Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title:	Advisory Committee on reactor S eVinci Design Subcommittee Open Session	afeguards
Docket Number:	(n/a)	
Location:	teleconference	
Date:	Tuesday, February 28, 2023	
Work Order No.:	NRC-2288	Pages 1-50

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1716 14th Street, N.W. Washington, D.C. 20009 (202) 234-4433

	1
1	
2	
З	
4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

	1
1	UNITED STATES OF AMERICA
2	NUCLEAR REGULATORY COMMISSION
3	+ + + +
4	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
5	(ACRS)
6	+ + + +
7	eVINCI SUBCOMMITTEE
8	+ + + +
9	OPEN SESSION
10	+ + + +
11	TUESDAY
12	FEBRUARY 28, 2023
13	+ + + +
14	The Subcommittee met via Teleconference,
15	at 1:00 p.m. EST, Walter L. Kirchner, Chair, presiding.
16	
17	COMMITTEE MEMBERS:
18	WALTER L. KIRCHNER, Chair
19	RONALD G. BALLINGER, Member
20	VICKI M. BIER, Member
21	CHARLES H. BROWN, JR., Member
22	VESNA B. DIMITRIJEVIC, Member
23	GREGORY H. HALNON, Member
24	JOSE MARCH-LEUBA, Member
25	DAVID A. PETTI, Member
	NEAL R. GROSS

		2
1	JOY L. REMPE, Member	
2	MATTHEW W. SUNSERI, Member	
3		
4	ACRS CONSULTANTS:	
5	DENNIS BLEY	
6	STEPHEN SCHULTZ	
7		
8	DESIGNATED FEDERAL OFFICIAL:	
9	CHRISTOPHER BROWN	
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	NEAL R. GROSS	

		3
1	TABLE OF CONTENTS	
2	PAGE	
3	Opening Remarks and Objectives	4
4	Staff Opening Remarks	7
5	Overview	12
6	Public Comments	50
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

	4
1	P-R-O-C-E-E-D-I-N-G-S
2	(1:00 p.m.)
3	CHAIR KIRCHNER: It's 1:00 Eastern Time,
4	and this meeting will now come to order.
5	This is a meeting of the eVinci Design
6	Subcommittee of the Advisory Committee on reactor
7	Safeguards.
8	I am Walt Kirchner, Chairman of today's
9	Subcommittee meeting. ACRS members in attendance are
10	Charles Brown, Jose March-Leuba, Joy Rempe, Dave Petti,
11	Ron Ballinger, and I think we have and Greg Halnon
12	are present here. I believe we have Vesna Dimitrijevic
13	and Vicki Bier on virtual connection. And Matt
14	Sunseri. Our consultants, Dennis Bley and Stephen
15	Schultz, are also present.
16	Christopher Brown of the ACRS staff is the
17	Designated Federal Official for this meeting.
18	During today's meeting, the Subcommittee
19	will receive an overview of the eVinci Micro Reactor
20	Design. The Subcommittee will hear presentations by
21	and hold discussions with the NRC staff, Westinghouse
22	representatives, and other interested persons
23	regarding this matter.
24	Part of the presentations by the Applicant
25	and the NRC may be closed in order to discuss information
	NEAL R. GROSS

(202) 234-4433

	5
1	that is proprietary to the licensee and its contractors
2	pursuant to 5 U.S.C. 552 Bravo, Charlie, four.
3	Attendance at the meeting that deals with
4	such information will be limited to NRC staff and its
5	consultants, WEC, and those individuals and
6	organizations who have entered into an appropriate
7	confidentiality agreement with them. Consequently,
8	we will need to confirm that we have only eligible
9	observers and participants in the closed part of the
10	meeting.
11	The rules for participation in all ACRS
12	meetings, including today's, were announced in the
13	Federal Register on June 13th, 2019. The ACRS section
14	of the U.S. NRC public website provides our charter,
15	bylaws, agendas, letter reports, and full transcripts
16	of all full and subcommittee meetings, including slides
17	presented there.
18	The meeting notice and agenda for this
19	meeting were posted there. We have received no written
20	statements or requests to make an oral statement from
21	the public.
22	The Subcommittee will gather information,
23	analyze relevant issues and facts, and formulate
24	proposed positions and actions, as appropriate, for
25	deliberation by the full Committee.
	NEAL R. GROSS

(202) 234-4433

6 1 The rules for participation in today's meeting have been announced as part of the notice of 2 this meeting previously published in the Federal 3 Register. A transcript of the meeting is being kept 4 5 and will be made available as stated in the Federal Register notice. 6 7 Today's meeting is being held in person 8 and over Microsoft Teams for ACRS staff and members, 9 NRC staff, and the licensee attendees. There is also 10 a telephone bridge line and an MS Teams link allowing 11 participation of the public. 12 When addressing the Subcommittee, the participants should first identify themselves and then 13 14 speak with sufficient clarity and volume so that they 15 may be readily heard. request 16 speaking, we When not that 17 participants mute your computer microphone or phone 18 by pressing star six. Again, please, those here in 19 the room, please mute your laptop. 20 We will now proceed with the meeting, and 21 I'd like to start by calling on Mike Wentzel, the Branch 22 Chief from NRR. 23 Mike, good afternoon. Go ahead. 24 MR. WENTZEL: Good afternoon, Dr. 25 Kirchner, and thank you for the opportunity to be here **NEAL R. GROSS**

> COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	7
1	today.
2	My name is Mike Wentzel, and I am Chief
3	of Advanced Reactor Licensing Branch Number 2 in the
4	Division of Advanced Reactors and Non-Power Production
5	and Utilization Facilities, also referred to as DANU.
6	And, as you know, we're in the Office of Nuclear Reactor
7	Regulations.
8	So I'd like to talk today a little bit about
9	the staff's focus on preapplication activities. In
10	accordance with the advanced reactor policy statement,
11	the NRC encourages early interaction with advanced
12	reactor developers and prospective applicants.
13	While preapplication interactions are not
14	unique to advanced reactors, the NRC recognizes that
15	such interactions may be particularly beneficial for
16	advanced reactor developers, because they allow the
17	early identification of resolution of technical and
18	policy issues that could affect licensing.
19	In the staff's draft White Paper entitled
20	Preapplication Engagement to Optimize Advanced Reactor
21	Application Reviews that was issued in 2021, the NRC
22	staff proposed a set of preapplication activities that,
23	if fully executed, will enable the staff to offer more
24	predictable and potentially shorter schedules and other
25	benefits during the review of a license application.
	NEAL R. GROSS

(202) 234-4433

	8
1	The White Paper states that if an advanced
2	reactor applicant completes preapplication
3	interactions on certain topics proposed by the staff
4	that we would anticipate a review schedule that is
5	tentatively six months shorter than the NRC's generic
6	milestone schedules, depending on the complexity of
7	the design and other issues associated with the work.
8	The staff can then compare the list of
9	preapplication topics in the White Paper against those
10	that are completed and anticipated submittals that
11	from vendors to evaluate the effectiveness of our
12	preapplication interactions.
13	Another thing that we're doing to ensure
14	effective and efficient preapplication reviews is
15	implementing a core team approach. We anticipate that
16	the core team that is created for the preapplication
17	phase will be the same that is assigned to future license
18	applications.
19	In this approach, the overall
20	responsibility for the staff review lies within our
21	division referred to as DANU. The core team review
22	includes a project manager and technical reviewers from
23	DANU and subject matter experts in other divisions and
24	offices for selected topics.
25	Technical reviewers from within DANU with
	NEAL R. GROSS

(202) 234-4433

	9
1	significant advanced reactor technology expertise have
2	responsibility for broader portions of the design,
3	including many of the topics that are integral to the
4	reactor design, such as thermal and structural
5	analysis, fuel and core design, and accidents.
6	Some topics that are being reviewed outside
7	the core team include instrumentation and controls,
8	emergency planning, fissile security, and seismic
9	methodology.
10	In the case of eVinci, the core team will
11	work very closely with staff of from the Office of
12	Nuclear Materials Safety and Safeguards due to the
13	unique transportation and storage aspects of this
14	particular design.
15	So, again, I'd just like to thank you for
16	the opportunity to be here today, and we continue
17	we will look forward to continued interactions with
18	the ACRS as the review of the eVinci design progresses.
19	CHAIR KIRCHNER: Thank you, Mike. And now
20	we'll turn to Westinghouse. I think Mike Shaqqo is
21	going to make an introduction for the team. Thank you
22	for being here, by the way, as well.
23	MR. SHAQQO: Yeah. Thank you for the
24	opportunity to be here, and thank you for taking the
25	time to listen to our team as we share with you our
	NEAL R. GROSS

(202) 234-4433

	10
1	progress with eVinci.
2	Go to the next slide, Anthony.
3	So just jumping into it here, I guess to
4	make sure our team will have the opportunity to share
5	the progress we've made, I'll keep mine short.
6	Again, my name is Mike Shaqqo. I'm the
7	Senior VP for Advanced Reactor Programs with
8	Westinghouse. As you see here, Westinghouse has
9	and you probably know Westinghouse has a very long
10	history of developing and successfully licensing the
11	reactor technologies.
12	We really appreciate the NRC's past effort
13	with our AP1000 and the design certification that we
14	received from the NRC to support deployment. This
15	really has enabled us to deploy AP1000, certainly here
16	in the U.S., but as well as internationally.
17	eVinci, as you see here on the list of our
18	portfolio of reactors, is one of our is our smallest
19	reactor technology that we are talking about today.
20	This technology is as you'll hear from our team,
21	we're very excited about it. The reason we're excited
22	about it, certainly because of the innovative aspect
23	of it, as well as the advancement the team has made
24	in progressing this technology.
25	But just as important, as you will hear
	NEAL R. GROSS

