NUREG/CR-7294

#USNRC e,

United States Nuclear Regulatory Commission

Protecting People and the Environment

Exploring Advanced
Computational

Tools and Techniques with
Artificial Intelligence and
Machine Learning in
Operating Nuclear Plants

Office of Nuclear Regulatory Research




AVAILABILITY OF REFERENCE MATERIALS
IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at the
NRC'’s Library at www.nrc.gov/reading-rm.html. Publicly
released records include, to name a few, NUREG-series
publications; Federal Register notices; applicant, licensee,
and vendor documents and correspondence; NRC
correspondence and internal memoranda; bulletins and
information notices; inspection and investigative reports;
licensee event reports; and Commission papers and their
attachments.

NRC publications in the NUREG series, NRC regulations,
and Title 10, “Energy,” in the Code of Federal Regulations
may also be purchased from one of these two sources:

1. The Superintendent of Documents
U.S. Government Publishing Office
Washington, DC 20402-0001
Internet: www.bookstore.gpo.gov
Telephone: (202) 512-1800
Fax: (202) 512-2104

2. The National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312-0002

Internet: www.ntis.gov
1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:

Address: U.S. Nuclear Regulatory Commission
Office of Administration
Digital Communications and Administrative
Services Branch
Washington, DC 20555-0001
E-mail: distribution.resource@nrc.gov
Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted
at the NRC’s Web site address www.nrc.gov/reading-rm/
doc-collections/nuregs are updated periodically and may
differ from the last printed version. Although references to
material found on a Web site bear the date the material
was accessed, the material available on the date cited
may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as books,
journal articles, transactions, Federal Register notices,
Federal and State legislation, and congressional reports.
Such documents as theses, dissertations, foreign reports
and translations, and non-NRC conference proceedings
may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North

11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for reference
use by the public. Codes and standards are usually
copyrighted and may be purchased from the originating
organization or, if they are American National Standards,
from—

American National Standards Institute

11 West 42nd Street

New York, NY 10036-8002

Internet: www.ansi.org
(212) 642-4900

Legally binding regulatory requirements are stated only in
laws; NRC regulations; licenses, including technical
specifications; or orders, not in NUREG-series publications.
The views expressed in contractor prepared publications in
this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the staff
(NUREG—XXXX) or agency contractors (NUREG/CR—-XXXX),
(2) proceedings of conferences (NUREG/CP-XXXX),

(3) reports resulting from international agreements
(NUREG/IA-XXXX),(4) brochures (NUREG/BR—-XXXX), and
(5) compilations of legal decisions and orders of the
Commission and the Atomic and Safety Licensing Boards
and of Directors’ decisions under Section 2.206 of the

NRC'’s regulations (NUREG-0750).

DISCLAIMER: This report was prepared as an account

of work sponsored by an agency of the U.S. Government.
Neither the U.S. Government nor any agency thereof, nor
any employee, makes any warranty, expressed or implied,
or assumes any legal liability or responsibility for any third
party’s use, or the results of such use, of any information,
apparatus, product, or process disclosed in this publication,
or represents that its use by such third party would not
infringe privately owned rights.



http://www.nrc.gov/reading-rm.html
http://www.bookstore.gpo.govTelephone:
http://www.bookstore.gpo.govTelephone:
http://www.ntis.gov1-800-553-6847
http://www.ntis.gov1-800-553-6847
http://www.ntis.gov1-800-553-6847
mailto:distribution.resource@nrc.gov
http://www.nrc.gov/reading-rm/doc-collections/nuregs
http://www.nrc.gov/reading-rm/doc-collections/nuregs
http://www.ansi.org
http://www.ansi.org

| NUREG/CR-7294
», o). INL/EXT-21-61117

United States Nuclear Regulatory Commission

Protecting People and the Environment

Exploring Advanced
Computational

Tools and Techniques with
Artificial Intelligence and
Machine Learning in
Operating Nuclear Plants

Manuscript Completed: September 2021
Date Published: February 2022

Prepared by:
Z. Ma'

H. Bao'

S. Zhang'
M. Xian?

A. Mack’

ldaho National Laboratory
Idaho Falls, Idaho 83415

2University of Idaho, Idaho Falls
Idaho Falls, ID 83402

John Lane, NRC Project Manager

Office of Nuclear Regulatory Research






ABSTRACT

This report presents the project Idaho National Laboratory conducted for the Nuclear Regulatory
Commission (NRC) to explore the advanced computational tools and techniques, such as
artificial intelligence (Al) and machine learning (ML), for operating nuclear plants. The report
reviews the nuclear data sources, with the focus on operating experience data, that could be
applied by advanced computational tools and techniques. Plant-specific and generic (national
and international) data from different sources are described. The report describes the
relationships between statistics and Al/ML and then introduces the most widely used Al/ML
algorithms in both supervised and unsupervised learning. The report reviews the recent
applications of advanced computational tools and techniques in various fields of nuclear
industry, such as reactor system design and analysis, plant operation and maintenance, and
nuclear safety and risk analysis. The report presents the insights from the project on the
potential applicability of AI/ML techniques in improving advanced computational capabilities,
how the advanced tools and techniques could contribute to the understanding of safety and risk,
and what information would be needed to provide meaningful insights to decision makers.

The report also documents an NRC survey on the current state of commercial nuclear power
operations relative to the use of Al and ML tools as well as the role of Al/ML tools in nuclear
power operations, which was published by the NRC as in the Federal Register Notice NRC-
2021-0048 in April 2021. A summary of the survey, including the survey questions, survey
participants, survey responses, and the conclusions and insights derived from the survey, is
provided in the report.

Finally, the report investigates potential applications of using Al/ML in operating nuclear power
plants and advanced reactors (both advanced light-water reactors and advanced non-light-water
reactors) to improve nuclear plant safety and efficiency. Three main application fields are
considered: plant safety and security assessments; plant degradation modeling, fault and
accident diagnosis and prognosis; and plant operation and maintenance efficiency
improvement.






TABLE OF CONTENTS

N = 250 1 2 O iii
LIST OF FIGURES........cciiiiiiiiiiiiiiiisisssssssssssssssssssssssssssssssssssss s s s s s s s s s sesssssssssssssssnsssssssnnsnnnssnnnnnnnnns vii
LIST OF TABLES ... ix
ABBREVIATIONS AND ACRONYMS....... oo ssss s s s s s s s s s s s s s s s s s s s ssssssss s sssnn s Xi
I 1V I 0 11U L 0o 0 1
R = = T3 (o [ 10 ] o [F S 1
2 1 1T 2
2 NUCLEAR DATA OVERVIEW........coiiiiiiiiiiieeccssseessssss s s s s s s s s s ssssssssssssssssssssssssssssssssssssssnsnsnnnnnnn 3
2.1 NUuClear Data SOUICES .........ccoiiiiiiiiii ettt eaeeeaseesssennnnnnes 3
2.2 OPE DAta ... 4
2.21 Plant-Specific OpE Data (Category 1.1).......oooviiiiiiiieeeiee e, 5
2.2.2  Generic (National) OpE Data (Category 1.2)........ccoeiiiiiiiiiiiieeieeeeeeeiieeeeee e 6
2.2.3  Generic (International) OpE Data (Category 1.3) ....ccooiiiiiiiiiieiiieieiiiiieeeeeeen 7
2.3 Characteristics of NPP OpE Data SOUICES ..........covviiiiiiiiiieeeece e 12
2.4 Relevancies of OpE Datato PRA ... et 21
3 AN OVERVIEW OF ADVANCED COMPUTATIONAL TOOLS AND TECHNIQUES -
1 N 23
3.1 Statistics and Al/ML ........coooiiiiii 23
3.2 Al/ML AIGOrithms OVEIVIEW. ........uvuiiiii et s s e e e e e et e e e e e e eeeesana 24
3.21 SUPEIVISEd LEAINMING .....eiiiiiiiiiiiitie ettt a e 24
3.2.2  Unsupervised Learning.........coooooiiiiiiiiii 28
3.3 Al/ML Algorithms for Computational Predictive Capabilities.............ccccvvveeeiiiiiiiiinnnnnnnnn. 34
3.4 Al/ML Languages and TOOIS .........uuiiiiiiaiiiiiiieiee et e e e e e e e e e 35
4 AN OVERVIEW OF APPLICATIONS OF ADVANCED COMPUTATIONAL TOOLS
AND TECHNIQUES IN NUCLEAR INDUSTRY .....cccuuemieeeennnnnnnnnnnnnnnnnnnnnnsnnnssnssssssssssssssssssnnes 37
4.1 AI/ML in Reactor System Design and Analysis .........ccooieiiiiiiiiiiiiiie e, 38
4.2 AI/ML in Plant Operation and Maintenance...............cccoooeiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 38
4.3 AI/ML in Nuclear Safety and Risk ANalysis ............cuuuiiiiiiiiiiiiiicie e, 39
5 INSIGHTS ON TASK 1 QUESTIONS.........cooeiieiiiiieninnnnnnnnnnnnnnnnnnnsssss s 41
6 A SURVEY ON THE ROLE OF ARTIFICIAL INTELLIGENCE TOOLS IN U.S.
COMMERCIAL NUCLEAR POWER OPERATIONS..........cccocr s 45
6.1 SUIVEY QUESHIONS ...ttt nneannnane 45
6.2 SUIVEY PartiCiPants..........ccoiiiiiiiiii e 46
6.3 SUINVEY RESPONSES .....eeeiiiiiieiii ittt e e e e e e e bbbt e e e e e e e e e nneneees 46
6.4 Insights from SUrVeY RESPONSES........cciiiiiiiiiiiiiiiii et 60

EXPLORING POTENTIAL APPLICATIONS OF ADVANCED COMPUTATIONAL
TOOLS AND TECHNIQUES TO OPERATING NUCLEAR PLANTS AND

ADVANCED REACTORS ......coiiiiiiiiiiieieesiessss s s s s s s s s s s s ss s s s s s s s s s sssssessssssssssessasasssssssssnssssnnnsnnnnnnns 65
7.1 Application Field 1: Plant Safety and Security Assessments..............oooovveviiiceiiiieenieenn, 66
711 Plant Safety Assessment - System, Structure, Component Reliability.............. 66

\"



7.1.2  Plant Safety Assessment - Human Reliability .............cccccooviiiiiiiiie, 67
7.1.3  Plant Safety Assessment - External Events ...........ccccooiiiiiiiiiiiiiiieeeee, 68

7.1.4  Plant Safety Assessment - Accidental Radiological Release and
1Y/ To] a1 (o Ty 1o T PSP 68
7.1.5  Plant Security Assessment - Cybersecurity and Physical Security ................... 69

7.2 Application Field 2: Plant Degradation Modeling, Fault, and Accident Diagnosis

AN PrOgNOSIS ... 69
7.2.1 Degradation MOEliNg........ccoiiiiiiiiii i 69
7.2.2 Fault Detection, Diagnosis, and PrognosiS..........ccoeeuuueiiiieieiiieiiiciee e 70
7.2.3 Accident Detection, Diagnosis, and Mitigation ............cccccccooiiiiiiiiiiii e, 71
7.3 Application Field 3: Plant Operation and Maintenance Efficiency Improvement................. 71
7.3.1 System, Structure, Component Operation and Control Optimization................ 71
7.3.2  Operator and System, Structure, Component Performance Evaluation............ 72
7.3.3 System, Structure, Component Maintenance Planning ..................ccccceeeeeee. 72
8 CONCLUSIONS....... .o e e e 75
9 REFERENCGES ... s s s e s s e e s s e e s e e s s s s s e s s e e s nnnnnnnnnnnnnnnns 77

APPENDIX A RECENT APPLICATIONS OF ADVANCED COMPUTATIONAL
TOOLS AND TECHNIQUES IN NUCLEAR INDUSTRY........ccccevnues A-1

Vi



Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

LIST OF FIGURES

Relationships Between Observed Data and Synthetic/simulated Data. ....................... 3
Subcategories of NPP OpE Data. .........oiiiiiiiiieccce e 4
A Three-layer Feedforward ANN ... 24
A Gaussian Process EXamPIe. ... 25
Examples of Bayesian NetWOrks ........ .o 26
Architecture of an Autoencoder with Seven Hidden Layers ............ccccooeeeiiiiiiiniennnnn. 32

Potential Benefits for Plant Safety and Efficiency via Al/ML Applications in Three
Main Technological Application Fields............ooorieiiiiiiii e 63

Vii






Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table A-1

Table A-2

Table A-3

LIST OF TABLES

NPP OpE Data Source Subcategories............c.uuuiiiiiiiiiiiiiiiieee e 8
Characteristics of Plant-Specific OpE Data Sources...........ccccccceeeiiiiiiiiiiceieeeeeee, 13
Characteristics of Generic (National) OpE Data Sources.........ccccoeeeevviiiiiiiiiiieeeeeeeens 15
Characteristics of Generic (International) OpE Data Sources ...........cceeeeeeeeeeeeeennn. 17
Clustering Algorithms........cooooo 28
Dimensionality Reduction Algorithms............coooiiiiiiiii e, 30
Example Use Cases and AlgorithmsS............oiiiiiiiiiiiiiiiiiiiiiieiee 33
A List of Survey PartiCipants ...........oeviiiiiiiiiiiiiiiiiieii e 44
Survey Question and Response MatriX..........coooveeiiieiiiii 45
Summaries of Survey Responses to Survey Question 1. ..., 46
Summaries of Survey Responses to Survey Question 2. ..., 47
Summaries of Survey Responses to Survey Question 3., 48
Summaries of Survey Responses to Survey Question 4. ..........ccoooeeeeiiiieieeeeeeeeeeee. 50
Summaries of Survey Responses to Survey Question 5. ............cccoviiiiiiiiiinnns 51
Summaries of Survey Responses to Survey Question 6. ...........cccooeveeiiieieeeeeeeeeeen. 52
Summaries of Survey Responses to Survey Question 7. ..., 53
Summaries of Survey Responses to Survey Question 8...........cccccooiiiiiiiiiiiiinnnn. 54
Summaries of Survey Responses to Survey Question 9. 55
Summaries of Survey Responses to Survey Question 10..........cccooeeeiiiiiiii. 56
Summaries of Survey Responses to Survey Question 11. ... 57
Review of Applications of Advanced Computational Tools in Reactor System

Design and Analysis after 2000.............coooiiiiiiii i A-1
Review of Applications of Advanced Computational Tools in Plant Operation

=T To Y= T ] C=T =g o PSR A-4

Review of Applications of Advanced Computational Tools in Nuclear Safety
ANA RISK ANAIYSIS.....cuiiiiiciiie et e s —eesare e e A-6






ADAMS
ADDM
AF

Al
ANN
AP
BMU
BN
BNN
BWR
CAP
CART
CCF
CNN
DNN
DOE
DT
EPRI
FDDP
FNN
FPL
FRN
GA
GP
HC
HRA
1&C
IAEA

IEI
INL
INPO
IRIS
JRC
LER
LLE
LOOP
LSTM
LWR

ABBREVIATIONS AND ACRONYMS

agencywide documents access and management system
accident detection, diagnosis and mitigation
application fields

artificial intelligence

artificial neural network

affinity propagation

best matching unit or neuron

Bayesian network

Bayesian neural network

boiling water reactor

corrective action program

classification and regression tree
common-cause failure

convolutional neural network

deep neural network

Department of Energy

decision tree

Electric Power Research Institute

fault detection, diagnosis and prognosis
feedforward neural network

Florida Power & Light Company

Federal Register Notice

generic algorithm

Gaussian process

hierarchical clustering

human reliability analysis

instrumentation and control

International Atomic Energy Agency
initiating event

Insight Enterprises, Inc.

Idaho National Laboratory

Institute of Nuclear Power Operations
Industry Reliability and Information System
European Committee Joint Research Centre
licensee event report

local linear embedding
loss-of-offsite-power

Long Short-Term Memory

light water reactor

Xi



ML
NDE
NEA
NEI
NLP
NLWR
NN
NPP
NRC
OECD
OpE
PCA
PRA
PSA
PWR
RAVEN
RCA
RF
RNN
RUL
SRI
SSC
SVM
WANO
WEC

machine learning

non-destructive examination

Nuclear Energy Agency

Nuclear Energy Institute

natural language processing
non-light-water reactor

neural network

nuclear power plant

Nuclear Regulatory Commission
Organisation for Economic Co-operation and Development
operating experience

principal component analysis
probabilistic risk assessment
probabilistic safety assessment
pressurized-water reactor

Risk Analysis and Virtual Environment
root cause analysis

random forest

recurrent neural network

remaining useful life

Southern Research Institute
structures, systems and components
support vector machine

World Association of Nuclear Operators
Westinghouse Electric Company LLC

Xii



1 INTRODUCTION

11 Background

Idaho National Laboratory (INL) has provided technical assistance to the Nuclear Regulatory
Commission (NRC) Division of Risk Analysis in the Office of Nuclear Regulatory Research in
the areas of reliability and risk analysis since the 1980s. INL developed an integrated coding
system that captures the necessary information from the nuclear industry operating experience
(OpE) to update and maintain industry and plant-specific system and component reliabilities,
initiating event frequencies, common-cause failure (CCF) parameter estimates and to conduct
component and system trending analysis. The periodic analysis, calculation, and updates to
these parameters used in the standardized plant analysis risk models are based upon the
statistical methods developed in NUREG/CR-6823 (Atwood et al. 2003) and NUREG/CR-6928
(Eide et al. 2007), which included a portion of all available statistics methods, were first
published in the early 2000s.

In the meantime, artificial intelligence (Al), machine learning (ML), Big Data, content analytics,
and other advanced computational tools and techniques have shown promise as being
beneficial across several disciplines and for a variety of applications in both the private and
public sectors. The development and use of these information technologies is becoming more
widespread among industry organizations, academic institutions, and federal agencies to help
improve their efficiency, effectiveness, and decision-making. The nuclear industry has also been
investigating the adoption of such technologies to improve operational efficiency at nuclear
power plants (NPPs).

Some NPP licensees are in the process of demonstrating new approaches (e.g., NEI 18-10
(Nuclear Energy Institute 2018)) for meeting regulatory requirements in Title 10 of the Code of
Federal Regulations (10 CFR) 50.65, “Requirements for Monitoring the Effectiveness of
Maintenance at Nuclear Power Plants.” The new approach in NEI 18-10 is a departure from the
current preventative maintenance assessment paradigm (e.g., establishing structures, systems
and components [SSC] performance criteria) and is intended to allow for a more dynamic
assessment of maintenance effectiveness based on the use of data and risk trending analytics.
As a result, however, the licensees have also opted to discontinue use of the NRC-endorsed
approach in NUMARC 93-01 (Nuclear Energy Institute 2011) for meeting requirements in

10 CFR 50.65. As such, NRC resident inspectors are tasked with understanding the underlying
technologies employed in these new approaches (e.g., Al, ML, and data analytical tools) to
ensure the adequate inspection of the licensee’s ability to meet the requirements in 10 CFR
50.65.

A new project was conducted by INL for the NRC to explore the advanced computational tools
and techniques, such as Al, ML, and other analytics, in operating NPPs and developing
advanced computational predictive capabilities in nuclear OpE. The project has three major
tasks:

o Task 1: Explore the advanced computational tools and techniques for operating nuclear
plants.

e Task 2: Assess the use of advanced computational tools and techniques in the
commercial nuclear industry.

o Task 3: Explore the potential applications and impact of advanced computational tools
and techniques on operating NPPs and advanced reactors.



The purpose of Task 1 is to perform an assessment of the advanced computational tools and
techniques to address the following questions: What types of advanced computational tools and
techniques may be employed, how would they work, and how effective would they be expected
to be? What aspects of the advanced tools and techniques could contribute to our increased
understanding of safety and risk? What types and quantities of information would be needed, in
concert with the new tools and techniques, to generate safety and risk implications? The
purpose of Task 2 is to perform a survey assessment of the state of practice and future trends
related to the advanced computational tools and techniques in advancing the state-of-the-art in
predictive reliability and predictive safety assessments in the commercial nuclear industry. The
purpose of Task 3 is to investigate the potential applications of the advanced computational
tools and techniques, including Al, ML, big data, and content analytics to operating NPPs and
advanced reactors, including advanced light water reactors (LWRs) and advanced non-light-
water reactors (NLWRs).

This report documents the results for all three project tasks by assessing the advanced
computational tools and techniques that may be applied to nuclear OpE (Task 1), conducting a
survey to request public comments on the current state of commercial nuclear power operations
relative to the use of Al and ML tools (Task 2), and investigating potential applications of using
AI/ML in operating NPPs, advanced LWRs, and advanced NLWRs (Task 3).

1.2 Outline

Since one of the major factors for a successful application of advanced computational tools and
techniques is the data availability and quality, this report first looks at the nuclear data that may
be available and could be used in advanced computational tools and techniques. Section 2
presents a categorization of nuclear data sources and focuses on different types of OpE data
that may be applied through advanced computational tools and techniques. Section 3 presents
an overview of advanced computational tools and techniques. It first describes the relationships
between statistics and Al/ML and then introduces the most widely used Al/ML algorithms in both
supervised and unsupervised learning. Section 4 reviews the existing applications of advanced
computational tools and techniques, including Al/ML in various nuclear industry fields, such as
reactor system design and analysis, plant operation and maintenance, and nuclear safety and
risk analysis. Section 5 provides insights for the three questions under Task 1. Section 6
presents the survey on the role of Al tools in U.S. commercial nuclear power operations
responses, including the survey questions, survey participants, survey responses, and the
conclusions and insights derived from the survey. Section 7 investigates the potential
applicability of the new computational tools and techniques with Al/ML to inform and simplify the
regulatory process on the operating NPPs and advanced reactors while simultaneously
improving plant safety and efficiency and enhancing regulatory oversight. This report provides
details of these three main technological application fields (AFs) in Sections 7.1, 7.2, and 7.3,
respectively. Section 8 provides the report’s conclusion. Section 9 lists the references cited in
the report. Appendix A provides a list of recent applications of advanced computational tools
and techniques in the nuclear industry.



2 NUCLEAR DATA OVERVIEW

This section provides an overview of data sources in NPPs. The scope is focused on data
sources for commercial NPPs but does not exclude data sources in other nuclear installations or
nonnuclear industries, which are potentially relevant to or useful for building up advanced
computational capabilities for NPPs. Section 2.1 presents a categorization of NPP data sources.
Section 2.2 further categorizes the NPP OpE data. Section 2.3 introduces the characteristics of
NPP OpE data sources. Section 2.4 discusses the relevancies of NPP OpE data to probabilistic
risk assessment (PRA).

2.1 Nuclear Data Sources

Nuclear data sources can be categorized in different ways. For example, (Atwood et al. 2003)
utilizes two types of data sources, plant-specific and generic, to produce various parameter
estimates that are needed in a PRA, and (Al Rashdan et al. 2019, Al Rashdan and St. Germain
2019) categorize fifteen typical NPP data sources based on their data-collection methods. In
this report, nuclear data sources are categorized into observed data and synthetic data, while
observed data includes OpE data and experimental data, and synthetic data includes simulated
data (see Figure 1). Both observed data and synthetic data can be anonymized such as by
removing sensitive information to protect data source privacy and confidentiality.

1. OpE data observed and harvested as NPPs operate (including during the maintenance).

2. Experimental data produced by lab or field experiments. Experimental data and OpE
data could overlap if an experiment is conducted as part of plant operations, such as
surveillance testing.

3. Synthetic/simulated data, which are artificially generated from running computational
models to simulate processes or systems using computer programs (such as physics
simulation codes) or digital twins (such as plant simulators).

Data Used for Analysis

Observed Data
(anonymized)

Synthetic Data

Observed Data .
(anonymized)

Synthetic Data

Experimental

Data Simulated Data

OpE Data

Figure 1 Relationships Between Observed Data and Synthetic/simulated Data



It should be noted that “data” and “information” are different concepts in a strict sense, as shown
in the following definitions from Merriam-Webster (Merriam-Webster) and Kelly and Smith (Kelly
and Smith 2011). “Data” is the basic, unrefined, and generally observable information, while
“‘information” is the processed, more refined, and often inferred data.

e Data—"factual information (such as measurements or statistics) used as a basis for
reasoning, discussion, or calculation”
¢ Information—"knowledge obtained from investigation, study, or instruction.”

To simplify the terms, this report uses “data” in a more general sense in that it includes
“‘information,” such as the Licensee Event Report (LER) submitted by licensees to the NRC or
analysis report.

Simulated data and experimental data are widely used in nuclear industry and academic
research in fields, such as reactor system design and analysis and plant operations (see

Section 4). These data sources are not introduced further in this section. This section is focused
on introducing characteristics of OpE data.

2.2 OpE Data

Nuclear OpE data can be divided into plant-specific, generic (national), and generic
(international) data, which can be further categorized according to data collection scopes,
relevant activities, or collecting countries and organizations (see Figure 2). Each subcategory of
OpE data is described in the following subsections.

1. OpE Data
[
| 1 1
. 1.2 Generic 1.3 Generic

1ol [Pl e (national) (international)
B 1.2.1 United B 1.3.1 International Atomic

States Energy Agency

1.2.2 Other 1.3.2 Organisation for Economic Co-
Bl countries =1 Operation and Development Nuclear
Energy Agency

B 1.3.3 World Association of
Nuclear Operators
B 1.3.4 European Committee

Joint Research Centre

1.3.5 Others

- 114
Miscellanous

Figure 2 Subcategories of NPP OpE data



2.2.1 Plant-Specific OpE Data (Category 1.1)

The OpE data collected on a plant basis can be broken down according to relevant activities,
including operational data (Category 1.1.1 in Table 1), maintenance data (Category 1.1.2),
regulatory data (Category 1.1.3), and miscellaneous data (Category 1.1.4).

Category 1.1.1: Operational data are defined in this report as the data accumulated as a plant
operates and are usually proprietary to the plant. Examples of this category include process
instrumentation and control (1&C) data, plant logs, and internal plant failure reports.

o Process I&C data are the data collected in real-time from plant-wide sensors for process
measurements and monitoring; such data have diverse data formats corresponding to
the monitored process variables (including neutron flux, reactor pressure, coolant
temperature, steam generator water level, radiation dose, etc.) and are usually
quantitative and structured.

e Plant logs refer to all types of operational logs maintained to record all important events
in the plant. Examples include control room logs, operator round notes, and engineer
notebooks. Different plants could have different types and formats of plant logs;
regarding the data types, plant logs usually contain numerical data, categorical data, and
narrative data. Plant logs can either be handwritten or electronic and are usually
routinely maintained.

¢ Internal plant failure reports refer to the documentation of equipment failures or human
errors for a plant’s own use rather than for a regulatory purpose. A single failure report is
usually in the form of condition report and then entered into the plant’s corrective action
program. Like plant logs, failure reports usually contain numerical data, categorical data,
and narrative data and can be either handwritten or electronic. Rather than routinely
maintained, the preparation of a failure report is conditioned on failure occurrence.

Category 1.1.2: Maintenance data refer to the records (including plans, actions, results, and all
relevant documents) of plant maintenance activities. This report adopts “maintenance” to refer
to a broad scope of activities—it is not confined to preventive and corrective maintenance, but
includes replacement, inspection, calibration, and surveillance testing. Maintenance data could
contain numerical, categorical, narrative, or graphical data and could be either handwritten or
electronic. The velocity of maintenance data is dependent on the frequency of corresponding
activity, either routinely coming in or conditioned on event occurrence (such as corrective
maintenance).

