So this is during normal operations.
14	The plant control system will be operating the reactor
15	itself, including its reactivity control and power
16	level adjustments, as well as monitoring the core
17	neutronics in the pebble handling and storage systems.
18	The reactor coolant auxiliary control
19	system performs functions associated with chemistry
20	control, inventory management system control, the
21	inert gas system control, and the tritium management
22	system and monitoring control.
23	And then we've got the primary heat
24	transport control system, which perform the functions
25	associated with control of the flow rate through the

(202) 234-4433

primary heat transport system, the primary heat transport system's thermal management, as well as the control of the heat rejection system that we've just been talking about, and the primary loop draining, filling, and piping monitoring.

The plant control system receives input 6 7 from non-safety related sensor inputs as well as 8 safety related sensors from the reactor protection 9 diode, described system through the data as 10 previously. And it's electronically and functionally isolated from the safety related RPS using a safety 11 related isolation device or data diode. 12

The plant control system generates control 13 14 outputs based on sensor inputs and set points provided 15 by the control system. And these set points are 16 adjusted automatically based on the plant operating 17 mode or in some cases by operators via the main control room console. So the operators do have 18 19 control over this system, while it is not changing any safety systems before reactor protection system takes 20 over. Next slide. 21

22 Moving on to the reactor protection 23 system, this is the safety related system that is 24 created for tripping the reactor system and initiating 25 protective --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	55
1	MEMBER BROWN: Can I interrupt again?
2	MR. CILLIERS: Yes.
3	MEMBER BROWN: Please. This is Charlie
4	Brown again. Can you go back to the previous slide?
5	Oh, no, go all now that you're on the plant control
6	system, can you go back to the overall figure? That's
7	it. That can't be. Does everybody have a bigger
8	picture of this?
9	MR. CILLIERS: Yes, right here.
10	MEMBER BROWN: Okay. I'll just bring this
11	up now from a single failure standpoint. All the data
12	from the plant control system goes up into a
13	distributed, as you all let me see it to make sure
14	I get the it's a microprocessor based distributed
15	control system
16	MR. CILLIERS: Correct.
17	MEMBER BROWN: individually controls
18	plant systems using inputs. That's the but all
19	that data goes up into a gateway. Then it goes to the
20	supervisory controller, then up into this redundant
21	dual I can't read the rest of it. I've got to get
22	the right chart here. Real-time data highway, and
23	then through another gateway and up into the main
24	control room.
25	So those are all, that's a single line of
	I

(202) 234-4433

56

In addition, now the gateway up in the 6 7 main control room connects to, as you all noted, TCPI/IP modems and/or fiber optic modems, however they 8 9 want to phrase them, which effectively sounds to me like connections to the outside world, and doesn't 10 mention -- it says, I'm not talking cyber security at 11 It's just control of access to this bus, this point. 12 which seems to be totally open to the universe the way 13 14 it's designed.

15 So I don't know what your all's thought 16 process is. That just seems to be a weakness in terms of control of access from whatever external source is 17 to the main control room and other, and the local 18 19 But it also sets you up for a major systems are. cyber security issue. 20

Now, you talk about using IEC, whatever it 21 I've forgotten the numbers for that. 22 is. That means you're embedding cyber, you know, malicious code 23 24 detection stuff enveloped in all the software that 25 you've got to manage, all the data going up in

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

everything.

in the plant.

	57
1	managing the plant. Just bringing that up as a point.
2	That's, a single failure is one point, and
3	then the control of access is another point that I
4	so I'm just mentioning that so you will be aware, from
5	my thought process. That's my thought process, not
6	the committee's. You can go back and finish the rest
7	of the slides now. This was just
8	MR. CILLIERS: Thank you. Can I respond?
9	MEMBER BROWN: Of course.
10	MR. CILLIERS: Yeah, I'd like to respond
11	to it. Thank you very much for that. That is
12	something that from this architecture we did not
13	include or show any of the redundancy systems.
14	In our subsequent development, and I did
15	not feel that it's necessary to put that in the piece
16	or at this stage, but in further developments of the
17	architecture we do indicate redundant, both redundant
18	controllers on the plant control system side. So we
19	have two controllers. So, if there's a fail, it moves
20	over to the other controller, as well as redundant
21	highways. So thank you very much for that. We've
22	also included that into our design that will be
23	presented in the OLA phase.
24	The connection to that cloud, the TCPI/IP
25	connection, we've also built (audio interference) into
	I

(202) 234-4433

	58
1	that part of the design since we've spoke about this
2	previously. It's very important to note that that
3	internet connection or that TCP/IP connection to the
4	outside world, although
5	(Simultaneous speaking.)
6	MEMBER BROWN: Excuse me. Can I interrupt
7	you a second? We're losing you. You're fading in and
8	out. I don't know what and it's reverberating.
9	MEMBER MARCH-LEUBA: Yeah. Can you speak
10	closer to the mic?
11	MEMBER BROWN: Yeah, stay closer to the
12	mic.
13	MR. CILLIERS: I'm moving the microphone.
14	Is that better?
15	MEMBER BROWN: Yeah, we just
16	MEMBER MARCH-LEUBA: Yeah, speak slowly,
17	because you're going a little garbled, but keep going
18	
19	MR. CILLIERS: Okay. I'll speak slowly.
20	So the connection to the outside world, in our
21	development of that system, we use a specific control
22	protocol. And we only provide read-only connections
23	to the outside world. So there's no routes of control
24	or any sort of communication path back into the
25	control system using that connection. So that's a
	I

(202) 234-4433

	59
1	very specific one-way communication. Other than that,
2	it's for monitoring of plant parameters from remote
3	locations such as headquarters or remote support
4	safeway where the engineers will be supporting from
5	MEMBER BROWN: Okay. Can I interrupt
6	again for a second? Okay. I got that. That's fine.
7	Not a problem with that, if it's a one-way. But is it
8	a one-way, how do I phrase this, a hardware based one-
9	way not configured by software, or is it a fancy-dancy
10	bidirectional transmission device which is configured
11	by software to make it one-way?
12	It's just something to consider in your,
13	in the longer term when we see the final operating
14	license design, as you say, you're working on for the
15	subsequent submittals. I just wanted to bring that
16	point up, is how that one-way is configured does make
17	a difference.
18	MR. CILLIERS: Yeah, thank you very much.
19	MEMBER BROWN: Okay? Thank you.
20	MEMBER MARCH-LEUBA: Yeah, let me say it
21	in a different language with the same concept. On the
22	top left of that blue box on the control room, you
23	have a cloud connection via TCPI/IP encrypted
24	MEMBER BROWN: Yeah, that's what I was
25	talking about.
Į	I

(202) 234-4433

	60
1	MEMBER MARCH-LEUBA: I assume it's a
2	VPN. If you totally intend it to be unidirectional,
3	yes, or monitoring and no action can be taken from the
4	outside, it would be best if you put the diode in
5	there so that it is enforced.
6	MEMBER BROWN: Thank you. That's two out
7	of two.
8	MEMBER MARCH-LEUBA: Yeah, I mean, the
9	diode on the red box on the right side into the
10	protection system, that's fantastic.
11	MEMBER BROWN: Yeah, that's excellent.
12	That's a
13	MEMBER MARCH-LEUBA: Yeah.
14	MEMBER BROWN: Love to see that when
15	you're doing your RPS setup.
16	MEMBER MARCH-LEUBA: If you truly intend
17	to have a functional diode on the control room box
18	going into the cloud, put a real one. And then you
19	don't have to worry about it.
20	MEMBER BROWN: It makes it easy when you
21	submit it also. Thank you.
22	MR. CILLIERS: Well, thank you for that.
23	MEMBER BROWN: You can go on. I'm sorry.
24	MR. CILLIERS: No, this is good. Thank
25	you.
	I

(202) 234-4433

	61
1	So, back to the reactor protection system,
2	it's a safety related system created for tripping the
3	reactor and initiating protective functions. It gets
4	its inputs, as I've described, from specific safety
5	related inputs.
6	It also allows for manual initiation of a
7	trip from the main control room or the onsite shutdown
8	panel, although this is not created as safety
9	functions in the system, but it allows the operators
10	to trip the system in the event of noticing that
11	something is going in a specific direction.
12	It will also trip the reactor on loss of
13	power with a small time delay to allow for backup
14	systems to come on. And that is discussed more in
15	Chapter 8.
16	It's got three predictive functions that
17	result from the RPS actuation. It inserts the control
18	rod and shutdown elements into the core. It inhibits
19	actions from the plant control systems, and I've
20	already mentioned a couple of them that could
21	interfere with the reactor protection system. So it
22	really puts the plant into a passive state where we
23	rely on the decay heat removal system to remove the
24	heat.
25	And the RPS is built on a logic-based
	1

(202) 234-4433

62 1 platform that utilizes discrete components and field programmable gate array technology. 2 3 I may add, and we've already discussed 4 that in a previous chapter, that the reactor protection system also activates the DHRS system once 5 the DHRS system is a required safety functions, in 6 7 other words, when enough fission products has been 8 accumulated in the system to have sufficient decay 9 heat that needs to be removed by the DHRSs. 10 So it will activate that system and remove all manual deactivation capability from the operators 11 and only hand that back once, after a shutdown and 12 then once temperature has reduced sufficiently as to 13 14 not challenge any of our safety related systems. Next slide. 15 16 So I'll qo a little bit into the reactor 17 protection system trip logic schematic. You will notice that we've got the inputs at the bottom in, 18 19 multiplied by four. So there's four inputs from all the safety related inputs. 20 The reason for the four is we use two out 21 of four voting logic. And it allows for one of these 22

planes to be removed for maintenance purposes, and

then we will move to two out of three voting logic in

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

So it allows for maintenance channel as

(202) 234-4433

the system.

23

24

25

1	well.
2	As the signals go in, the signals are
3	conditioned, and it is determined if a trip should
4	take place from each of these signals. And once those
5	signals, if there's a trip determination coming in
6	from any of those signals, it goes into the voting and
7	actuation system, which then votes on the two out of
8	four or two out of three voting system. And it then
9	decides on which part of the systems need to be
0	activated.
.1	And you will see, you've got safety
2	related relays from both of these trains that get shut
.3	down to remove power from the various non-safety
4	related systems.
5	And you'll see that we've subsequently
6	added two more systems to this list, which is not in
7	this figure. We've got a change package in place to
8	cover for that just for consistency's sake. And in
9	addition, you'll also see the DHRS system, which is
20	basically toggled on/off by this system itself.

21 MEMBER MARCH-LEUBA: This is Jose again.
22 Can you -23 MR. CILLIERS: Yes.
24 MEMBER MARCH-LEUBA: -- the difference in
25 the actuation logic for the blue boxes, the non-safety

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	64
1	related trips versus the DHRS, the safety related one?
2	I see that the switches are in series of the non-
3	safety related line parallel for the safety related.
4	MR. CILLIERS: Yeah, so any of the
5	priority logic systems could activate the DHRS system.
6	And it ultimately happens the same to activate the
7	other two, the other systems as well. If any of them
8	should activate well, sorry, both of them should be
9	activated to shut down the system itself. But the
10	DHRS system, any of the two priority logic systems
11	will allow the DHRS to be activated.
12	It's important to note that the DHRS
13	systems are not activated on trip, although if it has
14	been necessary, it can be done. But that is activated
15	prior to any of the events based on the collection of
16	data from the safety related sensors, and as I've said
17	before, the activation of the
18	MEMBER MARCH-LEUBA: Maybe I don't, I'm
19	not reading correctly your diagram. But what you're
20	saying is that DHRS, if either priority logic 1 or
21	priority logic 2, only one
22	MR. CILLIERS: Correct.
23	MEMBER MARCH-LEUBA: of the two is
24	activated, DHRS will activate, just the blue boxes,
25	HRCS, PSP, and so on. It requires both of them to be
	I

(202) 234-4433

	65
1	activated, both of them have to
2	MEMBER KIRCHNER: It's cutting power to
3	them. It's cutting power to the
4	MEMBER MARCH-LEUBA: I know.
5	MEMBER KIRCHNER: to the boxes.
6	(Simultaneous speaking.)
7	MEMBER MARCH-LEUBA: The way I read this
8	is the blues trip if only one of the logics are
9	tripped, but DHRS requires both.
10	MEMBER BROWN: It turns on with either
11	one.
12	MEMBER MARCH-LEUBA: It's the same thing
13	
14	MEMBER BROWN: Either one of the priority
15	logics will actuate
16	MEMBER HALNON: You're saying this in its
17	activated state.
18	MEMBER BROWN: Say again.
19	MEMBER HALNON: You're saying this in its
20	activated state. So
21	(Simultaneous speaking.)
22	MEMBER BROWN: in its deactivated
23	state, only one to activate.
24	MEMBER HALNON: Well, I mean, I'm talking
25	about the RPS is actuated in this state.
I	

	66
1	MEMBER MARCH-LEUBA: I think it's
2	(Simultaneous speaking.)
3	MEMBER HALNON: So you're turning, either
4	one can turn off the non-safety system or either one
5	can turn on. So, if you follow just electrons through
6	the wires
7	MEMBER MARCH-LEUBA: Okay, okay. So the
8	blue trips, you turn them off
9	MEMBER HALNON: Right.
10	MEMBER MARCH-LEUBA: when you trip.
11	And DHRS on
12	MEMBER BROWN: Yeah.
13	MEMBER HALNON: Correct.
14	MEMBER MARCH-LEUBA: Okay.
15	MEMBER BROWN: They tried to show that on
16	the other diagrams as well.
17	MR. BLEY: This is Dennis Bley. I've got
18	a related question. Over in Chapter 8, it says if you
19	do get an activation of DHRS, RPS then removes 24 volt
20	power so that operators can't inadvertently disable
21	DHRS. Is that done through the same area, or is that
22	different, handled somewhere else in RPS?
23	MR. CILLIERS: Yeah, that is actually done
24	in the same area, but it's not shown on this picture.
25	So
ļ	I

(202) 234-4433

	67
1	MR. BLEY: And there's
2	MR. CILLIERS: It's opening up the manual
3	control so that there's no more path from manual
4	controls to deactivate the DHRS system.
5	MR. BLEY: Okay. And it's done in the
6	same kind of logic that's been used for everything
7	else. It's not done through relays or something like
8	that.
9	MR. CILLIERS: No, it's done through the
10	same logic. When the DHRS system is activated by the
11	RPS, it also removes the path for manual actuation by
12	the operator.
13	MR. BLEY: Okay. I'm just when you do
14	something like that, I always wonder if there's some
15	way that can get you into trouble. But I'm not, I
16	can't think of it, if there is. Okay. Thanks.
17	MEMBER HALNON: So what is the input from
18	the pebble handling system. I can't remember. Was
19	that in the PSAR or was it
20	MR. CILLIERS: Oh, I mentioned it earlier.
21	That is an inert gas pressure sensor. You're talking
22	about the PHSS at the bottom?
23	MEMBER HALNON: Yeah, yeah
24	MR. CILLIERS: Yes.
25	MEMBER HALNON: So that's the inert gas
Į	1

(202) 234-4433

	68
1	system feeding into that?
2	MR. CILLIERS: Yeah, so the inert gas
3	system is a larger system that maintains inert gas
4	slightly above ambient pressure on the system, as well
5	as within the pebble handling system. And should a
6	break be detected other than the pebble handling
7	system or anywhere in the inert gas system, that input
8	will be triggered
9	MEMBER HALNON: Okay. So it's more of an
10	inert gas input than the PHSS. Sorry. I missed that
11	earlier.
12	MEMBER BROWN: You done, Greg?
13	MEMBER HALNON: Yes.
14	MEMBER BROWN: I have one other question
15	on this. Is there a reason the two manual trip
16	switches only go to priority logic 2, priority logic
17	1 is ignored?
18	MR. CILLIERS: There's no specific reason
19	why it would go to only one. It could go to two as
20	well, because it's not a safety related input. We
21	just added it as an input to priority logic 2.
22	MEMBER BROWN: So it's got to go somewhere
23	to trip the plant, right, if you
24	MR. CILLIERS: Right.
25	MEMBER BROWN: And if you look back at
I	

(202) 234-4433

	69
1	your big overall diagram, those two switches go into
2	a single box, which says priority logic 1 and 2. It
3	says priority logic times two. It's just an
4	inconsistency in how you represent the operation of
5	the manual trip switches. I would think you'd go to
6	both of them. That's my, again, that's a personal
7	thought. It's kind of a wiring diagram issue, not a
8	
9	MR. BLEY: I don't know, Charlie. It's
10	if you're going to have two switches, why not run them
11	it doesn't cost you anything different. Why not
12	run them through both so you get a little better
13	reliability?
14	MEMBER BROWN: I agree with you. The
15	words, the figures imply one thing in one figure.
16	That's the overall diagram. And when you get to the
17	details, it's only one of them. It's an
18	MR. BLEY: And there's a difference
19	between something you have to do and something that
20	just common sense says you probably ought to do.
21	MEMBER BROWN: Yeah. Anyway, you can put
22	that on your plate for what you do with this figure
23	the next time.
24	MR. CILLIERS: Right. Thank you.
25	MEMBER REMPE: So I have a question. I

(202) 234-4433

www.nealrgross.com

	70
1	thought I heard you say somewhere during this
2	discussion that you're in the process of submitting a
3	change package to this. Could you elaborate what's
4	being changed and what impact that will have on what
5	we're hearing today and have in our documentation and
6	the staff's SC?
7	MR. CILLIERS: Yeah, thank you for that.
8	So it was I basically picked up that in our main
9	diagram we have, we've added the two thermal
10	management systems, the reactor thermal management
11	system as well as the primary coolant loop thermal
12	management system as a trip, as one of the non-safety
13	related boxes.
14	So there's four boxes in the one figure.
15	In this one, we only have there's six boxes, non-
16	safety related ones, in the third figure. There's
17	only four in this one. So it's just for consistency
18	that we're adding those two to this figure as well.
19	MEMBER REMPE: So the PSAR is changing?
20	MEMBER BROWN: If you look at Rev. 0,
21	they've
22	MEMBER REMPE: So is it in Rev. 2?
23	MEMBER BROWN: Yes, they're in Rev. 2
24	MEMBER REMPE: Okay.
25	MEMBER BROWN: but they're not in Rev.
ļ	I

(202) 234-4433

	71
1	1, not in Rev. 0, which is
2	MEMBER REMPE: That's fine. But he said
3	
4	MEMBER BROWN: I went back and looked at
5	Rev. 2 when we got that just to see for consistency.
6	MEMBER REMPE: So Rev. 2 has what we are,
7	is the current version.
8	MEMBER BROWN: Yes. That's the one,
9	that's the we got this one
10	MEMBER REMPE: Okay. Yeah, I know we have
11	it in Rev. 2. But it sounded like you're submitting
12	something beyond Rev. 2. And that's not the case,
13	right?
14	MR. PEEBLES: This is Drew Peebles, the
15	senior licensing manager. It is an inconsistency that
16	we're updating now. And
17	MEMBER REMPE: So Rev. 2 is changing.
18	MR. PEEBLES: Right.
19	MEMBER BROWN: But that's, you're saying
20	Rev. 2 did not pick up everything.
21	MR. PEEBLES: Correct. And again, this is
22	just a change to make the figures consistent. The
23	text is still correct.
24	MEMBER REMPE: Okay. And the staff is
25	aware of this, and their SC, even though it's dated a
ļ	I

(202) 234-4433

```
www.nealrgross.com
```

	72
1	while back, will not change.
2	MEMBER BROWN: Yeah, the main figure for
3	the overall plant stuff made a couple of what it turns
4	out to be fairly significant changes relative to the
5	data diodes and where they'd be and how they're fed,
6	through gateways or not through gateways. And they've
7	now taken them out of the gateway operation.
8	MEMBER REMPE: But the staff's SC is not
9	going to change from these corrections. Thank you.
10	MEMBER BROWN: I'm done. You can go. I'm
11	sorry about that.
12	MR. CILLIERS: Thank you. The main
13	control room remote onsite shutdown panel, it contains
14	a capability related to the normal operations of the
15	plant, including operator and supervisor workstation
16	terminals, which provides alarms, annunciations, and
17	personnel and equipment interlocks.
18	And it provides information from both the
19	plant control system, as well as the reactor
20	protection system, a manual trip switch that
21	propagates through the gateway and into the safety
22	related isolation to allow operators to initiate a
23	plant trip, and the central alarm panel for the fire
24	protection system to monitor the status of fire
25	protection equipment in the reactor building and
	I

(202) 234-4433

73 1 controlling the ventilation and extinguishing systems related to the fire response. 2 3 The remote onsite shutdown panel provides 4 a human system interface for the plant staff to indications 5 monitor from the reactor protection system, including the operating status of the reactor 6 7 trip system and the decay heat removal system in the 8 event that the main control room could become 9 inaccessible or uninhabitable. 10 The remote onsite shutdown panel features one-way communication with the RPS and the ability to 11 initiate a manual trip signal that actuates the RPS. 12 And I will note that that is also not a safety related 13 14 function. It's just an additional function that we've discussed before. Next slide. 15 The design basis for these, the RPS and 16 17 safety related sensors are designed using relevant industry codes and standards such as the IEEE 603-2018 18 19 and the quality assurance program to be included PDC 1. 20 The RPS and safety related sensors are 21 designed to extend and to be able to perform these 22 safety related functions during adverse natural 23 24 phenomena, PDC 2. The RPS and safety related sensors are 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1 designed and located to minimize the probability and effects of fires and explosions, PDC 3. 2 3 The RPS is designed for the environmental 4 conditions associated with normal operations, 5 maintenance and testing and postulated events, PDC 4. The RPS provides an active trip and decay 6 7 heat removal actuations that ensure radionuclide 8 release design limits are not exceeded during normal 9 operations as a result of postulated events and upon 10 reactor trip actuation, including in the event of a single failure of the reactivity control systems. 11 These are PDCs 10, 20, and 25. 12 The reactor protection system as well as 13 14 the plant control system and safety related sensors 15 are designed to monitor plant parameters over the anticipated ranges of normal operations and postulated 16 17 event conditions, PDC 13. The design of the main control room allows 18 19 actions to be taken to operate the reactor on a normal operating and postulated event conditions. 20 It provides radiation protection allowing access 21 and occupancy during postulated event conditions with 22 occupants not receiving radiation exposures in excess 23 5 rem TEDE for the duration of the event and 24 of maintains habitability, allowing access and occupancy 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

