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EXECUTIVE SUMMARY

This report was prepared to explore digital twin technologies with nuclear 
applications to further enable collaboration among nuclear stakeholders. Digital 
twins and DT-enabling technologies are expected to be integrated with future 
nuclear reactor designs while also having the potential to improve the operations 
of currently operating nuclear power plants. Greater digital integration, 
improved instrumentation and control systems, and advanced operations and 
maintenance practices are all associated with DT-enabling technologies. This 
report presents a description of a DT system for a nuclear power plant followed 
by details of challenges and gaps in implementing DT-enabling technologies in 
current and advanced reactor applications.

The following are key challenges for their respective enabling technologies:

• Advanced sensors and instrumentation

 - Use of new types of sensors or multimodal sensors

 - Installation of a greater number of sensors and more varied sensors

 - Continuous, real-time collection of sensor data

 - Evaluation of uncertainty for new sensors

 - Integration of legacy sensors

• Modeling and simulation

 - Uncertainty quantification and propagation in model  
development and integration

 - Verification and validation of integrated, heterogeneous models

 - Development of real-time models adequate for nuclear  
DT application

The Office of Nuclear 
Regulatory Research at the 
U.S. Nuclear Regulatory 
Commission (NRC) has 
initiated a future-focused 
research project to assess 
the regulatory viability 
of digital twins (DTs) for 
nuclear power plants.  
The objectives of this 
project are to:

• Understand the current 
state of the digital 
twin technology and 
potential applications 
for the nuclear industry

• Identify and evaluate 
technical issues that 
could benefit from 
regulatory guidance

• Develop infrastructure 
to support regulatory 
decisions associated 
with DTs
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• Data analytics

 - Integration of heterogeneous data

 - Treatment of noisy or erroneous data

 - Scaling data analytics

 - Capture of heterogenous and dynamic uncertainty

 - Decomposition of multimodal, real-time sensor data

• Machine learning (ML) and artificial intelligence (AI)

 - AI/ML training data requirements

 - ML algorithm selection

 - Ability to understand and explain AI algorithm behavior

• Physics-based models

 - Real-time simulation of high-fidelity physics-based models

• Data-informed modeling

 - Implementation of real-time, dynamic data-informed models

• Data and information management

 - Standards and guidance for cybersecurity, cloud storage, encryption, and geographic redundancy

 - Establishment and scaling of storage capacity, data-sharing bandwidth, and computational capability

 - Transition from document-centric to data-centric approach

Additional effort is needed from interested stakeholders to meet the challenges and bridge the gaps in implementing 
DT-enabling technologies in nuclear reactors. Due to stakeholder interest and industry trends, the NRC is continuing to 
explore the regulatory viability of digital twins for nuclear power plants by pursuing additional research in the application 
of advanced sensors for monitoring system performance, integration of security and safeguards within digital twins, and 
regulatory considerations for use of DTs. These activities aim to increase knowledge, enhance communication, and build 
mutual understanding of DT applications in nuclear power plants.

Digital twins (DTs) in complex industrial and engineering applications have proven benefits that include increased 
operational efficiencies, enhanced safety and reliability, reduced errors, faster information sharing, and better 
predictions. The interest in DT technologies continues to grow, and the technology is expected to experience 
rapid and wide industry adoption in the next decade. Some of the potential application areas of applying DTs 
in the nuclear industry are design and licensing, plant construction, training simulators, predictive operations 
and maintenance, autonomous operation and control, failure and degradation prediction, obtaining insights 
from historical plant data, and safety and reliability analyses. Current efforts in the nuclear industry are focused 
on specific enabling technologies needed to implement DTs, such as advanced sensors, digital computing and 
communication infrastructure, high-fidelity models, data analytics, machine learning (ML), artificial intelligence 
(AI), and multiphysics modeling and simulation [1]. In the future, these enabling technologies will coalesce to form 
a unified system or plant DT.
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The Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC) has initiated an effort 
to assess the regulatory viability of DTs for nuclear power plants (NPPs). This effort is led by Idaho National Laboratory 
in collaboration with Oak Ridge National Laboratory. The objective of the NRC’s DT project is the identification and 
evaluation of technical challenges associated with the application of DTs in reactors that would impact the regulatory 
outcomes, with the goal of developing a regulatory infrastructure for the use of DTs as part of the regulatory programs. 
As part of this effort, the NRC sponsored the Virtual Workshop on Digital Twin Application for Advanced Nuclear 
Technologies in December 2020 and the second Virtual Workshop on Enabling Technologies for Digital Twin 
Applications for Advanced Reactors and Plant Modernization, in September 2021 [3]. The purpose of the workshops was 
to assess the current understanding of DTs and identify their potential benefits, opportunities, and challenges for nuclear 
reactors. The workshop provided a forum for the nuclear industry and DT stakeholders to discuss the state of knowledge 
and research activities related to DTs and their application in the nuclear industry and to understand challenges and gaps 
specific to DT-enabling technologies. The main topics related to DT applications in the nuclear industry that need to be 
addressed in the near term are the:

• Development of a common understanding, including an agreeable definition, of the structure and functions of a DT

• Identification of technical challenges and potential solutions related to implementing the DT-enabling 
technologies in nuclear

• Identification of regulatory readiness levels and gaps in applying DTs for nuclear reactor applications

• Engagement with stakeholders to identify the DT implementations in the current fleet and their potential 
regulatory impact.

The purpose of this project is to better understand the potential applications of reactor DTs and explore the 
regulatory viability. This will be accomplished in two phases:

• Phase I: Identification and evaluation of technical issues that would impact regulatory outcome.

• Phase II: Development of a regulatory infrastructure for use of DTs as part of the regulatory programs.

As part of the Phase I efforts, one report has already been issued for the project that disseminates the findings of 
a state-of-the-art review of digital twin technologies and their applications in non-nuclear and nuclear industries 
[1]. Additionally for Phase I, this present report documents the technical challenges and gaps associated with the 
following DT-enabling technologies:

• Advanced sensors and instrumentation

• Modeling and simulation

 - Common challenges with modeling and simulation

 - Data analytics

 - Machine learning and artificial intelligence

 - Physics-based modeling

 - Data-informed modeling

• Data and information management.

This report also presents a description of a DT for a typical NPP application, including the description of its various 
elements and technologies. Section 1 presents a detailed description of DTs for nuclear power plant applications. 
This section provides the necessary conditions for a DT, defines key technical terminologies used in the report, and 
describes each technical element that will contribute to forming a nuclear DT. Section 2 presents a comprehensive 
discussion of challenges associated with DT-enabling technologies listed above. Section 3 provides a summary and 
conclusions from this task.
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1 DESCRIPTION OF DIGITAL TWIN IN NUCLEAR

The following section lays the foundation for the rest of the report by describing 
various possible attributes and features of an NPP DT.

The term “digital twin” evolved from the concept of product lifecycle 
management and can be attributed to the work of Michael Grieves and John 
Vickers [4-7] over the last two decades. The first instance of the term, coined 
by John Vickers, is found in their presentation [8]. In [8], the DT model is 
composed of the physical product, its representation as a digital twin, data 
flowing from the physical to the DT, and information flowing from the digital 
to the physical twin. Figure 1 illustrates the digital twin concept for the nuclear 
power industry that broadly comprises four elements: 1. Nuclear Power Plant, 
2. Digital Twin, 3. Data and Response from Nuclear Power Plant to Digital 
Twin and 4. Actions and Recommendations from Digital Twin to Nuclear 
Power Plant. These elements are described in detail in this section, and the 
challenges associated with creating and using DTs of these elements are 
discussed separately.

Various interpretations of a DT may exist based on different technologies, 
applications, or other criteria. The description of a nuclear power plant DT 
system or simply nuclear DT system in this report is for illustrative purposes 
only and should not be considered definitive. The term nuclear DT in this report 
is described with regard to a typical commercial NPP to provide a framework 
for discussion of nuclear applications of DT technologies.

Several DT technologies discussed in this section have already been in use 
prior to the advent of the term “digital twin.” For instance, 3D CAD models 
have been used by parts designers and manufacturers for over two decades, and 
multiphysics modeling and simulation have long been used by stakeholders in 
the nuclear industry for representing neutronics and thermal hydraulics. It can 

In recent years, DT 
technologies have started 
to be applied in the nuclear 
industry both in the current 
light-water reactor fleet and 
in the advanced reactors. 
The state-of-the-art 
survey report provides an 
extensive account of the DT 
application in the nuclear 
industry [1].  These efforts 
include collaborative 
efforts across advanced 
reactor designers, nuclear 
utilities, DT vendors, 
university researchers, and 
national laboratories and 
are focused on a variety of 
applications throughout 
a plant’s lifecycle, such as 
design, licensing, regulatory 
compliance, emergency 
response, modification, 
engineering analysis, 
construction, operation 
and maintenance (O&M) 
efficiency, and testing. 
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be asked then, why should these existing and proven technologies now be referred to as components of a DT? This report 
identifies the following three conditions for any existing or new technology to be referred to as or be a part of a nuclear DT:

1. Digital Form: The technology must exist in a digital form that can be managed, processed, and executed on a 
digital device. This condition seems obvious but needs to be explicitly defined for the nuclear industry because 
some nuclear plant data and information have traditionally been handled in a non-digital form. For instance, 
historical information at an NPP, such as maintenance records, may exist in a non-digital forms such as paper or 
microfiche. Information of this type must first be transformed into a digital format, e.g., via machine-readable 
scans and context aware processing, before it can be used within a DT.