Category 1.1.3: Regulatory data are defined in this report as the data that a plant prepares or
receives to comply with regulatory requirements. Different countries have different regulations,
leading to differences in regulatory data. The characteristics of regulatory data described in this
report are based on the NPPs in the United States. Unlike other propriety plant-specific OpE
data, regulatory data are usually made publicly available and published on the NRC website.
Regulatory data are either submitted by plant licensees to the NRC (such as monthly operating
reports and LERSs) or issued by the NRC to licensees (such as inspection reports and notices of
enforcement discretion). The data velocity depends on the type of submission, either routine
submission (daily, quarterly, annually, etc.) or special submission conditioned on event
occurrence. Most regulatory data contain a mix of numerical, categorical, checkbox, and
narrative data. Some regulatory data are further visualized in graphical forms, such as the
reactor oversight process performance indicators presented online in color codes. Regulatory
data are mostly electronic reports, while some data are extracted and built into a specific
database, such as the NRC LERSearch platform to search for LERs and inspection reports.



Category 1.1.4: Miscellaneous data refer to all other plant-specific OpE data that are not
captured by the previous three subcategories. Examples include plant design and license-
related documents, plant operating guidance documents (such as technical specifications,
procedures, and guidelines), and plant business data (such as data associated with enterprise
asset management, procurement and logistics, project scheduling and management, human
resources, finance, etc.). These data are usually proprietary to the plant and could have diverse
data formats and structures. The data may be stored in maturely-designed commercial
databases (like enterprise resource and human resource data) or in the form of digital files or
hard copies.

2.2.2 Generic (National) OpE Data (Category 1.2)

Besides on a plant basis, the OpE data can be collected throughout the nuclear power industry.
Some OpE data sources, based on country-specific industrywide data collection, are introduced
below.

Category 1.2.1: United States has several domestic OpE data sources established by the
NRC and other organizations, such as Nuclear Energy Institute (NEI), Institute of Nuclear Power
Operations (INPO), Electric Power Research Institute (EPRI), Department of Energy (DOE), and
Energy Information Administration. These data sources provide data with a variety of focuses,
including OpE feedback, component performance data, human performance data, and general
statistical analyses. Most data, although stored in databases, are semi-structured, containing a
mix of numerical, categorical, narrative, check box, and graphical data. General statistical
analyses are publicly available and updated on a regular basis. The other data (OpE feedback,
component performance data, and human performance data) are conditioned on event
occurrences.

o OpE feedback includes the publicly available NRC LERSearch that could be used to
search LERs.

e Component performance data include the proprietary INPO Industry Reliability and
Information System (IRIS) database, the NRC Integrated Data Collection and Coding
System database, NRC Reactor Operating Experience Data web app for nuclear event
searching, NRC Reliability and Availability Data System web app for PRA data
calculations, NRC initiating event (IE) database, NRC loss of offsite power (LOOP)
database, and NRC CCF database. The raw data and other details of the above sources
are proprietary, while the generic results of the data analysis are part of the general
statistical analyses and are publicly available on the NRC websites.

Component performance data also include general statistical analyses (i.e., “information”
rather than “data”) such as (Eide, 2003) and its updates on industry-average
performance for components and initiating events, the NRC annual LOOP analysis and
IE analysis, the NRC component performance studies, the NRC system reliability
studies, the DOE generic component failure data base for light water and liquid-sodium
reactor PRAs, and EPRI reports on pipe rupture frequencies, components, and
shutdown accident events.

¢ Human performance data are publicly available on the NRC website and via NUREG
reports.



Category 1.2.2: Other countries have established their domestic databases for OpE feedback
and have made them publicly available (at least the generic results). Examples include the
Nuclear Power Plant Event Reporting run by the Canadian Nuclear Safety Administration, the
Experience Feedback Platform run by Chinese National Nuclear Safety Administration, the
Nuclear Event Evaluation Database Incident Reporting System run by the Korean Institute of
Nuclear Safety, and the Nuclear Events Databases curated by the Swiss ETH Zurich. The data
in these OpE feedback databases are semi-structured data, which are a mix of numerical,
categorical, and narrative data. Besides OpE feedback, there are nationwide databases for
component performance data, such as the Swedish Reliability Data of Components in Nordic
Nuclear Power Plants (the T-book), that are not publicly available but open for purchase.

2.2.3 Generic (International) OpE Data (Category 1.3)

Nuclear OpE data are also collected by international organizations, such as the International
Atomic Energy Agency (IAEA), Organisation for Economic Co-operation and Development
(OECD) Nuclear Energy Agency (NEA), World Association of Nuclear Operators (WANO), and
European Committee Joint Research Centre (JRC). Some OpE data sources maintained by
different organizations are introduced below.

It should be noted that, although these data sources are collected by international organizations,
a country’s participation is on a voluntarily basis. The scopes of data collection are determined
by the participants of certain organizations (such as the IAEA and the OECD NEA) or countries
in certain regions (such as Nordic countries).

The data sources are focused on providing OpE feedback, component performance, and plant
performance data. OpE feedback data sources have different focuses on commercial nuclear
power plants, research reactors, and fuels. Component performance data sources include data
for generic NPP components as well as data with specific topics, such as aging, CCF, cable,
and piping comments. Most of these data sources are available to participants only.

Table 1 shows the categories of the nuclear OpE data sources as well as the examples in
different categories. The examples are focused on active data sources. Inactive data sources
with no update in 10 years or longer, such as the Nuclear Plant Reliability Data System, Nuclear
Computerized Library for Assessing Reactor Reliability, and IAEA Component Reliability Data
for Use in Probabilistic Safety Assessment (PSA), are not listed.
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2.3 Characteristics of NPP OpE Data Sources

This subsection introduces characteristics of each NPP OpE data source. Selected
characteristics include:

o Data format, such as numerical (discrete and continuous), categorical (including binary
data as a special case), check box, narrative (or free text), image, symbol, audio, and
video.

o File format, such as digital files and written notes. This report lists file format and data
format separately since both could affect the selection of applicable Al/ML techniques.
For instance, there are two files containing the same set of tabular numerical data;
however, one file is handwritten, and the other is its digitized version. Processing the
handwritten file, although containing structured data, will require more advanced
techniques with handwriting recognition functions when compared to the digitized file.

o Data structure, including structured and unstructured. Structured data is organized,
formatted, and easily searchable, while unstructured data has no predefined format and
is much more difficult to collect, process, and analyze. It is also possible that a data
source contains both structured data and unstructured data; in this case, this data
source will be deemed semi-structured in this report.

¢ Data velocity, which specifies how frequent the data are comes in. Data could arrive in
real-time like from sensors, routinely (daily or monthly) or conditioned on the
occurrences of certain events. It should be noted that some data sources take in and
process raw data; under these cases, this report separates the data velocity as a (raw)
data-sampling velocity and data-processing velocity.

o Data accessibility, which specifies who have access to the data. A data source can be
publicly available or proprietary and only accessible for authorized users.

¢ Relevancy to PRA, which specifies if the data could be used to support PRA.
Formulated in 1970s, PRA is a well-established technique to systematically develop
accident scenarios and generate probabilistic, system- and plant-level risk estimates.
This report defines four levels of relevancy to PRA, including (1) direct relevancy, (2)
indirect relevancy, (3) potential relevancy, and (4) no relevancy.

- Direct relevancy is defined as providing the information needed to construct a
PRA model (such as system design) or providing a PRA model parameter
estimates (such as component-failure probabilities).

- Indirect relevancy is defined as providing raw data for estimating PRA model
parameters (such as component-failure events occurred in individual plants).

- Potential relevancy is defined as not directly or indirectly supporting the current
practice of PRAs but having a possibility to be connected to PRAs in the future
as modeling techniques advance. One potential case is that the current PRA
practice includes only component-failure events, but if PRA modeling can be
expanded to include component degradation events, a lot more data sources
could then be utilized.

- No relevancy is defined as not directly or indirectly supporting the current
practice of PRAs and is not projected to be connected to PRAs in the future.

Table 2 presents the characteristics of plant-specific OpE data sources. Table 3 shows the
characteristics of generic (national) OpE data sources. Table 4 presents the characteristics of
generic (international) OpE data sources.
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2.4 Relevancies of OpE Data to PRA

This subsection discusses how the OpE data sources relate to PRA. As introduced in Section
2.3, this report defines four levels of relevancy to PRA, including (1) direct relevancy, (2) indirect
relevancy, (3) potential relevancy, and (4) no relevancy.

The data sources with direct relevancy to PRA either provide information for PRA model
development, such as plant design and license-related documents and plant operating guidance
documents, or provide estimates of PRA parameters, such as IE frequencies (provided by the
NRC IDCCS and RADS), component reliability and unavailable data (provided by the NRC
IDCCS and RADS, the Swedish T-book, the IAEA reliability data for research reactors, the
Centralized Reliability and Events Databases run by Germany/Netherlands/Switzerland, and the
Nordic R-book), CCF parameters (provided by the NRC IDCCS and RADS, the OECD NEA
international CCF data exchange project, and the Nordic/German C-book), and hazard
occurrence frequencies (provided by the OECD NEA fire incidents records exchange project).

The data sources with indirect relevancy to PRA share the feature of providing raw data for PRA
parameter estimation from plant logs, failure reports, maintenance records, regulatory data, and
the national and international OpE feedback platforms.

The data sources with potential relevancy to PRA refer to those not directly or indirectly
supporting the current practice of PRA but having a possibility to be connected to PRA in the
future as modeling techniques advance. Three data sources are characterized as having a
potential relevancy to PRAs, including the process I1&C data, the OECD NEA cable aging data
and knowledge project, and the WANO performance analysis program (the fuel reliability part).
There are two angles of PRA advancement to facilitate the potential incorporation of these three
data sources. On one hand, the PRA modeling scope in current practice only includes
component-failure events; if the PRA modeling scope could be expanded to include events
representing component degradation (or “unhealthy”) states, more data sources might be
utilized, such as the process I&C data and the data from the OECD NEA cable ageing data and
knowledge project. On the other hand, the current PRA modeling scope includes limited
components; if the scope could be expanded to include more “micro-level” components, more
data sources might be adopted, such as the fuel reliability data provided by the WANO
performance analysis program.
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3 AN OVERVIEW OF ADVANCED COMPUTATIONAL TOOLS
AND TECHNIQUES - AI/ML

This section presents an overview of advanced computational tools and techniques which
couldinclude advanced statistical algorithms, Al/ML algorithms, and relevant hybrid
applications suchas physics-informed machine learning. Section 3.1 describes the
relationship between statisticsand Al/ML. Section 3.2 introduces the most widely used
AI/ML algorithms in both supervised learning and unsupervised learning. Section 3.3
presents how Al/ML approaches could be applied for advanced computational capabilities
in nuclear industry provides a list of example use cases and Al/ML algorithms.

3.1 Statistics and Al/ML

The relationship between statistics and ML is a topic that interests many people. Currently
the NRC and INL are using the statistical methods in NUREG/CR-6823, which was
published in 2003 and includes a minute portion of all available statistical methods, for
nuclear OpE analysisto estimate industry-average and plant-specific system and
component reliabilities, initiating event frequencies, CCF parameters and to conduct
component and system trending analysis. Abrief look at the relationship between statistics
and Al/ML would help us to understand why we are exploring advanced computational
predictive capabilities using Al/ML in nuclear OpE.

Statistics and ML are closely related in terms of methodological principles but are different
in their primary goals: ML concentrates on prediction to identify the best course of actions
with no or limited understanding of the underlying mechanism, while statistics have a focus
on inferenceby modeling the data generation process to formalize understanding (although
statistics can perform predictions as well) (Bzdok et al. 2018). Statistics is a subfield of
mathematics while MLis a subfield of computer science and grew out of Al to focus on
learning from data. It follows that ML and Al developed with the advancement of computing
power. Statistical methods have traditionally been used on smaller data sets, in cases
where the entire population of data is not known. Advanced Al methods require much more
data than the traditional statistics methods buthave the ability to predict when relationships
are more complex. Early ML had emphasis on symbolic representation and knowledge-
based learning, such as decision trees and logic formulate. ML started to flourish as a
separate field in the 1990s and changed the focus to methods borrowed from statistics and
probability theory (Langley 2011). Some methods from ML were adopted and led to a
combined field called statistical learning (James et al. 2013).

Some of the Al/ML algorithms described in Section 3.2, e.g., Bayesian Network and
GaussianProcess, are also popular approaches in statistics.

Statistical learning methods have traditionally been used and achieved success on smaller
datasets, in cases where the entire population of data is not known. Modern Al/ML
approachestake advantage of high-performance computing and large datasets and have
pushed the learning capacity of models to the next level to solve extremely complex
problems, e.g., self- driving, cancer early detection, and smart agriculture. However, many
machine learning approaches, e.g., deep learning, sacrifice some degrees of interpretability
for predictive power.
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3.2 Al/ML Algorithms Overview

AI/ML algorithms can be categorized into supervised learning and unsupervised learning,
depending on whether the dataset is labeled and whether training samples are involved.
Learning can occur in two ways. First, in supervised learning, the true output values are known.
The algorithm then learns the relationship between input variables (features) and the known
output (response) variable. In unsupervised learning, the response variable is not known. The
algorithm learns patterns in the data to discover groupings, or clusters of data. The two
categories of Al/ML algorithms are further broken down in the following sections.

3.2.1 Supervised Learning

Supervised learning implies a training data set contains the observed values of the variable of
interest. The observed values can be either categorical (labels), discrete, or continuous.
Supervised learning implies the availability of a labeled training dataset that consists of a set of
training samples. In its most common form, each data sample pair has an input feature vector
and a desired output value. A supervised learning algorithm learns the underlying model
(inferred function) between the input and the output using the training set, and the requirement
is that the model should be able to generalize from the training set to unseen data samples. A
wide collection of supervised learning algorithms is available, each with its strengths and
weaknesses. In this section, we will review the most widely used learning algorithms including
artificial neural networks (ANNs), Gaussian processes (GPs), Bayesian networks (BNs), support
vector machine (SVM), decision trees (DTs), and random forests (RFs).

3.2.1.1 Artificial Neural Networks

ANNs are the most well-known methods in supervised learning and have the capabilities to be
applied in broad areas, including regression analysis, classification, data preprocessing, and
robotics. ANNs have architectures for both supervised learning and unsupervised learning (e.g.,
autoencoders), and we discuss supervised ANNs approaches in this section and discuss
unsupervised neural networks (NNs) in Section 3.2.2.

An ANN is composed of three types of layers: input, hidden, and output layers. Each layer
consists of a set of nodes called neurons. A typical ANN has one input layer, one output layer,
and multiple hidden layers. The connections between nodes in different layers are associated
with the weights that define the connection strength and are adjusted as learning proceeds. The
number of input nodes is decided by the dimensionality of the data samples, and the number of
hidden nodes determines the complexity of the model. ANNs are powerful nonlinear function
approximators, and the universal approximation theorem (Baldi and Hornik 1989) states that
any function may be approximated by a sufficiently large ANN. An ANN with more than three
hidden layers is called a deep NN. Recent progress on deep learning has demonstrated that
deep NNs can achieve impressive performance for many tasks, such as object recognition
(Ciresan et al. 2012), image classification (Ciregan et al. 2012), semantic segmentation (Long et
al. 2015), medical applications (Cheng et al. 2016), facial expression recognition (Glauner
2015), and speech recognition (Deng et al. 2013).
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Feedforward Networks (Figure 3) represent the most common ANN architectures.
Feedforward networks are composed of layers of nodes, where a weighted output from one
layer is the net input to the next layer. Nonlinear activation functions of nodes in the hidden
layers enable a NN to fit nonlinear relationships between features and output variables.
Backpropagation (Rumelhart et al. 1986) based gradient decent approaches are used to learn
the network weights to minimize the error between the prediction and true label of the input
data. Unsupervised pre-training (Hinton et al. 2006) and increased computing power from
graphics processing units allowed the use of deep NNs, which became known as deep learning
(Goodfellow et al. 2016).

output

Figure 3 A three-layer feedforward ANN

There are three main breakthroughs in ANNs history: (1) Convolutional Neural Networks
(CNNs) that have proven successful in processing visual and other two-dimensional data
(LeCun et al. 1989); (2) Long Short-Term Memory (LSTM)-based Recurrent Neural Networks
(RNNs) avoid the vanishing gradient problem (Goodfellow et al. 2014); and (3) competitive
networks, such as Generative Adversarial Networks (GANs) (Hubel and Wiesel 1968), in which
multiple networks compete with each other.

CNNs are feedforward networks and are based on a shared-weight architecture using a number
of small kernels and filters. They were inspired by the organization of the animal visual cortex
(Hubel and Wiesel 1968, Matsugu et al. 2003) in that the biological neurons respond to stimuli
only in a restricted region of the visual field. CNNs have achieved great success in image and
video recognition, image classification, medical image analysis, natural language processing
(NLP), and time series analysis. Popular CNN architectures include AlexNet (Krizhevsky et al.
2017), VGG-16 (Simonyan and Zisserman 2014), FCN (Long et al. 2015), GoogLeNet (Szegedy
et al. 2015), ResNet (He et al. 2016), and DenseNet (Huang et al. 2017). One of the major
advantages is that CNNs are more independent from prior knowledge and human effort in
feature design.

RNNs are a class of ANNs that allow modeling of the dynamic behavior of time series data.
RNN weights are also learned using backpropagation-based optimization algorithms. RNNs
have been quite successful for NLP and speech recognition. NLP has been used in applications
such as email/web autocorrect grammar, language translation, aircraft maintenance by
synthesizing information from large manuals, and to identify motives in actions based on
speech. Applications in speech recognition include voice to text, voice control of computer-
based technology, and personal identification based on voice, among others.
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The effectiveness of early RNNs has been hindered by the problems of gradient vanishing or
exploding. The development of the LSTM algorithms (Hochreiter and Schmidhuber 1996)
renewed interest in RNNs. An LSTM unit consists of a cell, an input gate, an output gate, and a
forget gate. The cell remembers values over arbitrary time intervals, and the three gates
regulate the flow of information into and out of the cell. LSTM alleviates the problems with
gradients and the transmission of long-term information from which standard RNNs suffer.

3.2.1.2 Gaussian Processes

A GP is a probabilistic method that can be applied to both regression and classification tasks.
GPs aim to find a probability distribution over all possible functions between the features and
responses. The most important advantage of GPs is the incorporation of the confidence of the
prediction into the result, and one can decide based on the confidence intervals if the refitting is
needed for some region of interest. However, GP models use the whole dataset to perform
prediction and often scale poorly as the amount of data increases.

Figure 4 shows a GP example. The blue squares are eight training samples from a sine
function. The red dashed curve shows the mean output/predictions of the test data from -5 to 5.
The pink shaded region shows the confidence for the predictions.

A GP Example

-4 -2 0 2 4

Figure 4 A Gaussian process example

3.2.1.3 Bayesian Networks

A BN or Bayesian belief network (BNN) is a graphical model that captures the known
probabilistic relationship using a directed acyclic graph. BNs are ideal for predicting the
likelihood of any possible cause of an event that occurred. For example, a BN could represent
the joint distribution between features and class labels. Given features, the BN can be used to
compute the probabilities of possible class labels (classification). BN classifiers are special BNs
designed for classification problems and offer the benefit of explainability. Naive Bayes (NB) is a
special BN with strong independence assumptions between features (see Figure 5). In NB
classifiers, the class label variable will be the parent of all feature variables, and the joint
distribution is

p0) =p® | [peald
i=1

26
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An example of naive Bayes An example of Bayesian network

Figure 5 Examples of Bayesian Networks

BNs have two major advantages. First, because a BN encodes dependencies among all
random variables, it can handle the missing data problem. Second, a BN can learn causal
relationships, and can be used to gain understanding about the data and a problem.

3.2.14 Decision Trees and Random Forests

Decision Trees aim to create a tree model that predicts the target value by learning simple
decision rules inferred from the data features. In the tree structures, leaves represent target
values, internal nodes are labeled with features, and branches (from root to a leaf) represent the
conjunction of features that lead to the target values. The most common strategy used to build
DTs from data is a top-down greedy approach (Quinlan, 1986) which recursively splits the
source dataset into subsets by choosing a feature at each step that give best partitions.
Different algorithms use different quantitative metrics to measure the best partition, similar to the
loss function choice. Common metrics includes the Gini impurity [Z], information gain [Y, AA],
and variance reduction (Breiman et al. 1984). They can be used for both regression and
classification tasks. Notable algorithms are the Classification and Regression Tree (CART)
(Breiman et al. 1984), Iterative Dichotomiser 3 (ID3) (Quinlan 1986), C4.5 (Quinlan 1993),
Chi-square automatic interaction detection (CHAID) (Kass 1980), and MARS (Friedman 1991).

DTs are among the most popular ML algorithms and are also a common statistical approach.
DTs are popular because (1) they are simple and can visually and explicitly represent decisions
and decision-making processes; (2) they can handle both numerical and categorical data; (3)
they make no assumptions of the training data (e.g., distributional and model assumptions); and
(4) the hierarchy of features in a DT reflects the importance of features. The features on top are
the most informative. However, DTs can create over-complex trees that lead to the overfitting
problem.

Random Forests (Tin Kam 1998, Breiman 2001) were proposed to overcome the weakness of
the overfitting problem of DTs. Overfitting occurs when an algorithm performs well on the data
set used to build the model but performs poorly when applied to new data sets. They construct a
number of DTs and output the class label for classification or average prediction values of the
individual trees for regression. RFs build each tree using a randomly drawn subset (with a
replacement) from the training set. When splitting each node during a tree construction, the best
split is found from a random subset of features. The injection of two sources of randomness was
designed to reduce the variance of the DTs and help RFs outperform DTs.

3.2.1.5 Support Vector Machines

SVMs (Cortes and Vapnik 1995) aim to find a hyperplane or set of hyperplanes to separate data
samples, which can be used for classification and regression tasks. SVMs follow the intuition that
a good hyperplane should have the largest distance (maximal margin) to the nearest training
samples of any class because, the larger the margin, the lower the generalization error of the
classifier. The data samples on the margin are support vectors. The original SVM algorithm is
called a linear SVM, which can only apply to linearly separable data and perform binary
classifications. Let {(x;, y;)}[=, be the training set, where x; is the feature vector and y; € {—1, 1}
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is the target value. The hard-margin (-1 or 1) linear SVM can be formulated as

minimize ||w||
s.t.yywlx;—b)>1Vi=1,2,-,n

where w is the normal vector to the hyperplane (w”x; — b = 0). The class label of a new data
sample x is sgn(w”x; — b), where sgn() is the sign function. To deal with data that are not linearly
separable, the soft-margin method was proposed, which is defined by

n
1
minimize A||w||? + ;2 max (0,1 — y;(w'x; — b))
i=1

where A determines the tradeoff between increasing the margin size and ensuring that the data
samples lie on the correct side of the margin. The original SVMs also have been extended to use
the kernel trick to create nonlinear classifiers (Boser et al. 1992). SVMs have two advantages: (1)
they work effectively on high-dimensional data and (2) they are memory efficient because the
decision function is determined only by the support vectors.

3.2.2 Unsupervised Learning

In unsupervised learning, all one has is a set of data samples without being told their expected
labels (ground truths) for categorical variables, nor the true numeric values for continuous
variables. Unsupervised learning methods are promising in many applications due to three
major reasons. First, labeling a large dataset can be surprisingly expensive and time
consuming. If a method can be trained and run with a small to no amount of human supervision,
researchers can save massive amounts of time and trouble. Second, we can use unsupervised
learning to find features that can best represent the data and will be useful for future prediction
tasks. Third, in the early stages of a research project, unsupervised learning methods are
valuable tools used to gain insights into the structure of the data (i.e., the understanding of the
probability density and subgroups can help influence the design for data classification and
regression applications). Two central applications in unsupervised learning are clustering
analysis and dimensionality reduction.

3.2.2.1 Clustering Analysis

Clustering Analysis is used to identify data subgroups and clusters in such a way that data
samples from the same cluster are more similar to each other than to those from different
clusters. There are many clustering algorithms because the notion of a ‘cluster’ cannot be
clearly defined (Estivill-Castro 2002). The most appropriate algorithm for a particular task needs
to be chosen experimentally. Popular clustering approaches are k-means (Lloyd 1982), spectral
clustering (Ng et al. 2002), hierarchical clustering (Ward Jr 1963), DBSCAN (Ester et al. 1996),
OPTICS (Ankerst et al. 1999), and Affinity propagation (Frey and Dueck 2007). A comparison of
those approaches is shown in Table 5.
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Table 5 Clustering Algorithms

Algorithms Parameters Scalability Metrics Used Use Case
K-means K Large N Euclidean Even cluster size, flat
Medium K distance geometry
between points
Spectral K Medium N Graph distance Even cluster size, non-
Clustering Small K flat geometry
DBSCAN maximum Large N Distances Uneven cluster sizes,
distance, number | Medium K between nearest | non-flat geometry
of neighbors points
OPTICS maximum distance | Large N Any distances Uneven cluster sizes,
(optional), number | Large K between points | non-flat geometry,
of neighbors variable cluster density
Hierarchical | K or linkage Large N Any distances Many clusters possibly
Clustering distance threshold | Large K between points | connectivity constraints
Affinity Damping and Small or Graph distance | Many clusters, uneven
Propagation | sample preference | Medium N cluster size, non-flat
geometry

*K: number of clusters, and N: number of data samples.

K-means clustering is formulated as an optimization problem. It aims to find k cluster centers
that minimize the sum of square distances within clusters and assigned data samples to the

nearest cluster center. The optimization problem is known as NP-hard, and we often refer to the
approximation method, Lloyd’s algorithm (Lloyd 1982), as the k-means algorithm. Variations of k-

means include k-medoids, k-medians, k-means++, and fuzzy c-means. K-means scales well to
large datasets and has been used in a wild range of applications. The standard formulation of

the k-means clustering is defined by

N
. , 2
argcmm; Lr,lgcl”xl ;1]-”

where C = {uj}ﬁ-‘zl is a set cluster center and x; is the ith data sample. When applying the k-
means-type algorithms, the following issues should be considered:

o They require users to specify the number of clusters (K) in advance, which is considered
one of the major drawbacks. A searching processing or domain knowledge can help find
the most appropriate k.

e The performance highly depends on the initialization of the k centers, which is often
alleviated by running the computation several times or choosing the initial centers to be
distant from each other (k-means++).

o The Euclidean-distance-based clustering criteria assumes that clusters are convex and
isotropic, which responds poorly to clusters with elongated or irregular shapes.

e When dealing with high-dimensional data, running dimensionality deduction approaches
prior to clustering can mitigate the ‘cure-of-dimensionality’ problem and speed up the
computation (e.g., spectral clustering).
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Spectral Clustering (Ng et al. 2002) performs dimensionality reductions using the eigenvalues
and eigenvectors of the similarity matrix of the data before clustering. The similarity matrix
quantitatively measures the relative similarity of each pair of data samples. It is computationally
efficient if the similarity matrix is sparse. Spectral clustering requires the number of clusters to
be specified in advance. It works well for medium size datasets and a small number of clusters.