74

75 1 during normal operations and postulated event 2 conditions. 3 The remote onsite shutdown panel is 4 located outside of the main control room and provides 5 the capability to promptly shut down the reactor and provide 6 monitor the unit during shutdown and 7 capability for subsequent safe shutdown of the reactor through use of suitable procedures. 8 That's PDC 19. 9 The reactor protection system and safety 10 related sensors are designed with sufficient redundancy and independence to ensure no single 11 failure results in a loss of protection functions, PDC 12 21. 13 14 The result of natural phenomena and of 15 normal operating maintenance, testing, and postulated event conditions do not result in loss of protection 16 function of the RPS, all safety related sensors, PDC 17 22. 18 19 The RPS fails to a safe state upon loss of electrical power or detection of adverse environmental 20 conditions, that's PDC 23. 21 The RPS and safety related sensors are 22 independent from non-safety related 23 functioning 24 control systems, that's PDC 24. The RPS safe points are designed to limit 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	76
1	the potential amount and rate of reactivity to ensure
2	sufficient protection from postulated events involving
3	reactivity transients, PDC 28.
4	The RPS and safety related sensors are
5	designed to be redundant to show that there's a high
6	probability of accomplishing the safety related
7	functions of the RPS in postulated events.
8	And I think most of those should be clear
9	from this discussion we've had on the design itself.
10	Next slide.
11	That's it. Any further questions?
12	MEMBER BROWN: Yes. You didn't show
13	going back to the big diagram, this is a small
14	question, the overall
15	MR. CILLIERS: The architecture?
16	MEMBER BROWN: Yeah, the big architecture
17	picture.
18	MR. CILLIERS: That one, yes.
19	MEMBER BROWN: In the main control room,
20	you show, you know, two operator workstations and a
21	supervisor workstation. And in your comments relative
22	to the single bus sending all that data, you said
23	that's, you just didn't show the redundancy you intend
24	to incorporate.
25	Do those workstations both, is the
	I

(202) 234-4433

1 intention to feed those workstations with both of the 2 redundant, independent busses bringing all that plant control system data up to the main control room so 3 4 that you can select them. You don't want them to 5 interfere. But I presume you can select one bus or the other to maintain continuity. 6 7 MR. CILLIERS: Yeah, we haven't made a final decision on how we will be using the redundant 8 9 So I will not comment on that right now. systems. 10 MEMBER BROWN: Okay. That's fine. Thank The question will come up. You know that. 11 you. MR. CILLIERS: 12 Yeah. MEMBER BIER: Hi. Ouestion from Vicki 13 14 Bier. On the discussion of control room habitability 15 basically, it provides adequate radiation that 16 protection to be usable during an emergency, have you 17 also looked at habitability due to emergencies at facilities, other nearby whether chemical 18 or 19 radiological? MR. CLARK: Hi, this is Austin Clark with 20 the licensing team at Kairos Power. So we do, in the 21 environmental report, go through an analysis of the 22 impacts of events at nearby facilities, as well as 23 24 nearby transportation routes. As far as the details of that analysis, you're welcome to review them in the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

77

	78
1	environmental report.
2	We did go through that analysis in Chapter
3	2 a couple weeks ago. The big one I think is there is
4	a potential for chemical spills on Highway Tennessee
5	58 to potentially drift to the control room. But the
6	dispersion over that distance is not anticipated to
7	cause a major impact.
8	MEMBER BIER: Okay. Thank you.
9	CHAIR PETTI: Okay. I'm hearing no
10	questions.
11	We're a little ahead of schedule. So
12	let's take a I'm trying to do the math in my head.
13	Okay. Let's just come back at 10:40. That's what the
14	agenda said. We'll take a break. Thank you.
15	(Whereupon, the above-entitled matter went
16	off the record at 10:23 a.m. and resumed at 10:40
17	a.m.)
18	CHAIR PETTI: Okay, we're all back. It's
19	time for the staff to talk about Chapter 7.
20	MR. ASHCRAFT: Hello, my name's Joe
21	Ashcraft. I'm a hello, my name's Joe Ashcraft.
22	I'm a NRR DEX electrical and control branch, and I'm
23	a technical reviewer.
24	And myself and Calvin Cheung, we're the
25	I&C reviewers for Chapter 7.
I	I

(202) 234-4433

	79
1	Next slide. Who's running the slides?
2	Okay, oh, they took out my agenda so let's
3	just go to this slide. You've seen it. I know some
4	of our initial interfaces with Kairos, there was
5	discussion about the diode for protection system.
6	They also had the displays up on the
7	remote shutdown, you know, for safety related.
8	So, there was some discussions. We didn't
9	really highlight or discuss too much, the non-safety
10	side because our review is really supposed to be
11	focused on safety.
12	But we did look at it. We had some
13	comments.
14	As far as what you saw down at the bottom,
15	I guess Joy asked a question. So there was a
16	supplement that was issued, and that's where they
17	introduced the RTMS, and the other one.
18	That supplement didn't update that back
19	figure, so that's why you know, it's just an editorial
20	concern.
21	But anyway, I was, figure we would spend
22	a lot of questions here, but I think, I think Charlie,
23	you done asked them all.
24	But if there's any additional questions,
25	it's basically you know, the architecture is designed
I	I

(202) 234-4433

	80
1	in four pieces.
2	You've got your safety related RPS; your
3	PCS, which you know, they tend to control just about
4	everything; and then main control room; and, remote
5	shutdown.
6	And I think everything, we're going to get
7	into the HRS, or at least what I think's going to
8	happen.
9	You know, they mention they're using a
10	HIPS now, but in the SAR that we have right now,
11	that's not part of it.
12	So we didn't review it thinking that, but
13	that last
14	(Simultaneous speaking.)
15	MEMBER BROWN: Well but in the PSAR, they
16	did, that's what you're talking about? It talked
17	about a FPGA type system, which implied.
18	MR. ASHCRAFT: Yes, but it could be
19	(Simultaneous speaking.)
20	MEMBER BROWN: It could be another one?
21	MR. ASHCRAFT: Right.
22	MEMBER BROWN: So you're saying it didn't
23	explicitly call out
24	(Simultaneous speaking.)
25	MR. ASHCRAFT: Right.
I	

	81
1	MEMBER BROWN: that? I noticed that.
2	I just didn't say anything.
3	MR. ASHCRAFT: And at some point, you know,
4	they made the comment so I'm assuming they'll either
5	come in with the IBR and the topical report, and it's
6	already been reviewed.
7	And at that time, which makes life a lot
8	easier because it's been approved, and then we just
9	have to focus on the ASAIs.
10	And even some of those, they might not
11	apply to them but they'll have to at least discuss
12	that.
13	So that makes, you know, the OL portion a
14	lot easier.
15	But there's other areas that still need to
16	be addressed. And I think it was brought up before.
17	There's an Appendix A and we put you know, a lot of
18	bullets.
19	One of them was the I&C platform, you
20	know, that stuff. So there's areas
21	(Simultaneous speaking.)
22	PARTICIPANT: Excuse me, could you lean
23	into the mic? The people on the line are having
24	trouble hearing.
25	MR. ASHCRAFT: Okay, sorry.
ļ	I

(202) 234-4433

	82
1	PARTICIPANT: Thanks.
2	MR. ASHCRAFT: Sorry about that. I'll
3	lean. Do I need to repeat all that, or are we good?
4	(No audible response.)
5	MR. ASHCRAFT: Okay, so if there's no
6	additional questions
7	(Simultaneous speaking.)
8	MEMBER HALNON: Just one other question.
9	There will be another system, I mean some kind of
10	input for the other systems, like chilled water or
11	plant water systems?
12	I mean they're going to need some kind of
13	control room interface, cooling water to the RB HVAC
14	system. Cooling water to some of these pumps and
15	stuff.
16	I mean it will be something in there,
17	right? So there will be another block somewhere else
18	that?
19	MR. ASHCRAFT: Well, not necessarily in
20	Chapter 7. I mean those I&C type stuff is really
21	dealt with the chapters.
22	But now as far as the you know, if you
23	took a dive into the control panels and stuff, that
24	you know, all that would be there. But that's not
25	something we review in Chapter 7.
I	1

(202) 234-4433

	83
1	MEMBER HALNON: Okay, because like the
2	treated water system interfaces with decay heat
3	removed. There's some, something there.
4	MR. ASHCRAFT: Well, when you say in the
5	descriptions, or it definitely will be in the logics.
6	We'll see you know, schematics in the OL that will
7	show all those ties to the various things.
8	MEMBER HALNON: Yes, that's what I'm
9	saying, so there's going to be something else?
10	MR. ASHCRAFT: Oh, yes, yes.
11	MEMBER HALNON: As far as this?
12	MR. ASHCRAFT: Yes, I've been chomping at
13	the bit. You know, as I look at, so right now the
14	architecture's really just kind of a skeleton.
15	MEMBER HALNON: Right.
16	MR. ASHCRAFT: We don't know you know, the
17	logic and stuff. And you know, so when I see, when I
18	hear the discussion about the HRS, you know, I've
19	already, I'm doing the you know, creating the logic in
20	my mind.
21	But you know I'm not designing it. So,
22	but I do have a sort of a different take on what I
23	thought I heard when we did Chapter 6 on the VHRS.
24	But let's go on.
25	So, but basically, and I'll just describe.
	I

(202) 234-4433

	84
1	So when you have your safety sensors, I can't read
2	them but it's temperature, power and level, and the
3	PHSS, if that trips the RPS or provides sufficient,
4	then what happens is it'll cut power to the rod
5	control.
6	So the control rods and shutdown elements,
7	not rods, will go down. Then they talk about the DHRS
8	is already the thimbles are full of water when they're
9	operating, so it's not like it says it actuates the
10	DHRS.
11	I believe what happens and what I've read
12	in the description, it prevents them from shutting the
13	water valves because that's that 7-day supply.
14	So that's effectively what that actuation
15	from the RPS is doing. It's just keeping them from
16	closing those valves.
17	And then you know, whether there's six
18	blue boxes or four, effectively and they describe
19	their process, what they're trying to do there is they
20	don't want to overcool you know, and have their Flibe
21	go solid.
22	They don't want to add additional heat,
23	and they don't want to be you know, pumping in more
24	Flibe and TRISO fuel.
25	So really, you know, and as their design
I	

(202) 234-4433

```
www.nealrgross.com
```

	85
1	fully gets vetted, you know, maybe there might be
2	another box, but I think what they've shown there is
3	pretty much the final.
4	And once they update the other figure, you
5	know, I don't anticipate you know, any significant
6	changes.
7	Next slide.
8	MEMBER BROWN: Before you, no, before you
9	flip, I just wanted to re, or not reiterate, but to
10	clarify somewhat my comments on the bus and feeding
11	outwards was really, it's really a control of access.
12	It has nothing, we're totally not
13	interested in fighting the cybersecurity and the rest
14	of the plants and all the other stuff. There are guns
15	and guards, and we're just trying to get it back to
16	control of access, the way we do all other type of
17	control of access.
18	We don't want external electronic control
19	of access to be compromised. That's fundamentally it.
20	So cyber, that's just the words they put
21	in and you all had in your SE, that's why I used them,
22	so that we would have the same words.
23	But it's really a control of access.
24	That's the same thing we've emphasized in other
25	designs.
	I

(202) 234-4433

	86
1	MR. ASHCRAFT: Yes, and I don't want to
2	start anything here, Charlie.
3	MEMBER BROWN: I, no, no, I just, I don't
4	
5	(Simultaneous speaking.)
6	MR. ASHCRAFT: No, I only wanted to say
7	that you know
8	MEMBER BROWN: That's all we're thinking
9	about is control of access.
10	MR. ASHCRAFT: No, and I agree 100 percent.
11	And any time we have any discussions with applicants
12	coming in, we have that discussion.
13	MEMBER BROWN: Okay.
14	MR. ASHCRAFT: But.
15	MEMBER BROWN: I don't want to deal with
16	the rest of the 5.71, all the other stuff that's going
17	to get tied up in whatever else they're doing in the
18	plant.
19	I don't care what they do with the
20	telephones, and water fountains.
21	MR. ASHCRAFT: Okay.
22	All right, I was only going to say that
23	though that is on the non-safety side, so I don't know
24	that there's a specific criteria that, that forces
25	them to do that. It's just good design, like you
I	I

(202) 234-4433

	87
1	said.
2	All right, well if Charlie's happy with
3	this, I'm definitely happy.
4	MEMBER BROWN: Well, with a diode I'd be
5	really happy.
6	MR. ASHCRAFT: Well, and I think they took
7	that down. I mean, you know.
8	MEMBER BROWN: Well, that's what they
9	talked of. That's what they said they're doing, and
10	they might as well do it the easy way.
11	MR. ASHCRAFT: Exactly, because you know,
12	we'll be back here sometime in the future.
13	MEMBER BROWN: Yes.
14	MR. ASHCRAFT: Okay.
15	MEMBER BROWN: If I'm still alive.
16	MR. ASHCRAFT: All right, next slide.
17	Yes, I'm not even looking at my notes, but
18	so here are all the PDCs for Chapter 7, and they're
19	typical of what you would see at any I&C design.
20	I didn't evaluate them because I didn't
21	have the design yet. So, but we did line them up with
22	the various sections and they seemed to be
23	appropriate.
24	And they will be, you know, when they come
25	in with their OL, they will demonstrate meeting these,
ļ	1

(202) 234-4433

	88
1	and we will review it intensely.
2	I'll just point out, I don't think you
3	mentioned it, but PDC 19 for the control room. I
4	don't think they're taking any exceptions, since
5	they're having a remote shutdown.
6	And I guess at this, you know, I know Matt
7	talked about NUREG-1537. So in my sections with
8	various areas, I pulled out what I thought were
9	appropriate bullets that could be discussed, and a
10	construction permit.
11	And also, I used the DSRS Chapter 7 for
12	the I&C principles, and also the appendix on
13	architecture. Not as a you know, an extensive review,
14	but just to help me look at the architecture and focus
15	on the areas.
16	So I did use that, and it's listed in the
17	SC. And as I tell all the applicants, I'm going to be
18	using that to look at their architecture. I want to
19	see good architecture.
20	Next slide.
21	So, the plant control system. These are
22	the areas that we looked at. It's all in the SC. I
23	mean I don't have the SC here so I don't, you know, if
24	there's any questions on any particular spot, I'd be
25	happy to answer it.
I	I

(202) 234-4433

	89
1	There's a lot of it we didn't necessarily
2	have that much information. Like I said, I kind of
3	put in bullets where I thought maybe there would be
4	something.
5	So we did make a, not a finding, but we
6	did look at these areas and had a discussion of what
7	we saw.
8	And like I said, we had that Appendix A so
9	there's a lot more that will be coming in the OL.
10	So I mean, well, and I, maybe I will talk
11	a little bit. One of the things that we look at when
12	I look at the architecture, and when I look at non-
13	safety systems, is how does it, could impact the you
14	know, safety system.
15	So that bottom one failure modes, that was
16	an important communication to load. Charlie got me
17	on that one.
18	But at any rate, so that's our review.
19	It's in the SC. If there's any questions, otherwise
20	we go on.
21	(No audible response.)
22	Next.
23	The reactor protection system. Lot more,
24	but keep in mind a lot of that stuff like safety
25	settings, I so much wanted to talk about set points
ļ	

(202) 234-4433

	90
1	today.
2	But there are no set points. There's a
3	table I think it's Table 731, that has a lot of
4	permissives and so forth.
5	And that, you know, we don't have values
6	there, but I think a lot of those permissive is how
7	the DHRS gets activated, et cetera. And deactivated,
8	actually. It's in there, as well.
9	I&C platform. We don't have it now, but
10	it should be coming since they talked about it.
11	So these are, you know, these are the
12	areas that we focused on and did a write up. Like I
13	say, nothing's conclusive because without the
14	platform, most of everything's internal to the
15	platform.
16	So, you know, we're still just kind of
17	looking at architecture and what we read.
18	But codes and standards. Here's another
19	thing. They're not required to follow IEEE 603, but
20	they did say they are.
21	And knowing that the HIPS platform, if
22	that indeed comes in, has been you know, reviewed and
23	approved using 603.
24	So I feel confident that their I&C
25	platform is going to be sufficient.
l	I

(202) 234-4433

	91
1	MEMBER BROWN: They only use one point, 152
2	in the main control room discussion. They didn't
3	mention that anyplace else in their PSAR.
4	I mean that's
5	(Simultaneous speaking.)
6	MR. ASHCRAFT: It's not required.
7	MEMBER BROWN: I guess but it like the
8	DPSRS 603, it is an enunciation of some, a lot of the
9	fundamentals that we talked about.
10	And they did mention a number of those,
11	so.
12	MR. ASHCRAFT: Yes, I
13	(Simultaneous speaking.)
14	MEMBER BROWN: Little surprised by its
15	absence.
16	MR. ASHCRAFT: Well, so am I, and if you
17	talked with Ed or Ben, you would, you know, I'm a
18	power guy so I like to look for all that stuff.
19	But you know, this is different. You
20	know, but the fact they're committing to 603 and you
21	know, I think they're putting a good system together.
22	MEMBER BROWN: Okay, thank you.
23	MR. ASHCRAFT: Next slide.
24	You know, once again here are the bullet
25	points.
ļ	1

(202) 234-4433

	92
1	MEMBER BROWN: I presume it's 603 1991?
2	MR. ASHCRAFT: No, I believe they
3	(Simultaneous speaking.)
4	MEMBER BROWN: They're using 2016, or 2008,
5	or whatever?
6	(Simultaneous speaking.)
7	MR. ASHCRAFT: it's 98. 2018, oh geez,
8	you know, what, I have no
9	(Simultaneous speaking.)
10	MEMBER BROWN: Don't worry about it.
11	There's a date in there, I remember seeing it in the
12	PSAR.
13	MR. ASHCRAFT: Yes, I don't think it's
14	(Simultaneous speaking.)
15	MEMBER BROWN: Don't sweat it, keep going.
16	91 though. Keep going.
17	MR. ASHCRAFT: So the main control room
18	remote shutdown. You know, we talk about you know,
19	this is a passive design, so there is no 1E power.
20	Now when you get inside the RPS, that is
21	considered 1E power. I mean just to make all the
22	safety aspect of the platform work.
23	But it is provided, I mean supplied with
24	non-1E and you'll probably hear more about Chapter 8.
25	You know, it's a reliability thing. You
Į	I

(202) 234-4433

93 know, you don't want your plant shutting down. 1 Well, you want it as reliable as you can make it, and I'm 2 3 sure they're thinking about that in their final 4 design. 5 But at this point as you pointed out, that's not a aspect of power to the RPS. 6 7 At any rate, you know, control displays, 8 alarms, you know, a lot of that's probably going to be 9 looked at by HFE people. 10 We do evaluate it and we see power paths, and once again, we're looking for any you know, 11 communication into the RPS. 12 And that's shown to be independent. 13 14 So you know, using the dependents and redundancy, and diversity and stuff, I think we looked 15 at all the different main control room, PCS and RPS, 16 17 for you know, that sort of thing. And it's not conclusive yet because 18 19 there's a lot of communication that you know, you always maybe find when a operating license comes in. 20 But we'll be looking for that. Typically 21 they would have a table or something, that would show 22 all the ins and outs. 23 24 But once again, if they're used to HIPS platform, I don't think there's too many ways other 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

94 1 than the shutdown switches, which I think despite the way the HIPS is laid out, it will go to both, both 2 sides. 3 So, I think their drawing probably was as 4 correct as it could have been. 5 Boy I got a lot of notes here, but I think 6 7 they cover most of it Kairos. MEMBER HALNON: Will you be looking for 8 9 some hardwiring in the remote shutdown area, some hardwired switches? 10 I know it said a manual switch, is that a 11 hardwired switch where it's I guess back to the analog 12 days, where you can actually hear a click 13 and 14 something happens? MR. ASHCRAFT: Well --15 16 (Simultaneous speaking.) actually 17 MEMBER BROWN: That doesn't If you look at the earlier diagram, it showed change. 18 19 those remote switches going through a gateway, which implies software and intermediary. 20 then when they showed the 21 But last diagram, it appears to be a direct wired --22 23 (Simultaneous speaking.) 24 MR. ASHCRAFT: Right. MEMBER BROWN: -- switch now directly onto 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	95
1	the priority box.
2	MR. ASHCRAFT: Other
3	MEMBER HALNON: That's what it looks like.
4	MEMBER BROWN: That was, I'm going to just
5	springboard off of your question, thank you for
6	asking.
7	MEMBER HALNON: Yes.
8	MEMBER BROWN: When you look at the final
9	main control room, everything's coming out through the
10	gateway.
11	I guess, and I'm of all the systems that
12	you've got, are there any critical systems that when
13	you turn a switch, you really want to make sure the
14	motor starts, or the pump stops, or the whatever.
15	I'm big on having not three computers in
16	the intermediate spaces between one turn of a switch,
17	and something happening down at the pump level. Or
18	valve level, or whatever it is.
19	I know you can't mandate it, I'm just
20	saying that's something
21	(Simultaneous speaking.)
22	MR. ASHCRAFT: Well,
23	MEMBER BROWN: to question if we can.
24	If people indicate there's a couple of
25	these systems that are very, very critical to make
I	I

(202) 234-4433

```
www.nealrgross.com
```

	96
1	sure they actuate, then we ought to ensure that
2	there's a very, very reliable means of making sure the
3	thing starts, as opposed to, in other words, a
4	separate hardwired like the spring switch.
5	MR. ASHCRAFT: Right, well you know, as far
6	as critical making sure it starts, I mean all that
7	sort of, well it is covered with HMP as far as you
8	know, take the switch, turn the switch, get
9	indication.
10	So we don't really review that in Chapter
11	7, but we, you know, I would say that's maybe this is,
12	that's standard you know, sort of stuff, main control
13	room type stuff, that's a known, a known thing.
14	MEMBER BROWN: From what I understand,
15	their people are looking at is the all glass, it would
16	be their work station.
17	So, now it's click and all I can do is see
18	click and a pump starts somewhere.
19	MR. ASHCRAFT: Well, right.
20	MEMBER BROWN: Or with a touch screen, or
21	something like that.
22	MR. ASHCRAFT: When you think about other
23	designs like say NuScale, that's essentially what they
24	have.
25	But they had a mechanism from a HIP
Į	I

(202) 234-4433

	97
1	perspective of when they started a pump, or whatever,
2	to ensure they got it.
3	MEMBER BROWN: Okay, I'm just saying we
4	need to think about that on this design, so.
5	MEMBER HALNON: I was a little bit more
6	simplistic. I was thinking common mode failure, you
7	know, with a fire.
8	And even with the remote shutdown, there's
9	no unless you can predict where the fire is going to
10	be, you don't know what necessarily all the failure
11	modes might be.
12	MR. ASHCRAFT: Well, those manual switches,
13	they are hardwired. We get the supplement, and I'm
14	not sure if it shows up in Chapter 3 or not, but it
15	talks about the switch and the cabling, and then
16	similar.
17	You know, and it goes in the HIPS as a
18	hardwiring. But kind of
19	(Simultaneous speaking.)
20	MEMBER HALNON: Okay.
21	So, part of your failure review on the
22	operating license will include those types of cross-
23	cutting looks at these?
24	In other words, you'll take a scenario
25	like a fire and say is there any common modes, from a
	I

