

Technical Specification Section 6.9.1.8 (Salem) Technical Specification Section 6.9.1.7 (Hope Creek)

LR-N21-0035 April 23, 2021

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington DC 20555-001

> Salem Nuclear Generating Station, Unit Nos. 1 and 2 Renewed Facility Operating License Nos. DPR-70 and DPR-75 NRC Docket Nos. 50-272 and 50-311

Hope Creek Generating Station Renewed Facility Operating License No. NPF-57 NRC Docket No. 50-354

Subject: 2020 Annual Radioactive Effluent Release Report (RERR)

As required with Section 6.9.1.8 of Appendix A to Renewed Facility Operating License Nos. DPR-70 (Unit 1) and DPR-75 (Unit 2) for Salem Nuclear Generating Stations (SGS), and Section 6.9.1.7 of Appendix A to Renewed Facility Operating License NPF-57 for Hope Creek Generating Station (HCGS), PSEG Nuclear hereby transmits one (1) copy of the combined 2020 Annual Radioactive Effluent Release Report (Enclosure 1). Reports SGS RERR-69 and HCGS RERR-43 were combined into one (1) report that summarizes information pertaining to the releases of radioactive materials in liquid, gaseous and solid form from the SGS and the HCGS for the period January 1, 2020 to December 31, 2020.

There are no regulatory commitments contained in this letter.

If you have any questions or comments on this transmittal, please contact Mr. Rick Heathwaite at (856) 279-1239 (cell), or Rick.Heathwaite@PSEG.com.

Sincerely,

Rul

Richard DeSanctis Plant Manager Salem Generating Stations

Steven Poorman Plant Manager Hope Creek Generating Station

Enclosure 1: 2020 Annual Radioactive Effluent Release Report for Salem and Hope Creek Generating Stations

Technical Specification Section 6.9.1.8 (Salem) Technical Specification Section 6.9.1.7 (Hope Creek)

Page 2 LR-N21-0035

cc: Administrator - Region I - USNRC Project Manager – USNRC – Salem/Hope Creek Mr. Justin Hawkins, Salem Senior Resident Inspector - USNRC Mr. Jigar Patel, Hope Creek Senior Resident Inspector - USNRC Mr. Scott Wilson, NRC Inspector - Region I - USNRC Chief - NJ Bureau of Nuclear Engineering (NJBNE) Mr. Lee Marabella, Corporate Commitment Tracking Coordinator - w/o attachment Mr. Thomas Cachaza, Salem/Hope Creek Commitment Tracking Coordinator - w/o attachment

Annual Radioactive Effluent Release Report

2020

Document Number: SGS-69 / HCGS-43

1	Unit 1	Unit 2	Unit 1
	DOCKET NO 50-272	DOCKET NO 50-311	DOCKET NO. 50-354
	OPERATING LICENSE NO DPR-070	OPERATING LICENSE NO DPR-075	OPERATING LICENSE NO. NPF-057

Page Intentionally Left Blank

ARERR (REC) Review and Approval Confirmation in SAP (I.A.W. AD-AA-1006 SIGNATURE AUTHORITY)

SAP 80126317

Stephen Gattuso,	04/09/2021
Salem Chemistry Manager	Date
Ronald Rattigan.	04/20/2021
Hope Creek Chemistry Manager	Date
William Gropp	04/19/2021
	Date
5	
Harold Trimble	04/20/2021
	Date
Millions Muffler	04/17/2021
	Date
	04/18/2021
,	Date
Hope Creek Serior Director of Operations	
	04/21/2021
-	Date
Salem Plant Manager	
	04/21/2021
	Date
Hope Creek Plant Manager	
	Salem Chemistry Manager Ronald Rattigan,

Page Intentionally Left Blank

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 1 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

TABLE OF CONTENTS

1.0	LIST C	OF ACRONYMS AND DEFINITIONS	
2.0	EXEC	UTIVE SUMMARY	6
	2.1	Summary of Conclusions:	6
3.0	INTRC	DUCTION	11
	3.1	About Nuclear Power	11
	3.2	About Radiation Dose	13
	3.3	About Dose Calculation	
4.0	DOSE	ASSESSMENT FOR PLANT OPERATIONS	16
	4.1	Regulatory Limits	
	4.2	Regulatory Limits for Gaseous Effluent Doses:	16
	4.3	Regulatory Limits for Liquid Effluent Doses	17
	4.4	40CFR190 Regulatory Dose Limits for a Member of the Public	17
	4.5	Onsite Doses (Within Site Boundary)	17
5.0	SUPPI	LEMENTAL INFORMATION	19
	5.1	Gaseous Batch Releases	19
	5.2	Liquid Batch Releases	20
	5.3	Abnormal Releases	20
	5.4	Land Use Census Changes	21
	5.5	Meteorological Data	21
	5.6	Effluent Radiation Monitors Out of Service Greater Than 30 Days	21
	5.7	Offsite Dose Calculation Manual (ODCM) Changes	
	5.8	Process Control Program (PCP) Changes	22
	5.9	Radioactive Waste Treatment System Changes	22
6.0	OTHE	R SUPPLIMENTAL INFORMATION	22
	6.2	Outside Tanks	22
	6.3	Independent Spent Fuel Storage Installation (ISFSI) Monitoring Program	22
	6.4	Carbon-14	23
	6.5	Corrections to Previous Reports	23
7.0	NEI 07	7-07 ONSITE RADIOLOGICAL GROUNDWATER MONITORING PROGRAM	24
8.0	VOLUI	NTARY NOTIFICATION	27
9.0	BIBLIC	OGRAPHY	27

TABLES

Table 1, Salem Generating Station Unit 1 Dose Summary	7
Table 2, Salem Generating Station Unit 2 Dose Summary	8
Table 3, Hope Creek Generating Station Unit 1 Dose Summary	9
Table 4, Salem & Hope Creek Generating Stations Site Dose Summary	10
Table 5, Total Annual Offsite-Dose Comparison to 40 CFR 190 Regulatory Limits for SGS/HCGS	11
Table 6, Summary of TEDE doses to Members of the Public Due to Activities Inside the Site	
Boundary	18

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 2 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 7, Groundwater Protection Program Monitoring Well Results for Tritium	25
Table 8, Gaseous Effluents Summation of All Releases (SGS Unit 1)	
Table 9, Gaseous Effluents – Ground Level Release Batch Mode (SGS Unit 1)	
Table 3, Gaseous Effluents – Ground Level Release Datch Mode (SGS Unit 1) Table 10, Gaseous Effluents – Ground Level Release Continuous Mode (SGS Unit 1)	
Table 10, Gaseous Effluents – Ground Lever Release Continuous Mode (SGS Onit 1)	
Table 12, Gaseous Effluents – Ground Level Release Batch Mode (SGS Unit 2) Table 12, Gaseous Effluents – Ground Level Release Castinuous Made (SGS Unit 2)	
Table 13, Gaseous Effluents – Ground Level Release Continuous Mode (SGS Unit 2) Table 14, Gaseous Effluents – Ground Level Release (UQCO List) 4)	
Table 14, Gaseous Effluents Summation of All Releases (HCGS Unit 1)	
Table 15, Gaseous Effluents – Ground Level Release Batch Mode (HCGS Unit 1) Table 10, Gaseous Effluents – Ground Level Release Batch Mode (HCGS Unit 1)	
Table 16, Gaseous Effluents – Ground Level Release Continuous Mode (HCGS Unit 1) Table 17, Lineid Effluents – Ground Level Release (OOO Unit 4)	
Table 17, Liquid Effluents – Summation of All Releases (SGS Unit 1)	
Table 18, Batch Mode Liquid Effluents (SGS Unit 1) Table 20, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12	
Table 19, Continuous Mode Liquid Effluents (SGS Unit 1)	
Table 20, Liquid Effluents – Summation of All Releases (SGS Unit 2)	
Table 21, Batch Mode Liquid Effluents (SGS Unit 2)	
Table 22, Continuous Mode Liquid Effluents (SGS Unit 2)	
Table 23, Liquid Effluents – Summation of All Releases (HGS Unit 1)	
Table 24, Batch Mode Liquid Effluents (HGS Unit 1)	
Table 25, Continuous Mode Liquid Effluents (HGS Unit 1)	
Table 26, Resins, Filters, and Evaporator Bottoms Summary for the Salem Site	
Table 27, Dry Active Waste (DAW) Summary for the Salem Site	
Table 28, Irradiated Components Summary for the Salem Site	55
Table 29, Other Waste Summary for the Salem Site	56
Table 30, Sum of All Low-Level Waste Shipped from the Salem Site	57
Table 31, Resins, Filters, and Evaporator Bottoms Summary for the Hope Creek Site	58
Table 32, Dry Active Waste (DAW) Summary for the Hope Creek Site	59
Table 33, Irradiated Components Summary for the Hope Creek Site	60
Table 34, Other Waste Summary for the Hope Creek Site	61
Table 35, Sum of All Low-Level Waste Shipped from the Hope Creek Site	62
Table 36, Solid Waste Shipped from the Salem Site	63
Table 37, Solid Waste Shipped from the Hope Creek Site	63
Table 38, Percentage of Each Wind Speed/Direction	68
Table 39, Classification of Atmospheric Stability	69
Table 40, 2020 Salem Ground Level Release Dispersion (X/Q)	
Table 41, 2020 Hope Creel Ground Level Release Dispersion (X/Q)	72
Table 42, Highest Potential Dose Receptors, Distances from Salem and Hope Creek, Annual	
Average X/Q, and D/Q Values to Calculate Dose using the NRC Code GASPAR, 2020	85
Table 43, Calculated Doses at Site Boundary for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020	86
Table 44, Calculated Doses at ODCM Dairy Farm for Salem Unit 1, Salem Unit 2, and Hope Creek	
Unit 1 using the NRC Code GASPAR, 2020	
Table 45, Calculated Doses at Nearest Residence for Salem Unit 1, Salem Unit 2,	
Table 46, Calculated Doses at Highest Residence for Salem Unit 1, Salem Unit 2,	92
Table 47, Calculated Doses at ODCM Resident-Garden-Meat Farm for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020	94

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 3 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 48, Calculated Doses to Onsite Adult Workers for Salem Unit 1, Salem Unit 2,	96
Table 49, Calculated Doses to Emergency Personnel (National Guard) for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020	97
Table 50, Calculated Doses to Adult Workers in the Wind Turbine Laydown Area for Salem Unit 1,	
Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020	98
Table 51, RGPP Well Construction Details, HCGS	124
Table 52, RGPP Well Construction Details, SGS	125
Table 53, Well Construction Details, Investigation and Monitoring Wells	126
Table 54, Relevant Groundwater Evaluation Criteria, SGS and HCGS	129
Table 55, Tritium Analytical Results, HCGS RGPP Wells	130
Table 56, Tritium Analytical Results, SGS RGPP Wells	132
Table 57, Tritium Analytical Results, Investigation & Monitoring Wells	134

FIGURES

Figure 1, Pressurized Water Reactor (PWR)	12
Figure 2, Boiling Water Reactor (BWR)	12
Figure 3, Sources of Radiation Exposure (ICRP Report No. 160)	13
Figure 4, Potential exposure pathways to Members of the Public due to Plant Operations	14
Figure 5, Locations of Dose Calculation Receptors with 2020 Wind Rose Overlay	74
Figure 6, Fission and Activation Gases Released in Gaseous Effluents from Salem Unit 1,	77
Figure 7, Iodines Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2	
Figure 8, Particulates Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2	79
Figure 9, Tritium Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2	80
Figure 10, Fission and Activation Products Released in Liquid Effluents, Salem Unit 1,	81
Figure 11, Tritium Released in Liquid Effluents, Salem Unit 1, Salem Unit 2 and	82
Figure 12, Well Location Map, Hope Creek Generating Station	139
Figure 13, Well Location Map, Salem Generating Station	

ATTACHMENTS

Attachment 1, ARERR Release Summary Tables (RG-1.21 Tables)	30
Attachment 2, Solid Waste Information	51
Attachment 3, Meteorological Data	65
Attachment 4, Radiological Effluent Trends	75
Attachment 5, Doses to Highest Dose Potential Receptors using 2020 Annual Average Meteorological Data and the NRC Code GASPAR	83
Attachment 6, ERRATA Section from Previous Reports	99
Attachment 7, 2020 Radiological Groundwater Protection Program (RGPP) Report	115

Annual Radioactive Effluent Release ReportYEAR: 2020Page 4 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

1.0 LIST OF ACRONYMS AND DEFINITIONS

- 1. Airborne Activity Sampling: Sampling of air through the collection of particulates and radionuclides on filter media, collection of noble gases in a container, and collection of water vapor containing tritium.
- 2. Alpha Particle (α): A charged particle emitted from the nucleus of an atom having a mass and charge equal in magnitude of a helium nucleus.
- 3. AREOR: Annual Radiological Environmental Operating Report
- 4. ARERR: Annual Radioactive Effluent Release Report
- 5. Abnormal Release: is an unplanned or uncontrolled release of licensed radioactive material from the plant. Abnormal releases may be categorized as either batch or continuous depending on the circumstances.
- 6. Abnormal Discharge: is an unplanned or uncontrolled release of licensed radioactive material to the unrestricted area. Abnormal discharges may also be categorized as either batch or continuous depending on the circumstances.
- 7. BWR: Boiling Water Reactor
- 8. Composite Sample: A series of single collected portions (aliquots) analyzed as one sample. The aliquots making up the sample are collected at time intervals that are very short compared to the composite period.
- 9. Control: A sampling station in a location not likely to be affected by plant effluents due to its distance and/or direction from the Plant.
- 10. Counting Error: An estimate of the two-sigma uncertainty associated with the sample results based on respective count times.
- 11. Critical Receptor: Represents the MEMBER(S) of the Public in the Unrestricted Area who as a result of the combination of age group and existing local dose exposure pathways has the potential to receive the highest dose.
- 12. Curie (Ci): A measure of radioactivity; equal to 3.7 x 1010 disintegrations per second, or 2.22 x 1012 disintegrations per minute.
- 13. Direct Radiation Monitoring: The measurement of radiation dose at various distances from the plant is assessed using thermoluminescent dosimeters (TLDs).
- 14. Grab Sample: A single discrete sample drawn at one point in time.
- 15. Indicator: A sampling location that is likely to be affected by plant effluents due to its proximity and/or direction from the plant.
- 16. Ingestion Pathway: The ingestion pathway includes milk, fish, and garden produce. Meat or other food products may also be included
- 17. ISFSI: Independent Spent Fuel Storage Installation
- 18. JFD: Joint Frequency Data
- 19. LUC: Land Use Census
- 20. Lower Limit of Detection (LLD): The smallest concentration of radioactive material in a sample that will yield a net count (above system background) that will be detected with 95% probability with a 5% probability of a false conclusion that a blank observation represents "real" signal.
- 21. MDA: Minimum Detectable Activity

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 5 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- 22. MDC: Minimum Detectable Concentration, essentially synonymous with MDA for the purposes of radiological monitoring.
- 23. Mean: The average, i.e., the sum of results divided by the number of results.
- 24. Microcurie (μ Ci): 3.7 x 10⁴ disintegrations per second, or 2.22 x10⁶ disintegrations per minute.
- 25. millirem (mrem): 1/1000 rem; a unit of radiation dose equivalent in tissue.
- 26. Milliroentgen (mR): 1/1000 Roentgen; a unit of exposure to X- or gamma radiation.
- 27. MWe: Megawatts Electric
- 28. MWTh: Megawatts Thermal
- 29. N/A: Not Applicable
- 30. NEI: Nuclear Energy Institute
- Nonroutine, planned discharge—An effluent release from a release point that is not defined in the ODCM but that has been planned, monitored, and discharged in accordance with 10 CFR 20.2001.
- 32. NRC: Nuclear Regulatory Commission
- 33. ODCM: Offsite Dose Calculation Manual
- 34. Protected Area: The fenced area immediately surrounding the Plant. Access to the protected area requires a security badge or escort.
- 35. PWR: Pressurized Water Reactor
- 36. RCA: Radiation Controlled Area
- 37. REC: Radiological Effluent Control
- 38. REMP: Radiological Environmental Monitoring Program
- 39. Restricted Area: Any area where access is controlled for the purpose of protecting individuals from exposure to radiation or radioactive materials
- 40. RGPP: Radiological Ground Water Protection Program
- 41. SLCs: Selected Licensee Commitments
- 42. TLD: Thermoluminescent Dosimeter
- 43. TRM: Technical Requirements Manual
- 44. TS: Technical Specification
- 45. Unrestricted Area: an area, access to which is neither limited nor controlled by the licensee.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 6 of 140
Company: PSEG Nuclear LLC Plant: Salem & H		Hope Creek Ge	nerating Stations

2.0 EXECUTIVE SUMMARY

Salem & Hope Creek Generating Stations (SGS/HCGS) Radiological Effluent Control (REC) Program was established to limit the quantities of radioactive material that may be released based on calculated radiation doses or dose rates. Dose to Members of the Public due to radioactive materials released from the plant is limited by Appendix I of 10 CFR 50 and by 40 CFR 190. Operational doses to the public during 2020 were calculated to be very small compared to the limits required by regulation and compared to other sources of radiation dose and pose no health hazard.

In 2020 Dose assessments showed that the critical dose receptor for Salem & Hope Creek Generating Stations was the Child at the Dairy Farm located 4.9 miles in the W sector, due to the pathways of Inhalation, Ground Plane and Cow Milk. The maximum Annual Organ Dose calculated for this receptor was 4.17E-01 mrem, to the Bone. This annual dose is a minute fraction of the 10 CFR 50, Appendix I guideline of 45 mrem to the Maximum Organ from three (3) Units.

The Annual Radiological Environmental Operating Report (AREOR) provides data obtained through analyses of environmental samples collected at Salem & Hope Creek Generating Stations for the reporting period of January 1st through December 31st, 2020. During that time period 1634 analyses were performed on 1292 samples. In assessing all the data gathered for this report and comparing these results with preoperational data, it was concluded that the operation of Salem & Hope Creek Generating Stations, did result in detection of low level plant related tritium in the environment.

2.1 <u>Summary of Conclusions:</u>

During 2020 all solid, liquid, and gaseous radioactive effluents from Salem & Hope Creek Generating Stations were well below regulatory limits. For individual effluent streams, the quarterly limit most closely approached was the Gaseous Effluent Maximum Organ Dose for the first quarter for Hope Creek Unit 1 at 9.33E-01 percent (Table 3, Hope Creek Generating Station Unit 1 Dose Summary). The majority of this dose was due to the 5.36 Ci of carbon-14 released from the unit in the first quarter.

40 CFR 190 (1) and 10 CFR 72.104 (2) limit the total dose to a the maximum exposed Member of the Public to 25 mrem to the total body, 75 mrem to the thyroid and 25 mrem to other organs other than the thyroid. The maximum annual total body and organ doses from gaseous and liquid pathways with all other uranium fuel cycle sources present on site were calculated as required by section 3.11.4 of the SGS and HCGS ODCMs. The direct dose from the ISFSI pad was determined using the Radiological Environmental Monitoring Program (REMP) and the guidance provided in Regulatory Guide 4.13 (3).

The direct shine dose from the ISFSI to the highest dose potential receptor located at 3.7 miles in the NW sector was conservatively estimated at 7.74E-03 mrem. The doses from the gaseous and liquid radioactive effluents released from SGS Units 1 and Unit 2 and HCGS Unit 1 in 2020 resulted in a calculated total body and an organ dose of 1.24E-01 mrem and 5.31E-01 mrem, respectively. The majority of dose was from the gaseous dose pathways was from C-14. Adding in the direct shine dose from the ISFSI, then The total dose to the Total Body, Thyroid and Max Organ were calculated as 1.32E-01 mrem, 1.05E-01 mrem, and 5.31E-01 mrem, respectively. The max organ dose represented 2.13E+00 percent of the 25 mrem limit. The results of this analysis are in Table 5, Total Annual Offsite-Dose Comparison to 40 CFR 190 Regulatory Limits for SGS/HCGS.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 7 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 1, Salem Generating Station Unit 1 Dose Summary						
		Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
Liquid Effluent Dose	Limit	1.5 mrem	1.5 mrem	1.5 mrem	1.5 mrem	3 mrem
Limit, Total Body	Total Body Dose	9.55E-03	1.20E-03	5.22E-04	2.30E-03	1.36E-02
Total Dody	% of Limit	6.37E-01	7.98E-02	3.48E-02	1.53E-01	4.52E-01
Liquid Effluent Dose	Limit	5 mrem	5 mrem	5 mrem	5 mrem	10 mrem
Limit, Any Organ	Maximum Organ Dose	1.26E-02	1.27E-02	5.93E-04	3.36E-03	2.93E-02
	% of Limit	2.53E-01	2.54E-01	1.19E-02	6.72E-02	2.93E-01
Gaseous Effluent	Limit	5 mrad	5 mrad	5 mrad	5 mrad	5 mrad10 mrad2.26E-061.00E-044.52E-051.00E-03
Dose Limit, Gamma Air	Gamma Air Dose	2.34E-05	1.78E-05	5.68E-05	2.26E-06	
Gamma Air	% of Limit	4.68E-04	3.56E-04	1.14E-03	4.52E-05	
Gaseous Effluent	Limit	10 mrad	10 mrad	10 mrad	10 mrad	20 mrad
Dose Limit, Beta Air	Beta Air Dose	1.21E-05	6.65E-06	2.36E-05	3.83E-06	4.61E-05
	% of Limit	1.21E-04	6.65E-05	2.36E-04	3.83E-05	2.31E-04
Gaseous Effluent	Limit	7.5 mrem	7.5 mrem	7.5 mrem	7.5 mrem	15 mrem
Organ Dose Limit (Iodine, Tritium, C-14, Particulates	Maximum Organ 2.00E-02 1.96E-02 1.99E-02 2.03E-02	2.03E-02	7.97E-02			
vith > 8-day half-life)	% of Limit	2.67E-01	2.61E-01	2.65E-01	2.70E-01	5.23E-01

Table 1, Salem Generating Station Unit 1 Dose Summary¹

¹ Table 1 is meant to demonstrate compliance to 10 CFR Part 50, Appendix I Limits.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 8 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

	,	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
Liquid Effluent Dose	Limit	1.5 mrem	1.5 mrem	1.5 mrem	1.5 mrem	3 mrem
Limit, Total Body	Total Body Dose	1.86E-03	7.61E-04	5.93E-04	1.45E-03	4.67E-03
Total Dody	% of Limit	1.24E-01	5.07E-02	3.95E-02	9.70E-02	I0 mrem -03 3.40E-02 -02 3.40E-01
Liquid Effluent Dose	Limit	5 mrem	5 mrem	5 mrem	5 mrem	10 mrem
Limit, Any Organ	Maximum Organ Dose	2.26E-02	8.15E-03	9.41E-04	2.40E-03	3.40E-02
	% of Limit	4.51E-01	1.63E-01	1.88E-02	4.81E-02	3.40E-01
Gaseous Effluent	Limit	5 mrad	5 mrad	5 mrad	5 mrad	10 mrad
Dose Limit, Gamma Air	Gamma Air Dose	4.98E-05	1.51E-05	3.29E-05	4.53E-05	1.43E-04
Gamma Air	% of Limit	9.97E-04	3.03E-04	6.59E-04	9.05E-04	E-04 1.43E-03
Gaseous Effluent	Limit	10 mrad	10 mrad	10 mrad	10 mrad	04 1.43E-03
Dose Limit, Beta Air	Beta Air Dose	1.77E-05	7.86E-06	1.16E-05	1.60E-05	5.31E-05
Dota / III	% of Limit	1.77E-04	7.86E-05	1.16E-04	1.60E-04	2.66E-04
Gaseous Effluent	Limit	7.5 mrem	7.5 mrem	7.5 mrem	7.5 mrem	15 mrem
Organ Dose Limit (Iodine, Tritium, C-14, Particulates	Maximum Organ Dose	2.64E-02	2.48E-02	2.41E-02	2.53E-02	1.01E-01
with > 8-day half-life)	% of Limit	3.51E-01	3.31E-01	3.21E-01	3.37E-01	6.70E-01

Table 2, Salem Generating Station Unit 2 Dose Summary²

 $^{^{\}rm 2}$ Table 2 is meant to demonstrate compliance to 10 CFR Part 50, Appendix I Limits.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 9 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 3, Hope Creek Generating Station Unit 1 Dose Summary						
		Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
Liquid Effluent Dose	Limit	1.5 mrem	1.5 mrem	1.5 mrem	1.5 mrem	3 mrem
Limit, Total Body	Total Body Dose	1.52E-02	1.33E-04	2.33E-04	9.53E-04	1.65E-02
Total Dody	% of Limit	1.01E+00	8.85E-03	1.55E-02	6.35E-02	5.51E-01
Liquid Effluent Dose	Limit	5 mrem	5 mrem	5 mrem	5 mrem	10 mrem
Limit, Any Organ	Maximum Organ Dose	4.82E-02	4.03E-04	5.05E-04	2.15E-03	5.13E-02
	% of Limit	9.64E-01	8.07E-03	1.01E-02	4.30E-02	5.13E-01
Gaseous Effluent	Limit	5 mrad	5 mrad	5 mrad	5 mrad	10 mrad
Dose Limit, Gamma Air	Gamma Air Dose	amma Air Dose 2.69E-04 6.08E-07 1.39E-03 2.37E-04 1.90E-03				
Gamina / iii	% of Limit	5.38E-03				
Gaseous Effluent	Limit	10 mrad	10 mrad	10 mrad	10 mrad	20 mrad
Dose Limit, Beta Air	Beta Air Dose	2.93E-04	1.79E-06	2.47E-03	4.38E-04	3.20E-03
Deta / til	% of Limit	2.93E-03	1.79E-05	2.47E-02	4.38E-03	1.60E-02
Gaseous Effluent	Limit	7.5 mrem	7.5 mrem	7.5 mrem	7.5 mrem	15 mrem
Organ Dose Limit (Iodine, Tritium, C-14, Particulates	ium, Dose 10.002-02 5.552-02 4.202-02 6.912-02	2.37E-01				
vith > 8-day half-life)	% of Limit	9.33E-01	7.39E-01	5.61E-01	9.21E-01	1.58E+00

Table 3, Hope Creek Generating Station Unit 1 Dose Summary³

³ Table 3 is meant to demonstrate compliance to 10 CFR Part 50, Appendix I Limits.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 10 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 4, Salem & Hope Creek Generating Stations Site Dose Summary						
		Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
Liquid Effluent Dose Limit, Total Body	Total Body Dose	2.66E-02	2.09E-03	1.35E-03	4.70E-03	3.48E-02
Liquid Effluent Dose Limit, Any Organ	Maximum Organ Dose	8.34E-02	2.13E-02	2.04E-03	7.91E-03	1.15E-01
Gaseous Effluent Dose Limit, Gamma Air	Gamma Air Dose	3.42E-04	3.36E-05	1.48E-03	2.84E-04	2.14E-03
Gaseous Effluent Dose Limit, Beta Air	Beta Air Dose	3.22E-04	1.63E-05	2.51E-03	4.58E-04	3.30E-03
Gaseous Effluent Organ Dose Limit (Iodine, Tritium, C-14, Particulates with > 8-day half-life)	Maximum Organ Dose	1.16E-01	9.98E-02	8.60E-02	1.15E-01	4.17E-01

Table 4, Salem & Hop	e Creek Generating	Stations Site Dose	Summary ⁴

⁴ Compliance to 10 CFR Part 50, Appendix I Limits is demonstrated from Tables 1 to 3 for each unit. Table 4 is a summary of the cumulative dose from all three units.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 11 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

	Whole Body	Thyroid	Max Organ
Limit	25 mrem	75 mrem	25 mrem
Gaseous			
Salem 1 NG	9.50E-05	N/A	N/A
Salem 1 Particulates/lodines	1.84E-02	1.84E-02	7.97E-02
Salem 2 NG	1.36E-04	N/A	N/A
Salem 2 Particulates/lodines	2.08E-02	2.08E-02	1.01E-01
Hope Creek 1 NG	1.74E-03	N/A	N/A
Hope Creek 1 Particulates/lodines	4.83E-02	4.87E-02	2.37E-01
Liquid			
Salem 1	1.36E-02	1.30E-02	2.93E-02
Salem 2	4.67E-03	4.20E-03	3.40E-02
Hope Creek 1	1.65E-02	8.71E-05	5.13E-02
Total Gas & Liquid mrem	1.24E-01	1.05E-01	5.31E-01
Direct Shine	7.74E-03	N/A	N/A
Total mrem	1.32E-01	1.05E-01	5.31E-01
% of Limit	5.28E-01	1.40E-01	2.13E+00

Table 5, Total Annual Offsite-Dose Comparison to 40 CFR 190 Regulatory Limits for SGS/HCGS⁵

3.0 INTRODUCTION

3.1 <u>About Nuclear Power</u>

Commercial nuclear power plants are generally classified as either Boiling Water Reactors (BWRs) or Pressurized Water Reactors (PWRs), based on their design. A BWR includes a single coolant system where water used as reactor coolant boils as it passes through the core and the steam generated is used to turn the turbine generator for power production (4). A PWR, in contrast, includes two separate water systems: radioactive reactor coolant and a secondary system. Reactor coolant is maintained under high pressure, preventing boiling. The high-pressure coolant is passed through a heat exchanger called a steam generator where the secondary system water is boiled, and the steam is used to turn the turbine generator for power production (5).

⁵ Table 5 is a summation of all Units to show compliance with 40 CFR Part 190 Limits.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 12 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

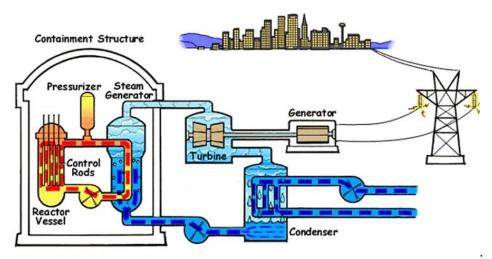


Figure 1, Pressurized Water Reactor (PWR)

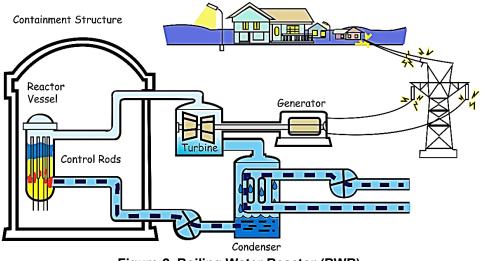


Figure 2, Boiling Water Reactor (BWR)

Electricity is generated by a nuclear power plant similarly to the way that electricity is generated at other conventional types of power plants, such as those driven by coal or natural gas. Water is boiled to generate steam; the steam turns a turbine that is attached to a generator and the steam is condensed back into water to be returned to the boiler. What makes nuclear power different from these other types of power plants is that the heat is generated by fission and decay reactions occurring within and around the core containing fissionable uranium (U-235).

Nuclear fission occurs when certain nuclides (primarily U-233, U-235, or Pu-239) absorb a neutron and break into several smaller nuclides (called fission products) as well as some additional neutrons.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 13 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Fission results in production of radioactive materials including gases and solids that must be contained to prevent release or treated prior to release. These effluents are generally treated by filtration and/or hold-up prior to release. Releases are generally monitored by sampling and by continuously indicating radiation monitors. The effluent release data is used to calculate doses to ensure that dose to the public due to plant operation remains within required limits.