DBSCAN (Ester et al. 1996) and OPTICS (Ankerst et al. 1999) are two density-based clustering
approaches, in which clusters are viewed as areas of high density and are separated by sparse
areas of outliers or noise samples. The central concept in DBSCAN is the core samples, which
are samples in high density areas. There are two parameters to the algorithm, the radius of a
neighborhood e¢ and the number of data sample minPts in a neighborhood to be considered core
points. DBSCAN has three major steps: (1) selecting core points. A data point p is labeled as a
core point if at least minPts points are within distance «¢ of it; (2) finding directly reachable points.
A point q is directly reachable from a core point p if q is within distance € of p. A point q is
reachable from p if there is a path that starts at p and ends at q. Any two adjacent points should
be directly reachable along the path; and (3) a cluster is formed by any core point and all its
(directly) reachable points. All points not reachable from any core points are labeled as outliers
or noise.

The major advantages of DBSCAN are threefold: (1) it does not require the number of clusters
to be specified, as opposed to k-means and spectral clustering; (2) it can find clusters with
arbitrary shapes, whether they are convex or nonconvex; and (3) it is robust to outliers. Note
that if the dataset has large differences in density, it can be difficult to determine a meaningful €
for DBSCAN. OPTICS aims to solve this weakness by removing the need to choose the
distance threshold €. The data points in the dataset are (linearly) ordered such that the spatially
closest points become neighbors in the ordering. Strictly speaking, the distance threshold ¢ is
not needed in OPTICS, but one can set it to speed up the algorithm.

Hierarchical Clustering (HC) builds clusters by recursively partitioning data samples using
merging or splitting strategies (Rokach and Maimon 2005). In the merging strategy, each data
sample starts in its own cluster, and cluster pairs are recursively merged. The splitting strategy
starts putting all data samples in one cluster and performs splits recursively. HC introduced the
linkage criterion to decide which cluster pairs should be merged or where a cluster should be
split. The linkage criterion defines the dissimilarity and distance between sets of data samples.
Popular linkage criteria are Ward’s (Ward Jr 1963), complete linkage, single linkage, and
average linkage. HC requires one to specify the number of clusters to find the linkage distance.
The recursive merging or splitting can terminate if enough clusters have been produced or all
between-set distances are larger than the threshold.

The distinct advantage of HC is that any distance metrics (e.g., Euclidean distance, squared
Euclidean distance, Manhattan distance, and Hamming distance) can be used in the linkage
distance, which broadens the applications of HC to data with different formats. For numeric
data, the most common metrics are the Euclidean distance and squared Euclidean distance,
while the Hamming distance is more appropriate for text or other non-numeric data. In addition,
HC perform all operations using the distance matrix, and the original data are not required in the
clustering process. The standard HC algorithms calculated all distances between points from
two different sets, which is computationally expensive and hinders the application of HC
algorithms to big datasets. One can solve this issue by specifying a connectivity matrix to define
the neighborhood structures.
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Affinity propagation (AP) (Frey and Dueck 2007) aims to identify the exemplars that are
representative of other data samples by using two message-passing steps between data points.
Clusters are constructed by finding data samples that share the same exemplar. The first
category of message is the responsibility (i, k), which accumulates evidence that data sample k
should be the exemplar for sample i. The second message is the availability a(i, k), which
accumulates the evidence that data sample i should choose sample k to be its exemplar.

r(i,k) and a(i, k) are updated iteratively until there are either no changes over a number of
iterations or some predefined number of iterations is reached. The exemplars are chosen as
those whose “responsibility + availability” for themselves is positive.

AP does not require the number of clusters to be specified or estimated in advance. However,
two parameters, the damping factor (1) and preference, should be determined. The damping
factor is used in the message updating steps to avoid numerical oscillations, and the preference
value specifies the preference of data sample to be chosen as an exemplar. The final number of
clusters will be influenced by the preference. The main disadvantage of AP is its complexity. It
has a time complexity and memory complexity of the order O(N2T) and of the order of O(N2),
respectively, where N is the number of data samples and T is the number of iterations. It is most
appropriate for small to medium sized datasets.

3.2.2.2 Dimensionality Reduction

Dimensionality Reduction transforms high-dimensional data to low-dimensional
representation that preserves meaningful properties of the original data. It is often used as an
intermediate step to remove redundant features and noisy data to enable a better performance
of other data analysis tasks (e.g., data classification and visualization). There are two major
benefits to dimensionality reduction: (1) it helps some algorithms to work more efficiently and
improve performance after the redundant, irrelevant, and noisy data are removed; and (2) it
allows us to visualize patterns of high-dimensional data. Dimensionality reduction approaches
are commonly divided into two categories: linear and nonlinear approaches (Van Der Maaten et
al. 2009). Table 6 presents several popular Dimensionality Reduction algorithms.

Table 6 Dimensionality Reduction Algorithms

Linear/Non-

Algorithms linear Parameters Computation Memory
PCA Linear none 0(D?) 0(D?)
Kernel PCA Non-linear kernel function O(N?) O(N?)
Isomap Non-linear K O(N?®) O(N?)
Local linear Non-linear k O(pN?) | O(pN?)
embedding
(LLE)

Self-organizing | Non-linear number of neurons, weight / /
map vectors, iteration limit,
correction step
Autoencoders Non-linear Network architecture and / /
weights
Learning rate

*k is the number of nearest neighbors, D is the dimensionality of the input data, and N is number
of data samples. ‘/’ denotes not applicable.
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Principle components analysis (PCA) and Kernel PCA: PCA transforms the data to a lower-
dimensional space so that the variance of the data is maximized. PCA attempts to find a linear
mapping M that maximizes the following cost function

trace(MTSM)

where S is the scatter matrix (zero-mean) or the covariance matrix of the data samples. Let D be
the dimensionality of the original data samples. M is constructed by using the S’s d principal
eigenvectors that correspond to the largest d (d < D) eigenvalues. The low-dimensional data
representation y = (y;,y;,+,y4)" of a data sample x = (x;,x,---,xp)T is computed by

y=xTM

PCA is still the most popular linear approach for dimensionality reduction. However, when we
apply PCA, several practical issues should be considered: (1) PCA is sensitive to the scaling of
the features, and we need to scale each feature by its standard deviation; (2) PCA captures linear
correlations between features, but it may fail if the potential correlation is nonlinear; and (3) the
size of the covariance matrix (D x D) is proportional to the dimensionality of the data samples (D).
Consequently, it might be not be feasible to compute the eigenvectors for very high-dimensional
data if the first few components do not explain a large proportion of the total variability in the data.
Kernel PCA (Schdlkopf et al. 1998) extends PCA to achieve non-linear dimensionality reduction
by using the “kernel trick.” It constructs the kernel matrix of data points using a kernel function
k(x;, x;) and computes the eigenvectors of the kernel matrix, rather than those of the scatter
matrix. The size of the kernel matrix is N X N, where N is the number of data samples. Therefore,
a large data set will lead to high memory complexity. One way to solve this is to perform
clustering on the dataset first and calculate the kernel matrix using the cluster centers.

Isomap (Tenenbaum et al. 2000) nonlinear dimensionality reduction is an approach that aims to
preserve pairwise geodesic distances between data samples. The geodesic distances are
computed by constructing a neighborhood graph G, in which every data point xi connects its k-
nearest neighbors in the dataset. The shortest path of two points in the graph is used to estimate
the geodesic distance. All geodesic distances between every data pair are used to build a
geodesic distance matrix. The low-dimensional representations of the data points are computed
by applying multidimensional scaling algorithm. The Isomap performance is sensitive to the
chosen k. If k is large, Isomap will be vulnerable to the short-circuit error because the geodesic
distance calculation propagates the error to the whole distance matrix. On the other hand, if k is
too small, G will be too sparse to calculate the geodesic distance accurately.

Local linear embedding (Roweis and Saul 2000) also constructs graphical representations of
data samples, while aiming to retain only the local properties of the data. LLE algorithms includes
three major steps: (1) it finds a set of the nearest neighbors {x;}*_, of each point x; (2) it computes
a set of weights {w;}¥_,that best describes a data sample as a linear combination of its neighbors
x =YK, w;x;; and (3) it uses an eigenvector-based optimization to find the low-dimensional
embedding y, such that each data sample is still described with the same linear combination y =
Yk  w;y;. In contrast with Isomap, LLE includes a faster optimization when implemented to take
advantage of sparse matrix algorithms and is less sensitive to the short-circuit error. However, it
handles non-uniform sample densities poorly because the weights may drift drastically as regions
differ in sample densities.
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Self-organizing map (Kohonen 1982, Kohonen and Honkela 2007) is an artificial NN-based
approach that maps high-dimensional input data to a finite 2D map space. The map space
contains neurons than are arranged in a regular hexagonal or rectangular grid. Each neuron is
assigned a weight vector that has the same dimension as input data samples. The training
process updates weight vectors toward the input data without spoiling the topology. The self-
organizing map training uses competitive learning and includes three steps: (1) it calculates the
Euclidean distance between the input data and all weight vectors; (2) it finds the best matching
unit or neuron (BMU) whose weight vector is most similar to the input; and (3) it updates the
weight vectors of the neurons in the neighborhood of the BMU using

wi@) = wt(@) + h(w, i, t) - a(s) - (x(t) — wt(i))

where t is the iteration index, u is the index of the BMU, and i is the index of a neuron in BMU’s
neighborhood. a(s) is a scalar factor that defines the size of the correction, and its values
decreases with the step index t. wt(i) is the weight vector of the ith neuron at iteration t. h(u, i, t)
is the neighborhood function. It is equal to 1 when i=u, and its value decreases when the distance
between the neurons | and u increases. The above three steps will be repeated until it reaches
the iteration limit. After the training, we can map input data samples to a 2D coordinates of the
BMUs.

Autoencoders are feedforward neural networks that aim to learn a low-dimensional
representation (encoding) for a dataset by training the network to ignore signal “noise” or
redundancies. It includes two main parts (see Figure 6): an encoder that maps the input into the
low-dimensional feature vector (code) and a decoder that reconstructs the original input.
Autoencoders are often trained with only a single layer encoder and a single layer decoder, but
using deep encoders and decoders can reduce the computation cost and yield better
compression (Goodfellow et al. 2016). Figure 6 shows the architecture of an autoencoder with
seven hidden layers. The rectangles illustrate the feature maps generated in the hidden layers.
The code y is the output of the most internal layers and is the low-dimensional representation of
X. X is reconstructed data of x using the code y.

Encoder . Decoder

W Wg wy wg !
' —» Output X

Input x

4 :9po)
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Figure 6 Architecture of an Autoencoder with Seven Hidden Layers
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3.3 Al/ML Algorithms for Computational Predictive Capabilities

Section 3.2 introduces the most popular Al/ML algorithms in nuclear science and engineering.
This section focuses on Al/ML algorithms that are proper for developing advanced
computational predictive capabilities. The algorithm selection for a successful nuclear
application depends on two major factors: (1) the nature and objectives of the task, e.g.,
classification or clustering analysis; and (2) data availability and quality. For instance, if the
application is to detect cracks of reactors using surface images, the task can be viewed as a
classification problem that classifies each image pixel into two categories: crack and non-crack.
Therefore, we can select classification algorithms from the supervised learning category, e.g.,
CNNs. If the task requires the explainability of the algorithm to demonstrate the reasoning
process, DTs, RFs and BNs might be better choices. In practice, the two above factors can be
used to narrow down the searching range; however, we do not have a generic principle to
determine the perfect algorithm for a specific task. The best strategy is to evaluate and compare
different algorithms using extensive experiments along with specific physical phenomenon
considerations, and the final algorithm(s) should be determined by using values of quantitative
metrics, e.g., accuracy, precision, and recall rate, on new datasets.

In nuclear science and engineering, Al/ML approaches have been widely applied to enhance
equipment reliability, reduce radiation exposure to personnel, assist with decision making and
optimize maintenance schedule in in three major areas: (1) nuclear power plant health and
management, (2) nuclear operations and controls, and (3) radiation protection. A list of example
use cases and algorithms are shown in Table 7.

Table 7 Example Use Cases and Algorithms

Application Area Use Case Algorithms

Plant health and System behavior prediction | BNs, NB, ANNs, SVM

management Severe accident ANNSs, DTs, BNs
classifications
Functional failure of ANNSs, Clustering algorithms, e.g., K-
systems means
Crack detection CNNs
Equipment monitoring CNNs, ANNS, BNs,

Nuclear operations | Anomalous event detection | AEs, SVM, ANN, DTs

and controls Unattended operations DTs, BNs

Detection and response to CNNs, ANNs
degraded or failure

conditions
Radwaste management CNNs

Radiation Radionuclide identification ANNs, SVM

protection Special nuclear material ANNSs, GPs, NB, Clustering algorithms
identification
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3.4 AIl/ML Languages and Tools

Python, C++, and R are among the most popular ML programming languages. Python is the
fastest-growing programming language in recent years with its readability and good structure. It
is a general purpose language but has high-quality ML and data analysis libraries and is
suitable for ML model development. C++ is a flexible, object-oriented, middle-level language
based on the C programming language. It can directly interact with hardware under real-time
constraints and can be used for parallel computing. R is a top choice for many data scientists as
a language and environment for statistics, visualization, and data analysis. R libraries provide
numerous statistical and graphical techniques and can also be extended with R machine
learning packages.

There are extensive and ever-evolving ML tools, platforms, and software for data analytics and
visualization, e.g., Python Pandas, NumPy, KNIME, TensorFlow, Pytorch, Accord.net, Google
cloud AutoML, and Jupyter notebook. There are also commercial off-the-shelf software such as
SAS and MATLAB that can be used to apply ML in data analytics. These off-the-shelf software
include the tools and functions that can handle big data and make ML accessible with prebuilt
functions, extensive toolboxes, and specialized apps for classification, regression, and
clustering. And the results from these software are generally trusted in the numerical analysis
research community.
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4 AN OVERVIEW OF APPLICATIONS OF ADVANCED
COMPUTATIONAL TOOLS AND TECHNIQUES IN
NUCLEAR INDUSTRY

Advanced computational capabilities have been required, developed, and deployed in various
fields of the nuclear industry, such as reactor system design and analysis, plant operation and
maintenance, and nuclear safety and risk analysis. In the most-recent decade, research in
nuclear engineering has produced a large amount of experimental and numerical data, which, if
measured in petabytes, is perhaps several orders of magnitude more than all accumulated data
in the previous history of the industry. However, there is still a severe lack of data to validate the
multiphysics, multiscale capability because very little experimental and plant data are directly
relevant to validate high-fidelity mechanistic models and codes, particularly when advanced
reactor designs are involved. The enormous progress in science, technology, and engineering
in past decades brings opportunities to help deal with these proposed issues. Some capabilities
that are enabled in this environment have been summarized in (Dinh et al. 2013) which are still
instructive and informative today:

¢ ‘“Increasing affordability of advanced experimental and diagnostic techniques for the
experimentation under some high-temperature high-pressure conditions of interest to
reactor applications.” It provides a technical basis for generating necessary but extreme
experimental data for validation and uncertainty quantification purpose.

¢ “Advancement of data science, including statistical analysis methods and tools for
processing of multi-field, multi-dimensional heterogeneous datasets, data mining, pattern
recognition, data aggregation, and data assimilation.”

o “Methods and tools for sensitivity analysis, uncertainty quantification, model calibration
and validation, and design of experiments to maximize the data’s informative value.”

¢ “Advanced methods in computational physics that enable effective and accurate
solutions for complex non-linear multi-scale problems.”

¢ “Advancement in computer science and software engineering that provides methods and
tools to accommodate increasingly and necessarily sophisticated software architectural
requirements in a new modeling framework (e.g., flexible data-model integration).”

o “Affordable data storage and computational power needed for data processing,
sensitivity and uncertainty analysis, model calibration and time- and space- resolved
high-fidelity simulations.”

¢ “Community-wide experience, shared best practice, standards development and
accumulative knowledge base from using, innovating, and pushing existing methods and
tools in nuclear industry to the limit, particularly driven by common goals in nuclear
reactor safety.”

This section presents an overview of Al/ML applications in the nuclear industry and academic
research in these fields, evaluates the potential applicability of Al/ML techniques in improving
advanced computational capabilities, and provides insights on how to utilize Al/ML techniques in
simultaneously improving plant safety and enhancing regulatory oversight.
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4.1 Al/ML in Reactor System Design and Analysis

Al/ML techniques have been widely introduced and applied in the design and analysis of reactor
systems, including reactor thermal hydraulics, reactor physics, and reactor system performance.
Part of these efforts after 2010 are listed and reviewed in Table A-1 of Appendix A. The main
data types are structured experimental data or numerical data generated by simulation codes or
simulators. These datasets are good supplements to plant operating experience as key
parameters and variables in important reactor systems, and components can be simulated
using different simulation codes or observed on different tests via full-scaled or scaled-down
facilities.

For reactor system design and analysis, a majority of Al/ML applications are focused on the
model and code uncertainty analysis and closure model development. ML-based methods have
emerged as a valuable approach to aid in the development and application of thermal-hydraulic
or neutronic methods. ML provides new avenues for dimensionality reduction and reduced-order
modeling in fluid mechanics or neutronics by providing a concise framework that complements
and extends existing methodologies. In past decades, many simulation codes have been
developed based on various empirical correlations and numerical algorithms for the physics and
phenomena existing in nuclear power plants. Different supervised and unsupervised ML/AI
algorithms, such as ANN (Bao et al. 2021), deep learning (Chang and Dinh 2019), SVM (Trontl
et al. 2008), GP (Pastore et al. 2017), DT (Ling and Templeton 2015), RF, Bayesian neural
network (BNN) (Utama et al. 2016), Cascade Fuzzy NNs (Choi et al. 2016), and Kernel
Regression (Tracey et al. 2013), have been widely applied for different research and application
objectives in reactor system design and analysis, as listed in Table A-1 (most of them have also
been described in Section 3).

These ML/AI algorithms are suitable for processing and analyzing structured data; however, the
main technical challenge comes from their “black box” nature, which brings in a new uncertainty
source and makes it difficult to explain and trust Al/ML techniques when applied to nuclear
research or in the industry. Also, the “superpower” of Al/ML techniques to capture the features
of training data may lead to overfitting for the predictions.

4.2 AIl/ML in Plant Operation and Maintenance

In recent decades, Al/ML techniques have also been investigated in supporting and optimizing
nuclear power plant operations and maintenance. Some of recent efforts are summarized in
Table A-2 of Appendix A. (Lin et al. 2021a) developed an autonomous management and control
system for advanced reactors to mitigate plant anomalies and accidents by using a feedforward
neural network (FNN) and RNN. Similarly, other ML/Al techniques or advanced statistical
methods, such as Bayesian network (Cetiner and Ramuhalli 2019), Answer Set Programming
(Hanna et al. 2020a), and LSTM (Lee et al. 2018a), were also demonstrated and applied to the
development of advanced control systems to support the operators’ decision making. Owing to
their accurate, real-time predictions, these advanced Al-guided systems are able to help
operators understand the current plant status and make optimal mitigation planning for specific
plant anomalies and hazardous events. Besides, Al/ML techniques, particularly ANN in recent
years, are frequently deployed for various (semi)automatic operation and controls for different
purposes, such as a load following operation (Khajavi et al. 2002), smart core controller
(Boroushaki et al. 2003), alarm processing system (Park and Seong 2002), symptom-based
diagnostic system (Vinod et al. 2003), real-time nuclear power plant monitoring (Nabeshima et
al. 2012), plant abnormality identification (Ayo-Imoru and Cilliers 2018), and component
detection (Gao et al. 2020).
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Besides, researchers developed various Al/ML-aided methods for cybersecurity studies. (Zhang
et al. 2020) developed a cybersecurity solution platform using an Al/ML hub, including k-nearest
neighbor, DT, bootstrap aggregating, RT, auto-associative kernel regression, and PCA.
(Gawand et al. 2017) developed and tested a cyber-physical system via least squares
approximation. (Poolsappasit et al. 2012) and (Shin et al. 2017) utilized Bayesian methods for
dynamic security risk management and evaluation. (Lee and Huh 2019) applied unsupervised
ML (classification), reinforcement learning for a plant security measure.

Most of these Al/ML applications are performed based on simulated data since plant operating
data is rarely available; however, these robust, accurate, and fast computational capabilities
enabled by Al/ML techniques are very instructive and informative for realizing autonomous plant
control and management for reducing cost and improving reactor resilience. However, most of
these Al/ML-aided techniques are developed for the safety-significant or safety-related 1&C of
nuclear power plants; there are strict regulatory requirements for their licensing process. The
trustworthiness, transparency, and robustness of these Al/ML-aided techniques should be
identified, analyzed, and evaluated in future research.

4.3 AI/ML in Nuclear Safety and Risk Analysis

Table A-3 of Appendix A lists recent studies that developed or applied Al/ML approaches for
nuclear safety and risk analysis, primarily for the PRA of nuclear power plants. Unlike the AlI/ML
applications in reactor design & systems analysis and plant operation & maintenance, Al/ML
applications in nuclear safety and risk analysis are performed for both structured data and
unstructured free-text data. (Siu et al. 2013) discussed the role that content analytics and text
analytics plays in supporting regulatory decision making, and the NRC’s plan to initiate scoping
studies to explore the application of advanced data analytics techniques to support PRA
activities. To recognize free-text data and extract implied information inside ML algorithms such
as NLP, supervised and unsupervised ML is applied. (Zhao et al. 2019) utilized NLP to extract
the causal relationships among failure-contributing factors from free-text reports. (Moura et al.
2017) applied unsupervised ML (clustering) to validate risk studies using information from past
major accidents. (Mandelli et al. 2018) developed a data-driven method for cost risk analysis via
supervised ML (classification).

Another difference between these ML/AI applications in nuclear safety and risk analysis is that
Al/ML techniques are not only directly applied for model development or uncertainty
quantification but are embedded in complicated frameworks for different purposes. (Christian et
al. 2020) developed a data-driven framework for the estimation of pressurized-water reactor
(PWR) coping time, wherein the GP, SVM, k-nearest-neighbor classifier and regressor,
Shepard’s method, and the spline interpolation method can be selected and applied. (Kim et al.
2020a) introduced dynamic Bayesian network and clustering methods for the risk assessment of
dynamic systems. (Park et al. 2017) extracted the relative importance of performance shaping
factors for human reliability analysis using CART. (Zou et al. 2018) developed a data mining
framework, combining three statistical approaches (i.e., correlation analysis, cluster analysis
and association rule mining) to identify intrinsic correlations among human factors. (Maljovec et
al. 2015) introduced unsupervised ML (clustering) to analyze simulation-based PRA data. (Di
Maio et al. 2016b) applied semi-supervised ML to post-process the multi-valued dynamic
scenarios.
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In 2020, (Pence et al. 2020) reviewed existing studies that developed and/or applied ML
approaches for the PRA of nuclear power plants, which highlighted following results:

o “There are a limited number of studies using machine learning to quantify PRA model
elements, and none of the studies included organizational factors....... The application of
machine learning approaches for PRA primarily analyzed physical phenomena, where
machine learning was used to cluster the simulation outcomes. In these studies, the data
are not historical events but instead are the results of simulation codes; therefore, the
main challenge is dealing with large volume of data rather than processing
heterogeneous data.”

o “Several studies leveraged the Risk Analysis and Virtual Environment (RAVEN)
computational platform to operationalize machine learning for time-dependent data
resulted from simulations that were equipped with sampling and uncertainty analysis
(e.g., ADAPT/RELAP/RAVEN (Mandelli et al. 2013a)).”

¢ Among the PRA-oriented Al/ML studies, most of these efforts used historical event data
rather than results of simulation codes, such as(Young et al. 2004, Maljovec et al. 2015,
Siu et al. 2016, Christian et al. 2020, Ham and Park 2020). “There are limited studies
using text mining approaches for PRA. Additional research is needed to compare the
performance evaluation of machine learning techniques for unstructured data to justify
the best selection for PRA.”

These highlights are instructive for the NRC to guide and initiate future applications of advanced
computational tools and techniques including Al/ML in nuclear safety and risk analysis,
particularly in PRA. ML-based methods have recently emerged as a valuable approach to aid
the development and application of methods for solving different technical issues in the nuclear
industry. These applications have constructed very diverse and solid technical bases for
improving the use of Al/ML in dealing with numerous technical issues. The rapid progress of the
AI/ML techniques in other industrial fields also provides very valuable lessons to similar
problems. However, due to Al/ML uncertainty, the insufficiency of data quality and quantity, and
lack of cognition about how to efficiently incorporate knowledge and data, challenges of
adapting Al/ML techniques still exist. New perspectives and advanced frameworks should be
proposed for different purposes in nuclear engineering. Particularly, the “black box” nature of
ML/AI brings challenges with respect to the trustworthiness and transparency of the results in
nuclear industry. This challenge makes the deployment of ML/Al-guided applications difficult to
satisfy the regulatory requirements of NRC.
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5 INSIGHTS ON TASK 1 QUESTIONS

This section provides the insights for the three questions under the purpose of Task 1.

Question 1 for Task 1: What types of advanced computational tools and techniques may
be employed, how would they work, and how effective would they be expected to be?

Advanced computational tools and techniques include advanced statistical algorithms (e.qg.,
Bayesian methods), Al/ML algorithms (e.g., ANN, SVM, and RF), and relevant hybrid
applications (e.g., physics-informed machine learning). All of them are promising to be deployed
in the nuclear industry. These advanced computational tools and techniques, particularly ML/AI,
have been used in a wide variety of applications, such as self-driving cars and computer vision,
where it is difficult or unfeasible to develop conventional algorithms using human knowledge to
perform the needed tasks. With excellent performance in various fields, different types of
advanced computational tools and techniques reviewed in Section 3 can be applied in nuclear
industry for different scopes and purposes. While Table 7 in Section 3.3 provides a list of
example use cases and advanced computational techniques in different areas, there is no
generic principle to determine the perfect technique for a specific task. Instead, different
techniques should be evaluated and compared with extensive experiments and quantitative
metrics such as accuracy, precision, and recall rate. A successful nuclear application of
advanced computational tools and techniques will depend on two maijor factors: (1) the nature
and objectives of the task, e.g., classification or clustering analysis, CNNs or RFs, BNs; and (2)
data availability and quality. In practice, these two factors can be used to narrow the selection of
advanced techniques for a specific task.

On the other hand, there are some basic principles to remember when applying the advanced
computational tools and techniques in nuclear OpE in order to ensure the trustworthiness,
transparency, and explainability of the predictions from the tools and techniques. For instance,
although ML can provide satisfactory predictive capabilities, machine-learning programs
sometimes fail to deliver expected results. Potential reasons include lack of suitable data,
unsuitable process of training data, insufficient training and selection of unsuitable algorithms.
Uncertainty always exists in ML predictions for unknown values or unfamiliar problems. This
uncertainty may lead to unexpected results which can lead to an inappropriate suggestion to
plant operator for diagnosis and prognosis of plant anomalies. Particularly, the “black box”
nature of Al/ML brings challenges to the trustworthiness and transparency of applications in
nuclear OpE. These challenges make the deployment of ML/Al-guided applications difficult to
satisfy the regulatory requirements. Accordingly, before the advanced computational tools and
techniques being deployed in nuclear industry, “use cases” of ML/AI applications in nuclear
industry must be carefully developed with the results being validated (e.g., compare the results
to those from traditional methods when proper) in order to improve regulator’s confidence in
new tools/techniques and meet various regulatory requirements.