(202) 234-4433

	11
1	from our team today, we are excited about this
2	technology because of the broad range of applications
3	that this technology will have. We heard many
4	feedbacks from our customers, potential end users, on
5	how this technology will actually help them achieve
6	their net zero goals. So that really gets us excited
7	and gets our engineers excited as we talk and advance
8	this technology.
9	So, in addition to eVinci, as you see here,
10	we have two other areas that we are focused on as well.
11	Specifically, we are working on soon to deploy
12	our Westinghouse SMR. It's a 300-megawatt electric
13	unit, and it will be based mainly on the advancement
14	and the lessons learned from our AP1000 technology and
15	deployment.
16	In addition, with our innovation team, we
17	have our Lead Fast Reactor, which is in our innovation
18	R&D phase as it is our next generation and gen forward
19	technology that our team is also working on.
20	So, with that said, the focus of this team
21	here today is really solely on eVinci, and which is,
22	as I mentioned, it's one of our key products that we
23	are investing significantly in the development, and
24	I believe maybe it's self-serving I do believe
25	we have the smartest and the brightest people working
	NEAL R. GROSS

(202) 234-4433

	12
1	on this technology.
2	So looking forward for this interaction,
3	and looking forward to see where this will take us.
4	And thank you.
5	CHAIR KIRCHNER: Thank you.
6	MR. HALACKNA: All right. Thank you,
7	Mike. So you can see on the screen the agenda we have
8	for today.
9	Oh, yeah. Joe Halackna. I'm Deputy
10	Director for Advanced Reactor Engineering at
11	Westinghouse. I'll lead us through a number of the
12	slides here, and then between myself and Anthony.
13	So you can see the agenda. We're going
14	to walk through some of our technology, our design,
15	how we got to this point, what's the market that we're
16	targeting, why we created the product. And, as Mike
17	just mentioned, you know, we had a set of products
18	reactor products in our portfolio, and what sort
19	of differentiates eVinci from those existing products
20	that we have today.
21	All right. So, first and foremost, right,
22	so why are we, you know, designing this you know,
23	this technology for this market? And it is a very
24	different market than we have from our past large
25	centralized power facilities, like an AP1000, but we
	NEAL R. GROSS

(202) 234-4433

13 are seeing a lot of customers that are very interested 1 2 in different market sizes. 3 So, again, in our case, we're designing towards a 5 megawatt electric plant to really provide 4 a solution to some of the net zero carbon-free energy 5 6 solutions that customers are seeking and providing 7 energy security, energy resiliency, and really driving 8 that new nuclear demand in the market today. 9 So you can see on the screen a number of 10 our applications that we can deliver this technology 11 We're focused, again, on a land-based terrestrial to. 12 5 megawatt electric plant that primarily will provide electricity but is also capable of providing thermal 13 14 heat and thermal energy as well. 15 MEMBER BROWN: Can I ask a question? 16 MR. HALACKNA: Yes. 17 MEMBER BROWN: Why did you pick 5 megawatt 18 electric? 19 So we'll get into that in MR. HALACKNA: 20 a little bit, but there is --21 MEMBER BROWN: If you were going to do it 22 later, just wait. 23 MR. HALACKNA: -- but I think -- so, one, 24 I think it's the market differentiates ourselves, but 25 I think there is a number of constraints, for example,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

	14
1	around being able to passively remove decay heat in
2	terms of so there are some technical reasons in
3	addition to the market that we're seeking to deploy
4	to.
5	MEMBER BROWN: Thank you.
6	MEMBER PETTI: Question. How many units
7	do you anticipate on the previous slide, the market?
8	How big is the market? 50? 100? 300?
9	MR. HALACKNA: Good questions. I think
10	Mike, do you want to answer the market question?
11	MR. SHAQQO: Sure. The great question is
12	I would say we're really being guided by the recent
13	INL study, Idaho National Lab study, that was done about
14	a year and a half ago. And they are projecting this
15	market to be in the thousands in the thousands of
16	units of a 5 megawatt or equivalent type microreactors
17	to support and to decarbonize the market sector that
18	INL analyzed.
19	So that's really one of our key reference
20	points, so it's really in thousandths.
21	MEMBER BROWN: Is that worldwide or just
22	U.S.?
23	MR. SHAQQO: It's worldwide. It's
24	globally.
25	MEMBER BROWN: Okay.
	NEAL R. GROSS

	15
1	MR. SHAQQO: Right.
2	MR. HALACKNA: So, first, I'll start off
3	with what's really driving the technology of eVinci.
4	That's the heat pipe itself. So that's really the
5	technology that makes this unique. For us, it's a game
6	changer in terms of making the really, the reactor
7	coolant system, a passive system that's not dependent
8	on a force flow, single pressure boundary, reactor
9	coolant.
10	So heat pipes are, again, a passive thermal
11	transfer device, primarily functioning off of capillary
12	flow, and the difference in pressure and temperatures
13	in within the core to our primary heat exchanger.
14	So that really is what separates that, and we have
15	an array of heat pipes within the core, and that
16	what that enables us to do is those operate in a
17	sub-atmospheric pressure.
18	So that allows our core design also then
19	to be operating at just over atmospheric pressure, which
20	is a real game changer in terms of different failure
21	modes and effects that we have to analyze, all the
22	different design basis events and accidents that go
23	into the safety case for this reactor.
24	So it does very much follow sort of the
25	nuclear battery model. In essence, during normal
	NEAL R. GROSS

(202) 234-4433

	16
1	operation, there are no moving parts in the core outside
2	of the sodium within each heat pipe, and there is roughly
3	around 800 heat pipes in total within this reactor.
4	So that's really what separates us.
5	Again, it's the low pressure design where, again, as
6	much as possible there is nothing moving within our
7	core, and that really is what excites us about having
8	a solid state reactor that, again, can operate upwards
9	of eight years or more without refueling, and then,
10	again, like a battery can be taken back to the factory,
11	refueled and refurbished, and delivered again.
12	Go to the next slide.
13	All right. So just, really, where did this
14	technology come from? First, going back even before
15	what I have on the slide here, going back to the sixties,
16	heat pipe technology was invented out of Los Alamos
17	National Lab. Through the '80s, it was a big focus
18	of the space reactors. So whether it's SNAP 10A, SP-100
19	programs.
20	From there, Los Alamos and NASA most
21	famously worked on the Kilopower and the KRUSTY test,
22	and that's really when we started to work with Los Alamos
23	in a more commercializable sense on different
24	opportunities there, through the Department of Energy
25	in many cases, to further that technology and really
	NEAL R. GROSS

(202) 234-4433

	17
1	take it to the commercial market from the focus that
2	had been on space and defense applications.
3	So we've had several different awards
4	through the Office of Nuclear Energy and ARPA-E that
5	really led to us being able to progress the design and
6	do a lot of the yearly technology development within
7	this product, ultimately to show this is demonstrated
8	as a technology that we can take to market and is the
9	right technology readiness levels for us to pursue this
10	product in the licensing that we are currently in the
11	preapplication phase in.
12	So you can see some of our milestones there.
13	We completed we have an eVinci laboratory and test
14	facility just outside Pittsburgh, Pennsylvania. We
15	built our first heat pipes in 2020 and have built dozens
16	essentially every year since.
17	Sort of capstoning, we did an electrical
18	demonstration early in 2021. So, basically,
19	electrical silicon carbide heaters to simulate the fuel
20	temperature. So that reached an operating temperature
21	of 800 degrees Celsius, steady state operation. We're
22	continuing to expand upon that facility today to do
23	more transient and more thermal benchmarking of our
24	codes and analyses. And, again, a lot of compatibility
25	testing.
	NEAL R. GROSS

(202) 234-4433

	18
1	So I mentioned our work in fluidized sodium
2	within each heat pipe. So a lot of sodium compatibility
3	testing, material interactions, to demonstrate the
4	safety and longevity of this design.
5	So, and again, we've had a very robust
6	preapplication phase where we've submitted to date 24
7	technical White Papers as part of our preapplication
8	on a host of topics.
9	And then, lastly there, most importantly,
10	you know, we've built our prototypic heat pipe or what
11	we're planning as our nuclear test reactor that would
12	be demonstrated at Idaho National Lab that we're working
13	as part of the NRIC organization on.
14	So you can see just on the bottom there
15	a timeline as we've progressed, iterated on the early
16	design phases, the different concepts, continued to
17	mature the technology, the integration of these
18	systems, ultimately to the design that we're at today,
19	which is a transportable 5 megawatt electric reactor.
20	MEMBER BROWN: Another question?
21	MR. HALACKNA: Go for it.
22	MEMBER BROWN: You mentioned sodium.
23	Obviously, it's solid. Do you transport it in the solid
24	mode and then heat
25	MR. HALACKNA: Yes.
	NEAL R. GROSS

(202) 234-4433

	19
1	MEMBER BROWN: and then you heat it up
2	
3	MR. HALACKNA: Yep. Well
4	MEMBER BROWN: the reactor or without
5	the reactor?
6	MR. HALACKNA: So
7	MEMBER BROWN: Do you have to have an
8	independent system, is what I'm saying, to put
9	yourselves in service initially?
10	MR. HALACKNA: Right. So right now we
11	will start up without any external heaters.
12	MEMBER BROWN: If I say something that's
13	proprietary, tell me to be quiet.
14	MR. HALACKNA: No worries.
15	MEMBER BROWN: I'm trying to avoid that
16	after reading the paper.
17	MEMBER PETTI: I have a question. Why
18	sodium? Why not another liquid metal? Is there unique
19	about sodium that makes it better as a heat pipe than,
20	say, potassium or NaK or
21	MR. HALACKNA: Yeah. So it's really
22	it goes to the power level that we're seeking to get
23	at each heat pipe, which drives which operating
24	temperature we're in, which drives back to really the
25	liquid metal properties, right, between the viscosity
	NEAL R. GROSS