3.2 About Radiation Dose

lonizing radiation, including alpha, beta, and gamma radiation from radioactive decay, has enough energy to break chemical bonds in tissues and result in damage to tissue or genetic material. The amount of ionization that will be generated by a given exposure to ionizing radiation is quantified as dose. The units for dose are generally given in millirem (mrem) in the US.

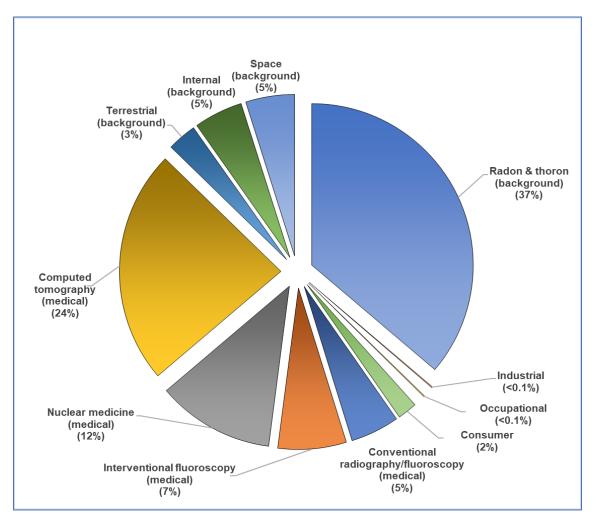


Figure 3, Sources of Radiation Exposure (ICRP Report No. 160) (6)

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 14 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

3.2 (Continued)

The National Council on Radiation Protection (NCRP) has evaluated the population dose for the US and determined that the average individual is exposed to approximately 620 mrem per year. There are many sources for radiation dose, ranging from natural background sources to medical procedures, air travel, and industrial processes. Approximately half (310 mrem) of the average exposure is due to natural sources of radiation including exposure to Radon, cosmic radiation, and internal radiation and terrestrial due to naturally occurring radionuclides. The remaining 310 mrem of exposure is due to man-made sources of exposure, with the most significant contributors being medical (48%) due to radiation used in various types of medical scans and treatments. Of the remaining 2% of dose, most is due to consumer activities such as air travel, smoking cigarettes, and building materials. A small fraction of this 2% is due to industrial activities including generation of nuclear power.

Readers that are curious about common sources and effects of radiation dose that they may encounter can find excellent sources of information from the Health Physics Society, including the Radiation Fact Sheets (7), and from the US Nuclear Regulatory Commission website (8).

3.3 About Dose Calculation

Concentrations of radioactive material in the environment resulting from plant operations are very small and it is not possible to determine doses directly using measured activities of environmental samples. To overcome this, Dose Calculations based on measured activities of effluent streams are used to model the dose impact for Members of the Public due to plant operation and effluents. There are several mechanisms that can result in dose to Members of the Public, including: Ingestion of radionuclides in food or water; Inhalation of radionuclides in air; Immersion in a plume of noble gases; and Direct Radiation from the ground, the plant or from an elevated plume.

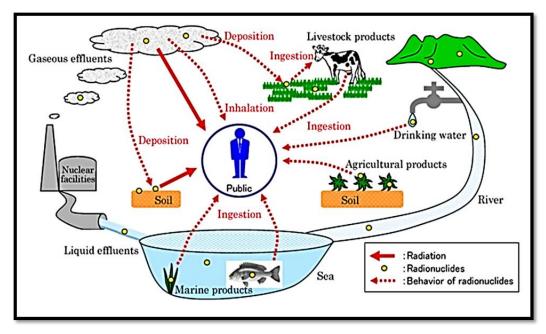


Figure 4, Potential exposure pathways to Members of the Public due to Plant Operations (9)

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 15 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

The Offsite Dose Calculation Manual (ODCM) specifies the methodology used to obtain the doses in the Dose Assessment section of this report. The methodology in the ODCM is based on NRC Regulatory Guide 1.109 (10) and NUREG-0133 (11). Doses are calculated by determining what the nuclide concentration will be in air, water, on the ground, or in food products based on plant effluent releases. Release points are continuously monitored to quantify what concentrations of nuclides are being released. For gaseous releases meteorological data is used to determine how much of the released activity will be present at a given location outside of the plant either deposited onto the ground or in gaseous form. Intake patterns and nuclide bio-concentration factors are used to determine how much activity will be transferred into animal milk or meat. Finally, human ingestion factors and dose factors are used to determine how much dose the consumer will receive. Inhalation dose is calculated by determining the concentration of nuclides and how much air is breathed by the individual.

For liquid releases, dilution and mixing factors are used to model the environmental concentrations in water. Drinking water pathways are modeled by determining the concentration of nuclides in the water at the point where the drinking water is sourced. Fish and invertebrate pathways are determined by using concentration at the release point, bioaccumulation factors for the fish or invertebrate and an estimate of the quantity of fish consumed.

Each year a Land Use Census is performed to determine what potential dose pathways currently exist within a five-mile radius around the plant, the area most affected by plant operations. The Annual Land Use Census identifies the locations of vegetable gardens, nearest residences, milk animals and meat animals. The data from the census is used to determine who is the likely to be most exposed to radiation dose due to plant operation.

There is significant uncertainty in dose calculation results, due to modeling dispersion of material released and bioaccumulation factors, as well as assumptions associated with consumption and land-use patterns. Even with these sources of uncertainty, the calculations do provide a reasonable estimate of the order of magnitude of the exposure. Conservative assumptions are made in the calculation inputs such as the number of various foods and water consumed, the amount of air inhaled, and the amount of direct radiation exposure from the ground or plume, such that the actual dose received are likely lower than the calculated dose. Even with the built-in conservatism, doses calculated for the highest hypothetical exposed individual due to plant operation are a very small fraction of the annual dose that is received due to other sources. The low calculated doses due to plant operations, serve to provide assurance that the site is not having a negative impact on the environment or people living near the plant.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 16 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

4.0 DOSE ASSESSMENT FOR PLANT OPERATIONS

4.1 <u>Regulatory Limits</u>

Regulatory limits are detailed in Station Licensing documents such as the Offsite Dose Calculation Manual (ODCM) and Selected Licensing Commitments. These documents contain the limits to which SGS/HCGS must adhere. SGS/HCGS drives to maintain the philosophy to keep dose "as low as reasonably achievable" (ALARA) and actions are taken to reduce the amount of radiation released to the environment. Liquid and gaseous release data show that the dose from SGS/HCGS is well below the ODCM limits. The concentration of liquid radioactive material released shall be limited to the Maximum Permissible Concentration specified in 10 CFR 20, Appendix B, Table II, Column 2 (pre 1994), for radionuclides other than dissolved or entrained noble gases. For dissolved or entrained noble gases, the total concentration released shall be limited to 2.0E-04 microcuries/ml. This data reveals that the radioactive effluents have an overall minimal dose contribution to the surrounding environment.

4.2 <u>Regulatory Limits for Gaseous Effluent Doses:</u>

- 1. Fission and activation gases:
 - a. Noble gases dose rate due to radioactive materials released in gaseous effluents from the areas at and beyond the site boundary shall be limited to the following for the three (3) units:
 - 1) Less than or equal to 500 mrem/year to the total body
 - 2) Less than or equal to 3000 mrem/year to the skin
 - b. Noble gas air dose due to noble gases released in gaseous effluents to areas at and beyond the site boundary shall be limited to the following for each unit:
 - 1) Quarterly
 - a) Less than or equal to 5 mrads gamma
 - b) Less than or equal to 10 mrads beta
 - 2) Yearly
 - a) Less than or equal to 10 mrads gamma
 - b) Less than or equal to 20 mrads beta
- 2. Iodine, tritium, carbon-14, and all radionuclides in particulate form with half-lives greater than 8 days.
 - a. The dose rate for iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released to areas at and beyond the site boundary shall be limited to the following for the three (3) units:
 - 1) Less than or equal to 1500 mrem/yr to any organ

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 17 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- b. The dose to a MEMBER OF THE PUBLIC from iodine-131, iodine-133, tritium, and all radionuclides in particulate form with half-lives greater than 8 DAYS in gaseous effluents released to areas at and beyond the site boundary shall be limited to the following for each unit:
 - 1) Quarterly
 - a) Less than or equal to 7.5 mrem to any organ
 - 2) Yearly
 - a) Less than or equal to 15 mrem to any organ

4.3 <u>Regulatory Limits for Liquid Effluent Doses</u>

- 1. The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released to unrestricted areas shall be limited to the following for each unit:
 - a. Quarterly
 - 1) Less than or equal to 1.5 mrem total body
 - 2) Less than or equal to 5 mrem critical organ
 - b. Yearly
 - 1) Less than or equal to 3 mrem total body
 - 2) Less than or equal to 10 mrem critical organ

4.4 <u>40CFR190 Regulatory Dose Limits for a Member of the Public</u>

- 1. Total Dose (40CFR190)
 - a. The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to the following:
 - 1) Less than or equal to 25 mrem, Total Body or any Organ except Thyroid.
 - 2) Less than or equal to 75 mrem, Thyroid.

4.5 Onsite Doses (Within Site Boundary)

This section evaluates dose to non-occupationally exposed workers that may be onsite for various reasons. Groups of concern include plant personnel that are not RCA badged including Sewage Treatment Plant Operators, Wind Turbine Laydown Area, and Emergency Responders at the Site Security Gate. These workers are considered not to be occupationally exposed, because the work activities are only remotely related to plant-operational activities. Use of a conservative assumption of 2000 hours/year spent inside the site boundary by these groups conservatively represents the most-exposed individual. Doses to these groups are required per Section 3.11.4 of the Stations' ODCMs as clarified in RIS-2002-21 (12).

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 18 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating		nerating Stations

The annual whole body, skin and organ dose was computed using the 2020 source term using the dose calculation methodology provided in the ODCM and the 2020 annual average meteorological dispersion (X/Q) and deposition (D/Q) data provided for in Attachment 3, Meteorological Data. The calculated doses due to gaseous effluents for non-rad workers onsite are presented in Table 6 and in Attachment 5, Doses to Highest Dose Potential Receptors using 2020 Annual Average Meteorological Data and the NRC Code GASPAR.

Location	Operating Unit	CDE (Thyroid) mrem	Total Body Dose mrem	TEDE mrem	% of Limit (100 mrem) per 10 CFR 20.1301
	SGS U1	5.12E-02	3.20E-02		
Sewage	SGS U2	2.98E-02	2.98E-02		
Treatment	HCGS	1.90E-02	1.87E-02		
Plant	ISFSI	N/A	2.23E+00		
	Total	1.00E-01	2.31E+00	2.41E+00	2.41E+00
	SGS U1	1.38E-03	8.63E-04		
	SGS U2	8.05E-04	1.09E-03		
Wind Turbine Laydown Area	HCGS	1.75E-03	3.19E-03		
Edyddwn Arca	ISFSI	N/A	1.96E-01		
	Total	3.94E-03	2.01E-01	2.05E-01	2.05E-01
	SGS U1	1.12E-03	6.97E-04		
	SGS U2	6.51E-04	6.51E-04		
Emergency Responders	HCGS	8.21E-04	8.06E-04		
Responders	ISFSI	N/A	1.88E-02		
	Total	2.59E-03	2.09E-02	2.35E-02	2.35E-02

Table 6, Summary of TEDE doses to Members of the Public Due to Activities Inside the Site Boundary

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 19 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Gene		nerating Stations

5.0 SUPPLEMENTAL INFORMATION

5.1 <u>Gaseous Batch Releases</u>

5.1.1 Salem Unit 1

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		19	7	4	9	39
2. Total duration of batch releases	minutes	1.33E+05	1.31E+05	1.33E+05	9.03E+04	4.87E+05
3. Maximum batch release duration	minutes	4.46E+04	4.46E+04	4.46E+04	4.46E+04	4.46E+04
4. Average batch release duration	minutes	6.99E+03	1.87E+04	3.32E+04	1.00E+04	1.25E+04
5. Minimum batch release duration	minutes	1.60E+01	3.90E+01	1.30E+02	1.10E+02	1.60E+01

5.1.2 Salem Unit 2

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		7	33	5	8	53
2. Total duration of batch releases	minutes	1.31E+05	1.37E+05	1.33E+05	1.33E+05	5.33E+05
3. Maximum batch release duration	minutes	4.46E+04	4.46E+04	4.46E+04	4.46E+04	4.46E+04
4. Average batch release duration	minutes	1.88E+04	4.14E+03	2.65E+04	1.66E+04	1.01E+04
5. Minimum batch release duration	minutes	3.20E+01	2.40E+01	8.40E+01	6.00E+00	6.00E+00

5.1.3 Hope Creek Unit 1

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		N/A	N/A	N/A	N/A	N/A
2. Total duration of batch releases	minutes	N/A	N/A	N/A	N/A	N/A
3. Maximum batch release duration	minutes	N/A	N/A	N/A	N/A	N/A
4. Average batch release duration	minutes	N/A	N/A	N/A	N/A	N/A
5. Minimum batch release duration	minutes	N/A	N/A	N/A	N/A	N/A

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 20 of 140
Company: PSEG Nuclear LLC Plant: Salem & I		Hope Creek Ge	nerating Stations

5.2 Liquid Batch Releases

5.2.1 <u>Salem Unit 1</u>

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		33	16	8	47	104
2. Total duration of batch releases	minutes	1.68E+04	5.53E+03	4.45E+03	2.69E+04	5.36E+04
3. Maximum batch release duration	minutes	1.26E+03	8.07E+02	1.03E+03	1.78E+03	1.78E+03
4. Average batch release duration	minutes	5.09E+02	3.45E+02	5.57E+02	5.71E+02	5.16E+02
5. Minimum batch release duration	minutes	1.01E+02	5.50E+01	2.75E+02	1.00E+01	1.00E+01

5.2.2 Salem Unit 2

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		16	27	12	21	76
2. Total duration of batch releases	minutes	7.40E+03	1.44E+04	5.96E+03	1.05E+04	3.83E+04
3. Maximum batch release duration	minutes	6.22E+02	1.34E+03	6.81E+02	7.60E+02	1.34E+03
4. Average batch release duration	minutes	4.62E+02	5.32E+02	4.97E+02	5.01E+02	5.03E+02
5. Minimum batch release duration	minutes	3.17E+02	1.39E+02	3.08E+02	2.10E+02	1.39E+02

5.2.3 Hope Creek Unit 1

	Units	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual
1. Number of Batch Releases		41	12	35	36	124
2. Total duration of batch releases	minutes	3.60E+03	9.13E+02	2.58E+03	2.56E+03	9.65E+03
3. Maximum batch release duration	minutes	3.23E+02	8.80E+01	8.60E+01	1.37E+02	3.23E+02
4. Average batch release duration	minutes	8.78E+01	7.61E+01	7.37E+01	7.12E+01	7.78E+01
5. Minimum batch release duration	minutes	2.00E+00	5.40E+01	4.80E+01	3.70E+01	2.00E+00

5.3 Abnormal Releases

5.3.1 <u>Salem Unit 1</u>

None

5.3.2 Salem Unit 2

None

5.3.3 Hope Creek Unit 1

One abnormal non routine discharge occurred on 07/21/2020 (Notification 20856089) when a vacuum truck used to clean sediment from the stilling well at the cooling tower blowdown radiation monitor was found to contain Co-60 at a concentration of 7.67E-07 μ Ci/ml and Cs-137 at a concentration of 5.56E-08 μ Ci/ml. The vacuum truck was sampled per the requirements of HC.CH-TI.ZZ-0012.

The Cs-137 activity was consistent with levels found in the environment. The Co-60 activity was previously permitted during liquid radwaste releases. It was prudent to permit this release as a non-routine liquid discharge. The following information is being provided:

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 21 of 140
Company: PSEG Nuclear LLC Plant: Salem & H		Hope Creek Ge	nerating Stations

Permit No.	L-20200721-563-C
Date and time of event	07/21/2021 10:15 a.m.
Duration of event	15 minutes
Location	Cooling Tower Blow Down radiation monitoring stilling well
Volume	1500 gallons
Estimated activity of each radionuclide	Co-60 7.67E-07 µCi/ml Cs-137 5.56E-08 µCi/ml
Total Activity Released	4.67E-06 Ci
Effluent monitoring result (if any)	N/A
On site monitoring results (if any)	N/A
Estimated dose to a member of the public	Adult GI-LLI 8.42E-07 mrem Adult T Body 1.14E-07 mrem
Regulatory Agencies notified including dates	N/A

5.4 Land Use Census Changes

The results of the 2020 Land Use Census showed no changes in nearest residences and milk farms. There were no gardens of greater than 500 ft² within five miles of the SGS/HCGS site. Additionally, the ODCM resident-garden-beef dose receptor located at 4.6 miles in the SW sector is no longer present. The next revision of the Stations' ODCMs will reflect this change and doses will no longer be calculated to that location.

5.5 <u>Meteorological Data</u>

The 2020 meteorological monitoring program had a Joint Frequency Data (JFD) recovery rate of 95.8% recovery rate. The JFD recovery rate per Reg. Guide 1.23 (13) includes wind speed, wind direction and stability class. A loss of data from any one of these parameters impacts the overall recovery rate. Safety Guide 23 (14), which SGS/HCGS were committed to 2020 includes a requirement to measure dew point. The 10 meter dew point sensor has been out of service for most of 2020. It was returned to service on 09/15/2020. The 20 meter dew point had a recovery rate of 25.0%. The percent recovery rate for each required sensor is detailed in Attachment 3,Meteorological Data

The quarterly JFDs are retained onsite and is available upon request.

Attachment 3,Meteorological Data includes the annual JFD for all stability classes, percent by stability class, and Salem's and Hope Creek's annual average dispersion (X/Q) and deposition (D/Q) data.

5.6 Effluent Radiation Monitors Out of Service Greater Than 30 Days

5.6.1 <u>Salem Unit 1</u>

None

5.6.2 Salem Unit 2

Liquid waste process radiation monitor 2R18 failed on 11/02/2020 due to a failed hard drive to the computer. A new replacement drive was procured and reclassified by procurement engineering as non-safety related (PC3). The new drive had software installed and was place in the computer. After successful testing the monitor was returned to service on 12/10/2020 (Notification 20862965).

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 22 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

5.6.3 Hope Creek Unit 1

None

5.7 Offsite Dose Calculation Manual (ODCM) Changes

There were no changes to the Salem or Hope Creek ODCMs in 2020

5.8 Process Control Program (PCP) Changes

The PCP Procedure RW-AA-100, revision 10 was last revised in 2015.

5.9 Radioactive Waste Treatment System Changes

There were no changes to the Radioactive Waste Treatment Systems for either Salem Unit 1, Salem Unit 2, or Hope Creek Unit 1.

6.0 OTHER SUPPLIMENTAL INFORMATION

6.1.1 Hope Creek Unit 1

The Circulating Water Dewatering Sump (CWDS) 1-A-P-168 was found running continuously without meaningfully lowering sump level until 1-B-P-168 started on high-high sump level. Based on the material condition of the pump when investigated by Maintenance, and review of run times logged in the effluent permits, Station Chemistry has determined that effluent volumes released from the CWDS were overestimated. The release volume was calculated based on the pump run time meter and the meter was advancing based on a motor running with reduced or no actual effluent flow. Spot checks of past effluent permits suggest that this condition existed at least as far back as December 2014. A typical value over the last year would have been approximately 100 hours total pump run time per week. Following repair, actual run time is approximately 20 hours per week. (Notification 20869912)

The over estimation of release liquid curies from the sump was well within the ODCM limits. Because the run time meter is inherently a conservative estimate of pump flow, and because there is no technical basis to identify a particular lower flow value as the correct number, permits prior to repair of 1-A-P-168 will not be revised.

6.1.2 Data Trend for Curies Released from the SGS/HCGS Site

Graphical trends of the curies released from the SGS/HCGS site in gaseous and liquid effluents presented in Attachment 4, Radiological Effluent Trends.

6.2 Outside Tanks

In 2020 the SGS/HCGS sites did not utilize temporary outside tanks to hold radioactive materials more than 10 Curies. This requirement does not apply to tritium.

6.3 Independent Spent Fuel Storage Installation (ISFSI) Monitoring Program

There have been no gaseous or liquid releases from the Independent Spent Fuel Storage Installation (ISFSI) since it was placed in service in the summer of 2006.

Annual Radioactive Effluent Release	YEAR: 2020	Page 23 of 140	
Company: PSEG Nuclear LLC Plant: Salem & H		Hope Creek Ge	nerating Stations

6.4 <u>Carbon-14</u>

Carbon-14 (C-14) is a naturally occurring radionuclide with a 5,730-year half-life. Nuclear weapons testing in the 1950s and 1960s significantly increased the amount of C-14 in the atmosphere. Nuclear power plants also produce C-14, but the amount is infinitesimal compared to what has been distributed in the environment due to weapons testing and what is produced by natural cosmic ray interactions.

In accordance with Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactive Material in Liquid and Gaseous Effluents and Solid Waste," (15) the NRC recommended re-evaluating "principal radionuclides" and reporting C-14 as appropriate. Carbon-14 production and release estimates were calculated using EPRI Report 1021106, "Estimation of Carbon-14 in Nuclear Plant Gaseous Effluents" (16). The assessment methodology used to estimate the quantity of C-14 discharged in gaseous effluent from SGS/HCGS involved the use of a normalized C-14 source term and scaling factors based on power generation. The following assumptions were incorporated into the method:

- Only C-14 in the form of CO₂ was incorporated into vegetation through photosynthesis, which causes dose via the ingestion exposure pathways.
- The concentration of C-14 in vegetation was proportional to the concentration of C-14 in air (per equation C-8 in Regulatory Guide 1.109).
- 95% of C-14 released from a BWR (i.e., HCGS) and 30% of C-14 released from a PWR (i.e., SGS Units 1 and 2) was in the form of CO₂ (16).

The estimated generation for Salem & Hope Creek Generating Stations for 2020 was as follows:

Salem Unit 1	8.15 curies
Salem Unit 2	10.27 curies
Hope Creek Unit 1	18.13 curies

Public dose estimates were performed using methodology from the ODCM which is based on Regulatory Guide 1.109 methodology (10). Carbon dioxide is assumed to make up 95% and 30% of the Carbon-14 gaseous emissions from Hope Creek and Salem stations, respectively based upon available references (16). Carbon-14 is the highest dose contributor of all radionuclides released in gaseous effluents. Annual dose resulting from Carbon-14 releases in gaseous effluents is estimated to be about 99% of the dose to the Child bone.

6.5 <u>Corrections to Previous Reports</u>

Minor issues were identified in the 2019 ARERR. The issues were related to curies released from Hope Creek and the summation of doses to the highest dose receptors. The new values remained a small fraction of the ODCM dose limits.

Changes made to the 2019 ARERR are included in Attachment 6, ERRATA Section from Previous Reports.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 24 of 140
Company: PSEG Nuclear LLC Plant: Salem & I		Hope Creek Ge	nerating Stations

7.0 NEI 07-07 ONSITE RADIOLOGICAL GROUNDWATER MONITORING PROGRAM

Salem & Hope Creek Generating Stations have developed a Groundwater Protection Initiative (GPI) program in accordance with NEI 07-07, Industry Ground Water Protection Initiative – Final Guidance Document (17). The purpose of the GPI is to ensure timely detection and an effective response to situations involving inadvertent radiological releases to groundwater to prevent migration of licensed radioactive material off-site and to quantify impacts on decommissioning. During 2020, SGS/HCGS collected and analyzed groundwater samples in accordance with the requirements of site procedures.

Monitoring wells installed as part of Groundwater Protection Initiative (GPI) (NEI 07-07) program are sampled either monthly, quarterly, or annually and analyzed for various radionuclides.

During 2020, the mass flux within the shallow, water bearing unit and deeper groundwater was estimated to be 0.011 Ci and 0.031 Ci, respectively. Therefore, the total potential estimated mass flux of tritium in groundwater reaching the Delaware River during 2020 was 0.042 Ci.

The detailed report is included in 2020 Radiological Groundwater Protection Program (RGPP) Report.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 25 of 140
Company: PSEG Nuclear LLC	Company: PSEG Nuclear LLC Plant: Salem & I		nerating Stations

Well Name	Number of Positive Detections	Number of Analysis	Average Concentration ⁶ pCi/L	Maximum Concentration pCi/L
Well AA	5	5	1,449	3,220
Well AA-V	4	4	3,140	5,730
Well AB	4	4	7,463	8,440
Well AC	12	12	29,700	41,700
Well AD	4	4	9,640	11,500
Well AE	4	4	11,533	18,300
Well AF	1	2	248	248
Well AF-V	3	3	365	512
Well AG-D	2	2	845	905
Well AG-S	2	2	774	821
Well AH-D	2	2	557	627
Well AH-S	2	2	538	636
Well Al	2	2	2,720	3,280
Well AJ	1	1	292	292
Well AL	2	2	357	428
Well AM	4	4	15,703	26,400
Well AN	8	8	18,750	22,600
Well AP	2	2	2,470	3,210
Well AR	4	4	5,518	7,060
Well AS	2	2	4,385	5,070
Well AT	2	2	1,550	1,660
Well BA	0	2	N/A	N/A
Well BB	0	2	N/A	N/A
Well BC	12	12	1,612	3,550
Well BD	4	4	451	764
Well BE	5	5	658	991
Well BF	0	2	N/A	N/A
Well BG	1	4	206	206
Well BH	0	4	N/A	N/A
Well BH-V	1	2	290	290
Well BI	2	4	342	347
Well BJ	12	12	3,330	4,810

Table 7, Groundwater Protection Program Monitoring Well Results for Tritium

⁶ Tritium results <MDA are not included in the average concentration calculation.

Annual Radioactive Effluent Release	e Report	YEAR: 2020	Page 26 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Well Name	Number of Positive Detections	Number of Analysis	Average Concentration ⁶ pCi/L	Maximum Concentration pCi/L
Well BK	0	2	N/A	N/A
Well BL	0	2	N/A	N/A
Well BM	4	4	481	541
Well BM-V	0	2	N/A	N/A
Well BN	4	4	481	796
Well BO	2	4	423	584
Well BP	0	2	N/A	N/A
Well BQ	0	4	N/A	N/A
Well BR	0	2	N/A	N/A
Well BS	0	2	N/A	N/A
Well BT	0	2	N/A	N/A
Well BU	0	2	N/A	N/A
Well BW	2	2	697	702
Well BX	2	2	561	567
Well BY	12	12	72,933	139,000
Well BY-V	4	4	8,383	11,400
Well BZ	2	2	1,360	1,410
Well CA	2	2	1,350	1,400
Well DA	7	7	2,933	4,920
Well DB	4	4	11,575	13,300
Well DC	6	6	5,565	10,300
Well DD	4	4	5628	6,550
Well DE	5	5	18,060	19,900
Well DF	2	2	1,335	1,390
Well DG	4	4	3,665	4,080
Well DH	4	4	10,525	12,500
Well DI	4	4	2,780	3,850
Well DJ	2	2	949	1,010
Well K	0	2	N/A	N/A
Well L	0	2	N/A	N/A
Well M	4	4	4,653	5,250
Well N	4	4	8,050	12,600
Well O	4	4	27,825	56,100

Table 7, Groundwater Protection Program Monitoring Well Results for Tritium

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 27 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Well Name	Number of Positive Detections	Number of Analysis	Average Concentration ⁶ pCi/L	Maximum Concentration pCi/L
Well P	0	2	N/A	N/A
Well R	2	2	4,020	4,150
Well S	3	3	12,180	15,100
Well S-V	4	4	2,455	3,000
Well T	0	4	N/A	N/A
Well U	5	5	287	358
Well V	4	4	237	271
Well W	8	8	2,070	2,350
Well Y	0	2	N/A	N/A
Well Z	2	2	473	495

Table 7, Groundwater Protection Program Monitoring Well Results for Tritium

8.0 VOLUNTARY NOTIFICATION

During 2020, Salem & Hope Creek Generating Stations did not make any voluntary NEI 07-07 notification to State/Local officials, NRC, or to other stakeholders required by site procedures.