41



Question 2 for Task 1: What aspects of the advanced tools and techniques could
contribute to our increased understanding of safety and risk?

Al/ML approaches have been applied in the nuclear industry to enhance equipment reliability,
reduce radiation exposure to personnel, assist with decision making and optimize maintenance
schedule. There are many aspects where advanced computational tools and techniques could
contribute to our increased understanding of safety and risk. For example,

1. Advanced computational tools and techniques are capable of recognizing and
processing both structured data and unstructured data (e.g., free-text data). They can
extract both explicit and implied information from unstructured data. Such capability
could facilitate the usage of more data sources and provide a larger quantity of raw data
for PRA parameter estimation.

2. Advanced computational tools and techniques are capable of training/enhancing data-
driven models and reflecting the relationships between model inputs and outputs, even
without knowing the underlying physics. Such capabilities could make it feasible to
measure the impacts of fluctuations of potential influencing factors on PRA parameters
(such as testing the impact of room temperature on component unreliability) or PRA
outputs, which could facilitate uncovering previously unknown (or not explainable using
physics) risk-contributing factors.

3. Advanced computational tools and techniques are capable of developing predictive
models for key physics in NPPs or developing surrogate models for computationally-
expensive simulations of system physics. Such capabilities could help satisfy PRA
needs, such as, simulating accident progression in dynamic PRA, simulating component
failure mechanism in classical PRA, or examining the impacts of uncertainties in deeper-
level physical parameters on PRA outputs, associated with running a large number of
physics simulations within an acceptable time period.

4. Advanced computational tools and techniques can be applied in supporting and
optimizing nuclear power plant operation and maintenance, where there are knowledge
gaps and technical issues. They are capable of handling high-volume, high-frequency
data such as sensor data. Combining this capability and the above-mentioned model-
training capability, they could facilitate construction of advanced diagnostic (such as
detecting failure cause) and prognostic models (such as predicting remaining useful life),
solving these models based on high-volume, high-frequency data, and generating real-
time diagnostic and prognostic results. With these capabilities, they could also facilitate
integrating micro-level prognostic models with PRA (such as constructing a model
reflecting the relationship between component remaining useful life and component
failure probability) and updating PRA outputs in real time.

5. Besides the above-mentioned capabilities that could help expand the modeling scope
and enhancing the modeling resolution of PRA, advanced computational tools and
techniques are capable of automating manually-conducted analyses. Such capability
could help improve the efficiency of model development (such as better visualizing raw
data or easing event tree and fault tree construction) and parameter estimation (such as
accelerating raw data processing) of PRA.

Another thought is whether there needs to be a fundamental shift away from “failures” and more
on “success” in PRA. In other words, more focus on reliability than P(failure) as there is much
more information on working operation and much less on failures (and why things fail). With this
potential shift, advanced computational tools and techniques could play a significant role to deal
with enormous “success” data as well as compare the results from the “success” data to those
from the “failure” data.
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Question 3 for Task 1: What types and quantities of information would be needed, in
concert with the new tools and techniques, to generate safety and risk implications?

To ensure accurate and acceptable predictive capabilities for key plant OpE parameters and
behaviors, the following information are needed to reduce the uncertainty of the prediction
results and provide meaningful insights to decision makers when assessing safety and risk:

1.

2.
3.
4

Clear description and sufficient understanding of the task, including the expected outputs
and the key metrics of safety and risk significance.

Suitable and sufficient data for the training of AI/ML models.

Suitable methods for training data processing.

Sufficient knowledge repository for target (e.g., physics, system) of interest and the
approaches to validate the results.
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6 A SURVEY ON THE ROLE OF ARTIFICIAL INTELLIGENCE TOOLS IN
U.S. COMMERCIAL NUCLEAR POWER OPERATIONS

On April 21, 2021, the NRC published a Federal Register Notice (FRN) NRC-2021-0048 (U.S.
Nuclear Regulatory Commission 2021) containing an 11-question survey to request public
comments on the current state of commercial nuclear power operations relative to the use of Al
and ML tools as well as the role of Al/ML tools in U.S. commercial nuclear power operations.
The survey results were planned for use in enhancing the NRC’s understanding of the short-
and long-term applications of Al and ML in nuclear power industry operations and management,
as well as potential pitfalls and challenges associated with their applications. The survey had
been open for one month until May 21, 2021. Twelve participants (individuals or organizations)
responded to this survey and submitted their written-form responses.

This section provides a summary of the survey responses as well as the conclusions and
insights derived from the survey. Section 6.1 presents the 11 survey questions. Section 6.2 lists
the 12 survey participants that provided responses to the NRC. Section 6.3 provides a survey
question-response matrix for the explicit responses of each survey question by the participants
and the detailed responses to each survey question. Section 6.4 provides the insights obtained
from the survey responses.

6.1 Survey Questions

For reference, the 11 survey questions in FRN NRC-2021-0048 are listed below:

1. What is status of the commercial nuclear power industry development or use of Al/ML
tools to improve aspects of nuclear plant design, operations or maintenance or
decommissioning? What tools are being used or developed? When are the tools
currently under development expected to be put into use?

2. What areas of commercial nuclear reactor operation and management will benefit the
most, and the least, from the implementation of AI/ML? Possible examples include, but
are not limited to, inspection support, incident response, power generation,
cybersecurity, predictive maintenance, safety/risk assessment, system and component
performance monitoring, operational/maintenance efficiency, and shutdown
management.

3. What are the potential benefits to commercial nuclear power operations of incorporating
AI/ML in terms of (a) design or operational automation, (b) preventive maintenance
trending, and (c) improved reactor operations staff productivity?

4. What AlI/ML methods are either currently being used or will be in the near future in
commercial nuclear plant management and operations? Example of possible Al/ML
methods include, but are not limited to, artificial neural networks (ANN), decision trees,
random forests, support vector machines, clustering algorithms, dimensionality reduction
algorithms, data mining and content analytics tools, gaussian processes, Bayesian
methods, natural language processing (NLP), and image digitization.

5. What are the advantages or disadvantages of a high-level, top-down strategic goal for
developing and implementing Al/ML across a wide spectrum of general applications
versus an ad-hoc, case-by-case targeted approach?

6. With respect to Al/ML, what phase of technology adoption is the commercial nuclear
power industry currently experiencing and why? The current technology adoption model
characterizes phases into categories such as: the innovator phase, the early adopter
phase, the early majority phase, the late majority phase, and the laggard phase.
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6.2

7.

10.

11.

What challenges are involved in balancing the costs associated with the development
and application of Al/ML, against plant operational and engineering benefits when
integrating Al/ML applications into operational decision-making and workflow
management?

What is the general level of Al/ML expertise in the commercial nuclear power industry
(e.g., expert, well-versed/skilled, or beginner)?

How will Al/ML effect the commercial nuclear power industry in terms of efficiency, costs,
and competitive positioning in comparison to other power generation sources?

Does AlI/ML have the potential to improve the efficiency and/or effectiveness of nuclear
regulatory oversight or otherwise affect regulatory costs associated with safety
oversight? If so, in what ways?

Al/ML typically necessitates the creation, transfer and evaluation of very large amounts
of data. What concerns, if any, exist regarding data security in relation to proprietary
nuclear plant operating experience and design information that may be stored in remote,
offsite networks?

Survey Participants

A total of 12 participants responded to FRN NRC-2021-0048, including Florida Power & Light
Company (FPL), Xcel Energy (Xcel), EPRI, NEI, Westinghouse Electric Company LLC (WEC),
Framatome Inc., X-energy, Blue Wave Al Labs, and a few other consulting companies or
anonymous participants. Table 8 lists the survey participants as well as the NRC Agencywide
Documents Access and Management System (ADAMS) access numbers for the comments they
provided.

Table 8 A List of Survey Participants

No. Participant Response Accession Number
1 Anonymous ML21113A083
2 Southern Research Institute (SRI) ML21126A011
3 FPL ML21139A103
4 EPRI ML21141A184
5 Xcel ML21141A185
6 ForHumanity ML21145A363
7 Blue Wave Al Labs (Blue Wave) ML21145A364
8 X-energy ML21145A366
9 Insight Enterprises, Inc. (IEl) ML21145A367
10 NEI ML21145A369
11 Framatome Inc. (Framatome) ML21153A056
12 WEC ML21202A180
6.3 Survey Responses

This section provides the detailed survey responses to each survey question by participants.
Table 9 shows a matrix of survey question and response by participants.
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Survey Question 1

Survey Question 1 asks the status, tools, and the expected launch timeline of the commercial
nuclear power industry development or use of Al/ML tools. Nine of the 12 participants
responded to this question, and their responses are summarized in Table 10.

Table 10 Summaries of Survey Responses to Survey Question 1

Participants Summary of Responses to Survey Question 1

Currently using Al/ML to improve several aspects, including work
management, the corrective action program (CAP), and equipment reliability.

FPL . . : : ) N
Several ongoing projects in various stages of development; some applications
have been in place for over a year.

Beginning to leverage cloud-based technology to create Al/ML applications.

Xcel The first application currently under development is the CAP Intelligent

Advisor.

The first deployment is anticipated in late 2021 on the CAP support.
ForHumanity | Not directly relevant to the question.

Believes the nuclear industry is in the early adopter phase.

Recommends several areas for Al/ML applications in both existing reactor
fleet and next generator reactor designs.

Currently working with utilities on using Al for fuel cycle management and
predictive maintenance; this work has been going on for the last three years.
Two tools have been developed, including the MCO.ai to predict and manage
moisture carryover and the Eigenvalue.ai to predict boiling water reactor
(BWR) eigenvalue evolution for future fuel cycles.

Both tools have been utilized in BWRs and led to significant cost savings over
the last two years using these tools.

Has identified and is actively seeking the use of Al/ML in a wide variety of
applications for the advanced reactors.

Several applications under development, while the others in theory
exploration.

X-energy Has been using Python to build custom Al/ML models; many data science
code packages are used, with the most notable being TensorFlow.

The expected release and use for the Xe-100 will be when the first unit is
commissioned under the Advanced Reactor Demonstration Program;
tentatively between 2025-2027.

Al/ML in the early stages of development and use in the nuclear power
industry.

Industry use of Al/ML tools varies from company to company but also within
each company from organization to organization, with some in the mature
stage being actively used in the organization, while others are still under
development.

NEI Use varies across organizations, with some using internally developed
solutions and others relying upon external vendors (most are collaborating
with EPRI).

A variety of areas have been identified for Al/ML use, including textual report
analysis, condition-based maintenance, work order planning, fuel
performance prediction, and reactor core design optimization.

Blue Wave

IEI
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Table 10 Summaries of Survey Responses to Survey Question 1 (continued)

Participants Summary of Responses to Survey Question 1

One licensee is using Al in a limited business process of classifying condition
reports using IBM Watson to make the initial classification. The licensee does
not have any immediate plans or approved projects for other Al applications.
Focused on several aspects, including root cause analysis (RCA) support,
non-destructive examination (NDE) support, and reactor operation and
control.

For RCA support, an Al/ML tool, Metroscope, is currently deployed on more
than 40 reactor units; research is ongoing to enhance the technical capability
Framatome and generalize the application fields of the Metroscope.

For NDE support, Al/ML tools are actively being developed; some tools are
already developed and being beta tested.

For reactor operation and control, Al/ML tools are being developed; an
example is the Operator Assistance Predictive System, employing the
Artificial Narrow Intelligence software.

Has identified and initiated a variety of Al/ML applications related to NPP
design, operations, maintenance, and decommissioning.

One application (use of surrogate modeling to streamline design analysis
process) has been partially used, while most of the applications are ongoing.
Broadly groups Al/ML tools into two categories, including anomaly detection
and ML (teaching the software/human to find a pattern). WEC has recently
developed a tool that evaluates over 10 regression-based Al/ML algorithms to
find trends in the data and then select the optimal algorithm based on data-
driven modeling validation metrics.

Clarifies that data does not have to be numeric; one of the largest
demonstrated benefits of AI/ML in the nuclear power industry is the use of
Al/ML coupled with text recognition.

WEC

Survey Question 2

Survey Question 2 asks what areas of NPP operation and management will benefit the most,
and the least, from AlI/ML implementation. Nine of the 12 participants responded to this
qguestion, and their responses are summarized in Table 11.

Table 11 Summaries of Survey Responses to Survey Question 2

Participants Summary of Response to Survey Question 2

Not specifying the most/least areas but providing NextEra’s main target areas
FPL to date, including operational/maintenance efficiency, system and component
performance monitoring, and work management improvements.

Suggesting that the areas that require significant repetitive manual input as the
Xcel focus areas for future implementation. An example is the enhanced
identification and communication of equipment conditions.

ForHumanity | Not directly relevant to the question.
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Table 11 Summaries of Survey Responses to Survey Question 2 (continued)

Participants Summary of Response to Survey Question 2

Acknowledging most areas listed in the question description can benefit
significantly.

Specifying that fuel cycle planning and risk management have already

Blue Wave benefitted from AI/ML uses, and there is an ongoing DOE-sponsored program
on predictive maintenance.

Adding one area, next generation reactor design, which is not included in the
question description.

Rating areas on a scale of 1-5 stars; one star for least beneficial and five stars
for most:

5-star: cybersecurity, predictive maintenance, system and component
X-energy performance monitoring;

4-star: physical security, inspection support;

3-star: power generation, safety/risk assessment;

2-star: incident response, operational/maintenance efficiency.

Largest benefits to: design, fuel management, outage reduction (both in
number and duration).

Other areas will have less impact either due to small return-of-investment or
long development cycles due to risk and regulation.

Significant benefits to: system and component performance monitoring.

NEI Also beneficial to: predictive maintenance, reducing required man hours,
aiding inspection analysis of videos and photographs, and cybersecurity.
Significant benefits to: predictive maintenance, system and component
monitoring, NDE inspections.

IEI

Framatome May also have benefits to: achieving safe and efficient operation and allowing
for semi-autonomous or autonomous operation.
WEC Most beneficial: digital twins (validity and computational efficiency).

Survey Question 3

Survey Question 3 asks the potential benefits of incorporating AlI/ML to commercial nuclear
power operations in terms of three specific areas: design or operational automation, preventive
maintenance trending, and improved reactor operations staff productivity. Ten of the 12
participants responded to this question, and their responses are summarized in Table 12.

Table 12 Summaries of Survey Responses to Survey Question 3

Participants ~ Summary of Response to Survey Question 3

Allow easier design changes through performing retraining

SRI Increase staff productivity through automating labor-intensive work and/or
replacing workers with robots.

Preventive maintenance trending is a current project in progress.

FPL Equipment monitoring and early diagnostics is also in progress.

Other projects support staff productivity efficiencies.
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Table 12 Summaries of Survey Responses to Survey Question 3 (continued)

Participants =~ Summary of Response to Survey Question 3

Efficiently identify and address the most important issues through automated
data collection, computer-supported trending, and enhanced predictability
Xcel and planning.

Gain greater insights and understanding from the nuclear data and
information produced.

ForHumanity | Not directly relevant to the question.

Allow condition-based maintenance through developing remaining useful life
Blue Wave models.

Allow the creation of virtual sensors and virtual calibration tools.

For design/operational automation: optimize designs, identify patterns
unnoticed by humans, significantly save time of running simulations, suggest
control strategies (including novel approaches not thought of beforehand),
simultaneously tuning multiple controllers in control loops.

For staff productivity improvement: reduce human workload through the uses
of autonomous/automated control systems and smarter alarm systems.
Design/operation optimization will possibly reduce overall operational costs.
IEI Maintenance optimization might improve plant productivity.

Staff productivity will also have an impact, but not as much, since labor cost
in NPPs are dwarfed by big ticket items, such as fuel purchasing or outages.
Preventive maintenance trending allows for optimizing resource allocation.
Use of AI/ML can improve preventive maintenance trending by incorporating
NEI many sources of information.

Use of Al/ML can increase staff productivity by handling massive sensor-
based/textual data, which would otherwise require many man hours.

Reduce scheduled tasks and waive programmatic requirements through
accurate monitoring for known root causes.

Allow for planning intrusive maintenance activities outside of an emergent
basis.

Reduce time for a design cycle and potentially reduce the testing workload.
Appropriately scope predictive maintenance activities and potentially achieve
WEC financial benefit.

Identify the most cost-effective strategies and optimize resource allocations
Reduce or eliminate human tasks performed during daily plant procedures.

X-energy

Framatome

Survey Question 4
Survey Question 4 asks what AlI/ML methods are either currently being used or will be in the

near future. Nine of the 12 participants responded to this question, and their responses are
summarized in Table 13.
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Table 13 Summaries of Survey Responses to Survey Question 4

Participants Summary of Response to Survey Question 4
The following methods are currently being used:

NLP — for CAP trending;

FPL ANN - for searching information related to plant equipment and procedures;
Clustering algorithms — for optimizing preventive maintenance scope and
frequency.

Xcel All the listed methods are being considered for use.

)I;orHumanlt Not directly relevant to the question.

All the listed methods are currently being used.

Blue Wave Several methods have been proven to be valuable — CNN (yielded
breakthrough progress in BWR applications), clustering algorithms (such as k-
means and DBSCAN), Pearson’s, transfer learning
Not specifying which methods are being used or to be used.

Specifying that advanced reactor companies (like X-energy) can incorporate

X-energy AI/ML easier since they are not restrained by in-place data infrastructure and
could design and build a new data infrastructure using state-of-the-art
technologies; this could allow them to incorporate Al/ML into just about any
tool where it is deemed beneficial and appropriate.

All the listed methods are currently being used if considering the entire nuclear

IEI power industry.

Adding one Al/ML area which is not listed — explainable Al.
Almost all the listed methods are currently being used with specifications for
the following methods:

NEI Optical character recognition — for understanding handwritten or text in
images;

IBMgWatson virtual assistant — for condition report classification process.
The following methods are currently being used:
Clustering algorithms — for anomaly detection;

Framatome | Gaussian approaches — for correcting instrument error;

Bayesian method — employed by the Metroscope to find root causes;
Autocorrelation methods (not listed) — being explored for NDE applications.
A lot of listed methods are already or currently being used.

WEC Applications of two methods, decision trees and random forests, are not

known to the authors of the response without further search.

Survey Question 5

Survey Question 5 asks what the advantages or disadvantages are of a high-level, top-down
strategic goal for developing and implementing Al/ML across a wide spectrum of general
applications versus an ad-hoc, case-by-case targeted approach. Eight of the 12 participants
responded to this question, and their responses are summarized in Table 14.
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Table 13 Summaries of Survey Responses to Survey Question 5

Participants Summary of Response to Survey Question 5

SRI If a high-level, top-down approach is taken from the beginning, it can have
more flexibility than targeted approaches.

Has seen advantages of a top-down approach for targeted cost savings and

business efficiency.

Currently on a case-by-case basis. This approach provides agility to review

current, critical needs while evaluating the benefits in small, measured

improvements.

In the future, would be open to considering use of a common standard. This

might create open, efficient lines of communication to streamline alignment

within the regulatory and oversight process.

There needs to be a top-down approach in support and funding for Al-based

work in the nuclear power arena.

Blue Wave The specific programs are naturally more purpose and problem specific. Our

approach has been to work with utilities to identify the absolutely most critical

problems.

Top-down company strategy or top-down guidance from NRC?

If from NRC, a similar example is the inclusion of risk-informed analysis

criteria for all revised standards, which has experienced some challenges

because there is no practical way to evaluate risk for some systems. Adding

an Al/ML requirement in this manner would be a similar challenge. The case-

by-case basis is more natural and targets application to the systems that are

most conducive to Al/ML methods.

If from individual companies, the top-down approach will make more sense.

If applying a top-down approach, the data infrastructure must be built

accordingly. This could be a challenge for established companies with the

data infrastructure already in place but might not be an issue for advanced

reactor companies who don’t currently reply on existing infrastructures.

Both approaches are required for Al/ML success. The top-down approach

ensures that Al/ML successes are repeatable and fundamental

infrastructures and architectures are reusable; but the targeted approach

IEI allows the industry to align on immediate value delivery.

The best practice is for organizations to create a Center of Excellence,

focusing on a series of high-value point solutions and accumulating success

experiences.

The advantages of a top-down approach within a company include: enables

a holistic approach to choose one product that meets the needs of all

possible Al use cases; creates a standardized data and solution architecture;

NEI has an ability to easily share knowledge and utilized learned experience; etc.

The disadvantages of a top-down approach within a company include: time-

consuming, framework limiting to a constantly changing technology

landscape, and potential loss of employee insights on how to innovate and

where the true value propositions exist.

FPL

Xcel

X-energy
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Table 13 Summaries of Survey Response to Survey Question 5 (continued)

Participants Summary of Response to Survey Question 5

The advantage of high-level strategic goals is that many methods may be
generalized to other areas with proper research and incremental
development; the disadvantage is that real benefits in operation and
maintenance relies heavily on expert knowledge to build the tools, and
knowledge-based Al relies on a physics model or digital twin rather than pure
data-driven methods.

Having a top-down approach has strengths in providing a roadmap to
synergize various data streams and generate holistic insights; however, an
ad-hoc approach also has its own advantage in allowing for phased
integration of Al/ML that supports the development of trust in the system.

Framatome

Survey Question 6

In general, there are five groups of personality traits or phases in how people/industry accept an
innovative technology: (1) innovators, who are willing to take risks and are the first ones to
adopt an innovation; (2) early adopters, who adopt an innovation slower than innovators but
quicker than other groups; (3) early majority, who adopt an innovation significantly after the
innovators and early adopters but are still at or above average overall; (4) late majority, who
adopt an innovation after the average time; and (5) laggards, who are the last to adopt an
innovation.

Survey Question 6 asks which phase of AlI/ML adoption the commercial nuclear power industry
is currently experiencing. Nine of the 12 participants responded to this question, and their
responses are summarized in Table 15.

Table 15 Summaries of Survey Responses to Survey Question 6

Participants Summary of Response to Survey Question 6
FPL Consider itself in the early adopter phase.
Xcel Consider itself in the early adopter phase.

ForHumanity | Not directly relevant to the question.
Consider the nuclear industry in the early adopter phase although an

Blue Wave argument could made for the innovator phase.

X-energy Cons?der fthe nuclear_ indusjtry in either the late majority or laggard phase.
Consider itself to be in the innovator phase.

IEI Consider the nuclear industry in the innovator phase.

NEI Consider the nuclear industry in the early adopter phase.

Framatome Consider the nuclear industry ranging from early majority to late majority.

Not specify at which phase.

For nuclear vendors, Al/ML is just beginning to be adopted at a large scale,
with focuses on preventive maintenance and digital twins.

WEC For nuclear power industry, Al/ML is being readily incorporated by the larger
nuclear power utilities (some have been investing in Al/ML for more than a
decade); smaller nuclear utilities are just beginning to apply Al/ML on a limited
basis.
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Survey Question 7

Survey Question 7 asks the challenges in balancing the costs associated with Al/ML
development and application, against plant operational and engineering benefits. Eight of the 12
participants responded to this question, and their responses are summarized in Table 16.

Table 16 Summaries of Survey Responses to Survey Question 7

Participants Summary of Response to Survey Question 7

The high costs and regulatory requirements could hamper further
development.

FPL However, NextEra has been able to develop business cases that balance the
development costs against expected efficiency improvements.
For each possible case, a business case is created to determine potential
Xcel future value.

Al/ML integration into nuclear processes are still at a very early stage; the
current challenges surrounds data quality and availability.

Good data governance and compliance-by-design can increase the
development costs of software; however, the downside risks associated with
defective, weak, or easy-to-fail software will likely result in harms that far
outweigh the upfront costs.

According to their experience, the benefits have been much higher compared
to the cost of developing and maintaining Al-based tools.

The existing nuclear fleet would have high costs of developing Al/ML tools;
X-energy but for advanced reactor companies, such costs are negligible compared to
design engineering and capital costs for building an NPP.

The high levels of risk-aversion and regulation add additional restrictions and
thus add to the cost of developing Al solutions.

Implementing Al does have a considerable upfront cost, but all uses of Al/ML
do not inherently result in timely benefits.

NEI Success is not guaranteed for the innovation projects like the use of Al/ML
The readiness and culture of the organization to accept and adopt these
innovative tools after development is another challenge.

One challenge is capturing accurate and credible operations and
maintenance cost data that supports the benefit evaluation in a return-on-
Framatome investment study.

Acceptance, qualification(s), and integration into existing NDE procedures
can also be costly.

ForHumanity

Blue Wave

IEI

Survey Question 8
Survey Question 8 asks the general level of Al/ML expertise in the commercial nuclear power

industry. Eight of the 12 participants responded to this question, and their responses are
summarized in Table 17.
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Table 17 Summaries of Survey Responses to Survey Question 8

Participants Summary of Response to Survey Question 8

FPL Has a team of data scientist that are experts in Al/ML.

Work with several vendors that have expert data scientists.
Utilizes external support through vendors, national labs, and universities.
Xcel : : .

Internal talent is being hired and developed.
ForHumanity Not directly relevant to the question.
For the most part, the commercial nuclear power industry is at the beginner
stage; rely on external organizations with Al expertise.
Has an internal team to develop digital twin concepts, including Al/ML
applications.
Work with external partners on digital twin concepts; there are experts on
the team with mixed nuclear engineering and data science backgrounds
X-energy tackling the Al/ML applications.
In the nuclear power industry, the interest in Al/ML applications is growing
rapidly; relevant graduate programs are starting around computational
analysis and Al-assisted design optimization; however, the expertise on
human factors and autonomous control systems is less common.
In the nuclear power industry, Al/ML expertise is overall well-versed/skilled
Specifically, the Al/ML and data-understanding capabilities of data scientist
IEI in the nuclear power industry are expert.
But the needed adjacent skills of business analysis, MLOps, and
organizational change management are much less mature.
Varied across the industry.
In some utilities, Al/ML has been a focus with staffing aligned.
NEI Other utilities may have employees with Al/ML expertise but not yet
assigned to these type of activities.
In some cases, rely on outside entities (vendors and industry resources).
The industry in terms of predictive maintenance.
Well-versed in some areas, like cluster analysis for monitored anomalies.
May be characterized as beginner when considering other tools.
Framatome Framatome in terms of NDE.
Well-versed/skilled.
Also partners with vendors that are expert level in various Al/ML
technologies.

Blue Wave

Survey Question 9

Survey Question 9 asks how Al/ML will affect the commercial nuclear power industry in terms of
efficiency, costs, and competitive positioning in comparison to other power generation sources.
Eight of the 12 participants responded to this question, and their responses are summarized in
Table 18.
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Table 18 Summaries of Survey Responses to Survey Question 9

Participants Summary of Response to Survey Question 9

With the use of AlI/ML, expect improvements in reliability and efficiency,

FPL which will aid nuclear power to remain competitive and cost effective.
Xcel Reduction of compliance cost through workload automation will allow for
gaining cost efficiencies and improved performance.
Reminding that AI/ML may be a double-edged sword; and the special
ForHumanity feature of nuclear power industry could amplify the potential technology

risks.

Aggressive use of ML techniques has the potential to lower operating costs
by 20-30%; to achieve these cost reductions, Al needs to be applied to
Blue Wave operation and fuel programs in a great capacity.