(202) 234-4433

```
www.nealrgross.com
```

	98
1	Chapter 7 perspective?
2	MR. ASHCRAFT: Well, we kind of look at
3	that, but that's not really our area. But as far as
4	a shutdown switch you know, for fire or whatever,
5	that's the last thing they do as they run out is hit
6	the switch.
7	So, yes. I don't want to pin myself down
8	in Chapter 7 for reviewing that stuff.
9	MEMBER HALNON: You'd be doing everything,
10	you know? I got it. It is a cross-cutting issue from
11	the standpoint you know, when the fire starts going
12	across electrical chapters, safety
13	(Simultaneous speaking.)
14	MR. ASHCRAFT: Well, I've sort of been
15	involved with the smoke in the control room, and how
16	that works. You know, so we're kind of involved, but
17	that's not really in our SE portion.
18	Next slide, if there's no more questions.
19	(No audible response.)
20	MR. ASHCRAFT: Okay, since there's the
21	little light here, now they provided a section for
22	sensors but when you look at NUREG-1537, the sensors
23	is actually part of the system.
24	So, when you talk about the sensors for
25	PCS, they have to meet criteria for PCS. And for
I	1

(202) 234-4433

	99
1	safety sensors, they really need to meet all the PDCs
2	for the safety system.
3	So, we looked at them and I did put some
4	you know, we don't have much for sensors right now.
5	I mean they gave us a range for the temperature,
6	normal and, and well, an accident.
7	So they have us two, safety, safety range
8	and then a normal range. But that's about it. We
9	don't have anything for the level.
10	They talked about what they were you know,
11	thinking about. But once we get that and they fill
12	out those tables and stuff, when we look at it and
13	then start thinking of sub-points and everything else.
14	So it's you know, at this point it looked
15	like they you know, the sensors are independent, and
16	there's redundancy.
17	So you know, that's
18	(Simultaneous speaking.)
19	MEMBER BROWN: Are there sensors available
20	that will actually work? I mean this is, my brain's
21	in
22	(Simultaneous speaking.)
23	MR. ASHCRAFT: Well, you know
24	MEMBER BROWN: the water world and now
25	here, these are very, very high temperature. You've
Į	

(202) 234-4433

```
www.nealrgross.com
```

	100
1	got a different interface for these things.
2	Do you have the little things you can
3	stick a temperature sensor in, okay, a well? Can you
4	measure levels with a differential pressure, or do you
5	have to have something else, a radar detector that
6	does it, or?
7	MR. ASHCRAFT: Well, so.
8	MEMBER BROWN: Do you have any idea what
9	the sensors are going to be like? Joy is not here; I
10	know she'd love to talk about sensors.
11	MR. ASHCRAFT: I know, that's how
12	convenient.
13	MEMBER BROWN: I'm just trying to work on
14	it.
15	MR. ASHCRAFT: Well.
16	MEMBER BROWN: Help out with the sensor
17	part a little bit.
18	MR. ASHCRAFT: You know, back when all this
19	started, in my mind it was you know, the sensors was
20	going to be you know.
21	And I talked with Kairos I think in some
22	of our pre-meetings. And they're going to maybe not
23	the same as NuScale, but they're looking, they're
24	trying to find sensors that's going to meet their
25	needs.
	1

(202) 234-4433

	101
1	MEMBER BROWN: Yes, but NuScale was water.
2	MR. ASHCRAFT: I understand, but you know,
3	when you're talking temperature
4	(Simultaneous speaking.)
5	MEMBER BROWN: And they did use an unusual.
6	MR. ASHCRAFT: But when you think about the
7	level, I mean it could be a connectivity level, or it
8	could be radar.
9	I mean I don't know what their thinking,
10	or what they're considering.
11	MEMBER BROWN: Or flow.
12	CHAIR PETTI: So Charlie, I looked at level
13	sensors and it's contradictory. There's a DOE
14	presentation that says we don't have anything that
15	works for these high temperature systems.
16	But there's a paper from India, saying
17	that they have one that they're using in their fast
18	reactor.
19	MEMBER BROWN: Oh.
20	CHAIR PETTI: Today. So, take that for
21	what it's worth.
22	MEMBER BROWN: It's just, I mean this is
23	way out from anything that we typically use. Are we
24	measuring flow for everything in this thing? I've
25	forgotten; I've got to look back at the diagram.

(202) 234-4433

	102
1	There's an F in here, so I presume we're
2	measuring flow of some kind.
3	MR. ASHCRAFT: Well
4	(Simultaneous speaking.)
5	MEMBER BROWN: And, I'm just kind of
6	interested how we're going to measure flow rate, I
7	guess. And you're right, this is light on sensors.
8	It's one paragraph plus we'll do it later.
9	MR. ASHCRAFT: Right, but in order, you
10	know, what we look at anyway is you know, ranges. And
11	you know, that sort of stuff.
12	The fact that it works or not, that's, you
13	know.
14	MEMBER BROWN: That's not your issue, I
15	understand that. But you've got to be thinking about
16	that.
17	MR. ASHCRAFT: Oh, yes, yes.
18	MEMBER BROWN: I mean.
19	MR. ASHCRAFT: Between set points and
20	sensors, that's always on my mind, Charlie.
21	MEMBER HALNON: They'll be subject to the
22	environment qualification.
23	MR. ASHCRAFT: Oh, yes, all the safety
24	related sensors
25	(Simultaneous speaking.)
ļ	I

	103
1	MEMBER HALNON: Right.
2	MR. ASHCRAFT: will you know, PDC.
3	MEMBER HALNON: And, that will look at
4	compatibility and longevity.
5	MR. ASHCRAFT: Yes, so it will have the
6	pedigree, whatever they decide to end up using.
7	MR. HISER: This is Matt Hiser. I just
8	wanted to on the sensor piece, I just wanted to point
9	out that they did identify that as one of the research
10	and development items in Chapter 1.
11	So, develop process sensor technology for
12	key reactor process variables. So, it's something
13	that they've acknowledged there's work to be done on.
14	And they don't expect to just pull
15	something off the shelf.
16	MEMBER BROWN: I did one of those dumb
17	things with Googling high temperature this, high
18	temperature that level and got blanks.
19	You know, lot of people want to sell
20	little things, but they were little piece part type
21	stuff.
22	Oh yes, we'd have some of those. There
23	was no definition of what they were, what their ranges
24	were, or what they were even compatible with.
25	So, and there's a material compatibility
I	

(202) 234-4433

	104
1	it seems to me is another issue relative to this line
2	up. And, the interesting coolant that we're using.
3	MR. HISER: Yes, just wanted to fill in the
4	licensing regulatory piece.
5	MEMBER BROWN: Yes, and I know they've got
6	to make it work.
7	MR. HISER: Right.
8	MEMBER BROWN: I understand that. I'm not,
9	you all don't have to make it work. They do.
10	CHAIR PETTI: Yes, and I think they have a,
11	it's in our draft letter. Don't worry about it.
12	MEMBER BROWN: It is? Okay.
13	CHAIR PETTI: Yes, the whole list.
14	MEMBER BROWN: Okay, all right.
15	MR. ASHCRAFT: I think they're doing
16	something similar to what NuScale is as far as
17	evaluate and trying to determine, you know, that kind
18	of process.
19	Next.
20	Okay, I think the end result is we, you
21	know, feel that they're able to you know, construct a
22	plant and meet, meet all their safety requirements at
23	the OL.
24	So, that's effectively what this says.
25	And you seen this in all the chapters, but pretty much
ļ	I

(202) 234-4433

	105
1	we feel that they can, we should issue them a CP.
2	MEMBER BROWN: The one question I had
3	relative to the OL versus this, because I'm not used
4	to doing it in this order.
5	Construction permit. That's what this is,
6	right? That sounds like building something.
7	CHAIR PETTI: Well, it's a start.
8	MEMBER BROWN: And who's building huh?
9	CHAIR PETTI: It's an authorization to
10	start.
11	MEMBER BROWN: Yes, that means, that means
12	you got to build, you're starting to design and build
13	systems. And the control systems, and the shutdown
14	systems.
15	And now, and we've got this is sparse
16	relative to, from any standpoint, whether it's I&C or
17	whether it's something else, it's pretty sparse.
18	MR. ASHCRAFT: Well, you know
19	(Simultaneous speaking.)
20	MEMBER BROWN: In detail.
21	MR. ASHCRAFT: I've been around for a
22	while although I'm not aware of what, I mean all the
23	existing plants were construction permits.
24	And they had you know, they had maybe more
25	detail, maybe less. But at the end of the day,
I	I

	106
1	they're at risk because once they build it, they got
2	to come in and get their operating license.
3	So that's why
4	(Simultaneous speaking.)
5	MR. BLEY: This is Dennis Bley, and just a
6	question on this. Yes, none of us were around back in
7	the 60s when they really had to deal with this with
8	novel designs, with not much experience.
9	We're getting a prototype here and they're
10	going to collect data. And once they get the
11	construction permit, they can build everything and
12	they can put the sensors in and everything else.
13	Is there an expected path by the staff or
14	the applicant during the construction process, to come
15	back in to the staff and say hey, here's the kind of
16	sensors we've picked, and here's why they think
17	they're going to work.
18	To kind of get preliminary approval on
19	things that will come up for the operating license?
20	MR. ASHCRAFT: Well, as the expert on this,
21	I am going to turn it over to Ben or Ed, for the
22	answers.
23	MR. HELVENSTON: Yes, this is Ed
24	Helvenston, from the staff.
25	You know, as you may know, there is a
	I

(202) 234-4433

	107
1	construction inspection process in which you know,
2	we'll have inspectors that will be on the site during
3	construction, that looking at what they're doing, and
4	making sure that it's conforming to the design bases
5	that we're approving as part of our CP review.
6	But you know, just to clarify, we're not
7	approving a final design as part of a construction
8	permit approval.
9	We're essentially approving the design
10	bases, and finding that there's reasonable assurance
11	that Kairos will conform to those, you know, that
12	Hermes can, the final design will conform to the
13	design bases.
14	But the final design itself is still
15	subject to change, and those details could still be
16	worked out as they go through the construction
17	process.
18	MR. BLEY: All right, I guess my question
19	was orthogonal to your answer.
20	The question is, is there a way during
21	this process, and maybe it's coming in with a topical
22	report or something like that to get approval on, to
23	as it becomes possible to clarify some of these areas
24	with substantial uncertainty, to make sure the staff's
25	onboard with the design as it evolves, before they
ļ	I

(202) 234-4433

	108
1	come in for the operating license?
2	MR. HELVENSTON: That would certainly be if
3	Kairos wanted to do something like a topical report.
4	I mean they would certainly free to submit that to us.
5	But there isn't really a formal process
6	where they would sort of confirm those things to us.
7	I mean it's a responsibility of an applicant to the
8	NRC, to comply with their licensing basis.
9	And you know, part of the licensing basis
10	for the
11	(Simultaneous speaking.)
12	MR. BLEY: Yes, of course.
13	(Simultaneous speaking.)
14	MR. HELVENSTON: part of the licensing
15	basis for the construction permit is that you know,
16	we've approved a certain, certain design basis that
17	they described to us.
18	And if Kairos identifies a situation, you
19	know, they have some flexibility in how they, how they
20	meet that.
21	But if they identify a situation where
22	they don't think that their design is going to be able
23	to conform to what they told us in the CP, you know,
24	that's, they may have to consider a process like an
25	amendment to the construction permit, or something
ļ	I

(202) 234-4433

	109
1	else.
2	MR. BEASLEY: And this is Ben Beasley with
3	the staff as well. I'll chime in a little bit.
4	So, certainly Kairos is accepting this
5	risk for the 2-step process, and they have
6	acknowledged that. They understand it.
7	From a practical standpoint, they're
8	looking at submitting their OL application about the
9	same time that they begin construction. So, there
10	will be opportunity for us to see the final design,
11	you know, as they are building.
12	And so if you know, if there is some
13	feedback that they gain from our review as we're doing
14	the review and asking for additional information, you
15	know, they can modify their design as they go.
16	But just from a practical standpoint,
17	those will be somewhat running in parallel.
18	MR. BLEY: Yes, thanks, I guess I missed
19	that part of the schedule, I'm glad to hear that.
20	MEMBER BROWN: Thanks, Dennis.
21	One of the things that's and I appreciate
22	the input, that was good input from what you said.
23	My perception was they can now go off and
24	design their entire architect, whatever they want to
25	do, they can design an I&C system to do what they want
I	I

(202) 234-4433

	110
1	to do, based on this PSAR.
2	And the one thing they talk about is
3	they're going to have an FPGA system. Well, there was
4	no mention of diversity in this entire, in this entire
5	write up.
6	Okay, so now are we saying that's okay
7	because we've, you're writing an SE. You're all
8	putting the Betty Crocker Good Housekeeping seal of
9	approval on this construction permit, and yet now
10	we're saying that diversity is no longer a
11	requirement?
12	You know, D3, defense in depth, diversity?
13	And it doesn't have to be across the board, I'm just
14	talking about in the fundamental area such as the
15	reactor protection system, is the argument going to be
16	if it doesn't work at all, it doesn't matter?
17	And if that's the case, seems to me that
18	the NRC should be agreeing with that up front, as
19	opposed to in arrears. That's my only point from that
20	standpoint.
21	But all the rest of our protection systems
22	and other systems, have been, and safeguards, have
23	been based on you know, a defense in depth philosophy,
24	as well as a you know, the independence, redundance,
25	and all the other, and they've got that in the RPS
I	1

(202) 234-4433

	111
1	design.
2	I'm not arguing about that, but the
3	diversity aspect is not there.
4	MR. ASHCRAFT: Well, they haven't
5	(Simultaneous speaking.)
6	MEMBER BROWN: You didn't address it in
7	your SE. At least I don't think you did.
8	MR. ASHCRAFT: You didn't see it? Well,
9	but I mean so I mean when you think about diversity,
10	I mean there's sensors coming in, they're protecting
11	
12	(Simultaneous speaking.)
13	MEMBER BROWN: I'm talking about the FPGA
14	reactor protection system. There has been diversity
15	defined for that in other, in the one system we've
16	approved on the FPGA basis.
17	MR. ASHCRAFT: Well
18	(Simultaneous speaking.)
19	MEMBER BROWN: And we've approved that in
20	what I would call the microprocessor based world, in
21	terms of diversity for the other earlier, some of the
22	earlier plants.
23	But there's no mention of it in this.
24	MR. ASHCRAFT: Well, as I said
25	(Simultaneous speaking.)
	1

(202) 234-4433

	112
1	MEMBER BROWN: And that's one of your old
2	major standpoints relative to how you evaluate these
3	protection systems, is from the diversity defense in
4	depth standpoint, which seems to be not mentioned.
5	MR. ASHCRAFT: Well, so as of right now, we
6	don't have the platform so it's hard to you know, to
7	go into that depth.
8	MEMBER BROWN: But you didn't say anything
9	in your SE about that was missing.
10	MR. ASHCRAFT: Because we had nothing in
11	the SE to evaluate.
12	MEMBER BROWN: But that's something you
13	normally insist on as part of the design.
14	MR. ASHCRAFT: Well
15	(Simultaneous speaking.)
16	MEMBER BROWN: You demonstrate it at some
17	point and if it's not part of the
18	(Simultaneous speaking.)
19	MR. ASHCRAFT: And, it will. I mean once
20	they establish the platform, which I think maybe they
21	did in there, then a lot of your concerns will be
22	taken care of.
23	But say they go with another platform.
24	Once they come in with a topical for their platform,
25	then all that will be evaluated on some merit.
	I

(202) 234-4433

	113
1	So, I guess that's my answer there.
2	MEMBER HALNON: But and your review
3	standards would drive you to that, right? I mean
4	you're not just making this up.
5	You've got review standards, Reg Guides
6	that they'll be using in this, the light that, the
7	design?
8	MR. ASHCRAFT: Well, so we have NUREG-1537
9	and I don't, I know it speaks to diversity at some
10	part. But at this time, without the platform it's
11	hard to you know.
12	MEMBER BROWN: But the concept doesn't
13	depend on a platform though. The concept of diversity
14	is part of the overall architecture fundamentals, that
15	safeguard systems and reactor protection systems
16	design.
17	It's not, and it's built in you know, to
18	a number of the Reg Guides, as well as BTB 7-19 and et
19	cetera, which is very extensive.
20	This is a different approach. It's more
21	narrowly focused, but there is a protection system and
22	it talks about a, what platform, two different
23	platforms.
24	One for the plant control system where
25	they're talking about they're going to have dual
I	1

(202) 234-4433

	114
1	whatevers, and they've got independent things.
2	But all the data goes up in this big
3	mishmash of how everything's done, just in
4	presentation.
5	But the RPS is a separate little box that
6	says, I can shut things down. We've got four
7	channels, two channels for voting, fine.
8	But then they talk about an FPGA base, not
9	a software base, so you've eliminated one possible
10	compromise, but you still have the failure modes of
11	particular FPGAs.
12	And others have used diverse FPGAs,
13	whether they be volatile, non-volatile, whatever you
14	have.
15	MR. ASHCRAFT: Well
16	(Simultaneous speaking.)
17	MEMBER BROWN: And there's no, nothing in
18	the SE about that. That's all, it doesn't address, it
19	does not address diversity at all.
20	MR. ASHCRAFT: And I agree, and the fact
21	that potentially as they stated they're using HIPS,
22	that a lot of that
23	(Simultaneous speaking.)
24	MEMBER BROWN: They didn't say HIPS. Did
25	they say HIPS? Okay, maybe I.
I	

	115
1	CHAIR PETTI: I don't think it was written.
2	MR. ASHCRAFT: No, it's not provided at
3	this point, but they mention it.
4	MEMBER BROWN: I'm just saying, it's not in
5	the PSAR.
6	MR. ASHCRAFT: No.
7	MEMBER BROWN: It's not in Rev 2. That's
8	all I'm saying.
9	MR. ASHCRAFT: And the
10	(Simultaneous speaking.)
11	MEMBER BROWN: It just says FPGA base, and
12	which I agree with, I like. You know, because it
13	eliminates some problems, okay.
14	MR. ASHCRAFT: Right.
15	MEMBER BROWN: Software wise.
16	MR. ASHCRAFT: But in the Appendix A, what
17	that tells me is I'm waiting, I need to know what
18	they're platform is so that I can look at all that.
19	Until I've gotten that.
20	MEMBER BROWN: Appendix A, I keep
21	(Simultaneous speaking.)
22	MR. ASHCRAFT: Well, that just states
23	(Simultaneous speaking.)
24	MEMBER BROWN: It says what?
25	MR. ASHCRAFT: That's just a list of things
Į	

	116
1	that we expect, and it's not all inclusive, but.
2	MEMBER BROWN: You're talking about
3	Appendix A to part?
4	MR. ASHCRAFT: Of the SC.
5	MEMBER BROWN: Okay.
6	CHAIR PETTI: There is a punch list of the
7	staff's items that they.
8	MEMBER BROWN: Yes, okay.
9	MR. ASHCRAFT: You know, because people
10	keep saying what are we going to
11	(Simultaneous speaking.)
12	MEMBER BROWN: Have we seen that yet?
13	MEMBER KIRCHNER: It's the Appendix to
14	Chapter 1, right? Just to make this for the entire
15	SE, yes.
16	MR. HISER: So I just want to be clear,
17	Appendix A is things that the Kairos has identified to
18	us either through the audit or in the PSAR, that they
19	are planning to provide with the OL application.
20	It's not an all-inclusive list. It's also
21	not
22	(Simultaneous speaking.)
23	MEMBER BROWN: Where is it listed? Where
24	is Appendix A? Is it a document?
25	MR. HISER: Yes, yes, it's Appendix A to
I	

	117
1	the SE. To the safety evaluation.
2	MEMBER BROWN: Oh, I was looking for that.
3	MEMBER HALNON: But we got it, we don't
4	have it posted though.
5	MEMBER BROWN: Okay, I'll have to go find
6	it.
7	MR. ASHCRAFT: We also had input to that.
8	MEMBER KIRCHNER: Charlie, can I raise one
9	question?
10	MEMBER BROWN: Yes, go ahead. It's a free
11	for all.
12	MEMBER KIRCHNER: This is more specific.
13	It's probably more of a design options going forward
14	for the OL.
15	I don't understand this, I guess the
16	question should go to Kairos, not the staff, but that
17	having the DHRS in the loop with the RPS, I don't get
18	that.
19	The one simpler diagram where it shows
20	it's just a lock, an interlock or whatever, makes much
21	more sense than it being an active part of the, the
22	RPS system.
23	Unless it blocks you from pulling rods or
24	something, or it's just kind of just dangling out
25	there in this RPS architecture.
ļ	

(202) 234-4433

	118
1	MEMBER BROWN: We had a discussion of that
2	at one of the earlier chapters, a decay heat removal
3	meeting.
4	MEMBER KIRCHNER: Right.
5	MEMBER BROWN: And there's not a
6	consistent, there's, and what I heard today and you
7	can correct me, was there's two different pieces.
8	There's one if the RPS trips, it makes
9	sure the DHRS comes on. That's the way that diagram
10	reads.
11	Then there's something else. There's
12	another widget in there that operates a valve
13	somewhere, which we don't show.
14	MEMBER KIRCHNER: Yes, but if they don't
15	have a large decay heat inventory, they don't want it
16	coming on because you could actually then freeze the
17	fluid in the
18	(Simultaneous speaking.)
19	MEMBER BROWN: Worry about overcooling.
20	MEMBER KIRCHNER: in the vessel, et
21	cetera, et cetera.
22	And it goes back to Greg's point. What's
23	missing I think right now, at least just notionally in
24	this control system, is something about showing that
25	before you go ahead and run at power, you've got a
	I

(202) 234-4433

	119
1	level indication that these tanks are filled.
2	And I mean this can be done I think
3	through tech specs and just a manual interlock, as
4	part of the operating instructions I suppose.
5	But anyway, me, I don't, I'm not getting
6	why it's part of an active system unless you've got
7	the actual instrumentation feeding in to tell you you
8	have water level or something.
9	CHAIR PETTI: Turn on your mic, please.
10	MR. ASHCRAFT: All right, so I've gone
11	through you know, and I've heard Chapter 6 and I heard
12	today, and I've heard a lot. So here's, but we don't
13	have the schematic so it's hard.
14	So, but what I heard is the thimbles are
15	dry, that's part of your DHRS. And it does dissipate
16	some heat, but not enough, at a lower power level.
17	So once you reach a certain power level,
18	which is not defined yet, but it is in Table 731 as a
19	permissive, that is going to open the valves to those
20	tanks and put water into the thimbles. So now you got
21	a fully operational DHRS.
22	So as you're going up in power and as
23	you're operating, those thimbles are full.
24	MEMBER BROWN: 10 megawatts is where that
25	trigger was in the Chapter 6.
I	I