(202) 234-4433

	20
1	of each heat pipe, the working fluid, the surface
2	tension, so the different materials all drive to the
3	performance factors.
4	So you can look at a number of different
5	curves that analyze the sizing between your vapor and
6	liquid regions and your operating temperatures and
7	but also having all of those materials actually be
8	compatible to work together.
9	So it's a combination of those things that
10	we did robust sort of trade studies and parametric
11	studies to really find what is the highest TRL of our
12	materials, which ones interact with the rest of the
13	fuel and the core structure all together.
14	But sodium has sort of the best high power
15	properties. Once you go beyond that, you would go into,
16	let's say, something like lithium, which then really
17	requires a much higher temperature, which then takes
18	you back to some of the other core materials that would
19	be challenged.
20	There's a number of different options.
21	We focused on sodium because it has a pretty robust,
22	one, basis in terms (audio interference) designs.
23	CHAIR KIRCHNER: I think there's another
24	reason, too, and that's your power conversion system,
25	that you want a higher temperature and you would
	NEAL R. GROSS

(202) 234-4433

	21
1	MR. HALACKNA: Absolutely. Yeah. So,
2	and I'll touch on that in a slide or two. Yep.
3	All right. So what's our deployment
4	vision? We envision two different, basically, modes
5	of operation show on the screen here. One is your 5
6	megawatt electric output with some thermal heating as
7	well, basically reusing that waste heat. It is
8	open-air Brayton cycle power conversion.
9	And then the second one would be really
10	we're seeing some other interests in really just thermal
11	energy. There is a lot of industrial processes,
12	district heating, and others that need a high
13	temperature or a very large thermal energy that they
14	can't get today in a carbon-free solution.
15	So there is an opportunity for our
16	technology there to marry up against some of the
17	existing technologies and processes that industry is
18	using today for many of our products to deliver the
19	thermal energy that they need to move themselves into,
20	let's say, a carbon neutral or net zero state for their
21	company or facility or organization.
22	So, again, it's 15 megawatts thermal, 5
23	megawatts electric. Again, we're focused on right
24	sizing, you know, for us how many onsite personnel for
25	operations and maintenance, given that we are very
	NEAL R. GROSS

(202) 234-4433

	22
1	different from a large light water reactor technology.
2	And, really, for this design, it has been,
3	how do we take very, you know, mature technology but
4	integrate them into a combined system, such that we're
5	actually meeting the customer expectations, meeting
6	the costs that we need to to be competitive in this
7	mater, but also deliver something that actually builds
8	on the resiliency, the security, and the other
9	attributes, the transportability that we're looking
10	for for the features of this product.
11	So, and lastly there, the biggest one,
12	again, is for us avoiding any onsite cooling waters
13	or any other interaction, really minimizing the
14	environmental impact, such that we can easily deploy
15	and license these to a number of different sites.
16	MEMBER BROWN: So the sites probably won't
17	have normal power grid availability, so based on
18	looking at the report, it looked like you all were
19	talking about a micro grid locally that you all would
20	come along with this package. Is that is that
21	correct or
22	MR. HALACKNA: So I would say we envision
23	a number of different options. I think there could
24	be certainly normal grid-enabled sites where there is
25	an existing grid or an existing micro grid. Some of
	NEAL R. GROSS

(202) 234-4433

	23
1	the remote, let's say, mining or remote community
2	applications, though, may be on a micro grid where there
3	is hydro wind or solar as well. So we are designing
4	basically a micro grid interface system to deal with
5	any grid demand changes that will interface
6	MEMBER BROWN: So we're still you'll
7	stick with the 5 megawatt electric
8	MR. HALACKNA: Yes. Yep.
9	MEMBER BROWN: That's pretty small when
10	you connect it to a large
11	MR. HALACKNA: Yeah. So
12	MEMBER BROWN: really heavy-duty
13	utility grid.
14	MR. HALACKNA: Yes.
15	MEMBER BROWN: In terms of its, you know,
16	paralleling capacity and everything else that you're
17	so that's why I asked the question. So whether you
18	were going to be independent or not, so it's a mixed
19	bag in other words.
20	MR. HALACKNA: Yeah.
21	MEMBER BROWN: Okay. Thank you.
22	MEMBER MARCH-LEUBA: And on that, so I'm
23	sure he has thought about this not every one, but
24	you only usually have to run your I&C systems, the
25	protection system and monitoring communications, all
	NEAL R. GROSS

(202) 234-4433

	24
1	those.
2	Are you planning to bootstrap yourself or
3	have a listen button in there, or what are you thinking
4	about?
5	MR. HALACKNA: Yeah. So there certainly
6	is energy storage onsite for the safety systems to deal
7	with any number of design basis event conditions. So
8	that we'll get to that in part of the later slide
9	deck. We'll go through some of the I&C and electrical
10	that support the design basis.
11	MEMBER MARCH-LEUBA: I'm willing to wait.
12	MR. HALACKNA: Okay.
13	MEMBER BROWN: So am I.
14	MR. HALACKNA: All right. So, again, just
15	high-level overview of the design that we have, again,
16	the focus here for us is it's a TRISO-fueled reactor
17	with heat pipes to transfer heat from basically the
18	core there in the center of the picture via heat pipes
19	to a primary heat exchanger on the right side of the
20	screen.
21	As I mentioned, that's an open-air Brayton
22	cycle, so we have a sleeve basically over each heat
23	pipe, which then is that air is then cooled and taken
24	through the open-air Brayton cycle, which will be
25	adjacent basically area to the reactor.
	NEAL R. GROSS

(202) 234-4433

	25
1	Again, graphite moderator core structure
2	there. And just over one atmospheric pressure inside
3	the core.
4	Go to the next slide.
5	All right. So our focus has been, again,
6	simplicity, flexibility, transportability. We want
7	to design this with as simple of an architecture as
8	we can. One of the key initiatives for this design
9	is to load the fuel before we transport this to site,
10	such that we are transportable and we can deploy this
11	to any number of locations.
12	So it will be transported, and then on the
13	other side of the operation transported offsite for
14	storage and decommissioning.
15	Again, with the number of markets that I
16	showed on the first slide, there's a lot of non
17	traditional utilities today, non-traditional
18	applications, in which case we don't envision storing
19	spent fuel on those locations, in which case we would
20	take it back to a centralized storage facility, and
21	later for potentially refueling and refurbishment, and
22	then eventually for decommissioning.
23	And, again, with the open-air Brayton
24	cycle, both really as our ultimate heat sink, it is
25	really just the ambient air environment as well as our
	NEAL R. GROSS

(202) 234-4433

	26
1	normal power conversion system working fluid. So in
2	case of for us, we can flexibly deploy this to any
3	number of sites, have a very generic operating model
4	that can apply basically anywhere.
5	MEMBER HALNON: Well, I was going to say
6	a couple of times I've seen the nuclear battery
7	branding. Is that how you're going to brand this thing
8	is a nuclear battery? Because it's not intuitive to
9	the public to say it's a nuclear battery. I can just
10	pop in the remote control and start working, so
11	MR. HALACKNA: So I'd say we're still
12	this is still an eVinci micro reactor. It is still
13	a fission reactor in that sense, but that is the model
14	that we are driving towards is where the operations
15	really are and the system operates autonomously.
16	MEMBER HALNON: Okay.
17	MEMBER BROWN: Transportation. When you
18	look at existing fuels, at least the ones I'm familiar
19	with in the naval nuclear program, when you're
20	transporting stuff that's wrapped up like this, you've
21	got to meet a lot of rules like stay 300 feet off of
22	a bridge on sharp, pointed rocks, or
23	MR. HALACKNA: Yeah.
24	MEMBER BROWN: steel pillars. So
25	you're anticipating having to meet those transportation
	NEAL R. GROSS

(202) 234-4433

	27
1	goals
2	MR. HALACKNA: Exactly. Yep.
3	MEMBER BROWN: as well.
4	MR. HALACKNA: So what you see on the
5	screen here basically is a transportation cask that
6	will be designed to all of those regulations.
7	MEMBER BROWN: Okay. Thank you.
8	MEMBER BALLINGER: So you're not going to
9	take an exemption to Part 70?
10	MR. SCHOEDEL: So I'll weigh in. So this
11	is Anthony Schoedel. I'm the manager of Advanced
12	Reactors Licensing. So thanks, Mr. Chairman, and the
13	Committee, for having us here today.
14	So as we've communicated through some of
15	our White Papers, and focusing on the transportation
16	topic specifically, we are going to conform and comply
17	with Part 71 transportation requirements, and that
18	includes the allowance for transportation PRA, right,
19	where we would look at, say, things like the drop in
20	the testing that you're talking about, really
21	optimizing it for our design and making sure the
22	transportation PRA is part of that strategy.
23	So it's that will look a little
24	different, maybe from things that have historically
25	been in the past, but the end game is conform with Part
	NEAL R. GROSS

(202) 234-4433

	28
1	71.
2	MEMBER BALLINGER: So you'll be the first
3	to do that?
4	MR. SCHOEDEL: My understanding is that
5	we are going to we are going to be exploring territory
6	that is allowable but maybe not fully expressed in the
7	past.
8	MEMBER REMPE: So I'm not sure how much
9	of this can be said in the open session, and feel free
10	and I even saw a later slide where I was going to
11	bring it up, but I think I'll bring it up here.
12	I'm curious about the startup of not only
13	the first one but the second one and the switch out,
14	holding time, and how quickly you'll go because it
15	seems like you want to do some checkouts, in fact, I
16	think I saw that somewhere when you first bring it
17	onsite. And then you've got to plug it into something
18	and get the other one unplugged, and how quickly that
19	happens, and then there has got to be a follow on.
20	And can you talk about your whatever
21	you can say in the open session on that switch out and
22	
23	MR. HALACKNA: Yeah. So
24	MEMBER REMPE: time, et cetera.
25	MR. HALACKNA: Good question. So
	NEAL R. GROSS

(202) 234-4433

certainly we will walk through this a little bit in more detail later on today. But the overall architecture and design for each site is that we would switchover in a matter of days as we take -- after that first eight years of full power operation, we will shut down the primary reactor.