The use of drones and robots for inspection and repair in hazardous parts
of the facility could reduce human labor costs significantly.

Applying Al/ML could help nuclear power better survive in U.S. energy
market.

AlI/ML will have a similar competitive impact on the commercial nuclear
power industry compared to other power generation sources.

For other power generation sources, savings is generally lower impact and
IEI more distributed across more time; in the nuclear power industry, savings
are more concentrated on fewer, higher impact events, such as fuel
optimization and crud maintenance to drive better fuel re-use and fewer
fuel purchases.

Al/ML will support staff in operation and management at increasingly
reliable levels, resulting in early detection of incipient failures, optimizing
NEI resources and the timing of maintenance.

This will improve efficiency, lower costs, and position nuclear power more
favorably with competing carbon-free generation sources.

The opportunity is significant in comparison with fossil generation due to
Framatome typical operating and maintenance costs that may be reduceable with
robust monitoring and diagnostics.

X-energy

Survey Question 10

Survey Question 10 asks whether AlI/ML has the potential to improve regulatory efficiency
and/or effectiveness or otherwise affect regulatory costs associated with safety oversight. Eight
of the 12 participants responded to this question, and their responses are summarized in Table
19.
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Table 19 Summaries of Survey Responses to Survey Question 10

Participants Summary of Response to Survey Question 10

The NRC may benefit from utilizing Al to review plant documentation to
identify trends in performance or more efficiently analyze plant performance
FPL and issues.

The added efficiency of NRC would also benefit the nuclear industry by
reducing inspection burden.

Xcel Provide the ability to assess compliance on a continual basis.

At the outset, regulatory governance and oversight, if accomplished by
independent audit of Al systems would result in decreased efficiency and
increased cost; but this is likely a temporary state and could have
tremendous gains in multiple aspects; compliance cost will stabilize over
time, if not decline.

The value for the NRC is anticipated to be enormous; compliance-in-a-box
solutions could create a systemic funnel of normalized and automated
compliance resulting in tremendous leverage for the NRC.

Al-trained monitoring software could replace some portions of human
Blue Wave surveillance; these systems could monitor data and written reports and
detect problems/compliance issues before they occur.

Use NLP to make the NRC ADAMS database more searchable and user

ForHumanity

friendly.
As part of regulatory process, NRC should examine the model submitted by
X-energy the applicants, run simulations, and evaluate if the simulation results are

acceptable; surrogate model could be developed to save computational cost
and facilitate running significantly more simulations of a proposed model,
which might give the NRC more confidence in their decision-making.

While the potential exists for AlI/ML to improve regulatory oversight, it is likely
many years away from becoming a reality.

AI/ML is expected to improve the effectiveness associated with safety

NEI oversight based on improved equipment operation, fewer plant events, and
improved performance indicators.

Yes, if diagnostics can reasonably expand in coordination with risk-informed
Framatome categorization, oversight might be improved by simplification of inspections
and standardized rationale for maintenance deferral.

IEI

Survey Question 11

Survey Question 11 asks the concerns regarding data security. Ten of the 12 participants
responded to this question, and their responses are summarized in Table 20.
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Table 20 Summaries of Survey Responses to Survey Question 11

Participants Summary of Response to Survey Question 11

The training environment, data, and model must all be protected.

Since the model is the most important, it is likely important to store the

SRI model.

The proprietary information in the training environment/data need to be
protected.

Cybersecurity is critically important — NextEra has relevant policies and
infrastructure controls in place to maintain data security.

Follows both company and nuclear requirements pertaining to data security
regulations in their first use of offsite networks.

Xcel Overall security around data and information continues to strengthen as
new tools and capabilities become available (i.e., encryption of data at rest
and transit).

The size and turnover of data is a new security vector.

Data labeling attacks, model inversion, membership inference, and other
data entry point attacks can render models useless or adversarial to the
ForHumanity nuclear facility safety function.

Large sums of data or source code present tremendous cover for malicious
entry, highlighting a protocol concern about segmentation and separation
of Al/ML/autonomous systems.

Utilities have very sophisticated risk management programs for
data/software.

Data is encrypted both at rest and in transit; require frequented penetration
Blue Wave tests and remediation efforts for any vulnerabilities uncovered by the tests
Unlikely that significant insight could be gleaned from the purloined data,
unless the hackers had access to the application software that generated
the data.

Cybersecurity and data security is a major concern.

X-energy Plans to apply appropriate security controls to prevent unauthorized access
of data.

Compared to other industries, nuclear industry has a smaller number of
data, which can impact the ability to generate meaningful intelligence

FPL

IE| Attempts at accessing plant-specific data and aggregating data are also
difficult.
Concerns include cybersecurity, proprietary information concerns, export
NEI control information, data curation challenges, and WiFi connectivity in the

power plants.

Concerns include cyber-intrusion, loss of export control, and enterprise risk
from public and shareholder perception.

Cloud systems now exist with cyber-controls that make data as secure as
Framatome private intranet networks.

Novel NDE AI/ML techniques are exploring Al platforms that consist of
hardware that is collocated with inspection systems and are prepared to
process data locally without the need to transfer.

Care must be taken to not allow co-mingling of data between various data
sources.

Security, privacy, export control compliance, and access needs are also
key areas.

WEC
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6.4

Insights from Survey Responses

This section provides the insights obtained from the survey responses. It should be noted that
the insights and conclusions in this section are developed based on the collected responses
from a limited survey scope and might not fully reflect the practice of the commercial nuclear
power industry.

1.

A broad range of potential Al/ML applications have been identified across the nuclear
power industry to improve different plant aspects, and the development statuses of these
applications are varied. According to the responses to Survey Question 1, most of the
identified Al/ML applications are under concept exploration or strategic consideration, a
small portion are under development, and a few are already developed and in place for
plant use. The current areas of Al/ML development or use include textual report
analysis, predictive maintenance, work management, fuel cycle management, reactor
operation and control, surrogate model development, and supports to CAP, RCA, and
NDE.
Several Al/ML tools have been developed and put in use for plant improvements.
According to the responses to Survey Question 1, examples of the developed tools
include:
a. A tool to predict moisture carryover in BWRs (i.e., MCO.ai developed by the Blue
Wave Al Labs).
b. A tool to predict the BWR eigenvalue evolution for future fuel cycles (i.e.,
Eigenvalue.ai developed by the Blue Wave Al Labs).
c. Atool to determine root causes derived from symptoms (i.e., Metroscope
developed by the Electricité de France).
d. A WEC-developed tool to evaluate multiple regression-based Al/ML algorithms to
find trends in the data and select the optimal algorithm.

Besides these customized tools, commercial off-the-shelve software tools are also being used,
such as the IBM Watson. Several survey participants also mentioned that some of their tools
are not yet developed but are well underway, such as Xcel Energy’s CAP Intelligence Advisor
(targeting late 2021 for the first deployment) and X-Energy’s Xe-100 Digital Twin (targeting
2025-2027 for the first deployment).

3. The survey participants held diverse views for the areas that could benefit the most and

least from Al/ML applications. According to the responses to Survey Question 2, nine
areas are deemed by the survey participants to be the most beneficial, including.
a. System and component monitoring (mentioned by three participants, referred to
as three votes).
Predictive maintenance (two votes).
Digital twins (one vote).
NDE inspections (one vote).
Automating human labor (one vote).
Cybersecurity (one vote).
Design support (one vote).
Fuel management (one vote).
Outage reduction (one vote).

R R N
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System and component monitoring and predictive maintenance turn out to be the most-voted,
most-beneficial areas. Most survey participants believed all the example areas listed in the
question description could benefit from Al/ML applications to different extents and did not
specify which areas are expected to benefit the least.

4. The survey participants expected benefits to the nuclear power industry of incorporating
AI/ML in design or operational automation, preventive maintenance trending, and
improved staff productivity; clear pathways can be envisioned to achieve these benefits.
According to the responses to Survey Question 3, potential benefits through each of the
three areas were extensively discussed, and the benefits through different areas
considerably overlapped. The most mentioned expected benefits from these areas
include:

Increasing design-process efficiency.

Enabling data collection and analysis at a larger scope and faster speed.

Identifying patterns unnoticed by humans.

Suggesting control strategies not necessarily thought of beforehand.

Automating labor-intensive work.

Optimizing resource allocation.

Streamlining maintenance scheduling.

5. The commerC|aI nuclear power industry has conducted or is currently conducting the
tryouts for most AlI/ML methods. According to the responses to Survey Question 4, all
the AI/ML methods listed in the question description are already used or currently being
used in the nuclear power industry. Two survey participants added that explainable Al
and autocorrelation methods, which are not listed, are also important topics to be
considered. Clustering algorithms, ANNs, and NLP are the most mentioned methods in
the responses. Some of the methods, such as CNNs and clustering algorithms, have
already been proven to be valuable through the existing applications.

6. Both the top-down approach and the case-by-case approach for developing and
implementing Al/ML are deemed having their own pros and cons; no strong preference
is demonstrated by the survey participants. The advantages and disadvantages of both
approaches were extensively discussed by the participants in the responses to Survey
Question 5.

a. Commonly mentioned advantages of top-down approach include:
i. Enabling a holistic and standardized framework.
ii. Easier to generalize and save repetitive work.
iii. Easier to share knowledge and experience.
iv. Increasing business efficiency.
b. Commonly mentioned disadvantages of top-down approach include:
i. Difficulty in adapting the framework to a constantly changing technology
landscape.
ii. Challenge in developing a catchall strategy accommodating diverse
applications.
iii. Potential loss of innovative human inputs.

One survey participant also mentioned that the level of top-down guidance (i.e., from the NRC
or within the company) could make a difference.

@mpoooTD
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7.

10.

11.

It is commonly believed that the nuclear power industry is in the early adopter phase of
AI/ML technology adoption. According to the responses to Survey Question 6, a majority
of survey participants identified either themselves or the nuclear power industry as an
early adopter. A second most common belief is that the nuclear power industry is in the
innovator phase. One survey participant considered the nuclear industry in either the late
majority or laggard phase, while another survey participant considered ranging from
early majority to late majority.

Most survey participants agreed that the high cost of developing and implementing
AI/ML can be a challenge but that the net value of costs and benefits is also a significant
decision driver. According to the responses to Survey Question 7, two survey
participants that have experiences in completed or ongoing Al/ML applications
mentioned that they were able to balance the development costs against expected plant
improvements or have observed the benefits far outweighing the costs. But it is
commonly believed that the costs are truly a concern when deciding future Al/ML
development and implementation, since such costs are usually high and upfront while
the benefits are neither timely achieved nor guaranteed.

The level of Al/ML expertise is overall well-versed/skilled in the nuclear power industry,
and the sources of expertise (i.e., in-house, external, or a combination of both) is varied
across the industry. According to the responses to Survey Question 8, the most common
situation is developing in-house Al/ML talents and, in the meanwhile, obtaining expertise
support from external entities, such as vendors, national laboratories, and universities.
Several survey participants also mentioned that the level of expertise is varied with
Al/ML capabilities, methods and tools, and application fields.

Most survey participants expected that Al/ML applications could improve nuclear power
performance and cost efficiency and could boost its competitiveness in comparison to
other power generation sources. According to the responses to Survey Question 9, the
survey participants had consistent perspectives; they believed that applying Al/ML could
improve nuclear power competitiveness and that the paths leading to these
improvements seem to be clear. Some survey participants also mentioned that the
nuclear power might benefit more from Al/ML applications when compared to other
power generation sources, since the impacts of Al/ML on the nuclear power industry are
usually concentrated on high-impact events, such as those related to nuclear fuel.

Most survey participants believed that Al/ML applications could improve the regulatory
efficiency and effectiveness for nuclear power in direct or indirect ways. According to the
responses to Survey Question 10, the direct ways of benefiting regulatory efficiency and
effectiveness are on the NRC staff side, including using Al/ML to automate staff labors,
such as reviewing plant documentation, using NLP to make the NRC ADAMS data more
searchable, using surrogate modeling to reduce the computational cost of running
simulation models submitted by the licensees, and adopting advanced oversight
methods to streamline the regulatory process, such as coordinating diagnostics data
with risk-informed categorization. The indirect ways of benefiting regulatory efficiency
and effectiveness are on the utility side; one example is that AlI/ML applications have
potential in leading to safer plants with fewer events and thus reduce the number of
regulatory activities. One survey participant also mentioned that integrating Al/ML into
regulatory activities can be a learning process and that decreased efficiency and
increased cost might be observed at the outset; but this is expected to be a temporary
situation, and the costs will eventually stabilize, if not decline.
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12. The survey participants believed that data security is critically important and must be
well maintained; relevant protective policies are either in place or being actively
developed. According to the responses to Survey Question 11, the most mentioned
concerns related to data security include cyber-intrusion, proprietary information
leakage, and loss of export control. Several survey participants mentioned that their
organizations have mature sets of controlling policies in place and will continue to
strengthen as new tools and capabilities become available. One participant mentioned
that the data might have an inherent security—it would be difficulty to draw significant
insights from the stolen data, unless the intruders had access to the original model and
software. Another participant mentioned their organization is exploring Al platforms with
collocated hardware and inspection systems to process data locally and minimize the
need for data transfer.
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7 EXPLORING POTENTIAL APPLICATIONS OF ADVANCED

COMPUTATIONAL TOOLS AND TECHNIQUES TO OPERATING
NUCLEAR PLANTS AND ADVANCED REACTORS

This section investigates potential applications of the advanced computational tools and
techniques, including Al, ML, big data, and content analytics, to operating NPPs, advanced
LWRs, and advanced NLWRs to improve plant safety and efficiency. Based on the literature
reviews on the existing Al/ML applications in the nuclear industry covered in Section 4 and the
insights derived from the federal register survey in Section 6, three main technological AFs are
considered in this section:

AF 1: Plant safety and security assessments
AF 1.1: Plant safety assessment - SSC reliability
AF 1.2: Plant safety assessment - human reliability
AF 1.3: Plant safety assessment - external events
AF 1.4: Plant safety assessment - accidental radiological release and monitoring
AF 1.5: Plant security assessment - cybersecurity and physical security
AF 2: Plant degradation modeling, fault and accident diagnosis and prognosis
AF 2.1: Degradation modeling
AF 2.2: Fault detection, diagnosis and prognosis (FDDP)
AF 2.3: Accident detection, diagnosis and mitigation (ADDM)
AF 3: Plant operation and maintenance efficiency improvement
AF 3.1: SSC operation and control optimization
AF 3.2: Operator and SSC performance evaluation
AF 3.3: SSC maintenance planning
Figure 7 illustrates how Al/ML applications in these three main technological AFs can make
benefits to both NPP operators and the regulator for plant safety and efficiency. By introducing
AI/ML techniques into these AFs, potential benefits for plant safety and efficiency include but
are not limited to:

e Achievement of a better level of safety by
o Removing/reducing failure sources
o Developing better failure-preventing strategies
o Developing better accident-mitigation strategies
¢ Enhancement of safety evaluation techniques by
o Expanding safety evaluation scope
o Improving safety evaluation accuracy
¢ Reduction of human and computational labor cost.
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Three main technological application fields

Figure 7 Potential Benefits for Plant Safety and Efficiency via AI/ML Applications in
Three Main Technological Application Fields."'

This section evaluates the potential applicability of the new computational tools and techniques
to inform and simplify the regulatory process on the operating NPPs and advanced reactors
while simultaneously improving plant safety and efficiency and enhancing regulatory oversight.
Details of these three main technological application fields are provided in Sections 7.1, 7.2, and
7.3, respectively.

71 Application Field 1: Plant Safety and Security Assessments

7.1.1 Plant Safety Assessment - System, Structure, Component Reliability

Some efforts prove that Al/ML techniques can be introduced in the analysis, evaluation, and
enhancement of SSC reliability by providing an efficient and accurate prediction of SSC failure
probability or reliability. Traditionally, this task is performed using PRA tools or reliability
modeling methods with conventional statistical methodologies, which may have the limitations of
inapplicability in some extrapolated conditions and be expensive computationally. By developing
surrogate models that may have a better scalability and predictive capability when ML training
data is sufficient, Al/ML techniques have the potential to improve SSC reliability analysis and
evaluation in plant safety assessments. There are some demonstrations in this field. For
example, Santhosh et al. (Santhosh et al. 2018) presents an integrated approach to predict the
lifetime and reliability of I&C cables by ANNs from the accelerated aging data. Fink, Zio, and

! Note that the relationship between the application fields and the benefits in the figure could be cross-connecting
(i.e., one AF might bring multiple benefits to the plant).
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Weidmann (Fink et al. 2014) proposed multilayer ANNs based on multi-valued neurons, a
specific type of complex valued neural networks, for reliability and degradation prediction
problems. Wang et al. (Wang et al. 2019) constructed a Kriging regression model to avoid a
large number of thermal hydraulics simulations for the reliability assessment of passive residual
heat removal systems.

Various ML models have been applied for the SSC reliability analysis, including ANN, some
kernel regression models, NLP, unsupervised ML methods such as classification and clustering,
and others. These ML models can be used for either developing a purely data-driven model or
building up a physics-guided surrogate model to support existing physical models or tools.

The major technical issue to be solved in the application of Al/ML in SSC reliability analysis is
the inconsistency of ML training data and the data in full-size prototypic conditions. While ML
training data mainly consists of numerical simulation data, some available experimental data,
and very limited operating data, scale distortion may exist in the simulated conditions for training
data generation and the real full-size prototypic conditions. However, as this field has been
studied extensively, the knowledge and empirical correlations gained in past efforts can be
utilized to guide the development and assessment of Al/ML models.

7.1.2 Plant Safety Assessment - Human Reliability

Similar to the SSC reliability analysis, human reliability analysis (HRA) has been applied in NPP
PRA to identify potential human failure events; to systematically estimate the probability of these
events using data, models, or expert judgment; and to evaluate the impacts of these events to
key plant performance. Considering that human operators are adversely affected by excessive
physical and mental workloads, Al/ML has the potential to be recommended for supporting
human operators in tasks that may place them in unsafe conditions, as well as for better
understanding and investigating how and why human errors have occurred to improve human
performance in future operations. For example, Ham and Park (Ham and Park 2020) used a big
data analysis technique called CART for extracting HRA data from event investigation reports.
Park, Kim, and Jung (Park et al. 2017) applied CART to analyze the relative importance of
performance shaping factors from event investigation reports for estimating the human error
probability of a given task environment extracted from event investigation reports of NPPs. Zou
et al. (Zou et al. 2018) introduced data mining for identifying intrinsic correlations among human
factors.

These efforts mainly apply to unsupervised ML methods like classification, clustering, or
regression trees to analyze the factors relevant to human error or performance in NPPs.
Unsupervised learning is a type of ML algorithm that learns and captures patterns from
untagged data, then builds a compact internal representation to generate imaginative content.
Therefore, suggestions for improving human performance and preventing human errors in NPPs
can be provided by these efforts.

The major technical issue to be solved in the application of AI/ML in HRA is still the insufficient
data and knowledge in complex human errors from NPP operating experience. Accordingly,
Al/ML-guided automation has been recommended for replacing the human operator in areas
where the speed and accuracy of plant control and management cannot be satisfied by human
operator performance. This application field will be discussed in later sections.
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7.1.3 Plant Safety Assessment - External Events

External events include both natural external events (e.g., earthquakes, high winds, and
external flooding) and human-made external events (e.g., airplane crashes, explosions at
nearby industrial facilities, and impacts from nearby transportation activities). External events
PRA is separated from internal events PRA because it has unique and specialized analysis
methods for various kinds of external events. These external events normally have wide-area
effects that may cause common-cause malfunctions of SSCs or combined failures to the entire
plant. For different NPP designs, respective strategies are needed to prevent and mitigate the
related failures and accidents led by these external events. PRA tools have been widely applied
to external event analyses and can provide sufficient information and knowledge for
constructing control and management strategies. However, an external event PRA model, such
as a fire PRA model, could be large and needs expensive computation power to quantify.
Researchers have suggested the introduction of Al/ML to provide for a more efficient external
event analysis in plant safety assessment. Worrell et al. (Worrell et al. 2019) applied ML to
generate metamodel approximations of a physics-based fire hazard model to generate accurate
and efficient metamodels to improve modeling realism in PRAs without significant computational
burdens. Sainct et al. (Sainct et al. 2020) developed an efficient methodology for seismic
fragility curves estimation using SVMs. Wang, Zentner, and Zio (Wang et al. 2018b) estimated
fragility curves based on seismic damage data and numerical simulations by ANNs.

Existing efforts of applying AlI/ML in external event analyses have applied various ML and
advanced statistical methods, including k-nearest neighbor modeling, mean-iterative neural
networks, simple ANNs or deep neural networks (DNNs), SVMs, and others for scenario
analyses and classification, clustering and regression trees for identification of external events.
The major technical issues in this application field include the lack of data or knowledge for
some rare external events, particularly some combinations of external events.

7.1.4 Plant Safety Assessment - Accidental Radiological Release and Monitoring

The rapid and accurate estimation of accidental radiological release is very important for nuclear
safety and accident control and management decision-making. The source term information is
typically unknown and uncontrollable once radioactive materials are released into the
atmosphere. Relevant monitoring of the spreading of accidental radiological release is
necessary. The severe nuclear accident at Chernobyl in 1986, for example, resulted in
extraordinary contamination of the surrounding territory, as the monitoring of accidental
radiological release is still ongoing.

In past decades, researchers have started to apply ML methods to better estimate the release
rate, amount, and area of source terms or radioactive materials from NPPs operations and
accidents. Briechle et al. (Briechle et al. 2020) developed a method to detect radioactive waste
sites based on high-resolution remote sensing data using the random forest method. The results
showed a good estimation of area-wide unknown radioactive biomass burials in the Chernobyl
Exclusion Zone. Cho et al. (Cho et al. 2021) proposed a reproduction strategy using CNNs for
radiation maps to compensate for the loss of radiation detection data. Sasaki et al. (Sasaki et al.
2021) applied ANNs to develop a new method of visualizing the ambient dose-rate distribution
around the Fukushima Daiichi NPPs. Sun et al. (Sun et al. 2020) developed a methodology for
optimizing the monitoring locations of long-term radiation air dose-rate monitoring near the
Fukushima Daiichi NPPs. Zhang and Hu (Zhang and Hu 2020) proposed a real-time method for
radionuclide estimation in NPP wastewater using ANNSs.
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Different ML methods or data-driven frameworks have been applied in this field, including typical
ANNSs, GP, random forest, generic algorithm (GA) and some advanced algorithms such as
CNNs and RNNs. The usage of ML methods depends on the complexity of the database and
latent physics inside. The main challenge of applying ML in this field is the lack of data for the
validation of ML models and frameworks; however, based on high-fidelity simulation data
generated using high-power computation, uncertainty quantification and reduction of these ML
predictions can be performed.

7.1.5 Plant Security Assessment - Cybersecurity and Physical Security

Digital I&C systems offer significant advantages over existing analog systems in monitoring,
processing, testing, and maintenance. In the last few years, the U.S. nuclear power industry
initiated the replacement of existing aging analog systems with digital 1&C technology and
developed new designs for advanced plants using digital I&C systems in integrated control
rooms to provide modern control and protection. However, cyber-vulnerabilities in digital
systems and networks are also introduced and should be well addressed, prevented, and
mitigated, particularly considering that some cyberattacks can result in software/digital common-
cause failures of multiple SSCs with similar designs. Meanwhile, physical security is also
important for NPPs to prevent external physical intrusion and terroristic sabotage.

Currently, some efforts have been made to enhance cybersecurity or physical security using
AI/ML techniques. Zhang, Hines, and Coble (Zhang et al. 2020) proposed an ML-aided
cybersecurity solution platform to improve cybersecurity by integrating process data together
with traditional host system and network data in a unified platform. Kim, Lim, and Kim (Kim et al.
2018) developed an image-based intelligent intrusion detection system with a virtual fence,
active intruder detection, classification, and tracking, and motion recognition to detect physical
intrusion to NPPs. Some efforts are focused on building up a coupled cyber-physical system for
NPPs. Gawand, Bhattacharjee, and Roy (Gawand et al. 2017) introduced least square
approximation and GA to secure a cyber-physical system in NPPs.

These efforts applied to various ML methods like CNN, RNN, random forest regression, least
square approximation, GA and others and demonstrated that ML methods can provide
necessary technical support for the cybersecurity and physical security analysis. However, the
identification of unfamiliar features of cyber-failures or physical intrusions constitutes a technical
challenge to ML-based approaches for cybersecurity and physical security analysis. Additional
efforts are needed to fill this gap in the future.

7.2 Application Field 2: Plant Degradation Modeling, Fault, and Accident
Diagnosis and Prognosis

7.2.1 Degradation Modeling

As complex engineering systems, NPPs present a very harsh environment to their internal
interacting and interdependent mechanical components, which must tolerate high-temperature
water, stress, vibration, and an intense neutron field. Degradation of materials in this
environment might lead to degraded plant performance or an unplanned shutdown with a loss of
power generation and negative economic impact (U.S. Department of Energy 2008). Therefore,
degradation modeling and online monitoring is necessary to address component aging
problems and provide an accurate prediction of their failure points or remaining useful life (RUL)
for on-time maintenance or replacement. Although various models have been developed for
estimating material or component degradation, these models generally have fixed model forms
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or parameters, which leads to their limited applicability for some extrapolated conditions.
Besides, traditional methods which account for degradation rely heavily on prior physics
knowledge and expertise and may have limited capacity to learn from massive measured or
simulated data. That is why there is the potential to apply ML methods to construct data-driven
surrogate models with flexible and self-improvable model forms which can benefit when new
data is available for model improvement.

There are some recent efforts on this topic. Alamaniotis, Ikonomopoulos, and Tsoukalas
(Alamaniotis et al. 2012) proposed a probabilistic kernel approach for the intelligent online
monitoring of mechanical components, GP is applied to the distribution prediction of a
component’s degradation trend. Baraldi, Mangili, and Zio (Baraldi et al. 2015) also used GPs to
develop a stochastic model of the equipment degradation evolution, then applied it for
estimating the distribution of the RUL by comparing it to a failure criterion. Wang et al. (Wang et
al. 2021) proposed a RUL prediction method for electric valves using a convolutional
autoencoder to extract features and RNNs to deal with time-series data. Sirola and Julsund
(Sirola and Hulsund 2021) introduced ML methods to classify aging features and create
prognostic models. Zhao and Wang (Zhao and Wang 2018) used DNNs to automatically extract
centrifugal pump bearing degradation features from massive amounts of vibration data.

Depending on the complexity of involved physics, sufficiency of data, and internal dependency
of degradation features, different ML methods have been introduced and demonstrated for
degradation modeling, including GPs, simple ANNs, DNNs, RNNs, unsupervised learning, and
support vector regression. Users should be careful regarding the selection of ML methods, and
it is always advisable to have adequate training on the ML models and be guided by the physics
at work.

7.2.2 Fault Detection, Diagnosis, and Prognosis

FDDP has been widely performed in existing NPPs to improve and ensure the reliability and
availability of SSCs of nuclear reactors for plant safety and efficiency. Many FDDP techniques
have been developed and applied to NPPs, which can be classified as physics-based and data-
driven approaches. The physics-based approaches for FDDP are developed based on available
measured or simulated data with limited applicability, they mainly rely on prior physics
knowledge and expertise and do not require large amounts of data. But these methods may be
not able to accurately predict the faults or NPP states under some unfamiliar and abnormal
conditions.