2. State Concurrency: The technology must be capable of updating dynamically and in real time to represent 
the state of a physical entity or physical phenomenon and must maintain that state concurrency. For example, 
a multiphysics model of a reactor core can be referred to as a DT only if it represents, in real time, the current 
conditions of the reactor, such as fuel temperature, reactor fluid temperature, neutronics, etc. The update 
frequency needed to maintain the real-time state concurrence is of course dependent upon the underlying 
rate of change of the represented physical system. For instance, real-time sensor data may require an update 
frequency of seconds or minutes, but real-time maintenance work order data could only require an update 
frequency of weeks.

3. Purpose: The technology must have an underlying purpose related to an NPP lifecycle activity. That is, a 
nuclear DT must be part of a DT system and be coupled in terms of both state and purpose with the physical 
NPP. For instance, performance data from a pump might be used to train an ML model, but to be called a DT, 
the model must both be updated frequently enough to reflect the current pump state and also serve a plant-
related purpose, such as informing pump maintenance.

Figure 1. Overview of DT system in an NPP application.
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Additionally, for the purpose of clarity, we will use the following terminology throughout this report:

Digital Twin Technology or simply digital twin: when generally referencing the approaches and technologies  
used to implement a DT.

[Specific instance name] digital twin: when referencing a particular instance or implementation of a DT (e.g., a pump 
digital twin, a sensor digital twin, a ship digital twin, a design digital twin, an operational digital twin). Note that an 
instance DT can exist in the absence of one of the above elements of Figure 1.

Digital twin system: when referencing the overall system that is comprised of, in general, the physical system, the 
digital twin of that system, and the relationships between physical system and digital twin e.g., information and data 
flows. Figure 1 presents a DT system for an NPP.

While the nuclear industry has years of experience with technologies that may be used as elements of a future 
nuclear DT system (e.g., models and simulations of physical plant systems, highly instrumented plant systems, and 
high-density collections of plant performance data), these elements by themselves do not constitute a DT system. As 
illustrated in Figure 1, generally, a nuclear DT system must have a physical system, a digital twin of that system, and 
a set of relationships, as well as a means of maintaining the relationships, between the two. However, one or more 
of the system elements of Figure 1 may exist on its own. For instance, advanced reactors, such as microreactors, are 
currently in the concept or design stage, and therefore, the physical elements of such reactors do not exist. However, 
the DT of these reactors may exist for certain purposes, such as design and licensing.

Digital-twin-enabling technologies: or simply enabling technologies, when referring to a set of technologies that 
are needed to successfully implement a nuclear DT. Referencing Figure 1, all the technologies within the DT are 
essentially DT-enabling technologies. Additionally, the Advanced Sensors and Instrumentation and Computing and 
Networking Systems are DT-enabling technologies within an NPP. The description of challenges and gaps in the 
following section of this report will therefore focus on three broad DT-enabling technologies: 1. Advanced Sensors 
and Instrumentation, 2. Modeling and Simulation, and 3. Data and Information Management.

1.1 NUCLEAR POWER PLANT
An NPP is a complex entity that can be divided in numerous ways depending on objective and purpose. For the 
purpose of being part of a DT system, the physical entities of an NPP are divided into five broad technical areas. 
Two criteria are used for this division, 1. Entities that can be represented with a DT and 2. Entities that enable the 
creation, operation, and maintenance of DT. Physical assets, physical phenomena, and procedures and human actions 
are three broad areas that are based on criterion 1, whereas advanced sensors and instrumentations and computing 
and networking systems are two broad areas that are based on criterion 2. Note that it is possible for sensors and 
instrumentation or computing and networking systems to also be criterion 1 entities, i.e., represented within a DT. 
While referring to NPP in this report, the terms “NPP” and “plant” will both be used interchangeably.

Physical Assets
A typical NPP comprises a wide range of physical assets that are generally termed as systems, structures, and 
components (SSCs). These SSCs include structures such as the reactor and plant buildings, systems such as cooling 
systems, feedwater systems, power generating systems, electrical systems, and others that are made up of thousands 
of mechanical, electrical, and other components such as pumps, motors, valves, chillers, circuit breakers, compressors, 
fans, and batteries. The SSCs work together toward the safe, reliable, efficient, and continuous operation of the plant to 
generate electricity. The scale and function of SSCs range from a small mechanical component, such as a valve, to the 
reactor itself.
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Physical Phenomena
Natural processes, such as reactor thermal hydraulics and corrosion, influence both plant performance and changes to 
plant states. In order to represent an NPP with a DT, important physical phenomena must be defined and characterized 
in relation to their effects on the plant and other physical phenomena. Examples of important physical phenomena 
include reactor thermal hydraulics, corrosion, concrete degradation, etc. Some physical phenomena have been well 
studied historically and can be represented in the form of physics-based modeling and simulation. Unlike reactor 
thermal hydraulics, physics-based models of several physical phenomena at a plant either currently do not exist 
or cannot be defined. For example, reliable physics-based concrete degradation models are not well developed. 
However, such processes play a critical role in plant operation and in integrating physical phenomena models with 
other types of models in a DT. Valid representation of all important physical phenomena will provide immense value 
in understanding the current plant processes, predicting future plant states, and making decisions for future plant 
operation and safety.

Advanced Sensors and Instrumentation
One way in which the NPP gathers data needed for O&M, as well as interactions with the DT, is through a 
combination of legacy and advanced sensors and instrumentation (ASI). The sensors and instrumentation provide 
the eyes, ears, and other senses required for the DT to track what is happening in the NPP. While some of the sensors 
are already in place as part of the existing NPP control and monitoring system, advanced systems of sensors are 
under development to enable more complete knowledge of the NPP and to add new capabilities, such as the detection 
of incipient sensor failures without requiring the introduction of vast amounts of redundancy. As a DT-enabling 
technology, ASI include not only sensors but also powering requirements and communication or data transfer 
infrastructure, such as cable or wireless technologies. A connection to the control systems within the NPP may 
provide the means by which a DT is able to autonomously influence the operational state of the NPP. Of course, the 
controls available to the DT might be limited to certain particularly well-suited subsystems or applications, such that 
the consequences of mis-operation are within an acceptable range for the qualification of the DT system.  

Computing and Networking Systems
The computing and communication hardware utilized to enable a DT system can span a wide range from complex 
computing clusters to simple handheld devices, each playing a separate role to fulfill a system need. Complex, 
recurring analyses may require the use of either dedicated onsite or cloud-leased high-performance computing 
systems. Tasks requiring interaction with users in operational environments can be best handled by handheld robust 
units which wirelessly transmit data back to a central storage and processing system. It is important to note that the 
computing and networking systems referred to here include the computing infrastructure required to create, operate, 
and maintain DTs of parts of the plant.

Procedures and Human Actions
At any given time, a large number of procedures performed by humans are required to control and support an NPP. 
Some of the procedures involve normal reactor operations, refueling, engineering, maintenance, safe shutdown, and 
chemical control, etc. The procedures can be continuous, such as procedural operator actions to control power, or 
periodic, such as scheduled testing, maintenance, and upgrades. Regardless of the type, intent, or periodicity of the 
procedures, it is important for a DT to represent these complex processes. How the plant staff interact with SSCs in 
the plant can impact plant physical processes, plant procedures, power-generation, plant safety, and response to critical 
events. It is critical to understand and represent human actions in DTs for an accurate depiction of plant operations. In 
addition to plant operations, the human-machine interface is an important consideration in how humans interact with 
computer hardware and software in the control room, remote monitoring, and diagnostic centers and with handheld 
devices in the field.
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1.2 DATA AND PERFORMANCE
Information about the plant, its SSCs, physical phenomena, procedures, actions, and data from sensors and 
instrumentation is vital for the creation and for the sustained, accurate, reliable, and efficient operation of a DT.  
An NPP is such a complex entity that the data, information, and response to recommendations from DT can be quite 
heterogenous. Following are some examples of heterogeneity in plant data and response:

• Digital and non-digital form

• Historical and real time

• Different time resolutions ranging from milliseconds to a yearly update

• Different sensor modalities

• Manually collected or automated acquisition

• Numerical, text, categorical, or other format

Categorizing such complex data and response is not trivial; however, for the purpose of this report it is categorized 
as follows.

Asset Information
Various plant asset information, such as dimensions, geometry, topology, material, chemistry etc., could be needed 
for creating and maintaining a corresponding DT (e.g., pump DT or motor DT). The plant asset information required 
will be dependent on a variety of factors, including SSC type, SSC function, and the requirements of the digital 
representation. For example, a digital representation of a turbine building sump pump may require little more than 
pump capacity and periodic pump run state data, while the representation of the reactor core may require real-time, 
high-fidelity, high-bandwidth data.

Real-Time Sensor Data
Traditionally real-time sensor data have been the mainstay of NPP control room operations where the reactor is controlled 
based on real-time data, such as reactor power level, pressurizer level and pressure, control rods, and steam generator, 
etc. Outside of the control room, real-time data acquisition has historically been limited. Data acquisition in the rest of the 
plant has been aimed at ensuring the safe and reliable operation of SSCs and has been mostly performed manually and 
periodically. In order to develop and operate a real-time DT, it is important to enable an automatic, continuous and real-
time data acquisition from plant SSCs. Advanced digital sensors with a wireless capability, high bandwidths, and quick 
installation will enable real-time data acquisition and a large number of sensor modalities, such as vibration, temperature, 
pressure, flowrate, voltage and current on a much larger and more diverse subset of plant SSCs.