We will have already brought in our second reactor into an adjacent structure, and basically reusing the same architecture for I&C, electrical, power conversion, and all the rest of the site facilities and infrastructure we will switch over.

So you can see an example on the screen here. There is basically two pipes between the power conversion system and the heat exchanger attached to the reactor. Right? So those two pipes we will basically valve out and switch over at reactor number 2, and basically same with the cabling.

So we can then, after reactor number 1 is shut down, it will basically go into decommissioning, and we will wait until it cools down from a radiological perspective before it's transported offsite.

22 MEMBER REMPE: Any time that you have to 23 wait for the cooldown or you'd rather not say here? 24 MR. HALACKNA: So, yeah, we'll talk more 25 in the closed session, but mostly to meet the applicable

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

	30
1	design limits for the shielding that is part of the
2	transportation cask.
3	MEMBER MARCH-LEUBA: While we are talking
4	about this, there are two things that drive you to the
5	eight-year operating in my mind. One is, how much
6	uranium you can load into it. Another one is, how long
7	does your fuel last.
8	MR. HALACKNA: Mm-hmm.
9	MEMBER MARCH-LEUBA: Because I can
10	conceive of making a reactor has less reactivity and
11	more mass, allows six to 10 years. Taking this used
12	reactor out of the facility and transporting it
13	somewhere in the desert is going to be a significant
14	fraction of your cost.
15	MR. HALACKNA: Yes. So transportation,
16	the cask itself, obviously, it will be, let's say, one
17	cask for that can transport a number of reactors.
18	And, yes, so there are there are limits from the
19	fuel perspective, also from the reactivity control
20	systems between our control drums and shutdown rods
21	for their ability to maintain sufficient shutdown
22	margin as well.
23	MEMBER MARCH-LEUBA: And, again, feel free
24	to go to the proprietary session, but do you have
25	sufficient confidence in your fuel that it will last
	NEAL R. GROSS

(202) 234-4433

	31
1	for eight years?
2	MR. HALACKNA: Yes.
3	MEMBER MARCH-LEUBA: Do we have sufficient
4	data?
5	MR. HALACKNA: Yes. So we are leveraging,
6	certainly, the topical reports on TRISO fuel, and that
7	is one of the things that we will go into more detail
8	in the closed session.
9	MEMBER MARCH-LEUBA: You don't have
10	special flex shifts and inspection shifts as things
11	burn? But we can talk more later.
12	MR. HALACKNA: Yes.
13	MEMBER MARCH-LEUBA: But the question is,
14	do you have sufficient confidence that they will last.
15	And if it doesn't last, do we have enough I&C monitoring
16	to detect it?
17	MR. HALACKNA: Mm-hmm.
18	MEMBER MARCH-LEUBA: But keep that in mind
19	and hopefully answer later.
20	MR. HALACKNA: No. Thank you for the
21	comment.
22	All right. So I'll talk briefly on really
23	our development timeline that we have, where we started
24	the last really, 2021, 2022, focused on finishing
25	the conceptual design. That has been important really
	NEAL R. GROSS

(202) 234-4433

	32
1	to for us to be able to engage in a meaningful way
2	with the NRC staff having a fixed design that allows
3	us to do a lot more analysis and testing and provide
4	that data into the technical White Papers that I
5	mentioned earlier.
6	Again, our electrical demonstration unit,
7	which we will talk about more in our closed session.
8	And again, also, something we've been doing is meeting
9	both in the preapplication phase with both the U.S.
10	and Canadian regulators. So we'll talk about our
11	nuclear test reactor. That's the NTR. We've started
12	to really design that already, and that's a big focus
13	for us in the year 2023.
14	A number of the things we've done in the
15	past, too, is really integrated manufacturing
16	demonstrations, so not just testing but also how do
17	we scale up and validate the supply chain and the
18	capabilities to meet our design parameters that we're
19	putting in in terms of the materials, material
20	properties, impurities, and just be able to meet the
21	challenging configurations that we have with this
22	reactor design.
23	Again, a lot of I mentioned before, a
24	lot of separate effects tests in terms of materials,
25	material interactions. We are operating a high
	NEAL R. GROSS

(202) 234-4433

	33
1	temperature, so that does that drives a lot of the
2	testing that we've been doing in addition to that
3	material interaction.
4	And, again, as we look at '24, we have some
5	criticality testing planned, as well as irradiation
6	testing ongoing again in the future, and then we always
7	continue to challenge ourselves in terms of that
8	manufacturing, assembly, design for value, all those
9	different attributes to make sure that we're achieving
10	our market and product requirements.
11	And then, again
12	MEMBER MARCH-LEUBA: Criticality testing
13	is going to be prototypical or just collecting data
14	to evaluate your method?
15	MR. HALACKNA: Sorry. Can you repeat
16	MEMBER MARCH-LEUBA: Criticality testing,
17	is it going to be a prototypical geometry or just going
18	to collect data to evaluate your method?
19	MR. HALACKNA: So, do you want to take
20	that?
21	MR. SCHOEDEL: Yeah. So I think you'll
22	see when we get into the closed portion of the discussion
23	we're going to have a lot of discussion around testing,
24	overall test program, including criticality testing.
25	Ultimately, the testing that we're doing,
	NEAL R. GROSS

(202) 234-4433

	34
1	whether you call it single effects or integral-type
2	tests, are all going to end up supporting in some
3	fashion, you know, V&V of our analysis code suite and
4	ultimately support our licensing case.
5	Yeah. This is Anthony Schoedel with
6	Westinghouse licensing.
7	MR. HALACKNA: All right. Joe Halackna,
8	Westinghouse. So just on the bottom of the slide there
9	you can see our licensing timelines as well, so we're
10	currently in the again, the preapplication,
11	prelicensing phase. We'll get into some of our future
12	submittals that we're planning there in the topicals
13	in later slides.
14	And, again, from there we'll plan to
15	eventually, in 2024, submit our design license
16	application and move through in the '25 to '27 timeline
17	our design certification.
18	In parallel, we have initiated various
19	discussions. We'll talk about vendor design review
20	with the Canadian Nuclear Safety Commission as well
21	as some joint reviews between the NRC and the CNSC as
22	well.
23	Go to the next slide.
24	I mentioned the test reactor. It is a 3
25	megawatt thermal reactor, so that's one-fifth power
	NEAL R. GROSS

(202) 234-4433

	35
1	scale. In our design, we refer to it as a unit cell.
2	We also think of it as a fuel assembly.
3	Basically, it's the same design in that
4	terms, but a lot less fuel assemblies or unit cells
5	are in the designs with much lower power, not shorter
6	axial length for the core, so enough of the design that
7	we can validate our key attributes and our key
8	performance and safety of the plant, but it's not a
9	full-scale reactor.
10	But we're targeting this to achieve a lot
11	of the integrated safety analysis that we really need
12	for the plant, and really use that as part of our design
13	certification process to close out any of the testing
14	that we need from our PIRTs and our other safety analysis
15	needs.
16	MEMBER REMPE: So it looks like you're
17	putting this in the EBR-I or, excuse me, II
18	containment, right? That looks like an Idaho picture.
19	It doesn't require any interactions with the NRC, but
20	I would hope that they are cognizant and this activity
21	is well coordinated, so you can address things that
22	would come up in the future. Could you talk about that
23	interaction a bit?
24	MR.SCHOEDEL: Mm-hmm. So this is Anthony
25	Schoedel, Westinghouse licensing. So spot on, yes.
	NEAL R. GROSS

(202) 234-4433

	36
1	So this is being it's intended to go into EBR-II
2	dome at INL with DOE authorization as part of that
3	process.
4	As part of the DOE authorization process
5	and the development of those application documents,
6	we're engaging with DOE and INL team and NRIC team to
7	make sure that there is, you know, access, availability
8	for both U.S. NRC and CNSC in Canada to be apprised
9	of what's going on with that test facility and making
10	sure also through our integrated test plan that we're
11	capturing through preapplication engagements, you
12	know, that this test amongst the suite of the rest of
13	our tests are going to accomplish the full gamut of
14	what's needed for licensing for eVinci micro reactor
15	in both countries.
16	So, yes, the allowance is there and that
17	coordination has been going on.
18	MEMBER REMPE: Thank you.
19	MEMBER PETTI: Just a question, smaller
20	one. Will you have the capability to measure the
21	radioactive contents of the gas, the air?
22	MR. HALACKNA: So this is Joe Halackna.
23	So we'll I think we'll get into
24	MEMBER PETTI: The helium that's in the
25	
	NEAL R. GROSS

(202) 234-4433

37 1 MR. HALACKNA: Within the core or within 2 the --3 MEMBER PETTI: The core. MR. HALACKNA: -- EBR-II dome? 4 MEMBER PETTI: No. Within the core. 5 6 MR. HALACKNA: Okay. 7 MEMBER PETTI: The helium. I'm just 8 talking about the fuel, okay? HEI program, the EPRI topical, fuel never went beyond two years of radiation. 9 10 You know, eight years is a long time. you're running 11 it at a derated power relative to that. 12 You know, my personal opinion is that it's 13 probably going to survive. The problem is, there's 14 no data behind that. That's just sort of an educated 15 guess. And there's enough bad data historically that 16 could scare people who don't, you know, appreciate the 17 full landscape of TRISO fuel. And so one way to do 18 that is if you monitor the content of the helium, if 19 you feel particles, you'll know. You'll see increases 20 in noble gases. 21 And it's not a difficult thing, but it's 22 just something that if you have it, it provides some 23 assurance. 24 MR. HALACKNA: Yeah. So I think we 25 understand the comment in particular, and I think in **NEAL R. GROSS**

COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200

WASHINGTON, D.C. 20009-4309

(202) 234-4433

	38
1	a closed session we'll have some slides that address
2	that question. Yeah.
3	MR. SCHOEDEL: This is Anthony Schoedel
4	with Westinghouse licensing. So this slide Joe has
5	done a good job at explaining, you know, what are some
6	of the different aspects of eVinci micro reactor and
7	maybe what's new and novel about it. This slide is
8	a great representation of maybe the full picture or,
9	you know, beginning to end on what is what's new
10	with eVinci, particularly around how it's deployed,
11	right, and how is it brought to market and operating,
12	right?
13	So you kind of work these in order, you
14	know, left to right, one through eight. But starting
15	with item 1 there, that's the test reactor that we were
16	just discussing, really. So what we're trying to show
17	here on this slide is you pick up with what we would
18	consider our pinnacle or the final integrated nuclear
19	test for eVinci micro reactor that supports the design
20	certification. Right?
21	So when we say, in step 2, eVinci licensing
22	approval, what we're really talking about there is,
23	you know, we have submitted a design certification
24	application under Part 52, and we're going to close
25	out any analysis, testing, and V&V ultimately to
	NEAL R. GROSS

(202) 234-4433

	39
1	complete that application and get certification.
2	That transitions, then, into the dotted
3	line or the dotted box area where we really focus on,
4	how is eVinci manufactured and delivered and brought
5	into brought into fruition, right?
6	So Joe has talked about, you know, this
7	is going to be assembled, manufactured, fueled, and
8	then transported to the operating site. So you see
9	that in items 3, 4. Primarily, you can transport this
10	via rail, barge, or truck.
11	It will operate, then, for a period of,
12	you know, the design lifetime. We'll say eight years
13	of effective full power lifetime, with remote
14	monitoring capability. I would like to differentiate
15	that that's remote monitoring and not remote operation
16	or control, right? So it's remote monitoring
17	capability.
18	And then, finally, on the back end is, you
19	know, we we're not going to deal with onsite handling
20	of spent fuel. We're not going to do onsite refueling
21	as part of this vision and the strategy. It's going
22	to be taken away in the transportation canister that
23	Joe talked on earlier. That canister would be designed
24	for the limiting case, being the spent case after
25	operation, and then it's taken back to an interim
	NEAL R. GROSS

(202) 234-4433

	40
1	storage facility where it would it would reside until
2	deep geologic disposal is available.
3	So that's soup to nuts how eVinci is tested,
4	made, and delivered. So any questions on this before
5	the next slide?
6	MEMBER HALNON: Yeah. You mentioned and
7	emphasized remote monitoring, remote operation. Joe,
8	you mentioned autonomous operation. I assume that in
9	closed session we're going to get talk about the
10	difference between those two and the nuclear battery
11	versus the nuclear reactor.
12	MR. HALACKNA: Yeah. And those are two
13	separate systems in that sense, too.
14	MEMBER HALNON: Yeah. So let's not I
15	want to make sure we understand the role of the operator
16	on this thing.
17	MEMBER PETTI: So just a question on the
18	defueling. If you how long is the coil again,
19	axially?
20	MR. HALACKNA: Approximately 10 feet.
21	MEMBER PETTI: The defueling machine is
22	not something to overlook. Okay? You know, the one
23	that we use in Fort St. Vrain is long gone. That was
24	on top vertical. Horizontal defueling is going to be
25	a challenge.
	NEAL R. GROSS

(202) 234-4433

	41
1	MR. HALACKNA: So Joe Halackna,
2	Westinghouse. I'll just say that is one of the things
3	we have already been working on is cooling associated
4	with all of this deployment model. We have several
5	demonstrations underway to demonstrate that exact
6	process.
7	MR. SCHOEDEL: Thanks. Anthony Schoedel
8	with Westinghouse. So we've talked a number of times
9	here in the discussion about the preapplication
10	engagement. So a lot of thanks to Mr. Wentzel and NRR,
11	NMSS, over the past year plus. We're supporting a
12	volume of White Papers that in the Westinghouse
13	design and engineering and licensing team have put
14	together referencing the White Paper that Mr. Wentzel
15	talked about at his opening remarks, and the value of
16	preapplication engagement really as we go through
17	design development, and in the early stages of licensing
18	this new this new micro reactor technology.
19	So you see here, you know, that we listed
20	the 24 that have been submitted between 2021 and 2022.
21	Those are available, you know, for NRC staff and
22	through ADAMS. We've had a number of dialogues with
23	them on, you know, I'll call it like post-submittal
24	discussions where we've solicited, you know,

observations and feedback, making sure we clearly

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1716 14th STREET, N.W., SUITE 200 WASHINGTON, D.C. 20009-4309

(202) 234-4433

25

	42
1	understand, you know, where we need to, you know,
2	continue to progress in some of some of the more
3	challenging issues on the eVinci deployment.
4	And that's being taken back and funneled
5	into our design organization and making sure that the
6	feedback and the observations are being captured and
7	informing the design development to set up a smooth
8	and streamlined license application process, like Mr.
9	Wentzel indicated, from the staff's White Paper.
10	You can see there is more coming in 2023,
11	and these White Papers then are a stepping stone to
12	more formal submittals, topical reports, coming in 2023
13	and beyond, and then setting up the design cert
14	application, like Joe said, end of '24, early 2025.
15	So we'll have some more discussion
16	specifically around topical reports and some of the
17	other licensing strategy in the closed session of the
18	discussion, but I just wanted to highlight the good
19	engagements and the robustness of the preapplication
20	from this Westinghouse team to date.
21	MEMBER MARCH-LEUBA: I wanted to make a
22	comment, not a question, about I like that number
23	30, cybersecurity, that you are thinking about it before
24	you start, because if you follow the news, I mean, if
25	what I get in you had to scale to this because
	NEAL R. GROSS

(202) 234-4433

	43
1	you didn't know enough. You're talking about more
2	monitoring, autonomous operation. Cybersecurity is
3	number one.
4	MEMBER HALNON: So, you guys, this is
5	great. You've got a lot of good information there.
6	If we wanted to look at those, would they reflect a
7	revision to the NRC comments you have had during your
8	interaction, or is that going to be reflected in the
9	topical reports down the road?
10	MR. SCHOEDEL: Yes. So Anthony Schoedel,
11	Westinghouse licensing. So these are the submittals
12	themselves. They will not reflect any revision from
13	NRC comments and feedback. The reflection of that is
14	going to go directly into either the follow-on topical
15	reports themselves or directly into the license
16	applications.
17	MEMBER HALNON: Okay. So if we wanted to
18	get like the picture of number 15, EPZ Sizing
19	Methodology no specific reason why I chose that
20	but is there a record of the NRC comments back and forth
21	between you all? Is it, you know
22	MR. SCHOEDEL: Yes. Great question.
23	Anthony Schoedel, Westinghouse licensing. So that
24	there is a record. Westinghouse has a preapplication
25	docket with NRC, and that's available on NRC's website.
	NEAL R. GROSS

(202) 234-4433

	44
1	And every paper that Westinghouse has submitted and
2	the NRC written feedback provided back to Westinghouse
3	is available with an added succession number.
4	Largely, the contents are proprietary, so
5	the links will take you to, you know, those statements.
6	But they are available on ADAMS.
7	MEMBER HALNON: All right. So if we have
8	a specific issue with one of them, we can certainly
9	run that around pretty easily. All right. Thank you.
10	MR. SHAQQO: Greg, we have them all
11	uploaded on SharePoint.
12	MEMBER HALNON: All the record is? Both
13	the White Paper and the NRC comments?
14	MR. SHAQQO: Yes.
15	MEMBER HALNON: Okay. Good.
16	MR. SHAQQO: Thanks to Donna.
17	MEMBER HALNON: Thank you.
18	MEMBER BROWN: Can you go back to your
19	slide 11?
20	MR. SCHOEDEL: Yes.
21	MEMBER BROWN: Next previous one, the one
22	on NTR. Yeah. The one before that, excuse me. Yeah.
23	Looking at that last block it says design
24	fully received, regulatory licensing approval. Is
25	that for installing in some remote mining location or
	NEAL R. GROSS

(202) 234-4433

	45
1	is that the NTR design? I mean, that's '27, so that's
2	three and a half years from now, or four years.
3	MR. SCHOEDEL: Yeah. So Anthony
4	Schoedel, Westinghouse licensing. That's primarily
5	referring to the design certification application.
6	MEMBER BROWN: So installing it's
7	commercial unit delivery and operation
8	MR. SCHOEDEL: Right. That's
9	MEMBER BROWN: It would be pretty helpful
10	if I had my mic on. I apologize for that.
11	MR. SCHOEDEL: So that would be covered
12	by the plusses you indicated, but the initial the
13	initial approval here would be the design cert
14	application. So it sets up the rest of the dotted line
15	deployment model licensing activities.
16	MEMBER BROWN: So that's done in '27 or
17	so.
18	MR. SCHOEDEL: Right. The vision is
19	starting to submit the design cert application in the
20	end of '24, early '25 timeframe, like we've discussed.
21	And then there is a you know, a multi-year review
22	period there consistent with what Mr. Wentzel said in
23	his remarks, and that all builds off of the White Paper
24	engagement, the topical reports that we're going to
25	talk to in the closed session, too, a bit, and you're
	NEAL R. GROSS