9.0 BIBLIOGRAPHY

- 1. 40 CFR Part 190, "Environmental Radiation Protection Standards for Nuclear Power Operations,". Washington, DC. : US Environmental Protection Agency.
- 2. 10 CFR Part 72.104, "Criteria for Radioactive Materials in Effluents and Direct Radiation from an ISFSI or MRS," Washington, DC. : Nuclear Regulatory Commission.
- 3. Regulatory Guide 4.13, Performance, Testing, and Procedural Specifications for *Thermoluminescence Dosimetry: Environmental Applications, Revision 2.* s.l. : Nuclear Regulatory Commision, June, 2019. ML19044A595.
- 4. *Boiling Water Reactor.* [Online] Nuclear Regulatory Commission, June 25, 2015. <u>http://www.nrc.gov/reading-rm/basic-ref/students/animated-bwr.html</u>.
- 5. *Pressurized Water Reactor.* [Online] Nuclear Regulatory Commission, June 30, 2015. <u>http://www.nrc.gov/reading-rm/basic-ref/students/animated-pwr.html</u>.
- 6. *ICRP Publication 60, "ICRP Publication 60: 1990 Recommendations of the International Commission on Radiological Protection, 60," Annals of the ICRP Volume 21/1-3,.* s.l. : International Commission on Radiation Protection, October, 1991.
- 7. *Health Physics Society.* [Online] http://hps.org/hpspublications/radiationfactsheets.html.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 28 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- 8. NRC Resource Page. [Online] [Cited: November 10, 2020.] http://www.nrc.gov/aboutnrc/radiation.html.
- 9. Japan Atomic Energy Agency. [Online] November 06, 2020. https://www.jaea.go.jp/english/04/ntokai/houkan/houkan_02.html.
- 10. Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Demonstrating Compliance with 10 CFR Part 50, Appendix I,. s.l. : Nuclear Regulatory Commission, Ocotober, 1977.
- 11. *NUREG-0133, Preparation of Effluent Technical Specifications for Nuclear Power Plants.* s.l.: Nuclear Regulatory Commission, 1987. ML091050057.
- 12. *RIS-02-21, National Guard and Other Emergency Responders Located in the Licensee's Controlled Area,* NRC Regulatory Issue Summary 2002-21.
- 13. *Regulatory Guide 1.23, "Meteorological Monitoring Programs for Nuclear Power Plants"*, Nuclear Regulatory Commission, March, 2007.
- 14. Safety Guide 23, "Onsite Meteorological Program", Nuclear Regulatory Commission, February, 1972.
- 15. Regulatory Guide 1.21, "Measuring, Evaluating, and Reporting Radioactive Material in Liquid and Gaseous Effluents and Solid Waste", Nuclear Regulatory Commission, June, 2009
- 16. EPRI Technical Report 1021106, "Estimation of Carbon-14 in Nuclear Power Plant Gaseous Effluents", December 2010
- 17. 40 CFR Part 141, "National Primary Drinking Water Regulations,". Washington, DC. : US Environmental Protection Agency.
- 18. *Branch Technical Position, Revision 1.* s.l. : NRC000096, Submitted March 30, 2012, November 1979.
- 19. *NEI 07-07, "Industry Ground Water Protection Initiative—Final Guidance Document,".* Washington, D.C. : Nuclear Energy Institute.
- 20. NUREG-0324, "XOQDOQ, Program for the Meteorological Evaluation of Routine Effluent Releases at Nuclear Power Stations,". s.l. : Nuclear Regulatory Commission, September, 1977.
- NUREG-1301, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Pressurized Water Reactors,". s.l.: Nuclear Regulatory Commission, April 1991. ADAMS Accession No. ML091050061.
- 22. NUREG-1302, "Offsite Dose Calculation Manual Guidance: Standard Radiological Effluent Controls for Boiling Water Reactors,". s.l. : Nuclear Regulatory Commission, April 1991. ADAMS Accession No. ML091050059.
- 23. Regulatory Guide 4.15, Quality Assurance for Radiological Monitoring Programs (Inception through Normal Operations to License Termination) -- Effluent Streams and the Environment. s.l. : Nuclear Regulatory Commission, July, 2007. ML071790506.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 29 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- 24. Arcadis, 2004. Remedial Investigation Work Plan. PSEG Nuclear LLC. Salem Generating Station, Hancocks Bridge, New Jersey.
- 25. Arcadis, 2006A. Site Investigation Report July 2006. PSEG Nuclear LLC. Hope Creek Generating Station, Hancock's Bridge, New Jersey.
- 26. Arcadis, 2006B. Site Investigation Report July 2006. PSEG Nuclear LLC. Salem Generating Station, Hancock's Bridge, New Jersey.
- 27. Arcadis, 2013. Revised Salem Unit 2 Remedial Investigation Work Plan Addendum. PSEG Nuclear LLC. December 2013.
- 28. Arcadis, 2014. Remedial Action Work Plan Addendum. PSEG Nuclear LLC. Salem, Hancock's Bridge, New Jersey. April 10, 2014.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 30 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Stations		

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 31 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Attachment 1, ARERR Release Summary Tables (RG-1.21 Tables)

Annual Radioactive Effluent Release	YEAR: 2020	Page 32 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 33 of 140			
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Statio				

1.0 GASEOUS EFFLUENTS

Table 8, Gaseous Effluents Summation of All Releases (SGS Unit 1)									
A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %		
1. Total Release	Ci	8.44E-02	3.30E-02	1.23E-01	4.21E-02	2.83E-01	3.40E+01		
2. Average release rate for the period	μCi/sec	1.07E-02	4.19E-03	1.55E-02	5.30E-03	8.95E-03			
B. Iodine									
1. Total Release	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	3.00E+01		
2. Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A			
C. Particulates									
1. Total Release	Ci	1.56E-05	< LLD	< LLD	9.04E-08	1.57E-05	3.00E+01		
2. Average release rate for the period	μCi/sec	1.99E-06	N/A	N/A	1.14E-08	4.97E-07			
D. Tritium									
1. Total Release	Ci	4.29E+01	1.65E+02	3.92E+01	4.60E+01	2.93E+02	3.10E+01		
2. Average release rate for the period	μCi/sec	5.46E+00	2.09E+01	4.93E+00	5.79E+00	9.25E+00			

E.	Gross Alpha							
1.	Total Release	Ci	< LLD	3.00E+01				
2.	Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A	

F.	Carbon-14						
1.	Total Release	Ci	2.05E+00	2.00E+00	2.03E+00	2.07E+00	8.15E+00
2.	Average release rate for the period	μCi/sec	2.60E-01	2.54E-01	2.55E-01	2.61E-01	2.58E-01

% of limit is on Table 1, Salem Generating Station Unit 1 Dose Summary

Annual Radioactive Effluent Release	YEAR: 2020	Page 34 of 140			
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Statio				

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Fission Gases						
Ar-41	Ci	3.28E-02	2.72E-02	8.06E-02	9.31E-04	1.42E-01
Kr-85m	Ci	< LLD	< LLD	1.04E-03	5.73E-05	1.10E-03
Kr-88	Ci	< LLD	< LLD	1.40E-03	< LLD	1.40E-03
Xe-133m	Ci	7.63E-04	< LLD	< LLD	7.33E-04	1.50E-03
Xe-133	Ci	4.29E-02	5.73E-03	2.27E-02	3.45E-02	1.06E-01
Xe-135	Ci	7.94E-03	< LLD	1.77E-02	5.86E-03	3.15E-02
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	8.44E-02	3.30E-02	1.23E-01	4.21E-02	2.83E-01
lodines						
None	Ci	< LLD				
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Particulates						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Tritium						
H-3	Ci	3.77E-01	3.04E-01	5.72E-01	2.47E-02	1.28E+00
Gross Alpha						
Alpha	Ci	< LLD				
Carbon-14						
C-14	Ci	N/A	N/A	N/A	N/A	N/A

 Table 9, Gaseous Effluents – Ground Level Release
 Batch Mode (SGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 35 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide						
Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Fission Gases						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
lodines						
None	Ci	< LLD				
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Particulates						
Co-58	Ci	1.56E-05	< LLD	< LLD	9.04E-08	1.57E-05
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	1.56E-05	< LLD	< LLD	9.04E-08	1.57E-05
Tritium	0.		4.045.00			
H-3	Ci	4.29E+01	1.64E+02	3.86E+01	4.60E+01	2.91E+02
Gross Alpha						
Alpha	Ci	< LLD				
Carbon-14						
C-14	Ci	2.05E+00	2.00E+00	2.03E+00	2.07E+00	8.15E+00

Table 10, Gaseous Effluents – Ground Level Release Continuous Mode (SGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 36 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %
1. Total Release	Ci	7.81E-02	5.59E-02	5.08E-02	6.98E-02	2.55E-01	3.40E+01
2. Average release rate for the period	μCi/sec	9.93E-03	7.11E-03	6.39E-03	8.78E-03	8.05E-03	

Table 11, Gaseous Effluents Summation of All Releases (SGS Unit 2)

B	. Iodine							
1.	Total Release	Ci	< LLD	3.00E+01				
2.	Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A	

C. Particulates							
1. Total Release	Ci	< LLD	9.42E-07	< LLD	< LLD	9.42E-07	3.00E+01
2. Average release rate for the period	μCi/sec	N/A	1.20E-07	N/A	N/A	2.98E-08	

D.	Tritium	Ī						
1.	Total Release	Ci	8.80E+01	2.71E+01	4.10E+00	2.41E+01	1.43E+02	3.10E+01
2.	Average release rate for the period	μCi/sec	1.12E+01	3.45E+00	5.15E-01	3.03E+00	4.53E+00	

E.	Gross Alpha							
1.	Total Release	Ci	< LLD	3.00E+01				
2.	Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A	

F.	Carbon-14						
1.	Total Release	Ci	2.69E+00	2.54E+00	2.46E+00	2.58E+00	1.03E+01
2.	Average release rate for the period	μCi/sec	3.43E-01	3.22E-01	3.09E-01	3.25E-01	3.25E-01

% of limit is on Table 2, Salem Generating Station Unit 2 Dose Summary

Annual Radioactive Effluent Release	YEAR: 2020	Page 37 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Fission Gases						
Ar-41	Ci	7.68E-02	2.12E-02	5.08E-02	6.98E-02	2.19E-01
Kr-85m	Ci	< LLD	8.40E-05	< LLD	< LLD	8.40E-05
Xe-133	Ci	1.34E-03	2.99E-02	< LLD	< LLD	3.13E-02
Xe-135	Ci	< LLD	4.66E-03	< LLD	< LLD	4.66E-03
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	7.81E-02	5.59E-02	5.08E-02	6.98E-02	2.55E-01
lodines						
None	Ci	< LLD				
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Particulates						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Tritium						
H-3	Ci	2.27E-01	1.19E-01	2.50E-01	1.48E+00	2.07E+00
Gross Alpha						
Alpha	Ci	< LLD				
Carbon-14						
C-14	Ci	N/A	N/A	N/A	N/A	N/A

 Table 12, Gaseous Effluents – Ground Level Release
 Batch Mode (SGS Unit 2)

Annual Radioactive Effluent Release	YEAR: 2020	Page 38 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Released				Quarter 0		Total lot year
Fission Gases						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
lodines						
None	Ci	< LLD				
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Particulates						
Co-58	Ci	< LLD	9.42E-07	< LLD	< LLD	9.42E-07
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD	9.42E-07	< LLD	< LLD	9.42E-07
Tritium			0.705.04	0.055.00	0.007.0/	
H-3	Ci	8.77E+01	2.70E+01	3.85E+00	2.26E+01	1.41E+02
Gross Alpha				··		
Alpha	Ci	< LLD				
Carbon-14			1	1	1	
C-14	Ci	2.69E+00	2.54E+00	2.46E+00	2.58E+00	1.03E+01

Table 13, Gaseous Effluents – Ground Level Release Continuous Mode (SGS Unit 2)

Annual Radioactive Effluent Release	YEAR: 2020	Page 39 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

A. Fission & Activation Gases	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %
1. Total Release	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	3.40E+01
2. Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A	

Table 14, Gaseous Effluents Summation of All Releases (HCGS Unit 1)

В.	lodine							
1.	Total Release	Ci	9.91E-05	3.67E-04	3.39E-04	3.99E-04	1.20E-03	3.00E+01
2.	Average release rate for the period	μCi/sec	1.26E-05	4.67E-05	4.27E-05	5.02E-05	3.81E-05	

C. Particulates							
1. Total Release	Ci	1.22E-05	1.34E-07	< LLD	5.22E-05	6.45E-05	3.00E+01
2. Average release rate for the period	μCi/sec	1.55E-06	1.70E-08	< LLD	6.57E-06	2.04E-06	

D.	Tritium	Ī						
1.	Total Release	Ci	3.08E+01	3.21E+01	3.88E+01	5.83E+01	1.60E+02	3.10E+01
2.	Average release rate for the period	μCi/sec	3.91E+00	4.08E+00	4.88E+00	7.33E+00	5.06E+00	

E.	Gross Alpha							
1.	Total Release	Ci	< LLD	3.00E+01				
2.	Average release rate for the period	μCi/sec	N/A	N/A	N/A	N/A	N/A	

F.	Carbon-14						
1.	Total Release	Ci	5.36E+00	4.25E+00	3.22E+00	5.29E+00	1.81E+01
2.	Average release rate for the period	μCi/sec	6.82E-01	5.41E-01	4.05E-01	6.66E-01	5.73E-01

% of limit is on Table 3, Hope Creek Generating Station Unit 1 Dose Summary

Annual Radioactive Effluent Release	YEAR: 2020	Page 40 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Fission Gases	Ī		<u>.</u>	•		•
None	Ci	N/A	N/A	N/A	N/A	N/A
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	N/A	N/A	N/A	N/A	N/A
lodines						
None	Ci	N/A	N/A	N/A	N/A	N/A
	Ci					
	Ci					
Total for Period	Ci	N/A	N/A	N/A	N/A	N/A
Particulates						
None	Ci	N/A	N/A	N/A	N/A	N/A
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	N/A	N/A	N/A	N/A	N/A
Tritium						
H-3	Ci	N/A	N/A	N/A	N/A	N/A
Gross Alpha						
Alpha	Ci	N/A	N/A	N/A	N/A	N/A
Carbon-14						
C-14	Ci	N/A	N/A	N/A	N/A	N/A

Table 15, Gaseous Effluents – Ground Level Release Batch Mode (HCGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 41 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide	Í					,
Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Fission Gases						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
lodines			·	·		
I-131	Ci	8.75E-06	3.00E-05	4.67E-05	1.60E-05	1.01E-04
I-133	Ci	9.03E-05	3.37E-04	2.93E-04	3.83E-04	1.10E-03
	Ci					
Total for Period	Ci	9.91E-05	3.67E-04	3.39E-04	3.99E-04	1.20E-03
Particulates						
Co-60	Ci	1.22E-05	< LLD	< LLD	1.16E-05	2.37E-05
Cs-137	Ci	< LLD	1.34E-07	< LLD	4.07E-05	4.08E-05
	Ci					
	Ci					
Total for Period	Ci	1.22E-05	1.34E-07	< LLD	5.22E-05	6.45E-05
Tritium						
H-3	Ci	3.08E+01	3.21E+01	3.88E+01	5.83E+01	1.60E+02
Gross Alpha						
Alpha	Ci	< LLD				
Carbon-14				1	I	
C-14	Ci	5.36E+00	4.25E+00	3.22E+00	5.29E+00	1.81E+01

Table 16, Gaseous Effluents – Ground Level Release Continuous Mode (HCGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 42 of 140			
Company: PSEG Nuclear LLC	Company: PSEG Nuclear LLC Plant: Salem &				

2.0 LIQUID EFFLUENTS

Table 17, Liquid Effluents – Summation of All Releases (SGS Unit 1)

A. Fission & Activation Products	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %
1. Total Release	Ci	7.57E-03	1.71E-03	1.69E-04	2.33E-03	1.18E-02	2.70E+01
2. Average diluted concentration	μCi/mL	1.24E-10	3.22E-11	3.19E-12	4.70E-11	5.43E-11	

B. Tritium	Ī						
1. Total Release	Ci	2.82E+02	7.88E+01	4.42E+01	2.33E+02	6.38E+02	2.70E+01
2. Average diluted concentration	μCi/mL	4.60E-06	1.48E-06	8.33E-07	4.71E-06	2.94E-06	

C. Dissolved & Entrained Gases							
1. Total Release	Ci	< LLD	< LLD	< LLD	1.87E-04	1.87E-04	2.70E+01
2. Average diluted concentration	μCi/mL	N/A	N/A	N/A	3.77E-12	8.61E-13	

D. Gross Alpha Activity							
1. Total Release	Ci	< LLD	2.70E+01				

E. Volume of Waste Released (prior	Liters	4.08E+07	4.13E+07	4.07E+07	3.32E+07	1.56E+08
to dilution)						

	e of Dilution Water Used	Liters	6.11E+10	5.31E+10	5.30E+10	4.95E+10	2.17E+11
During	Period						

% of limit is on the Table 1, Salem Generating Station Unit 1 Dose Summary

Annual Radioactive Effluent Release	YEAR: 2020	Page 43 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter	Quarter	Quarter	Quarter	Total for
Neleaseu		1	2	3	4	Year
Tritium						
H-3	Ci	2.81E+02	7.88E+01	4.42E+01	2.33E+02	6.38E+02
Fission & Activation Products						
Cr-51	Ci	< LLD	< LLD	< LLD	7.38E-05	7.38E-05
Mn-54	Ci	3.50E-05	< LLD	< LLD	< LLD	3.50E-05
Co-57	Ci	2.35E-06	< LLD	< LLD	< LLD	2.35E-06
Co-58	Ci	6.91E-03	8.01E-04	8.12E-05	1.59E-03	9.38E-03
Co-60	Ci	5.53E-04	4.65E-04	8.16E-05	3.80E-04	1.48E-03
Zr-95	Ci	< LLD	1.55E-04	< LLD	< LLD	1.55E-04
Nb-95	Ci	< LLD	2.53E-04	< LLD	4.22E-06	2.57E-04
Ru-105	Ci	< LLD	2.26E-05	< LLD	< LLD	2.26E-05
Ag-110m	Ci	3.32E-05	< LLD	< LLD	< LLD	3.32E-05
Sb-125	Ci	3.05E-05	1.13E-05	6.57E-06	1.19E-04	1.68E-04
Cs-137	Ci	< LLD	< LLD	< LLD	1.63E-04	1.63E-04
Sn-117m	Ci	< LLD	3.17E-06	< LLD	< LLD	3.17E-06
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	7.57E-03	1.71E-03	1.69E-04	2.33E-03	1.18E-02
Entrained Gases					•	
Xe-133	Ci	< LLD	< LLD	< LLD	1.87E-04	1.87E-04
	Ci					
Total for Period		< LLD	< LLD	< LLD	1.87E-04	1.87E-04

Table 18, Batch Mode Liquid Effluents (SGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 44 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Tritium						
H-3	Ci	1.55E-01	1.58E-02	9.43E-03	2.14E-02	2.02E-01
Fission & Activation Products						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD				
Entrained Gases						
None	Ci	< LLD				
	Ci					
Total for Period		< LLD				

Table 19, Continuous Mode Liquid Effluents (SGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 45 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

A. Fission & Activation Products	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %
1. Total Release	Ci	2.67E-03	3.28E-03	7.58E-04	2.37E-03	9.08E-03	2.70E+01
2. Average diluted concentration	μCi/mL	5.11E-10	3.93E-10	1.68E-10	3.19E-10	3.56E-10	

Table 20, Liquid Effluents – Summation of All Releases (SGS Unit 2)

В.	Tritium							
1.	Total Release	Ci	2.44E+02	9.09E+01	8.81E+01	1.88E+02	6.11E+02	2.70E+01
2.	Average diluted concentration	μCi/mL	4.67E-05	1.09E-05	1.95E-05	2.53E-05	2.39E-05	

C.	Dissolved & Entrained Gases							
1.	Total Release	Ci	< LLD	2.70E+01				
2.	Average diluted concentration	μCi/mL	N/A	N/A	N/A	N/A	N/A	

D. Gross Alpha Activity							
1. Total Release	Ci	< LLD	2.70E+01				

E. Volume of Waste Released (prior	Liters	2.48E+07	1.04E+07	1.41E+07	1.37E+07	6.30E+07
to dilution)						

% of limit is on the Table 2, Salem Generating Station Unit 2 Dose Summary

Annual Radioactive Effluent Release	e Report	YEAR: 2020	Page 46 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

					1	1
Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for Year
Tritium						
H-3	Ci	2.44E+02	9.09E+01	8.81E+01	1.88E+02	6.11E+02
Fission & Activation Products						1
Cr-51	Ci	5.51E-05	< LLD	< LLD	< LLD	5.51E-05
Fe-59	Ci	8.25E-06	< LLD	< LLD	< LLD	8.25E-06
Co-58	Ci	7.17E-04	1.36E-03	3.33E-04	1.66E-03	4.08E-03
Co-60	Ci	7.08E-04	1.61E-03	4.26E-04	6.18E-04	3.36E-03
Zr-95	Ci	3.95E-04	1.29E-04	< LLD	< LLD	5.24E-04
Nb-95	Ci	5.90E-04	1.79E-04	< LLD	< LLD	7.69E-04
Nb-97	Ci	1.69E-05	< LLD	< LLD	< LLD	1.69E-05
Ag-110m	Ci	1.74E-05	< LLD	< LLD	< LLD	1.74E-05
Sb-125	Ci	3.09E-05	< LLD	< LLD	8.87E-05	1.20E-04
Cs-134	Ci	1.26E-05	< LLD	< LLD	< LLD	1.26E-05
Cs-137	Ci	1.22E-04	< LLD	< LLD	< LLD	1.22E-04
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	2.67E-03	3.28E-03	7.58E-04	2.37E-03	9.08E-03
Entrained Gases						
None	Ci	< LLD				
	Ci					
Total for Period		< LLD				

Table 21, Batch Mode Liquid Effluents (SGS Unit 2)

Annual Radioactive Effluent Release	Report	YEAR: 2020	Page 47 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Tritium						
H-3	Ci	< LLD				
Fission & Activation Products						
None	Ci	< LLD				
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Dariad	Ci		< LLD	< LLD		< LLD
Total for Period	Ci	< LLD			< LLD	
Entrained Gases	0:					
None	Ci	< LLD				
	Ci					
Total for Period		< LLD				

Table 22, Continuous Mode Liquid Effluents (SGS Unit 2)

Annual Radioactive Effluent Release	Report	YEAR: 2020	Page 48 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

A. Fission & Activation Products	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Annual	Est. Total Error %
1. Total Release	Ci	1.89E-01	2.00E-03	1.57E-03	1.23E-02	2.05E-01	2.70E+01
2. Average diluted concentration	μCi/mL	3.38E-08	3.29E-10	2.48E-10	1.98E-09	8.47E-09	

Table 23, Liquid Effluents – Summation of All Releases (HGS Unit 1)

В.	Tritium							
1.	Total Release	Ci	1.50E+01	6.00E+00	1.33E+01	4.01E+00	3.83E+01	2.70E+01
2.	Average diluted concentration	μCi/mL	2.68E-06	9.87E-07	2.10E-06	6.46E-07	1.58E-06	

C. Dissolved & Entrained Gases							
1. Total Release	Ci	1.25E-07	2.01E-06	< LLD	1.02E-06	3.16E-06	2.70E+01
2. Average diluted concentration	μCi/mL	2.23E-14	3.30E-13	N/A	1.65E-13	1.30E-13	

D. Gross Alpha Activity							
1. Total Release	Ci	< LLD	2.70E+01				

|--|

F. Volume of Dilution Water Used During Period	Liters	5.58E+09	6.06E+09	6.32E+09	6.19E+09	2.42E+10
---	--------	----------	----------	----------	----------	----------

% of limit is on the Table 3, Hope Creek Generating Station Unit 1 Dose Summary

Annual Radioactive Effluent Release	YEAR: 2020	Page 49 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

I 			1			ir
Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for Year
Tritium						1
H-3	Ci	1.50E+01	5.34E+00	1.23E+01	3.80E+00	3.64E+01
Fission & Activation Products						
Na-24	Ci	7.82E-06	< LLD	< LLD	1.19E-05	1.98E-05
Mn-54	Ci	4.66E-02	4.08E-04	1.77E-04	1.03E-03	4.82E-02
Fe-59	Ci	2.43E-07	< LLD	< LLD	< LLD	2.43E-07
Co-57	Ci	1.01E-04	< LLD	< LLD	< LLD	1.01E-04
Co-58	Ci	2.03E-02	7.29E-05	1.03E-04	1.52E-04	2.06E-02
Co-60	Ci	8.91E-02	1.17E-03	1.13E-03	5.36E-03	9.68E-02
Zn-65	Ci	4.42E-03	5.19E-05	1.30E-04	9.78E-05	4.70E-03
Zr-95	Ci	< LLD	4.74E-06	< LLD	< LLD	4.74E-06
Ag-110m	Ci	< LLD	< LLD	< LLD	7.64E-06	7.64E-06
Sb-125	Ci	< LLD	< LLD	< LLD	1.98E-05	1.98E-05
I-131	Ci	1.70E-07	< LLD	< LLD	1.32E-07	3.02E-07
Cs-134	Ci	1.40E-02	1.31E-04	1.19E-05	2.42E-03	1.65E-02
Cs-137	Ci	1.47E-02	1.64E-04	1.64E-05	3.19E-03	1.81E-02
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	1.89E-01	2.00E-03	1.56E-03	1.23E-02	2.05E-01
Entrained Gases						
Ar-41	Ci	1.25E-07	< LLD	< LLD	< LLD	1.25E-07
Xe-135	Ci	< LLD	2.01E-06	< LLD	1.02E-06	3.03E-06
Total for Period		1.25E-07	2.01E-06	< LLD	1.02E-06	3.16E-06

Table 24, Batch Mode Liquid Effluents (HGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 50 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Radionuclide Released	Unit	Quarter 1	Quarter 2	Quarter 3	Quarter 4	Total for year
Tritium						
	0:	<u> </u>	0.505.04	0.045.04	0.405.04	4.005.00
H-3	Ci	5.52E-02	6.56E-01	9.84E-01	2.10E-01	1.90E+00
Fission & Activation Products						
Co-60	Ci	< LLD	< LLD	4.35E-06	< LLD	4.35E-06
Cs-137	Ci	< LLD	< LLD	3.16E-07	< LLD	3.16E-07
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
	Ci					
Total for Period	Ci	< LLD	< LLD	4.67E-06	< LLD	4.67E-06
Entrained Gases						
None	Ci	< LLD				
	Ci					
Total for Period		< LLD				

Table 25, Continuous Mode Liquid Effluents (HGS Unit 1)

Annual Radioactive Effluent Release	YEAR: 2020	Page 51 of 140
Company: PSEG Nuclear LLC	Hope Creek Ge	nerating Stations

Attachment 2, Solid Waste Information

Annual Radioactive Effluent Release	YEAR: 2020	Page 52 of 140
Company: PSEG Nuclear LLC	Hope Creek Ge	nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 53 of 140
Company: PSEG Nuclear LLC	Hope Creek Ge	nerating Stations

1.0 SOLID WASTE SHIPPED OFFSITE FOR BURIAL OR DISPOSAL (NOT IRRADIATED FUEL)

Table 26, Resins, Filters, and Evaporator Bottoms Summary for the Salem Site

Waste		Volu	ume	Curies	% Error	
Class	ft ³		m³	Shipped	(Activity)	
A	7.29E+0	2 2.06E+01		8.10E+00	+/-25%	
В	1.96E+0	2	5.55E+00	4.32E+01	+/-25%	
С	0.00E+0	C	0.00E+00	0.00E+00	+/-25%	
A.II.		<u></u>	0.005.04	F 40F + 04	. / 050/	
All Major Nuclides for	9.25E+02	2	2.62E+01	5.13E+01	+/-25%	
H-3, C-14, Mn-54, Cm-243	Fe-55, Co-58, (li-59, Ni-63, Sr-90, Tc-9	9, Sb-125, I-129, C	s-137, Ce-144,	
Resins, Filters an	d Evaporator E	Bottoms	6			
Waste Class A			Percent Abundance		Nurico	
Nuclide Name						
H-3 C-14			<u>2.86%</u> 1.38%		69E-01	
					8.18E-02	
Fe-55			30.67%		1.81E+00 1.30E+00	
Co-60			21.9%			
Ni-63 Sb-125		29.03%			2E+00	
Cs-137			<u> </u>	6.59E-02 6.31E-01		
US-137			10.00%	0.0	51E-01	
Resins, Filters an	d Evaporator E	Bottoms	6			
Waste Class B	-					
Nuclide Name			Percent Abundance	C	Curies	
Mn-54		1.13%		5.65E-01		
Fe-55			23.31%	1.17E+01		
Co-60			21.05%	1.05E+01		
Ni-63		43.31%	2.17E+01			
Cs-137			7.74%	3.8	38E+00	
Resins, Filters an	d Evaporator E	Bottoms	6			
Waste Class C						
Nuclide Name			Percent Abundance	Curies		
None			N/A		N/A	

Annual Radioactive Effluent Release ReportYEAR: 2020Page 54 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Table 27, I	Dry Active	Waste ((DAW)	Summary	/ for the	Salem Site
-------------	------------	---------	-------	---------	-----------	------------

Waste	Vol	ume	Curies	% Error	
Class	ft ³	m ³	Shipped	(Activity)	
Α	2.28E+04	6.46E+02	7.98E-01	+/-25%	
В	0.00E+00	0.00E+00	0.00E+00	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	2.28E+04	6.46E+02	7.98E-01	+/-25%	
Major Nuclides for	Above Table:				
H-3 C-14 Cr-51	Mn-54 Fe-55 Co-58 (co-60, Ni-63, Zr-95, Nb-9	95 Tc-99 Sb-125 I	-129 Cs-137	
Ce-144			00, 10 00, 00 120, 1	120, 00 101,	
DAW					
Waste Class A					
Nuclide Name		Percent Abundance	C	Curies	
Cr-51		3.2%	2.56E-02		
Mn-54		1.57%	1.25E-02		
Fe-55		15.1%	1.20E-01		
Co-58		25.39%	2.03E-01		
Co-60		31.01%	2.4	47E-01	
Ni-63		8.58%	6.85E-02		
Zr-95		3.83%	3.05E-02		
Nb-95		1.92%	1.53E-02		
Sb-125		2.21%	1.76E-02		
Cs-137		5.12%	4.09E-02		
DAW					
Waste Class B					
Nuclide Name		Percent Abundance	Curies		
None		N/A		N/A	
DAW					
Waste Class C					
Nuclide Name		Percent Abundance	Curies		
None		N/A	N/A		

Annual Radioactive Effluent Release	YEAR: 2020	Page 55 of 140	
Company: PSEG Nuclear LLC Plant: Salem &		Hope Creek Ge	nerating Stations

Waste		Vol	ume	Curies	% Error	
Class	ft ³		m ³	Shipped	(Activity)	
A	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
В	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
С	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
All	All 0.00E+0		0.00E+00	0.00E+00	+/-25%	
Major Nuclides for Above Table:						
Irradiated Compo	nents					
Waste Class A						
Nuclide Name			Percent Abundance		Curies	
None			N/A	N/A		
Irradiated Compo	nents					
Waste Class B						
Nuclide Name		Percent Abundance		Curies		
None		N/A		N/A		
Irradiated Compo	nents					
Waste Class C					o :	
Nuclide Name			Percent Abundance		Curies	
None			N/A		N/A	

Table 28, Irradiated Components Summary for the Salem Site

Annual Radioactive Effluent Release ReportYEAR: 2020Page 56 of 140Company:PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Waste		Curies	% Error			
Class	ft ³		m³	Shipped	(Activity)	
A	0.00E+0	C	0.00E+00	0.00E+00	+/-25%	
В	0.00E+0	C	0.00E+00	0.00E+00	+/-25%	
С	0.00E+0)	0.00E+00	0.00E+00	+/-25%	
All	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
Major Nuclides for Above Table:						
Other Waste						
Waste Class A						
Nuclide Name		Percent Abundance Curies			Curies	
None			N/A		N/A	
Other Waste						
Waste Class B						
Nuclide Name		Percent Abundance		e Curies		
None		N/A N/A			N/A	
Other Waste						
Waste Class C						
Nuclide Name			Percent Abundance	(Curies	
None			N/A		N/A	

Table 29, Other Waste Summary for the Salem Site

Annual Radioactive Effluent Release	YEAR: 2020	Page 57 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Waste	V	olume	Curies	% Error	
Class	ft ³	m ³	Shipped	(Activity)	
Α	2.35E+04	6.66E+02	6.71E+00	+/-25%	
В	1.96E+02	5.55E+00	5.01E+01	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	2.37E+04	6.72E+02	5.68E+01	+/-25%	
Major Nuclides for					
		Co-60, Ni-59, Ni-63, Sr-9	0, Zr-95, Nb-95, Tc-	-99, Sb-125, I-12	
Cs-137, Ce-144, (Cm-243				
Waste Stream; S	um of All Four Categ	jories			
Waste Class A					
Nuclide Name		Percent Abundance	(Curies	
H-3		2.6%	1.	75E-01	
C-14		1.22%	8.	8.18E-02	
Fe-55		28.82%	1.93E+00		
Co-58		3.82%	2.56E-01		
Co-60		22.98%	1.54E+00		
Ni-63		26.6%	1.7	79E+00	
Sb-125		1.24%	8.3	35E-02	
Cs-137		10.01%	6.72E-01		
	um of All Four Categ	jories			
Waste Class B				、 ·	
Nuclide Name		Percent Abundance	Curies		
Mn-54		1.13%	5.65E-01		
Fe-55		23.31%	1.17E+01		
Co-60		21.05%	1.05E+01		
Ni-63		43.31%		I7E+01	
Cs-137		7.74%	3.88E+00		
Waste Stream; S	um of All Four Categ	jories	I		
Waste Class C		-			
Nuclide Name		Percent Abundance		Curies	
None		N/A	N/A		