Plant O&M
Plant O&M activities range from day-to-day engineering and controls to planned and unexpected repairs and 
maintenance, and to extensive undertakings, such as refueling outages and asset replacement. U.S. commercial plants 
traditionally keep paper or computer records of past and planned O&M activities that can prove valuable in informing 
the past, current, and future state of a DT. Corrective and preventive work order logs, functional equipment groups, 
outage logs, and licensee event reports are some examples of non-numerical data providing comprehensive details 
about O&M activities that can be valuable for DT applications. With the use of DT-enabling technologies, such as 
ML, these records can provide deeper insights, such as failure trends, maintenance effectiveness, and efficiency, and 
classification of activities.
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1.3 DIGITAL TWIN
For a DT to exist, especially for an NPP, we identify two broad categories of technology: 1. Modeling and Simulation 
(M&S) and 2. Data and Information Management (DIM). M&S is the technology that is the primary engine behind a 
DT, while DIM technology supports the creation, operation, and maintenance of a DT.  

Modeling and Simulation
For the purpose of this report, we consider the following definitions: “A model is a representation of a system” and “A 
simulation is the act of executing the model”. Models can take different shape and form depending on the system they 
represent, and the information used for creating the model. As part of nuclear DT described in this report, we describe 
modeling and simulation to consist of one or more of the following: data analytics, ML/AI, physics-based models, 
data-informed models, and other models.

Data Analytics
NPPs generate a wealth of data as part of their routine operation and from installed sensors and instrumentation. The 
process of using this data to make decisions related to the plant can be termed data analytics for NPPs. Data analytics 
can be as simple as using fluid flow rate data from a process to make a fluid rate control decision, or data analytics can 
be as complex as using multiple streams of historical and real-time data in a statistical toolkit, such as R, to provide 
insights on operation, maintenance, economics, safety, power-generation, etc. In this report a difference between data 
analytics and other data-based models is that data analytics does not include predictive models.

ML/AI
AI is a broad term used for the science and engineering of making intelligent machines that can think and act like 
humans [9]. ML, a type of AI, is the term used for computer algorithms that learns from a set of training data to 
classify or make predictions [10]. ML has been widely used in solving problems, such as classification, clustering, 
dimensionality reduction, and anomaly detection, etc., and has been successfully applied in real-world applications, 
such as image processing, image recognition, product recommendation, email filtering, internet search, etc. As part of 
a nuclear DT, ML/AI algorithms can be built from past and current “Data and Performance” (Figure 1) of the plant to 
provide insights, predictions, and recommended actions on O&M, economics, safety, power-generation, etc.

Physics-Based Models
Physics-based modeling involves the modeling and simulation of a plant’s physical assets and phenomena according to 
the laws of physics. In a nuclear reactor application, physics-based models can include a variety of phenomena, such as 
neutronics, heat transfer, fluid flow, electromagnetics, and mass transport and their effects on plant physical assets such 
as the reactor vessel and containment. The coupling of multiple physics-based models is essential for applications where 
traditional single-physics analyses are inadequate to account for the simultaneity of real events. Several multiphysics 
models are currently in use by nuclear stakeholders, such as reactor designers, researchers, operators, and regulators, 
for applications such as full core nuclear reactor simulation, nuclear fuel analysis, thermal hydraulic for reactor transient 
analysis and more [11-18]. Physics-based models will be implemented holistically within a nuclear DT to represent a plant’s 
physical assets, their integrated performance, and the physical processes by which they change.

Data-Informed Models
Data analytics and ML/AI models are fundamentally based on past and current data; however, other models, such 
as physics-based models or probabilistic risk assessment (PRA) models, are typically structured using knowledge of 
the modeled domain and its governing equations, not data. However, because models are only representations and 
approximations of physical reality, even the most accurate model’s state will eventually diverge from the state of the 
system represented. Thus, to maintain continuous state concurrency (e.g., to ensure that the DT is always an accurate 
representation of the NPP) DT models must be integrated or informed with real-time plant data. In this report, models 
that can be updated and/or corrected with live plant data are referred to as data-informed models. Data-informed 
models can enable real-time model updates and adjustments to DT performance to match that of the NPP. For 
instance, digital twin data-informed physics-based models of thermal hydraulics, neutronics and reactor components 
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can be integrated with real-time plant data such as reactor temperatures, pressures, fluxes, and flow rates to ensure the 
models accurately represent actual reactor performance and can provide real-time insights into and valid predictions 
of reactor states.

Other Models
For an accurate and effective nuclear DT, it is critical that the variety of SSCs, processes, ASI and computing 
infrastructure, and human actions be accurately modeled and simulated in the digital twin system. To that end, a 
corresponding variety of model types and formalisms beyond those already discussed may be required for a nuclear 
DT. Examples of these other types of models include models of workflows, 3D system geometries and configurations, 
control and logic, PRA, online risk, physical security, cybersecurity, and human procedures and actions.  

Data and Information Management
The ability of a DT to gather, process, and disseminate data depends entirely upon its ability to both store and 
retrieve information in a logical and organized manner that complies with all applicable requirements and presents 
the information to users and computer interfaces in a manner that can be clearly visualized, absorbed, and verified 
for integrity and correctness. Three of the aspects to be considered are the rate at which data can be processed, the 
provability of data integrity, and the maintenance of concurrency across multiple interconnected data streams. This 
data can be displayed through use of a graphical user interface (GUI) and supporting visualizations.

Storage
Currently operating plants have traditionally generated a large amount of data in non-digital format. To support DT 
implementation, the existing and newly generated plant data must be stored in a digital, structured, scalable, and 
centralized environment. Data storage systems needed to support DTs may include local plant servers, fleetwide data 
infrastructure, or cloud-based storage systems.

Sharing and Accessibility
Software solutions for handling structured and unstructured plant data can comprise data handling tools and 
associated user interface, accessibility protocols and cybersecurity solutions. Data handling solutions must ensure the 
seamless integration of the heterogenous plant data, uninterrupted data availability, and real-time interaction across 
DT models and data storage.

User Interface and Visualization
The main control room at current nuclear power plants have been the mainstay of user interface and visualization of 
reactor and plant operations. When integrated with DT, the panels, control boards, alarms, and plant computer inside 
a control room would experience significant digital upgrade and modernization. In addition to the control room, DT 
integration would introduce additional user interfaces, such as a plant monitoring and diagnostic center, interface for 
modeling and simulation, and also handheld digital devices.

1.4 ACTIONS AND RECOMMENDATIONS
The objective of implementing a DT system lies in providing actions and recommendations for safe, reliable, and 
efficient operation. To this end, the actions and recommendations from a DT can be classified into the following areas:

Diagnostics and Prognostics
The health and condition monitoring data primarily acquired by installed sensors can provide direct information 
to perform diagnostics and prognostics. Historically in NPPs, human operators observe data and rely on manual 
diagnostics and prognostics to characterize current and predicted health and condition of plant SSCs. With the use 
of DTs, a large volume of heterogenous data and information can be processed at a much faster speed to perform 
diagnostics such as anomaly detection, identification of sensor malfunction, differentiation between true anomalies 
and sensor malfunction, failure prediction, critical event prediction, and more. A DT capable of modeling and 
simulating integrated plant operations and activities will feature high levels of awareness of plant state and can detect 
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and predict anomalies in advance of the identification of such issues by plant staff. This capability can be leveraged 
to provide real-time notification and recommendations to plant staff of emergent or future conditions requiring action 
as well as visualization tools to help plant staff understand ongoing events. Since a DT can be used to understand and 
analyze plant states more broadly and more rapidly than human plant staff, it can supplement staff mental models of 
the plant and be a powerful operator aid.

O&M Recommendations
O&M practices in NPPs have traditionally aimed at ensuring safety and reliability and over time have resulted 
in added conservatism in O&M practices. DT technologies hold promises to transition the commercial nuclear 
industry from the current scheduled and preventive maintenance practice to a more efficient predictive maintenance 
posture. Predictive algorithms in DTs can use component health and condition monitoring data and, in combination 
with historical and current maintenance records, can provide recommendations for efficient O&M practices. Some 
examples of benefits of using DTs for O&M are eliminating certain maintenance, transitioning from manual to 
robotic maintenance, reducing the frequency of scheduled maintenance, optimizing maintenance scheduling such 
as combining more than one maintenance effort to reduce downtime, selecting which specific action to perform, 
reducing maintenance labor hours, and maximizing generation.

Autonomous Operations and Controls
Almost all operations and controls in existing NPPs are manual; however, this paradigm is potentially shifting, as many 
of the advanced reactor designs have substantial passive safety features that can make the plant “walk-away safe” thus 
increasing the acceptability of autonomous vice human operations. Autonomous operations and controls technology have 
matured and become popular in several applications, such as aviation, autonomous vehicles, etc. DT technology offers 
the possibility of ML/AI not only recommending but also performing certain operations and control actions in an NPP. In 
the early stages, such technology might be applied to non-safety systems for small and clearly defined tasks, and then as 
acceptance is gained, gradually move toward application to more complicated or safety-related tasks.  
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2 TECHNICAL CHALLENGES AND GAPS

This section provides a description of major technical challenges and gaps 
associated with the implementing enabling technologies as part of a nuclear 
power plant digital twin. Challenges are identified as new or difficult tasks 
and problems associated with DT implementation, while gaps describe what is 
needed beyond available resources to meet those challenges.