In contrast, the data-driven approaches using ML methods can explore deep, complex, and
highly nonlinear patterns from large amounts of data. They also have wide applicability and self-
improving capability enabled by flexible ML models when new data becomes available.
However, the explainability, interpretability, and trustworthiness of these ML-based data-driven
models need more studies. The integration of data-driven and physics-based approaches (or
hybrid physics-guided data-driven approaches) are promising to fill the knowledge and technical
gaps by leveraging the advantages of each approach.

Many ML methods have been demonstrated, from supervised to unsupervised learning, from
simple GPs, SVMs, ANNs to complicated DNNs, CNNs and RNNs. The main technical issues in
the AI/ML applications in FDDP remain in how to improve their explainability, interpretability,
and trustworthiness, especially considering that their deployment may affect the performance of
highly safety-related safety-significant I&C systems.
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7.2.3 Accident Detection, Diagnosis, and Mitigation

Similar to FDDP, ADDM plays an important role in NPP safety control and management. Fast
and accurate ADDM can detect tiny and/or rare abnormal events in reactors that would be
difficult for operators to identify, and support operators search for accident-mitigation strategies
in the early phase of accident progression. Unlike FDDP, ADDM should be able to provide a
long-term and rapid prediction of plant and system behaviors and states during various
accidents. This long-term and rapid prediction of complex systems for unfamiliar accident
scenarios suggests a significant requirement on the development and deployment of ADDM
techniques.

Data-driven ADDM techniques have been developed and demonstrated to identify different
accidental events, or predict their potential sequences, or provide suggestions on accident
mitigation based on risk and cost estimation. A few ML-based data-driven techniques break the
requirements regarding the need for data to training or develop the model. For example, Farber
and Cole (Farber and Cole 2020) developed an automated fault detection tool to detect very
small loss-of-coolant accidents in PWRs using only nominal operating data without the need for
loss-of-coolant accidents data. Some tools provide integrated support for accident diagnosis,
prognosis, and accident mitigation. Lin et al. (Lin et al. 2021a) developed and demonstrated a
nearly autonomous management and control system for advanced reactors using ML-based
digital twin technology. Lee, Seong, and Kim (Lee et al. 2018a) developed an autonomous
algorithm including superior functions to monitor, control and diagnose automated subsystems.

Recently, developing ML-based digital twins for achieving autonomous control and operation
became a trend in the nuclear industry and academic research. As automation levels
increasingly rely on Al/ML techniques, the explainability, transparency, reliability, and
trustworthiness of these digital-twin-enabled autonomous operation and control systems needs
continual enhancement. An uncertainty quantification and software risk analysis is needed to
evaluate the uncertainty of digital twins and their impacts on the reactor safety and efficiency.
Reference (Lin et al. 2021b) provides a comprehensive review on relevant uncertainty
quantification techniques and software risk analysis methods that may be suitable for ML-based
digital twins for the development and assessment of (semi-)autonomous operation and control
systems. To ensure consistency and transparency for the development of digital twins, a
development and assessment process was suggested in (Lin et al. 2021b) to guide digital twin
development and assessment according to target expectations as set out in the planning stage.
It also indicated that “crucial software common-cause failures may occur in different ML-based
digital twins for different intended uses in an autonomous system or in redundant digital twins
for the same intended use, during the operation of ML-based digital twins and respective
autonomous control systems that are designed for safety purposes.”

7.3 Application Field 3: Plant Operation and Maintenance Efficiency
Improvement

7.3.1 System, Structure, Component Operation and Control Optimization

To reduce operator workload from normal SSC operations in existing NPPs, such as reactor
startup and shutdown, core optimization, load following, and pressurizer control, some Al/ML
applications have been developed to optimize SSC operation and control processes and to
provide advisory support to operators. These benefits to plant safety and efficiency cannot be
achieved by traditional manual control. For example, Hosseini et al. (Hosseini et al. 2020)
designed and applied a supervisory control using ANN-based controllers for the pressurizer
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system. Koo et al. (Koo et al. 2019a) developed an Al framework based on RNNs for startup
and shutdown operation of NPPs. Norouzi et al. (Norouzi et al. 2013) introduced a Parallel
Integer Coded Genetic Algorithm to obtain the best configuration for core optimization. Hui et al.
(Hui et al. 2021) developed an adaptive backstepping control strategy with an extended state
observer for the load following of NPPs.

Efforts in this field normally addresses one or two component-level operations. ML methods can
help with the prediction of key parameters based on the training of relevant operating data.
Different ML methods have been applied, such as GA, ANNs, RNNs, and NLP. A significant
technical issue is that they rarely take system-level factors into consideration and usually only
focus on component-level factors affecting performance of a specific operation. In some
conditions, the impacts of system-level factors, such as the interactions between this operation
function and other components or systems may affect the prediction accuracy of these ML
models. Find a way to extend the applicability of these ML applications in different conditions
requires more study, especially when system-level factors have significant impacts to the target
operation function.

7.3.2 Operator and System, Structure, Component Performance Evaluation

In the main control room of nuclear reactors, human operators’ attention level determines their
performance on the task. Insufficient operator attention is one of the main causes of human
error. To improve the efficiency of human operators during normal NPP operations, Al/ML
methods have the potential to address the performance of human operators and SSCs.
Progress on this topic has been made. Kim et al. (Kim et al. 2020b) investigated the
development of quantitative indicators that can identify an operator’s attention, and diagnose or
detect a lack of operator attention thus preventing potential human errors in advanced control
rooms. Experiments were designed to collect the electroencephalography and eye movement of
the subjects who were monitoring and diagnosing nuclear operator safety-relevant tasks. Choi
and Seong (Choi and Seong 2020) introduced an unsupervised learning technique, hierarchical
clustering analysis, to find meaningful characteristics in the measured data. Wu et al. (Wu et al.
2020) used ANNSs to predict the mental workload of an operator in nuclear reactors. The validity,
sensitivity, and the relationship between the indices of eye tracking of both experts and
nonexperts when they were operating the state-oriented procedure system in NPPs were
analyzed. Yan, Yao, and Tran (Yan et al. 2021) also applied ANNs for predicting and evaluating
the situation awareness of the operators. Kusumoputro, Sutarya, and Lina (Kusumoputro et al.
2013) developed an intelligent technique to classify the fuel pellet quality using ensemble back
propagation neural networks.

Compared with the Al/ML applications in other application fields, the training of ML models for
operator performance evaluation should have more data available. The main technical issue is
the difficulty in collaborating with other sciences (e.g., biology, psychology, or sociobiology).
Studies and experience in HRA can be leveraged here.

7.3.3 System, Structure, Component Maintenance Planning

The existing nuclear fleet relies on labor-intensive and time-consuming preventive maintenance
programs to operate and maintain plant systems, resulting in high operation and maintenance
costs. The implementation of an efficient predictive maintenance strategy is critical for the long-
term safe and economical operation of plant systems. An application of ML-based solutions can
lead to major cost savings, improved predictability, and the increased availability of plant
systems.
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Section 7.2.1 of this report has described and discussed how ML methods can be applied for
degradation modeling, particularly the estimation of the RUL of plant SSCs, which provides
insights into when the SSCs fail, and, accordingly respective maintenance planning can be
made. Section 7.2.2 introduced how FDDP can provide benefits from the applications of ML
methods, which give insights on the planning of maintenance actions after failures. ML methods
can also be applied for normal plant SSC maintenance planning. For example, Dupin and Talbi
(Dupin and Talbi 2020) developed a ML-guided dual heuristics and new lower bounds for the
refueling and maintenance-planning. Gohel et al. (Gohel et al. 2020) used SVMs to explore and
compare rare events that could occur in nuclear infrastructure to support the development of a
predictive maintenance architecture. Musabayli, Osman, and Dirix (Musabayli et al. 2020)
proposed a predictive maintenance mechanism for small steam sterilizers using classification
models that categorized the health condition of two critical components in small steam
sterilizers.

One potential issue is the application of ML-guided maintenance actions that may impact many
separate plant SSCs. A comprehensive ML-guided maintenance strategy that covers the
maintenance of all relevant plant SSCs should be beneficial to the integrated plant operation
and efficiency.
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8 CONCLUSIONS

This report presents the project INL conducted for the NRC to explore the advanced
computational tools and techniques, such as Al, ML, and other analytics for operating NPPs and
developing advanced computational predictive capabilities in nuclear OpE. The report first looks
at the nuclear data that may be available and could be used in advanced computational tools
and techniques. A categorization of nuclear data sources is presented, which focuses on
different types of OpE data that may be applied through advanced computational tools and
techniques. Section 3 presents an overview of advanced computational tools and techniques,
including the relationships between statistics and AlI/ML, and the most widely used Al/ML
algorithms in both supervised and unsupervised learning. Section 4 reviews the existing
applications of advanced computational tools and techniques, including Al/ML, in various fields
of the nuclear industry, such as reactor system design and analysis, plant operation and
maintenance, and nuclear safety and risk analysis. Section 5 provides the insights on the three
questions under the purpose of Task 1 (i.e., the types of advanced computational tools and
techniques that may be employed in nuclear industry, the aspects of advanced tools and
techniques that could contribute to the increased understanding of safety and risk, and the types
and quantities of information that would be needed for the new tools and techniques to generate
safety and risk implications).

A survey on the current state of commercial nuclear power operations relative to the use of
AI/ML tools as well as the role of AlI/ML tools in nuclear power operations was published by the
NRC in FRN NRC-2021-0048 in April 2021. Section 6 provides a summary of the survey,
including the survey questions, survey participants, survey responses, and the conclusions and
insights derived from the survey. The survey results could be used to enhance the
understanding of the short- and long-term applications of Al and ML in nuclear power industry
operations and management, as well as potential pitfalls and challenges associated with their
applications.

Based on the literature reviews on existing Al/ML applications in nuclear industry covered in
Section 4 and the insights derived from the federal register survey in Section 6, Section 7
provides an overview and insights into potential Al/ML applications aimed at improving NPP
safety and efficiency. Three main application fields are considered: plant safety and security
assessments; plant degradation modeling, fault, and accident diagnosis and prognosis; and
plant operation and maintenance efficiency improvement. By introducing Al/ML techniques into
these application fields, potential benefits for plant safety and efficiency include but are not
limited to the achievement of a better level of safety; the enhancement of safety evaluation; and
the reduction of human and computational labor costs. For each application field, the
justification for using Al/ML methods, efforts and technical challenges is discussed.

75






9 REFERENCES

Agrez, M., et al. (2020). "Entropy and exergy analysis of steam passing through an inlet steam
turbine control valve assembly using artificial neural networks." International Journal of
Heat and Mass Transfer 156: 119897.
www.https://www.doi.org/10.1016/j.ijheatmasstransfer.2020.119897

Akkoyun, S., et al. (2013). "An artificial neural network application on nuclear charge radii."
Journal of Physics G: Nuclear and Particle Physics 40(5): 106-112.
https://www.doi.org/10.1088/0954-3899/40/5/055106

Al Rashdan, A,, et al. (2019). "Data integration aggregated model and ontology for nuclear
deployment (DIAMOND): preliminary model and ontology, INL/EXT-19-55610," Idaho
National Laboratory.
https://www.lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/DIAMOND Prelim
inary Model and Ontology.pdf

Al Rashdan, A. and S. St. Germain (2019). "Methods of data collection in nuclear power plants."
Nuclear Technology 205(8): 1062-1074.
www.https://www.doi.org/10.1080/00295450.2019.1610637

Alamaniotis, M., et al. (2012). "Probabilistic kernel approach to online monitoring of nuclear
power plants." Nuclear Technology 177(1): 132-145.
https://www.doi.org/10.13182/NT12-A13333

An, Y., et al. (2020). "Critical flow prediction using simplified cascade fuzzy neural networks."
Annals of Nuclear Energy 136: 107047.
https://www.doi.org/10.1016/j.anucene.2019.107047

Ankerst, M., et al. (1999). "OPTICS: ordering points to identify the clustering structure." ACM
Sigmod record 28(2): 49-60. hitps://www.doi.org/10.1145/304181.304187

Athanassopoulos, A., et al. (2004). "Nuclear mass systematics using neural networks." Nuclear
Physics A 743(4): 222-235. https://www.doi.org/10.1016/j.nuclphysa.2004.08.006

Atwood, C. L., et al. (2003). "Handbook of parameter estimation for probabilistic risk
assessment, NUREG/CR-6823." U.S. Nuclear Regulatory Commission.
https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6823/index.html

Ayo-Imoru, R. and A. Cilliers (2018). "Continuous machine learning for abnormality identification
to aid condition-based maintenance in nuclear power plant." Annals of Nuclear Energy:
61-70. https://www.doi.org/10.1016/j.anucene.2018.04.002

Baldi, P. and K. Hornik (1989). "Neural networks and principal component analysis: Learning
from examples without local minima." Neural Networks 2(1): 53-58.
https://www.doi.org/10.1016/0893-6080(89)90014-2

Bao, H., et al. (2019). "A data-driven framework for error estimation and mesh-model
optimization in system-level thermal-hydraulic simulation." Nuclear Engineering and
Design 349: 27-45. https://www.doi.org/10.1016/j.nucengdes.2019.04.023

77


https://www.doi.org/10.1016/j.ijheatmasstransfer.2020.119897
https://www.doi.org/10.1088/0954-3899/40/5/055106
https://www.doi.org/10.1080/00295450.2019.1610637
https://www.doi.org/10.13182/NT12-
https://doi.org/10.13182/NT12-A13333
https://www.doi.org/10.1016/j.anucene.2019.107047
https://www.doi.org/10.1145/304181.304187
https://www.doi.org/10.1016/j.nuclphysa.2004.08.006
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6823/index.html
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6823/index.html
http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6823/index.html
https://www.doi.org/10.1016/j.anucene.2018.04.002
https://www.doi.org/10.1016/0893-6080(89)90014-2
https://www.doi.org/10.1016/j.nucengdes.2019.04.023

Bao, H., et al. (2020a). "Using deep learning to explore local physical similarity for global-scale
bridging in thermal-hydraulic simulation." Annals of Nuclear Energy.
https://www.doi.org/10.1016/j.anucene.2020.107684

Bao, H., et al. (2020b). "Computationally efficient CFD prediction of bubbly flow using physics-
guided deep learning." International Journal of Multiphase Flow 131: 103378.
https://www.doi.org/10.1016/j.ijmultiphaseflow.2020.103378

Bao, H., et al. (2021). "Deep learning interfacial momentum closures in coarse-mesh CFD two-
phase flow simulation using validation data." International Journal of Multiphase Flow
135: 103489. https://www.doi.org/10.1016/j.ijmultiphaseflow.2020.103489

Baraldi, P., et al. (2015). "A prognostics approach to nuclear component degradation modeling
based on Gaussian Process Regression." Progress in Nuclear Energy 78: 141-154.
https://www.doi.org/10.1016/j.pnucene.2014.08.006

Bensi, M. and K. Groth (2020). "On the value of data fusion and model integration for generating
real-time risk insights for nuclear power reactors." Progress in Nuclear Energy 129(0149-
1970): 103497. https://www.doi.org/10.1016/j.pnucene.2020.103497

Berkan, R., et al. (1991). "Advanced automation concepts for large-scale systems." IEEE
Control Systems Magazine 11(6): 4-12. https://www.doi.org/10.1109/37.92985

Boroushaki, M., et al. (2003). "An intelligent nuclear reactor core controller for load following
operations using recurrent neural networks and fuzzy systems." Annals of Nuclear
Energy 30(1): 63-80. https://www.doi.org/10.1016/S0306-4549(02)00047-6

Boser, B. E., et al. (1992). "A training algorithm for optimal margin classifiers", in Proceedings of
Proceedings of the Fifth Annual Workshop on Computational Learning Theory, ACM
Press. 10.1145/130385.130401https://www.dx.doi.org/10.1145/130385.130401

Breiman, L. (2001). "Random forests." Machine Learning 45(1): 5-32.
https://www.doi.org/10.1023/a:1010933404324

Breiman, L., et al. (1984). Classification and regression trees, CRC press.

Briechle, S., et al. (2020). "Detection of radioactive waste sites in the Chernobyl exclusion zone
using UAV-based lidar data and multispectral imagery." ISPRS Journal of
Photogrammetry and Remote Sensing 167: 345-362.
https://www.doi.org/10.1016/].isprsjprs.2020.06.015

Bzdok, D., et al. (2018). "Statistics versus machine learning." Nature Methods 15(4): 233-234.
https://www.doi.org/10.1038/nmeth.4642

Cetiner, M. and P. Ramuhalli (2019). "Transformational challenge reactor — Autonomous control
system framework and key enabling technologies, ORNL/SPR-2019/1178." Oak Ridge
National Laboratory. https://www.doi.org/10.2172/1530084

Chang, C.-W. and N. Dinh (2019). "Classification of machine learning frameworks for data-
driven thermal fluid models." International Journal of Thermal Sciences 135: 559-579.
https://www.doi.org/10.1016/j.ijthermalsci.2018.09.002

78


https://www.doi.org/10.1016/j.anucene.2020.107684
https://www.doi.org/10.1016/j.ijmultiphaseflow.2020.103378
https://www.doi.org/10.1016/j.ijmultiphaseflow.2020.103489
https://www.doi.org/10.1016/j.pnucene.2014.08.006
https://www.doi.org/10.1016/j.pnucene.2020.103497
https://www.doi.org/10.1109/37.92985
https://www.doi.org/10.1016/S0306-4549(02)00047-6
https://www.dx.doi.org/10.1145/130385.130401
https://www.doi.org/10.1016/j.isprsjprs.2020.06.015
https://www.doi.org/10.1038/nmeth.4642
https://www.doi.org/10.2172/1530084
https://www.doi.org/10.1016/j.ijthermalsci.2018.09.002

Chang, D., et al. (2019). "Accident diagnosis of a PWR fuel pin during unprotected loss of flow
accident with support vector machine." Nuclear Engineering and Design 352.
https://www.doi.org/10.1016/j.nucengdes.2019.110184

Cheng, J. Z., et al. (2016). "Computer-aided diagnosis with deep learning architecture:
Applications to breast lesions in US images and pulmonary nodules in CT scans." Sci
Rep 6: 24454, https://www.doi.org/10.1038/srep24454

Cho, W., et al. (2021). "Reproduction strategy of radiation data with compensation of data loss
using a deep learning technique." Nuclear Engineering and Technology.
https://www.doi.org/10.1016/j.net.2021.01.012

Choi, G., et al. (2016). "Prediction of hydrogen concentration in nuclear power plant
containment under severe accidents using cascaded fuzzy neural networks." Nuclear
Engineering and Design 300: 393-402.
https://www.doi.org/10.1016/j.nucengdes.2016.02.015

Choi, M. K. and P. H. Seong (2020). "A methodology for evaluating human operator's fitness for
duty in nuclear power plants." Nuclear Engineering and Technology 52(5): 984-994.
https://www.doi.org/10.1016/j.net.2019.10.024

Christian, R., et al. (2020). "Dynamic PRA-based estimation of PWR coping time using a
surrogate model for accident tolerant fuel." Nuclear Technology.
https://www.doi.org/10.1080/00295450.2020.1777035

Ciregan, D., et al. (2012). "Multi-column deep neural networks for image classification".
Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), IEEE. https://www.doi.org/10.1109/CVPR.2012.6248110

Ciresan, D., et al. (2012). "Multi-column deep neural network for traffic sign classification."
Neural Networks 32: 333-338. https://www.doi.org/10.1016/j.neunet.2012.02.023

Clark, J. and H. Li (2006). "Application of support vector machines to global prediction of nuclear
properties." International Journal of Modern Physics B 20: 5015-5029.
https://www.doi.org/10.1142/S0217979206036053

Colorado, D., et al. (2011). "Heat transfer using a correlation by neural network for natural
convection from vertical helical coil in oil and glycerol/water solution." Energy 36(2): 854-
863. https://www.doi.org/10.1016/j.energy.2010.12.029

Cortes, C. and V. Vapnik (1995). "Support-vector networks." Machine Learning 20(3): 273-297.
https://www.doi.org/10.1007/bf00994018

Costrirs, N., et al. (2020). "A global model of B—-decay half-lives using neural networks." HNPS
Advances in Nuclear Physics 15(2654-0088): 210-217.
http://www.dx.doi.org/10.12681/hnps.2640

Deng, L., et al. (2013). "New types of deep neural network learning for speech recognition and
related applications: An overview". Proceedings of the 2013 |IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE.
https://www.doi.org/10.1109/ICASSP.2013.6639344

79


https://www.doi.org/10.1016/j.nucengdes.2019.110184
https://www.doi.org/10.1038/srep24454
https://www.doi.org/10.1016/j.net.2021.01.012
https://www.doi.org/10.1016/j.nucengdes.2016.02.015
https://www.doi.org/10.1016/j.net.2019.10.024
https://www.doi.org/10.1080/00295450.2020.1777035
https://www.doi.org/10.1109/CVPR.2012.6248110
https://www.doi.org/10.1016/j.neunet.2012.02.023
https://www.doi.org/10.1142/S0217979206036053
https://www.doi.org/10.1016/j.energy.2010.12.029
https://www.doi.org/10.1007/bf00994018
http://www.dx.doi.org/10.12681/hnps.2640
https://www.doi.org/10.1109/ICASSP.2013.6639344

Di Maio, D., et al. (2016a). "Transient identification by clustering based on Integrated
Deterministic and Probabilistic Safety Analysis outcomes." Annals of Nuclear energy 87:
217-227. https://www.doi.org/10.1016/j.anucene.2015.09.007

Di Maio, F., et al. (2016b). "A semi-supervised self-organizing map for post-processing the
scenarios of an integrated deterministic and probabilistic safety analysis". Proceedings
of the 13th International Conference on Probabilistic Safety Assessment and
Management Conference, Seoul, South Korea.
https://www.iapsam.org/PSAM13/program/Abstract/Oral/A-007.pdf

Dinh, N., et al. (2013). "Perspectives on nuclear reactor thermal hydraulics". Proceedings of the
15th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-

15).

Dow, E. and Q. Wang (2011). "Quantification of Structural Uncertainties in the k-w Turbulence
Model". Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference, Denver, Colorado, AlAA.
https://www.doi.org/10.2514/6.2011-1762

Dupin, N. and E. G. Talbi (2020). "Machine learning-guided dual heuristics and new lower
bounds for the refueling and maintenance planning problem of nuclear power plants."
Algorithms 13(8). https://www.doi.org/10.3390/A13080185

Eide, S. A., et al. (2007). "Industry-average performance for components and initiating events at
U.S. commercial nuclear power plants, NUREG/CR-6928" U.S. Nuclear Regulatory
Commission.
https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6928/index.html

Electric Power Research Institute (2020a). "Automated analysis of remote visual inspection of
containment buildings", https://www.epri.com/research/products/000000003002018419

Electric Power Research Institute (2020b). "Quick insight — Power industry dictionary for text-
mining and natural language processing application: a proof of concept",
https://www.epri.com/research/products/000000003002019609

Electric Power Research Institute (2021a). "Quick insight brief: Leveraging artificial intelligence
for nondestructive evaluation”,
https://www.epri.com/research/products/000000003002021074

Electric Power Research Institute (2021b). "Quick insight brief: Leveraging artificial intelligence
for the nuclear energy sector”,
https://www.epri.com/research/products/000000003002021067

Ester, M., et al. (1996). "A density-based algorithm for discovering clusters in large spatial
databases with noise", in Proceedings of Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96).
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post _page

Estivill-Castro, V. (2002). "Why so many clustering algorithms: a position paper." ACM SIGKDD
explorations newsletter 4(1): 65-75. https://www.doi.org/10.1145/568574.568575

80


https://www.doi.org/10.1016/j.anucene.2015.09.007
http://www.iapsam.org/PSAM13/program/Abstract/Oral/A-007.pdf
http://www.iapsam.org/PSAM13/program/Abstract/Oral/A-007.pdf
http://www.iapsam.org/PSAM13/program/Abstract/Oral/A-007.pdf
https://www.doi.org/10.2514/6.2011-1762
https://www.doi.org/10.3390/A13080185
https://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6928/index.html
http://www.epri.com/research/products/000000003002018419
http://www.epri.com/research/products/000000003002018419
http://www.epri.com/research/products/000000003002018419
http://www.epri.com/research/products/000000003002019609
http://www.epri.com/research/products/000000003002019609
http://www.epri.com/research/products/000000003002019609
http://www.epri.com/research/products/000000003002021074
http://www.epri.com/research/products/000000003002021074
http://www.epri.com/research/products/000000003002021074
http://www.epri.com/research/products/000000003002021067
http://www.epri.com/research/products/000000003002021067
http://www.epri.com/research/products/000000003002021067
https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf?source=post_pagehttps%3A//www.aaai.org/Papers/KDD/1996/KDD96-037.pdf%3Fsource%3Dpost_page
https://www.doi.org/10.1145/568574.568575

Farber, J., et al. (2018). "Using kernel density estimation to detect loss-of-coolant accidents in a
pressurized water reactor." Nuclear Technology 205(8): 1043-1052.
https://www.doi.org/10.1080/00295450.2018.1534484

Farber, J. A. and D. G. Cole (2020). "Detecting loss-of-coolant accidents without accident-
specific data." Progress in Nuclear Energy 128.
https://www.doi.org/10.1016/j.pnucene.2020.103469

Fernandez, M., et al. (2017). "Nuclear energy system’s behavior and decision making using
machine learning." Nuclear Engineering and Design 324: 27-34.
https://www.doi.org/10.1016/j.nucengdes.2017.08.020

Fink, O., et al. (2014). "Predicting component reliability and level of degradation with complex-
valued neural networks." Reliability Engineering and System Safety 121: 198-206.
https://www.doi.org/10.1016/j.ress.2013.08.004

Frey, B. J. and D. Dueck (2007). "Clustering by passing messages between data points."
Science 315(5814): 972-976. https://www.doi.org/10.1126/science.1136800

Friedman, J. H. (1991). "Multivariate adaptive regression splines." The Annals of Statistics: 1-
67. https://www.jstor.org/stable/2241837

Gao, W., et al. (2020). "Component detection in piping and instrumentation diagrams of nuclear
power plants based on neural networks." Progress in Nuclear Energy 128.
https://www.doi.org/10.1016/j.pnucene.2020.103491

Gawand, H., et al. (2017). "Securing a cyber physical system in nuclear power plants using least
square approximation and computational geometric approach." Nuclear Engineering and
Technology 49(3): 484-494. https://www.doi.org/10.1016/j.net.2016.10.009

Glauner, P. O. (2015). "Deep convolutional neural networks for smile recognition." arXiv
preprint. https://www.arxiv.org/abs/1508.06535

Gohel, H. A., et al. (2020). "Predictive maintenance architecture development for nuclear
infrastructure using machine learning." Nuclear Engineering and Technology 52(7):
1436-1442. hitps://www.doi.org/10.1016/j.net.2019.12.029

Goodfellow, 1., et al. (2016). Deep learning, MIT press.