(202) 234-4433

	46
1	taking the feedback, you're making sure that the license
2	application builds off of this engagement.
3	MEMBER BROWN: Okay. Thank you. Just
4	trying to connect the dots between the words and the
5	box. That's all.
6	MEMBER MARCH-LEUBA: Yeah. But doing
7	some advertising here. As opposed to light water
8	larger light water reactors, you would expect
9	construction of one such facility to be in months, not
10	weeks, timeframe, right?
11	MR. SCHOEDEL: Correct.
12	MEMBER BALLINGER: I tried to go through
13	all of these documents, and there are so many of them
14	I'm sure I missed some. Probably missed a lot. But
15	if you ship one of these things up to Timmons, who owns
16	the license, the customer or you?
17	MR. SCHOEDEL: Anthony Schoedel with
18	Westinghouse licensing. So I think that's something
19	that we will be giving some more detail when we get
20	into the closed session. But there is going to be
21	handshakes and license transfers as part of the
22	deployment model.
23	MR. HALACKNA: Yeah. So Joe Halackna,
24	Westinghouse. So, again, to really deliver this
25	technology right, you need partners. We couldn't do
	NEAL R. GROSS

(202) 234-4433

	47
1	this simply by ourselves, whether it's the NTR
2	delivering out at Idaho National Lab.
3	We do have some early adopters that we're
4	working with, including Penn State and Saskatchewan
5	Research Council, design partners, highly leveraged,
6	again, our partner, Brayton Energy, in terms of
7	delivering this power conversion system, which is,
8	obviously, different than a lot of the light water
9	reactor technologies on secondary side there.
10	And, again, all of the national labs that
11	have contributed to a number of the different materials,
12	heat pipes, fuel, all of the different things that would
13	have made up this micro reactor, and, again, a lot of
14	the material that development for our high temperature
15	regime that we're operating in.
16	So you can see a number of our partners
17	on the screen there that we've been very successful
18	in working with in order to deliver this very important
19	technology and product.
20	MEMBER BALLINGER: Have you actually
21	visited Brayton Energy?
22	MR. HALACKNA: Yes.
23	MEMBER BALLINGER: Okay.
24	MR. HALACKNA: Yes. Sorry?
25	MEMBER BALLINGER: The seafood is nice.
	NEAL R. GROSS

	48
1	MR. HALACKNA: All right. Yeah. So I
2	think we just want to close out with saying, again,
3	thank you. This is for the opportunity today to
4	present the work we've been doing in the preapplication
5	phase with the NRC.
6	We've had it has been a great opportunity
7	to collaborate and work with them at this phase of where
8	we are, and we look forward to, again, progressing this
9	design, and ultimately working through the licensing
10	process.
11	Anthony, any
12	MR.SCHOEDEL: No. Just, again, thank you
13	to Mr. Chairman, to the ACRS Committee here for taking
14	the time today, and thank you to NRC for the dialogue.
15	CHAIR KIRCHNER: Okay. Well, thank you,
16	Joseph and Anthony. And thanks for your comments.
17	Members, further questions for this
18	session?
19	To our members out there, Vesna and Vicki,
20	and our consultants?
21	MEMBER DIMITRIJEVIC: Hi. Yes, Walt.
22	This is Vesna. In this the White Paper schedule
23	that is the four or five of them coming in March,
24	I just want to check with Chris, will they be made
25	available for us immediately when they receive them
	NEAL R. GROSS

(202) 234-4433

	49
1	in March?
2	MR. BROWN: I'm going to ask Donna to
3	comment on that. Donna Williams.
4	MS. WILLIAMS: Yes. We can certainly
5	share the incoming White Papers and then our feedback
6	once it's issued.
7	MEMBER DIMITRIJEVIC: All right. Thank
8	you.
9	So just what are coming on the PRA, you
10	know, programs and schedules, so I'm looking forward
11	to see that.
12	CHAIR KIRCHNER: Thank you, Vesna.
13	Others?
14	If we have no further comments, then we
15	need to turn to the public. And at this time, if there
16	are any members on the line or in the room here who
17	wish to make a comment, please identify yourself, and
18	affiliation if appropriate, and please make your
19	comment.
20	Using a long pause of 15 seconds, but I'm
21	not hearing anyone out there wishing to make a comment.
22	Okay. With that, we will close this open
23	session and return on a closed Teams link. We will
24	take time for Chris, our Designated Federal Official,
25	and NRC staff I think Donna Crawford to help with
	NEAL R. GROSS

(202) 234-4433

	50
1	Westinghouse's assistance I think that's you,
2	Anthony to check who is on the closed session.
3	So we will to allow time to do that,
4	I think we should take a 15-minute break, and we will
5	return at
6	MEMBER BROWN: 2:10.
7	CHAIR KIRCHNER: No, that's not enough.
8	MEMBER BROWN: 3:10.
9	CHAIR KIRCHNER: No. Let us return at
10	2:20 Eastern Time.
11	Thank you for all that help. We will
12	reconvene at 2:20. Thank you.
13	(Whereupon, the above-entitled matter went
14	off the record at 1:55 p.m.)
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	NEAL R. GROSS

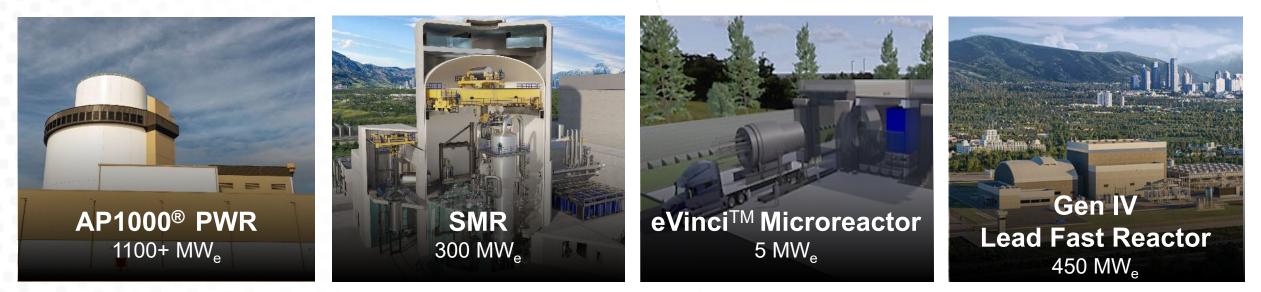
EVR_LTR_230041 Enclosure 2

WAAP-12580, Revision 0 "eVinci Microreactor Overview – Non-Proprietary Open Presentation" (Non-Proprietary)

Westinghouse Electric Company 1000 Westinghouse Drive Cranberry Township, PA 16066 © 2023 Westinghouse Electric Company LLC All Rights Reserved

eVinci[™] Microreactor

The eVinci microreactor is a next-generation energy source for delivering clean & reliable energy for the 21st century


Design & Development Program

Joseph Halackna, Deputy Director Alex Harkness, Chief Engineer Anthony Schoedel, Advanced Reactor Licensing Manager

eVinci and **AP1000 are** trademarks or registered trademarks of Westinghouse Electric Company LLC, its affiliates and/or its subsidiaries in the United States of America and may be registered in other countries throughout the world. All rights reserved. Unauthorized use is strictly prohibited. Other names may be trademarks of their respective owners.

Shaping Today's and Tomorrow's Energy

A Portfolio of Innovative Solutions

Our reactors can also deliver these beyond-electricity benefits:

Long-Duration Energy Storage

Hydrogen Generation and Process Heat

Radioisotope Production

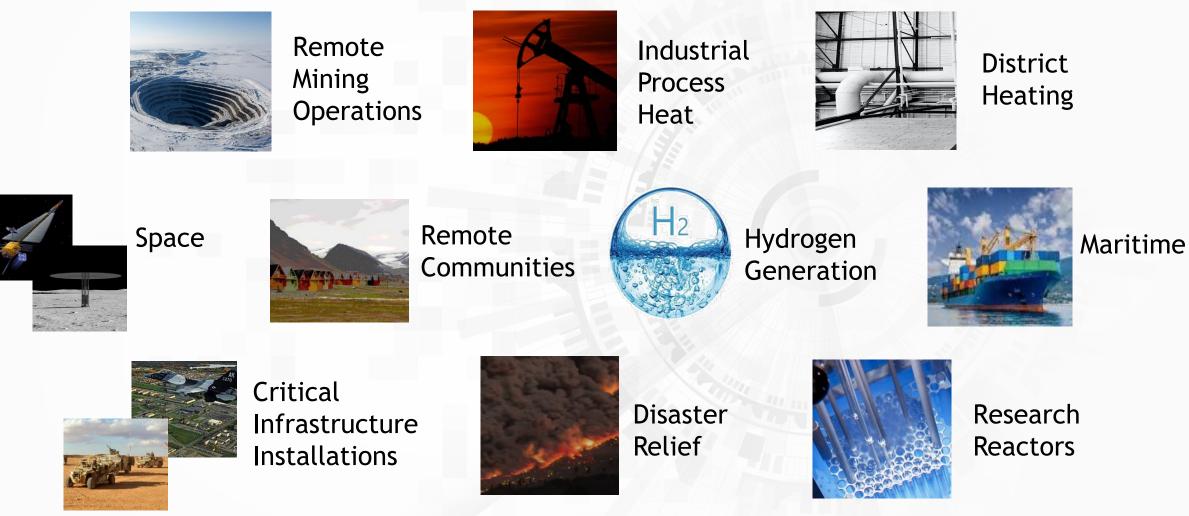
Complementary Clean Energy Products to Serve the Needs of Diverse Global Customers **Fuel Cycle Closure**

Westinghouse

Agenda February 28, 2023

- New Nuclear Market & Applications
- Heat Pipes & eVinci Microreactor
- Development History
- Deployment Vision
- Design Attributes
- Transportable Nuclear Battery
- Technology Timeline

lestinghouse


- Nuclear Test Reactor for eVinci Microreactor
- Deployment Model with Current Regulations
- Current Status on Pre-licensing with US NRC

Simplicity is the ultimate sophistication.

- leonardo da Vinci

The Market and Applications for New Nuclear

Clean, Carbon-Free Energy Solutions and Energy Security are Driving New Nuclear Demand

Westinghouse

Heat Pipes: An Innovative, Elegant Game Changer

Heat pipe technology shouldn't be new to you. Chances are you've carried "heat pipes" around with you for years as heatspread devices in your mobile phone or other electronics.