Each section presents discussions on major challenges and gaps associated 
with use of the respective enabling technology within DTs. The challenges 
and gaps presented in this section are identified based on complexities and 
roadblocks related to different aspects of an enabling technology’s lifecycle, 
such as research, development, design, manufacturing, licensing, qualification, 
deployment, and O&M. Exploring such a wide range for each enabling 
technology results in an extensive set of challenges and gaps, discussion of 
some of which are beyond the scope of this work. Therefore, each subsection 
dedicated to an enabling technology provides a detailed discussion of only those 
challenges and gaps that have a significant or novel impact on the use of the 
enabling technology within a DT. This section concludes with a summary of all 
the challenges and gaps for each enabling technology identified in this work.

Before discussing challenges associated with DT-enabling technologies, it is 
important to note the major challenges associated with existing plant SSCs 
in supporting a DT. The wide-ranging scale, heterogeneous functions, and 
interrelationships among the SSCs pose a unique challenge to the digital 
twinning SSCs of an NPP. Such challenges include defining component DTs, 
system and structure DTs or plant DTs with the SSC-specific resolutions, 
fidelities, accuracies, objectives and applications as well as the relationships and 
interfaces among the SSCs needed to adequately represent the physical space 
(Figure 1). Combining DTs to form a larger, integrated DT (e.g., pump, motor, 
and valve DTs combined to form a coolant system DT) poses a significant 
challenge to integrating DTs with different fidelities and resolutions.

This section is structured 
based on the following 
enabling technologies 
that form a DT, as 
discussed in Section 2 
(Figure 1):

1. Advanced sensors  
and instrumentation

2. Modeling and 
simulation

i. Data analytics

ii. ML and AI

iii. Physics-based 
modeling

iv. Data-informed 
modeling

3. Data and information 
management
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2.1 ADVANCED SENSORS AND INSTRUMENTATION
The collection of operating condition data is integral to the implementation 
and execution of an NPP DT. A system of sensors must be installed into an 
NPP and sampled to meet the following primary goals:

• Provide real-time and uninterrupted information on the true condition  
of an SSC or a process

• Maintain state concurrency between DT and NPP

• Provide input and updates to models and simulations within the DT

ASI featuring new designs and capabilities are under consideration for the 
current fleet of light-water reactors and for many new and advanced reactor 
designs, with one goal being the development of a more fully instrumented 
plant. A DT system will leverage the existing and novel data streams 
available in a fully instrumented plant to inform its digital representations, 
and thus, ASI will be a key enabling technology for DT.  

A more fully instrumented plant, including a greater number of more 
varied sensors, is an important component of developing a high-fidelity 
NPP DT. Not only are there challenges with data collection and integration, but there are challenges with respect 
to the design of sensor placement, sensor installation, and sensor maintenance. For example, the design of 
microreactors poses challenges with physical space constraints where enough space may not exist to install all 
desired sensors. The optimization of sensor choice and placement is beneficial for all design considerations and 
integral for some reactor applications. Virtual sensors may be used in the design process using a DT to optimize 
instrumentation. For the current light-water reactor (LWR) fleet, analog-to-digital conversion could be installed on 
existing equipment and would enable the use of pre-existing instrumentation for DT. However, this would require 
installation and calibration of additional equipment. Although not specific to DT, maintenance plans must be 
considered for the additional instrumentation.

The advanced sensor technologies may be broadly categorized by their application, such as reactor vessel 
instrumentation system, reactor protection system, SSC health monitoring, tritium control, chemistry monitoring, 
off-gas control, real-time dose monitoring, or by their sensor modalities, such as neutron flux, temperature, pressure, 
flow rate, vibration, coolant level sensors, chemistry, or even based on sensor environment in an NPP, such as 
in-pile, in-vessel, ex-vessel. For a presently operating NPP to implement a DT, there would be a need to digitize 
existing instrumentation outputs, such as installing gauge readers or valve position indicators, or to add new digital 
instrumentation to gather the same data. These ASI result in additional challenges to the design, implementation, 
and regulation of a DT in an NPP. The advanced reactor application of sensors can have unique challenges specific 
to reactor technology and other salient features of an advanced reactor, such as limited space for sensor installation, 
an under-water reactor, remote deployment. The instrumentation requirements are expected to vary based on the 
category and class of sensors under consideration. Table 1 summarizes some of the relevant characteristics of in-core 
sensors under consideration.

2.1 | KEY CHALLENGES

Use of new types of sensors 
or multimodal sensors

Installation of a greater 
number of sensors and more 
varied sensors

Continuous, real-time 
collection of sensor data

Evaluation of uncertainty for 
new sensors

Integration of legacy sensors
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Table 1. Summary of some relevant characteristics of in-vessel sensors.

Sensor
Measured 
Parameter

Active/
Passive Input Signal

Output 
Signal

Thermocouple (various types) Temperature Passive NA DC Voltage 

Self-powered neutron detectors 
(various types)

Neutron Flux Passive NA Current

Micro pocket fission detector Neutron Flux Active DC Biasing 
Voltage

Current/ 
Charge Pulses

Ultrasonic Thermometer Temperature Active RF Current RF Voltage

Linear Variable Differential 
Transformer

Displacement/Pressure Active AC Voltage Voltage

Thermal Conductivity Probe 
(transient dc method)

Thermal Conductivity Active DC Current DC Voltage

Thermal Conductivity Probe 
(frequency method)

Thermal Conductivity Active AC Current Phase Change 
in Resistance

Acoustic Emission Sensor Fuel/Cladding Failure Passive NA Voltage

The in-core or in-vessel sensors (active or passive) have varied output signal types, including direct current (dc) 
voltage (thermocouples), alternating current (ac) voltage, radio-frequency waveform, impedance, and resistance 
change. Traditionally, a dedicated one-by-one cabling is used to transmit measured parameters to the electronics (part 
of the instrumentation and placed outside the high-radiation area). Similarly, Table 2 summarizes some of the relevant 
characteristics of ex-vessel sensors that are under consideration. These ex-vessel sensors are connected to an electronic 
system (wired or wirelessly) for data conversion and transmission.

Table 2. Summary of some relevant characteristics of ex-vessel sensors.

Sensor
Measured 
Parameter

Active/
Passive

Input 
Signal Output Signal

Resistance Temperature Detector Temperature Passive Temperature DC Voltage or Current

Proximity Probe Vibration Passive NA Acceleration, Velocity,  
or Displacement

Wireless Vibration Sensors Vibration Passive NA Acceleration, Velocity,  
or Displacement

Acoustic Transducer Acoustic Passive NA Voltage

Differential Pressure Meter Pressure NA NA Differential Pressure
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The data from each category and representative class of sensors, discussed in Tables 1 and 2, are collected at different 
temporal and spatial resolutions and provide salient information to physics-informed mathematical models, enabling the 
development of an accurate nuclear DT by simulating the performance of the physical system it was developed to emulate.

As ASI and the associated infrastructure are key enabling technologies of any DT in an NPP, the challenges associated 
with them are explored more extensively in a dedicated task within this effort. The findings of that task will be discussed 
and published in a separate report focusing on the challenges and gaps in advanced sensor and instrumentation as part of 
a nuclear DT. This section presents the major challenges and gaps for use of ASI as part of a DT in currently operating or 
advanced reactors.

Real-time data collection and integration: In order to support the requirement of a DT to maintain state concurrency and 
provide timely predictions and recommendations for SSCs and processes at an NPP, it is critical for the ASI infrastructure to 
provide uninterrupted and continuous data from the SSCs or processes. Continuous data acquisition may not be considered 
an extraordinary requirement for sensors; the reactor vessel instrumentation system, for instance, sends real time and 
continuous controlling input to the feedwater control system and provides initiation or protection signals to the reactor 
protection system and core cooling system. However, data acquisition, the integration of data streams, integration with 
DT models, and handling, all performed in real time, poses novel challenges for ASI infrastructure. The process of data 
acquisition, transfer, and handling in other applications have been notoriously slow in keeping up with scaled performance 
demands. The ASI infrastructure, including sensors, instrumentation, and communication technologies (cables or wireless), 
can introduce bottlenecks in real-time data acquisition and transfer, which can adversely impact the performance of a DT. 
The ASI in an NPP must be designed and deployed to support the DT system in real time from plant SSCs and processes 
through the DIM system, modeling and simulation, and recommendations and controls (Figure 1).

Challenges with novel sensors: New sensor and instrumentation technology are under design and development across 
the technology readiness levels [19]. Multimodal sensors, those designed to report more than one type of data, are also 
being developed. The overarching challenge with new sensor technologies is the lack of operational experience of these 
technologies in a reactor or plant environment. The research and development efforts in novel sensors must not only 
focus on performance and testing but also on developing methodology and requirements for evaluation and qualification. 
Current research, development and demonstration efforts across national laboratories, universities, and private entities are 
actively addressing these challenges associated with novel sensor technologies. These efforts are addressing the gaps by 
developing innovative measurement technologies, exploring novel sensor modalities, demonstrating and studying novel 
sensor performance in a research reactor environments, and gathering sensor performance and evaluation data for enabling 
commercial deployment of novel sensors in the near to medium time frame.