(202) 234-4433

	120
1	MR. ASHCRAFT: Right, but it hasn't, right
2	now in Chapter 7 it's just a permissive. And so
3	you're up in power running. Thimbles are full,
4	everything's fine.
5	Your tanks, you know, are being supplied
6	from outside. And then you get to a trip. So what
7	happens on the trip is, well first of all you drop the
8	control elements.
9	They drop and you turn off all the non-
10	safety stuff. But for the DHRS, it ensures that the
11	DHRS stays activated by preventing you from closing
12	the valves from that tank. So that you will have a
13	water supply.
14	That's
15	(Simultaneous speaking.)
16	MEMBER KIRCHNER: Yes, and I get all that.
17	It just doesn't make sense in the schematics to me.
18	I get the simpler schematic where it just shows
19	something which may be an interlock, or a switch.
20	And then there's no indication that this
21	is part of what the operators will see. So that's,
22	I'm nitpicking the schematics.
23	MR. ASHCRAFT: Well
24	(Simultaneous speaking.)
25	MEMBER KIRCHNER: It may be more of a
	I

(202) 234-4433

	121
1	question of U graphs than
2	MEMBER BROWN: It would make more sense
3	MEMBER KIRCHNER: than substance, but.
4	MEMBER BROWN: It would make more sense if
5	somehow power tells this DHRS it's got to turn on.
6	This just says if it trips, it turns it
7	on. But there's also an activation so if you get
8	above 10 megawatts, it's supposed to come on.
9	That's not shown in this diagram.
10	MR. ASHCRAFT: No, it's not shown and a lot
11	of this is in the details. You won't know until you
12	get the schematics, and you get a table of displays
13	and whatnot.
14	But even now, so your DHRS is fully
15	functional when you reach that permissive.
16	MEMBER BROWN: The 10 megawatts it's
17	supposed to come on.
18	MR. ASHCRAFT: Right.
19	MEMBER BROWN: But that means all the
20	systems that support the DHRS, the tanks have got to
21	be full.
22	MR. ASHCRAFT: Right.
23	MEMBER BROWN: Blah blah blah, whatever the
24	other pieces are.
25	MR. ASHCRAFT: Exactly.
ļ	I

	122
1	MEMBER BROWN: And that's where, where is
2	the data, where is the signal that says my tanks are
3	full, therefore, I can actuate?
4	MR. ASHCRAFT: Well, that
5	(Simultaneous speaking.)
6	MEMBER BROWN: I didn't, there's no, the
7	control of the DHRS, the integrated control and turn
8	it on and off, is not present in a single schematic to
9	show how these things work together.
10	We had that big discussion in Chapter 6,
11	and I came and walked away very unsatisfied with the
12	results.
13	MEMBER MARCH-LEUBA: I wasn't here for that
14	discussion, but the DHRS tanks are sized for a 7-day
15	operation. And they're supposed to be filled by tech
16	specs, I assume.
17	So, you don't check levels before you open
18	the valve.
19	MEMBER BROWN: No, that's fine that you've
20	got to open a valve, but there's still not, what opens
21	the valve? Is it?
22	MR. ASHCRAFT: Well, yes
23	(Simultaneous speaking.)
24	MEMBER MARCH-LEUBA: Losing power to that.
25	MEMBER BROWN: That's losing, that's the
ļ	I

(202) 234-4433

	123
1	power, that's when you shut down, you scram.
2	MEMBER MARCH-LEUBA: Uh huh.
3	MEMBER BROWN: Then you turn it on. But
4	you also turn on DHRS when the power goes above 10
5	megawatts.
6	MR. ASHCRAFT: All right, from my reading
7	of Chapter 6 and Chapter 7, and all the chapters, is
8	when you reach that 10 megawatt and those thimbles
9	fill with water, and those valves from the tanks are
10	open, it's fully operation.
11	MEMBER BROWN: Yes, but where does that
12	come from? Does it come from the PCS?
13	MR. ASHCRAFT: Well, the PCS
14	(Simultaneous speaking.)
15	MR. ASHCRAFT: well, the PCS are not,
16	that tank is non-safety. But there are safety valves,
17	I remember hearing that.
18	MEMBER BROWN: There is one of the valves
19	in there that does something for the
20	(Simultaneous speaking.)
21	MR. ASHCRAFT: Right.
22	MEMBER BROWN: hit the water.
23	MEMBER KIRCHNER: No, the tank is, the tank
24	is safety.
25	(Simultaneous speaking.)
Į	

	124
1	PARTICIPANT: The DHRS tanks is definitely
2	safety related.
3	MR. ASHCRAFT: The system is safety
4	related.
5	MEMBER BROWN: And the valve is safety
6	related.
7	MR. ASHCRAFT: Right, but we don't have
8	that detailed logic.
9	MEMBER KIRCHNER: I'm just saying Joe, it's
10	not even showing up on the schematic. I mean in the
11	core functions, I would have put DHRS in this, this
12	box here, of the schematic.
13	For the people who are remote, I'm looking
14	at the integrated
15	(Simultaneous speaking.)
16	MEMBER BROWN: It's 7.1.1.
17	MEMBER KIRCHNER: Yes, diagram and the
18	central box. There's no indication that you would
19	feed the operators for example, the level in the
20	tanks.
21	CHAIR PETTI: But it up above is DHRS
22	status on the computer, little computer screen. Its
23	own little computer.
24	Highly reliable display.
25	MEMBER BROWN: Yes, but that's a display,
I	

(202) 234-4433

```
www.nealrgross.com
```

	125
1	not a control function.
2	MEMBER KIRCHNER: Yes, that's a display.
3	So there's nothing, I'm just saying there's no box
4	down
5	(Simultaneous speaking.)
6	CHAIR PETTI: Yes, yes, I understand what
7	you're saying.
8	MEMBER BROWN: Somewhere a nuclear power
9	signal has to go, activate, turn one of those switches
10	or another switch somewhere, and turn on the DHRS.
11	MEMBER HALNON: I think you all
12	(Simultaneous speaking.)
13	MEMBER BROWN: Then there's a valve.
14	MEMBER HALNON: I think you all need to
15	make sure that you're not looking at this as the
16	schematic. This is a presentation.
17	MEMBER BROWN: That is the architecture.
18	MEMBER HALNON: The schematic is behind
19	(Simultaneous speaking.)
20	MR. ASHCRAFT: Yes.
21	MEMBER HALNON: the architecture, but it
22	doesn't show the behind the scenes.
23	MEMBER BROWN: Like I said, there's a lot
24	of other stuff.
25	MEMBER HALNON: Lot of communication going
I	I

	126
1	on.
2	CHAIR PETTI: Outside the pinkish color, is
3	more notion.
4	MEMBER BROWN: A controlled diagram for the
5	DHRS is not present.
6	MEMBER KIRCHNER: Correct.
7	MEMBER BROWN: In either Chapter 6 or
8	Chapter 7.
9	MEMBER HALNON: Nor the other channels I
10	was talking about with the treated water systems that
11	I was
12	(Simultaneous speaking.)
13	MEMBER BROWN: Well, but that, the treated
14	water, that's down running the air conditioner. I
15	agree with you, but those are so non, those are non-
16	safety and non-safety.
17	MEMBER HALNON: But no, it interfaces and
18	provides cooling water to the DHRS.
19	MEMBER BROWN: Then it ought to have
20	something. There's a lot of incompleteness, that's
21	all.
22	MEMBER HALNON: Yes, that's what I'm
23	saying, but.
24	MR. ASHCRAFT: I was only going to point
25	out on this diagram, that little toggle switch is when
I	I

	127
1	DHRS is supposed to be activated and remain activated,
2	it prevents, that toggle switch from you turning it
3	off.
4	Which means you cannot close the valve.
5	So the water is going to keep coming down. And at
6	such time that you no longer, as you know, as power
7	comes down
8	(Simultaneous speaking.)
9	MEMBER BROWN: Is that manually?
10	MR. ASHCRAFT: As power comes down and you
11	don't need full DHRS, there is another permissive
12	which is in that Table 731, which is going to allow
13	them to switch that. And, I believe it is made.
14	And then the operator can turn it and
15	close it off, because what you don't want is to have
16	DHRS fully operational once you get back down to that
17	10 megawatts.
18	MEMBER BROWN: Absolutely, we're not
19	disagreeing with that point.
20	MR. ASHCRAFT: So, yes but all that's, no,
21	all that's in the details that we don't have yet. And
22	we won't have until we have detailed schematics that,
23	and then we'll see what those levels are.
24	CHAIR PETTI: Okay, all right, we're
25	running behind.
l	I

(202) 234-4433

	128
1	MEMBER BROWN: All right, we've mouse
2	milked this thing, we've mouse milked this good
3	enough.
4	CHAIR PETTI: You're done, right, Joe?
5	MR. ASHCRAFT: Yes, I'm done.
6	MEMBER BROWN: Okay, thank you, Joe.
7	So let's get the memo out and court
8	reporter, you're off again till we tell you you're
9	back.
10	(Whereupon, the above-entitled matter went
11	off the record at 11:30 a.m. and resumed at 1:02 p.m.)
12	CHAIR PETTI: We're back. We have most
13	members. A couple are still coming in. But let's get
14	going on Chapter 8.
15	Kairos?
16	MR. CILLIERS: Sound check. Can you hear
17	me?
18	MEMBER BLEY: Excuse me. This is Dennis
19	Bley. Before you get started, I wanted to pose
20	something that I don't want you to answer now, but as
21	you go through the discussion, I would appreciate it.
22	I have no problems with almost everybody
23	here, except there is one area that we and the staff
24	have raised with other applicants, and that is
25	emergency lighting, communications, and monitoring.
ļ	1

(202) 234-4433

	129
1	Well, if everything works fine from the design basis
2	events, you are golden. But if something goes wrong
3	and you really need to do something in the plan, those
4	are crucial.
5	And one of the previous applicants ended
6	up making that equipment and their power supplies 1E.
7	Another one came up with an approach that demonstrated
8	essentially equivalent reliability to the 1E, and I
9	guess it all hinges on the 72-hour UPSs that you have
10	really being able to do their job for that length of
11	time.
12	So when you go through, maybe you can
13	raise this. I'm sure we will raise it toward the end.
14	Go ahead.
15	MR. CILLIERS: Thank you very much. This
16	is Anthony Cilliers again, Director of
17	Instrumentation, Controls and Electrical, and I'll
18	just jump straight into Chapter 8.
19	Next slide, please.
20	I'm going to start with the with the
21	single the electrical power system drawing that we
22	have here. It's I'll start at the top, and I hope
23	you've got a bigger printout there, assignments that
24	you've had with the other systems, if it's a little
25	bit too small for you.
ļ	I

(202) 234-4433

1 I'll just start by saying that primarily and this is a -- this is a key aspect here -- we do 2 3 not rely on any electrical systems for any safety 4 functions. There is no safety functions that requires said, 5 electrical power. That being of course electrical power and the reliability of electrical 6 7 power is extremely important to us.

And for that reason, you will see a lot of systems that's built in to support the reliability of these power systems. But it has to be said that they are known safety systems that depend on these electrical systems.

So starting at the top, the power -- the normal power supply would be coming from the -- from the utility and be stepped down through a stepdown transformer to 480 volts. We also have onsite backup generators with automatic transfer switch that allows switching between the normal power supply, should that go off, to the backup power supplies.

And there is roughly a 20-second switching time between the -- from the one to the other. So we are -- have accounted for that -- for that stoppage time as well.

24In addition, there is also --25MEMBER BROWN: Could you repeat that

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	131
1	again, please?
2	MR. CILLIERS: Okay.
3	MEMBER BROWN: I missed the point.
4	MR. CILLIERS: There is a roughly a 20
5	second transfer time between the main from the main
6	power going off to the diesel that not necessarily
7	diesels
8	MEMBER BROWN: Okay.
9	MR. CILLIERS: but the backup power to
10	
11	MEMBER BROWN: All right. That's the
12	automatic transfer switch you're talking about.
13	MR. CILLIERS: Correct. Correct.
14	MEMBER BROWN: Okay. That's a typical
15	transfer switch, not atypical transfer switch response
16	after
17	MR. CILLIERS: Yes.
18	MEMBER BROWN: transfer panel.
19	MEMBER BLEY: This is Dennis Bley. You're
20	about to get to the portable generator connection. I
21	just had a question. With that kind of connection,
22	are you setting it up with the what is now the
23	standard FLEX connectors, or are you doing your own
24	and figuring you don't need any outside help?
25	MR. CILLIERS: That hasn't been defined
	1

(202) 234-4433

	132
1	yet, how we will we are just indicating that
2	connection at the moment for having a portable
3	generator supply, if that were to be needed for an
4	extended period of time. So
5	MEMBER BLEY: Okay. And I guess the other
6	applicants to this and I don't expect an answer
7	right now, but I wonder if you've considered whether
8	your customers would want to be involved in FLEX and
9	in the SAFER system. And this is something for the
10	Committee to think about later.
11	I don't know that the industry SAFER
12	system has set up any options for people who don't
13	need the full power of it. And some of these smaller
14	plants, there might be something that would work
15	really well for them. But I I don't expect you
16	guys to answer that question.
17	Go ahead.
18	MR. CILLIERS: Thank you. Right. So
19	we've covered the supply side of things. That goes on
20	to a 480-volt bus bar, and in many cases a lot of our
21	systems, I mean, you will see a lot of these little
22	blocks all being supplied by that 480-volt. And if
23	there is specific lower voltage requirements within
24	that system, there is they will be stepped down as
25	per as required within those various system blocks
ļ	

(202) 234-4433

	133
1	to take it to the required voltage.
2	MEMBER BLEY: May I ask you a kind of dumb
3	question? This is Dennis again. UPS 120-volt that
4	supplies the heat rejection control and double-
5	handling systems, that stuff, so it's a 20-second
6	duration capacity. Well, you don't buy one of those,
7	but would you be designing this with very little
8	capability or is that just a definition of what you
9	think you'll need to support the rest of the fleet?
10	MR. CILLIERS: That's correct. Yeah. So
11	you've asked the question, so maybe I'll just jump
12	right into that. So for the reactor protection system
13	and the plant control systems, we start off with
14	having a 72-hour UPS supply system, so that we can
15	supply those systems in the event of any power
16	failure, so that we still have that capability of
17	monitoring.
18	As I've said, this is really important to
19	us, although it doesn't add doesn't have any safety
20	functions. We want the monitoring there, and we want
21	the systems to be available. So that is really a
22	reliability function that we have built in.
23	The 20-second part is very much the
24	systems that keep the relays going to supply power to
25	the to the various systems that we need to shut
	I

(202) 234-4433

134
off.
Now, the reason we have specified 20
seconds there is it should be 20 seconds or longer,
but as short as possible, meaning that it should allow
us to do the transfer between the main power supply
and the backup power supply without a trip. We don't
necessarily want the system to trip while we transfer
power from the main to the backup power supply.
If that main that transfer between the
main and the backup power supply does not happen
within a specified period of time, and that would
roughly be just over 20 seconds, that UPS would be
drained and the system would then trip. And that's
the reason why we say 20 seconds.
So it's roughly 20 seconds of what we will
be needing, so it will just specify very small very
small capacity supply there.
MEMBER BLEY: So

MR. CILLIERS: Yeah.

MEMBER BLEY: -- you are going to design this, and you can't count on the power running down, so you must be thinking of putting some kind of timing circuit in there to disconnect it? MR. CILLIERS: It's designed specifically

on the -- on the power requirements for the system, so

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

	135
1	that it should run down. So it should be a very small
2	many-hour battery supply for that system.
3	MEMBER BLEY: No kidding. Because that
4	sounds something about that sounds dicey. I have
5	never seen anybody design for a power to a battery
6	to run out that quickly. And those batteries are
7	wanted to do but somewhere along the line they
8	might run out faster than you expect.
9	That was one, at least for me, I'm going
10	to be thinking about when you come back with the
11	operating license. This seems a little odd.
12	MR. CILLIERS: Right. Thank you.
13	MEMBER BROWN: Another question from
14	Charlie Brown. Alongside Dennis' comment, that
15	implies then that if your that main bus is totally
16	deenergized because the automatic transfer switch
17	didn't transfer, for whatever reason, that means all
18	those four systems, you've lost them. They will stop.
19	I presume those are not necessary for any
20	safety function as well. Is that correct?
21	MR. CILLIERS: That is correct.
22	MEMBER BROWN: Okay.
23	MR. CILLIERS: So I think it came from
24	Chapter 7 as well. All our systems are designed to be
25	passive, and we really want to shut them down to put
	1

(202) 234-4433

	136
1	the system in a safe state. So one of the systems of
2	course is our reactor shutdown system, which inserts
3	the rods into the system. So if that power fails, it
4	drops in there.
5	Now, of course a reactor protection system
6	can initiate that as well. But if there is a loss of
7	power, that will that will drop the systems in.
8	And the same as what we had in our diagram in Chapter
9	7. All the other systems we we actually want to
10	shut down and
11	MEMBER BLEY: Okay.
12	MR. CILLIERS: So it fails to safety on
13	loss of power. That's the
14	MEMBER BROWN: All right. I'm just
15	confirming that I heard heard it all correctly.
16	Thank you.
17	MEMBER HALNON: Are you going to explain
18	the safety-related isolation down in the bottom right
19	of the
20	MR. CILLIERS: Yeah. So this is this
21	is very much a repeat of what we have seen in the
22	other diagrams in Chapter 7 as well. Although those
23	are safety-related relays, the power supply going
24	through them are not safety-related. So the only
25	safety-related part is the relay itself that should
I	I

(202) 234-4433

	137
1	fail open in all cases. So that makes it a safety-
2	related component.
3	Also, the power supply that keeps it
4	closed is not a safety-related power supply. So if
5	that power should fail, it should fail open and the
6	power is shut off to it.
7	So the isolating device is the same
8	devices that you will see in the in the Chapter 7
9	figures. If there is a power loss to those relays,
10	either through the signal that keeps it closed that
11	comes from the RPS, or the power itself that goes
12	through the system, those systems basically lose power
13	and they shut off.
14	MEMBER HALNON: Okay. And you're not
15	going to rely on that for any safety-related function,
16	right? I mean, you're not going to rely on loss of
17	power to open the relay.
18	MR. CILLIERS: No. We don't rely on the
19	loss of power to open the relay. We shut the power
20	off, the signal to it, from the RPS. We rely on that
21	part, that the RPS would send that signal. But also,
22	loss of power would result in the same outcome as what
23	would come from the RPS. Does that make sense?
24	MEMBER HALNON: Yeah. I guess my point
25	was, I mean, you're showing one relay there. But if
ļ	

(202) 234-4433

	138
1	you're going to rely on it as a tripped RPS, you would
2	have a redundant relay there.
3	MR. CILLIERS: Yeah. I think that's
4	implied in the in the statement, that it's a
5	safety-related system.
6	MEMBER HALNON: Right.
7	MR. CILLIERS: In Chapter 7, it says times
8	four as well. So there is four of them.
9	MEMBER HALNON: Okay. That makes sense.
10	MR. CILLIERS: That's not indicated in
11	this, yeah.
12	MEMBER DIMITRIJEVIC: This is Vesna
13	Dimitrijevic. I have one question. So you said that
14	the loss of power, all of those systems fail in the
15	same position, right? So there is shut down or, you
16	know, the RPS is tripping, things like that, right?
17	MR. CILLIERS: Correct.
18	MEMBER DIMITRIJEVIC: Okay. Now the
19	question is, so all of the before you boot in 20
20	seconds, right, this all happened in 20 seconds after
21	you get the power back from the diesel generators. So
22	all of those trips will occur within those 20 seconds,
23	right?
24	MR. CILLIERS: It's important to note that
25	the DHRS or, sorry, that RCSS system is supplied
I	I

(202) 234-4433

	139
1	through where is the supply coming from? I believe
2	that's supplied by or it's not.
3	Yeah. It's got 20 seconds while it will
4	stay on. And if the power doesn't switch over, then
5	it will it will shut off.
6	MEMBER DIMITRIJEVIC: Run this again by
7	me. I didn't hear you well.
8	MR. CILLIERS: Sorry. Should I
9	MEMBER DIMITRIJEVIC: I didn't hear you
10	well, if you can
11	MR. CILLIERS: Yeah.
12	MEMBER DIMITRIJEVIC: just repeat what
13	you just said.
14	MR. CILLIERS: So we've got 20 seconds for
15	the transfer to happen from the main power to the
16	backup power.
17	MEMBER DIMITRIJEVIC: Right.
18	MR. CILLIERS: If the power does not
19	transfer, then all those systems shuts down.
20	MEMBER DIMITRIJEVIC: But I think the
21	power transfers, they will stay on diesel generator.
22	Is that what you're saying? If the power stays, would
23	all those systems stay be supplied from the diesel
24	generator?
25	MR. CILLIERS: That's correct. Yes. The
	I

(202) 234-4433

	140
1	idea is that they can they can keep running, and
2	then we could shut them down if we realized we're not
3	going to get the main power supply back within a
4	specified period of time.
5	MEMBER DIMITRIJEVIC: All right. Thanks.
6	MEMBER BROWN: This is Charlie Brown
7	again. I had one other question relative to Vesna's
8	question sort of, or related. So once they shut down,
9	you lose all that power, so those four systems shut
10	down, and then the power comes back, do they restart
11	or do they have to be manually restarted?
12	MR. CILLIERS: They should continue
13	running. They should
14	MEMBER BROWN: Nope. That's not what I
15	asked. That's not what I asked.
16	MR. CILLIERS: They should restart.
17	MEMBER BROWN: You've lost power. They've
18	gone off. ATS didn't transfer
19	MR. CILLIERS: Oh, okay. Sorry.
20	MEMBER BROWN: put everything there
21	is no electrical power on that 480 bus. Now, all of
22	a sudden, a minute, two minutes, three minutes later,
23	the power comes back. Those didn't shut down. Now,
24	do they automatically restart?
25	MR. CILLIERS: Okay. Got it. I
l	I

(202) 234-4433

	141
1	understand your question now. No, they do not
2	MEMBER BROWN: Thank you.
3	MR. CILLIERS: automatically restart.
4	There is a manual reset to all of these systems that
5	will have to be reset before you can start them back
6	up again.
7	MEMBER BROWN: Okay. Thank you.
8	MR. CILLIERS: Next slide?
9	MEMBER BLEY: On Charlie's question, but
10	that UPS that is designed to fail in something just
11	over 20 seconds, it will start recharging itself once
12	you get power back. True?
13	MR. CILLIERS: Yeah. I would say so. But
14	the reactor protection system would have opened the
15	relay. So the reactor system has to be reset.
16	MEMBER BLEY: Okay.
17	MR. CILLIERS: So from the normal power
18	system, the normal power system does not perform any
19	circulated functions and is not credited for the
20	mitigation of any postulated events.
21	AC power is distributed to the plant
22	electrical loads during startup and shutdown, normal
23	operation, and off-normal conditions.
24	The DC power supply is limited to the I&C
25	functions that require the 24-volt DC for operations,
ļ	I