Heat pipe technology has been applied for the past 50 to 60 years with millions of operating hours in industries that need passive and simple designs. Westinghouse engineers have taken that concept and applied it to nuclear energy.

What does that mean?

Heat pipes enable high-temperature, passive-heat transfer, eliminating the complexity of a forced-flow reactor coolant system, so no pumps or valves needed. Operated by capillary forces, heat pipes eliminate the need for high-pressure operation.

Few moving parts and low pressures make heat pipe systems highly reliable while requiring very little maintenance.

In the end, that's the game-changer.

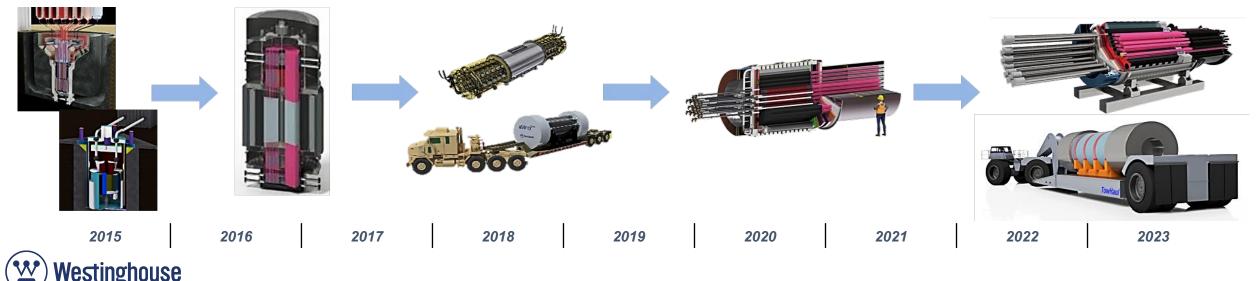
eVinci Microreactor: The Real Nuclear Battery

Batteries — as we all know them — are pretty simple devices, requiring no moving parts to discharge their energy, powering a multitude of everyday devices for various lengths of time.

What if we applied that concept to nuclear energy?

That's what Westinghouse has achieved with the eVinci microreactor: a nuclear battery.

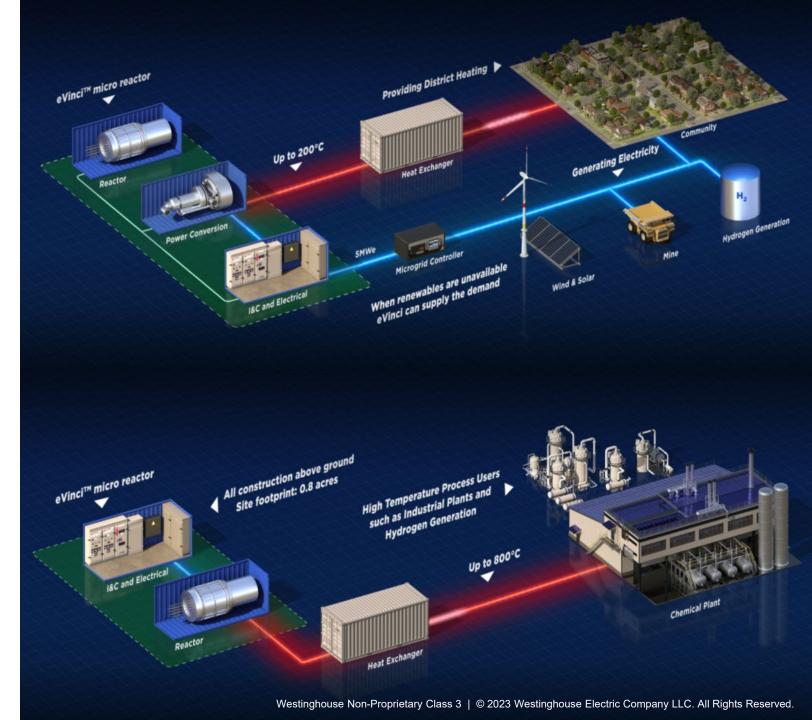
Like a battery, the eVinci microreactor has a simple design with no moving parts or pumps for coolant. Like a battery, the eVinci microreactor can supply its power 24/7/365. But unlike most batteries we know, the eVinci microreactor can do this without recharging (refueling) for eight years or more.


The game has changed.

eVinci Microreactor – Developed from Decades of Research

Background & development to date

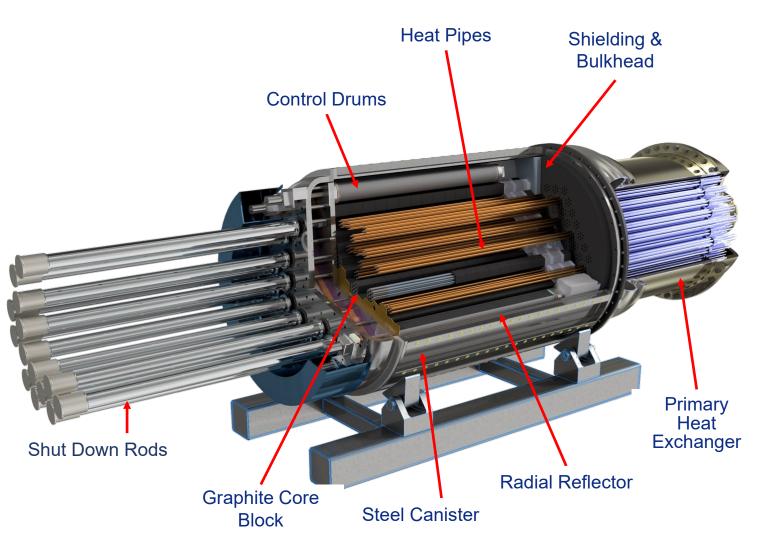
- 1980s to 2000 heat pipe reactors developed for space due to simplicity, small size & passive cooling
- 2000 to 2015 national laboratory led materials and reactor design development research
- 2015 Westinghouse began development of heat pipe & microreactor concepts
- 2018 DOE/NASA demonstration of 5kW heat pipe reactor (KRUSTY) & technology commercialization fund initiated between Westinghouse & LANL
- 2020 completed construction of eVinci test facility & manufactured first sodium heat pipe
- 2021 electrical demonstration of heat pipe core assembly at operating temperature
- 2022 material compatibility testing & conceptual design completed; technical white papers & first topical reports delivered to US NRC; produced first heat pipe for design of Nuclear Test Reactor (NTR)



Deployment Vision

Nuclear battery designed for safe and reliable electricity and heat

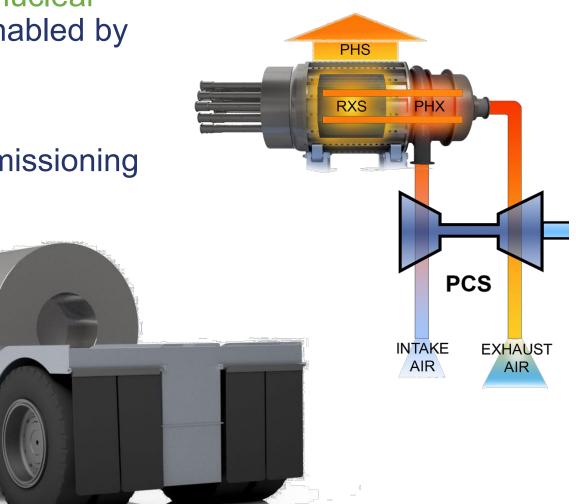
- 15 MWt reactor with 8+ year refuel cycle
- Effective cogeneration nuclear battery
- Transportable for ease of installation & elimination of spent fuel storage on site
- Cost-competitive plant lifecycle
- Minimal onsite personnel for O&M
- Mature technology, manufacturing, and regulatory readiness
- High speed load following capability
- Versatile and flexible open-air Brayton power conversion
- No onsite cooling water required


stinghouse

The eVinci Microreactor

Safety through passive heat pipe technology, enabling a very low-pressure reactor

eVinci
15 MWt
8 years
TRISO (19.75%)
Heat Pipes
~1 atm
Graphite
Open-Air Brayton
34%
Radial Conduction

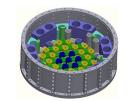


Designed for Simplicity, Flexibility & Transportability

TowHau

The eVinci microreactor is a transportable nuclear battery with a simple design architecture enabled by passive, low pressure heat pipes

- Fuel load before transport
- Transported off-site for storage & decommissioning
- Flexibly deployed



eVinci Microreactor – Technology Development & Timeline

Leading the way in advanced reactor development and commercialization

- Conceptual design complete
- Electrical demonstration unit operational
- Initiated licensing engagement with US

- NTR design for procurement
- Integrated manufacturing demonstrations and prototyping
- Senarate effect and

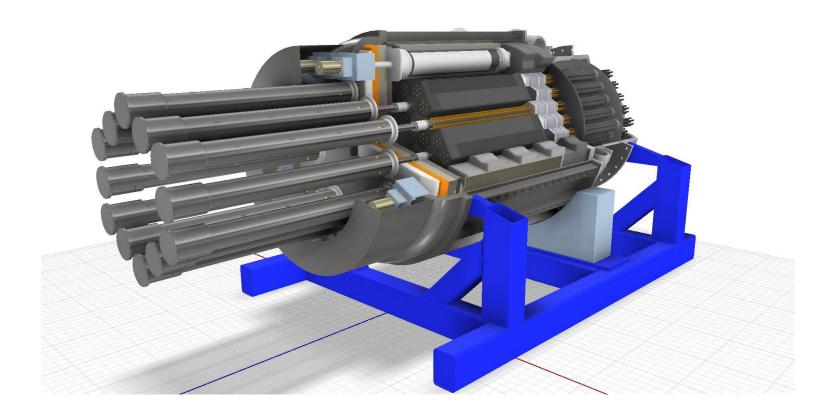
- NTR component fabrication
- Criticality, transient and irradiation testing
- Design for value, manufacturing