Challenges with Operating Environment: Reliability of sensors and instrumentation (i.e., electronic and other 
systems) is one of the challenges as they are exposed to different harsh operating environments. High-temperature and 
high-radiation levels pose a significant challenge for in-core and in-vessel sensors and instrumentation. On the other 
hand, electromagnetic interference/radio-frequency interference and cybersecurity present additional challenges for 
ex-vessel sensors and instrumentation.

For in-core and in-vessel sensors and instrumentation, some of the challenges are:

1. Radiation-hardened electronic system and electronically tunable antennas

2. Real-time measurement system to understand sensor drift or out-of-calibration issues due to high temperatures 
and extended radiation exposure

3. Miniaturization of sensor design to meet existing in-core requirements

4. Power harvesting technology to ensure sustained power source for sensors

5. Reliance on one-by-one cabling to transmit the data and power the sensors, creating long-term cable 
degradation issues due to high temperatures and radiation

6. Lack of deployable wireless communication infrastructure for in-core and in-vessel applications
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For ex-vessel sensors and instrumentation, some of the challenges are:

1. Electromagnetic and radio-frequency interferences of digital signals during wireless communication and of 
digital sensors and electronic systems

2. Cybersecurity concerns related to digital sensor and electronic systems and of wireless infrastructures

3. Reliance on battery-power and limitation on life expectancy

4. Transmission of data from OSIsoft process information system to the state-of-the-art cloud-based platform

5. Lack of multiband heterogeneous wireless network architecture that can support different applications in NPPs

Table 3. Summary of challenges and gaps in Advanced Sensors and Instrumentation

Advanced Sensors and Instrumentation

Challenges Gaps

Characterization and quantification  
of the uncertainty associated with new 
types of sensors, especially dynamic 
changes in uncertainty due to  
sensor conditions

Insufficient operational experience with new sensor types to characterize and 
quantify output uncertainty especially with respect to changes due to age or 
environmental conditions

Evaluation of sensor qualification requirements and methodology

Continuous collection of sensor 
data and ingestion/integration into 
databases and models

Infrastructure for real-time sensor data collection to support a digital twin

Installation of a greater number of 
sensors and more varied sensors. 
Determining optimum number, 
placement, and selection of sensors, 
especially new sensors.

Consideration of availability of physical space for sensors new smaller reactors

Means of signal transmission by wired or wireless communication to support 
DT requirements

Regulatory requirements for inspection and maintenance cycles of new sensors

Development of virtual sensor technology to inform sensor optimization within DT

Use of new types of sensors or 
multimodal sensors, especially to 
adequately meet the needs of DT

Development of adequate sensors for advanced reactor domains, applications, or 
environment to inform DT models

Adaptation, approval, and implementation of existing sensor technology for 
nuclear DT applications

Using DT to evaluate new types of sensors, such as real-time virtual sensors

Understanding the impact of failure of one or more modality on overall sensor 
performance in multimodal sensors

Integration of legacy sensors  
into DT infrastructure

Replacement of analog sensors with digital sensors, or digitization of hard to 
replace analog sensors

Exploring use of legacy sensors to validate new digital sensors
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2.2 MODELING AND SIMULATION
Modeling and simulation technologies are key to the implementation of a nuclear DT and present both common and 
unique challenges related to DT application. This section will first discuss some challenges common among all DT 
applications of M&S technologies and then discuss some of the specific challenges presented by the application of the 
following subsets of M&S technologies to DT: data analytics, data-based models created with machine learning and 
artificial intelligence, physics-based models, and data-informed models.

2.2.1 COMMON M&S CHALLENGES
Uncertainty Quantification and Propagation: Uncertainties within 
M&S, epistemic and aleatory, originate from lack of information about the 
system modeled, e.g., incomplete knowledge of underlying nuclear system 
processes or relationships, limitations of the modeling technology used to 
construct the representation, e.g., lack of model forms, methods of model 
construction, and numerical approximations utilized, or the random nature 
of the modeled system itself, e.g., neutron propagation. DT M&S is subject 
to these uncertainties, among others [20] and for a DT to be useful, e.g., 
trusted, accepted, verified, or validated, the associated M&S uncertainties 
must be acknowledged, and their effect described quantitatively, both 
initially and as the uncertainties propagate among the various coupled DT 
models. The assessment and quantification of uncertainty is a significant 
challenge for DT for several reasons. First, not all nuclear power plant 
modeled systems are understood to the extent needed to develop models 
with high levels of certainty. For example, the uncertainties associated with 
concrete failure modes may not be sufficiently understood to build a highly 
accurate model of the phenomenon. 

Second, state of the practice modeling technology may neither be capable of fully quantifying uncertainty within 
singular models nor capable of adequately quantifying that uncertainty as it propagates to other model types. 
For example, if a data-based model of pump performance is constructed using machine learning and is coupled 
to a physics-based model of fluid flow, a challenge may exist in both identifying and quantifying the uncertainty 
associated with the data-based model as well as in understanding how that uncertainty will affect the results produced 
by the physics-based model. 

Finally, some of the underlying systems within a NPP present aspects of random processes. Examples of random 
processes include component failures, electromagnetic interference, or various radiation effects. While the 
uncertainty due to randomness within certain individual systems or components has been modeled, quantifying the 
uncertainty associated with overall plant processes within a model, especially the highly integrated models needed 
by DT, is a challenge.

2.2.1 | KEY CHALLENGES

Uncertainty quantification 
and propagation in model 
development and integration

Verification and  
validation of integrated, 
heterogeneous models

Development of real-time 
models adequate for nuclear 
DT application
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Verification and Validation: As mentioned previously, for DT M&S to be useful, it must be verified, e.g., ensure 
the model has been built properly, and validated, e.g., ensure the model accurately represents the system of interest. 
The nuclear DT application of various M&S technologies presents challenges in at least two areas. The first area is 
the lack of high-quality and high-fidelity data with which to validate the model, especially the model’s performance 
during rare events. For example, advanced reactors do not yet have years of operational data on which to benchmark 
a model’s performance, and the rare set of existing NPP events limits the data available for validating integrated DT 
plant models. The lack of data to support the validation of DT M&S remains a challenge and new experiments from 
integral test facilities may be required to provide high-quality and high-fidelity data to validate DT models.

The second challenge is the lack of integrated testing methodologies for complex model interactions. A nuclear DT 
features highly coupled, heterogeneous models for which verification includes testing the functionality of the coupled 
calculations, the data exchange between different models, and the interaction of models to simulate the combined 
effects. While approaches such as those described in NRC’s Evaluation Model Development and Assessment Process 
(EMDAP) [21] may provide future frameworks needed for verification, the development of tools and methodologies 
capable of verifying complex integrated models remains a challenge to DT M&S technology.

Model Integration: A nuclear DT will utilize a variety of models featuring heterogenous domains, interfaces, 
granularity, and time scales. All these model types must be integrated to form an accurate representation of the 
NPP. For example, models of maintenance activities, security response, and reactor operations must be capable of 
interacting in real time just as their representative elements do within the NPP. Developing methods to efficiently 
integrate such a diverse set of modeling formalisms poses several challenges such as determining sufficient fidelity 
and accuracy, maintaining scalability from individual parts to components to system level models, handling 
and exchange of data between component models, managing integrated model performance while updating and 
changing component models, and verification and validation of the models. While these challenges are common 
to model integration generally, the scale and scope of integration featured within a nuclear DT presents a novel 
challenge to DT implementation. 

Development of Adequate Models: Because a nuclear DT can model an entire NPP, it may require models of systems 
and processes that have not been previously developed or are inadequate for application to a nuclear DT. For example, 
models of high-temperature molten salts, digital instrumentation and controls, or cyber security posture may need to 
be developed or improved to fully implement a nuclear DT. As DT M&S technology advances, it will be an ongoing 
challenge to determine what and how systems should be modeled, requirements for modeling these systems, and 
whether existing models are adequate for nuclear DT application.
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Table 4. Summary of challenges and gaps in Modeling and Simulation

Modeling and Simulation

Challenges Gaps

Quantification and propagation of epistemic 
and aleatory uncertainty especially with 
respect to heterogeneous input data and its 
propagation throughout the model

Applying appropriate methods for uncertainty quantification and 
propagation, especially when using multiple, integrated models

Verification and validation of integrated (ML 
+ Physics-based + Data-informed) models

High-quality and high-fidelity integrated test data for integrated models 
especially for advanced reactors

Integrated testing methodologies for complex model interactions

Techniques to leverage existing or new codes and solutions for validation and 
verification methodologies of integrated models

Verification validation and uncertainty quantification approaches to reduced-
order models, especially with respect to delivering necessary fidelity

Development of computationally efficient 
interfaces among multiple heterogeneous 
models sufficient for integrated information 
exchange in real time 

General approach for modeling heterogeneous domain interactions

New code designs to improve data transfer efficiencies among models 
(e.g., data sharing, efficient data transformations)

Dynamic measures of cross-model coupling strength to adaptively focus 
computational efforts efficiently

Modeling formalism that allows real-time integration with live data

2.2.2 DATA ANALYTICS
NPPs generate a considerable amount of data, and it is imperative to have 
sufficient technologies and protocols to obtain insights and aid informed 
decision-making based on an analysis of plant data. Basic data analysis in 
the form of signal processing and trending has been traditionally applied in 
NPPs to support reactor operation and safety [22]. More recently, several 
commercial NPPs have come up with plant monitoring and diagnostics 
centers that use data analytics techniques, such as anomaly detection and 
trending, to support routine operation, plant monitoring, diagnostics, and 
maintenance. There are several popular data analysis methods, techniques, 
and a statistical toolbox that support applications such as data cleaning and 
preprocessing, exploratory data analysis, statistical inference, regression, 
etc., which is a discussion beyond the scope of this work. When integrated 
within a DT, advanced data analytics techniques can support real-time 
recommendations leveraging a variety of data not limited to sensor signals 
but also integrating other data streams, such as plant process data and 
historical data. DT promises to go beyond the traditional O&M applications of data analytics to almost every aspect 
of reactor lifecycle ranging from design and licensing through fuel storage or decommissioning. Following are the 
major challenges that will be encountered in implementing data analytics within DT.