(202) 234-4433

142 1 and that is the signals that is supplied to those 2 relays. The passive design features do not rely on 3 4 electrical power for safety-related SSCs to perform 5 the safety function. During postulated events PDC 17 and 18, the normal power system is designed so that 6 7 the differential displacements do not preclude a 8 safety-related SSC from performing its safety 9 That's PDC 2. And the normal power system function. 10 is designed in accordance with the National Fire Protection Association, NFPA 70, or the National 11 Electric Code. 12 Next slide? 13 14 Now going to the backup power system, the 15 backup power system does not perform any safety-16 related functions and is not credited for the 17 mitigation of postulated events. The backup power system provides AC electrical power to essential loads 18 19 when normal power is not available. The backup power system includes 20 the backup generators, which will automatically start in 21 with one offsite power 22 the event of redundant generator and built in by design. 23 It includes the 24 interruptible power supplies, a highly reliable and continuous AC electrical supply. 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	143
1	And, again, this is really for because
2	we want to have electrical reliable electrical
3	supply, electrical equipment to connect the backup
4	generators to the low voltage AC electrical power
5	distribution system and space for a plug-in connection
6	for reportable 480-volt AC generator.
7	Next slide?
8	So the backup power system design basis,
9	to ensure fail to safety in the event of a complete
10	loss of AC electrical power system, the reactivity
11	control and shutdown system and the primary sump pump
12	relays require on 24-volt DC to remain closed.
13	On a loss of power, the RCS relay opens,
14	and the shutdown elements drop into the reactor by
15	gravity. On loss of power, the PSP relays open to
16	prevent inadvertent pump and blower restart on power
17	restoration. And this includes all other systems that
18	we would like to shut off during such an event,
19	similar to what a trip would be.
20	On activation of the decay heat removal
21	system, the reactor protection system will remove the
22	24-volt DC from the activation circuit relay to
23	prevent inadvertent shutdown of the DHRS by operator
24	error. So there is a relay that opens as well, which
25	I believe wasn't in the in the pictures before, but
	I

(202) 234-4433

	144
1	that is there.
2	Equipment for monitoring the reactor
3	status will be supplied by UPS until the normal power
4	supply or backup generators are restored.
5	Passive design features do not rely on
6	electrical power for safety-related SSCs to perform
7	the safety functions. During postulated events
8	that's PDCs 17 and 18 the backup power system is
9	designed so that differential displacement do not
10	preclude safety-related SSCs from performing its
11	safety function. That's PDC 2. And the backup power
12	system is also designed according to the National
13	Electrical Code.
14	And if there is any more questions, I'm
15	happy to answer them.
16	MEMBER BLEY: Well, this is Dennis Bley
17	again, and I guess one comment I think everything
18	is fine for the construction permit. But the things
19	I mentioned earlier, the emergency lighting
20	communications and monitoring, are really essential if
21	things don't go the way we expect them to go. And I
22	know you are putting in what you consider to be very
23	reliable 72-hour UPSs.
24	But for the staff, you know, in the past
25	people were eventually persuaded to go 1E on these or
I	I

(202) 234-4433

	145
1	to have some kind of justification that they were
2	equivalent. And I think we need at least some kind of
3	treatment and pedigree requirements for those things,
4	because they are very important.
5	I don't know if the Committee would want
6	to say anything about that in their reports or not.
7	And the other one is that 20-second UPS
8	capacity is just kind of gnawing at me. I've been
9	involved in testing batteries in powerplants, and,
10	yeah, they almost always last a lot longer than
11	predicted, which is usually great. Here you're
12	counting on them to fail in a certain amount of time,
13	and I don't recall anybody who has designed batteries
14	to do that.
15	And I think you've got to be careful with
16	that. You might need some additional circuitry to
17	make sure it does what you want it to do. And I don't
18	think it's a killer for now, but I think it is
19	needs to be addressed by operating license time.
20	That's the only comments from me.
21	MR. CILLIERS: Thank you very much. We've
22	got some some systems in the works for that, so,
23	yeah, we will definitely consider that for OLA.
24	CHAIR PETTI: Any other questions,
25	members? Go ahead, Charlie.
Į	I

(202) 234-4433

	146
1	MEMBER BROWN: Just a minute. I've got to
2	find it. Problem with the computers. I've got to
3	make the page bigger.
4	In Section 8.3.1.1 under your backup
5	generators, in the last paragraph, it talks about the
6	backup generator coming on, start up automatic
7	transfer switch, a load-shedding scheme is employed to
8	ensure that only essential loads are supplied.
9	So that implies to me that the backup
10	diesel generator cannot support the load of everything
11	in its normal configuration at the time you lose the
12	main grid power source. Is that correct? That's what
13	
14	MR. CILLIERS: Yeah. That would be
15	correct. But the specific scheme of what systems we
16	want to remain on and what systems we do not, what is
17	deemed as non-essential supplies that we will just
18	simply not have on the backup power supply, that has
19	not been defined yet.
20	So all systems really related to the
21	reactor operations will be on the generator system.
22	We just didn't want to leave it open so that we have
23	the entire plant running off the off the
24	generators.
25	MEMBER BROWN: Yeah. I saw the list about
l	

(202) 234-4433

	147
1	not going to be supplied, but I also didn't see any
2	load, even an approximate load analysis that you would
3	need to be drawing on from the grid anyway that would
4	size that. It just
5	MEMBER HALNON: Well, you need to get
6	equipment specs.
7	MEMBER BROWN: No, I understand. Exactly.
8	But shedding the load when the backup generator comes
9	on is not a real, real good idea, although it can be
10	done. So
11	MEMBER HALNON: It's all right as long as
12	you do it, so you don't get an overstated trip.
13	MEMBER BROWN: Exactly.
14	MEMBER HALNON: I mean, that's pretty
15	common and, you know, load shed, load schemes are
16	pretty
17	MEMBER BROWN: Well, you've got everything
18	trying to restart. So some start some things won't
19	restart and others will.
20	All right. You answered my question. I
21	just just kind of hanging that one out to dry.
22	Thank you.
23	MEMBER BLEY: Charlie?
24	MEMBER BROWN: Yeah.
25	MEMBER BLEY: And I guess for these guys.
ļ	I

(202) 234-4433

	148
1	You probably have some kind of load sequence or
2	something that you didn't describe at this early
3	stage. Is that what you expect?
4	MR. CILLIERS: That's correct. We do not
5	have the information on what those loads would look
6	like at the time of issuance. But, yes, the simple
7	answer is the all essential loads, which will
8	include an exhaustive list of systems, will run from
9	the backup power supply.
10	We do not want to leave the impression
11	that the entire plant, with all with all systems
12	and offices and everything else will be running off
13	that. But that specific list of what is what is
14	deemed as essential would be operations and doing safe
15	shutdown will be included in the OLA.
16	MEMBER BROWN: Okay. You answered my
17	question. I'll leave it up to Dennis to deal with the
18	other side. Thank you.
19	MEMBER BLEY: And that's for later. Yeah.
20	MEMBER BROWN: Okay.
21	CHAIR PETTI: Okay. Then let's move to
22	the staff slides.
23	PARTICIPANT: I'll turn it over to Sheila
24	Ray, who will present the staff's review of Chapter 8.
25	MS. RAY: Good afternoon. My name is
	1

(202) 234-4433

	149
1	Sheila Ray. I'm currently a senior electrical
2	engineer in the Electrical Engineering Branch. I'm
3	also a licensed professional engineer in the State of
4	Maryland.
5	The review of the electrical power systems
6	was completed by myself and Vijay Goel. He's an
7	electrical engineer, and he is participating
8	virtually.
9	Next slide.
10	So we have had an overview from Kairos
11	that talked about the non-Class 1E normal and backup
12	power system. Due to the passive design of Hermes,
13	safety-related structures, systems, and components do
14	not require electric power to perform safety-related
15	functions for a minimum of 72 hours following a design
16	basis event.
17	As such, AC and DC power are not required
18	to mitigate a design basis event and the power
19	MEMBER BROWN: Can I interrupt you?
20	MS. RAY: Yes. Always.
21	MEMBER BROWN: You said that they have
22	determined that they they didn't need these systems
23	to operate how did you phrase that? It was how you
24	phrased it that triggered my thought process.
25	No, it wasn't you don't need them on
	I

(202) 234-4433

150 1 more than 72 hours under -- you said something. How did you --2 3 MS. RAY: So I said they do not require 4 safety -- SSCs do not require electric power to 5 perform safety-related functions for a minimum of 72 6 hours. 7 MEMBER BROWN: They don't need them for the minimum of 72 hours. 8 9 MS. RAY: Correct. 10 MEMBER BROWN: In other words, they don't need them at all. 11 MS. RAY: Correct. 12 MEMBER BROWN: Okay. That's the -- that's 13 14 not the way I heard it. Thank you. 15 MS. RAY: Okay. You said it right. I was 16 just -- my ears were behind. MEMBER MARCH-LEUBA: Yeah. It's the same 17 for ESFs, not only protection systems. Anything else 18 19 MEMBER BROWN: Yes, right. Nothing used 20 anything. 21 MEMBER MARCH-LEUBA: They just deenergize 22 POMs on the drops, and there you go. 23 It's a qood 24 design. MS. RAY: So the slide also provides the 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

	151
1	principle design criteria as listed here, PDC 17 and
2	18.
3	Next slide, please.
4	So we had the AC and DC system provided by
5	an offsite source, and we heard that the normal power
6	system is designed in accordance with the National
7	Electrical Code.
8	The staff conducted an audit, and during
9	the audit the staff confirmed that no electrical
10	systems were required for performing any safety-
11	related function for safe shutdown of the plant or to
12	keep the plant in safe shutdown condition.
13	Next slide.
14	MEMBER MARCH-LEUBA: Just one back. In
15	the previous slide, you mentioned one power offsite
16	power supply. But they are going to have two, right?
17	MS. RAY: I believe it's one.
18	MEMBER MARCH-LEUBA: I mean, you have
19	Kingston and Bull Run powerplants within five miles.
20	Yeah. Anyway, I will have to even if I don't need
21	emergency power, I will be more comfortable.
22	MS. RAY: I understand.
23	MEMBER MARCH-LEUBA: For the record, I was
24	involved in I used to be at Oak Ridge, and I was
25	involved in the design of a reactor in Oak Ridge
Į	1

(202) 234-4433

	152
1	National Laboratory. And we were making a case to DOE
2	that Oak Ridge has the lowest incidence of tornado
3	hits in the United States. And we were succeeding,
4	and that weekend a tornado hit our office and broke it
5	down.
6	(Laughter.)
7	MEMBER MARCH-LEUBA: I mean, it destroyed
8	all the computers in the office. So, anyway
9	MEMBER BLEY: But their design says one
10	line coming in.
11	MEMBER MARCH-LEUBA: It's all they need
12	for sure, but let's hope it's a high reliable
13	highly reliable line.
14	MS. RAY: The normal power system is not
15	credited for postulated events or safe shutdown, and
16	it is classified as non-Class 1E or non-safety, and no
17	technical specifications for the normal power system
18	are required.
19	Staff concluded that the PDCs 17 and 18
20	are not applicable, since there are no Class 1E
21	electric power systems, and non-safety power is
22	available for non-safety functions not credited for
23	DBE.
24	Next slide.
25	We heard about the backup power system,
l	I

(202) 234-4433

	153
1	which provides AC electrical power to the essential
2	facility loads when the normal AC power supply is not
3	available.
4	Once again, the backup power system is
5	designed in accordance with the National Electric
6	Code.
7	Next slide.
8	As the backup power system does not
9	perform any safety-related functions, is not credited
10	for the mitigation of postulated events, and is not
11	credited with performing safe shutdown functions, the
12	non-safety classification is appropriate. The staff
13	finds that the PDC 17 are not applicable. There are
14	no Class 1E electric power systems, and non-safety-
15	related power is available for non-safety functions,
16	not credited for DBE.
17	Next slide.
18	So, once again, the staff finds that the
19	PDC 17 and 18 are not applicable, since there are no
20	safety-related electrical power systems. Non-safety-
21	related power is available for non-safety functions
22	not credited for DBE, and the staff finds that the
23	design of the Hermes normal power system and backup
24	power system are sufficient and meet the applicable
25	regulatory requirements and guidance for the issuance
ļ	I

(202) 234-4433

	154
1	of a CP, construction permit, in accordance with Title
2	10, CFR 50.35 and 50.40.
3	That concludes my presentation.
4	MEMBER BLEY: What I'm sorry. Go
5	ahead.
6	MEMBER KIRCHNER: Go ahead, Dennis.
7	MEMBER BLEY: Yeah. This is Dennis Bley.
8	The same thing I was talking to them about, both
9	questions deal with UPSs. I think you'll remember
10	there were a couple of places where we had systems
11	that for design basis didn't need electric power and
12	didn't have 1E power. But in the two cases I'm
13	remembering, eventually they agreed to some sort of
14	requirements on what here would be the 72-hour UPS, to
15	make sure its pedigree and the required treatment of
16	it gets the sort of reliability we really want for
17	systems that we need to monitor and see things around
18	the plant and communicate.
19	You didn't say anything about that in the
20	SE. What are your thoughts about that?
21	MS. RAY: So in our Regulatory Guide
22	1.232, we do have the PDC 17 state that if electric
23	power is not needed for AOOs or postulated accidents,
24	the design shall demonstrate that power for safety
25	significant functions is provided.
I	I

(202) 234-4433

	155
1	But when we wrote that, we intended to
2	include items like emergency lighting, communications,
3	et cetera. So the staff's position is that can be
4	non-safety-related power.
5	MEMBER BROWN: And the communications in
6	lighting are on a 72-hour UPS just once.
7	MEMBER BLEY: Yes, they are. And so is
8	the monitoring step, so they are. I just remember
9	those cases in the past where you kind of added some
10	extra requirements to make sure that they were there.
11	Second question was about their UPS that
12	is going to trip in 20 seconds. Are you guys aware of
13	any designs that are guaranteed to trip in a required
14	time period? Not trip, but lose power. I'm not.
15	MS. RAY: I'm not aware of any. I would
16	have to go back and look.
17	MEMBER BLEY: There wasn't anything in the
18	chapter that said that was important, but today they
19	said, yeah, they really needed to lose power in 20
20	seconds. I think that's something for later, but I
21	just wanted to bring it to your attention.
22	MS. RAY: Thank you.
23	MEMBER KIRCHNER: This is not a question,
24	Sheila, just an observation. And it and it's
25	and I was saving it for here. As an operator, you
I	

(202) 234-4433

always want to have electric power, so you can do things to mitigate things. We have seen now, you know -- I get it. When they say the system doesn't have a safety function that's not credited, okay, fine, that's more so you can bend things in terms of economics and other considerations.

7 But I keep stumbling over this not needed 8 to mitigate anything, and yet we have a first-of-the-9 kind reactor and who knows what happens at the 73rd hour, like I don't know, all of a sudden you find you 10 are losing primary coolant inventory. I would want my 11 inventory management system which they are designing 12 to be functional to help cope with that loss. 13 I'm 14 making up a rhetorical scenario. I haven't thought it through. 15

16 So I understand the rules of engagement, 17 but the constant onslaught on all the viewgraphs, that none of this needed to mitigate anything, after a 18 19 while cumulatively bothers me because that assumes now we have looked at the design basis -- we have a very 20 thorough design, and we have looked at all of the 21 events, and we have a PRA, and we have laid all these 22 kind of rhetorical kind of challenges against the 23 24 system which we haven't.

So I would just observe that we are

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

157 1 constantly saying we don't need electric power to mitigate anything, and I -- it just leaves me a little 2 I know that's part of the regulatory 3 concerned. 4 engagement and game that is being played, but as a 5 former operator, I'm thinking, oh boy, you know, if this goes wrong or that goes wrong, that's when you 6 7 need electric power to try and --8 MEMBER HALNON: Well, there are two backup 9 generators and a portable connection. You can back a 10 tractor up with a PTO to --MEMBER KIRCHNER: Yeah. So it's -- so 11 they do have the FLEX provision. 12 MEMBER HALNON: Yeah. So, you know, as an 13 14 operator, I want to have no stone unturned on, you know, what is the next option. 15 16 MEMBER KIRCHNER: Yeah. MEMBER HALNON: But it seems like --17 MEMBER KIRCHNER: That's where I was 18 19 going, Greg. MEMBER HALNON: 20 Yeah. MEMBER KIRCHNER: 21 It's just -- I'm not I'm not raising any major safety issues. 22 objecting. Just --23 24 MEMBER HALNON: Because when you get down to those accidents and other issues, operators don't 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	158
1	think safety-related/non-safety-related. They think
2	electrons and volts.
3	MEMBER KIRCHNER: Right. That's where I
4	was going. Just an observation.
5	CHAIR PETTI: And I'm sure we'll see this
6	with other advanced reactor designs.
7	MEMBER KIRCHNER: What?
8	CHAIR PETTI: We'll see this with other
9	advanced reactor designs.
10	MEMBER KIRCHNER: No. No, of course we
11	will. Yeah.
12	CHAIR PETTI: This is characteristic and
13	
14	MEMBER BROWN: Let me my memory may
15	have failed me, but when I read this chapter, I now
16	vaguely remember this is very vague, an old brain
17	that the figure that shows two backup generators was
18	noted in the text to maybe only be one. I saw that
19	somewhere, and I don't remember where it was. I know
20	it's in here somewhere.
21	MEMBER HALNON: I don't remember that,
22	Charlie, but could they the backup generator
23	running doesn't mean there's not two backing up to the
24	
25	MEMBER BLEY: I don't remember either.
ļ	1

(202) 234-4433

	159
1	MEMBER BROWN: For some reason, don't ask,
2	my mind is blowing right now. I probably just ought
3	to be quiet.
4	MEMBER HALNON: We'll put a bookmark in it
5	and come back later.
6	MEMBER BROWN: All right. Put a cork in
7	me would be probably be a better approach. Plus,
8	it does say generators, plural, in the text.
9	Somewhere I saw something where I thought it said only
10	one, or possibly only one. That's fine. Let's go on.
11	MEMBER MARCH-LEUBA: Charlie, the slide
12	number 2 says backup supply (N minus 1 contingency).
13	Is that what you are thinking about?
14	MEMBER BROWN: No. I saw that. That is
15	you have two of them, so they if one of them
16	doesn't start, then the other one hopefully the
17	other one will. So that that didn't bother me.
18	That
19	MEMBER MARCH-LEUBA: So they probably
20	MEMBER BROWN: I'm wrong. Just
21	MEMBER MARCH-LEUBA: They probably mean
22	that only one is created, but it's a backup. Let's
23	continue.
24	CHAIR PETTI: Okay. If there's no other
25	questions, we can move to the memo.
ļ	I

(202) 234-4433

	160
1	And the court reporter can stop
2	transcribing. Thanks.
3	(Whereupon, the above-entitled matter went
4	off the record at 1:42 p.m. and resumed at 1:44 p.m.)
5	CHAIR PETTI: Okay. Court reporter, we
6	are back on.
7	MR. CLARK: This is Austin Clark. I'm an
8	engineer with the licensing team here at Kairos Power,
9	and I am presenting on PSAR 11, Section 1, radiation
10	protection.
11	Chapter 11 of the Preliminary Safety
12	Analysis Report addresses commitments regarding
13	radiation protection and waste management for the
14	Hermes non-power reactor. Radiation protection
15	includes identifying radiation sources, describing the
16	radiation protection program, the ALARA program, and
17	the environmental monitoring program, and describing
18	radiation monitoring and surveying, radiation exposure
19	control, dosimetry, and contamination control.
20	Radioactive waste management includes
21	describing the radioactive waste management program,
22	radioactive waste handling systems and controls,
23	design bases, and disposal of the radioactive wastes.
24	For the PSAR, these programs are designed at the
25	commitment level only.
I	I

(202) 234-4433

	161
1	Next slide, please.
2	MEMBER MARCH-LEUBA: While you're changing
3	the slides, we mentioned earlier this morning so we
4	mentioned earlier this is Jose. Mentioned earlier
5	this morning about the possibility of mixed waste
6	where you have both chemical and radioactive disposal,
7	especially during decommissioning.
8	Can you tell us anything more about that?
9	Or you just stand by the comment earlier? So the
10	question is you have we have beryllium, which is a
11	chemical waste mixed with some degree of
12	contamination, radioactive contamination, that has to
13	be disposed of.
14	MR. CLARK: I think so as far as
15	handling onsite, obviously, because it's radioactive
16	waste we will have to have radiological protection
17	programs in place.
18	As far as the mixed waste aspect of
19	beryllium waste, that falls under OSHA and we intend
20	to be compliant with all OSHA requirements. And then
21	as far as disposal, as we mentioned this morning, we
22	have already contacted a vendor and received a written
23	letter from them that they will be able to handle fly
24	as a mixed waste.
25	MEMBER MARCH-LEUBA: And we've heard
ļ	I

(202) 234-4433

	162
1	rumors that the fly, because the lithium is going to
2	be enriched, could be worth a significant amount of
3	money. Are you considering reprocessing for future
4	reactor, or this is beyond the scope for this
5	analysis?
6	MR. CLARK: It's beyond the scope at this
7	point.
8	MEMBER MARCH-LEUBA: Okay. Thank you.
9	MR. CLARK: Sources of radiation include
10	fission products, decay products, fuel, and activation
11	products, including tritium. Sources of airborne,
12	liquid, and solid radiation identified for the
13	facility are given in Table 11.1-1 of the PSAR.
14	The radiation protection program, as
15	required by 10 CFR 20.1101, will implement the
16	regulations in 10 CFR 19 and CFR 20 to ensure
17	compliance with the requirements for radiation
18	protection. The radiation protection program contents
19	and implementation will be reviewed periodically.
20	The ALARA program, as required by 10 CFR
21	20.1101, will include provisions for the facility to
22	maintain worker and public doses and radiological
23	releases as low as is reasonably achievable.
24	The ALARA program will be consistent with
25	the guidance in Regulatory Guide 8.10, operating
	I

(202) 234-4433

	163
1	philosophy for maintaining occupational and public
2	radiation exposures as low as is reasonably
3	achievable, Revision 2. And a description of the
4	program will be provided with the application for an
5	operating license.
6	Radiation monitoring and surveying will be
7	conducted as required by 10 CFR 20 to identify and
8	control potential sources of radiation exposure and
9	release.
10	Next slide, please.
11	All facility effluents are monitored prior
12	to release. SSCs in the facility are designed to
13	limit effluent releases both to work areas and to the
14	environment. A screening analysis of the long-term
15	radioactive effluents from the facility was completed.
16	That analysis used the NRC's XOQ/DOQ and Gas Power 2
17	codes for dispersion and dose model calculations,
18	respectively, site-specific validated meteorological
19	data covering the five-year period of record, and a
20	bounding tritium admissions rates set equal to the
21	first year tritium generation rate.
22	The limits for airborne radioactive
23	emissions and for all licensed operations are given in
24	10 CFR 20.1101(d) and 10 CFR 20.1301(a)(1),
25	respectively. All model doses are conservatively

(202) 234-4433

	164
1	bounded and are below the limits specified in 10 CFR
2	20.
3	Next slide, please.
4	MR. SCHULTZ: Excuse me. This is Steve
5	Schultz. A question on your last slide.
6	MR. CLARK: Mm-hmm.
7	MR. SCHULTZ: You have assumed a bounding
8	tritium emission, as you have indicated, equal to the
9	first year tritium generation rate. My question is
10	really looking forward either to the OL information
11	that will be presented. Do you intend to take credit
12	for any plant retention associated with tritium? And
13	the reason I'm mentioning this is that if you look at
14	not you look, but looking into the literature
15	associated with tritium emissions, which has a key
16	focus in both in the industry and with respect to
17	the public, the information generally looks at
18	emissions from various types of powerplants.
19	And, in that regard, they take credit for
20	plant retention in their evaluation of tritium
21	emissions. Are you planning to do that in the future
22	and have just done this bounding calculation for this
23	for this permit evaluation, construction permit?
24	MR. PEEBLES: This is Drew Peebles, the
25	senior licensing manager. We're not prepared to
ļ	I

(202) 234-4433

	165
1	discuss the final analysis that will be in the FSAR,
2	only that we'll meet the Part 20 regulations.
3	MR. SCHULTZ: Okay. My comment is really
4	a suggestion for activities in the future. Thank you.
5	MR. PEEBLES: Understood. Thank you for
6	your comment.
7	MEMBER MARCH-LEUBA: Yeah. And while
8	we're bringing the tritium issue, the analysis assumed
9	that all of the tritium generated in one year gets
10	released today with an accident, because now tritium
11	will be released over the year. It will be slowly
12	released.
13	MR. CLARK: So the Chapter 11 analysis
14	looks at long-term effluent releases. It looks at the
15	first year tritium generation rate because for the
16	reactor life that is the highest generation rate for
17	tritium. But it assumes a continuous release.
18	MEMBER MARCH-LEUBA: So it's a chronic
19	dose.
20	MR. CLARK: Chronic dose.
21	MEMBER MARCH-LEUBA: Okay.
22	CHAIR PETTI: I had a different question.
23	Probably the answer is you don't know yet. But have
24	you looked at all into concentrations of tritium in
25	the reactor cell and in the building, and what sort of

(202) 234-4433

	166
1	worker protections may be necessary? Will they need
2	bubble suits? You know, will you be above the DAC,
3	the derived airborne concentration? Or you just don't
4	you're not there yet in terms of the detailed
5	design?
6	MR. CLARK: Yeah. That's another one that
7	will be those details will be available in the OLA
8	phase.
9	CHAIR PETTI: So if I ask the same
10	question about beryllium in NIOSH standards, it's the
11	same answer?
12	MR. CLARK: Correct.
13	CHAIR PETTI: Don't you know, it put
14	high on your list. Those numbers are incredibly low,
15	particularly the beryllium numbers. And I think
16	you're going to have to monitor. There are
17	technologies. That's good. But the numbers are
18	really tight.
19	MEMBER MARCH-LEUBA: The unfortunate
20	thing, it is very easy to capture tritium. Hydrogen
21	reacts with everything at low temperatures, at 600
22	degrees.
23	CHAIR PETTI: I mean, that is I mean,
24	tritium is going to be everywhere in this plant,
25	because of the high temperature.