Table 30, Sum of All Low-Level Waste Shipped from the Salem Site

Annual Radioactive Effluent Release	YEAR: 2020	Page 58 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 31, Resins, Filters, and Evaporator Bottoms Summary for the Hope Creek Site

Waste		Volume	Curies	% Error	
Class	ft ³	m ³	Shipped	(Activity)	
Α	2.12E+03	5.99E+01	1.22E+02	+/-25%	
В	0.00E+00	0.00E+00	0.00E+00	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	2.12E+03	5.99E+01	1.22E+02	+/-25%	
Major Nuclides for	Above Table:	·		·	
Pu-238, Pu-241, A Resins, Filters ar	Fe-55, Co-58, Co-6 m-241, Cm-242, Cr nd Evaporator Bott	·	99, I-129, Cs-134, C	s-137, Ce-144,	
Waste Class A					
Nuclide Name		Percent Abundance	Curies		
C-14		2.3%		31E+00	
Mn-54		13.34%	1.63E+01		
Fe-55		25.4%	3.2	10E+01	
Co-58		2.3%	2.8	31E+00	
Co-60		47.32%	5.7	5.78E+01	
Ni-63		3.25%	3.9	97E+00	
Zn-65		2.95%	3.6	61E+00	
Cs-137		1.53%	1.8	1.86E+00	
	d Evaporator Bott	oms			
Waste Class B				<u>.</u>	
Nuclide Name		Percent Abundance	Curies		
None		N/A		N/A	
Resins, Filters ar	d Evaporator Bott	oms			
Waste Class C Nuclide Name		Percent Abundance		Curies	

Annual Radioactive Effluent Release Report YEAR: 2020 Page 59 of 140 Company: PSEG Nuclear LLC Plant: Salem & Hope Creek Generating Stations

Table 32, Dry Active V	Vaste (DAW) Su	Immary for the Ho	pe Creek Site
------------------------	----------------	-------------------	---------------

Waste	Vo	lume	Curies	% Error	
Class	ft ³	m³	Shipped	(Activity)	
A	1.98E+02	5.61E+00	1.96E+00	+/-25%	
В	0.00E+00	0.00E+00	0.00E+00	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	1.98E+02	5.61E+00	1.96E+00	+/-25%	
Major Nuclides for H-3, C-14, Mn-54,		2n-65, Tc-99, I-129, Cs-1	37		
DAW					
Waste Class A					
Nuclide Name		Percent Abundance	(Curies	
Mn-54		10.22%	2.0	00E-01	
Fe-55		23.79%	4.6	65E-01	
Co-60		61.34%	1.20E+00		
Zn-65		1.59%	3.11E-02		
DAW					
Waste Class B					
Nuclide Name		Percent Abundance	0	Curies	
None		N/A	N/A		
DAW					
Waste Class C					
Nuclide Name		Percent Abundance	(Curies	
None		N/A		N/A	

Annual Radioactive Effluent Release	YEAR: 2020	Page 60 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Waste		Vol	ume	Curies	% Error	
Class	ft ³		m ³	Shipped	(Activity)	
A	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
В	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
С	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
All	0.00E+0	0	0.00E+00	0.00E+00	+/-25%	
Major Nuclides for Above Table: Percent Cutoff 1%						
Irradiated Components						
Waste Class A						
Nuclide Name		Percent Abundance			Curies	
None			N/A		N/A	
Irradiated Compo	nents					
Waste Class B						
Nuclide Name		Percent Abundance			Curies	
None			N/A	N/A		
Irradiated Compo	nents			I		
Waste Class C						
Nuclide Name			Percent Abundance		Curies	
None			N/A		N/A	

Table 33, Irradiated Components Summary for the Hope Creek Site

Annual Radioactive Effluent Release ReportYEAR: 2020Page 61 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Waste		Volu	ime	Curies	5	% Error
Class	ft ³		m ³	Shippe	d	(Activity)
А	1.10E+03		3.11E+01	1.10E-0)5	+/-25%
В	0.00E+00 0.00E+00		0.00E+00	0.00E+0	00	+/-25%
С	0.00E+00		0.00E+00	0.00E+0	00	+/-25%
All	1.10E+03		3.11E+01	1.10E-0)5	+/-25%
Major Nuclides f	or Above Table:				P	ercent Cutoff 1%
Other Waste						
Waste Class A						
Nuclide Name		Percent Abundance			C	Curies
Fe-55			40.99%		4.4	49E-06
Co-60			57.26%	6.28E-06		
Other Waste						
Waste Class B						
Nuclide Name			Percent Abundance		C	Curies
None		N/A			N/A	
Other Waste						
Waste Class C						
Nuclide Name			Percent Abundance		C	Curies
None			N/A			N/A

Table 34, Other Waste Summary for the Hope Creek Site

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 62 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Stations		

Waste		Volume	Curies	% Error	
Class	ft ³	m ³	Shipped	(Activity)	
A	3.41E+03	9.67E+01	1.24E+02	+/-25%	
В	0.00E+00	0.00E+00	0.00E+00	+/-25%	
С	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	3.41E+03	9.67E+01	1.24E+02	+/-25%	
Major Nuclides for		5.07E+01	1.242.02	17-2070	
		60, Ni-63, Zn-65, Sr-90, Tc-	00 120 Cc 134 C	a 137 Co 111	
	Am-241, Cm-242, C		.99, 1-129, 05-134, 0	5-157, 00-144,	
		•			
	um of All Four Ca	tegories			
Waste Class A					
Nuclide Name				Curies	
C-14		2.27%		2.81E+00	
Mn-54		13.29%		1.65E+01	
Fe-55		25.38%	3.1	3.15E+01	
Co-58		2.27%	2.8	32E+00	
Co-60		47.54%	5.90E+01		
Ni-63		3.2%	3.9	3.97E+00	
Zn-65		2.93%	3.64E+00		
Cs-137		1.5% 1.87E+00		37E+00	
Wasto Stroam: S	um of All Four Cat	togorios			
Waste Class B		logonea			
Nuclide Name		Percent Abundance	ercent Abundance		
None		N/A		Curies N/A	
	um of All Four Ca	tegories			
Waste Class C					
Nuclide Name		Percent Abundance	(Curies	
Nuclide Name					

Table 35, Sum of All Low-Level Waste Shipped from the Hope Creek Site

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 63 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Station		nerating Stations

2.0 SOLID WASTE DISPOSITION

Table 36, Solid Waste Shipped from the Salem Site

Number of Shipments	Mode of Transportation	Destination	
7	Hittman Transport Services, Inc.	Barnwell Processing Facility Energy Solutions, LLC Barnwell Process Facility	
10	Interstate Ventures	UniTech Processing Facility 2323 Zirconium Road	

Table 37, Solid Waste Shipped from the Hope Creek Site

Number of Shipments	Mode of Transportation	Destination
12	Hittman Transport Services, Inc.	Energy Solutions BDF
6	Hittman Transport Services, Inc.	Energy Solutions LLC
2	Hittman Transport Services, Inc.	Energy Solutions GRF

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 64 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Station		nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 65 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Stations		

Attachment 3, Meteorological Data

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 66 of 140
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Station		nerating Stations

Page Intentionally Left Blank

1.0 Meteorological Data Summary

1.1 Joint Frequency Distributions

- 1. Period of Record: 01/01/2020 12/31/2020
- 2. Elevation:
 - a. Tower height (91 m)
 - b. Wind Level (10 m)

3. Variable

- a. Delta T: (46-10 m)
- b. Total period of calm hours: 0.012%
- c. Percentage of missing data: 4.2%

January – December 2020

Sensor	Data Recovery (%)
33 ft Wind Speed/Direction	99.9
150 ft Wind Speed/Direction	99.9
300 ft Wind Speed/Direction	99.5
Backup Wind Speed/Direction	96.7
300 ft Temp	99.9
33 ft Temp	99.9
33 ft Dew Point**	25.0
150 ft – 33 ft Delta Temp	95.9
300 ft – 33 ft Delta Temp	99.8
Precipitation	99.9

**Dew Point was returned to service 09/15/20

Annual Radioactive Effluent Release	YEAR: 2020	Page 68 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

Table 38, Percentage of Each Wind Speed/Direction

		WIND SPEED GROUPS (m/sec)											
WIND DIRECT	ION	< 0.5	0.5 - 1.0	1.1 - 1.5	1.6 - 2.0	2.1 - 3.0	3.1 - 4.0	4.1 - 5.0	5.1 - 6.0	6.1 - 8.0	8.1 - 10.0	> 10.0	Total
(Degrees)	Sect.												
348.75 - 11.25	Ν	0.000	0.131	0.178	0.428	1.425	1.152	1.354	0.962	0.606	0.083	0.000	6.32
11.25 - 33.75	NNE	0.012	0.190	0.356	0.594	1.687	1.461	0.998	0.499	0.202	0.000	0.000	6.00
33.75 - 56.25	NE	0.000	0.166	0.677	0.855	1.710	1.140	0.630	0.249	0.202	0.036	0.000	5.67
56.25 - 78.75	ENE	0.000	0.202	0.618	0.677	1.271	0.618	0.285	0.154	0.214	0.000	0.000	4.04
78.75 - 101.25	Е	0.000	0.154	0.463	0.736	0.962	0.594	0.238	0.107	0.024	0.000	0.012	3.29
101.25 - 123.75	ESE	0.000	0.143	0.249	0.499	1.176	0.594	0.333	0.107	0.143	0.024	0.000	3.27
123.75 - 146.25	SE	0.000	0.131	0.154	0.511	1.805	2.233	1.948	1.734	1.580	0.273	0.238	10.61
146.25 - 168.75	SSE	0.000	0.083	0.321	0.535	1.520	1.532	1.176	0.891	0.736	0.178	0.083	7.06
168.75 - 191.25	S	0.000	0.154	0.321	0.368	1.105	1.164	1.069	0.986	0.653	0.154	0.095	6.07
191.25 - 213.75	SSW	0.000	0.143	0.333	0.535	1.722	1.413	0.950	0.570	0.261	0.036	0.024	5.99
213.75 - 236.25	SW	0.000	0.095	0.321	0.594	2.043	1.330	0.713	0.392	0.238	0.024	0.000	5.75
236.25 - 258.75	WSW	0.000	0.119	0.238	0.546	1.592	1.592	0.938	0.594	0.297	0.048	0.000	5.96
258.75 - 281.25	W	0.000	0.143	0.273	0.475	1.140	1.033	0.998	0.772	1.033	0.214	0.071	6.15
281.25 - 303.75	WNW	0.000	0.119	0.297	0.404	1.010	1.045	0.701	0.641	0.689	0.451	0.143	5.50
303.75 - 326.25	NW	0.000	0.071	0.333	0.570	2.055	1.924	1.402	1.318	1.473	0.748	0.071	9.97
326.25 - 348.75	NNW	0.000	0.119	0.309	0.380	1.437	1.699	1.342	1.140	1.413	0.523	0.012	8.37

Total 100.00

MISSING HOURS: 365 JOINT DATA RECOVERY: 95.8%

Annual Radioactive Effluent Release	YEAR: 2020	Page 69 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

Stability class

Stability Condition	Pasquill Categories	Percentage
Extremely Unstable	А	20.23
Moderately Stable	В	4.11
Slightly Unstable	С	4.89
Neutral	D	29.45
Slightly Stable	E	26.70
Moderately Stable	F	9.19
Extremely Stable	G	5.43

Table 39, Classification of Atmospheric Stability

Annual Radioactive Effluent Release	YEAR: 2020	Page 70 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

1.2 X/Q and D/Q Values for Each Site

Г

Table 40, 2020 Salem Ground Level Release Dispersion (X/Q) and Deposition Factors (D/Q)

٦

SPECIFIC POINTS OF INTEREST							
Location	Direction From Site	Distance (mi)	X/Q (Sec/M ³) No Decay Undepleted	X/Q (Sec/m ³) No Decay Undepleted	X/Q (Sec/m ³) No Decay Depleted	D/Q (1/m²)	
SITE BOUNDARY	S	0.17	1.10E-05	1.10E-05	1.10E-05	6.70E-08	
SITE BOUNDARY	SSW	0.13	2.20E-05	2.20E-05	2.10E-05	9.30E-08	
SITE BOUNDARY	SW	0.11	2.70E-05	2.70E-05	2.60E-05	1.00E-07	
SITE BOUNDARY	WSW	0.11	2.00E-05	2.00E-05	1.90E-05	7.30E-08	
SITE BOUNDARY	W	0.12	1.80E-05	1.80E-05	1.70E-05	5.40E-08	
SITE BOUNDARY	WNW	0.16	1.10E-05	1.10E-05	1.00E-05	3.80E-08	
SITE BOUNDARY	NW	0.28	6.30E-06	6.30E-06	6.00E-06	5.10E-08	
SITE BOUNDARY	NNW	0.68	1.10E-06	1.10E-06	9.80E-07	8.50E-09	
SITE BOUNDARY	Ν	0.83	7.20E-07	7.20E-07	6.40E-07	5.10E-09	
SITE BOUNDARY	NNE	0.89	7.30E-07	7.30E-07	6.50E-07	4.50E-09	
SITE BOUNDARY	NE	1.07	5.30E-07	5.30E-07	4.60E-07	3.20E-09	
SITE BOUNDARY	ENE	0.88	6.50E-07	6.50E-07	5.80E-07	4.60E-09	
SITE BOUNDARY	E	0.89	5.90E-07	5.90E-07	5.20E-07	4.60E-09	
SITE BOUNDARY	ESE	0.24	4.10E-06	4.10E-06	3.90E-06	3.30E-08	
SITE BOUNDARY	SE	0.15	1.80E-05	1.80E-05	1.70E-05	1.20E-07	
SITE BOUNDARY	SSE	0.15	1.50E-05	1.50E-05	1.40E-05	1.00E-07	
NEAREST RES	S	5.22	5.70E-08	5.70E-08	4.20E-08	2.10E-10	
NEAREST RES	SSW	3.85	1.00E-07	1.00E-07	8.10E-08	3.50E-10	
NEAREST RES	SW	4.29	8.90E-08	8.90E-08	6.80E-08	2.70E-10	
NEAREST RES	WSW	4.41	6.20E-08	6.20E-08	4.70E-08	1.90E-10	
NEAREST RES	W	3.98	7.20E-08	7.20E-08	5.50E-08	1.80E-10	
NEAREST RES	WNW	3.42	8.20E-08	8.20E-08	6.40E-08	2.40E-10	
NEAREST RES	NW	3.67	1.30E-07	1.30E-07	1.00E-07	6.80E-10	
NEAREST RES	NNW	4.23	7.90E-08	7.90E-08	6.00E-08	3.50E-10	
NEAREST RES	Ν	5.65	4.70E-08	4.70E-08	3.40E-08	1.80E-10	
NEAREST RES	NNE	4.97	6.30E-08	6.30E-08	4.70E-08	2.20E-10	
NEAREST RES	NE	3.85	8.50E-08	8.50E-08	6.60E-08	3.40E-10	
NEAREST RES	ENE	3.85	7.90E-08	7.90E-08	6.10E-08	3.50E-10	
NEAREST RES	E	5.28	4.70E-08	4.70E-08	3.50E-08	2.00E-10	
NEAREST RES	ESE	5.84	3.70E-08	3.70E-08	2.70E-08	1.50E-10	
NEAREST RES	SE	9.44	3.40E-08	3.40E-08	2.30E-08	1.20E-10	
NEAREST RES	SSE	9.44	2.70E-08	2.70E-08	1.90E-08	1.00E-10	

Annual Radioactive Effluent Release	YEAR: 2020	Page 71 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

and Deposition Factors (D/Q) (continued)							
SPECIFIC POINTS OF INTEREST							
	Direction	Distance	X/Q (Sec/M ³)	X/Q (Sec/m ³)	X/Q (Sec/m ³)	D/Q	
Location	From Site	(mi)	No Decay	No Decay	No Decay	(1/m ²)	
		· · /	Undepleted	Undepleted	Depleted	. ,	
GARDENS	NNW	0.57	1.40E-06	1.40E-06	1.30E-06	1.10E-08	
GARDENS	SE	0.18	1.30E-05	1.30E-05	1.20E-05	9.40E-08	
GARDENS	N	0.57	1.30E-06	1.30E-06	1.20E-06	9.60E-09	
GARDENS	NW	0.58	1.90E-06	1.90E-06	1.70E-06	1.60E-08	
GARDENS	SSW	3.9	1.00E-07	1.00E-07	7.90E-08	3.40E-10	
GARDENS	NE	4.9	6.10E-08	6.10E-08	4.50E-08	2.20E-10	
GARDENS	ENE	5	5.50E-08	5.50E-08	4.10E-08	2.20E-10	
GARDENS	NE	5	5.90E-08	5.90E-08	4.40E-08	2.10E-10	
GARDENS	E	6	3.90E-08	3.90E-08	2.90E-08	1.60E-10	
GARDENS	ENE	6	4.30E-08	4.30E-08	3.10E-08	1.60E-10	
GARDENS	ESE	6.3	3.30E-08	3.30E-08	2.40E-08	1.30E-10	
GARDENS	NW	7	5.60E-08	5.60E-08	4.00E-08	2.10E-10	
GARDENS	NNE	7.5	3.50E-08	3.50E-08	2.50E-08	1.10E-10	
GARDENS	NW	8.3	4.50E-08	4.50E-08	3.10E-08	1.60E-10	
GARDENS	NE	9.3	2.50E-08	2.50E-08	1.70E-08	7.30E-11	
GARDENS	N	10.9	1.90E-08	1.90E-08	1.30E-08	5.90E-11	
GARDENS	NNE	13.2	1.60E-08	1.60E-08	1.00E-08	4.20E-11	
GARDENS	WNW	12.1	1.60E-08	1.60E-08	1.00E-08	2.70E-11	
GARDENS	NE	23.3	7.00E-09	7.00E-09	3.90E-09	1.50E-11	
GARDENS	SW	4.6	8.10E-08	8.10E-08	6.10E-08	2.40E-10	
DAIRY & CATTL	W	4.9	5.50E-08	5.50E-08	4.10E-08	1.30E-10	
DAIRY & CATTL	WNW	8.5	2.50E-08	2.50E-08	1.80E-08	4.80E-11	
DAIRY & CATTL	NE	11.3	1.90E-08	1.90E-08	1.20E-08	5.30E-11	
DAIRY & CATTL	N	11.7	1.80E-08	1.80E-08	1.10E-08	5.30E-11	
DAIRY & CATTL	NNE	11.8	1.90E-08	1.90E-08	1.20E-08	5.10E-11	
DAIRY & CATTL	NE	4.2	7.50E-08	7.50E-08	5.70E-08	2.90E-10	
DAIRY & CATTL	NE	5.8	4.80E-08	4.80E-08	3.50E-08	1.60E-10	
DAIRY & CATTL	SSW	8.3	3.70E-08	3.70E-08	2.60E-08	9.20E-11	
DAIRY & CATTL	N	11.5	1.80E-08	1.80E-08	1.20E-08	5.40E-11	
DAIRY & CATTL	NE	17.7	1.00E-08	1.00E-08	6.10E-09	2.50E-11	

Table 31, 2020 Salem Ground Level Release Dispersion (X/Q) and Deposition Factors (D/Q) (continued)

Annual Radioactive Effluent Release	YEAR: 2020	Page 72 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

 Table 41, 2020 Hope Creel Ground Level Release Dispersion (X/Q)

 and Deposition Factors (D/Q)

SPECIFIC POINTS OF INTEREST							
Location	Direction From Site	Distance (mi)	X/Q (Sec/M ³) No Decay Undepleted	X/Q (Sec/m ³) No Decay Undepleted	X/Q (Sec/m³) No Decay Depleted	D/Q (1/m²)	
SITE BOUNDARY	S	0.25	5.20E-06	5.20E-06	4.90E-06	3.60E-08	
SITE BOUNDARY	SSW	0.19	1.10E-05	1.10E-05	1.00E-05	5.20E-08	
SITE BOUNDARY	SW	0.17	1.30E-05	1.30E-05	1.20E-05	5.80E-08	
SITE BOUNDARY	WSW	0.17	9.70E-06	9.70E-06	9.30E-06	4.10E-08	
SITE BOUNDARY	W	0.18	8.70E-06	8.70E-06	8.40E-06	3.10E-08	
SITE BOUNDARY	WNW	0.22	5.90E-06	5.90E-06	5.60E-06	2.40E-08	
SITE BOUNDARY	NW	0.31	5.50E-06	5.50E-06	5.10E-06	4.50E-08	
SITE BOUNDARY	NNW	0.55	1.50E-06	1.50E-06	1.40E-06	1.20E-08	
SITE BOUNDARY	N	0.5	1.60E-06	1.60E-06	1.50E-06	1.20E-08	
SITE BOUNDARY	NNE	0.63	1.20E-06	1.20E-06	1.10E-06	8.00E-09	
SITE BOUNDARY	NE	0.74	8.90E-07	8.90E-07	7.90E-07	5.90E-09	
SITE BOUNDARY	ENE	0.94	5.90E-07	5.90E-07	5.20E-07	4.10E-09	
SITE BOUNDARY	E	0.94	5.50E-07	5.50E-07	4.80E-07	4.20E-09	
SITE BOUNDARY	ESE	0.75	6.80E-07	6.80E-07	6.10E-07	5.60E-09	
SITE BOUNDARY	SE	0.47	2.40E-06	2.40E-06	2.20E-06	2.10E-08	
SITE BOUNDARY	SSE	0.42	2.40E-06	2.40E-06	2.20E-06	2.20E-08	
NEAREST RES	S	5.22	5.60E-08	5.60E-08	4.20E-08	2.10E-10	
NEAREST RES	SSW	3.85	1.00E-07	1.00E-07	8.00E-08	3.50E-10	
NEAREST RES	SW	4.29	8.90E-08	8.90E-08	6.80E-08	2.70E-10	
NEAREST RES	WSW	4.41	6.20E-08	6.20E-08	4.70E-08	1.90E-10	
NEAREST RES	W	3.98	7.10E-08	7.10E-08	5.50E-08	1.80E-10	
NEAREST RES	WNW	3.42	8.20E-08	8.20E-08	6.40E-08	2.40E-10	
NEAREST RES	NW	3.67	1.30E-07	1.30E-07	1.00E-07	6.80E-10	
NEAREST RES	NNW	4.23	7.90E-08	7.90E-08	6.00E-08	3.50E-10	
NEAREST RES	N	5.65	4.70E-08	4.70E-08	3.40E-08	1.80E-10	
NEAREST RES	NNE	4.97	6.30E-08	6.30E-08	4.70E-08	2.20E-10	
NEAREST RES	NE	3.85	8.50E-08	8.50E-08	6.60E-08	3.40E-10	
NEAREST RES	ENE	3.85	7.90E-08	7.90E-08	6.10E-08	3.50E-10	
NEAREST RES	E	5.28	4.70E-08	4.70E-08	3.50E-08	2.00E-10	
NEAREST RES	ESE	5.84	3.60E-08	3.60E-08	2.70E-08	1.50E-10	
NEAREST RES	SE	9.44	3.40E-08	3.40E-08	2.30E-08	1.20E-10	
NEAREST RES	SSE	9.44	2.70E-08	2.70E-08	1.90E-08	1.00E-10	

Annual Radioactive Effluent Release	YEAR: 2020	Page 73 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

Table 32, 2020 Hope Creek Ground Level Release Dispersion (X/Q)
and Deposition Factors (D/Q) (continued)

and Deposition Factors (D/Q) (continued)										
	SPECIFIC POINTS OF INTEREST									
Location	Direction From Site	Distance (mi)	X/Q (Sec/M ³) No Decay Undepleted	X/Q (Sec/m ³) No Decay Undepleted	X/Q (Sec/m ³) No Decay Depleted	D/Q (1/m²)				
GARDENS	NNW	0.57	1.40E-06	1.40E-06	1.30E-06	1.10E-08				
GARDENS	SE	0.18	1.30E-05	1.30E-05	1.20E-05	9.40E-08				
GARDENS	N	0.57	1.30E-06	1.30E-06	1.20E-06	9.60E-09				
GARDENS	NW	0.58	1.90E-06	1.90E-06	1.70E-06	1.60E-08				
GARDENS	SSW	3.9	1.00E-07	1.00E-07	7.90E-08	3.40E-10				
GARDENS	NE	4.9	6.00E-08	6.00E-08	4.50E-08	2.20E-10				
GARDENS	ENE	5	5.50E-08	5.50E-08	4.10E-08	2.20E-10				
GARDENS	NE	5	5.90E-08	5.90E-08	4.40E-08	2.10E-10				
GARDENS	E	6	3.90E-08	3.90E-08	2.90E-08	1.60E-10				
GARDENS	ENE	6	4.20E-08	4.20E-08	3.10E-08	1.60E-10				
GARDENS	ESE	6.3	3.30E-08	3.30E-08	2.40E-08	1.30E-10				
GARDENS	NW	7	5.60E-08	5.60E-08	4.00E-08	2.10E-10				
GARDENS	NNE	7.5	3.50E-08	3.50E-08	2.50E-08	1.10E-10				
GARDENS	NW	8.3	4.50E-08	4.50E-08	3.10E-08	1.60E-10				
GARDENS	NE	9.3	2.50E-08	2.50E-08	1.70E-08	7.30E-11				
GARDENS	N	10.9	1.90E-08	1.90E-08	1.30E-08	5.90E-11				
GARDENS	NNE	13.2	1.60E-08	1.60E-08	1.00E-08	4.20E-11				
GARDENS	WNW	12.1	1.60E-08	1.60E-08	1.00E-08	2.70E-11				
GARDENS	NE	23.3	7.00E-09	7.00E-09	3.90E-09	1.50E-11				
GARDENS	SW	4.6	8.10E-08	8.10E-08	6.10E-08	2.40E-10				
DAIRY & CATTL	W	4.9	5.40E-08	5.40E-08	4.10E-08	1.30E-10				
DAIRY & CATTL	WNW	8.5	2.50E-08	2.50E-08	1.70E-08	4.80E-11				
DAIRY & CATTL	NE	11.3	1.90E-08	1.90E-08	1.20E-08	5.30E-11				
DAIRY & CATTL	N	11.7	1.80E-08	1.80E-08	1.10E-08	5.30E-11				
DAIRY & CATTL	NNE	11.8	1.90E-08	1.90E-08	1.20E-08	5.10E-11				
DAIRY & CATTL	NE	4.2	7.50E-08	7.50E-08	5.70E-08	2.90E-10				
DAIRY & CATTL	NE	5.8	4.80E-08	4.80E-08	3.50E-08	1.60E-10				
DAIRY & CATTL	SSW	8.3	3.70E-08	3.70E-08	2.60E-08	9.20E-11				
DAIRY & CATTL	N	11.5	1.80E-08	1.80E-08	1.20E-08	5.40E-11				
DAIRY & CATTL	NE	17.7	1.00E-08	1.00E-08	6.10E-09	2.50E-11				

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 74 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

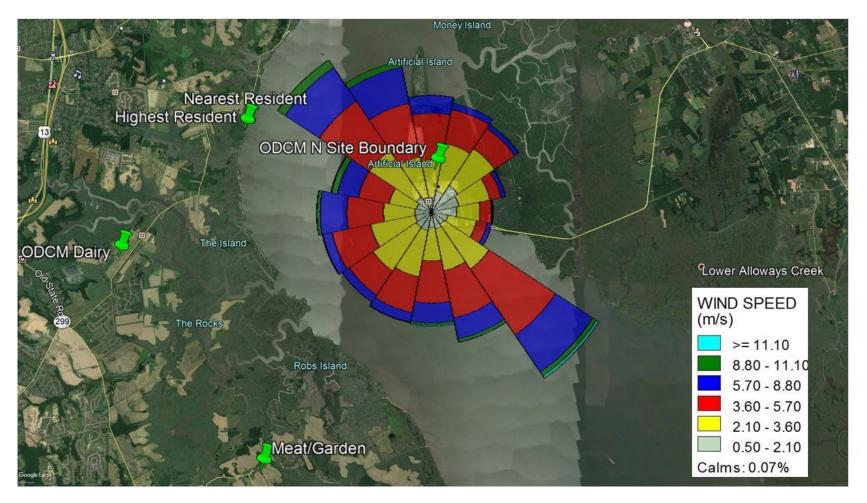


Figure 5, Locations of Dose Calculation Receptors with 2020 Wind Rose Overlay

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 75 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Attachment 4, Radiological Effluent Trends

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 76 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 77 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

1.0 The following trend graphs displays the total curies of liquid and gaseous effluents released for SGS and HCGS from 2005 through 2020.