Goodfellow, 1., et al. (2014). "Generative adversarial nets". Proceedings of the 2014 Advances
in Neural Information Processing Systems.
https://www.proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afcc

f3- Paper.pdf

Grishchenko, D., et al. (2016). "Development of a surrogate model for analysis of ex-vessel
steam explosion in Nordic type BWRs." Nuclear Engineering and Design 310: 311-327.
https://www.doi.org/10.1016/j.nucengdes.2016.10.014

Ham, D. and J. Park (2020). "Use of a big data analysis technique for extracting HRA data from
event investigation reports based on the Safety-Il concept." Reliability Engineering &
System Safety 194: 106232. https://www.doi.org/10.1016/j.ress.2018.07.033

81


https://www.doi.org/10.1080/00295450.2018.1534484
https://www.doi.org/10.1016/j.pnucene.2020.103469
https://www.doi.org/10.1016/j.nucengdes.2017.08.020
https://www.doi.org/10.1016/j.ress.2013.08.004
https://www.doi.org/10.1126/science.1136800
https://www.jstor.org/stable/2241837
https://www.doi.org/10.1016/j.pnucene.2020.103491
https://www.doi.org/10.1016/j.net.2016.10.009
https://www.arxiv.org/abs/1508.06535
https://www.doi.org/10.1016/j.net.2019.12.029
https://www.proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
https://www.proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://www.doi.org/10.1016/j.nucengdes.2016.10.014
https://www.doi.org/10.1016/j.ress.2018.07.033

Hanna, B., et al. (2020a). "An application of ASP in nuclear engineering: Explaining the Three
Mile Island nuclear accident scenario." Theory and Practice of Logic Programming 20(6):
926-941. https://www.doi.org/10.1017/S147106842000024 1

Hanna, B. N., et al. (2020b). "Machine-learning based error prediction approach for coarse-grid
Computational Fluid Dynamics (CG-CFD)." Progress in Nuclear Energy 118: 103140.
https://www.doi.org/10.1016/j.pnucene.2019.103140

He, K., et al. (2016). "Deep residual learning for image recognition", in Proceedings of
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

He, M. and Y. Lee (2018). "Application of machine learning for prediction of critical heat flux:
Support vector machine for data-driven CHF look-up table construction based on
sparingly distributed training data points." Nuclear Engineering and Design 338: 189-
198.

Hinton, G. E., et al. (2006). "A fast learning algorithm for deep belief nets." Neural Computation
18(7): 1527-1554. https://www.doi.org/10.1162/neco0.2006.18.7.1527

Hobold, G. M. and A. K. da Silva (2018). "Machine learning classification of boiling regimes with
low speed, direct and indirect visualization." International Journal of Heat and Mass
Transfer 125: 1296-1309. https://www.doi.org/10.1016/j.ijheatmasstransfer.2018.04.156

Hochreiter, S. and J. Schmidhuber (1996). "LSTM can solve hard long time lag problems."
Advances in Neural Information Processing Systems 9: 473-479.
https://www.proceedings.neurips.cc/paper/1996/file/a4d2f0d23dcc84ce983ff915718b
7f88- Paper.pdf

Hosseini, S. A., et al. (2020). "Design and application of supervisory control based on neural
network PID controllers for pressurizer system." Progress in Nuclear Energy 130.
https://www.doi.org/10.1016/j.pnucene.2020.103570

Huang, G., et al. (2017). "Densely connected convolutional networks", in Proceedings of
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

Hubel, D. H. and T. N. Wiesel (1968). "Receptive fields and functional architecture of monkey
striate cortex." The Journal of Physiology 195(1): 215-243.
https://www.doi.org/10.1113/jphysiol. 1968.sp008455

Hui, J., et al. (2021). "Adaptive backstepping controller with extended state observer for load
following of nuclear power plant." Progress in Nuclear Energy 137.
https://www.doi.org/10.1016/j.pnucene.2021.103745

Jae, M. and J. Moon (2002). "Use of fuzzy decision-making method in evaluating severe
accident management strategies." Annals of Nuclear Energy 29(13): 1597-1606.
https://www.doi.org/10.1016/S0306-4549(01)00125-6

James, G., et al. (2013). An_introduction to statistical learning, Springer.

82


https://www.doi.org/10.1017/S1471068420000241
https://www.doi.org/10.1016/j.pnucene.2019.103140
https://www.doi.org/10.1162/neco.2006.18.7.1527
https://www.doi.org/10.1016/j.ijheatmasstransfer.2018.04.156
https://www.proceedings.neurips.cc/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-
https://www.proceedings.neurips.cc/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-
https://proceedings.neurips.cc/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://www.doi.org/10.1016/j.pnucene.2020.103570
https://www.doi.org/10.1113/jphysiol.1968.sp008455
https://www.doi.org/10.1016/j.pnucene.2021.103745
https://www.doi.org/10.1016/S0306-4549(01)00125-6

Kass, G. V. (1980). "An exploratory technique for investigating large quantities of categorical
data." Applied Statistics 29(2): 119. https://www.doi.org/10.2307/2986296

Kelly, D. and C. Smith (2011). Bayesian inference for probabilistic risk assessment: A
practitioner's guidebook, Springer Science & Business Media.

Khajavi, M., et al. (2002). "A neural network controller for load following operation of nuclear
reactors." Annals of Nuclear Energy 29(6): 751-760.
https://www.doi.org/10.1016/S0306- 4549(01)00075-5

Kim, D., et al. (2015). "Estimation of minimum DNBR using cascaded fuzzy neural networks."
IEEE Transactions on Nuclear Science 62(4): 1849-1856.
https://www.doi.org/10.1109/TNS.2015.2457446

Kim, J., et al. (2020a). "Dynamic risk assessment with bayesian network and clustering
analysis." Reliability Engineering & System Safety 201(0951-8320): 106959.
https://www.doi.org/10.1016/j.ress.2020.106959

Kim, J. H., et al. (2020b). "Biosignal-based attention monitoring to support nuclear operator
safety-relevant tasks." Frontiers in Computational Neuroscience 14.
https://www.doi.org/10.3389/fncom.2020.596531

Kim, K. and E. Bartlett (1996). "Nuclear power plant fault diagnosis using neural networks with
error estimation by series association." |[EEE Transactions on Nuclear Science 43(4):
2373-2388. https://www.doi.org/10.1109/23.531786

Kim, S. H., et al. (2018). "Intelligent intrusion detection system featuring a virtual fence, active
intruder detection, classification, tracking, and action recognition." Annals of Nuclear
Energy 112: 845-855. https://www.doi.org/10.1016/j.anucene.2017.11.026

Kohonen, T. (1982). "Self-organized formation of topologically correct feature maps." Biological
Cybernetics 43(1): 59-69. https://www.doi.org/10.1007/BF00337288

Kohonen, T. and T. Honkela (2007). "Kohonen network." Scholarpedia 2(1): 1568.
http://www.scholarpedia.org/article/Kohonen network

Koo, S. R,, et al. (2019a). "Development of ai framework based on RNN for startup and
shutdown operation of nuclear power plant." Journal of Institute of Control, Robotics and
Systems 25(9): 789-794. https://www.doi.org/10.5302/J.ICR0OS.2019.19.0104

Koo, Y., et al. (2019b). "Nuclear reactor vessel water level prediction during severe accidents
using deep neural networks." Nuclear Engineering and Technology 51(3): 723-730.
https://www.doi.org/10.1016/j.net.2018.12.019

Kortelainen, J., et al. (2020). "Artificial intelligence for the support of regulator decision making"
VTT Technical Research Centre of Finland.

Krizhevsky, A., et al. (2017). "ImageNet classification with deep convolutional neural networks."
Communications of the ACM 60(6): 84-90. https://www.doi.org/10.1145/3065386

83


https://www.doi.org/10.2307/2986296
https://www.doi.org/10.1016/S0306-
https://doi.org/10.1016/S0306-4549(01)00075-5
https://www.doi.org/10.1109/TNS.2015.2457446
https://www.doi.org/10.1016/j.ress.2020.106959
https://www.doi.org/10.3389/fncom.2020.596531
https://www.doi.org/10.1109/23.531786
https://www.doi.org/10.1016/j.anucene.2017.11.026
https://www.doi.org/10.1007/BF00337288
http://www.scholarpedia.org/article/Kohonen_network
https://www.doi.org/10.5302/J.ICROS.2019.19.0104
https://www.doi.org/10.1016/j.net.2018.12.019
https://www.doi.org/10.1145/3065386

Ku, C., et al. (1992). "Improved nuclear reactor temperature control using diagonal recurrent
neural networks." IEEE Transactions on Nuclear Science 39(6): 2298-2308.
https://www.doi.org/10.1109/23.211440

Kusumoputro, B., et al. (2013). "Nuclear power plant fuel's quality classification using ensemble
back propagation neural networks." Advanced Materials Research 685: 367-371.
https://www.doi.org/10.4028/www.scientific.net/AMR.685.367

Langley, P. (2011). "The changing science of machine learning." Mach Learn 82: 275-279.
https://www.doi.org/10.1007/s10994-011-5242-y

LeCun, Y., et al. (1989). "Backpropagation applied to handwritten zip code recognition." Neural
Computation 1(4): 541-551. https://www.doi.org/10.1162/neco.1989.1.4.541

Lee, D, et al. (2018a). "Autonomous operation algorithm for safety systems of nuclear power
plants by using long-short term memory and function-based hierarchical framework."
Annals of Nuclear Energy 119: 287-299.
https://www.doi.org/10.1016/j.anucene.2018.05.020

Lee, J., et al. (2018b). "Use of dynamic event trees and deep learning for real-time emergency
planning in power plant operation." Nuclear Technology 205(8): 1035-1042.
https://www.doi.org/10.1080/00295450.2018.1541394

Lee, S. and J. Huh (2019). "An effective security measures for nuclear power plant using big
data analysis approach." The Journal of Supercomputing 75: 4267-4294.
https://www.doi.org/10.1007/s11227-018-2440-4

Li, J., et al. (2014). "Sensitivity analysis of CHF parameters under flow instability by using a
neural network method." Annals of Nuclear Energy 71: 211-216.
https://www.doi.org/10.1016/j.anucene.2014.03.040

Lin, L., et al. (2021a). "Development and assessment of a nearly autonomous management and
control system for advanced reactors." Annals of Nuclear Energy 150.
https://www.doi.org/10.1016/j.anucene.2020.107861

Lin, L., et al. (2021b). "Uncertainty quantification and software risk analysis for digital twins in
the nearly autonomous management and control systems: A review." Annals of Nuclear
Energy 160: 108362. https://www.doi.org/10.1016/j.anucene.2021.108362

Ling, J. and J. Templeton (2015). "Evaluation of machine learning algorithms for prediction of
regions of high Reynolds averaged Navier Stokes uncertainty." Physics of Fluids 27:
085103. https://www.doi.org/10.1063/1.4927765

Liu, Y., et al. (2018). "Data-driven modeling for boiling heat transfer: using deep neural networks
and high-fidelity simulation results." Applied Thermal Engineering 144: 305-320.
https://www.doi.org/10.1016/j.applthermaleng.2018.08.041

Lloyd, S. (1982). "Least squares quantization in PCM." IEEE Transactions on Information
Theory 28(2): 129-137. https://www.doi.org/10.1109/tit. 1982.1056489

Long, J., et al. (2015). "Fully convolutional networks for semantic segmentation", in Proceedings
of Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

84


https://www.doi.org/10.1109/23.211440
https://www.doi.org/10.4028/www.scientific.net/AMR.685.367
https://www.doi.org/10.1007/s10994-011-5242-y
https://www.doi.org/10.1162/neco.1989.1.4.541
https://www.doi.org/10.1016/j.anucene.2018.05.020
https://www.doi.org/10.1080/00295450.2018.1541394
https://www.doi.org/10.1007/s11227-018-2440-4
https://www.doi.org/10.1016/j.anucene.2014.03.040
https://www.doi.org/10.1016/j.anucene.2020.107861
https://www.doi.org/10.1016/j.anucene.2021.108362
https://www.doi.org/10.1063/1.4927765
https://www.doi.org/10.1016/j.applthermaleng.2018.08.041
https://www.doi.org/10.1109/tit.1982.1056489

https://www.openaccess.thecvf.com/content cvpr 2015/html/Long Fully Convolutional N
etw orks 2015 CVPR paper.html

Ma, D., et al. (2017). "Supercritical water heat transfer coefficient prediction analysis based on
BP neural network." Nuclear Engineering and Design 320: 400-408.
https://www.doi.org/10.1016/j.nucengdes.2017.06.013

Maljovec, D., et al. (2015). "Analyzing simulation-based PRA data through traditional and
topological clustering: A BWR station blackout case study." Reliability Engineering &
System Safety 145: 262-276. https://www.doi.org/10.1016/j.ress.2015.07.001

Mandelli, D., et al. (2013a). "Dynamic PRA: an overview of new algorithms to generate, analyze
and visualize data". Transactions of the American Nuclear Society, Washington, DC,
American Nuclear Society.

Mandelli, D., et al. (2018). "Cost risk analysis framework (CRAFT): An integrated risk analysis
tool and its application in an industry use case, INL/EXT-18-51442." |daho National
Laboratory. https://www.doi.org/10.2172/1495190

Mandelli, D., et al. (2013b). "Scenario clustering and dynamic probabilistic risk assessment."
Reliability Engineering and System Safety 115: 146-160.
https://www.doi.org/10.1016/j.ress.2013.02.013

Matsugu, M., et al. (2003). "Subject independent facial expression recognition with robust face
detection using a convolutional neural network." Neural Networks 16(5): 555-559.
https://www.doi.org/10.1016/S0893-6080(03)00115-1

Merriam-Webster (2021). "Data",

Moura, R., et al. (2017). "Learning from accidents: Interactions between human factors,
technology and organisations as a central element to validate risk studies." Safety
Science 99: 196-214. https://www.doi.org/10.1016/j.ssci.2017.05.001

Musabayli, M., et al. (2020). "Classification model for predictive maintenance of small steam
sterilisers." IET Collaborative Intelligent Manufacturing 2(1): 1-13.
https://www.doi.org/10.1049/iet-cim.2019.0029

Na, M., et al. (2003). "Sensor monitoring using fuzzy neural network with an automatic structure
constructor." IEEE Transactions on Nuclear Science 50(2): 241-250.
https://www.doi.org/10.1109/TNS.2003.80947 1

Na, M., et al. (2006). "Design of a model predictive power controller for an SPH-100 space
reactor." Nuclear Science and Engineering 154(3): 353-366.
https://www.doi.org/10.13182/NSE06-A2638

Nabeshima, K., et al. (2012). "Real-time nuclear power plant monitoring with neural network."
Journal of Nuclear Science and Technology 35(2): 93-100.
https://www.doi.org/10.1080/18811248.1998.9733829

Ng, A. Y., et al. (2002). "On spectral clustering: Analysis and an algorithm", in Proceedings of
Proceedings of the 2002 Advances in neural information processing systems.

85


https://www.doi.org/10.1016/j.nucengdes.2017.06.013
https://www.doi.org/10.1016/j.ress.2015.07.001
https://www.doi.org/10.2172/1495190
https://www.doi.org/10.1016/j.ress.2013.02.013
https://www.doi.org/10.1016/S0893-6080(03)00115-1
https://www.doi.org/10.1016/j.ssci.2017.05.001
https://www.doi.org/10.1049/iet-cim.2019.0029
https://www.doi.org/10.1109/TNS.2003.809471
https://www.doi.org/10.13182/NSE06-A2638
https://www.doi.org/10.1080/18811248.1998.9733829

Norouzi, A., et al. (2013). "Nuclear reactor core optimization with parallel integer coded genetic
algorithm." Annals of Nuclear Energy 60: 308-315.
https://www.doi.org/10.1016/j.anucene.2013.05.013

Nuclear Energy Institute (2011). "Industry guideline for monitoring the effectiveness of
maintenance at nuclear power plants, NUMARC 93-01",

Nuclear Energy Institute (2018). "Monitoring the effectiveness of nuclear power plant
maintenance, NEI 18-10",

Park, H., et al. (2020). "Wall temperature prediction at critical heat flux using a machine learning
model." Annals of Nuclear Energy 141: 107334.
https://www.doi.org/10.1016/j.anucene.2020.107334

Park, J., et al. (2017). "Use of a big data mining technique to extract relative importance of
performance shaping factors from event investigation reports". Proceedings of the AHFE
2017 International Conference on Human Error, Reliability, Resilience, and
Performance, Los Angeles, California, USA, Springer, Cham.

Park, J. and P. Seong (2002). "An integrated knowledge base development tool for knowledge
acquisition and verification for NPP dynamic alarm processing systems." Annals of
Nuclear Energy 29(4): 447-463. https://www.doi.org/10.1016/S0306-4549(01)00054-8

Pastore, A., et al. (2017). "A new statistical method for the structure of the inner crust of neutron
stars." Journal of Physics G: Nuclear and Particle Physics 44: 094003.
https://www.doi.org/10.1088/1361-6471/2a8207

Pence, J., et al. (2020). "Data-theoretic approach for socio-technical risk analysis: Text mining
licensee event reports of U.S. nuclear power plants." Safety Science 124.
https://www.doi.org/10.1016/j.ssci.2019.104574

Podofillini, L., et al. (2010). "Dynamic safety assessment: Scenario identification via a
possibilistic clustering approach." Reliability Engineering & System Safety 95(5): 534-
549. https://www.doi.org/10.1016/j.ress.2010.01.004

Poolsappasit, N., et al. (2012). "Dynamic security risk management using Bayesian attack
graphs." |IEEE Transactions on Dependable and Secure Computing 9(1): 61-74.
https://www.doi.org/10.1109/TDSC.2011.34

Quinlan, J. R. (1986). "Induction of decision trees." Machine Learning 1(1): 81-106.
https://www.doi.org/10.1007/bf00116251

Quinlan, J. R. (1993). C4.5: Programs for machine learning, Elsevier Science.

Ramaswamy, P., et al. (1993). "An automatic tuning method of a fuzzy logic controller for
nuclear reactors." |[EEE Transactions on Nuclear Science 40(4): 1253-1262.
https://www.doi.org/10.1109/TNS.1993.8526778

Rokach, L. and O. Maimon (2005). Clustering methods. Data mining and knowledge discovery
handbook, Springer: 321-352.

86


https://www.doi.org/10.1016/j.anucene.2013.05.013
https://www.doi.org/10.1016/j.anucene.2020.107334
https://www.doi.org/10.1016/S0306-4549(01)00054-8
https://www.doi.org/10.1088/1361-6471/aa8207
https://www.doi.org/10.1016/j.ssci.2019.104574
https://www.doi.org/10.1016/j.ress.2010.01.004
https://www.doi.org/10.1109/TDSC.2011.34
https://www.doi.org/10.1007/bf00116251
https://www.doi.org/10.1109/TNS.1993.8526778

Rostamifard, D., et al. (2011). "Empirical correlation study of dryout heat transfer at high
pressure using high order neural network and feed forward neural network." Heat Mass
Transfer 47: 439-448. https://www.doi.org/10.1007/s00231-010-0733-0

Roweis, S. T. and L. K. Saul (2000). "Nonlinear dimensionality reduction by locally linear
embedding." Science 290(5500): 2323-2326.
https://www.doi.org/10.1126/science.290.5500.2323

Rumelhart, D. E., et al. (1986). "Learning representations by back-propagating errors." Nature
323(6088): 533-536. https://www.doi.org/10.1038/323533a0

Sainct, R, et al. (2020). "Efficient methodology for seismic fragility curves estimation by active
learning on Support Vector Machines." Structural Safety 86.
https://www.doi.org/10.1016/j.strusafe.2020.101972

Santhosh, T. V., et al. (2018). "An approach for reliability prediction of instrumentation & control
cables by artificial neural networks and Weibull theory for probabilistic safety
assessment of NPPs." Reliability Engineering and System Safety 170: 31-44.
https://www.doi.org/10.1016/j.ress.2017.10.010

Sasaki, M., et al. (2021). "New method for visualizing the dose rate distribution around the
Fukushima Daiichi Nuclear Power Plant using artificial neural networks." Scientific
Reports 11(1). https://www.doi.org/10.1038/s41598-021-81546-4

Scholkopf, B., et al. (1998). "Nonlinear component analysis as a kernel eigenvalue problem."
Neural Computation 10(5): 1299-1319.
https://www.doi.org/10.1162/089976698300017467

Sekimizu, K., et al. (1992). "Knowledge representation for automated boiling water reactor
startup." Nuclear Technology 100(3): 295-309. https://www.doi.org/10.13182/NT92-
A34726

Shin, J., et al. (2017). "Cyber security risk evaluation of a nuclear I&C using BN and ET."
Nuclear Engineering and Technology 49(3): 517-524.
https://www.doi.org/10.1016/j.net.2016.11.004

Simonyan, K. and A. Zisserman (2014). "Very deep convolutional networks for large-scale
image recognition." arXiv preprint. https://www.arxiv.org/abs/1409.1556

Singh, A. P, et al. (2017). "Machine-learning-augmented predictive modeling of turbulent
separated flows over airfoils." AIAA Journal 55: 2215-2227.
https://www.doi.org/10.2514/1.J055595

Sirola, M. and J. E. Hulsund (2021). "Machine-learning methods in prognosis of ageing
phenomena in nuclear power plant components." International Journal of Computing
20(1): 11-21. https://www.doi.org/10.47839/ijc.20.1.2086

Siu, N., et al. (2013). "Knowledge engineering tools—an opportunity for risk-Informed decision
making?". Proceedings of the ANS PSA 2013 International Topical Meeting on
Probabilistic Safety Assessment and Analysis, Columbia, SC,, Americal Nuclear Society.

87


https://www.doi.org/10.1007/s00231-010-0733-0
https://www.doi.org/10.1126/science.290.5500.2323
https://www.doi.org/10.1038/323533a0
https://www.doi.org/10.1016/j.strusafe.2020.101972
https://www.doi.org/10.1016/j.ress.2017.10.010
https://www.doi.org/10.1038/s41598-021-81546-4
https://www.doi.org/10.1162/089976698300017467
https://www.doi.org/10.13182/NT92-A34726
https://www.doi.org/10.13182/NT92-A34726
https://www.doi.org/10.1016/j.net.2016.11.004
https://www.arxiv.org/abs/1409.1556
https://www.doi.org/10.2514/1.J055595
https://www.doi.org/10.47839/ijc.20.1.2086

Siu, N., et al. (2016). "Advanced knowledge engineering tools to support risk-informed decision
making: final report (public version)" U.S. Nuclear Regulatory Commission.
https://www.nrc.gov/docs/ML1635/ML16355A37 3.pdf

Suman, S. (2020). "Artificial intelligence in nuclear industry: Chimera or solution?" Journal of
Cleaner Production: 124022. https://www.doi.org/10.1016/j.jclepro.2020.124022

Sun, D., et al. (2020). "Optimizing long-term monitoring of radiation air-dose rates after the
Fukushima Daiichi Nuclear Power Plant." Journal of Environmental Radioactivity 220-
221. https://www.doi.org/10.1016/j.jenvrad.2020.106281

Szegedy, C., et al. (2015). "Going deeper with convolutions”, in Proceedings of Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.

Tenenbaum, J. B., et al. (2000). "A global geometric framework for nonlinear dimensionality
reduction." Science 290(5500): 2319-2323.
https://www.doi.org/10.1126/science.290.5500.2319

Tian, D., et al. (2018). "A neural networks design methodology for detecting loss of coolant
accidents in nuclear power plants." Applications of Big Data Analytics: 43-61.
https://www.doi.org/10.1007/978-3-319-76472-6 3

Tin Kam, H. (1998). "The random subspace method for constructing decision forests." IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8): 832-844.
https://www.doi.org/10.1109/34.709601

Tracey, B., et al. (2013). "Application of supervised learning to quantify uncertainties in
turbulence and combustion modeling". Proceedings of the 51st AIAA Aerospace
Sciences Meeting including the New Horizons Forum and Aerospace Exposition,
Grapevine (Dallas/Ft. Worth Region), Texas.

Trontl, K, et al. (2008). "Machine learning of the reactor core loading pattern critical
parameters." Science and Technology of Nuclear Installations 2008: 695153.
https://www.doi.org/10.1155/2008/695153

U.S. Department of Energy. (2008). "Materials degradation in light water reactors: Life after 60."
https://www.energy.gov/ne/downloads/materials-degradation-light-water-reactors-life-
after-60

U.S. Nuclear Regulatory Commission (2021). "Role of artificial intelligence tools in U.S.
commercial nuclear power operations",
https://www.federalregister.gov/documents/2021/04/21/2021-08177/role-of-artificial-
intelligence-tools-in-us-commercial-nuclear-power-operations

Utama, R., et al. (2016). "Nuclear charge radii: density functional theory meets bayesian neural
networks." Journal of Physics G: Nuclear and Particle Physics 43(11): 114002.
https://www.doi.org/10.1088/0954-3899/43/11/114002

Vaddi, P., et al. (2020). "Dynamic bayesian networks based abnormal event classifier for
nuclear power plants in case of cyber security threats." Progress in Nuclear Energy 128:
103479. https://www.doi.org/10.1016/j.pnucene.2020.103479

88


http://www.nrc.gov/docs/ML1635/ML16355A373.pdf
http://www.nrc.gov/docs/ML1635/ML16355A373.pdf
http://www.nrc.gov/docs/ML1635/ML16355A373.pdf
https://www.doi.org/10.1016/j.jclepro.2020.124022
https://www.doi.org/10.1016/j.jenvrad.2020.106281
https://www.doi.org/10.1126/science.290.5500.2319
https://www.doi.org/10.1007/978-3-319-76472-6_3
https://www.doi.org/10.1109/34.709601
https://www.doi.org/10.1155/2008/695153
https://www.energy.gov/ne/downloads/materials-degradation-light-water-reactors-life-after-60
https://www.energy.gov/ne/downloads/materials-degradation-light-water-reactors-life-after-60
http://www.federalregister.gov/documents/2021/04/21/2021-08177/role-of-artificial-
http://www.federalregister.gov/documents/2021/04/21/2021-08177/role-of-artificial-
http://www.federalregister.gov/documents/2021/04/21/2021-08177/role-of-artificial-
https://www.doi.org/10.1088/0954-3899/43/11/114002
https://www.doi.org/10.1016/j.pnucene.2020.103479

Van Der Maaten, L., et al. (2009). "Dimensionality reduction: a comparative." J Mach Learn Res
10(66-71): 13.