(202) 234-4433

	167
1	MEMBER MARCH-LEUBA: Yeah.
2	CHAIR PETTI: And, you know, go talk to
3	the guys that are doing the TP baths and power
4	reactors. That's a low temperature, and it's the
5	tritium is in lots of places. So it's from a worker
6	perspective. I'm not worried about public safety.
7	This is all about workers, because we've never had a
8	real high temperature tritium system like this.
9	CANDUs are much lower temperature.
10	Thank you.
11	MR. CLARK: Thank you. Consistent with 10
12	CFR 20.1406, SSCs that may contain or handle
13	radiological materials include design considerations
14	to limit leakage and to provide contamination control
15	in support of eventual decommissioning of the
16	facility.
17	Environmental radiological monitoring will
18	be conducted as required by 10 CFR 20.1302 and under
19	an operational radiation affluent monitoring program,
20	or RAMP, which will consider the guidance provided in
21	Regulatory Guide 4.1, radiological environmental
22	monitoring for nuclear powerplants, Rev 2, and NUREG
23	1301 offsite dose calculation manual guidance,
24	standard radiological effluent controls for
25	pressurized water reactors.
I	1

(202) 234-4433

	168
1	Due to the extensive environmental
2	characterization of the brownfield site by the
3	Department of Energy, the RAMP will be implemented
4	coincident with the start of operation.
5	MEMBER HALNON: But along with the
6	characterization, do you have I guess what's
7	equivalent of the 70 10 CFR 50.75(g) records of the
8	site you are building on right now? In other words,
9	when you look at 20.1406, I assume that's mainly
10	geared towards just preventing spills. That may have
11	to be cleaned up at a can't be totally cleaned up
12	during operations, may have to be cleaned up during
13	decommissioning. Is that consistent with your
14	thinking?
15	MR. CLARK: This is another thing that we
16	will have more details at the FSAR.
17	MEMBER HALNON: Okay. Well, you should
18	know from the last statement that you say it's well

18 know from the last statement that you say it's well 19 characterized by the -- by the DOE. Do you have the 20 records of what's left on the brownfield? Because, 21 obviously, greenfield would be below, you know, a 22 certain millirem into the soil, but if it's a 23 brownfield, do you understand how that may affect your 24 ultimate decommissioning?

MR. GARDNER: Okay. So this is Darryl

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

169 1 Gardner, senior director of licensing. All good We have the site release from DOE. 2 questions. We 3 have -- there's lots and lots of data about this site 4 that's addressed as part of our environmental report. 5 As we mentioned, we will be discussing the environmental monitoring plan as we move into the OL 6 7 stage, including decommissioning. That's just information we're not prepared to discuss for the 8 9 PSAR. 10 MEMBER HALNON: All right. Thanks. MR. LINGENFELTER: All right. 11 Ηi, I'm Andrew Lingenfelter, lead engineer of 12 everyone. Engineering Integration. I will be talking today 13 14 about Section 11.2, radioactive waste management. 15 But, first, we'll through qo а 16 description. Radioactive waste management systems are 17 provided in the Hermes design for the collection, packaging, storing, and dispositioning of low level 18 19 liquid and solid radioactive waste. functions include 20 The systems' decontamination capability 21 for components and materials, vents and drains for collection of liquid 22 rad waste, liquid rad waste handling, and solid rad 23 24 waste handling. These systems are not credited to perform 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	170
1	any safety-related functions, and the design bases
2	include the following. In accordance with PDC 2, they
3	are designed so that seismic-induced failure does not
4	impact the safety-related impact any safety-related
5	SSCs. In accordance with PDC 60, the design is such
6	that releases of radioactive material to the
7	environment do not exceed the limits of 10 CFR 20.
8	In accordance with PDC 63, they are
9	equipped with a radiation monitoring system to monitor
10	effluent radiation levels. And in accordance with 10
11	CFR 20.1406, they are designed to the extent
12	practicable to minimize contamination of the facility
13	and the environment, and facilitate eventual
14	decommissioning.
15	Additional system description information
16	will be provided with the OLA.
17	We will talk about the program side here.
18	The low level radioactive waste, including all solid
19	and some liquid radioactive waste, is expected to be
20	packaged and disposed using a licensed and qualified
21	low level radioactive waste disposal vendor.
22	Gaseous radioactive effluents are filtered
23	as practicable and monitored prior to release. Rad
24	waste will be managed as described by the radioactive
25	waste management plan, and we will be providing more

(202) 234-4433

www.nealrgross.com

	171
1	details on this program in the OLA.
2	CHAIR PETTI: Members, questions?
3	MEMBER KIRCHNER: Just one point that you
4	raised, Dave. This is Walt Kirchner. How does
5	beryllium handling obviously, beryllium is
6	regulated under OSHA in terms of occupational
7	exposures and such. But you've got even if we
8	don't you don't have a mixed waste stream of
9	beryllium and their radioactive effluents, you've got
10	to deal with beryllium detection, at least at an
11	occupational level. What are the general constraints
12	that beryllium introduces to your Chapter 11
13	considerations?
14	MR. CLARK: So as was pointed out,
15	beryllium is handled under OSHA and under NIOSH. So
16	as far as Chapter 11, there won't be much more
17	specifically on beryllium handling and even in the
18	operating license application. But it will be
19	something that is addressed, because compliance with
20	OSHA and NIOSH is required.
21	MEMBER KIRCHNER: No. I'm just thinking
22	aloud with you. What complications does it present in
23	terms of your does it become more dominant than
24	your for example, your tritium management
25	requirements?
ļ	I

(202) 234-4433

172 1 MR. GARDNER: So this is Darryl Gardner again, director of licensing. Again, these 2 are 3 interesting questions. I think it's just important to 4 point out you are talking about chemical hazards, 5 which are not within the scope of what we need to address for the PSAR, and so we have not. 6 7 It's not to suqqest that we aren't 8 addressing those, as Austin mentioned that we are. 9 I'm just not sure this is the forum for us to get into 10 those details when the complete plant hasn't been designed yet. 11 No. I understand that. MEMBER KIRCHNER: 12 Where I'm going with this is, does the beryllium 13 14 management wind up being more of a constraint on 15 things like your ventilation systems, et cetera, than the tritium or other concerns? 16 17 MR. GARDNER: That's a fair question. I'm not sure we -- I don't want to say prepared to answer. 18 19 I'm not sure we have enough information to tell you which one would be which. But suffice it to say, I 20 mean, it certainly is a factor in the ventilation and 21 confinement design, the non-safety-related portion of 22 the building design. 23 24 CHAIR PETTI: So the concern that I have, you know, this is fairly unique. There are rules on 25

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	173
1	chemical hazards. There are rules on radiation
2	hazards. But if all if there is beryllium
3	particulate, which there will be because of the
4	dendritic deposition of fluoride and cold spots like
5	on pump stem or something, if MSRE is any indication.
6	There could also be some tritium absorbed onto that
7	material.
8	So the material could both be chemically
9	hazardous and radioactive, and the rules don't even
10	address that. That co-hazard if you will, you know
11	
12	MEMBER KIRCHNER: But it's called a mixed
13	waste.
14	CHAIR PETTI: Well, that's from a waste
15	perspective. I'm talking about from an operational
16	perspective. I have not thought that what does
17	that mean? Does that imply anything? I don't know.
18	So, because the rules never envisioned it coming
19	together, right? There were different types of
20	facilities, so each
21	MEMBER MARCH-LEUBA: You are talking about
22	worker protection.
23	MEMBER KIRCHNER: Worker protection.
24	CHAIR PETTI: Yeah. Worker protections.
25	MEMBER KIRCHNER: The extreme that I would
I	·

(202) 234-4433

	174
1	just be concerned about and, again, this is more
2	having dealt with beryllium in the past, you've got
3	that was in the metal form, solid metal form.
4	So less of a hazard until you start
5	machining, for example, then dealing with a liquid,
6	but not never done in the context of also having to
7	worry about radioactivity separate.
8	MEMBER MARCH-LEUBA: I'm not
9	MEMBER KIRCHNER: What I'm concerned with
10	is, does the beryllium for example, you don't have
11	a confinement system per se for the reactor where the
12	beryllium issues drive you to a more restrictive
13	airflow in that cavity, et cetera, et cetera. Those
14	are the kind of concerns I would have that when you
15	have the two you have regulations concerning the
16	beryllium, and then you have regulations concerning
17	Chapter 11, 10 CFR 20 to be specific.
18	CHAIR PETTI: Well, the other
19	MEMBER KIRCHNER: That was my question.
20	CHAIR PETTI: The other question, I mean,
21	again, it's way outside our scope, but you need a good
22	health physicist. And all the limits that we have,
23	assume everything is independent, is the is the
24	burden on the individual different when it's mixed?
25	I don't know what the answer is to that. You know, is

(202) 234-4433

	175
1	it a synergistic effect between a worker picking up
2	some beryllium and some tritium?
3	MEMBER MARCH-LEUBA: Clearly, it can be
4	because the absorption in the body is completely
5	different depending on the chemical form. Hopefully,
6	they won't be close to limits; they will be very far
7	away from limits. All this is academic, but we need
8	to know what you guys will have. I'm pointing at the
9	staff. At the OL's stage, you have to make sure that
10	that is the case. Wishful thinking is really not
11	for other people, not for us.
12	CHAIR PETTI: Okay. Let's move on.
13	Staff?
14	MS. HART: Good afternoon. My name is
15	Michelle Hart. I'm a senior reactor engineer in the
16	Office of Nuclear Reactor Regulation, and I'm here to
17	talk about my review of PSAR Chapter 11. This is the
18	radiation protection and radioactive waste management
19	sections of the PSAR.
20	Next slide, please.
21	So in our review of Chapter 11, as I said,
22	there was preliminary information on the design and
23	programs. You just heard from Kairos the level of
24	information, and there were commitments to develop
25	more detailed information in the operating license
I	

(202) 234-4433

	176
1	application.
2	When we went through this review, there is
3	a lot of discussion about how they will meet Part 20.
4	They do not need to meet Part 20 for the construction
5	permit, because there is no special nuclear material
6	onsite. So we when we did the review, we looked at
7	how they would be able to accomplish that in the
8	future. Did they describe the systems and programs
9	such that they would be able to do that during
10	operation? And also, did they identify appropriate
11	general design criteria?
12	Next slide, please.
13	So these are the topics in each of the
14	sections. I won't go through them. You can read them
15	for yourself.
16	Next slide, please.
17	Radioactive waste management for these
18	particular topics. Okay?
19	So next slide, please.
20	So I wanted to talk a little bit more
21	about radiation protection. We had questions about
22	the PSAR information that we included in the general
23	audit for this particular topic, radiation sources.
24	The staff audit confirmed that Kairos did develop
25	preliminary isotopic values for fuel and five
I	1

(202) 234-4433

```
www.nealrgross.com
```

1 radiation sources for use in preliminary shielding design to support the information that's in the PSAR. 2 3 As Kairos has discussed several times, and we have discussed several times, there will be more 4 detailed information in the FSAR for the operating 5 license application. 6 7 We also audited their conservative screening analysis of the gaseous tritium emissions 8 9 that was described in Section 11.1.5, and we noted that it was a conservative assumption for the tritium 10 release rate, was equal to the generation rate for the 11 It does not account for retention in the year. 12 13 reaction, as was your question. 14 The release rate for other qaseous radionuclides was taken from the Clinch River ESP 15 16 environmental report as kind of a representative set 17 of information that may be released from a reactor. We thought it was a reasonable assumption for a 18 19 preliminary analysis considering the relative power desiqn differences 20 levels and the between the 21 reactors. They did not model a liquid effluent 22 release directly to the environment, and it was not 23 24 expected based on the preliminary design, and we agree with that. 25 So --

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

www.nealrgross.com

177

	178
1	CHAIR PETTI: Michelle, just a couple of
2	questions. Do you happen to recall what the release
3	rate was in curies per year?
4	MS. HART: I do not. I think
5	CHAIR PETTI: Even an order of magnitude?
6	MS. HART: I didn't put it in the SE? I
7	guess I didn't put it in the SE.
8	CHAIR PETTI: I wasn't sure if it's I
9	can't believe that number would be proprietary, but
10	
11	MS. HART: Yeah. It was over
12	CHAIR PETTI: I mean, microcurie,
13	millicurie, curie.
14	MS. HART: It was curies.
15	CHAIR PETTI: It was curies per
16	MS. HART: I think so. Does Kairos have
17	that information and would like to provide it?
18	MR. GARDNER: It is in the PSAR, in the
19	non-proprietary version of the PSAR. I don't recall
20	it at the moment, but it's in large curies.
21	CHAIR PETTI: Okay. Good. My other
22	question is on the whole thing okay, the liquid
23	effluents. I know there is no liquid waste as well.
24	Somebody gets contaminated in the plant, and you've
25	got to scram down. What do you do with that water?
	1

(202) 234-4433

	179
1	It's now contaminated. I mean, is the plan to collect
2	any water and solidify it? Is that the I mean,
3	eventually, hopefully, you know, in a waterborne plant
4	that would go, you know, off effluent treatment, et
5	cetera, et cetera.
6	MS. HART: So they do describe collection
7	of liquid wastes and packaging of that. I don't know
8	that they've made a final determination
9	CHAIR PETTI: But it may
10	MS. HART: what they would
11	CHAIR PETTI: solidify it. That would
12	make that would make sense to me.
13	MS. HART: Correct.
14	MEMBER MARCH-LEUBA: Yeah. But the most
15	source will be washing clothes. You will have
16	overalls that are clothes that are contaminated,
17	and you are not going to throw them all
18	MEMBER HALNON: Right. I know that
19	MEMBER MARCH-LEUBA: that is possible.
20	MEMBER HALNON: when we had to take
21	water from TMI recently, we just dropped it off and
22	disposed of it, big tanker truck. So, I mean, there's
23	
24	MEMBER MARCH-LEUBA: Yeah. That's so not
25	equal waste.
I	

	180
1	MEMBER HALNON: Part 61, yeah. There's
2	options to be able to
3	MS. HART: And of course they do commit to
4	all of the waste regulations and shipping regulations
5	and whatever is necessary for that.
6	In looking at their screening calculation,
7	we did look at the actual output from the XOQ/DOQ
8	modules, so we were able to verify their description
9	of it that they have in the PSAR.
10	And we had several questions about the
11	information in the PSAR, but we were able to have
12	discussions with them about why they made those
13	choices, like for the stack elevations. We did this
14	in concert with the environmental review, so both the
15	environmental reviewers and the safety reviewers
16	looked at the information on the screening
17	calculation, because it was used in both areas of
18	review.
19	Next slide, please.
20	So for the remainder of topics in PSAR
21	Section 11.1, radiation protection, we did not need
22	additional information. In the audit, we did find
23	that the PSAR describes the applicable regulatory
24	requirements and guidance and provides preliminary
25	information on the programs, practices, and design
ļ	I

(202) 234-4433

	181
1	features, and that Kairos' commitments provide
2	reasonable assurance that the Hermes design will
3	comply with applicable requirements.
4	Next slide, please.
5	So now to move on to PSAR Section 11.2,
6	the radioactive waste management. Staff did audit one
7	topic area, the radioactive waste handling systems and
8	controls. And this was, as I described before, just
9	got done talking about we did look at the preliminary
10	effluent calculation.
11	The PSAR describes the applicable
12	regulatory requirements, preliminary design criteria
13	and guidance, and provides preliminary design
14	information on the systems that we have used for
15	radioactive waste handling. And those PDCs are PDCs
16	2, 60, and 63. And we did find that Kairos'
17	commitments provide reasonable assurance that the
18	Hermes design will comply with the applicable
19	requirements.
20	I did also want to note that in addition
21	to the information in the PSAR we did take some
22	information from the environmental report on fly
23	storage to help us make this determination.
24	Next slide, please.
25	There should be one more slide. There we
l	I

(202) 234-4433

	182
1	go.
2	So in total for Chapter 11, the staff did
3	find that preliminary information and design criteria
4	for these radiation protection and waste management
5	programs and provisions meet the applicable acceptance
6	criteria in the NUREG-1537, and the provide reasonable
7	assurance the final design will conform to the design
8	bases and meet the applicable regulatory requirements
9	and provides an acceptable basis for the development
10	of the radiation protection programs and radioactive
11	waste management.
12	And there is reasonable assurance that
13	Kairos will comply with the regulations in 10 CFR
14	Part 20 during facility operation, and, therefore, the
15	staff concludes the information in Chapter 11 is
16	sufficient to support issuance of construction permit.
17	Are there any questions?
18	MEMBER HALNON: Yeah. Michelle, did you
19	in looking at 1537 Part 2, and I I go back on
20	this a lot, that it's an old, you know, 20-plus-year,
21	25 years old, did you see any areas that you were
22	concerned about in the operating license of for the
23	operating license, if it would not be adequate review
24	criteria for you?
25	MS. HART: I
I	I

	183
1	MEMBER HALNON: I mean, this is a first-
2	of-a-kind and type of reactor, and it wasn't
3	anticipated back in 1997 when issued.
4	MS. HART: Right. So we have heard the
5	concerns, and we have some similar concerns about, you
6	know, the treatment of tritium and how it's going to
7	be handled and how worker protection will be handled
8	for that. I mean, I think a lot of it is to be
9	determined when we get the actual final design detail.
10	MEMBER HALNON: Okay. So keep your eyes
11	open, keep your ears
12	MS. HART: Yeah.
13	MEMBER HALNON: open type of thing.
14	MS. HART: Yeah. I'm very interested in
15	the analysis and all of that.
16	MEMBER HALNON: So this will be strict
17	it's not on 1537.
18	MS. HART: No. I was not planning to do
19	that, assuming I would be
20	MEMBER HALNON: Okay.
21	MS. HART: the reviewer.
22	CHAIR PETTI: So just something I did
23	find the number. It's 62,500 curies per year.
24	MS. HART: It's several curies.
25	CHAIR PETTI: That's 6.2 grams per year
I	

(202) 234-4433

	184
1	being released, so it is a significant number. It
2	would be interesting to know what the CANDUs release.
3	I used to know these numbers, but I've forgotten them.
4	The other question I had was I had asked
5	the staff for an answer to a question, reminding me of
6	one in the previous meeting. I'm used to, you know,
7	in other reactor systems that deal with tritium, it
8	comes through the heat exchanger. There's a secondary
9	side, sometimes water, and there's a leak. And that
10	tritium and that water has to meet the drinking water
11	standard.
12	You know, in the DOE facilities they are
13	doing interesting things with tritium. There is a
14	water pathway. There is also an airborne pathway, but
15	most of the issues are the waterborne pathway.
16	When you do it all like this and put it
17	all airborne, does the fact that it could end up in
18	the in the drinking water, is that considered in
19	the whole chain of calculations?
20	MS. HART: So I will say, you know, the
21	guidance that we have of course, it was for power
22	reactors. It's Reg Guide 1.109 that talks about how
23	you do these effluent calculations. It does consider
24	airborne effluents separately from waterborne
25	effluent.
ļ	I

(202) 234-4433

	185
1	And there is not right now I'm not
2	aware of any capability in the codes to actually do
3	that conversion from the airborne into the water and
4	then transport it further. We don't have a direct
5	regulatory requirement that they meet the drinking
6	water standard, like
7	CHAIR PETTI: Because they don't
8	MS. HART: 10 CFR Part 20
9	CHAIR PETTI: have a liquid pathway,
10	right?
11	MS. HART: Right.
12	CHAIR PETTI: Basically.
13	MS. HART: And Part 20 doesn't refer
14	directly to the drinking water standards. Of course,
15	any applicant is required to comply with any
16	applicable regulation that applies to them, whether
17	it's NRC or not.
18	MEMBER MARCH-LEUBA: Yeah. My guess,
19	whatever gets into the air, it will be in chemical
20	form will be HDO?
21	CHAIR PETTI: HTO, yeah. And eventually
22	it gets
23	MEMBER MARCH-LEUBA: HDO?
24	CHAIR PETTI: it will get into
25	MEMBER MARCH-LEUBA: I mean, will most
I	

(202) 234-4433

	186
1	likely be absorbed by the gas around the plant.
2	CHAIR PETTI: Correct. Correct.
3	MEMBER MARCH-LEUBA: And, I mean, soil
4	CHAIR PETTI: So the fusion program was
5	very, very worried about this back in the before I
6	was involved with the program '80s. They did
7	experiments to look at dispersion, and they had codes,
8	really complicated dose codes, that modeled all
9	pathways.
10	It was really quite sophisticated, because
11	of the public sensitivity of tritium, which as we know
12	is is well in excess of the regulations I guess is
13	a fair way to put it.
14	MS. HART: So Part 20 does have an
15	environmental release level that is related to the
16	ALARA requirement in, what is it, 10 CFR 11.01(d).
17	And so there are those in the Appendix B to Part 20.
18	There are concentration criteria, and that's at the
19	release point.
20	It would if you took in that amount of
21	tritium for the entire year, there is both an air and
22	a water concentration. That would result in 50
23	millirem.
24	CHAIR PETTI: Okay. So that's still
25	pretty reasonable.