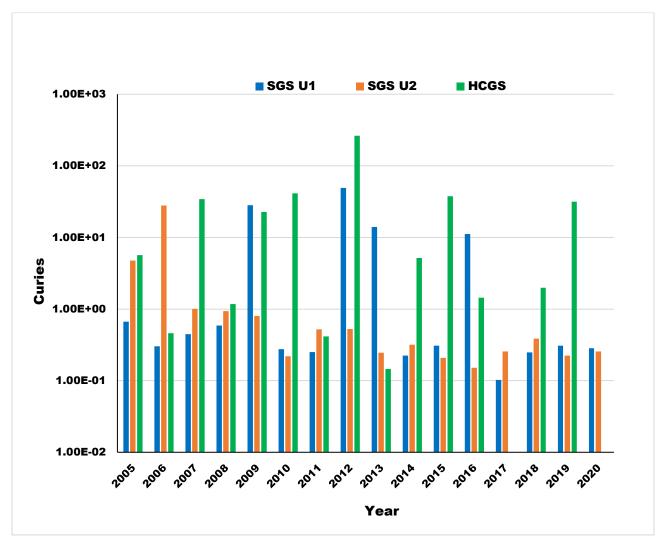
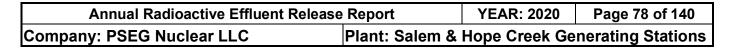



Figure 6, Fission and Activation Gases Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 - 2020

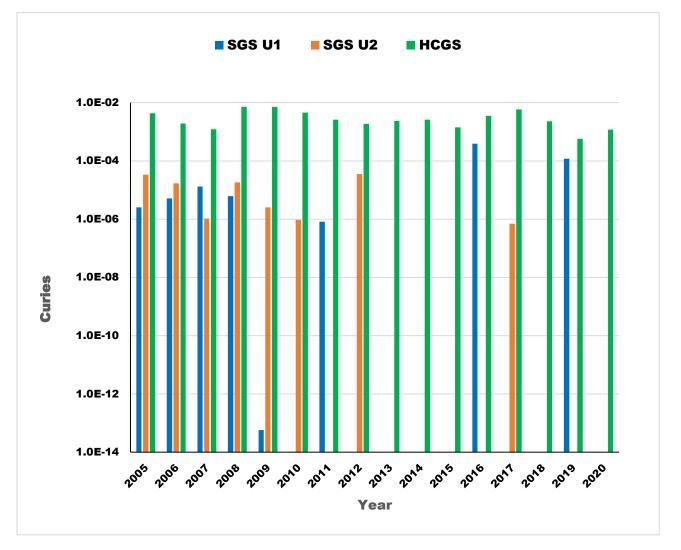


Figure 7, Iodines Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 – 2020

Annual Radioactive Effluent Release	YEAR: 2020	Page 79 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

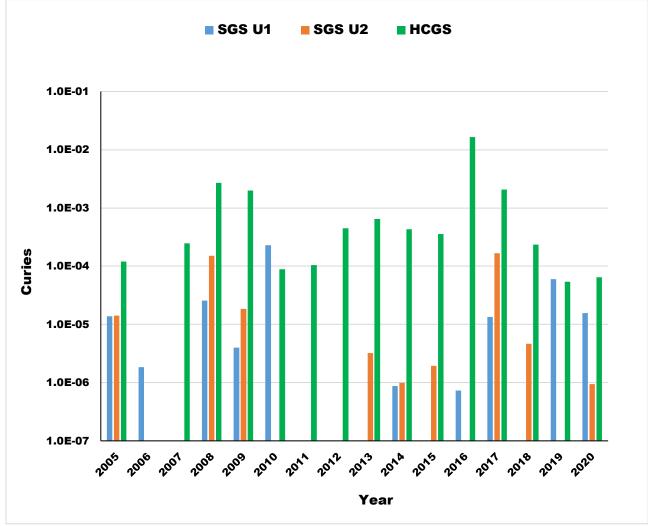
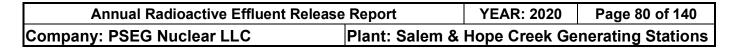



Figure 8, Particulates Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 – 2020

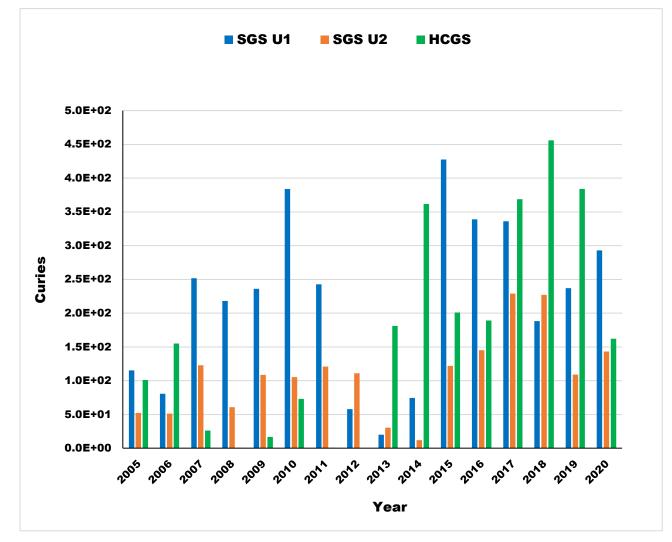
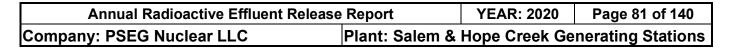



Figure 9, Tritium Released in Gaseous Effluents from Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 – 2020

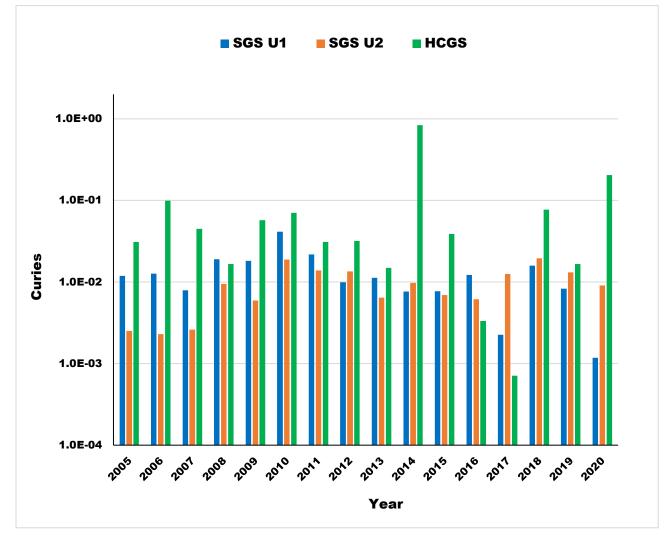


Figure 10, Fission and Activation Products Released in Liquid Effluents, Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 – 2020

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 82 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

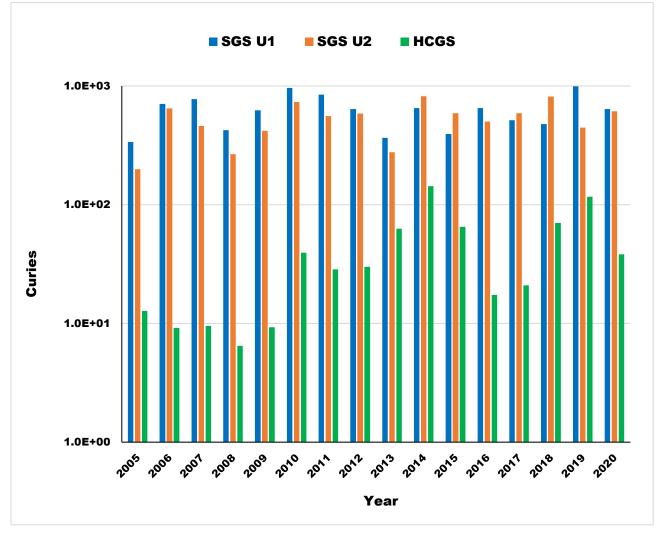


Figure 11, Tritium Released in Liquid Effluents, Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1, 2005 – 2020

Annual Radioactive Effluent Release	YEAR: 2020	Page 83 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Attachment 5, Doses to Highest Dose Potential Receptors using 2020 Annual Average Meteorological Data and the NRC Code GASPAR

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 84 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 85 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

1.0 Doses for the following receptors were compiled from gaseous releases from Salem Unit 1, Salem Unit 2 and Hope Creek Unit 1.

Table 42, Highest Potential Dose Receptors, Distances from Salem and Hope Creek, Annual AverageX/Q, and D/Q Values to Calculate Dose using the NRC Code GASPAR, 2020

Decenter	Sector	Distance in Miles from	Distance in	Occurrency	Sa	lem	Норе	Creek	
Receptor	Sector			Hope Creek	Occupancy	X/Q	D/Q	X/Q	D/Q
Site Boundary	Ν	0.83	0.50	1	7.20E-07	5.10E-09	1.60E-06	1.20E-08	
ODCM Dairy	W	4.90	4.90	1	5.50E-08	1.30E-10	5.40E-08	1.30E-10	
Nearest Resident	WNW	3.45	3.42	1	8.20E-08	2.40E-10	8.20E-08	2.40E-10	
Highest Resident	NW	3.67	3.70	1	1.30E-07	6.80E-10	1.40E-07	5.70E-10	
ODCM Resident- Garden-Meat	SW	4.60	4.60	1	8.10E-08	2.40E-10	8.10E-08	2.40E-10	
Onsite Worker	SW	0.11	0.17	0.25	2.70E-05	1.00E-07	1.30E-05	5.80E-08	
Emergency Personnel (National Guard)	E	0.89	0.94	0.25	5.90E-07	4.60E-09	5.50E-07	4.20E-09	
Wind Turbine Laydown Area	NNE	0.89	0.63	0.25	7.3E-07	4.50E-09	1.20E-06	8.00E-09	

Annual Radioactive Effluent Release	YEAR: 2020	Page 86 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 43, Calculated Doses at Site Boundary for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the
NRC Code GASPAR, 2020

Receptor – Site Boundary – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN	
PLUME	2.18E-05	2.18E-05	2.18E-05	2.18E-05	2.18E-05	2.19E-05	2.18E-05	3.65E-05	
GROUND	9.64E-07	9.64E-07	9.64E-07	9.64E-07	9.64E-07	9.64E-07	9.64E-07	1.13E-06	
INHAL									
ADULT	5.44E-03	5.44E-03	3.38E-03	5.44E-03	5.44E-03	5.44E-03	5.44E-03	4.80E-03	
TEEN	5.75E-03	5.75E-03	4.84E-03	5.75E-03	5.75E-03	5.75E-03	5.76E-03	4.85E-03	
CHILD	5.54E-03	5.54E-03	6.69E-03	5.54E-03	5.54E-03	5.54E-03	5.54E-03	4.28E-03	
INFANT	3.45E-03	3.45E-03	4.93E-03	3.45E-03	3.45E-03	3.45E-03	3.45E-03	2.46E-03	
TOTAL									
ADULT	5.46E-03	5.46E-03	3.40E-03	5.46E-03	5.46E-03	5.46E-03	5.46E-03	4.84E-03	
TEEN	5.77E-03	5.77E-03	4.86E-03	5.77E-03	5.77E-03	5.77E-03	5.78E-03	4.89E-03	
CHILD	5.56E-03	5.56E-03	6.71E-03	5.56E-03	5.56E-03	5.56E-03	5.56E-03	4.32E-03	
INFANT	3.47E-03	3.47E-03	4.95E-03	3.47E-03	3.47E-03	3.47E-03	3.47E-03	2.50E-03	
		R	eceptor – Site	Boundary –	Salem Unit 2	2			
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN	
PLUME	3.12E-05	3.12E-05	3.12E-05	3.12E-05	3.12E-05	3.12E-05	3.12E-05	5.03E-05	
GROUND	5.78E-08	5.78E-08	5.78E-08	5.78E-08	5.78E-08	5.78E-08	5.78E-08	6.78E-08	
INHAL									
ADULT	4.28E-03	3.15E-03	3.15E-03	3.15E-03	3.15E-03	3.15E-03	3.15E-03	2.34E-03	
TEEN	6.12E-03	3.51E-03	3.51E-03	3.51E-03	3.51E-03	3.51E-03	3.51E-03	2.37E-03	
CHILD	8.45E-03	3.67E-03	3.67E-03	3.67E-03	3.67E-03	3.67E-03	3.67E-03	2.09E-03	
INFANT	6.23E-03	2.45E-03	2.45E-03	2.45E-03	2.45E-03	2.45E-03	2.45E-03	1.20E-03	
TOTAL									
ADULT	4.31E-03	3.18E-03	3.18E-03	3.18E-03	3.18E-03	3.18E-03	3.18E-03	2.39E-03	
TEEN	6.15E-03	3.54E-03	3.54E-03	3.54E-03	3.54E-03	3.54E-03	3.54E-03	2.42E-03	
CHILD	8.48E-03	3.70E-03	3.70E-03	3.70E-03	3.70E-03	3.70E-03	3.70E-03	2.14E-03	
INFANT	6.26E-03	2.48E-03	2.48E-03	2.48E-03	2.48E-03	2.48E-03	2.48E-03	1.25E-03	
		Rece	eptor – Site Bo	oundary – Ho	ope Creek Ur	nit 1			
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN	
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
GROUND	4.12E-04	4.12E-04	4.12E-04	4.12E-04	4.12E-04	4.12E-04	4.12E-04	4.82E-04	
INHAL									
ADULT	1.67E-02	8.97E-03	8.96E-03	8.97E-03	9.14E-03	8.97E-03	8.96E-03	5.83E-03	
TEEN	2.39E-02	1.04E-02	1.04E-02	1.04E-02	1.06E-02	1.04E-02	1.04E-02	5.88E-03	
CHILD	3.30E-02	1.14E-02	1.14E-02	1.14E-02	1.17E-02	1.14E-02	1.14E-02	5.19E-03	
INFANT	2.43E-02	7.87E-03	7.87E-03	7.87E-03	8.13E-03	7.87E-03	7.87E-03	2.99E-03	
TOTAL									
ADULT	1.71E-02	9.38E-03	9.37E-03	9.38E-03	9.55E-03	9.38E-03	9.37E-03	6.31E-03	
TEEN	2.43E-02	1.08E-02	1.08E-02	1.08E-02	1.10E-02	1.08E-02	1.08E-02	6.36E-03	
CHILD	3.34E-02	1.18E-02	1.18E-02	1.18E-02	1.21E-02	1.18E-02	1.18E-02	5.67E-03	
INFANT	2.47E-02	8.28E-03	8.28E-03	8.28E-03	8.54E-03	8.28E-03	8.28E-03	3.47E-03	

Annual Radioactive Effluent Release	YEAR: 2020	Page 87 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 43, Calculated Doses at Site Boundary for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the
NRC Code GASPAR, 2020 (continue)

Receptor – Site Boundary – Total of All Units										
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	5.30E-05	5.30E-05	5.30E-05	5.30E-05	5.30E-05	5.31E-05	5.30E-05	8.68E-05		
GROUND	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.83E-04		
INHAL										
ADULT	2.64E-02	1.76E-02	1.55E-02	1.76E-02	1.77E-02	1.76E-02	1.76E-02	1.30E-02		
TEEN	3.58E-02	1.97E-02	1.88E-02	1.97E-02	1.99E-02	1.97E-02	1.97E-02	1.31E-02		
CHILD	4.70E-02	2.06E-02	2.18E-02	2.06E-02	2.09E-02	2.06E-02	2.06E-02	1.16E-02		
INFANT	3.40E-02	1.38E-02	1.53E-02	1.38E-02	1.40E-02	1.38E-02	1.38E-02	6.65E-03		
TOTAL										
ADULT	2.69E-02	1.80E-02	1.60E-02	1.80E-02	1.82E-02	1.80E-02	1.80E-02	1.35E-02		
TEEN	3.62E-02	2.01E-02	1.92E-02	2.01E-02	2.03E-02	2.01E-02	2.01E-02	1.37E-02		
CHILD	4.75E-02	2.11E-02	2.22E-02	2.11E-02	2.14E-02	2.11E-02	2.11E-02	1.21E-02		
INFANT	3.44E-02	1.42E-02	1.57E-02	1.42E-02	1.45E-02	1.42E-02	1.42E-02	7.22E-03		

Annual Radioactive Effluent Release ReportYEAR: 2020Page 88 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Table 44, Calculated Doses at ODCM Dairy Farm for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

	Receptor – ODCM Dairy Farm – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	1.67E-06	1.67E-06	1.67E-06	1.67E-06	1.67E-06	1.67E-06	1.67E-06	2.79E-06		
GROUND	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.46E-08	2.88E-08		
COW MILK										
ADULT	1.27E-03	1.27E-03	5.21E-03	1.27E-03	1.27E-03	1.27E-03	1.27E-03	1.27E-03		
TEEN	2.21E-03	2.21E-03	9.61E-03	2.21E-03	2.21E-03	2.21E-03	2.21E-03	2.21E-03		
CHILD	5.19E-03	5.19E-03	2.36E-02	5.19E-03	5.19E-03	5.19E-03	5.19E-03	5.19E-03		
INFANT	1.06E-02	1.06E-02	4.63E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02		
INHAL										
ADULT	4.15E-04	4.15E-04	2.58E-04	4.15E-04	4.15E-04	4.15E-04	4.16E-04	3.67E-04		
TEEN	4.40E-04	4.40E-04	3.70E-04	4.40E-04	4.40E-04	4.40E-04	4.40E-04	3.70E-04		
CHILD	4.23E-04	4.23E-04	5.11E-04	4.23E-04	4.23E-04	4.23E-04	4.23E-04	3.27E-04		
INFANT	2.64E-04	2.64E-04	3.77E-04	2.64E-04	2.64E-04	2.64E-04	2.64E-04	1.88E-04		
TOTAL										
ADULT	1.69E-03	1.69E-03	5.47E-03	1.69E-03	1.69E-03	1.69E-03	1.69E-03	1.64E-03		
TEEN	2.65E-03	2.65E-03	9.98E-03	2.65E-03	2.65E-03	2.65E-03	2.65E-03	2.58E-03		
CHILD	5.61E-03	5.61E-03	2.41E-02	5.61E-03	5.61E-03	5.61E-03	5.61E-03	5.52E-03		
INFANT	1.09E-02	1.09E-02	4.67E-02	1.09E-02	1.09E-02	1.09E-02	1.09E-02	1.08E-02		
		Recep	tor –ODCM	Dairy Farn	n – Salem I					
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.38E-06	2.39E-06	2.38E-06	3.85E-06		
GROUND	1.47E-09	1.47E-09	1.47E-09	1.47E-09	1.47E-09	1.47E-09	1.47E-09	1.73E-09		
COW MILK										
ADULT	6.58E-03	1.43E-03	1.43E-03	1.43E-03	1.43E-03	1.43E-03	1.43E-03	1.43E-03		
TEEN	1.21E-02	2.57E-03	2.57E-03	2.57E-03	2.57E-03	2.57E-03	2.57E-03	2.57E-03		
CHILD	2.99E-02	6.20E-03	6.20E-03	6.20E-03	6.20E-03	6.20E-03	6.20E-03	6.20E-03		
INFANT	5.85E-02	1.28E-02	1.28E-02	1.28E-02	1.28E-02	1.28E-02	1.28E-02	1.28E-02		
INHAL										
ADULT	3.27E-04	2.40E-04	2.40E-04	2.40E-04	2.40E-04	2.40E-04	2.40E-04	1.79E-04		
TEEN	4.68E-04	2.68E-04	2.68E-04	2.68E-04	2.68E-04	2.68E-04	2.68E-04	1.81E-04		
CHILD	6.45E-04	2.81E-04	2.81E-04	2.81E-04	2.81E-04	2.81E-04	2.81E-04	1.60E-04		
INFANT	4.76E-04	1.87E-04	1.87E-04	1.87E-04	1.87E-04	1.87E-04	1.87E-04	9.18E-05		
TOTAL										
ADULT	6.91E-03	1.67E-03	1.67E-03	1.67E-03	1.67E-03	1.67E-03	1.67E-03	1.61E-03		
TEEN	1.26E-02	2.84E-03	2.84E-03	2.84E-03	2.84E-03	2.84E-03	2.84E-03	2.75E-03		
CHILD	3.05E-02	6.48E-03	6.48E-03	6.48E-03	6.48E-03	6.48E-03	6.48E-03	6.36E-03		
INFANT	5.90E-02	1.30E-02	1.30E-02	1.30E-02	1.30E-02	1.30E-02	1.30E-02	1.29E-02		

Annual Radioactive Effluent Release ReportYEAR: 2020Page 89 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Table 44, Calculated Doses at ODCM Dairy Farm for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020 (continued)

Receptor – ODCM Dairy Farm – Hope Creek Unit 1										
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
GROUND	4.46E-06	4.46E-06	4.46E-06	4.46E-06	4.46E-06	4.46E-06	4.46E-06	5.23E-06		
COW MILK										
ADULT	1.14E-02	2.39E-03	2.39E-03	2.39E-03	2.42E-03	2.39E-03	2.39E-03	2.39E-03		
TEEN	2.10E-02	4.35E-03	4.35E-03	4.35E-03	4.40E-03	4.35E-03	4.35E-03	4.35E-03		
CHILD	5.15E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02	1.06E-02		
INFANT	1.01E-01	2.19E-02	2.19E-02	2.19E-02	2.22E-02	2.19E-02	2.19E-02	2.19E-02		
INHAL										
ADULT	5.64E-04	3.03E-04	3.03E-04	3.03E-04	3.08E-04	3.03E-04	3.03E-04	1.97E-04		
TEEN	8.07E-04	3.50E-04	3.50E-04	3.50E-04	3.57E-04	3.50E-04	3.50E-04	1.99E-04		
CHILD	1.11E-03	3.84E-04	3.84E-04	3.84E-04	3.93E-04	3.84E-04	3.84E-04	1.75E-04		
INFANT	8.21E-04	2.66E-04	2.65E-04	2.66E-04	2.74E-04	2.66E-04	2.65E-04	1.01E-04		
TOTAL										
ADULT	1.20E-02	2.70E-03	2.70E-03	2.70E-03	2.73E-03	2.70E-03	2.70E-03	2.59E-03		
TEEN	2.18E-02	4.70E-03	4.70E-03	4.70E-03	4.76E-03	4.70E-03	4.70E-03	4.55E-03		
CHILD	5.26E-02	1.10E-02	1.10E-02	1.10E-02	1.10E-02	1.10E-02	1.10E-02	1.08E-02		
INFANT	1.02E-01	2.22E-02	2.22E-02	2.22E-02	2.25E-02	2.22E-02	2.22E-02	2.20E-02		
		Receptor – ODCM Dairy Farm – Total of All Units								
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PATHWAY PLUME	BONE 4.05E-06	LIVER 4.05E-06	EFFECTIVE 4.05E-06	KIDNEY 4.05E-06	THYROID 4.05E-06	LUNG 4.06E-06	GI-TRACT 4.05E-06	SKIN 6.64E-06		
PLUME	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.06E-06	4.05E-06	6.64E-06		
PLUME GROUND	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.05E-06	4.06E-06	4.05E-06	6.64E-06		
PLUME GROUND COW MILK	4.05E-06 4.49E-06	4.05E-06 4.49E-06	4.05E-06 4.49E-06	4.05E-06 4.49E-06	4.05E-06 4.49E-06	4.06E-06 4.49E-06	4.05E-06 4.49E-06	6.64E-06 5.26E-06		
PLUME GROUND COW MILK ADULT	4.05E-06 4.49E-06 1.93E-02	4.05E-06 4.49E-06 5.09E-03	4.05E-06 4.49E-06 9.03E-03	4.05E-06 4.49E-06 5.09E-03	4.05E-06 4.49E-06 5.12E-03	4.06E-06 4.49E-06 5.09E-03	4.05E-06 4.49E-06 5.09E-03	6.64E-06 5.26E-06 5.09E-03		
PLUME GROUND COW MILK ADULT TEEN	4.05E-06 4.49E-06 1.93E-02 3.53E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03	4.05E-06 4.49E-06 9.03E-03 1.65E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03	4.05E-06 4.49E-06 5.12E-03 9.18E-03	4.06E-06 4.49E-06 5.09E-03 9.13E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02	6.64E-06 5.26E-06 5.09E-03 9.13E-03		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INFANT INHAL ADULT	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INFANT INHAL ADULT TEEN	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03 1.72E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04 9.88E-04	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04 1.07E-03	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04 1.06E-03	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04 7.50E-04		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL ADULT TEEN CHILD INFANT TOTAL	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03 1.72E-03 2.18E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04 9.88E-04 1.18E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04 1.07E-03 1.10E-03	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04 1.06E-03 1.09E-03	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04 7.50E-04 6.62E-04		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL ADULT TEEN CHILD INFANT	4.05E-06 4.49E-06 1.93E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03 1.72E-03 2.18E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04 9.88E-04 1.18E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04 1.07E-03 1.10E-03	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04 1.06E-03 1.09E-03	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04 7.50E-04 6.62E-04		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL ADULT TEEN CHILD INFANT TOTAL ADULT TEEN	4.05E-06 4.49E-06 3.53E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03 1.72E-03 2.18E-03 1.56E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03 7.17E-04 6.06E-03 1.02E-02	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04 9.88E-04 1.18E-03 8.29E-04 9.84E-03 1.75E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03 7.17E-04 6.06E-03 1.02E-02	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04 1.07E-03 1.10E-03 7.25E-04 6.09E-03 1.03E-02	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03 7.17E-04 6.06E-03 1.02E-02	4.05E-06 4.49E-06 9.13E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04 1.06E-03 7.16E-04 6.06E-03 1.02E-02	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04 7.50E-04 6.62E-04 3.81E-04 5.84E-03 9.89E-03		
PLUME GROUND COW MILK ADULT TEEN CHILD INFANT INHAL ADULT TEEN CHILD INFANT TOTAL ADULT	4.05E-06 4.49E-06 3.53E-02 3.53E-02 8.66E-02 1.70E-01 1.31E-03 1.72E-03 2.18E-03 1.56E-03 2.06E-02	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 7.17E-04 6.06E-03	4.05E-06 4.49E-06 9.03E-03 1.65E-02 4.04E-02 8.10E-02 8.01E-04 9.88E-04 1.18E-03 8.29E-04 9.84E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03 7.17E-04 6.06E-03	4.05E-06 4.49E-06 5.12E-03 9.18E-03 2.20E-02 4.56E-02 9.63E-04 1.07E-03 1.10E-03 7.25E-04 6.09E-03	4.06E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.58E-04 1.06E-03 1.09E-03 7.17E-04 6.06E-03	4.05E-06 4.49E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 9.59E-04 1.06E-03 7.16E-04 6.06E-03	6.64E-06 5.26E-06 5.09E-03 9.13E-03 2.20E-02 4.53E-02 7.43E-04 7.43E-04 6.62E-04 3.81E-04 5.84E-03		

Annual Radioactive Effluent Release	YEAR: 2020	Page 90 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 45, Calculated Doses at Nearest Residence for Salem Unit 1, Salem Unit 2,and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

٦

Г

Receptor – Nearest Residence – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN	
PLUME	2.49E-06	2.49E-06	2.49E-06	2.49E-06	2.49E-06	2.49E-06	2.49E-06	4.16E-06	
GROUND	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	5.32E-08	
INHAL									
ADULT	6.19E-04	6.19E-04	3.85E-04	6.19E-04	6.19E-04	6.19E-04	6.19E-04	5.47E-04	
TEEN	6.55E-04	6.55E-04	5.52E-04	6.55E-04	6.55E-04	6.55E-04	6.55E-04	5.52E-04	
CHILD	6.30E-04	6.30E-04	7.61E-04	6.30E-04	6.30E-04	6.30E-04	6.30E-04	4.88E-04	
INFANT	3.93E-04	3.93E-04	5.61E-04	3.93E-04	3.93E-04	3.93E-04	3.93E-04	2.80E-04	
TOTAL									
ADULT	6.22E-04	6.22E-04	3.88E-04	6.22E-04	6.22E-04	6.22E-04	6.22E-04	5.51E-04	
TEEN	6.58E-04	6.58E-04	5.55E-04	6.58E-04	6.58E-04	6.58E-04	6.58E-04	5.56E-04	
CHILD	6.33E-04	6.33E-04	7.64E-04	6.33E-04	6.33E-04	6.33E-04	6.33E-04	4.92E-04	
INFANT	3.96E-04	3.96E-04	5.64E-04	3.96E-04	3.96E-04	3.96E-04	3.96E-04	2.84E-04	
		Rec	eptor – Neares	st Residence	e – Salem Un	it 2			
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN	
PLUME	3.55E-06	3.55E-06	3.55E-06	3.55E-06	3.55E-06	3.55E-06	3.56E-06	5.73E-06	
GROUND	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	3.19E-09	
INHAL									
ADULT	3.58E-04	3.58E-04	4.87E-04	3.58E-04	3.58E-04	3.58E-04	3.58E-04	2.67E-04	
TEEN	4.00E-04	4.00E-04	6.97E-04	4.00E-04	4.00E-04	4.00E-04	4.00E-04	2.69E-04	
CHILD	4.18E-04	4.18E-04	9.62E-04	4.18E-04	4.18E-04	4.18E-04	4.18E-04	2.38E-04	
INFANT	2.79E-04	2.79E-04	7.09E-04	2.79E-04	2.79E-04	2.79E-04	2.79E-04	1.37E-04	
TOTAL									
ADULT	3.62E-04	3.62E-04	4.91E-04	3.62E-04	3.62E-04	3.62E-04	3.62E-04	2.73E-04	
TEEN	4.04E-04	4.04E-04	7.01E-04	4.04E-04	4.04E-04	4.04E-04	4.04E-04	2.75E-04	
CHILD	4.22E-04	4.22E-04	9.66E-04	4.22E-04	4.22E-04	4.22E-04	4.22E-04	2.44E-04	
INFANT	2.83E-04	2.83E-04	7.13E-04	2.83E-04	2.83E-04	2.83E-04	2.83E-04	1.43E-04	

Annual Radioactive Effluent Release	YEAR: 2020	Page 91 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

	Receptor – Nearest Residence – Hope Creek Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
GROUND	8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	9.65E-06		
INHAL										
ADULT	4.59E-04	4.59E-04	8.56E-04	4.59E-04	4.59E-04	4.68E-04	4.60E-04	2.99E-04		
TEEN	5.31E-04	5.31E-04	1.23E-03	5.31E-04	5.31E-04	5.42E-04	5.31E-04	3.01E-04		
CHILD	5.84E-04	5.84E-04	1.69E-03	5.84E-04	5.84E-04	5.97E-04	5.84E-04	2.66E-04		
INFANT	4.03E-04	4.03E-04	1.25E-03	4.03E-04	4.03E-04	4.16E-04	4.03E-04	1.53E-04		
TOTAL										
ADULT	4.67E-04	4.67E-04	8.64E-04	4.67E-04	4.67E-04	4.76E-04	4.68E-04	3.09E-04		
TEEN	5.39E-04	5.39E-04	1.24E-03	5.39E-04	5.39E-04	5.50E-04	5.39E-04	3.11E-04		
CHILD	5.92E-04	5.92E-04	1.70E-03	5.92E-04	5.92E-04	6.05E-04	5.92E-04	2.76E-04		
INFANT	4.11E-04	4.11E-04	1.26E-03	4.11E-04	4.11E-04	4.24E-04	4.11E-04	1.63E-04		
		Recep	tor – Nearest	Residence –	Total of All	Units				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	6.04E-06	6.04E-06	6.04E-06	6.04E-06	6.04E-06	6.04E-06	6.05E-06	9.89E-06		
GROUND	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	9.71E-06		
INHAL										
ADULT	1.44E-03	1.44E-03	1.73E-03	1.44E-03	1.44E-03	1.45E-03	1.44E-03	1.11E-03		
TEEN	1.59E-03	1.59E-03	2.48E-03	1.59E-03	1.59E-03	1.60E-03	1.59E-03	1.12E-03		
CHILD	1.63E-03	1.63E-03	3.41E-03	1.63E-03	1.63E-03	1.65E-03	1.63E-03	9.92E-04		
INFANT	1.08E-03	1.08E-03	2.52E-03	1.08E-03	1.08E-03	1.09E-03	1.08E-03	5.70E-04		
TOTAL										
ADULT	1.45E-03	1.45E-03	1.74E-03	1.45E-03	1.45E-03	1.46E-03	1.45E-03	1.13E-03		
TEEN	1.60E-03	1.60E-03	2.49E-03	1.60E-03	1.60E-03	1.61E-03	1.60E-03	1.14E-03		
CHILD	1.65E-03	1.65E-03	3.43E-03	1.65E-03	1.65E-03	1.66E-03	1.65E-03	1.01E-03		
INFANT	1.09E-03	1.09E-03	2.53E-03	1.09E-03	1.09E-03	1.10E-03	1.09E-03	5.90E-04		

Table 45, Calculated Doses at Nearest Residence for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020 (continued)

Annual Radioactive Effluent Release	YEAR: 2020	Page 92 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 46, Calculated Doses at Highest Residence for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