2.2.2 | KEY CHALLENGES

Integration of  
heterogeneous data

Treatment of noisy or 
erroneous data

Scaling data analytics

Capture of heterogenous and 
dynamic uncertainty

Decomposition of multimodal, 
real-time sensor data
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Integration of heterogeneous data within a common database such that the structure, fidelity, granularity, and 
density is sufficient for DT requirements. Data and information obtained in an NPP can be highly heterogenous (i.e., it 
can be in various shapes and forms). A recent report divides nuclear data into the following three categories [23]:

1. Operator experience data is observed and harvested as NPPs operate and is the data collected over the course 
of plant operation. An example of operating experience data is data acquired from sensors and instrumentation, 
such as neutron flux, reactor pressure, coolant temperature, steam generator water level, radiation dose, etc.; 
plant logs that record important events in the plant, such as control room logs, operator round notes, etc.; 
internal plant failure reports; maintenance data, such as work orders for preventive and corrective maintenance; 
regulatory data, such as licensee event reports (LER) to comply with regulatory requirements; and both 
miscellaneous data, such as plant operating guidance, and plant business data, such as inventory management, 
procurement and finance, etc.

2. Experimental data is produced by a laboratory or field experiment conducted offsite on plant SSCs. 
Experimental data and operator experience data can overlap if an experiment is conducted as part of plant 
operations, such as surveillance testing [23]. An example of experimental data is data collected during testing of 
a pump or motor at manufacturer’s site prior to installation in the plant.

3. Synthetic or simulated data is artificially generated from running computational models to simulate processes 
or systems using computers programs or DTs. Examples of synthetic data include imputed data to address 
missing data, ML/AI generated data to address a lack of sensor signals, or outcomes of physical phenomena 
obtained from physics-based models.

The wide variety of data generated in an NPP has further heterogeneity in data formats, such as numerical, text, 
categorical, image, symbol, audio, video, etc.; storage formats, such as in digital or physical forms; data structure, 
such as tabular numerical data or an unstructured handwritten log; and data speed and resolution, such as real-time 
data acquired continuously by sensors or periodic data obtained at certain intervals, such as monthly. Handling such 
wide heterogeneity in data from a single plant poses a major challenge for any data analytics approach. 

Processing noisy data or data containing erroneous observations and outliers so that it meets DT requirements: All 
real-world data contains noise, erroneous observations, and outliers. Erroneous observations are the observations 
that may, with good reason, be suspected as being an error in some manner or other and can be attributed to several 
underlying reasons, such as sensor degradation, sensor drift, sensor failure, interference in data transfer, or even 
human error. A reliable data analytics approach within DTs must be equipped to not only identify such errors but also 
point to the underlying cause of error. Outliers are extreme observations that may occur due to errors or indicate an 
actual deviation from normal operation and are therefore critical to be identified and addressed appropriately. Errors 
and outliers in data must be identified in the data sets and appropriately addressed when used as training or testing 
data for ML algorithms. The erroneous observations and outliers can adversely impact the prediction accuracy and 
trustworthiness of predictive algorithms. Appropriate filtering techniques must be applied to reduce noise in the data. 
The excessive amount of high-frequency noise in the data can not only pose challenges in training the predictive 
algorithms but also compromise the results and validity of the algorithms. Events of interest, such as adverse events 
or failures, are rare in NPPs. Using data analytics to predict rare events runs into a major challenge of false positives. 
Owing to a conservative approach to failures in NPPs, false positives could result in waste of resources on the 
inspection, mitigation, or repair of failures that did not even occur. Addressing false positives, therefore, is extremely 
crucial while applying data analytics in nuclear.
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Lack of data, missing data, and inconsistencies in data are major challenges while working with a diverse set of 
data. Resolving missing data can be a simple and straightforward process using appropriate imputing techniques. 
However, the main challenge is identifying missing data in a dataset before the dataset is used in a predictive 
algorithm. Data can go missing for several reasons such as sensor failure or human error. It is important to identify 
and address missing data appropriately. For example, missing sensor data from a component might indicate sensor 
failure; however, it is critical to use the maintenance log to verify the cause of missing data as sensor failure, 
component out of service, or other. Currently operating NPPs have traditionally stored data in paper form or in an 
unstructured soft form. For example, LERs are created by NPPs to report certain events that meet NRC reportability 
criterion. The LER provides a detailed record of a significant event at the plant in an unstructured form. However, in 
order to utilize the wealth of data and information in LERs, it is important to convert the information in structured 
and machine usable form.

Scaling data analytics: Developing preliminary data analytics may focus on a specific component or application. 
Maximizing the value of standing up a DT infrastructure at an NPP lies in its ability to scale up the DT application 
beyond initial or pilot implementations. Several currently planned DT applications, for instance, are focused on 
non-safety components and applications, such as predictive maintenance of components on a secondary side [1]. 
Success of such preliminary efforts will invariably lead to DT applications in other systems such as using vibration 
data from a specific pump for predicting pump degradation. It is challenging to scale up such analytics to other 
components such as other pumps and motors, using different sensor modalities, such as temperature measurement, 
or for different applications, such as failure prediction. It is important to address the scalability challenge in order to 
ensure application of data analytics across several systems, units, plants, and fleet.

Table 5. Summary of challenges and gaps in Data Analytics

Data Analytics

Challenges Gaps

Integration of heterogeneous data within 
common database such that structure, 
fidelity, granularity, and density meets  
DT requirements

Homogeneous techniques to obtain data or to transform data  
in order to maintain fidelity that can be used for many different programs 
and algorithms

Conversion of non-digital data in a digital form into a way that can be 
properly used by DT

Processing noisy data or data containing 
erroneous observations and outliers so that it 
meets DT requirements 

Appropriate techniques to identify and address erroneous data within DT

Lack of data, missing data, and 
inconsistencies in data 

Techniques to identify missing data in a dataset before the dataset is used 
in a predictive algorithm 

Scaling of data analytics Infrastructure to scale or transform data to use in different components, 
applications, systems, and across the fleet

Capture of appropriate heterogeneous and 
dynamic uncertainty information

Appropriate metadata/format to capture heterogeneous and dynamic 
uncertainty information

Appropriate and computationally inexpensive data analytic technique for 
developing dynamic uncertainty information from live data streams

Real-time decomposition of signals from 
multimodal sensors

Data analysis techniques to meet unique requirements of multimodal 
sensors, e.g., preprocessing or filtering technique for one signal can impact 
other signals
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2.2.3 MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE
ML/AI are key DT-enabling technologies that can be used to make or 
inform design, operations, or maintenance decisions with no or limited 
understanding of the underlying mechanisms involved. There are many 
situations and physical processes occurring in NPPs that do not lend 
themselves to first principles modeling (e.g., fuel performance, piping 
erosion/corrosion), because the process is too complex to run a first 
principles model or the underlying physical mechanism is not understood 
well enough. ML/AI technologies can use data-driven empirical models 
to conduct detailed analysis and generate predictions in such cases if 
sufficient process data is available. This allows ML/AI algorithms to 
accomplish tasks, such as calculating operational efficiencies, detecting 
performance anomalies, autonomously performing or recommending mitigative actions when problems occur, or 
ensuring that the O&M processes are optimized across the power plant. ML/AI algorithms could be helpful at any 
stage of the plant lifecycle, but they will be particularly important in the design and O&M phases.

The report [23] provides a compilation of current and near-term application of ML/AI in the nuclear industry as follows:

1. Reactor system design and analysis: ML algorithms are focused on an uncertainty analysis of models and codes 
to aid in the development and application of physics-based models [23].

2. Plant O&M: ML techniques are employed to support an operator’s decision-making, load following operation, 
smart core controller, alarm processing system, monitoring and diagnostics, and anomaly detection [23].

3. Safety and risk analysis: Current efforts are focused on using natural language processing to extract causal 
relationship among failure-contributing factors from historical text reports of NPPs, estimating pressurized-
water reactor coping time, extract relative importance of performance shaping factors for human reliability 
analysis, clustering to analyze simulation-based PRA data.

The above mentioned and other applications of ML in nuclear when implemented within DT will continue to have a major 
impact on design, licensing, operation, maintenance, safety, and other aspects of plant operation. Early identification and 
addressal of challenges associated with ML in nuclear is therefore vital for almost every aspect of lifecycle of an NPP. In this 
section, a subset of the ML/AI challenges will be discussed that are particularly germane to DT applications.