(202) 234-4433

	187
1	MS. HART: Yeah. And then there's an
2	additional constraint in 20.11.01(e) that would
3	require them from all pathways, all sources, to be
4	less than 10 millirem per year in their design. So if
5	they used that ALARA constraint to help them with
6	their design, it would reduce that even further.
7	MEMBER MARCH-LEUBA: I don't think the
8	problem is safety of the public, but somebody is going
9	to start sampling the Clinch River water a mile
10	downstream. And if you start being able to detect it
11	
12	CHAIR PETTI: Look what's going on at this
13	plant in Minnesota.
14	MEMBER MARCH-LEUBA: Yeah.
15	CHAIR PETTI: Right? I mean, Brookhaven.
16	It shut down that reactor for numbers way, way below
17	drinking water standards. It's just you know, it's
18	a disproportionate
19	MEMBER MARCH-LEUBA: The Clinch River, by
20	that location, is a big fault. And if you dilute two
21	grams in a year, you are going to see it. But you may
22	be able to detect it, so that's
23	CHAIR PETTI: Okay.
24	MEMBER MARCH-LEUBA: Kairos, do be careful
25	and don't don't leak as much as you as you are
	I

(202) 234-4433

	188
1	assuming in your
2	CHAIR PETTI: I mean, the problem is, you
3	know, in a high temperature system, once it goes past
4	that heat exchange, it's gone. Even if you had a
5	second basis
6	MEMBER MARCH-LEUBA: I'm more worried
7	about, if the plant is going to be in the old K25
8	enrichment facility, and when you walk into K25, you
9	have to wear suits everywhere or you are picking up
10	tech-99 everywhere you touch.
11	I'm wonder if, Kairos, you have to wear
12	the same thing because you're picking tritium from
13	every place you touch.
14	MEMBER HALNON: When you talk to tritium
15	in groundwater versus drinking water, there is a
16	there is a huge difference. So be careful. Drinking
17	water well at 20,000 I guess picocuries, that's huge.
18	But you'll hear values coming out of these plants of
19	30, 40, 50,0000. That's groundwater. That's not
20	drinking water. So you've got to be careful on doing
21	that. The deposition of tritium HDO, whatever, in the
22	ground, you would have to have unbelievable amount to
23	affect the drinking water.
24	MEMBER MARCH-LEUBA: There are no wells
25	out there. There's so much surface water that you
ļ	

(202) 234-4433

	189
1	don't need to pick
2	MEMBER HALNON: The surface water is not
3	drinking water. So, anyway, I just wanted to make
4	that distinction. It's a real
5	MEMBER MARCH-LEUBA: It's not a safety
6	issue.
7	MEMBER HALNON: No. But it is definitely
8	a public relations issue.
9	MEMBER MARCH-LEUBA: Yes.
10	MEMBER HALNON: Which we are finding now
11	at the operating reactors.
12	MS. HART: Any questions?
13	MR. SCHULTZ: Michelle, this is this is
14	Steve Schultz.
15	MS. HART: Yes.
16	MR. SCHULTZ: You mentioned in the audit
17	you reviewed the dose calculations at the side
18	boundary, specifically for tritium. Did what did
19	that entail in terms of your review? You didn't do
20	any any qualifying calculations yourself. They
21	were using some NRC-related codes.
22	So you reviewed input, output. Is that
23	the extent of the of the review?
24	MS. HART: Yes. We did not do any kind of
25	scoping or confirmatory calculations. They did use
ļ	

(202) 234-4433

Í	190
1	the NRC dose 3 code, GASPAR, and XOQ/DOQ. We did see
2	the output file from that run that they did. And so
3	and we were able to ask them questions about it as
4	well.
5	MR. SCHULTZ: Okay. Thank you.
6	CHAIR PETTI: Okay. If there are no more
7	questions, let's bring the memo up.
8	(Whereupon, the above-entitled matter went
9	off the record at 2:22 p.m. and resumed at 2:23 p.m.)
10	CHAIR PETTI: So we are back on the record
11	for public comment. Anyone has a comment from the
12	public, please state your name and your comment.
13	Okay. Not hearing any, now we're off the
14	record. Thank you.
15	(Whereupon, the above-entitled matter went
16	off the record at 2:23 p.m.)
17	
18	
19	
20	
21	
22	
23	
24	
I	

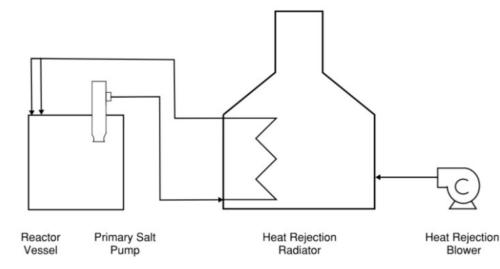
Enclosure 1 Presentation Slides for the April 4, 2023 ACRS Kairos Power Subcommittee Meeting (Non-Proprietary)

Hermes PSAR Chapter 5 Heat Transport System

NICOLAS ZWEIBAUM – DIRECTOR, SALT SYSTEMS DESIGN

ACRS KAIROS POWER SUBCOMMITTEE MEETING

APRIL 4, 2023


5.1 Primary Heat Transport System: Description

- The PHTS is responsible for transporting heat from the reactor to the ultimate heat sink (environmental air) during power operation and during normal shutdown
- The PHTS operates near atmospheric pressure and does not provide a safety-related heat removal function
 - No driving force for energetic releases during a pipe break
- The PHTS is a non-safety-related system

Parameter	Value
Thermal duty	35 MWth
Number of HRRs	1
Number of hot legs	1
Number of cold legs	2
Primary loop line size	8-12 in nominal pipe size
HRR inlet coolant temperature	600-650°C
HRR outlet coolant temperature	550°C
Nominal flow rate	210 kg/s
PHTS design pressure	525 kPa(g)

5.1 Primary Heat Transport System: Description (cont.)

- Primary Loop Piping
 - Transports reactor coolant between Reactor Vessel and Heat Rejection Radiator
 - Not a safety-related portion of the reactor coolant boundary
- Primary Salt Pump (PSP)
 - Variable speed, cartridge style pump located on the Reactor Vessel head
 - Inlet extends downwards through the Reactor Coolant free surface
 - Hot leg anti-siphon function performed by geometric features of the PSP's downward-facing inlet
 - No safety-related function for the PSP but safety-related trip to maintain Reactor Coolant inventory level
- Heat Rejection Subsystem (HRS)
 - Provides for heat transfer from the Reactor Coolant to the ultimate heat sink (environmental air)
 - Consists of a Heat Rejection Radiator, Heat Rejection Blower, and associated ducting and thermal management
 - No safety-related function for the HRS but safety-related blower trip upon tube failure minimizes forced air ingress
- Primary Loop Thermal Management
 - Provides non-nuclear heating and insulation to the PHTS as needed for various operations
 - No safety-related function

5.1 Primary Heat Transport System: Reactor Coolant

- Flibe (2LiF-BeF₂) Liquid Fluoride Salt Coolant
- Negative temperature coefficient of reactivity
- Secondary barrier to fission product release
- Thermophysical properties
 - Topical report approved by NRC, "Reactor Coolant for the Kairos Power Fluoride Salt-Cooled High Temperature Reactor" (KP-TR-005)
 - High heat capacity provides large thermal inertia for transients

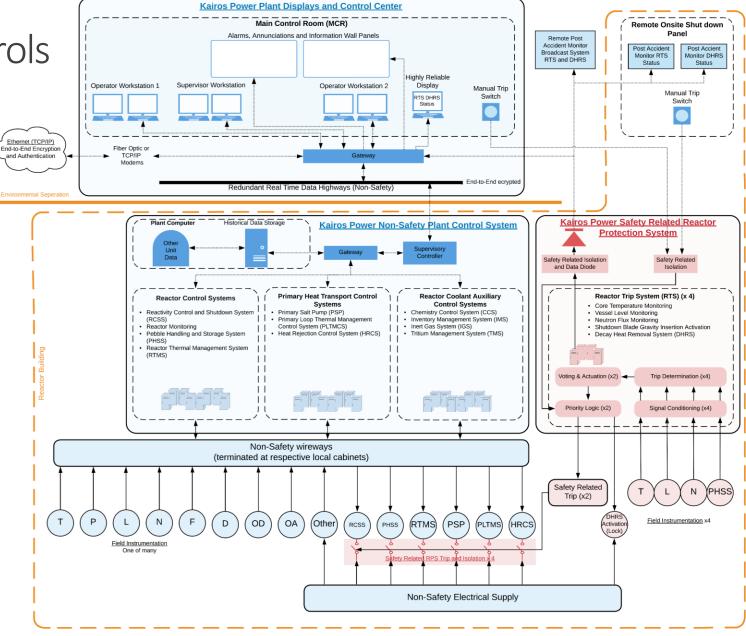
5.1 Primary Heat Transport System: Design Basis

- The PHTS SSCs that are a part of the reactor coolant boundary will be designed to ASME B31.3 and BPVC Section VIII codes and standards
- Failure of the non-safety-related PHTS components during seismic events does not affect the performance of nearby safety-related SSCs (PDC 2)
- Adequate coolant flow is maintained to assure SARRDLs will not be exceeded under any condition of normal operation (PDC 10)
- The PHTS is designed with features that ensure power oscillations cannot result in conditions exceeding SARRDLs (PDC 12)
- The reactor coolant provides control of the release of radioactive materials during normal operations and postulated events through the accumulation of radionuclides (PDCs 16, 60)
- The PSP casing is designed with geometric features to prevent reactor coolant from being siphoned below the pump casing inlet elevation to maintain reactor coolant inventory in the event of a break in an external portion of the PHTS (PDC 33)
- The PHTS is designed with features that support maintaining reactor coolant inventory and maintaining reactor coolant purity by limiting air ingress (PDCs 33, 70)
- The PHTS will be designed according to 10 CFR 20.1406, to the extent practicable, to minimize contamination and support eventual decommissioning

Hermes PSAR Chapter 7 Instrumentation and Controls Systems

ANTHONIE CILLIERS - DIRECTOR, I&C AND ELECTRICAL

ACRS KAIROS POWER SUBCOMMITTEE MEETING

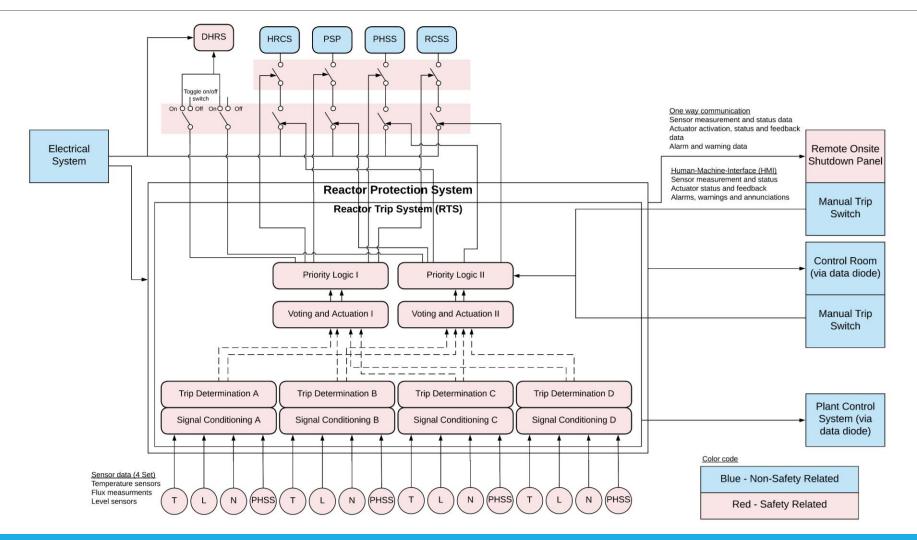

APRIL 4, 2023

7.1 Instrumentation & Controls Systems: Overview

The Instrumentation and Controls (I&C) Systems include:

- The Reactor Protection System (RPS) is a safety-related system that provides protection for reactor operations by initiating signals to mitigate the consequences of postulated events and ensure safe shutdown.
- The Plant Control System (PCS) is a non-safety related system responsible for controlling plant parameters during normal operations and providing data to the Main Control Room control consoles.
- The Main Control Room (MCR) provides a means for operators to monitor the behavior of the plant and control performance of the plant. The Remote Onsite Shutdown Panel (ROSP) provides a separate means to shut down the plant and to monitor plant parameters in response to postulated event conditions.
- Sensors are used to provide information about plant parameters as inputs to the PCS and RPS. Sensors that provide input to the RPS are safety-related. The PCS receives inputs from non-safety-related sensors, as well as safety-related sensors through safety-related isolation device.

Instrumentation & Controls Systems Architecture


7.2 Plant Control System

- The PCS implements its monitoring and control functions through a series of subsystems:
 - The Reactor Control System performs functions associated with reactivity control and power level adjustments, monitoring of core neutronics, pebble handling and storage, and monitoring and controlling temperature in the reactor.
 - The Reactor Coolant Auxiliary Control System performs functions associated with chemistry control, inventory management system control, inert gas system control, and tritium management system monitoring and control.
 - The Primary Heat Transport Control System performs functions associated with control of the flow rate through the Primary Heat Transport System (PHTS), PHTS thermal management, control of the heat rejection system, and primary loop draining, filling, and piping monitoring.
- The PCS receives inputs from non-safety-related sensor inputs, as well as safety-related sensor inputs. The PCS is electronically and functionally isolated from the safety-related RPS using a safety-related isolation device.
- The PCS generates control outputs based on sensor inputs and setpoints provided by the control system. The setpoints are adjusted automatically based on plant operating mode, or in some cases by operators via the main control room consoles. Plant Operators do not directly control PCS outputs.

7.3 Reactor Protection System

- The RPS is the safety-related system credited with tripping the reactor and initiating protective functions upon receipt of signals in response to out-of-normal plant conditions. There are three possible sources that can cause the RPS to actuate:
 - Process variables reach or exceed specified setpoints as measured by safety-related RPS sensors that monitor core temperature, reactor coolant level, neutron flux, and the condition of the PHSS extraction line
 - Manual initiation from the main control room or remote onsite shutdown panel
 - Loss of plant electrical power (with a time delay)
- Three protective functions result from RPS actuation:
 - Actuate the RCSS to insert control and shutdown elements into the reactor core
 - Inhibit actions from the PCS so that it does not interfere with the functioning of the RPS, including RCSS element withdrawal, stopping the primary salt pump and heat rejection blower, stopping the pebble handling and storage system, and preventing the actuation of the reactor thermal management system
 - Ensure the actuation of the Decay Heat Removal System
- The RPS is built on a logic-based platform that utilizes discrete components and field programmable gate array technology
- The RPS is isolated from non-safety related I&C Systems using safety-related isolation hardware

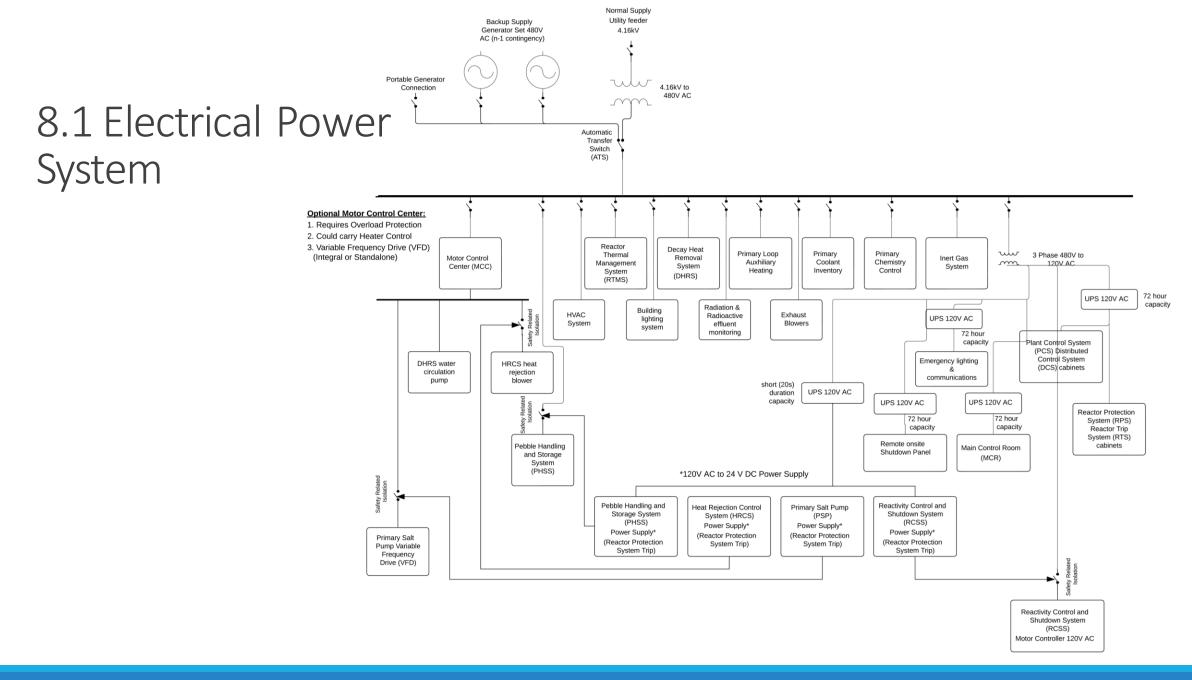
Reactor Protection System Trip Logic Schematic

7.4 Main Control Room and Remote Onsite Shutdown Panel

- The MCR contains equipment related to normal operation of the plant including:
 - Operator and supervisor workstation terminals, which provide alarm, annunciation, personnel and equipment interlocks, and process information from the PCS and RPS
 - A manual trip switch that propagates through a gateway and safety-related isolation to allow operators to initiate a plant trip
 - Central alarm panel for the fire protection system to monitor status of fire protection equipment in the Reactor Building and controlling the ventilation and extinguishing systems related for fire response
- The Remote Onsite Shutdown Panel (ROSP) provides a human/system interface for plant staff to monitor indications from the RPS including the operating status of the reactor trip system and the decay heat removal system in the event the MCR becomes inaccessible or uninhabitable. The ROSP features one-way (read only) communication with the RPS and the ability to initiate a manual trip signal that actuates the RPS.

Instrumentation and Controls Systems: Design Basis

- The RPS and safety-related sensors are designed using relevant industry codes and standards such as IEEE 603-2018 and the quality assurance program (PDC 1)
- The RPS and safety-related sensors are designed to withstand and be able to perform their safety-related functions during adverse natural phenomena (PDC 2)
- The RPS and safety-related sensors are designed and located to minimize the probability and effects of fires and explosions (PDC 3)
- The RPS is designed for the environmental conditions associated with normal operation, maintenance, testing and postulated events (PDC 4)
- The RPS provides reactor trip and decay heat removal actuations that ensure radionuclide release design limits are not
 exceeded during normal operations, as a result of postulated events, and upon reactor trip actuation, including in the
 event of a single failure of the reactivity control system (PDCs 10, 20, 25)
- The RPS, PCS, and safety-related sensors are designed to monitor plant parameters over the anticipated ranges of normal operation and postulated event conditions (PDC 13)
- The design of the MCR (1) allows actions to be taken to operate the reactor under normal operating and postulated event conditions, (2) provides radiation protection allowing access and occupancy during postulated event conditions without personnel receiving radiation exposures in excess of 5 rem TEDE for the duration of the event, and (3) maintains habitability, allowing access and occupancy during normal operations and postulated event conditions. The ROSP is located outside of the MCR and (1) provides the capability to promptly shutdown the reactor and monitor the unit during shutdown and (2) provides capability for subsequent safe shutdown of the reactor through use of suitable procedures (PDC 19)


Instrumentation and Controls Systems: Design Basis

- The RPS and safety-related sensors are designed with sufficient redundancy and independence to assure no single failure results in a loss of protection function (PDC 21)
- The results of natural phenomena, and of normal operating, maintenance, testing, and postulated event conditions do not result in loss of protection function of the RPS or safety-related sensors (PDC 22)
- The RPS fails to a safe state upon loss of electrical power or detection of adverse environmental conditions (PDC 23)
- The RPS and safety-related sensors are functionally independent from the non-safety related control systems (PDC 24)
- The RPS setpoints are designed to limit the potential amount and rate of reactivity to ensure sufficient protection from postulated events involving reactivity transients (PDC 28)
- RPS and safety-related sensors are designed to be redundant to assure there is a high probability of accomplishing the safety-related functions of the RPS in postulated events (PDC 29)

Hermes PSAR 8 Electrical Design

ANTHONIE CILLIERS – DIRECTOR, I&C ACRS KAIROS POWER SUBCOMMITTEE MEETING APRIL 4, 2023

8.2 Normal Power System

- The normal power system does not perform any safety-related functions and is not credited for the mitigation of postulated events
- AC power is distributed to the plant electrical loads during startup and shutdown, normal operation, and off-normal conditions
- DC power supply is limited to I&C functions that require 24VDC for operations
- The passive design features do not rely on electrical power for safety-related SSCs to perform their safety functions during postulated events (PDCs 17, 18)
- The normal power system is designed so that differential displacements do not preclude a safety-related SSC from performing its safety function (PDC 2)
- The normal power system is designed in accordance with National Fire Protection Association (NFPA) 70, "National Electrical Code"

8.3 Backup Power System

- The backup power system (BPS) does not perform any safety-related functions and is not credited for the mitigation of postulated events
- The BPS provides AC electrical power to essential loads when normal power is not available
- The BPS includes:
 - Backup generators
 - Automatically start in the event of offsite power
 - One redundant generator by design
 - Uninterruptible power supplies (UPS)
 - Highly reliable and continuous AC electrical supply
 - Electrical equipment to connect the backup generators to the low voltage AC electrical power distribution
 - Plug-in connection for a portable 480 VAC generator

8.3 Backup Power System: Design Basis

- To ensure fail-to-safety in the event of a complete loss of AC electrical power, the reactivity control and shutdown system (RCSS) and the primary salt pump (PSP) relays require 24 VDC to remain closed
 - On a loss of power, the RCSS relay opens, and the shutdown elements drop into the reactor by gravity
 - On a loss of power, the PSP relays open to prevent inadvertent pump and blower restart on power restoration
- On activation of the decay heat removal system, the reactor protection system will remove 24 VDC from the activation circuit relay to prevent inadvertent shut down of the DHRS by operator error
- Equipment for monitoring reactor status will be supplied by UPS until the normal power supply or backup generators are restored
- The passive design features do not rely on electrical power for safety-related SSCs to perform their safety functions during postulated events (PDCs 17, 18)
- The BPS is designed so that differential displacements do not preclude a safety-related SSC from performing its safety function (PDC 2)
- The BPS is designed in accordance with National Fire Protection Association (NFPA) 70, "National Electrical Code"

Hermes PSAR 11 Radiation Protection and Waste Management

AUSTIN CLARK - ENGINEER III, LICENSING

ANDREW LINGENFELTER - LEAD ENGINEER, ENGINEERING INTEGRATION

ACRS KAIROS POWER SUBCOMMITTEE MEETING

APRIL 4, 2023

11 Radiation Protection and Waste Management

- This chapter defines the elements of the radiation protection program and the radioactive waste management program and systems
 - Radiation Protection
 - Includes identification of radiation sources, description of radiation protection program, description of ALARA program, radiation monitoring and surveying, radiation exposure control and dosimetry, contamination control, and environmental monitoring program
 - Radioactive Waste Management
 - Includes a description of the radioactive waste management program, and a description of radioactive waste handling systems and controls, design bases, and disposal of radioactive waste
- For the PSAR, these programs are described at the commitment level. The PSAR commits to provide additional details at the operating license application stage, consistent with 10 CFR 50.34(b).