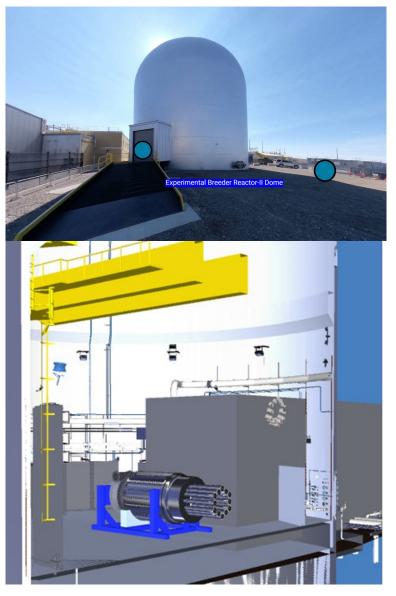
- NTR assembly and operation
- Analysis code validation
- Initiate eVinci Unit 1 manufacturing
- 5 MMa non nuclear

- Design complete
- Receive regulatory licensing approvals
- Commercial unit delivery and operation

	a	nd Canadian egulators		nent testing	& a	assembly	р	ower conversion est			
		2021-2022	2	023		2024		2025-2026	2027+		
Licensing		US NRC pre-licensing engagement (Technical papers & Topical report submittals)				Prepare & submit design license to NRC		NRC review & approve design certification			
5		Canadian Nuclear Safety Commission (CNSC) vendor design review									
				Oth	er coui	ntries' licensing ac	tivities	5			
			I Contraction of the second seco		1		I				

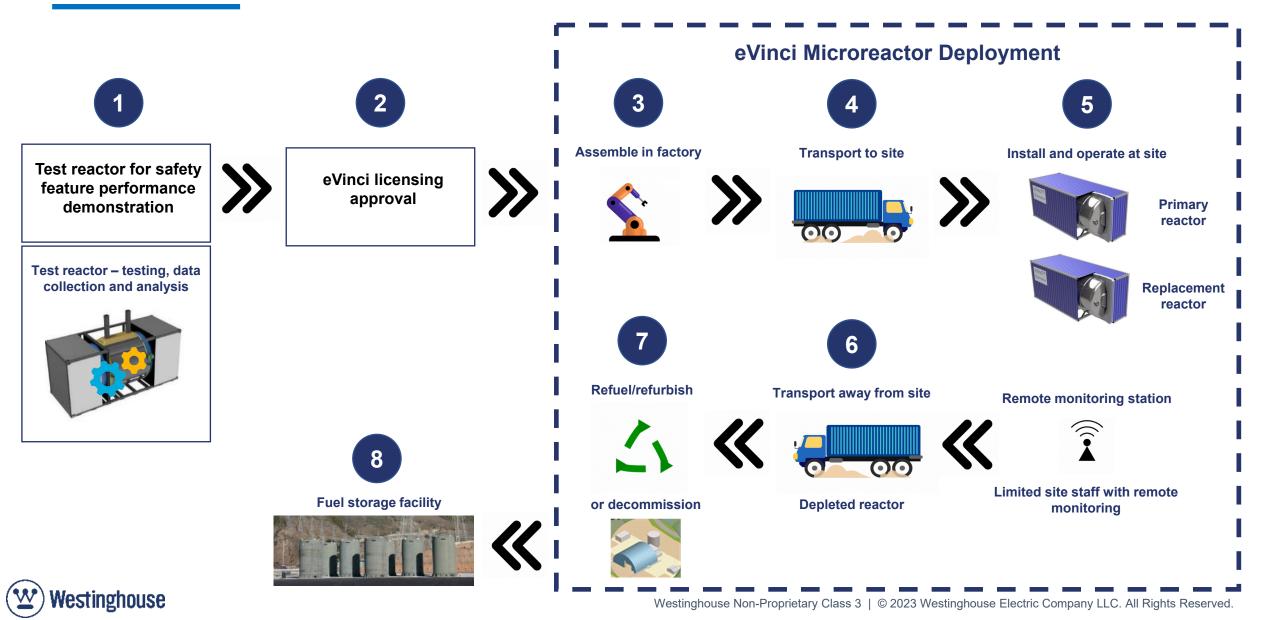
Technology


Development


and

Manufacturing

Nuclear Test Reactor for the eVinci Microreactor


- 3 MWt Reactor System
- Reactor system, reactivity control systems, heat exchanger, and targeted I&C

A New Deployment Model Within Current Regulations

Licensing Progress with US NRC

Current Status: https://www.nrc.gov/reactors/new-reactors/advanced/licensing-activities/pre-application-activities/evinci.html

#	Торіс	Submittal Wave	#	Торіс	Submittal Wave	#	Торіс	Submittal Wave
1	Facility Level Design Description	Submitted - 1	13	Advanced Logic System [®] (ALS) v2	Submitted - 3	25	Inservice Inspection Program/Inservice Testing Program	5 (March 23)
2	Principal Design Criteria	Submitted - 1	14	Component Qualification	Submitted- 3	26	Post-Accident Monitoring System	5 (March 23)
3	Safety and Accident Analysis Methodologies	Submitted - 1	15	EPZ Sizing Methodology	Submitted - 3	27	Equipment Qualification	5 (March 23)
4	LMP Implementation	Submitted - 1	16	Physical Security	Submitted - 3	28	PRA Program Strategy	5 (March 23)
5	Regulatory Analysis	Submitted - 2	17	Heat Pipe Design, Qualification, and Testing	Submitted - 3	29	Fire Protection	5 (March 23)
6	Deployment Model	Submitted - 2	18	Nuclear Design	Submitted - 3	30	Cyber Security	5 (March 23)
7	Safeguards Information Plan	Submitted - 2	19	U.S Transportation Strategy	Submitted - 3	31	Radiation Protection and Contamination Methodology	6 (Q2 23)
8	Test and Analysis Process	Submitted - 2	20	Phenomena Identification and Ranking Table (PIRT)	Submitted - 4			
9	Functional Containment and Mechanistic Source Term	Submitted - 2	21	Integral Effects and Transient Testing	Submitted - 4			
10	Composite Material Qualification and Testing	Submitted - 2	22	Refueling and Decommissioning	Submitted - 4			
11	Fuel Qualification and Testing	Submitted - 3	23	Seismic Methodology	Submitted - 4			
12	Code Qualification	Submitted - 3	24	Operations and Remote Monitoring	Submitted - 4			

Partnerships and Customers

Early Adopters

- Penn State University developing research reactor project
- Saskatchewan Research Council developing commercial reactor project

Key Design and Development Partnerships

- Brayton Energy Power conversion system design
- Aerojet Rocketdyne Fission Surface Power
- LANL, INL PNNL and ORNL
- Penn State University R&D support
- MIT Material irradiation testing

University of Pittsburgh

Idaho National Laborator

Thank You!

www.westinghousenuclear.com

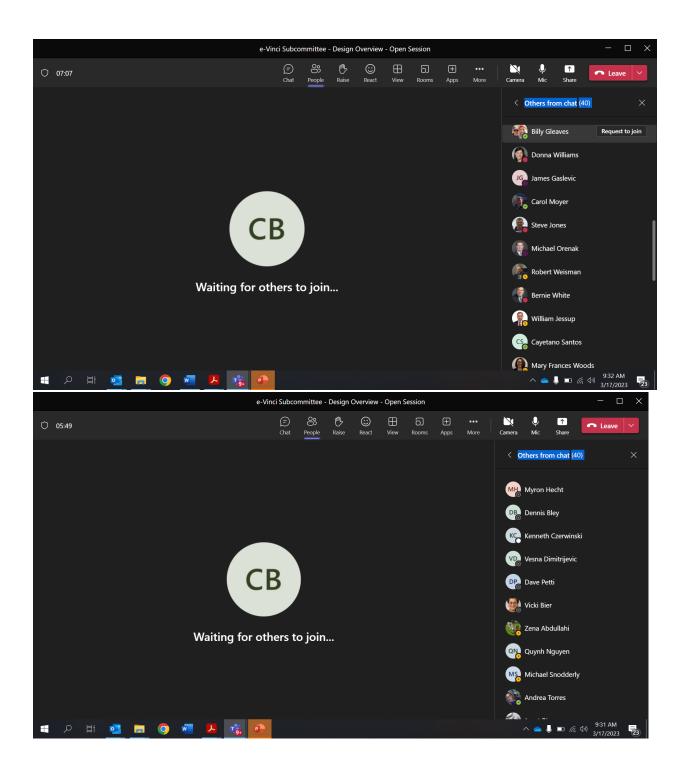
See our Navigator for more information on the eVinci microreactor and all Westinghouse technology

https://navigator-voyantstudios.com/

) Westinghouse in Westinghouse Electric Company Westinghouse **Y %** @WEC wecchinanuclear

Protecting People and the Environment

NRC Staff Pre-application Interactions on the eVinci Advanced Reactor


Presentation to the Advisory Committee on Reactor Safeguards eVinci Subcommittee February 28, 2023 Donna Williams, Senior Project Manager Advanced Reactor Licensing Branch 1 Office of Nuclear Reactor Regulation, US NRC

Protecting People and the Environment

Background on Pre-application Interactions

- NRC draft white paper "Pre-application engagement to Optimize Advanced Reactor Application Reviews" ML21145A106
 - NRC staff proposed a set of pre-application activities that, if fully executed, will enable staff to offer more predictable and shorter schedules and other benefits
- Staff reviewed 24 white papers, and plan to review 7 more white papers and 15 topical reports
- eVinci deployment model introduces policy issues that are under evaluation by the staff.