Optimum input data: One of the most challenging aspects of constructing ML/AI algorithms is to determine the optimum 
amount of quality data that is relevant, representative, and complete so that the algorithms can produce reliable results. 
Advanced reactors do not yet have any operational data, and due to the prevalence of analog sensors and instrumentation, 
the current fleet of commercial NPPs lack a repository of large volumes of sensor data in digital form. Within DT, input 
data for ML/AI algorithms can also be in form of simulated data from computational models. Implementing DTs will 
require determining the optimum amount of data needed for training, testing, and validating the ML/AI algorithms. Initial 
ML/AI implementations in nuclear applications can either experience too little data, such as no component failure events 
since installation of digital sensors, or too much data, such as work order logs covering four decades. It is not trivial to 
obtain answers to the following questions: What is the optimum size for training and testing data sets? What variables 
should constitute an input data set? Of the collected data, what variables should be excluded from input data set? What is 
the optimum sampling frequency? Following are some important characteristics that impact answers to these questions:

• Size of the available data set: not only in terms of the volume of data but also the heterogeneity in data, number  
of parameters, frequency and speed of data acquisition, etc.

• Uncertainty in input data: can be simple to estimate for the small size of quantitative data but can be challenging 
to determine for large or non-numerical data sets

• Uncertainty in algorithm output: critical to define the acceptable level of uncertainty in algorithm outcome and results

2.2.3 | KEY CHALLENGES

AI/ML training data 
requirements

ML algorithm selection

Ability to understand and 
explain AI algorithm behavior
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• Inherent complexity in the modeled phenomena: can be driven by inherent physics of the problem, non-linearity, 
dependency, or correlation among input parameters or lack of complete knowledge in defining the problem

• Complexity of the chosen algorithm: constructing or training different ML algorithms will have different 
requirements for minimum input data size

• Desired level of algorithm performance: can be defined by the desired level of performance characteristics, such as 
prediction accuracy, false positive rate v/s missed detection rate, or output confidence intervals etc.

• Computational infrastructure to support the data

 Algorithm selection: Recent successes of ML algorithms in a wide variety of applications such as image recognition, 
medical diagnosis, and fully autonomous vehicles, have increased user confidence in ML methods that may lead to 
improper implementing of off-the-shelf ML solutions in other applications. It is critical for the nuclear industry to 
dedicate efforts toward ML algorithm selection and understand which techniques and methods are best suited to the 
specific application. While several ML algorithms currently exist that address problems such as anomaly detection, 
clustering, dimensionality reduction, supervised and unsupervised learning, and more, there is no platform or toolset 
that explores the range of ML algorithms for nuclear-specific applications. Discussion on the benefits and limitations 
of each of these methods is beyond the scope of this work. Selection of the appropriate algorithm to be implemented 
within a nuclear DT depends on the following major factors:

• Application: arguably the most important factor in algorithm selection. Defining the problem and the objective 
of the ML algorithm for a given application will result in a short-list of suitable algorithms. Dedicated algorithms 
exist specific to applications such as anomaly detection, clustering, dimensionality reduction, supervised and 
unsupervised learning, etc.

• Size of training data: can have an impact on algorithm selection, especially when limited data is available for 
training. Certain techniques employing bias and variance in input data can inform method selection.

• Complexity of training data: heterogeneity and large numbers of input variables can impact algorithm selection 
and also impact feature and hyperparameter selection and tuning within a given algorithm. Other complexities in 
training data can be in form of non-linearity, correlated or dependent inputs, etc.

• Desired performance of the algorithm: some algorithms can have an inherent limitation in achieving the desired 
level of performance that can be defined by parameters such as prediction accuracy, false positive rate v/s missed 
detection rate, or output confidence intervals, etc.

• Complexity in training the algorithm: certain ML algorithms can possess simple and robust structures, such 
as a support vector machine, which is a method well-known for its simplicity of structure and implementation. 
However, certain ML algorithms can be complex to construct and can have an impact on speed and efficiency of 
training and performance of the algorithm.

• Scalability of algorithm: the selected algorithm must be able to adapt to scaling up in the form of additional 
features or input variables, additional output variables, integrating novel dataset and feature set, integrating with 
other models, scaling up from pilot implementation through plant or fleet wide implementation, etc.

• Deployment and business case: in certain cases, final algorithm selection might boil down to the software 
implementation and deployment of the algorithm that can be impacted by factors such as legacy solutions, 
management decision, cost, return on investment, etc.

Explainability: Explainability in ML and AI is the extent to which the underlying phenomenon between the input 
and output of the algorithm can be understood by humans. In recent times, “Explainable AI” has been the popular 
term for AI that can be understood by human users in contrast to “black-box” algorithms for which the implementers 
themselves may not be able to explain the underlying phenomenon or output of the algorithm. The significance of 
explainability of an ML algorithms actions and recommendations in nuclear cannot be overemphasized because 
understanding the underlying semantic structure of a model is key to regulatory acceptance. Whether an ML 
algorithm can impact plant operation and safety directly or indirectly, a plant operator must understand how the 
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models are generating the results, what the results mean, and how these results can affect the safety of the plant. 
Recent research efforts funded by the Defense Advanced Research Projects Agency are focusing on developing 
“glass-box” ML techniques that address the explainability of ML algorithms through transparency and interpretability 
[24]. Some techniques that address explainability of ML algorithms are as follows:

• Explainability in input data: prior to addressing explainability in ML algorithms, it is critical to address the 
explainability of input data to ensure that the data is consistent with the expected behavior of components, system, 
or phenomena under consideration. Modelers and users of the ML algorithm must ensure that the input data is 
explainable at the (a.) feature level, for example the sensor signals is consistent with expected performance, and 
(b.) data level, for example the statistical distribution and bounds of data are as expected.

• Generating textual and graphical explanation of model actions at each step: At each significant step of training the 
ML model, the model generates an explanation in human natural language or graphically of (a.) what it did and 
(b.) the rational for what it did. The textual and graphical explanation are aimed at being specific and unique to a 
model action and to be deeply grounded in human identifiable evidence [24].

• Measurable parameters for explainability: quantities such as “Explanation Goodness,” “Understanding,” 
“Performance,” etc. can provide a numerical value (such as percentage) of the explainability of an algorithm. 
These quantities can be used for comparing the explainability of algorithms, determine good vs poor 
explainability, set explainability threshold, etc.

• User survey-based assessment of explainability: by asking users about their level of satisfaction with the 
explainability of a given algorithm. The hypothesis is that, if humans can predict whether the model succeeds or 
fails better than chance, they understand something about the model's decision process [24].

• Creating and optimizing the user’s mental model toward ML algorithm: Human users are exposed to examples 
of algorithm behavior to develop a mental model of algorithm’s behavior. These mental models are expected 
to improve the human’s understanding of a black-box algorithm’s objective functions and in which cases the 
algorithm can be trusted.

• Two-way dialog between user and algorithm at every step of action: this approach reinforces learning of the 
algorithm and also trains the algorithm to provide an optimal explanation at every step [24]. The user-algorithm 
dialog can be in textual form or in non-textual form, such as numerical, categorical, graphical, analytical, 
game-based, etc.

Table 6. Summary of challenges and gaps in ML/AI

Machine Learning and Artificial Intelligence

Challenges Gaps

ML/AI algorithms require significant amounts of DT 
training data to produce reliable results 

Insufficient existing nuclear data in digital form

Quality nuclear data that is relevant, representative, and complete 

Identification of the appropriate ML algorithm Platform or toolset that explores the range of ML algorithms for 
nuclear-specific applications 

Unbiased technical basis for model selection to address 
bias in current model selection based on data-scientist’s 
experience and preference  

Ability to understand and explain the inner workings 
and input-output relationship of AI algorithms 

Qualitative and quantitative techniques toward explainable AI 
as part of DT
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2.2.4 PHYSICS-BASED MODELS
A range of physics-based M&S has been applied in design, analysis, 
operation and performance of nuclear reactors for several decades. 
Challenges associated with physics-based M&S in general are beyond 
the scope of this work. This section presents some of the challenges 
associated with physics-based M&S specific to implementation within DT.

Real-time simulation: Physics-based M&S requires extensive 
computational power especially with respect to hi-fidelity simulations. 
When integrated with DT, physics-based M&S must run in real time and provide results with minimum time 
lag. There are several challenges to providing this level of performance. One challenge is to provide sufficiently 
powerful computational resources to run DT models in real time. While cloud-based resources may make such 
resources available in the future, information security and other considerations challenge the provision of 
high-power computation at an NPP. 

Another approach to enabling real-time performance is to develop modeling technologies that require fewer resources 
yet deliver sufficient fidelity for nuclear DT applications. Approaches such as efficient reduced-order modeling and 
variable model coupling can address this challenge. Reduced-order modeling attempts to replicate a complex physics-
based model with a simpler and more computationally efficient model. Variable coupling models attempt to exploit 
the varying needs of model interactions based on the current model state. There are two types of “cross-physics 
coupling”: strong and weak coupling. Efficient multiphysics algorithms will preferably allocate the extra work of 
enforcing tight coupling only where the interaction is strong and will default to loose coupling where the interaction 
is weak thus reducing the needed computational power. Much work remains in both developing, verifying, and 
validating reduced-order and variable coupling models adequate for DT applications.

2.2.5 DATA-INFORMED MODELING
One of the major advantages of DT is the maintenance of state concurrence 
between the physical plant and the digital twin. State concurrence ensures 
that information gathered from the DT mirrors that of the NPP and is enabled 
by integrating streams of live plant data with concurrently running DT 
models. Models capable of updating their state based on real-time data are 
referred to as data-informed models. The major challenge in creating and 
running data-informed models is as follows.