11.1 Radiation Protection

- Radiation Sources
 - Sources of radiation that present a potential hazard to workers and the public include fission products, decay products, fuel, and neutron activation products, including tritium
- Radiation Protection Program
 - The radiation protection program implemented for Hermes will comply with the regulatory requirements in 10 CFR 19 and 10 CFR 20, and will be developed, documented, and implemented commensurate with the scope and extent of licensed activities for a test reactor facility
 - Program content and implementation will be reviewed periodically
- ALARA Program
 - A program to ensure occupational doses and doses to members of the public are as low as is reasonably achievable will be implemented as required by 10 CFR 20.1101
 - The ALARA program will be consistent with the guidance in Regulatory Guide 8.10 and the program description will be provided with the application for the operating license
- Radiation Monitoring and Surveying
 - Conducted as required by 10 CFR 20 to detect releases of radioactive material from facility equipment and operations
 - Operational environmental monitoring is controlled by a radiological environmental monitoring program (REMP)

11.1 Radiation Protection

- Radiation Exposure Control and Dosimetry
 - Facility effluents are monitored for radioactivity during normal operations and postulated events
 - Structures, systems, and components are designed to limit uncontrolled liquid or gaseous effluent releases to work areas or the environment
 - A screening analysis of radioactive emissions from the facility employed:
 - the NRC's XOQDOQ and GASPAR II codes for dispersion and dose model calculations respectively
 - site-specific, validated meteorological data covering a 5-year period of record
 - a bounding tritium emissions rate set equal to the first-year tritium generation rate
 - Total body effective dose equivalents from gaseous effluents were calculated for the plant site boundary, the location of the maximally exposed individual (MEI) in an unrestricted area, and an analytical nearest resident
 - All modeled doses are below the limits specified in 10 CFR 20

11.1 Radiation Protection

Contamination Control

- SSCs with the potential to contain/handle radiological materials include design considerations to limit leakage and control the spread of contamination and to facilitate eventual decommissioning consistent with the requirements in with 10 CFR 20.1406
- Environmental Monitoring
 - Radiation monitoring and surveys of radiation levels in unrestricted areas and radioactive materials in effluents will be conducted as required by 10 CFR 20.1302
 - An operational radiation effluent monitoring program (REMP) will be implemented considering the guidance in RG 4.1, Rev 2 and NUREG-1301
 - A description of the program will be provided with the application for an operating license
 - The REMP will be implemented coincident with start of operation
 - The existing site is already well characterized by Department of Energy to establish a baseline prior to Hermes
 operation

11.2 Radioactive Waste Management - Description

- Radioactive waste management systems (RWMSs) are provided in the Hermes design for the collection, packaging, storing, and dispositioning of low-level liquid and solid radioactive waste (LLRW)
- RWMSs functions include:
 - Decontamination capability for components and materials
 - Vents and drains for the collection of liquid radioactive wastes
 - Liquid radioactive waste handling
 - Solid radioactive waste handling

11.2 Radioactive Waste Management – Design Bases

- The RWMSs are not credited to perform any safety-related functions
- The design bases for the RWMSs include:
 - The RWMSs are designed so that seismic-induced failure does not impact the safety related SSCs (PDC 2)
 - The RWMSs are designed such that releases of radioactive materials to the environment do not exceed the limits of 10 CFR 20 (PDC 60)
 - The RWMSs are equipped with a radiation monitoring system to monitor effluent radiation levels (PDC 63)
 - The RWMSs are designed, to the extent practicable, to minimize contamination of the facility and the environment and facilitate eventual decommissioning consistent with 10 CFR 20.1406
- Additional system description information will be provided with the application for an Operating License, consistent with 10 CFR 50.34(b)

11.2 Radioactive Waste Management - Program

- Low-level radioactive waste (including all solid and some liquid radioactive waste) is expected to be packaged and disposed using a licensed and qualified LLRW disposal vendor
- Gaseous radioactive effluents are filtered as practicable and monitored prior to release
- Radioactive waste will be managed as prescribed by the radioactive waste management plan
- Additional description of the radioactive waste management program will be provided with the application for an Operating License, consistent with 10 CFR 50.34(b)

NRC Staff Review for PSAR Chapters 5, 7, 8, and 11

Briefing for the Advisory Committee on Reactor Safeguards

April 4, 2023

Office of Nuclear Reactor Regulation

Agenda

- PSAR Chapter 5, "Primary Heat Transport System"
- PSAR Chapter 7, "Instrumentation and Control Systems" (I&C)
- PSAR Chapter 8, "Electrical Power Systems"
- PSAR Chapter 11, "Radiation Protection and Radioactive Waste Management"
- Common Agenda for Each Chapter
 - Overview of PSAR Chapter and Principal Design Criteria (PDC)
 - Referenced topical reports (if applicable)
 - Staff technical evaluation
 - Findings and Conclusions

Common Regulatory Basis

- 10 CFR 50.34(a), "Preliminary safety analysis report."
- 10 CFR 50.35, "Issuance of construction permits."
- 10 CFR 50.40, "Common standards."
- <u>Guidance:</u> NUREG-1537, "Guidelines for Preparing and Reviewing Applications for the Licensing of Non-Power Reactors," Part 2, "Standard Review Plan and Acceptance Criteria."

NRC Staff Review for PSAR Chapter 5 Primary Heat Transport System

Briefing for the Advisory Committee on Reactor Safeguards

April 4, 2023

By the Division of Advanced Reactors and Non-Power Production and Utilization Facilities, Office of Nuclear Reactor Regulation

PSAR Chapter 5 Primary Heat Transport System (PHTS) Overview

- Non-safety related system
- Includes primary salt pump, heat rejection subsystem, and associated piping
 - Circulates reactor coolant through the core and the heat rejection subsystem
- Transports heat from reactor core to ultimate heat sink
- Manages thermal changes and provides normal residual heat removal
- Provides for in-service inspection, maintenance, and replacement activities

Chapter 5 Principal Design Criteria

- PDC 2 "Design bases for protection against natural phenomena"
- PDC 10 "Reactor design"
- PDC 12 "Suppression of reactor power oscillations"
- PDC 16 "Containment design"
- PDC 33 "Reactor coolant inventory maintenance"
- PDC 60 "Control of releases of radioactive materials to the environment"
- PDC 70 "Reactor coolant purity control"

Referenced Topical Reports

- KP-TR-003-NP-A, Revision 1, "Principal Design Criteria for the Kairos Power Fluoride Salt-Cooled, High Temperature Reactor"
- KP-TR-005-NP-A, Revision 1, "Reactor Coolant for the Kairos Power Fluoride-Salt Cooled High Temperature Reactor"
- KP-TR-012-NP-A, Revision 1, "Mechanistic Source Term Methodology for the Kairos Power Fluoride Salt-Cooled High-Temperature Reactor"
- KP-TR-013-NP, Revision 4, "Metallic Materials Qualification for the Kairos Power Fluoride Salt-Cooled High-Temperature Reactor,"
- KP-TR-014-NP, Revision 4, "Graphite Material Qualification for the Kairos Power Fluoride Salt-Cooled High-Temperature Reactor"

PDC 2, "Design bases for protection against natural phenomena"

- PHTS piping and supports are designed in accordance with ASME B31.3.
- The primary heat exchanger is designed in accordance with ASME Boiler and Pressure Vessel Code (BPVC) Section VIII standards.
- The design of the non safety-related PHTS SSCs is such that a failure of PHTS SSCs would not affect the performance of safety-related SSCs due to a design basis earthquake.

The staff finds the preliminary design of the PHTS is consistent with PDC 2.

- PDC 10 requires the core be designed to ensure specified acceptable system radionuclide release design limits (SARRDLs) are not exceeded
- The NRC staff finds the preliminary information on the PHTS design is consistent with PDC 10
 - Coolant composition and properties of Flibe in KP-TR-005-NP-A
 - Chemistry control system can maintain composition
 - Proposed technical specification to maintain reactor coolant within allowable limits to maintain Flibe properties
 - Reactor coolant is resistant to thermal hydraulic instabilities
 - Sections 4.3 and 4.6 of staff SE evaluate thermal hydraulics
 - Section 6.3 of staff SE evaluates heat removal when the normal PHTS heat removal path is unavailable

- PDC 12 requires the core be designed to ensure power oscillations that result in conditions exceeding SARRDLs are not possible or can be reliably detected and suppressed
- The NRC staff finds the preliminary information on the PHTS design is consistent with PDC 12
 - PHTS can limit and suppress inlet temperature and mass flow rate oscillations, limit entrained gas in the coolant, and maintain coolant specifications
 - Reactor coolant is resistant to thermal hydraulic instabilities
 - Section 4.5 of staff SE evaluates nuclear design
 - Chapter 7 of staff SE evaluates instrumentation and controls

Staff Evaluation – PDCs 16 and 60

- PDC definitions
 - PDC 16 requires a functional containment to control the release of radioactivity to the environment
 - PDC 60 requires the plant design to control the release of radioactive materials, including during postulated events
- PSAR Section 5.1.3 describes the ability of Flibe to retain fission products that may escape the fuel
 - Flibe credited in safety analyses as a radionuclide barrier
- The NRC staff finds that the preliminary information is consistent with PDCs 16 and 60 because:
 - Flibe's ability to retain radionuclides as evaluated in KP-TR-012-NP-A, Revision 1
 - A proposed TS Limiting Condition for Operation to limit circulating activity, which supports the assumptions in KP-TR-012-NP-A, Revision 1

PDC 33 – "Reactor coolant inventory maintenance"

- Anti-siphon features to limit loss of reactor coolant if there is a break in the PHTS cold leg.
- Reactor coolant inventory is maintained by anti-siphon design features on the hot and cold legs.
- The design's ability to remove residual heat following a failure in the PHTS is consistent with the guidance given in NUREG-1537.
- The staff finds that the preliminary information of the PHTS design is consistent with PDC 33.

- PDC 70 requires systems to maintain reactor coolant purity including chemical attack, fouling/plugging, radionuclide concentrations, and air/moisture ingress
- PSAR Section 5.1.3 and RAI responses describe how the PHTS is designed to withstand and/or mitigate fouling, air ingress, chemical attack, and manage radionuclide concentrations
- The NRC staff finds the preliminary information is consistent with PDC 70 because
 - Coolant purity control and temperature monitoring to detect fouling or plugging of passages
 - Ability of Flibe to retain radionuclides, circulating activity limits, and ability to remove radionuclides from Flibe
 - Material qualification topical reports assess chemical attack in Flibe and the chemistry control system (CCS) can purify the coolant as well
 - PHTS designed to limit forced air ingress, remain within bounds of qualification testing for air ingress, and availability of compensatory measures

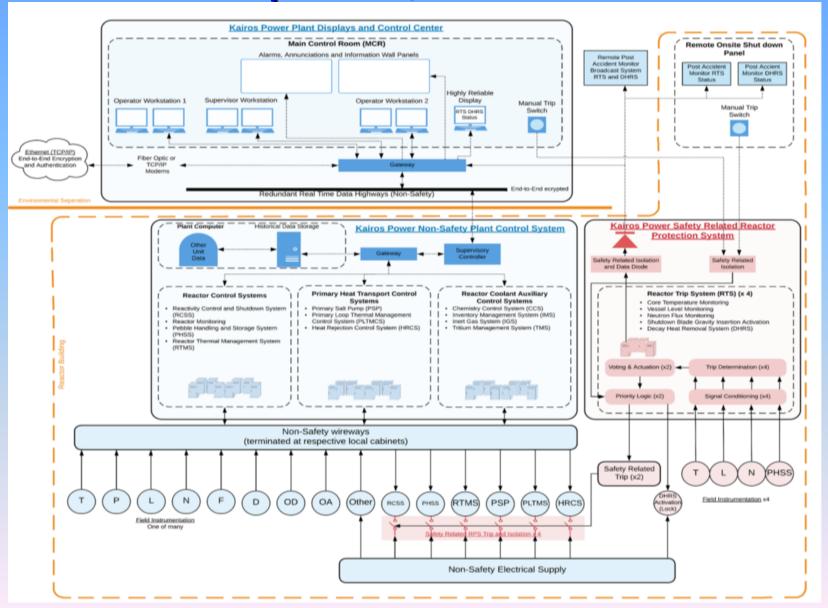
Testing and Inspection

- PSAR states design of PHTS allows for inspection, maintenance, and replacement activities
- PSAR states any testing and inspection of PHTS will be submitted with the OL application
 - Staff will review these programs at that time

Technical Findings and Regulatory Conclusion

- NRC staff finds the preliminary design information is consistent with the applicable criteria in NUREG-1537 and the applicable PDC
- The staff concludes information in Hermes PSAR Section 5 is sufficient for the issuance of a CP in accordance with 10 CFR 50.35 and 50.40 and further information can be reasonably left for the OL application

Questions?


NRC Staff Review for PSAR Chapter 7 Instrumentation and Control Systems

Briefing for the Advisory Committee on Reactor Safeguards

April 4, 2023

By the Division of Engineering and External Hazards, Office of Nuclear Reactor Regulation

Protecting People and the Environmen PSAR Chapter 7, I&C Architecture

Chapter 7 Principal Design Criteria

- PDC 1 "Quality standards and records"
- PDC 2 "Design bases for protection against natural phenomena"
- PDC 3 "Fire Protection"
- PDC 4 "Environmental and dynamic effects design bases"
- PDC 10 "Reactor design"
- PDC 13 "Instrumentation and control"
- PDC 15 "Reactor coolant system design"
- PDC 19 "Control room"
- \circ PDC 20 "Protection system functions"
- PDC 21 "Protection system reliability and testability"

- PDC 22 "Protection system independence"
- PDC 23 "Protection system failure modes"
- PDC 24 "Separation of protection and control systems"
- PDC 25 "Protection system requirements for reactivity control malfunctions"
- PDC 28 "Reactivity limits"
- PDC 29 "Protection against anticipated operation occurrences"

Staff Evaluation – Plant Control System

- Architecture
- Communications
- Codes and Standards
- Technical Specifications
- Logic, Display, and Alarms
- Failure Modes

Staff Evaluation – Reactor Protection System

- Architecture
- Protective Functions
- Communications
- Codes and Standards
- Logic and Schematics
- Trip Functions
- Accident Mitigation
- Safety Settings
- Response Time
- Technical Specifications
- I&C Platform
- Single Failure

Staff Evaluation – Main Control Room and Remote Onsite Shutdown Panel

- Architecture
- Communications
- Codes and Standards
- Controls, Displays, and Alarms
- Technical Specifications

Staff Evaluation – Sensors

- Architecture
- Codes and Standards
- Sensors

Technical Findings and Regulatory Conclusions

Kairos has described the proposed facility design criteria for the I&C systems, including, but not limited to, the PDC, and has identified the major features or components incorporated therein for the protection of the health and safety of the public.

Further technical or design information as may be required to complete the safety analysis of the I&C systems can reasonably be left for later consideration in the FSAR.

The staff concludes the information in Hermes PSAR Chapter 7 is sufficient and meets the applicable guidance and regulatory requirements identified in this section for the issuance of a construction permit in accordance with 10 CFR 50.35 and further information can be reasonably left for the OL application.

Questions?

NRC Staff Review for PSAR Chapter 8 Electrical Power Systems

Briefing for the Advisory Committee on Reactor Safeguards

April 4, 2023

By the Division of Engineering and External Hazards, Office of Nuclear Reactor Regulation

PSAR Chapter 8 Electrical Power Systems Overview

- Non-Class 1E normal power system
- Non-Class 1E backup power system
- Principal design criteria (PDC):
 - PDC 17 "Electric power systems"
 - PDC 18 "Inspection and testing of electric power systems"

Staff Evaluation – Normal Power System

- Provides alternating current (AC) and direct current (DC) electrical power by an offsite power source
- Designed in accordance with National Fire Protection Association (NFPA) 70, "National Electrical Code 2020"
- During an audit, the applicant confirmed that no electrical systems were required for performing any safety-related function for safe shutdown of the plant or to keep the plant in the safe shutdown condition

Staff Evaluation – Normal Power System

- The normal power system is not credited for postulated events or safe shutdown, is classified as non-Class 1E or non-safety, and no technical specifications for the normal power system are required
- Based on exceptions to PDCs noted in Section 3.1.1 of PSAR, PDCs 17 and 18 are not applicable since
 - there are no safety-related/Class 1E power systems required to perform any safetyrelated functions
 - Normal power system (non-Class 1E) is available for non-safety functions not credited for design basis events (e.g., for certain UPS loads)

Staff Evaluation – Backup Power System

- Provides AC electrical power to the essential facility loads when the normal AC power supply is not available
- Includes backup generators and uninterruptible power supplies (UPS), as well as electrical equipment and circuits used to interconnect the backup generators to the low voltage AC electrical power distribution
- Plug-in connection available for use with a portable 480 VAC generator to provide power to essential loads in the event the backup generators are unavailable
- Designed according to NFPA 70, National Electric Code 2020

Staff Evaluation – Backup Power System

- The PSAR addressed the classification and design attributes of the Backup
 Power System
- The Backup Power System does not perform any safety-related functions, is not credited for the mitigation of postulated events, and is not credited with performing safe shutdown functions.
- Based on exceptions to PDCs noted in Section 3.1.1 of PSAR, PDCs 17 and 18 are not applicable since
 - there are no safety-related/Class 1E power systems required to perform any safetyrelated functions
 - Backup Power System (non-Class 1E) is available for non-safety functions not credited for design basis events, (e.g., for certain UPS loads)

Technical Findings and Regulatory Conclusion

- The staff finds that PDCs 17 and 18 are not applicable, since there are no Class 1E electrical power systems and non-Class 1E electrical power systems are available for non-safety functions not credited for DBE
- Staff finds that the design of the Hermes normal power system and backup power system are sufficient and meet the applicable regulatory requirements and guidance for the issuance of a construction permit in accordance with 10 CFR 50.35 and 50.40 and further information can be reasonably left for the OL application

Questions?

NRC Staff Review for PSAR Chapter 11 Radiation Protection and Radioactive Waste Management

Briefing for the Advisory Committee on Reactor Safeguards

April 4, 2023

By the Division of Advanced Reactors and Non-Power Production and Utilization Facilities, Office of Nuclear Reactor Regulation

Overview of PSAR Chapter 11

- Radiation protection and radioactive waste management
 - Preliminary information on design and programs
 - Commitments to develop more detailed information in the OL application

Overview of PSAR Section 11.1 "Radiation Protection"

- Radiation sources
- Radiation protection program and ALARA program
- Radiation monitoring and surveying
- Radiation exposure control and dosimetry
- Contamination control
- Environmental monitoring

Overview of PSAR Section 11.2 "Radioactive Waste Management"

- Radioactive waste management program
- Radioactive waste handling systems and controls
- Release of radioactive waste

Staff Evaluation – Radiation Sources

- Staff audit confirmed that Kairos developed preliminary isotopic values for fuel and Flibe radiation sources for use in preliminary shielding design
- Staff audit of conservative screening analysis of gaseous tritium emissions described in PSAR Section 11.1.5 noted:
 - Conservative assumption for tritium effluent release rate equal to the generation rate
 - Does not account for retention in the reactor
 - Release rate for other gaseous radionuclides taken from the Clinch River ESP Environmental Report
 - Reasonable assumption for a preliminary analysis considering relative power levels and design differences
 - Liquid effluent release direct to the environment was not modeled; not expected based on preliminary design

Staff Evaluation – Radiation Protection

- Remainder of topics in PSAR Section 11.1
 - Did not need additional information in audit
 - PSAR describes the applicable regulatory requirements and guidance, and provides preliminary information on programs, practices, or design features
 - Kairos's commitments provide reasonable assurance that the Hermes design will comply with applicable requirements

Staff Evaluation – Radioactive Waste Handling Systems and Controls

- Preliminary effluent calculation in PSAR Section 11.1
- PSAR describes the applicable regulatory requirements, PDCs, and guidance and provides preliminary design information
 - PDC 2, "Design bases for protection against natural phenomena"
 - PDC 60, "Control of releases of radioactive materials to the environment"
 - PDC 63, "Monitoring of fuel and waste storage"
- Kairos's commitments provide reasonable assurance that the Hermes design will comply with applicable requirements

Staff Evaluation – Radioactive Waste Management

- Remainder of topics in PSAR Section 11.2
 - Did not need additional information in audit
 - PSAR describes applicable regulatory requirements and guidance and provides preliminary information on programs, practices, or design features
 - Kairos's commitments provide reasonable assurance that the Hermes design will comply with applicable requirements

Technical Findings and Regulatory Conclusion

- Staff finds that preliminary information and design criteria of the radiation protection and waste management programs and provisions
 - meets applicable acceptance criteria in NUREG-1537, Part 2
 - provides reasonable assurance that the final design will confirm to the design bases
 - meets applicable regulatory requirements
 - provides an acceptable basis for the development of the radiation protection programs and radioactive waste management, and there is reasonable assurance that Kairos will comply with the regulations in 10 CFR Part 20 during facility operation
- The staff concludes the information in Hermes PSAR Chapter 11 is sufficient and meets the applicable guidance and regulatory requirements identified for the issuance of a construction permit in accordance with 10 CFR 50.35 and further information can be reasonably left for the OL application