Vinod, S., et al. (2003). "Symptom based diagnostic system for nuclear power plant operations
using artificial neural networks." Reliability Engineering & System Safety 82(1): 33-40.
https://www.doi.org/10.1016/S0951-8320(03)00120-0

Wang, C., et al. (2019). "Reliability assessment of passive residual heat removal system of
IPWR using Kriging regression model." Annals of Nuclear Energy 127: 479-489.
https://www.doi.org/10.1016/j.anucene.2018.12.040

Wang, H., et al. (2021). "Remaining useful life prediction techniques for electric valves based on
convolution auto encoder and long short term memory." ISA Transactions 108: 333-342.
https://www.doi.org/10.1016/].isatra.2020.08.031

Wang, J., et al. (2017). "Physics-informed machine learning approach for reconstructing
Reynolds stress modeling discrepancies based on DNS data." Physical Review Fluids 2:
034603. https://www.doi.org/10.1103/PhysReVFluids.2.034603

Wang, Z., et al. (2018a). "Seismic fragility analysis with artificial neural networks: Application to
nuclear power plant equipment." Engineering Structures 162: 213-225.
https://www.doi.org/10.1016/j.engstruct.2018.02.024

Wang, Z., et al. (2018b). "A Bayesian framework for estimating fragility curves based on seismic
damage data and numerical simulations by adaptive neural networks." Nuclear
Engineering and Design 338: 232-246.
https://www.doi.org/10.1016/j.nucengdes.2018.08.016

Ward Jr, J. H. (1963). "Hierarchical grouping to optimize an objective function." Journal of the
American Statistical Association 58(301): 236-244.
https://www.doi.org/10.1080/01621459.1963.10500845

Worrell, C., et al. (2019). "Machine learning of fire hazard model simulations for use in
probabilistic safety assessments at nuclear power plants." Reliability Engineering and
System Safety 183: 128-142. https:/www./doi.org/10.1016/j.ress.2018.11.014

Wu, J., et al. (2017). "Physics-informed machine learning approach for augmenting turbulence
models: A comprehensive framework." Physical Review Fluids 2: 034603.
https://www.doi.org/10.1103/PhysRevFluids.3.074602

Wu, Y., et al. (2020). "Using artificial neural networks for predicting mental workload in nuclear
power plants based on eye tracking." Nuclear Technology 206(1): 94-106.
https://www.doi.org/10.1080/00295450.2019.1620055

Yan, S., et al. (2021). "Using artificial neural network for predicting and evaluating situation
awareness of operator." IEEE Access.
https://www.doi.org/10.1109/ACCESS.2021.3055345

Young, J., et al. (2004). "LER data mining pilot study final report, PNNL-14910" Pacific
Northwest National Laboratory. https://www.doi.org/10.2172/15020763

89


https://www.doi.org/10.1016/S0951-8320(03)00120-0
https://www.doi.org/10.1016/j.anucene.2018.12.040
https://www.doi.org/10.1016/j.isatra.2020.08.031
https://www.doi.org/10.1103/PhysRevFluids.2.034603
https://www.doi.org/10.1016/j.engstruct.2018.02.024
https://www.doi.org/10.1016/j.nucengdes.2018.08.016
https://www.doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1016/j.ress.2018.11.014
https://www.doi.org/10.1103/PhysRevFluids.3.074602
https://www.doi.org/10.1080/00295450.2019.1620055
https://www.doi.org/10.1109/ACCESS.2021.3055345
https://www.doi.org/10.2172/15020763

Zhang, F., et al. (2020). "A robust cybersecurity solution platform architecture for digital
instrumentation and control systems in nuclear power facilities." Nuclear Technology
260(7): 939-950. https://www.doi.org/10.1080/00295450.2019.1666599

Zhang, Y. J. and L. S. Hu (2020). "Real time estimation of radionuclides in the receiving water of
an inland nuclear power plant based on difference gated neural network." Radiation
Physics and Chemistry 176. https://www.doi.org/10.1016/j.radphyschem.2020.109019

Zhao, L. and X. Wang (2018). "A deep feature optimization fusion method for extracting bearing
degradation features." IEEE Access 6: 19640-19653.
https://www.doi.org/10.1109/ACCESS.2018.2824352

Zhao, Y., et al. (2019). "Automated identification of causal relationships in nuclear power plant
event reports." Nuclear Technology 205(8): 1021-1034.
https://www.doi.org/10.1080/00295450.2019.1580967

Zou, Y., et al. (2018). "A Data Mining Framework Within the Chinese NPPs Operating
Experience Feedback System for Identifying Intrinsic Correlations Among Human
Factors." Annals of Nuclear Energy 116: 163-170.
https://www.doi.org/10.1016/j.anucene.2018.02.038

90


https://www.doi.org/10.1080/00295450.2019.1666599
https://www.doi.org/10.1016/j.radphyschem.2020.109019
https://www.doi.org/10.1109/ACCESS.2018.2824352
https://www.doi.org/10.1080/00295450.2019.1580967
https://www.doi.org/10.1016/j.anucene.2018.02.038

moy} aseyd-om| Bjep pajejnwis 44 ‘NN4 (90z0z “[e 1@ oeq)

UOIIOSAUOD PaxIN ejep pajejnwis NN4 (e0z0Z "[E 10 oeq)

UOI}O8AUOD paxI ejep psjejnwis 44 ‘NN (6102 '|e 1o oeq)

Buijiog ejep pajejnwis NN4 (8102 e 3o ni)

MOJj ®3ud|ngJn | Bjep pajejnwis NN4 (9020Z “[e }° euueH)
uoissalboy

MO[} ®oUB|NQIN | ejep pajejnwis [ouley (102 "1e 18 Adoel])

MO[} doUdINauN | Eejep pajejnwis do (110Z Buep pue mo(Q)

MO|} ®dus|ngJn | ejep pajejnwis s4d (2102 '|e o Buep)

MOJj ®3ud|nqJn | Bjep pajejnwis Els| (2102 "B 1@ N\)

MO|} ®dus|ngJn | ejep pajejnwis NN4 (2102 'le 1o ybuig)

uonewnsa (5Loz

MOJ} 80U8INqIN] | Joulg/sishjeue ejep pajejnwis 44 ‘1A ‘WAS uojejdwa] pue bur)

Auienaoun | ejep |ejuawiiadxa

Moy} aseyd-om| |  Spod/|SPON -ejep paje|nwis NN4 (Lzoz ‘e HmA oeg)

810¢

uonjeoluapl awibal mol4 | ejep [eyuswiiadx3 INAS ‘NN EA|IS ep pue p|ogoH)

sol|neJpAy [ewJay} Jeajonu uj suoles|idde |\ Jo uoneoyisse|) Bjep pajejnwis NNO ‘NN4 (610z yuig pue Buey))

SNl (eTe)

Aobajen ejeq

[00] ‘dwo) “ApY

sol|nelpAH |ewuay] Joyoeay ul suoieolddy “|

0002 19)4e sisAjeuy pue ubisaq wajsAg 10)oeay Ul Sjoo] Jeuoijeindwo) pasueApy Jo suonesljddy Jo Malnay

AJd1SNANI JdVITONN
NI SSNODINHO3L ANV STO00L TVNOILVLINdINOD AIIJNVAQYV 40 SNOILVIITddV LN3O3H
V XIAN3ddV

2JUBIBJoY

I-v 3|qel

A-1



SNN

uonolpald onjes Builjloq a1esjonu Woly ainuedap wnNWIUI| ejep paje|jnwis Azzn4 epeose) (5L0Z '|e 1@ wry)
SNN
Azzn4 speose)
9)eIMO} SSew [eoNUD EJep paje|nwis payidwis (0z0z 'le 1o uy)
V4071 Buunp abueys mojy pue ainjesadwa) Buippe|o yesad Blep paje|nwis NAS (6102 ‘e 1@ Buey)n)
Buiwy g esesjal 8)isyo pajoadxy elep pajejnwig NNO (98102 '|e 1o 897)
XN }eay [eoo je ainjesadwa) e elep pajejnwig NN4 (0202 ‘[ 18 Yied)
we|d Jemod
[ewJay} 8y} wol)
SOA|BA Ul Wead)s Joy sisAjeue ABlaxa pue AdoJjug | ejep sseooud [eay NN4 (020Z 'Ie 10 zaiby)
aAoalqo Aiobajen ejeq | 1001 dwo) ‘Apy aoualojoy
9oUBWIOLDH WAISAS J0joraYy Ul suonediddy ‘¢
Jejs uoainau
B JO ISnJO Jauul 8y} Jo jusuodwod uojoid ejep paje|jnwis do (2102 '|e 18 a101sBY)
lipes abieyd Jeg|onpN ejep |eyuswiadxg NNg (9102 ‘e 12 eweln)
saladoud Jeajonu Jo uonolIpald ejep |ejuswadxgy NAS (900Z 17 pue ieD)
sJojoweled
[eonuo uisped Buipeo| 8109 Jojoeay ejep paje|nwis NAS (800Z 1€ 1@ ppuou])
|lopow saAl-jey Aeosp-ejeg Ejep |ejuswpiadxy INAS ‘NN4 (0202 'Ie 1o s443s0D)
(002
SOSSEW 2IPIONU JO [9pouw [eonsielg | UoNdIpaid iol | erep jejuswiiedxy NN4 ‘|e 1@ sojnodosseueyly)
Juswdojonap
e|nw.oy} ipes abieyo Jesjonu Juspuadap-ssen [9pPO\ | elep |ejuswiiadxgy NN (€102 '1e 1@ unfoxy)
aAoalqo Aiobajen ejeq | 1001 dwo) ‘Apy ERIIEIETEN
soIsAyd Jojoeay ul suoneolddy ‘g
uonoipaud
JUBIDIB09 Jajsued) Jeay Jajem |eonioladng ejep |ejuswiadx3y NN (2102 ‘1e 1@ eN)
uonoipa.d Jusiole0d Jajsuel) JeaH ejep |eyuswiiadxy NN4 (L102Z ‘e 12 opelojo))
uonoipaid Jusiols09 Jgjsuel) jesy noAig | juswdojensp | Elep |ejuswedxy NN4 (LLOZ 'Ie 12 piejiwe)soy)
slajoweled 4H Jo sisAjeue AjAlISUSS [opow | ejep |ejuswiadxgy NN (yLoZ 11 17)
uopoipasd Xnj Jeay [eanud 2inso|Q elep pajejnwis NAS (8102 @97 pue aH)

(penunuod)
000Z 194V sisAjeuy pue ubisaq wajsAg 10)oeay ul s|oo] |euonjeindwo) pasueApy jo suonjedijddy jJo malAdy |-V 9|gel

A-2



uolsojdxa wes)s Blep pajejnwis NNd (9102 "[e 12 0}udyaYsLD)
SNN
uoljesuUaouU09 usboipAH elep pajeinwis Azzn4 epeose) (9102 'l 12 10YD)
SjuapIooe a1aAas Bulinp uonoipald [9AS] Ja)eM |9SSOA J0joray EJEp paje|nwig NN4 (96102 ‘|2 12 00N)

(penunuod)

000Z 18yV sisAjeuy pue ubisag wa)sAg J0joeay ul s|0o] [euonjeindwo) pasueApy Jo suoiedijddy Jo MaIAaY |-V d|gel

A-3



uolosep Jusuodwon Ejep paje|nuwis NN (0202 'le 1o oe9)

uoneoyuap! Ayjewsouqy Eejep pajejnwis NN (8102 sda|I1D pue nJow|-0Ay)
Burioyuow Ajjioey 1s9)

jueld Jamod Jeajonu swi}-|jeay wouJj ejep Josuag NN4 (z1L02Z ‘e 1@ ewiysaqgenN)

wajsAs opsoubelp paseq woydwAig Ejep pajejnwis NN (€002 '|e 3@ pOuIp)
Ajjioey 1s8}

sJoineyaq jued Jo uonoipald woJj ejep Josuag NN4 (L102 ‘|2 18 zopueulad)

UOoIj09)}8p pue UolepI|eA JOSUSS B]Ep JOSUSS Jue|d NN Azzn4 (€00Z ‘1819 BN)

uoledlUSp! pue uoloslep Jne4 Ejep paje|nuwig NN (9661 popeg pue wry)

wolsAs Buissaooud wepy

Bjep Josuas
weld Buisn poisa |

|00) aseqg-abpajmouy

(200z Buoag pue Mied)

alnpaoold Bunelado Aousbilawg ejep pajejnwis a160] Azzn4 (z00z uoo pue aer)

J48]|03u0d 810D ejep pajejnwis NNY (€002 '|e 3@ IMeysnoiog)

uopjesado Buimo||04 PEOT] Eejep psjejnwis NN (2002 '|e 1o 1nefeyy)

[0J3U02 2Jinjeladwa) Jojoeal JeajonN BjEp pajenwiIs NNY (z661 1B 18 NY)
aouewJoad jue|d [ewndo Joj J9||0Ju0d

2160| Azzn} pauny Ajjeonewoine uy ejep pajejnwis 2160| Azzn4 (¢661 ‘e 12 Awemsewey)

wa)sAs [04juoo dnpe)s pajewony

|eubis Josuas jue|d
‘ejep pajejnwis

NN4 pue 2160] Azzny ‘solweuip
9SJaAUI BAIJONIISUOIDY

(1661 ‘e 10 ueyiag)

YAG Jo dnye)s pajewoiny

ejep paje|nuis

sanbiuyoa) paseg-abpajmouy

(2661 "[e 18 NZIWBS)

Wa)SAS Jojoeal
2oeds e 10} Wa)SAs |01U0D SNOWOoUOoINY

ejep paje|nuwis

vYOd
‘wyioB|y onsusng)

(9002 ‘le 18 BN)

uonuanaid abewep 2109
Joj wyyobje uonesado snowouoiny

ejep paje|nuwis

Aows\ wis | -loys BuoT

(eglL0z '|e 18 997)

wa)sAs poddns uojesadQ

Bjep pajenwis

Buiwwelboud 198 Jemsuy

(e0Z0Z "[e 1© BUUBH

woasAs |04ju0d Alosinledng

elep pajejnwis

y}lomjau ueisefeg

[0JJU0D pue Juswabeuew snowouoiNy

elep pajejnwis

NNY ‘NN4

)
(6102 leynwey pue Jauna))
(eLzoz ‘e ur)

aA3[qO

Kiobajen ejeq

[00] ‘dwo) ‘ApY

aoueuauley pue uonesadQ jueld ul suonedlddy °|

aoueuajuley pue uonjesadQ jue|d ul sjoo] Jeuoleindwon pasueApy jo suoljedijddy Jo MIIADY Z-V d|gel

80UBI8joY

A-4



JBIJISSE[O JUBAD [BwIoUqQY Blep paje|nwis YIOM]aU ueisaleg (0Z0Z ‘e 12 Ippen)

Buiuies|

JuswiadJouIal {(uoneoljIsseo)
salnseaw Ajund2ag ejep paje|nwis TN pesiaiadnsun (6L0Z UnH pue 997)
uonen|eaa ysu AjlInoas Jaghn Blep paje|nwis YIOM]aU ueisaleg (£10Z |’ 12 UIYS)
juswabeuew ysii AluNoas olweuAq elep paje|inwis spoylaw ueisaleg (zL0zZ ‘|2 18 useddes|ood)
woesAs |eaisAyd 1aghn elep pajeinwis uonewixoidde salenbs jseg| (£102Z ‘|2 18 puemes))

VvOd ‘uoissaibal

[auJay dABID0SSE-0INe
‘1Y ‘Bunebaibbe densjooq
wuojeld uonnjos Aunoasiagh) ejep paje|jnwis ‘1@ ‘Joqybiou 1saieau-y (0zoz ‘e 10 Bueyz)
aA1loalqoO Aiobajen ejeq [00] ‘dwo) ‘ApyY ERIVENETEN

AInoag Jaqhn jueld ul suoneoiddy ‘g

(panunuos) asueusjuiepy pue uoeradQ jue|d ul sjoo] |jeuoneindwo) pasueApy jo suonjeslddy Jo malnay ‘Z-V dlgel

A-5



sisAleue Ayibeyy olwsiog Ejep pajejnwis NN4 (eg102 'le 1o buepn)
uole|NWIs [9pow plezey a.i Eyep pajejnwis | 1d ‘INAS Yogybiau jsaseau-y (6102 ‘[e 3@ |[9140M)
SjuspI0ok JUB|00D JO SSO| Bulosieg Ejep paje|nwis NN4 (8102 e 3o uel])

Blep Yyd paseg-uonenuwis buizAjeuy

Bjep paje|nwis

(Buusysnid) N pasialadnsun

(5102 'Ie 18 98910l y)

vdd olweuig

elep paje|nwis

(Buleysnid) N pasinladnsun

(e€L0Z ‘1e 1o llepuepy

uoneoluapI JusIsuel |

ejep paje|nwis

(Buleysnid) N pasinladnsun

)
(29102 ‘|2 18 OB\ 1Q)

sjuapiooe Jolew jsed wouy
uonewuoyul Buisn saipnys ysu Buneplie

1X8] @ai4 painonisun

(Buleysnid) N pasinladnsun

(£102 "[e 18 einop)

sybisul s swiy-|eas Buneiausas

ejep paje|nwis ‘eyep
|leuonjelado ‘ejep Josuss
Se $90.N0Ss ejep alayig

sylomiau ueisaleg

(0202 Y019 pue Isuag)

UOI108)8p SIUBPIOOE JUB|00D-J0-SSOT

Bjep pajenwis

uoijewns3 Ajisua( [auJay]

(8102 'le 18 J8qJed)

(Buluiw a|nJ uoneOSSE
pue sisAjeue Ja)sn[o ‘sisAjeue
uoneaulo 'a°1) seyoeoidde

sJ0joe} UBWNY suyodal [eonsiels aa4y} buluiquos
Buowe suone|a109 oisuljul Buikyuap) wioJj ejep painonng yJomawed) Buluiw ejep vy (8102 ‘e 1@ n0OZ)
sJojoe} Buideys aouewoylad syuodal

Jo @ouenodwi aAneal bunoeinxg

WwoJ} Blep painionns

14dvO

(2102 1e 18 Nied)

suodal 1x8)-00.4
woJ} sdiysuonejas [esned ay) buijoenx3

1X8] 98J) painjonisun

Buissesoid abenbue| jeanjeN

(6102 "|e 10 oeyz)

UOI}BOIJI}USPI OLIBUSIS

ejep paje|nuwis

(Buusysnio) N pasialadnsun

(0102 "1e 18 1opod)

Wa)sAs OlWBUAD B JO JUBWISSOSSE YSiy

ejep pajenuwis

Buusisnio pue
}lomiau ueisaleg olweuA(Qq

(e0z02 "[e 10 wry)

Bulie1sn|o oLIeUSDS

elep paje|nwis

ABojopoyjew Yiyg-uesy

(9102 "[2 18 l|opuey)

aw buidod YAnd JO uonewnsg
aAo3lgo

sisAjeuy ysi1y pue A}ajeg JeajdnN ul s|oo] [euoneindwon pasueApy jo suonesijddy Jo malnay ¢-V d|qel

ejep pajejnwis
Alobaien ejeq

poylaw uoljejodiaul

aul|ds pue ‘poyjew s piedays

‘Jossalbal pue Jaisse|d

Joqybiau-jsaieau-y ‘NAS ‘dO
[00] dwo) ‘ApPY

(0202 "I1e 18 uensuy))
IOl UENSTESNY

A-6



Bunjew
uoIsioap pawlojul-ysi buiuoddng

1X8] 98J) painjonisun

Buissesoud abenbue| jeanjeN

(9102 ‘1818 NIS)

Apnis 1011d Buluiw ejeq

1X8) 981} paJnjoniisun

(Buusysnid) N pasialadnsun

(#00Z "1e 10 Buno,)

(uoneoyisse|)

sIsAeue ysll 150D 1X9] 994} painjonisun TN pesinledng (8102 1 18 jIepuen)
syodal uonebnsaaul
Juane woy eyep YyH Bunoelix3g elep pajejnwis 14VvO (0202 Med pue weH)

SOLIBUIS JlWeUAp
panjea-inw ay) Buissasoud-1sod
aARalqo

(panunuos) sisAjeuy ysiy pue Ajajeg Jeajonp ul sjoo] jeuoijeindwio) pasueApy jo suoljeslddy Jo malnay ¢-V djqel

elep psje|nwis
Aobayen ejeq

(Burieysn|o)
N pasiniedng-lwas
|[00] ‘dwo) ‘ApY

(a910z "le 19 OB\ 1Q)
aoualajoy

A-7






NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION J 1. REPORT NUMBER
(12-2010) (Assigned by NRC, Add Vol., Supp., Rev.,
NRCMD 3.7 and Addendum Numbers, if any.)

BIBLIOGRAPHIC DATA SHEET

{See instructions on the reverse)

NUREG/CR-7294

2. TITLE AND SUBTITLE 3. DATE REPORT PUBLISHED
Exploring Advanced Computational Tools and Techniques with Artificial MONTH YEAR
Intelligence and Machine Learning in Operating Nuclear Plants February 2022

4. FIN OR GRANT NUMBER

IAA-31310019N0006

5. AUTHOR(S) 6. TYPE OF REPORT
Technical

Z. Ma, H. Bao, S. Zhang, M. Xian, A. Mack

7. PERIOD COVERED (Inclusive Dates)

8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. 5. Nuclear Regulatory Commission, and mailing address; if
contractor, provide name and mailing address.)

Idaho National Laboratory
1955 Fremont Ave
Idaho Falls ID 83402-1510

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (IfNRC, type "Same as above", if contractor, provide NRC Division, Office or Region, U. 5. Nuclear Regulatory
Commission, and mailing address.)

Division of Risk Analysis

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555-0001

10. SUPPLEMENTARY NOTES

11. ABSTRACT (200 words or less)

This report presents the project Idaho National Laboratory conducted for the Nuclear Regulatory
Commission (NRC) to explore the advanced computational tools and techniques, such as artificial
intelligence (Al) and machine learning (ML), for operating nuclear plants. The report reviews the nuclear
data sources, with the focus on operating experience data, that could be applied by advanced
computational tools and techniques. Plant-specific and generic (national and international) data from
different sources are described. The report describes the relationships between statistics and Al/ML and
then introduces the most widely used Al/ML algorithms in both supervised and unsupervised learning. The
report reviews the recent applications of advanced computational tools and techniques in various fields of
nuclear industry, such as reactor system design and analysis, plant operation and maintenance, and
nuclear safety and risk analysis. The report presents the insights from the project on the potential
applicability of Al/ML techniques in improving advanced computational capabilities, how the advanced
tools and techniques could contribute to the understanding of safety and risk, and what information would
be needed to provide meaningful insights to decision makers.

12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) 13 AVAILABILITY STATEMENT
PRA, artificial intelligence, machine learning, nuclear plant, probabilistic risk unlimited
assessment, operating experience, data 14 SECURITY CLASSIFICATION

(Thiz Page)
unclassified

(This Repoit)
unclassified

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (12-2010)



Printed
on recycled
paper

Federal Recycling Program






UNITED STATES
NUCLEAR REGULATORY COMMISSION
WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS




NUREG/CR-7294 Exploring Advanced Computational Tools and Techniques with Artificial Intelligence and February 2022
Machine Learning in Operating Nuclear Plants



	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS AND ACRONYMS
	1 INTRODUCTION
	1.1 Background
	1.2 Outline

	2 NUCLEAR DATA OVERVIEW
	2.1 Nuclear Data Sources
	Figure 1 Relationships Between Observed Data and Synthetic/simulated Data

	2.2 OpE Data
	Figure 2 Subcategories of NPP OpE data
	2.2.1 Plant-Specific OpE Data (Category 1.1)
	2.2.2 Generic (National) OpE Data (Category 1.2)
	2.2.3 Generic (International) OpE Data (Category 1.3)
	Table 1 NPP OpE Data Source Subcategories

	2.3 Characteristics of NPP OpE Data Sources
	2.4 Relevancies of OpE Data to PRA

	3 AN OVERVIEW OF ADVANCED COMPUTATIONAL TOOLS AND TECHNIQUES - AI/ML
	3.1 Statistics and AI/ML
	3.2 AI/ML Algorithms Overview
	3.2.1 Supervised Learning
	Figure 3 A three-layer feedforward ANN
	Figure 4 A Gaussian process example
	Figure 5 Examples of Bayesian Networks
	3.2.2 Unsupervised Learning
	Table 5 Clustering Algorithms
	Table 6 Dimensionality Reduction Algorithms

	3.3 AI/ML Algorithms for Computational Predictive Capabilities
	3.4 AI/ML Languages and Tools

	4 AN OVERVIEW OF APPLICATIONS OF ADVANCED COMPUTATIONAL TOOLS AND TECHNIQUES IN NUCLEAR INDUSTRY
	4.1 AI/ML in Reactor System Design and Analysis
	4.2 AI/ML in Plant Operation and Maintenance
	4.3 AI/ML in Nuclear Safety and Risk Analysis

	5 INSIGHTS ON TASK 1 QUESTIONS
	Question 1 for Task 1: What types of advanced computational tools and techniques may be employed, how would they work, and how effective would they be expected to be?
	Question 2 for Task 1: What aspects of the advanced tools and techniques could contribute to our increased understanding of safety and risk?
	Question 3 for Task 1: What types and quantities of information would be needed, in concert with the new tools and techniques, to generate safety and risk implications?

	6 A SURVEY ON THE ROLE OF ARTIFICIAL INTELLIGENCE TOOLS IN
	6.1 Survey Questions
	6.2 Survey Participants
	6.3 Survey Responses
	Table 9 Survey Question and Response Matrix
	Survey Question 1
	Table 10 Summaries of Survey Responses to Survey Question 1
	Table 11 Summaries of Survey Responses to Survey Question 2
	Table 12 Summaries of Survey Responses to Survey Question 3
	Table 13 Summaries of Survey Responses to Survey Question 4
	Table 13 Summaries of Survey Responses to Survey Question 5
	Table 15 Summaries of Survey Responses to Survey Question 6
	Table 16 Summaries of Survey Responses to Survey Question 7
	Table 17 Summaries of Survey Responses to Survey Question 8
	Table 18 Summaries of Survey Responses to Survey Question 9
	Table 19 Summaries of Survey Responses to Survey Question 10

	6.4 Insights from Survey Responses

	7 EXPLORING POTENTIAL APPLICATIONS OF ADVANCED COMPUTATIONAL TOOLS AND TECHNIQUES TO OPERATINGNUCLEAR PLANTS AND ADVANCED REACTORS
	AF 1: Plant safety and security assessments
	AF 2: Plant degradation modeling, fault and accident diagnosis and prognosis
	AF 3: Plant operation and maintenance efficiency improvement
	Figure 7 Potential Benefits for Plant Safety and Efficiency via AI/ML Applications in Three     Main Technological Application Fields.0F1
	7.1 Application Field 1: Plant Safety and Security Assessments
	7.1.1 Plant Safety Assessment - System, Structure, Component Reliability
	7.1.2 Plant Safety Assessment - Human Reliability
	7.1.3 Plant Safety Assessment - External Events
	7.1.4 Plant Safety Assessment - Accidental Radiological Release and Monitoring
	7.1.5 Plant Security Assessment - Cybersecurity and Physical Security

	7.2 Application Field 2: Plant Degradation Modeling, Fault, and Accident Diagnosis and Prognosis
	7.2.1 Degradation Modeling
	7.2.2 Fault Detection, Diagnosis, and Prognosis
	7.2.3 Accident Detection, Diagnosis, and Mitigation

	7.3 Application Field 3: Plant Operation and Maintenance Efficiency Improvement
	7.3.1 System, Structure, Component Operation and Control Optimization
	7.3.2 Operator and System, Structure, Component Performance Evaluation
	7.3.3 System, Structure, Component Maintenance Planning


	8 CONCLUSIONS
	9 REFERENCES
	APPENDIX A
	Table A-1 Review of Applications of Advanced Computational Tools in Reactor System Design and Analysis after 2000
	Table A-2 Review of Applications of Advanced Computational Tools in Plant Operation and Maintenance
	NUREG/CR-7294 Exploring Advanced Computational Tools and Techniques with Artificial Intelligence and

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