Integrating real-time input data: traditional (usually physics-based) 
models created for nuclear application are not designed to update their 
internal states directly from dynamic data streams. These models were created for fixed input, static boundary and 
initial conditions, and the simulations of these models are run for a given static case. As a model runs over time, its 
state will eventually diverge from that of the system represented, and while current nuclear domain M&S can interact 
with other running models, e.g., via data exchange, they do not commonly feature the ability to self-correct or modify 
their internal states based on external information. A data-informed model within a DT must have this ability so it can 
synchronize its state with that of the NPP. It is an ongoing challenge to define model formalisms and protocols that 
enable traditional models to evolve into DT-driven dynamic models. 

2.2.4 | KEY CHALLENGE

Real-time simulation of high-
fidelity physics-based models

2.2.5 | KEY CHALLENGE

Implementation of  
real-time, dynamic data-
informed models
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2.3 DATA AND INFORMATION MANAGEMENT
The methods and mechanisms for storing data used at an NPP must meet 
varying levels of requirements depending primarily upon their proximity 
to safety functions and baselines. Completed, approved documents 
(records) of safety systems, procedures, or other safety-adjacent 
calculations must be reviewed, approved, and archived according 
to regulatory requirements or guidance and implemented through 
mandatory guidelines, such as the American Society of Mechanical 
Engineers Quality Assurance Requirements for Nuclear Facility 
Applications (ASME NQA-1) [25]. While these documents are updated 
as technology progresses, there is necessarily a time lag between the 
introduction of breakthrough technologies and the point at which they 
are sufficiently well understood and proven that they can be accepted 
for uses where failure cannot be tolerated. As such, many of the new 
technologies underlying the uses of DTs in other industries may not be 
directly or readily transferrable at this time for safety-significant nuclear 
applications. This also applies for the verification and validation of 
software used to process stored data. One prominent example of this is the use of cloud storage systems; where 
many technical guides will contain discussions on such topics as proper magnetic tape tensioning, acceptable 
levels of damage prior to reconstruction, and fire ratings for single versus redundant storage locations, very few 
address issues surrounding management of encryption or geographic redundancy in cloud storage locations. 
Adapting these standards to evolving technology represents a key step in reducing the barriers to accessing 
these improvements.

While the safe retention of data is one key function of a data storage system, the other is to provide that information 
in a usable format and timely manner to those users or applications that are properly authorized to receive it. The 
ability to widely share data across organizations has improved greatly from the days when approved documents 
were archived in filing cabinets and copied by skilled draftsmen. The ubiquity of computer networks, both within 
facilities and between, has enabled updated documents to become available to all customers within seconds of 
their approval. The next advance beyond this is to extend beyond a document-centric approach, where the data, 
metadata, and supporting contextual information are contained in a static format, to a data-centric approach, 
where the data and metadata are able to be updated and cross-linked so that all of the consumers of the data are 
able to update automatically. This is a non-trivial endeavor, as the data and its context are often intricately linked. 
However, many aspects of data are amenable to such linking if the metadata is consistent with application and 
context. These provide a formal, yet flexible, method of defining both the data and the relationships that it may take 
to other data.

A GUI allows the user to view data, results, graphs, visualizations (both 2- and 3-dimensional), and system status as a 
collective dashboard in one unified space. The GUI shows a view of the project without directly interfacing with sensors 
and equipment. Contributors and subject-matter experts for a project define what is needed for a user of the GUI based 
on the parameters of a project, components, and data. The development team then designs and reliably implements 

2.3 | KEY CHALLENGES

Standards and guidance  
for cybersecurity, cloud 
storage, encryption, and 
geographic redundancy

Establishment and scaling 
of storage capacity, data-
sharing bandwidth, and 
computational capability

Transition from  
document-centric to  
data-centric approach
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this vision, following traditional user experience principles. The data in a GUI most often comes in the form of results 
from model simulations that have been run by the entirety of the DT itself. The GUI displays these in a few ways: 1) 
results as single entries such as temperatures, pressures, and statuses; 2) graphs best suited to show large amounts 
of data, especially in relation to time; and 3) visualizations that come in both 2- and 3-dimensions, allowing a visual 
representation of a particular system or component and its associated data. While GUIs are generally output oriented, 
they sometimes will need to allow input as well. In this case, a user will define the data through simple user components 
such as dialog boxes and drop-downs or 2- and 3-dimensional visualizations.

Table 7. Summary of challenges and gaps in Data and Information Management

Data and Information Management

Challenges Gaps

Standards and guidance for technologies such 
as cloud storage, cybersecurity, geographic 
redundancy, encryption management, etc.

Nuclear-specific standards and guidance for various  
DT-enabling technologies

Methods to leverage existing standards and guidance are  
not well understood

Sufficient scaling of storage capacity, 
data-sharing bandwidth, and computational 
capability to support DT implementation

Hardware and software requirements for nuclear DT capabilities not 
defined or well understood

Transition from document-centric (data 
and information are static) to data-centric 
approach (data and information are cross-
linked and dynamic)

A holistic approach for computer-based procedures in nuclear industry 
does not exist

Supporting hardware and software requirements for data-centric 
approach not identified or developed
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SUMMARY AND CONCLUSIONS

The formative elements of such a DT system are: 

1. Nuclear Power Plant

 - Physical Assets

 - Physical Phenomenon

 - Advanced Sensors and Instrumentation

 - Computing and Networking Systems

 - Procedures and Human Actions

2. Digital Twin

 - Modeling and Simulation

 • Data Analytics

 • Machine Learning and Artificial Intelligence

 • Physics-based Models

 • Data-informed Models

 • Other Models

 - Data and Information Management

 • Storage

 • Sharing and Accessibility

 • User Interface and Visualization

3. Data and Performance from Nuclear Power Plant to Digital Twin

 - Asset Information

 - Real Time Sensor Data

 - Plant O&M

This report presents  
a detailed description 
of possible formative 
elements of a DT system 
for NPPs, identifies 
technologies needed 
to enable a nuclear DT 
system, and discusses 
some of the important 
challenges and gaps 
associated with the 
DT-enabling technologies. 
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4. Actions and Recommendations from Digital Twin to Nuclear Power Plant

 - Diagnostics and Prognostics

 - O&M Recommendations

 - Autonomous Operations and Controls

Each DT-enabling technology is briefly described followed by a discussion of significant challenges and gaps 
associated with each enabling technology. Challenges are selected based on their impact on DT implementation 
and examples specific to nuclear application are included where appropriate. The following are the key challenges 
identified for respective enabling technologies:

• Advanced sensors and instrumentation

 - Addressing lack of operational experience and performance data of novel sensors

 - Developing guidance for evaluation and qualification requirements for advanced sensors

 - Acquiring real-time data and integration with DTs

 - Ensuring sensors can survive the challenging environment in advanced reactors

• Modeling and simulation

 - Identifying, quantifying, and propagating uncertainty associated with DT models 

 - Addressing lack of high-quality and high-fidelity data for model validation

 - Developing methods for efficient integration of diverse modeling formalisms

 - Developing new models adequate for nuclear DT application  

• Data analytics

 - Identifying and integrating heterogeneous NPP data needed for DT application

 - Addressing lacking, missing, inconsistent, and noisy data 

 - Developing scalable data analytic methods

• Machine learning and artificial intelligence

 - Determining optimum input data for training and testing DT ML/AI models

 - Selecting appropriate algorithms for development of DT ML/AI models 

 - Providing explainability for ML/AI model structure, output, and decisions

• Defining model formalisms and protocols that enable Addressing computational resource requirements  
for real-time simulation of high-fidelity physics-based models

• Data-informed models 

• Data and information management

 - Establishing protocols for data storage for nuclear DT application

 - Establishing methods for data sharing 

 - Identifying and establishing DT user interfaces 
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The discussion in this report frames some potential elements of the nuclear DT system problem space and is aimed at 
enabling and encouraging collaborative efforts among nuclear stakeholders toward research, development, design, and 
demonstrations that address challenges within this problem space. Because the application of DT-enabling technology is 
likely for future nuclear reactors and is a potentially critical toolset for long-term viability of currently operating reactors, 
identifying and addressing the challenges and gaps associated with DT-enabling technologies is an important step toward 
preparing for advancements within nuclear power. Such advancements may feature integrated digital technology, more fully 
instrumented plants, improved plant information and control systems, and advanced operations and maintenance practices, 
all of which may be integrated within a DT system.

The gaps identified in this report suggest the need for additional efforts to be undertaken by research institutions, national 
laboratories, reactor systems designers, vendors, and licensees to address challenges in data, modeling, and real-time 
integration of data and models consequential to the implementation of a nuclear DT system. The NRC continues to assess 
the regulatory viability of DT for nuclear power plants by identifying and evaluating technical challenges associated with 
the application of DT in reactors with the goal of developing a regulatory infrastructure appropriate for the use of DT. In 
addition to past work exploring state-of-the-art applications of DT and continuing outreach to nuclear stakeholders, the NRC 
is pursuing research activities in the application of advanced sensors for monitoring system performance, integration of 
security and safeguards within digital twins, and regulatory considerations for use of DTs. These activities will help identify 
and explore additional areas of intersection between DT and nuclear stakeholders.
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