٦

Г

	Receptor – Highest Residence – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	3.94E-06	3.94E-06	3.94E-06	3.94E-06	3.94E-06	3.95E-06	3.94E-06	6.59E-06		
GROUND	1.29E-07	1.29E-07	1.29E-07	1.29E-07	1.29E-07	1.29E-07	1.29E-07	1.51E-07		
INHAL										
ADULT	9.82E-04	9.82E-04	6.11E-04	9.82E-04	9.82E-04	9.82E-04	9.82E-04	8.67E-04		
TEEN	1.04E-03	1.04E-03	8.75E-04	1.04E-03	1.04E-03	1.04E-03	1.04E-03	8.75E-04		
CHILD	9.99E-04	9.99E-04	1.21E-03	9.99E-04	9.99E-04	9.99E-04	9.99E-04	7.73E-04		
INFANT	6.23E-04	6.23E-04	8.90E-04	6.23E-04	6.23E-04	6.23E-04	6.23E-04	4.45E-04		
TOTAL										
ADULT	9.86E-04	9.86E-04	6.15E-04	9.86E-04	9.86E-04	9.86E-04	9.86E-04	8.74E-04		
TEEN	1.04E-03	1.04E-03	8.79E-04	1.04E-03	1.04E-03	1.04E-03	1.04E-03	8.82E-04		
CHILD	1.00E-03	1.00E-03	1.21E-03	1.00E-03	1.00E-03	1.00E-03	1.00E-03	7.80E-04		
INFANT	6.27E-04	6.27E-04	8.94E-04	6.27E-04	6.27E-04	6.27E-04	6.27E-04	4.52E-04		
		Rec	eptor – Highes	st Residence	e – Salem Un	it 2				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	5.64E-06	5.64E-06	5.64E-06	5.64E-06	5.64E-06	5.64E-06	5.64E-06	9.09E-06		
GROUND	7.71E-09	7.71E-09	7.71E-09	7.71E-09	7.71E-09	7.71E-09	7.71E-09	9.04E-09		
INHAL										
ADULT	7.72E-04	5.68E-04	5.68E-04	5.68E-04	5.68E-04	5.68E-04	5.68E-04	4.23E-04		
TEEN	1.11E-03	6.34E-04	6.34E-04	6.34E-04	6.34E-04	6.34E-04	6.34E-04	4.27E-04		
CHILD	1.53E-03	6.63E-04	6.63E-04	6.63E-04	6.63E-04	6.63E-04	6.63E-04	3.77E-04		
INFANT	1.12E-03	4.43E-04	4.43E-04	4.43E-04	4.43E-04	4.43E-04	4.43E-04	2.17E-04		
TOTAL										
ADULT	7.78E-04	5.74E-04	5.74E-04	5.74E-04	5.74E-04	5.74E-04	5.74E-04	4.32E-04		
TEEN	1.12E-03	6.40E-04	6.40E-04	6.40E-04	6.40E-04	6.40E-04	6.40E-04	4.36E-04		
CHILD	1.54E-03	6.69E-04	6.69E-04	6.69E-04	6.69E-04	6.69E-04	6.69E-04	3.86E-04		
INFANT	1.13E-03	4.49E-04	4.49E-04	4.49E-04	4.49E-04	4.49E-04	4.49E-04	2.26E-04		

Annual Radioactive Effluent Release	YEAR: 2020	Page 93 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

	Receptor – Highest Residence – Hope Creek Unit 1										
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN			
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
GROUND	1.96E-05	1.96E-05	1.96E-05	1.96E-05	1.96E-05	1.96E-05	1.96E-05	2.29E-05			
INHAL											
ADULT	1.46E-03	7.84E-04	7.84E-04	7.84E-04	7.98E-04	7.85E-04	7.84E-04	5.10E-04			
TEEN	2.09E-03	9.07E-04	9.07E-04	9.07E-04	9.25E-04	9.07E-04	9.07E-04	5.15E-04			
CHILD	2.89E-03	9.96E-04	9.96E-04	9.96E-04	1.02E-03	9.97E-04	9.96E-04	4.55E-04			
INFANT	2.13E-03	6.88E-04	6.88E-04	6.88E-04	7.10E-04	6.89E-04	6.88E-04	2.61E-04			
TOTAL											
ADULT	1.48E-03	8.04E-04	8.04E-04	8.04E-04	8.18E-04	8.05E-04	8.04E-04	5.33E-04			
TEEN	2.11E-03	9.27E-04	9.27E-04	9.27E-04	9.45E-04	9.27E-04	9.27E-04	5.38E-04			
CHILD	2.91E-03	1.02E-03	1.02E-03	1.02E-03	1.04E-03	1.02E-03	1.02E-03	4.78E-04			
INFANT	2.15E-03	7.08E-04	7.08E-04	7.08E-04	7.30E-04	7.09E-04	7.08E-04	2.84E-04			
		Recep	tor – Highest	Residence –	Total of All	Units					
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN			
PLUME	9.58E-06	9.58E-06	9.58E-06	9.58E-06	9.58E-06	9.59E-06	9.58E-06	1.57E-05			
GROUND	1.97E-05	1.97E-05	1.97E-05	1.97E-05	1.97E-05	1.97E-05	1.97E-05	2.31E-05			
INHAL											
ADULT	3.21E-03	2.33E-03	1.96E-03	2.33E-03	2.35E-03	2.34E-03	2.33E-03	1.80E-03			
TEEN	4.24E-03	2.58E-03	2.42E-03	2.58E-03	2.60E-03	2.58E-03	2.58E-03	1.82E-03			
CHILD	5.42E-03	2.66E-03	2.87E-03	2.66E-03	2.68E-03	2.66E-03	2.66E-03	1.61E-03			
INFANT	3.87E-03	1.75E-03	2.02E-03	1.75E-03	1.78E-03	1.76E-03	1.75E-03	9.23E-04			
TOTAL											
ADULT	3.24E-03	2.36E-03	1.99E-03	2.36E-03	2.38E-03	2.36E-03	2.36E-03	1.84E-03			
TEEN	4.27E-03	2.61E-03	2.45E-03	2.61E-03	2.63E-03	2.61E-03	2.61E-03	1.86E-03			
CHILD	5.45E-03	2.69E-03	2.90E-03	2.69E-03	2.71E-03	2.69E-03	2.69E-03	1.64E-03			
INFANT	3.90E-03	1.78E-03	2.05E-03	1.78E-03	1.81E-03	1.78E-03	1.78E-03	9.62E-04			

Table 46, Calculated Doses at Highest Residence for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020 (continued)

Annual Radioactive Effluent Release	YEAR: 2020	Page 94 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 47, Calculated Doses at ODCM Resident-Garden-Meat Farm for Salem Unit 1, Salem Unit 2, and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

		Receptor –	ODCM Reside	nt-Garden-M	eat Farm– Sa	alem Unit 1		
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	2.45E-06	2.45E-06	2.45E-06	2.45E-06	2.45E-06	2.46E-06	2.45E-06	4.11E-06
GROUND	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	4.54E-08	5.32E-08
Vegetation								
ADULT	4.77E-03	4.77E-03	1.89E-02	4.77E-03	4.77E-03	4.77E-03	4.77E-03	4.77E-03
TEEN	7.26E-03	7.26E-03	3.07E-02	7.26E-03	7.26E-03	7.26E-03	7.26E-03	7.26E-03
CHILD	1.65E-02	1.65E-02	7.40E-02	1.65E-02	1.65E-02	1.65E-02	1.65E-02	1.65E-02
INFANT								
COW Meat								
ADULT	1.55E-03	1.55E-03	7.03E-03	1.55E-03	1.55E-03	1.55E-03	1.55E-03	1.55E-03
TEEN	1.27E-03	1.27E-03	5.94E-03	1.27E-03	1.27E-03	1.27E-03	1.27E-03	1.27E-03
CHILD	2.34E-03	2.34E-03	1.12E-02	2.34E-03	2.34E-03	2.34E-03	2.34E-03	2.34E-03
INFANT								
INHAL								
ADULT	6.12E-04	6.12E-04	3.81E-04	6.12E-04	6.12E-04	6.12E-04	6.12E-04	5.40E-04
TEEN	6.47E-04	6.47E-04	5.45E-04	6.47E-04	6.47E-04	6.47E-04	6.47E-04	5.45E-04
CHILD	6.23E-04	6.23E-04	7.52E-04	6.23E-04	6.23E-04	6.23E-04	6.23E-04	4.82E-04
INFANT	3.88E-04	3.88E-04	5.55E-04	3.88E-04	3.88E-04	3.88E-04	3.88E-04	2.77E-04
TOTAL								
ADULT	6.93E-03	6.93E-03	2.63E-02	6.93E-03	6.93E-03	6.93E-03	6.93E-03	6.86E-03
TEEN	9.18E-03	9.18E-03	3.72E-02	9.18E-03	9.18E-03	9.18E-03	9.18E-03	9.08E-03
CHILD	1.95E-02	1.95E-02	8.60E-02	1.95E-02	1.95E-02	1.95E-02	1.95E-02	1.93E-02
INFANT	3.90E-04	3.90E-04	5.57E-04	3.90E-04	3.90E-04	3.91E-04	3.90E-04	2.81E-04
			ODCM Resider					
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	3.51E-06	3.51E-06	3.51E-06	3.51E-06	3.51E-06	3.51E-06	3.51E-06	5.66E-06
GROUND	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	2.72E-09	3.19E-09
Vegetation								
ADULT	2.39E-02	5.27E-03	5.27E-03	5.27E-03	5.27E-03	5.27E-03	5.27E-03	5.27E-03
TEEN	3.88E-02	8.31E-03	8.31E-03	8.31E-03	8.31E-03	8.31E-03	8.31E-03	8.31E-03
CHILD	9.35E-02	1.96E-02	1.96E-02	1.96E-02	1.96E-02	1.96E-02	1.96E-02	1.96E-02
INFANT								
COW Meat								
ADULT	8.89E-03	1.85E-03	1.85E-03	1.85E-03	1.85E-03	1.85E-03	1.85E-03	1.85E-03
TEEN	7.51E-03	1.54E-03	1.54E-03	1.54E-03	1.54E-03	1.54E-03	1.54E-03	1.54E-03
CHILD	1.41E-02	2.87E-03	2.87E-03	2.87E-03	2.87E-03	2.87E-03	2.87E-03	2.87E-03
INFANT								
INHAL								
ADULT	4.81E-04	3.54E-04	3.54E-04	3.54E-04	3.54E-04	3.54E-04	3.54E-04	2.64E-04
TEEN	6.89E-04	3.95E-04	3.95E-04	3.95E-04	3.95E-04	3.95E-04	3.95E-04	2.66E-04
CHILD	9.51E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	4.13E-04	2.35E-04
INFANT	7.01E-04	2.76E-04	2.76E-04	2.76E-04	2.76E-04	2.76E-04	2.76E-04	1.35E-04
TOTAL								
ADULT	3.33E-02	7.48E-03	7.48E-03	7.48E-03	7.48E-03	7.48E-03	7.48E-03	7.39E-03
TEEN	4.70E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.01E-02
CHILD	1.09E-01	2.29E-02	2.29E-02	2.29E-02	2.29E-02	2.29E-02	2.29E-02	2.27E-02

Annual Radioactive Effluent Release	e Report	YEAR: 2020	Page 95 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

 Table 47, Calculated Doses at ODCM Resident-Garden-Meat Farm for Salem Unit 1, Salem Unit 2, and Hope

 Creek Unit 1 using the NRC Code GASPAR, 2020 (continued)

Receptor – ODCM Resident-Garden-Meat Farm– Hope Creek Unit 1

BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	8.24E-06	9.65E-06
4.21E-02	8.95E-03	8.95E-03	8.95E-03	8.96E-03	8.95E-03	8.95E-03	8.95E-03
6.82E-02	1.43E-02	1.43E-02	1.43E-02	1.43E-02	1.43E-02	1.43E-02	1.43E-02
1.64E-01	3.38E-02	3.38E-02	3.38E-02	3.38E-02	3.38E-02	3.38E-02	3.38E-02
1.56E-02	3.20E-03	3.20E-03	3.20E-03	3.20E-03	3.20E-03	3.20E-03	3.20E-03
1.32E-02	2.68E-03	2.68E-03	2.68E-03	2.69E-03	2.68E-03	2.68E-03	2.68E-03
2.48E-02	5.02E-03	5.02E-03	5.02E-03	5.02E-03	5.02E-03	5.02E-03	5.02E-03
8.45E-04	4.54E-04	4.54E-04	4.54E-04	4.62E-04	4.54E-04	4.54E-04	2.95E-04
1.21E-03	5.25E-04	5.25E-04	5.25E-04	5.35E-04	5.25E-04	5.25E-04	2.98E-04
1.67E-03	5.77E-04	5.76E-04	5.77E-04	5.90E-04	5.77E-04	5.76E-04	2.63E-04
1.23E-03	3.98E-04	3.98E-04	3.98E-04	4.10E-04	3.98E-04	3.98E-04	1.51E-04
5.86E-02	1.26E-02	1.26E-02	1.26E-02	1.26E-02	1.26E-02	1.26E-02	1.25E-02
8.26E-02	1.75E-02	1.75E-02	1.75E-02	1.75E-02	1.75E-02	1.75E-02	1.73E-02
1.90E-01	3.94E-02	3.94E-02	3.94E-02	3.94E-02	3.94E-02	3.94E-02	3.91E-02
1.24E-03	4.06E-04	4.06E-04	4.06E-04	4.18E-04	4.06E-04	4.06E-04	1.61E-04
	0.00E+00 8.24E-06 4.21E-02 6.82E-02 1.64E-01 1.56E-02 1.32E-02 2.48E-02 8.45E-04 1.21E-03 1.67E-03 1.23E-03 5.86E-02 8.26E-02 1.90E-01	0.00E+00 0.00E+00 8.24E-06 8.24E-06 4.21E-02 8.95E-03 6.82E-02 1.43E-02 1.64E-01 3.38E-02 1.56E-02 3.20E-03 1.32E-02 2.68E-03 2.48E-02 5.02E-03 8.45E-04 4.54E-04 1.21E-03 5.25E-04 1.67E-03 5.77E-04 1.23E-03 3.98E-04 5.86E-02 1.26E-02 8.26E-02 1.75E-02 1.90E-01 3.94E-02	0.00E+00 0.00E+00 0.00E+00 8.24E-06 8.24E-06 8.24E-06 4.21E-02 8.95E-03 8.95E-03 6.82E-02 1.43E-02 1.43E-02 1.64E-01 3.38E-02 3.38E-02 1.56E-02 3.20E-03 3.20E-03 1.32E-02 2.68E-03 2.68E-03 2.48E-02 5.02E-03 5.02E-03 8.45E-04 4.54E-04 4.54E-04 1.21E-03 5.25E-04 5.25E-04 1.67E-03 3.98E-04 3.98E-04 5.86E-02 1.26E-02 1.26E-02 8.26E-02 1.75E-02 1.75E-02 1.90E-01 3.94E-02 3.94E-02	0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.24E-06 8.24E-06 8.24E-06 8.24E-06 4.21E-02 8.95E-03 8.95E-03 8.95E-03 6.82E-02 1.43E-02 1.43E-02 1.43E-02 1.64E-01 3.38E-02 3.38E-02 3.38E-02 1.56E-02 3.20E-03 3.20E-03 3.20E-03 1.32E-02 2.68E-03 2.68E-03 2.68E-03 2.48E-02 5.02E-03 5.02E-03 5.02E-03 8.45E-04 4.54E-04 4.54E-04 4.54E-04 1.21E-03 5.25E-04 5.25E-04 5.25E-04 5.25E-04 3.98E-04 3.98E-04 3.98E-04 1.23E-03 3.98E-04 3.98E-04 3.98E-04 5.86E-02 1.26E-02 1.26E-02 1.26E-02 8.26E-02 1.75E-02 1.75E-02 1.75E-02 1.90E-01 3.94E-02 3.94E-02 3.94E-02	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 4.21E-02 8.95E-03 8.95E-03 8.95E-03 8.95E-03 8.96E-03 6.82E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.64E-01 3.38E-02 3.38E-02 3.38E-02 3.38E-02 3.38E-02 1.56E-02 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 1.32E-02 2.68E-03 2.68E-03 2.68E-03 2.69E-03 2.69E-03 2.48E-02 5.02E-03 5.02E-03 5.02E-03 5.02E-03 5.02E-03 8.45E-04 4.54E-04 4.54E-04 4.62E-04 4.62E-04 1.21E-03 5.25E-04 5.25E-04 5.25E-04 5.35E-04 1.23E-03 3.98E-04 3.98E-04 3.98E-04 4.10E-04 4.54E-02 1.26E-02 1.26E-02 1.26E-02 1.26E-02 8.26E-02 1.75E-02 1.75E-02 1	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 4.21E-02 8.95E-03 8.95E-03 8.95E-03 8.95E-03 8.96E-03 8.95E-03 6.82E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.64E-01 3.38E-02 3.38E-02 3.38E-02 3.38E-02 3.38E-02 1.56E-02 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 1.32E-02 2.68E-03 2.68E-03 2.68E-03 2.69E-03 2.68E-03 2.48E-02 5.02E-03 5.02E-03 5.02E-03 5.02E-03 5.02E-03 2.48E-04 4.54E-04 4.54E-04 4.62E-04 4.54E-04 1.21E-03 5.25E-04 5.25E-04 5.35E-04 5.25E-04 1.23E-03 3.98E-04 3.98E-04 3.98E-04 3.98E-04 3.98E-04 1.23E-03 3.98E-04 3.98E-02 1.26E-02 1.26E-02	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 8.24E-06 4.21E-02 8.95E-03 8.95E-03 8.95E-03 8.96E-03 8.95E-03 8.95E-03 6.82E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.43E-02 1.64E-01 3.38E-02 3.38E-02 3.38E-02 3.38E-02 3.38E-02 3.38E-02 1.56E-02 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 3.20E-03 1.32E-02 2.68E-03 2.68E-03 2.68E-03 2.68E-03 2.68E-03 2.68E-03 2.48E-02 5.02E-03 5.02E-03 5.02E-03 5.02E-03 5.02E-03 5.02E-03 8.45E-04 4.54E-04 4.54E-04 4.62E-04 4.54E-04 4.54E-04 1.21E-03 5.25E-04 5.25E-04 5.25E-04 5.25E-04 5.25E-04 1.23E-03 3.98E-04 3.98E-04 3.98E-04

Receptor – ODCM Resident-Garden-Meat Farm– Total of All Units

PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	5.96E-06	5.96E-06	5.96E-06	5.96E-06	5.96E-06	5.97E-06	5.96E-06	9.77E-06
GROUND	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	8.29E-06	9.71E-06
Vegetation								
ADULT	7.08E-02	1.90E-02	3.31E-02	1.90E-02	1.90E-02	1.90E-02	1.90E-02	1.90E-02
TEEN	1.14E-01	2.99E-02	5.33E-02	2.99E-02	2.99E-02	2.99E-02	2.99E-02	2.99E-02
CHILD	2.74E-01	6.99E-02	1.27E-01	6.99E-02	6.99E-02	6.99E-02	6.99E-02	6.99E-02
INFANT								
COW Meat								
ADULT	2.60E-02	6.60E-03	1.21E-02	6.60E-03	6.60E-03	6.60E-03	6.60E-03	6.60E-03
TEEN	2.20E-02	5.49E-03	1.02E-02	5.49E-03	5.50E-03	5.49E-03	5.49E-03	5.49E-03
CHILD	4.12E-02	1.02E-02	1.91E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02	1.02E-02
INFANT								
INHAL								
ADULT	1.94E-03	1.42E-03	1.19E-03	1.42E-03	1.43E-03	1.42E-03	1.42E-03	1.10E-03
TEEN	2.55E-03	1.57E-03	1.47E-03	1.57E-03	1.58E-03	1.57E-03	1.57E-03	1.11E-03
CHILD	3.24E-03	1.61E-03	1.74E-03	1.61E-03	1.63E-03	1.61E-03	1.61E-03	9.80E-04
INFANT	2.32E-03	1.06E-03	1.23E-03	1.06E-03	1.07E-03	1.06E-03	1.06E-03	5.63E-04
TOTAL								
ADULT	9.88E-02	2.70E-02	4.64E-02	2.70E-02	2.70E-02	2.70E-02	2.70E-02	2.67E-02
TEEN	1.39E-01	3.69E-02	6.49E-02	3.69E-02	3.70E-02	3.69E-02	3.69E-02	3.65E-02
CHILD	3.18E-01	8.18E-02	1.48E-01	8.18E-02	8.18E-02	8.18E-02	8.18E-02	8.11E-02
INFANT	2.33E-03	1.08E-03	1.24E-03	1.08E-03	1.09E-03	1.08E-03	1.08E-03	5.82E-04

Annual Radioactive Effluent Release	e Report	YEAR: 2020	Page 96 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 48, Calculated Doses to Onsite Adult Workers for Salem Unit 1, Salem Unit 2,and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

	Receptor – Onsite Adult Workers – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	2.05E-04	2.05E-04	2.05E-04	2.05E-04	2.05E-04	2.05E-04	2.05E-04	3.43E-04		
GROUND	4.73E-06	4.73E-06	4.73E-06	4.73E-06	4.73E-06	4.73E-06	4.73E-06	5.53E-06		
INHAL										
ADULT	5.10E-02	5.10E-02	3.18E-02	5.10E-02	5.10E-02	5.10E-02	5.10E-02	4.50E-02		
TOTAL										
ADULT	5.12E-02	5.12E-02	3.20E-02	5.12E-02	5.12E-02	5.12E-02	5.12E-02	4.53E-02		
	Receptor – Onsite Adult Workers – Salem Unit 2									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	2.93E-04	2.93E-04	2.93E-04	2.93E-04	2.93E-04	2.93E-04	2.93E-04	4.73E-04		
GROUND	2.83E-07	2.83E-07	2.83E-07	2.83E-07	2.83E-07	2.83E-07	2.83E-07	3.33E-07		
INHAL										
ADULT	4.00E-02	2.95E-02	2.95E-02	2.95E-02	2.95E-02	2.95E-02	2.95E-02	2.20E-02		
TOTAL										
ADULT	4.03E-02	2.98E-02	2.98E-02	2.98E-02	2.98E-02	2.98E-02	2.98E-02	2.24E-02		
		Recepto	r – Onsite Adı	ult Workers -	- Hope Creel	c Unit 1				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
GROUND	4.98E-04	4.98E-04	4.98E-04	4.98E-04	4.98E-04	4.98E-04	4.98E-04	5.83E-04		
INHAL										
ADULT	3.40E-02	1.82E-02	1.82E-02	1.82E-02	1.86E-02	1.82E-02	1.82E-02	1.19E-02		
TOTAL										
ADULT	3.45E-02	1.87E-02	1.87E-02	1.87E-02	1.90E-02	1.87E-02	1.87E-02	1.24E-02		
		Recepto	or – Onsite Ad	ult Workers	– Total of Al	I Units				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	4.97E-04	4.97E-04	4.97E-04	4.97E-04	4.97E-04	4.98E-04	4.97E-04	8.15E-04		
GROUND	5.03E-04	5.03E-04	5.03E-04	5.03E-04	5.03E-04	5.03E-04	5.03E-04	5.88E-04		
INHAL										
ADULT	1.25E-01	9.87E-02	7.95E-02	9.87E-02	9.91E-02	9.87E-02	9.87E-02	7.88E-02		
TOTAL										
ADULT	1.26E-01	9.97E-02	8.04E-02	9.97E-02	1.00E-01	9.97E-02	9.97E-02	8.02E-02		

Annual Radioactive Effluent Release	YEAR: 2020	Page 97 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 49, Calculated Doses to Emergency Personnel (National Guard) for Salem Unit 1, Salem Unit 2, and HopeCreek Unit 1 using the NRC Code GASPAR, 2020

	Re	eceptor – Em	nergency Pers	onnel (Natio	nal Guard) –	Salem Unit	1	
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	4.48E-06	4.48E-06	4.48E-06	4.48E-06	4.48E-06	4.48E-06	4.48E-06	7.48E-06
GROUND	2.18E-07	2.18E-07	2.18E-07	2.18E-07	2.18E-07	2.18E-07	2.18E-07	2.55E-07
INHAL								
ADULT	1.12E-03	1.12E-03	6.93E-04	1.12E-03	1.12E-03	1.12E-03	1.12E-03	9.85E-04
TOTAL								
ADULT	1.12E-03	1.12E-03	6.97E-04	1.12E-03	1.12E-03	1.12E-03	1.12E-03	9.93E-04
	Re	eceptor – Em	nergency Pers	onnel (Natio	nal Guard) –	Salem Unit	2	
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	6.40E-06	6.40E-06	6.40E-06	6.40E-06	6.40E-06	6.40E-06	6.40E-06	1.03E-05
GROUND	1.31E-08	1.31E-08	1.31E-08	1.31E-08	1.31E-08	1.31E-08	1.31E-08	1.53E-08
INHAL								
ADULT	8.75E-04	6.45E-04	6.45E-04	6.45E-04	6.45E-04	6.45E-04	6.45E-04	4.80E-04
TOTAL								
ADULT	8.81E-04	6.51E-04	6.51E-04	6.51E-04	6.51E-04	6.51E-04	6.51E-04	4.90E-04
	Rece	ptor – Emer	gency Person	nel (National	Guard) – Ho	pe Creek U	nit 1	
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
GROUND	3.60E-05	3.60E-05	3.60E-05	3.60E-05	3.60E-05	3.60E-05	3.60E-05	4.23E-05
INHAL								
ADULT	1.44E-03	7.70E-04	7.70E-04	7.70E-04	7.85E-04	7.70E-04	7.70E-04	5.00E-04
TOTAL								
ADULT	1.47E-03	8.06E-04	8.06E-04	8.06E-04	8.21E-04	8.06E-04	8.06E-04	5.42E-04
	Rece	eptor – Emei	rgency Person	nel (Nationa	al Guard) – To	otal of All U	nits	
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN
PLUME	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.09E-05	1.78E-05
GROUND	3.62E-05	3.62E-05	3.62E-05	3.62E-05	3.62E-05	3.62E-05	3.62E-05	4.25E-05
INHAL								
ADULT	3.43E-03	2.53E-03	2.11E-03	2.53E-03	2.55E-03	2.53E-03	2.53E-03	1.97E-03
TOTAL								
ADULT	3.47E-03	2.58E-03	2.15E-03	2.58E-03	2.59E-03	2.58E-03	2.58E-03	2.03E-03

Annual Radioactive Effluent Release	YEAR: 2020	Page 98 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 50, Calculated Doses to Adult Workers in the Wind Turbine Laydown Area for Salem Unit 1, Salem Unit 2,and Hope Creek Unit 1 using the NRC Code GASPAR, 2020

	Receptor – Turbine Laydown Area – Salem Unit 1									
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	5.53E-06	5.53E-06	5.53E-06	5.53E-06	5.53E-06	5.53E-06	5.55E-06	9.25E-06		
GROUND	2.13E-07	2.13E-07	2.13E-07	2.13E-07	2.13E-07	2.13E-07	2.13E-07	2.49E-07		
INHAL										
ADULT	1.38E-03	1.38E-03	8.58E-04	1.38E-03	1.38E-03	1.38E-03	1.38E-03	1.22E-03		
TOTAL										
ADULT	1.38E-03	1.38E-03	8.63E-04	1.38E-03	1.38E-03	1.38E-03	1.38E-03	1.23E-03		
Receptor – Turbine Laydown Area – Salem Unit 2										
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	7.90E-06	7.90E-06	7.90E-06	7.90E-06	7.90E-06	7.90E-06	7.93E-06	1.28E-05		
GROUND	1.28E-08	1.28E-08	1.28E-08	1.28E-08	1.28E-08	1.28E-08	1.28E-08	1.50E-08		
INHAL										
ADULT	7.98E-04	7.98E-04	1.08E-03	7.98E-04	7.98E-04	7.98E-04	7.98E-04	5.95E-04		
TOTAL										
ADULT	8.05E-04	8.05E-04	1.09E-03	8.05E-04	8.05E-04	8.05E-04	8.05E-04	6.08E-04		
		Receptor	r – Turbine Lay	ydown Area	– Hope Cree	k Unit 1				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
GROUND	6.88E-05	6.88E-05	6.88E-05	6.88E-05	6.88E-05	6.88E-05	6.88E-05	8.05E-05		
INHAL										
ADULT	1.68E-03	1.68E-03	3.13E-03	1.68E-03	1.68E-03	1.71E-03	1.68E-03	1.09E-03		
TOTAL										
ADULT	1.75E-03	1.75E-03	3.19E-03	1.75E-03	1.75E-03	1.78E-03	1.75E-03	1.17E-03		
		Recepto	or – Turbine La	ydown Area	- Total of A	II Units				
PATHWAY	BONE	LIVER	EFFECTIVE	KIDNEY	THYROID	LUNG	GI-TRACT	SKIN		
PLUME	1.34E-05	1.34E-05	1.34E-05	1.34E-05	1.34E-05	1.34E-05	1.35E-05	2.20E-05		
GROUND	6.90E-05	6.90E-05	6.90E-05	6.90E-05	6.90E-05	6.90E-05	6.90E-05	8.08E-05		
INHAL										
ADULT	3.86E-03	3.86E-03	5.07E-03	3.86E-03	3.86E-03	3.89E-03	3.86E-03	2.91E-03		
TOTAL										
ADULT	3.94E-03	3.94E-03	5.15E-03	3.94E-03	3.94E-03	3.97E-03	3.94E-03	3.01E-03		

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 99 of 140
Company: PSEG Nuclear LLC Plant: Salem &		Hope Creek Ge	nerating Stations

Attachment 6, ERRATA Section from Previous Reports

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 100 of 140
Company: PSEG Nuclear LLC Plant: Salem &		Hope Creek Ge	nerating Stations

Page Intentionally Left Blank

Annual Radioactive Effluent Release	Report	YEAR: 2020	Page 101 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

In 2019, Salem Generating Station (SGS) Unit 1 and Unit 2 and Hope Creek Generating Station (HCGS) Unit 1 released to the environment through the radioactive liquid and gaseous effluents 32.15 curies of noble gas, 0.04 curies of fission and activation products, and 2,286 curies of tritium. The dose from both liquid and gaseous effluents was conservatively calculated for the Maximum Exposed Member of the Public. The results of those calculations and their comparison to the allowable limits were as follows:

Gaseous and liquid radiation doses to members of the public at the highest dose receptor								
Effluent	Applicable Organ	Estimated Dose	Age Group	Receptor Location	% of Applicable Limit	Limit	Units	
Noble Gas	Gamma – Air Dose	3.36E-04 2.13E-03	All	Cite Devendence	0.11% < 0.01%	30	mRad	
Noble Gas	Beta – Air Dose	1.42E-04 3.30E-03	All	Site Boundary	0.02% < 0.01%	60	mikad	
Iodine, Particulate, C-14 & Tritium	Bone	3.22E-01	Child	4.6 miles SW	0.72%	45	mrem	
Liquid	Total Body	1.83E-02	Adult	0.75 mi. N	0.41% 0.20%	9		
	Gi-Lli	4.51E-02	Addit	of Salem	0.15%	30	mrem	

The calculated doses from the radiological effluents released from the three units were a very small percentage of the allowable limits.

The Total Dose to the Critical Receptor as required by section 3.11.4 of the SGS and HCGS ODCMs was determined to be $5.80\pm0.15.72\pm0.01$ mrem (Table 6). The dose calculated was below the limits of 40 CFR 190 and 10 CFR 72.104 (25 mrem) to the total body and critical organ other than the thyroid.

Maximum TEDE doses to groups of Members of the Public (Sewage Treatment Plant Worker and Security Checkpoint) not having access to the Radiologically Controlled Area (RCA) were calculated as 2.47E+00 2.59E+00 mrem and 2.90E-02 mrem, respectively (Table 7). These doses were a small fraction of the 10 CFR 20.1301 dose limit of 100 mrem.

II. Introduction

This report, SGS-RERR-88/HCGS-RERR-42, summarizes information pertaining to the releases of radioactive materials in liquid, gaseous and solid forms from SGS and HCGS for the period January 1, 2019, to December 31, 2019.

SGS Unit 1 is a Westinghouse Pressurized Water Reactor that has a licensed core thermal power rating of 3,459 MW_{th} and an approximate net electrical output of 1,180 MW_e. SGS Unit 1 achieved initial criticality on December 11, 1976, and began commercial operation on June 30, 1977.

SGS Unit 2 is a Westinghouse Pressurized Water Reactor that has a licensed core thermal power rating of 3,459 MW_{th} and an approximate net electrical output of 1,178 MW_e. SGS Unit 2 achieved initial criticality on August 2, 1980, and began commercial operation on October 13, 1981.

PSEG 2019 ARERR

Annual Radioactive Effluent Release ReportYEAR: 2020Page 102 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

			Table 2							
2019 Doses and Percent of the Limits from Gaseous Effluents by Operating Unit (cont.)										
			SGS Unit 2							
Gaseous Effluent Parameter Qtr. 1 Qtr. 2 Qtr. 3 Qtr. 4										
E g Dose Limit (mrad) 5.00E+00										
Ĕ.	Gamma	Max Gamma Air Dose (mrad)	3.05E-05	2.86E-05	2.54E-05	4.90E-05	1.33E-04			
88	ő	% Dose Limit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
eous Dose From Noble Gas	1	Dose Limit (mrad)		1.00	E+01		2.00E+01			
<u>ě</u> 2	Beta Air	Maximum Beta Air Dose (mrad)	1.11E-05	1.01E-05	9.88E-06	1.73E-05	4.83E-05			
ő	Be	% Dose Limit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Gaseous Dose From I-1 31, I-133, H.3, C-14* and Particulate Nuclides with half-life > 8 Days		Organ Dose Limit (mrem)		7.50	E+00		1.50E+01			
Gaseous Dose From I-131, I-133, H-3, C-14* and Particulate Nuclides with half-life > 8 Days	0 1 8	ODCM Critical Receptor (mrem)	3.27E-04	3.40E-03	2.67E-03	3.29E-03	9.69E-03			
seous Do -131, I-13 and Parti Nuclides alf-life > 8	295	ODCM Critical Receptor (mrem) % Dose Limit	< 0.01	0.05	0.04	0.04	0.06			
Gaseous Dose m I-131, I-133, I 4* and Particul Nuclides half-life > 8 D	1	ODCM Critical Receptor (mrem)	2.83E-02	2.81E-02	2.93E-02	3.14E-02	1.17E-01			
with C-1-0	* with C-14 Dose	% Dose Limit	0.38	0.38	0.39	0.42	0.78			
			HCGS							
Gaseous Effluent Parameter Qtr. 1 Qtr. 2 Qtr. 3 Qtr. 4							Annual			
5	e	Dose Limit (mrad)		5.00	E+00		1.00E+01			
eous Dose From Noble Gas	Air	Max Gamma Air Dose (mrad)	2.69E-04	6.08E-07	1.39E-03	2.37E-04	1.90E-03			
80	ø	% Dose Limit	0.01	< 0.01	0.03	0.00 < 0.01	0.02			
38	1	Dose Limit (mrad)		1.00	E+01		2.00E+01			
ŝ	Beta Air	Maximum Beta Air Dose (mrad)	2.93E-04	1.79E-06	2.47E-03	4.38E-04	3.21E-03			
ම	a	% Dose Limit	< 0.01	< 0.01	< 0.01 0.02	< 0.01	<0.01 0.02			
Constant Con							1.50E+01			
43, 43, 66 Fee Fee Fee Fee Fee Fee Fee Fee Fee	0 7 8	ODCM Critical Receptor (mrem)	1.25E-02	5.43E-03	8.45E-03	1.40E-02	4.03E-02			
Gaseous Dose From -131, I-133, H-3, C-14* and Particulate Nuclides with half-life > 8 Days	• no C-14 Dose	% Dose Limit	0.17	0.07	0.11	0.19	0.27			
Gaseous Dose From 131, I-133, H-3, C-14 and Particulate Nuclides Muclides 8 Days	• with C-14 Dose	ODCM Critical Receptor (mrem)	2.51E-02	2.74E-02	2.76E-02	3.11E-02	1.11E-01			
Vith a	°0Å	% Dose Limit	0.33	0.36	0.37	0.41	0.74			

PSEG 2019 ARERR

Page 19 of 116

Annual Radioactive Effluent Release ReportYEAR: 2020Page 103 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

Table 2

2019 Doses and Percent of the Limits from Gaseous Effluents by Operating Unit (cont.)								
		SGS-	HCGS Site 1	Total				
G	iaseous	Effluent Parameter	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Annual	
E	g Dose Limit (mrad)			1.50	E+01		3.00E+01	
Ë s	Gamm Air	Max Gamma Air Dose (mrad)	3.37E-04	3.96E-05	1.44E-03	3.15E-04	2.13E-03	
ous Dose f Noble Gas	Gi	% Dose Limit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
she C	Air	Dose Limit (mrad)	3.00E+01				6.00E+01	
õ 2	Beta /	Maximum Beta Air Dose (mrad)	3.19E-04	2.29E-05	2.49E-03	4.67E-04	3.30E-03	
Gai	B(% Dose Limit	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
e . H.3, ulate If-life	승규 문 · · · · · · · · · · · · · · · · · ·		2.25E+01				4.50E+01	
-133 -133 h ha	* no C-14 Dose	ODCM Critical Receptor (mrem)	1.71E-02	1.65E-02	1.63E-02	2.11E-02	7.10E-02	
ous D 31, I-1 d Par d Par s with 8 Day	- 0 B	% Dose Limit	0.08	0.07	0.07	0.09	0.16	
Gase m I-1 14* an clides	with -14	ODCM Critical Receptor (mrem)	7.63E-02	7.77E-02	8.09E-02	8.69E-02	3.22E-01	
From C-14*	* with C-14 Dose	% Dose Limit	0.34	0.35	0.36	0.39	4.43 0.72	

B. Doses from Liquid Effluent:

Quarterly and Annual Total Body and Critical Organ doses from liquid effluent were calculated using the methodology described in the SGS and HCGS ODCMs at the controlling receptor location of 0.75 miles N of SGS. Usage factors and dose conversion factors used in the liquid dose calculations were those presented in the SGS and HCGS ODCMs.

SGS Unit 1									
Liquid Effluent Parameter	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Annual				
Total Body Dose Limit (mrem)		1.50E+00							
Maximum Total Body Dose (mrem)	3.42E-03	3.42E-03 3.14E-03 1.93E-03 4.99E-03							
% Dose Limit	0.23	0.21	0.13	0.33	0.45				
Organ Dose Limit (mrem)		1.00E+01							
Maximum Organ Dose (mrem)	4.11E-03	5.01E-03	2.52E-03	5.11E-03	1.67E-02				
% Dose Limit	0.08	0.10	0.05	0.10	0.17				
	SGS	Unit 2							
Liquid Effluent Parameter	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Annual				
Total Body Dose Limit (mrem)		1.50	E+00	-	3.00E+00				
Maximum Total Body Dose (mrem)	1.27E-03	1.01E-03	5.58E-04	1.15E-03	3.99E-03				
% Dose Limit	0.08	0.07	0.04	0.08	0.13				
Organ Dose Limit (mrem)		5.00	E+00		1.00E+01				
Maximum Organ Dose (mrem)	3.53E-03	1.89E-02	1.62E-03	1.94E-03	2.60E-02				
% Dose Limit	0.07	0.38	0.03	0.04	0.26				

Table 3 2019 Doses and Percent of the Limits from Liquid Effluents by Operating Unit

PSEG 2019 ARERR

Page 20 of 116

Annual Radioactive Effluent Release ReportYEAR: 2020Page 104 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 Doses and Percent of		able 3 om Liquid Ef	fluents by O	perating Uni	it (cont.)	
HCGS						
Liquid Effluent Parameter	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Annual	
Total Body Dose Limit (mrem)		1.50E+00				
Maximum Total Body Dose (mrem)	2.15E-05	5.47E-05	3.99E-05	6.75E-04	7.92E-04	
% Dose Limit	< 0.01	< 0.01	< 0.01	0.05	0.03	
Organ Dose Limit (mrem)		5.00	E+00	-	1.00E+01	
Maximum Organ Dose (mrem)	2.37E-05	2.80E-04	7.44E-05	2.04E-03	2.41E-03	
% Dose Limit	< 0.01	0.01	< 0.01	0.04	0.02	
S	GS Units 182	2 + HCGS Si	te Total			
Liquid Effluent Parameter	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Annual	
Total Body Dose Limit (mrem)		4.50	E+00		9.00E+00	
Maximum Total Body Dose (mrem)	4.71E-03	4.21E-03	2.53E-03	6.82E-03	1.83E-02	
% Dose Limit	0.10	0.09	0.06	0.15	0.41 0.20	
Organ Dose Limit (mrem)		1.50	E+01		3.00E+01	
Maximum Organ Dose (mrem)	7.66E-03	2.41E-02	4.21E-03	9.09E-03	4.51E-02	
% Dose Limit	0.05	0.16	0.03	0.06	0.30 0.15	

C. Doses from Gaseous Effluent using 2019 Annual Average Meteorology:

As a check on the use of conservative historical meteorological dispersion (χ /Q) and deposition values (D/Q), the 2019 gaseous release curies (Tables 1C-1, 1C-2 and 1C-3) for each of the three units and the 2019 annual average dispersion and deposition data (Table 4) were entered into the NRC approved GASPAR computer program to calculate doses to the critical receptors and pathways identified by the 2019 Land Use Census (LUC). The receptor locations for this dose calculation were plotted with the 2019 wind rose overlay (Figure 7). The 2019 annual joint frequency data and calculated χ /Q and D/Q values for SGS and HCGS are detailed in Appendix B. The PSEG meteorological monitoring program achieved 96.0% joint frequency data recovery.

The methods used to determine gaseous doses were consistent with the methods described in SGS and HCGS ODCMs and in NRC Regulatory Guide 1.109. The 2019 LUC did not identify any gardens greater than 500 ft² within five miles producing broadleaf vegetation; however, that pathway was included in the dose analysis.

Using the 2019 meteorology data the GASPAR calculated doses (Table 5) were lower than those reported in Table 2 for the critical receptor located at 4.6 miles SW using the default ODCM meteorology, except for C-14. The 2019 χ /Q value was higher than that in the ODCM.

	Organ Dose Excluding C-14	Organ Dose Including C-14
Critical Receptor 4.6 mi SW Table 2 page 20	7.10E-02	3.22E-01
Critical Receptor 4.6 mi SW Table 5 page 25	1.76E-02	4.14E-01

PSEG 2019 ARERR

Page 21 of 116

Annual Radioactive Effluent Release ReportYEAR: 2020Page 105 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

Table 5

2019 Total Body and Critical Organ Doses at Receptor Locations Using Annual Average X/Q and D/Q Data by Each Operating Unit (continued)

	Meat Critical Organ Doses Inhalation, Ground Plane, Meat 4.2 mi NNE					
Operating	Exclu	ding C-14	Inclu	iding C-14		
Unit	Total Body	Organ	Total Body	Organ		
	(mrem)	(mrem)	(mrem)	(mrem)		
SGS Unit 1	7.52E-04	7.55E-04	4.23E-03	1.80E-02		
SGS Unit 2	3.49E-04	3.51E-04	4.81E-03	2.26E-02		
HCGS	1.29E-03	1.39E-03	7.04E-03	2.99E-02		
Site Total	2.39E-03	2.50E-03	1.61E-02	7.05E-02		

	Meat - Garden Critical Organ Doses Inhalation, Ground Plane, Meat, Vegetation 4.6 mi SW					
Operating	Exclud	ing C-14	Including C-14			
Unit	Total Body (mrem)	Organ (mrem)	Total Body (mrem)	Organ (mrem)		
SGS Unit 1	3.08E-03	1.26E-02	2.13E-02	9.67E-02		
SGS Unit 2	8.78E-04	8.80E-04	2.52E-02	1.22E-01		
HCGS	3.83E-03	4.08E-03	4.29E-02	1.95E-01		
Site Total	7.79E-03	1.76E-02	8.93E-02	4.14E-01		

As set forth in 10CFR50 Appendix I, ALARA requirements for gaseous effluent were met if a licensee demonstrates that the estimated annual external dose from gaseous effluents to any individual in unrestricted areas does not exceed 5 mrem to the total body or 15 mrem to the skin. Compliance with these limits was demonstrated for 2019 gaseous effluents by the calculated total body and skin doses from external exposure pathways (i.e., plume and ground deposition) at the controlling site boundary location in the north sector. The calculated total body dose and skin dose from the combined gaseous releases for the site represent less than 0.46% 0.59% (Total Body) and less than 0.32% 0.33% (Organ) of the respective dose limits (Table 5 Site Boundary Location). This confirms that no single unit's radioactive gaseous effluent releases exceeded the Appendix I dose limits. These doses (presented below) were calculated using the GASPAR computer program, which was consistent with the methods described in Regulatory Guide 1.109.

PSEG 2019 ARERR

Page 25 of 116

Annual Radioactive Effluent Release	Report	YEAR: 2020	Page 106 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Dose Parameter from Table 5 Site Boundary	Annual Dose (mrem)
Total Body Dose from Noble Gases, Iodines,	
Particulates, H-3 and C-14:	2.20E-02 2.94E-02
Percent of Appendix I Annual Limit (5 mrem):	0.46% 0.59%
Organ Dose from Noble Gases, Iodines, Particulates, H	ł-

2. Total Dose to a Member of the Public, Resulting from Radioactive Effluent Releases and Radiation from Uranium Fuel Cycle Sources

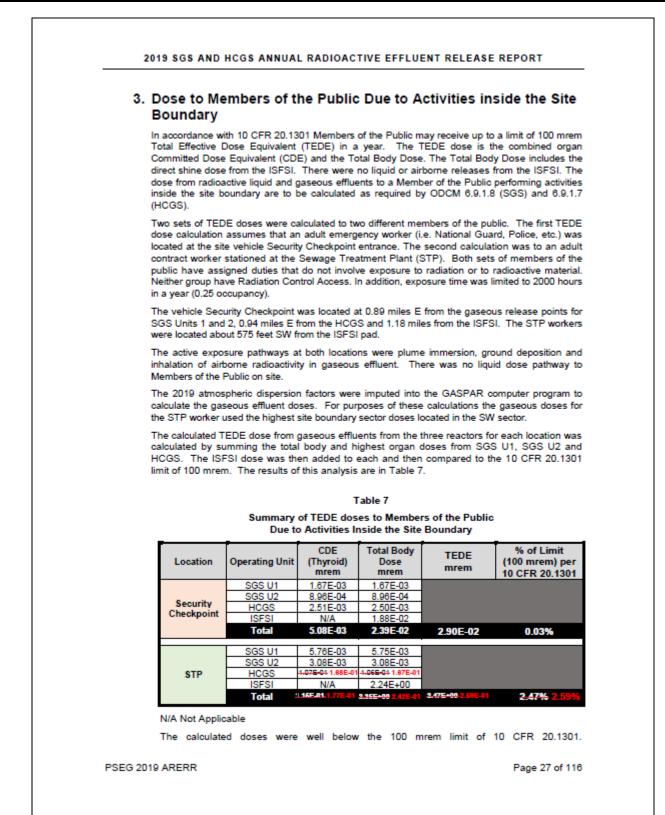
40 CFR 190 and 10 CFR 72.104 limit the total dose to a "Real Individual" to 25 mrem to the total body, 75 mrem to the thyroid and 25 mrem to other organs other than the thyroid. The maximum annual total body and organ doses from gaseous and liquid pathways with all other uranium fuel cycle sources present on site were calculated as required by section 3.11.4 of the SGS and HCGS ODCMs. The direct dose from the ISFSI pad was determined using the Radiological Environmental Monitoring Program (REMP) and the guidance provided in ANSI/HPS N13.37-2014 (see page 9).

The direct shine dose from the ISFSI to the Critical Receptor located at 4.6 miles in the SW sector was conservatively estimated at 4.64E-03 5.02E-03 mrem. The doses from the gaseous and liquid radioactive effluents released from SGS Units 1 and Unit 2 and HCGS in 2019 resulted in a calculated total body and an organ dose of 1.06E-01 1.08E-01 mrem and 4.50E-01 4.59E-01 mrem, respectively. The majority of dose was from the gaseous dose pathways from C-14. The total dose was calculated as 5.66E-01 5.72E-01mrem, which was below the limits of 40 CFR 190 and 10 CFR 72.104.

The results of this Analysis are in Table 6

Table 6

2019 Total Body and Organ Doses due to Liquid and Gaseous Effluents and Direct Shine ISFSI Dose to the Critical Receptor Located at 4.6 miles SW


Generating Station	Total Body Dose (mrem)		Critical C (m	ISFSI (mrem)	
_	Liquid	Gaseous	Liquid	Gaseous	
SGS Unit 1	1.35E-02	2.13E-02	1.67E-02	9.67E-02	
SGS Unit 2	3.99E-03	2.52E-02	2.60E-02	1.22E-01	
HCGS	7.92E-04	4.11 5-02 4.29E-02	2.41E-03	1 .94E-01 1.96E-01	
Total	1.83E-02	8.76E-03 8.93E-02	4.51E-02	4.13E-01 4.14E-01	
Total of Liquid and Gaseous (mrem)	1.06E-01 1.08E-01		4.50E-01 4.59E-01		5.02E-03
Total Dose (mrem)		5.60E 01	5.72E-01		

* Includes C-14 dose.

PSEG 2019 ARERR

Page 26 of 116

Annual Radioactive Effluent Release	e Report	YEAR: 2020	Page 107 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Annual Radioactive Effluent Release ReportYEAR: 2020Page 108 of 140Company:PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

TABLE 1C-2

GASEOUS EFFLUENTS - GROUND LEVEL RELEASES

Facility: SGS Unit 2

Period: 2019

Nuclides Released Continuous Mode					Batch Mode						
1. Fission gases	Unit	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Total	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Total
Ar-41	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	4.69E-02	4.42E-02	3.85E-02	7.55E-02	2.05E-01
Xe-133m	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	4.65E-04	<lld< td=""><td>4.65E-04</td></lld<>	4.65E-04
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	4.86E-03	< LLD	1.29E-02	<lld< td=""><td>1.78E-02</td></lld<>	1.78E-02
Xe-135	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	4.64E-04	< LLD	4.64E-04
Total for Period	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	5.17E-02	4.42E-02	5.23E-02	7.55E-02	2.24E-01
2. lodines and Ha	alogen	IS				0					
None	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
Total for Period	Ci	< LLD	< LLD	< LLD	<lld< td=""><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td></lld<>	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
3. Particulates											
None	Ci	< LLD	< LLD	< LLD	4.395- 96< LLD	- 1.295- 96< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
Total for Period	Ci	< LLD	< LLD	< LLD	4.655- 06< LLD	4.655- 96< LLD	< LLD	< LLD	< LLD	< LLD	< LLD
4. Tritium	Ci	3.65E+00	3.83E+01	3.01E+01	3.68E+01	1.09E+02	3.74E-02	1.75E-02	6.47E-02	3.98E-01	5.17E-01
5. C-14	Ci	2.75E+00	2.73E+00	2.84E+00	3.05E+00	1.14E+01	< LLD	< LLD	< LLD	< LLD	< LLD

Note: Only radionuclides with positive activity reported in this table.

PSEG 2019 ARERR

Page 42 of 116

Annual Radioactive Effluent Release	Report	YEAR: 2020	Page 109 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

soi		TABLE 3A-2 AND IRRADIATED FUEI IIPPED OFFSITE FOR BU (Not Irradiated Fuel)		AL
ty: <u>SGS Units 1 an</u>	<u>d 2</u>		Perio	d: <u>2019</u>
	; Resins, Filters, a Vaste Processing R	nd Evaporator Bottoms Resin		
Waste	V	olume	Curies	% Error
Class	ft ³	m³	Shipped	(Activity)
A	5.50E+02	1.56E+01	8.49E+00	+/-25%
В	0.00E+00	0.00E+00	0.00E+00	+/-25%
С	0.00E+00	0.00E+00	0.00E+00	+/-25%
Unclassified	0.00E+00	0.00E+00	0.00E+00	+/-25%
All	5.50E+02	1.56E+01	8.49E+00	+/-25%
Major Nuclides fo	r Above Table:		P	ercent Cutoff 1%
-	I Evaporator Botto	ms	-	
Nuclide Name		Percent Abundance	(Curies
Fe-55		4.34%		68E-01
Co-58		47.53%	4.	03E+00
Co-60		11.14%	9.	45E-01
Ni-63		30.89%	2.	62E+00
Sb-125		2.39%	2.	03E-01
Cs-137		1.52%	1.	29E-01
Resins, Filters and Waste Class B	I Evaporator Botto	ms		
Nuclide Name		Percent Abundance		Curies
None		N/A		N/A
	I Evaporator Botto	ms		
Waste Class C Nuclide Name		Percent Abundance		Queine
None		N/A	`	Curies N/A
Resins, Filters and Waste Class All	I Evaporator Botto	ms		
Nuclide Name		Percent Abundance		Curies
Fe-55		4.34%		68E-01
Co-58		47.53%	4.	03E+00
Co-60		11.14%		45E-01
Ni-63		30.89%		62E+00
Sb-125		2.39%		03E-01
Cs-137		1.52%	4	29E-01

N/A Not Applicable

PSEG 2019 ARERR

Γ

Annual Radioactive Effluent Release ReportYEAR: 2020Page 110 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

SOLID R f. Waste Strear	ADWASTE SHIP	(Not Irradiated F	D FUEL SHI	PMENTS DISPOSAL (continued)	
Waste	Vo	lume	Curie	s % Error	
Class	ft ³	m³	Shippe		
A	1.99E+04	5.64E+02	1.02E+	01 +/-25%	
В	0.00E+00	0.00E+00	0.00E+		
c	0.00E+00	0.00E+00	0.00E+		
Unclassified	0.00E+00	0.00E+00	0.00E+	00 +/-25%	
All	1.99E+04	5.64E+02	1.02E+	01 +/-25%	
Nuclide Name Fe-55 Co-58 Co-60		Percent Abunda 5.43% 43.43% 14.64%	ance	Curies 5.55E-01 4.44E+00 1.50E+00	
Ni-63		28.46%		2.91E+00	
Sb-125		2.34%		2.40E-01	
Cs-137 Waste Stream; Su Waste Class B	um of All 4 Categ			1.49E-0	
Nuclide Name		Percent Abunda	ance	Curies	
None Waste Stream; So Waste Class C Nuclide Name	um of All 4 Categ	Percent Abunda	ance	N/A Curies	
None	um of All 4 Categ	N/A ories		N/A	
Waste Stream; So Waste Class All		Percent Abundance		Curies	
		Percent Abunda	ance		
Waste Class All Nuclide Name Fe-55		5.43%	ance	5.55E-01	
Waste Class All Nuclide Name Fe-55 Co-58		5.43% 43.43%	ance	4.44E+00	
Waste Class All Nuclide Name Fe-55 Co-58 Co-60		5.43% 43.43% 14.64%		4.44E+00 1.50E+00	
Waste Class All		5.43% 43.43%		4.44E+00	

N/A Not Applicable

PSEG 2019 ARERR

Annual Radioactive Effluent Release Report Page 111 of 140 YEAR: 2020 Company: PSEG Nuclear LLC Plant: Salem & Hope Creek Generating Stations

		TAP	E 1A-3				
GASE	OUS EFFLUE	NTS – SU	MMATION	OF ALL RI	ELEASES		
Facility: <u>HCGS</u>						Perio	d: <u>2019</u>
A. Fission & Activation Gases	Unit	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Total	Est. Total Error %
Total Release	Ci	2.50E+00	2.51E-02	2.45E+01	4.56E+00	3.16E+01	3.40E+01
Average release rate for the period	μCi/sec	3.21E-01	3.19E-03	3.09E+00	5.74E-01	1.00E+00	
Percent of limit (ODCM 3.11.2.2(a))	Gamma Air % Beta Air %		See 1	Table 2 on pa	age 18		
B. lodines and Halogens							
Total Release	Ci	3 905 04	4 085 08	6.62E-05	1 215 04	5.72E-04	3.00E+01
Average release rate for the period			4.08E-00 5.18E-07				0.00E+01
Percent of limit (ODCM 3.11.2.3(a))	-	1.000-00	3.102-07	0.33E-00	1.000-00	1.012-00	
C. Particulates	~	1			I		
	<u>.</u>		<11.0				0.005.04
Particulates with half-lives > 8 days		4.26E-06	<lld< td=""><td></td><td></td><td>5.38E-05</td><td>3.00E+01</td></lld<>			5.38E-05	3.00E+01
Average release rate for the period	-	5.48E-07	<lld< td=""><td>8.04E-07</td><td>5.43E-06</td><td>1./1E-06</td><td></td></lld<>	8.04E-07	5.43E-06	1./1E-06	
Percent of limit (ODCM 3.11.2.3(a))	-						
Gross alpha radioactivity	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	
D. Tritium							
Total Release	Ci			1.16E+02			3.10E+01
Average release rate for the period	µCi/sec	1.71E-05 1.44E+01	1.71E-06 1.47E+01	1.71E-06 1.46E+01	1.71E-05 5.14E+00	1.71E-06 1.22E+01	
Percent of limit (ODCM 3.11.2.3(a))	%				1		
E. C-14							
Total Release	Ci	3.38E+00	3.69E+00	3.71E+00	4.18E+00	1.50E+01	N/A
Average release rate for the period	μCi/sec	4.35E-01	4.69E-01	4.67E-01	5.26E-01	4.74E-01	
Percent of limit (ODCM 3.11.2.3(a))	%						
F. I-131, I-133, H-3 & Particulates > 8 day half-life							
Percent of limit (ODCM 3.11.2.3(a))	%		See 1	Table 2 on pa	age 18		
G. I-131, I-133, H-3, Particulates > 8 day half-life & C-14							
Percent of limit (ODCM 3.11.2.3(a))	%		See 1	Table 2 on pa	age 18		
 Iodine, Tritium, C-14, and Pathe percent ODCM Limit is to a sub-group member was not It is not necessary to calc calculation of overall uncertainer 	ased on mos tidentified in ulate uncerta	t limiting n effluent). inties for (uclide and	include C-	for the gro	oup (even in	cases when
PSEG 2019 ARERR						Page 57 o	f 116

Annual Radioactive Effluent Release ReportYEAR: 2020Page 112 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

2019 SGS AND HCGS ANNUAL RADIOACTIVE EFFLUENT RELEASE REPORT

TABLE 2B-3

LIQUID EFFLUENTS

Facility: HCGS

Period: 2019

		Contir	nuous Mo	de				В	atch Mode		_
Nuclides Released	Unit	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Total	Qtr. 1	Qtr. 2	Qtr. 3	Qtr. 4	Total
H-3	Ci	3.09E-02	1.89E-02	3.57E-02	9.72E-02	1.83E-01	4.01E+02	4.21E+02	5.76E+01	1.12E+02	9.91E+0
Fission and Acti	vation	Products	5								
Cr-51	Ci	< LLD	<lld< td=""><td><lld< td=""><td>< LLD</td><td>< LLD</td><td>< LLD</td><td><lld< td=""><td>< LLD</td><td>4.58E-05</td><td>4.58E-0</td></lld<></td></lld<></td></lld<>	<lld< td=""><td>< LLD</td><td>< LLD</td><td>< LLD</td><td><lld< td=""><td>< LLD</td><td>4.58E-05</td><td>4.58E-0</td></lld<></td></lld<>	< LLD	< LLD	< LLD	<lld< td=""><td>< LLD</td><td>4.58E-05</td><td>4.58E-0</td></lld<>	< LLD	4.58E-05	4.58E-0
Mn-54	Ci	<lld< td=""><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>8.02E-08</td><td>3.49E-05</td><td>1.30E-05</td><td>2.49E-03</td><td>2.54E-0</td></lld<>	< LLD	< LLD	< LLD	< LLD	8.02E-08	3.49E-05	1.30E-05	2.49E-03	2.54E-0
Co-58	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	9.53E-06	1.91E-03	1.92E-0
Co-60	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	1.27E-05	8.74E-04	1.34E-04	4.81E-03	5.84E-03
Zn-65	Ci	<lld< td=""><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>< LLD</td><td>1.79E-05</td><td>1.50E-04</td><td>1.68E-04</td></lld<>	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	1.79E-05	1.50E-04	1.68E-04
Sb-122	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	1.39E-04	1.39E-04
Sb-124	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	3.27E-03	3.27E-03
Sb-125	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	6.48E-04	6.48E-04
-131	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	3.40E-04	3.40E-04
-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	1.42E-07	1.42E-07
Cs-134	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	8.66E-04	8.66E-04
Cs-136	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	2.18E-05	2.18E-0
Cs-137	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	< LLD	2.45E-05	< LLD	7.97E-04	8.21E-04
Total for Period	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	1.28E-05	9.33E-04	1.75E-04	1.55E-02	1.66E-02
Dissolved and E	ntrain	ed Noble	Gases				-				
Xe-133	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	1.41E-03	2.63E-04	4.38E-05	2.76E-04	1.99E-0
Xe-135		< LLD	< LLD	< LLD	< LLD	< LLD	2.70E-05	0.00E+00 < LLD	1.24E-05	1.61E-06	4.10E-0
Total for Period	Ci	< LLD	< LLD	< LLD	< LLD	< LLD	1.44E-03	2 625 04	5 825 05	2.78E-04	2 0 2 5 0

Note: Only radionuclides with positive activity reported in this table.

PSEG 2019 ARERR

Page 60 of 116

Annual Radioactive Effluent Release	YEAR: 2020	Page 113 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

		ED OFFSITE FOR B (Not Irradiated F		-	
Waste Stream; Ir	· · ·				
Waste		ume	Curies	% Error	
Class	ft ³	m ³	Shipped	(Activity	
B	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	+/-25%	
<u>с</u>	1.58E+01	4.48E+01	2.68E+04	+/-25%	
Unclassified	0.00E+00	0.00E+00	0.00E+00	+/-25%	
All	1.58E+01	4.48E+01	2.68E+04	+/-25%	
Waste Class A Nuclide Name None		Percent Abund N/A	ance	Curies N/A	
Irradiated Compo Waste Class B	nents				
Nuclide Name		Percent Abund	ance	Curies	
None		N/A		N/A	
Irradiated Compo Waste Class C	nents				
Nuclide Name		Percent Abund	ance	Curies	
Mn-54		2.24%		6.02E+02	
Fe-55		54.12%		1.45E+04	
Co-60		36.88%		9.90E+03	
Ni-63		6.39%		1.72E+03	
Irradiated Compo Waste Class All	nents		·		
Nuclide Name		Percent Abund	ance	Curies	
Mn-54		2.24%		6.02E+02	
Fe-55		54.12%		1.45E+04	
Co-60		36.88%		9.90E+03	
Ni-63		6.39%		1.72E+03	

N/A Not Applicable

PSEG 2019 ARERR

Page 63 of 116

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 114 of 140	
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Statio			

Page Intentionally Left Blank

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 115 of 140	
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Station			

Attachment 7, 2020 Radiological Groundwater Protection Program (RGPP) Report

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 116 of 140	
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Statio			

Page Intentionally Left Blank

Annual Radioactive Effluent Release	YEAR: 2020	Page 117 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

1.0 Results of the Integrated Tritium Management Program with 2020 Radiological Groundwater Protection Program (RGPP), and 2020 Monitoring Well and Remedial Action Work Plan

1.1 Introduction

This report presents results of the 2020 groundwater monitoring activities performed by PSEG Nuclear at both the Hope Creek Generating Station (HCGS) and Salem Generating Station (SGS); collectively referred to as "the Station". Well locations at the Station are shown on Figure 12 and Figure 13, respectively. To link the various groundwater monitoring programs at the Station, PSEG implemented the Integrated Tritium Management Program (ITMP) which integrates the following four broad programs:

- The Radiological Groundwater Protection Program (RGPP) is a program that was developed to ensure the timely detection of an unpermitted release of radioactive material.
- The Remedial Action Work Plan (RAWP) is a program that monitors the remediation of the historical release from the SGS Unit 1 Spent Fuel Pool.
- Investigation wells were installed as part of independent investigations into groundwater quality, that are not included as part of the RGPP or RAWP.
- Early Site Permit (ESP) wells which are periphery wells that were installed outside of the protected area to support the potential licensing of a new nuclear plant.

Well construction details for the Station's RGPP wells are presented on Table 51 and Table 52, respectively. Well construction details for the wells that are not specifically part of the RGPP are presented on Table 53.

PSEG initiated the RGPP in 2006 to characterize groundwater at, and in the vicinity of, the Station with respect to historical releases of radionuclides and to provide the mechanism to detect such releases if one were to occur. The RGPP is a voluntary program implemented by PSEG in conjunction with the nuclear industry initiatives and associated guidance NEI 07-07 (17). The other key elements that comprise the RGPP and contribute to public safety are spill/leak prevention, effective remediation of spills and leaks, and effective stakeholder communication.

In 2002, PSEG operations personnel at SGS identified a release of tritiated water from the SGS Unit 1 Spent Fuel Pool to the environment. PSEG developed a RAWP to remediate the tritium in groundwater, which was reviewed by the United States Nuclear Regulatory Commission (USNRC) and approved by the New Jersey Department of Environmental Protection (NJDEP) Bureau of Nuclear Engineering (BNE). A Groundwater Recovery System (GRS) was installed to control the migration of groundwater in the shallow, water-bearing unit and to reduce the remaining mass of tritiated groundwater. The operation and performance of the GRS is documented in the Remedial Action Progress Reports (RAPRs) provided to the NRC and NJDEP-BNE by PSEG. PSEG generates an effluent release permit for the residual tritium in groundwater discharging to the Delaware River. The permit values are included in the liquid effluent data reported earlier in this document.

The Station located in a flat, largely undeveloped region of southern New Jersey, which is bordered to the west and south by the Delaware River and to the east and north by extensive marshlands. The Station obtains cooling water from the Delaware River.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 118 of 140
Company: PSEG Nuclear LLC Plant: Salem &		Hope Creek Ge	nerating Stations

The Station is underlain by over 1,000 feet of inter-layered sand, silt, and clay. PSEG owns seven production/potable wells, which range in depth from 270 feet below ground surface (bgs) to 1135 feet bgs. These wells are installed in deeper formations isolated by confining units beneath the Vincentown Formation.

The results from a computer based well search identified the nearest off-site permitted potable well is located approximately 3.5 miles away. Shallow groundwater and the Vincentown aquifer (the two most shallow water bearing units underlying the Station) flow toward and discharge to the Delaware River, thus reducing the potential that Station operations have or will influence off-site potable wells.

1.2 Radiological Groundwater Protection Program

This section of the annual report is prepared to summarize the status, activities, and groundwater analytical results collected in 2020 at the Site. This report also describes any changes made to the monitoring program during the 2020 reporting year.

1.2.1 Objectives of the Radiological Groundwater Protection Program

The long-term sampling program objectives are as follows:

- Identify suitable locations to monitor and evaluate potential impacts from Station operations before significant radiological impact to the environment or potential drinking water sources can occur.
- Refine the conceptual understanding of local hydrogeology and maintain current knowledge of potential flow paths on the surface and in groundwater beneath the Station.
- Evaluate systems, structures, components (SSCs) and work practices, which have the potential to release licensed radioactive material to the groundwater and develop strategies to mitigate potential releases to the environment.
- Perform routine groundwater monitoring and evaluate analytical results.
- Report any leaks, spills, or other detections with potential radiological significance to stakeholders in a timely manner.
- Take necessary corrective actions to protect groundwater resources.

1.2.2 <u>Sample Collection</u>

In 2006, the RGPP monitoring wells (Table 51 and Table 52) were installed at the Station as part of site investigation activities. Details pertaining to these activities are documented in the Site Investigation Reports (Arcadis 2006A and 2006B). Groundwater samples are collected from all RGPP monitoring wells at least semi-annually, with additional monitoring conducted as appropriate. The groundwater sample collection schedule is adaptively managed to ensure that representative data are collected to provide the information necessary to evaluate groundwater quality conditions. Monitoring wells are sampled following the low-flow purging and sampling techniques in accordance with the Field Sampling Procedures Manual (NJDEP 2005). This methodology is consistent with protocols established in the RAWP.

1.2.3 <u>New RGPP Wells</u>

No new wells were added as part of the RGPP during 2020. Further, all remaining ESP wells, and well Q, were closed/abandoned in 2020.

Annual Radioactive Effluent Release	YEAR: 2020	Page 119 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

1.2.4 <u>Sample Analysis</u>

Groundwater samples collected from RGPP wells are analyzed for plant-related gamma emitting radionuclides (semi-annually), total strontium (annually), and iron-55 and nickel-63 (biennially) and tritium (every sample) by an off-site radiochemical analytical laboratory.

The samples are maintained under chain of custody procedures throughout sample handling, screening, shipping, and laboratory analysis process. Samples are submitted to the respective Station's on-site chemistry laboratory for radiological analysis screening prior to shipment to Teledyne Brown Engineering (TBE) located in Knoxville, Tennessee, for radiological analysis. Analytical laboratories are subject to internal quality assurance programs and inter-laboratory cross-check programs. Station personnel review and evaluate analytical data obtained from the laboratory.

1.2.5 Data Evaluation

Analytical results are reviewed for adverse trends or anomalies. Investigations and corrective action program notifications (CAP) are made as required by program procedures. The radiological data collected since the inception of the RGPP program is the basis for the baseline statistical evaluation to which current operational data are compared. Several factors are important in the interpretation and evaluation of the radiological data:

1. Detection limits

The Offsite Dose Calculation Manual (ODCM) specifies detection capabilities for each isotope that may be produced by the Station. While the detection capability for tritium specified in the ODCM is 3,000 picocuries per liter (pCi/L) in water, RGPP tritium analyses are performed to a lower value of 200 pCi/L at our offsite lab. Lower values for LLDs are used to be consistent with the State of New Jersey where PSEG conducts split samples with the NJDEP-BNE for specific wells. Each well has a statistically derived action level. When an action level is exceeded, PSEG may increase monitoring frequency and evaluates potential sources of the elevated tritium. Relevant groundwater evaluation criteria are listed in Table 54.

2. Laboratory Measurements Uncertainty

Statistically, the value of a measurement is expressed as a range with a stated level of confidence. PSEG is required to report results with a 95% level of confidence.

Analytical uncertainties are reported at the 95% confidence level in this report and are consistent with the methodologies used to report data in the Annual Radiological Environmental Operating Report.

1.2.6 RGPP Data Quality

Groundwater samples consist of up to four aliquots. One of the aliquots is submitted to the respective Site's on-site chemistry laboratory for initial screening, which includes tritium and gamma spectroscopy analysis. The second aliquot is sent to TBE for tritium analysis. In accordance with NJDEP request, the third aliquot is collected from specific wells and submitted for split sample analysis to GEL Laboratories located in Charleston, South Carolina. The fourth aliquot is held as a back-up, "retained" sample until all the analytical results are received and determined to be valid.

Annual Radioactive Effluent Release	YEAR: 2020	Page 120 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

All radionuclide results are compared to the following limitations defined as part of the RGPP:

- Internal Administrative Control Limits are defined within the RGPP procedures. They are developed based on a statistical analysis of the historical baseline concentrations of tritium in each specific well and are used to identify tritium concentrations that warrant further investigation for that specific well. Solely exceeding an Administrative Control Limit does not initiate external communication unless the external reporting limit is also exceeded.
- The Courtesy Communication Limit is a tritium concentration, below regulatory requirements, based on agreements with NJDEP-BNE, USNRC and other stakeholders ensuring the stakeholders are cognizant of potential issues. If a confirmed tritium result, collected from a RGPP well, exceeds the Courtesy Communication Limit of 3,000 pCi/L, PSEG provides a courtesy communication by telephone no later than the end of the next business day to NJDEP-BNE. The NRC Site Resident is also informed. This is not a regulatory required communication.
- Voluntary Communication Limits are those concentrations of radionuclides that require voluntary communication and reporting to regulators and/or stakeholders based on NEI 07-07, the ODCMs, and Site procedures.

2.0 Discussion

The locations of the RGPP monitoring wells located at HCGS and SGS are depicted on Figure 12 and Figure 13, respectively. Additionally, well construction details for the HCGS RGPP wells and SGS RGPP wells are presented on Table 51 and Table 52, respectively. The relevant radiological parameters used to evaluate the groundwater analytical results are provided in Table 54. The groundwater tritium analytical results for HCGS and SGS are shown on Table 55 and Table 56, respectively.

2.1.1 <u>Groundwater Results - RGPP</u>

Groundwater samples were collected from all RGPP monitoring wells during 2020 in accordance with the Station and PSEG's Laboratory and Testing Services (LTS) procedures for the RGPP. Sample results are discussed below.

1. HCGS RGPP Wells

Tritium analytical results for groundwater samples collected during 2020 from HCGS RGPP monitoring wells are summarized below and are presented in Table 55.

- Tritium was not detected in groundwater samples collected from 8 of the 13 HCGS RGPP wells (wells BH, BK, BL, BP, BQ, BR, BS, and BT).
- Well BI: Tritium concentrations detected in well BI ranged from 336 pCi/L (February 2020) to 347 pCi/L (May 2020) and averaged 342 pCi/L during 2020. Tritium was not detected in the samples collected in August or November 2020. Well BI is located west of the reactor containment and is a sentinel (source) well for facilities and buried piping.
- Well BJ: Tritium concentrations detected in well BJ ranged from 2,190 pCi/L (October 2020) to 4,810 pCi/L (January 2020) and averaged 3,330 pCi/L during 2020. Well BJ is located near the HCGS main permitted gaseous effluent vent (i.e., south plant vent).

Annual Radioactive Effluent Release	YEAR: 2020	Page 121 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- Well BM: Tritium was detected at concentrations ranging from 373 pCi/L (February 2020) to 541 pCi/L (November 2020) and averaged 481 pCi/L during 2020. Well BM is located northwest of the reactor containment and is a sentinel (source) well for facilities and buried piping.
- Well BN: Tritium concentrations detected in well BN ranged from 276 pCi/L (August 2020) to 796 pCi/L (May 2020) and averaged 481 pCi/L. Well BN is located northeast of the Materials Control Center and is a sentinel (source) well for the Auxiliary Boiler building and buried piping.
- Well BO: Tritium concentrations detected in well BO ranged from 261 pCi/L (May 2020) to 584 pCi/L (February 2020) and averaged 423 pCi/L. Tritium was not detected in the samples collected in August or November 2020. Well BO is located northeast of the Materials Control Center and is a sentinel (source) well for the Auxiliary Boiler building and buried piping.
- Well BJ was the only HCGS RGPP well where analytical results were greater than 3,000 pCi/L tritium, with a maximum result of 4,810 pCi/L (January 2020).

Except for tritium, no plant-related radionuclides were detected in any HCGS RGPP well sampled in 2020.

2. SGS RGPP Wells

Tritium analytical results for groundwater samples collected during 2020 from SGS RGPP monitoring wells are summarized below and are presented on Table 56.

- Tritium was not detected in groundwater samples collected from 6 of the 13 SGS RGPP wells (wells BA, BB, BF, BU, T, and Y).
- Well AL: Well AL was sampled in May and November 2019, with results of 428 pCi/L and 285 pCi/L respectively. Well AL is located south of the SGS Unit 1 reactor building and is a sentinel (source) well.
- Well BC: Tritium was detected at concentrations ranging from 751 pCi/L (August 2020) to 3,550 pCi/L (November 2020) and averaged 1,612 pCi/L. Well BC is a sentinel (source)/perimeter well located southwest of Facilities, Refueling Water Storage Tank, Auxiliary Feedwater Storage Tank and Primary Water Storage Tank (RAP) tanks and piping.
- Well BD: Tritium was detected at concentrations ranging from 286 pCi/L (February 2020) to 764 pCi/L (November 2020) and averaged 451 pCi/L. Well BD is located to the west of SGS Unit 2 reactor building and is a sentinel (source) well for Facilities, RAP tanks, and piping.
- Well BE: Tritium was detected at concentrations ranging from 443 pCi/L (August 2020) to 991 pCi/L (February) and averaged 658 pCi/L. Well BE is located to the west of SGS Unit 2 reactor building and is a perimeter well.
- Well BG: Tritium was detected at a concentration of 206 pCi/L (February 2020). Tritium was not detected in the samples collected in May, August, or November 2020. Well BG is located northwest of SGS Unit 2 reactor building and is a perimeter well.
- Well U: Tritium was detected at concentrations ranging from 249 pCi/L (August 2020) to 358 pCi/L (March 2020) and averaged 287 pCi/L. Well U is located north of SGS Unit 2 reactor building and is a sentinel (source) well for the House Heating Boilers.

Annual Radioactive Effluent Release	YEAR: 2020	Page 122 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

- Well Z: Tritium was detected in the samples collected in May 2020 and November 2020 at concentrations of 450 pCi/L and 495 pCi/L, respectively. Well Z is located west of the SGS Unit 1 & 2 reactor buildings and is a perimeter well.
- Well BC was the only SGS RGPP well where analytical results were greater than 3,000 pCi/L tritium, with a result of 3,550 pCi/L (November 2020).

Except for tritium, no plant-related radionuclides were detected in any SGS RGPP well sampled in 2020.

2.1.2 Mass Flux Estimation of Tritium to the Delaware River

PSEG uses transect methods to calculate the mass flux of tritium to the Delaware River in the shallow, water bearing unit and the deeper basal sand unit and Vincentown Formation. To calculate the mass flux, the tritium concentration was conservatively estimated using the average concentration detected in monitoring wells located nearest to the Delaware River during each quarter. During 2020, the mass flux within the shallow, water bearing unit and deeper groundwater was estimated to be 0.011 Ci and 0.031 Ci, respectively. Therefore, the total potential estimated mass flux of tritium in groundwater reaching the Delaware River during 2020 was 0.042 Ci.

The calculated mass flux of 0.042 Ci (total of four quarterly estimates) was included in the Station's liquid effluent discharge and reported in the data tables of the Annual Radiological Effluent Release Report.

2.1.3 Investigations

1. Groundwater Monitoring Well Data (Non-RGPP)

As previously discussed, PSEG monitors a series of wells located at the Station. The ITMP is comprised of the RGPP wells, the RAWP wells, the ESP wells and a series of monitoring wells that were installed to investigate groundwater quality, but are not included as part of the RGPP, RAWP, or ESP. No new monitoring wells were installed in 2020. Further, all remaining ESP wells, and well Q, were closed/abandoned in 2020. Well construction details and tritium analytical results for the wells described above that are not specifically part of the RGPP are presented on Table 53 and Table 57, respectively.

2. Past Spills and Leaks: Impacts to Groundwater

In 2020, there were no known active unmonitored or unevaluated releases into the groundwater at the Station.

3.0 RGPP 2021 Status

The RGPP long-term sampling program will be modified as required to meet the RGPP objectives. Baseline sampling and analysis of groundwater is planned to continue the following schedule:

- Tritium will be analyzed at least semi-annually each calendar year to a detection capability less than or equal to 200 pCi/L,
- Plant-related gamma emitters will be analyzed at least semi-annually to the environmental detection limits specified in the ODCM,
- RGPP monitoring well sample frequency will be adjusted as needed based on analytical results.

Annual Radioactive Effluent Release	YEAR: 2020	Page 124 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	enerating Stations

Table 51, RGPP Well Construction Details, HCGS

Well ID	Installation Date	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	MP Elevation (feet RPD)	MP Elevation (feet amsl)	Monitoring Purpose	Source Targets
Well BH	May-06	Sch-40 PVC	4	37.0	27.0 - 37.0	101.16	11.24	Perimeter	NA
Well BI	May-06	Sch-40 PVC	4	37.0	27.0 - 37.0	103.07	13.15	Source	Facilities; Piping
Well BJ	May-06	Sch-40 PVC	4	38.0	28.0 - 38.0	102.97	13.05	Source	Condensate Storage & Transfer; Facilities; Piping
Well BK	May-06	Sch-40 PVC	4	38.5	28.5 - 38.5	101.42	11.50	Perimeter	NA
Well BL	May-06	Sch-40 PVC	4	37.0	27.0 - 37.0	102.69	12.77	Perimeter	NA
Well BM	May-06	Sch-40 PVC	4	37.5	27.5 - 37.5	102.75	12.83	Source	Facilities; Piping
Well BN	May-06	Sch-40 PVC	4	12.5	7.5 - 12.5	102.64	12.72	Source	Auxiliary Boiler Building; Piping
Well BO	May-06	Sch-40 PVC	4	35.0	25.0 - 35.0	97.98	8.06	Perimeter/Source	Building Sewage
Well BP	May-06	Sch-40 PVC	4	38.0	28.0 - 38.0	99.06	9.14	Perimeter/Source	Building Sewage
Well BQ	May-06	Sch-40 PVC	4	42.0	32.0 - 42.0	105.62	15.70	Source	Auxiliary Boiler Building; Dry Cask Storage Building; Piping
Well BR	May-06	Sch-40 PVC	4	40.5	30.5 - 40.5	104.28	14.36	Perimeter/Source	Piping; Dry Cask Storage Building
Well BS	May-06	Sch-40 PVC	4	35.0	25.0 - 35.0	100.55	10.63	Upgradient	NA
Well BT	May-06	Sch-40 PVC	4	38.5	28.5 - 38.5	99.60	9.68	Upgradient	NA

<u>Notes:</u> MP

bgs RPD

Measuring Point Below ground surface Relative to plant datum Above mean sea level (NAVD 1988) Not applicable amsl

NA

Annual Radioactive Effluent Release	YEAR: 2020	Page 125 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Well ID	Installation Date	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	Elevation	MP Elevation (feet amsl)	Monitoring Purpose	Source Targets
Well T	Jun-03	Sch-40 PVC	2	31.2	21.2 - 31.2	104.13	14.21	Source	Facilities; House Heating Boiler
Well U ¹	May-03	Sch-40 PVC	2	32.2	27.2 - 32.2	101.46	11.54	Source	Facilities; House Heating Boiler
Well Y	Sep-03	Sch-40 PVC	2	37.0	27.0 - 37.0	101.81	11.89	Perimeter	NA
Well Z	Sep-03	Sch-40 PVC	2	37.5	27.5 - 37.5	101.86	11.94	Perimeter	NA
Well AL	Jan-04	Sch-40 PVC	2	25.3	15.3 - 25.3	99.13	9.21	Perimeter	NA
Well BA	May-06	Sch-40 PVC	4	39.5	29.5 - 39.5	101.07	11.15	Perimeter	NA
Well BB ¹	May-06	Sch-40 PVC	4	47.0	37.0 - 47.0	102.18	12.26	Perimeter	NA
Well BC	May-06	Sch-40 PVC	4	38.0	28.0 - 38.0	98.78	8.86	Source / Perimeter	Facilities; RAP Tanks; Piping
Well BD	May-06	Sch-40 PVC	4	40.5	30.5 - 40.5	98.78	8.86	Source	Facilities; RAP Tanks; Piping
Well BE	May-06	Sch-40 PVC	4	37.0	27.0 - 37.0	98.31	8.39	Perimeter	NA
Well BF ¹	May-06	Sch-40 PVC	4	42.0	32.0 - 42.0	101.45	11.53	Perimeter	NA
Well BG ¹	May-06	Sch-40 PVC	4	37.0	27.0 - 37.0	103.34	13.42	Perimeter	NA
Well BU	May-06	Sch-40 PVC	4	36.0	26.0 - 36.0	100.16	10.24	Upgradient	NA

Table 52, RGPP Well Construction Details, SGS

<u>Notes:</u> MP

Measuring Point

Below ground surface Relative to plant datum bgs RPD

amsl Above mean sea level (NAVD 1988)

NA Not applicable 1

Monitoring wells U, BB, BF, and BG were surveyed in July/August 2013 following retrofitting or repair activities.

Annual Radioactive Effluent Release	YEAR: 2020	Page 126 of 140	
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Table 53, Well Construction Details, Investigation and Monitoring Wells

Well ID	Installation Date	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	Monitored Hydrogeologic Unit	MP Elevation (feet RPD)	MP Elevation (feet amsl)
Well K	Feb-03	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	102.00	12.08
Well L	Jan-03	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	101.46	11.54
Well M	May-03	Sch-40 PVC	1	20.0	10.0 - 20.0	Cofferdam ²	102.17	12.25
Well N	Jan-03	Sch-40 PVC	2	20.0	10.0 - 20.0	Cofferdam ²	101.65	11.73
Well O	Jan-03	Sch-40 PVC	2	20.0	10.0 - 20.0	Cofferdam ²	101.33	11.41
Well P	Mar-03	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	101.13	11.21
Well Q ⁸	Mar-03	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	106.59	16.67
Well EOW-4L ⁸	Jan-09	Sch-40 PVC	2	120.2	110.2-120.2	Vincentown ¹	112.23	22.31
Well R	Jun-03	Sch-40 PVC	1	19.0	9.0 - 19.0	Cofferdam ²	102.35	12.43
Well S ⁴	May-03	Sch-40 PVC	2	34.7	24.7 - 34.7	Shallow ³	99.04	9.12
Well S-V	May-14	Sch-40 PVC	4	85.0	75.0 - 85.0	Vincentown ¹	101.00	11.08
Well V ⁶	Jun-03	Sch-40 PVC	2	79.5	69.5 - 79.5	Vincentown ¹	101.72	11.80
Well W ⁶	Jun-03	Sch-40 PVC	2	35.0	25.0 - 35.0	Shallow ³	98.49	8.57
Well AA ⁴	Sep-03	Sch-40 PVC	2	36.0	26.0 - 36.0	Shallow ³	99.07	9.15
Well AA-V	May-13	Sch-40 PVC	2	85.0	75.0 - 85.0	Vincentown ¹	100.80	10.88
Well AB ⁴	Oct-03	Sch-40 PVC	2	42.0	32.0- 42.0	Shallow ³	98.93	9.01
Well AC ⁴	Sep-03	Sch-40 PVC	2	24.0	14.0 - 24.0	Cofferdam ²	98.77	8.85
Well AD ⁴	Oct-03	Sch-40 PVC	6	43.0	33.0 - 43.0	Shallow ³	98.99	9.07
Well AE	Oct-03	Sch-40 PVC	2	27.5	17.5 - 27.5	Cofferdam ²	101.54	11.62
Well AF	Oct-03	Sch-40 PVC	2	45.0	35.0 - 45.0	Shallow ³	101.61	11.69
Well AF-V	Nov-16	Sch-40 PVC	4	91.0	71.0 - 91.0	Vincentown ¹	101.38	11.46
Well AG-Shallow	Feb-04	Sch-40 PVC	1	24.2	14.2 - 24.2	Shallow ³	99.29	9.37
Well AG-Deep	Feb-04	Sch-40 PVC	1	40.0	30.0 - 40.0	Shallow ³	99.20	9.28
Well AH-Shallow	Feb-04	Sch-40 PVC	1	24.5	14.5 - 24.5	Shallow ³	102.58	12.66

Annual Radioactive Effluent Release	YEAR: 2020	Page 127 of 140		
Company: PSEG Nuclear LLC	G Nuclear LLC Plant: Salem &			

Table 53, Well Construction Details, Investigation and Monitoring Wells

Well ID	Installation Date	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	Monitored Hydrogeologic Unit	MP Elevation (feet RPD)	MP Elevation (feet amsl)
Well AH-Deep	Feb-04	Sch-40 PVC	1	40.0	30.0 - 40.0	Shallow ³	102.70	12.78
Well AI	Jan-04	Sch-40 PVC	4	22.0	12.0 - 22.0	Cofferdam ²	98.79	8.87
Well AJ	Jan-04	Sch-40 PVC	4	35.3	15.3 - 35.3	Shallow ³	98.85	8.93
Well AM	Jan-04	Sch-40 PVC	4	20.9	10.9 - 20.9	Cofferdam ²	98.55	8.63
Well AN	Jun-04	Sch-40 PVC	4	25.0	10.0 - 25.0	Cofferdam ²	98.76	8.84
Well AO	Jun-04	Sch-40 PVC	4	21.0	11.0 - 21.0	Cofferdam ²	98.82	8.90
Well AP	Jun-04	Sch-40 PVC	4	40.0	15.0 - 40.0	Shallow ³	98.65	8.73
Well AQ⁵	Jun-04	Sch-40 PVC	4	45.0	20.0 - 45.0	Shallow ³	99.05	9.13
Well AR	Jun-04	Sch-40 PVC	4	43.0	18.0 - 43.0	Shallow ³	99.22	9.30
Well AS	Jun-04	Sch-40 PVC	4	41.5	16.5 - 41.5	Shallow ³	99.44	9.52
Well AT	Jun-04	Sch-40 PVC	4	44.0	19.0 - 44.0	Shallow ³	99.25	9.33
Well BH-V	Jun-19	Sch-40 PVC	4	82.0	62.0 - 82.0	Vincentown ¹	101.83	11.91
Well BM-V	Jun-19	Sch-40 PVC	4	92.0	72.0 - 92.0	Vincentown ¹	104.95	15.03
Well BW ⁶	Dec-06	Sch-40 PVC	1	10.0	5.0 - 10.0	Shallow ³	101.62	11.70
Well BX ⁶	Dec-06	Sch-40 PVC	1	10.0	5.0 - 10.0	Shallow ³	101.79	11.87
Well BY	Nov-10	Sch-40 PVC	4	40.0	35.0 - 40.0	Shallow ³	103.36	13.44
Well BY-V	Jun-19	Sch-40 PVC	4	82.0	62.0 - 82.0	Vincentown ¹	99.03	9.11
Well BZ	Nov-10	Sch-40 PVC	4	36.0	31.0 - 36.0	Shallow ³	104.29	14.37
Well CA ⁶	Dec-06	Sch-40 PVC	4	38.0	28.0 - 38.0	Shallow ³	101.96	12.04
Well CB ⁷	Dec-06	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	98.98	9.06
Well DA ⁶	Nov-10	Sch-40 PVC	4	17.0	12.0 - 17.0	Cofferdam ²	99.04	9.12
Well DB	Nov-10	Sch-40 PVC	4	21.0	16.0 - 21.0	Cofferdam ²	101.69	11.77
Well DC	Nov-10	Sch-40 PVC	4	22.0	17.0 - 22.0	Cofferdam ²	100.90	10.98
Well DD	Nov-10	Sch-40 PVC	4	19.0	14.0 - 19.0	Cofferdam ²	101.23	11.31

Annual Radioactive Effluent Release	YEAR: 2020	Page 128 of 140			
Company: PSEG Nuclear LLC	Plant: Salem & Hope Creek Generating Statio				

Table 53, Well Construction Details, Investigation and Monitoring Wells

Well ID	Installation Date	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	Monitored Hydrogeologic Unit	MP Elevation (feet RPD)	MP Elevation (feet amsl)
Well DE	Nov-10	Sch-40 PVC	4	18.0	13.0 - 18.0	Cofferdam ²	101.43	11.51
Well DF	Nov-10	Sch-40 PVC	4	19.0	14.0 - 19.0	Cofferdam ²	101.32	11.40
Well DG	Nov-10	Sch-40 PVC	2	13.5	11.5 - 13.5	Cofferdam ²	98.98	9.06
Well DH	Oct-10	Sch-40 PVC	4	21.0	16.0 - 21.0	Cofferdam ²	101.54	11.62
Well DI	Oct-10	Sch-40 PVC	4	18.0	13.0 - 18.0	Cofferdam ²	101.64	11.72
Well DJ	Oct-10	Sch-40 PVC	2	11.0	6.0 - 11.0	Cofferdam ²	99.03	9.11

Notes:

MP Measuring point

bgs Below ground surface

RPD Relative to plant datum

amsl Above mean sea level (NAVD 1988)

¹ Monitoring well is screened in the Vincentown Formation.

² Monitoring well is screened in the shallow, water-bearing unit at a location within the limits of the cofferdam.

³ Monitoring well is screened in the shallow, water-bearing unit at a location outside the limits of the cofferdam.

The surface completions of Monitoring Wells S, AA, AB, AC, and AD were converted from above-grade to flush-grade in February 2004.

⁵ Monitoring well AQ was abandoned in November 2016.

⁶ Monitoring wells BW, BX, CA, DA, V, and W were surveyed in July/August 2013 following retrofitting or repair activities.

⁷ Monitoring well CB was abandoned in May 2013

⁸ Monitoring wells Q and EOW-4L were abandoned in May 2020.

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 129 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

lsotope	RGPP LLD (pCi/L)	PSEG Reporting Level (pCi/L)
Tritium	200	30,000
Total Strontium	2	8
Mn-54	15	1,000
Fe-59	30	400
Co-58	15	1,000
Co-60	15	300
Zn-65	30	300
Nb-95	15	400
Zr-95	15	400
Cs-134	15	30
Cs-137	18	50
Ba-140	60	200
La-140	15	200

Table 54, Relevant Groundwater Evaluation Criteria, SGS and HCGS

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 130 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Well ID	Sample Date	Tritium Result (pCi/L)
Well BH	2/3/2020	< 178
Well BH	5/5/2020	< 170
Well BH	8/6/2020	< 180
Well BH	11/2/2020	< 184
Well BI	2/3/2020	336
Well BI	5/6/2020	347
Well BI	8/3/2020	< 186
Well BI	11/4/2020	< 181
Well BJ	1/8/2020	4,810
Well BJ	2/3/2020	4,140
Well BJ	3/3/2020	4,060
Well BJ	4/6/2020	3,960
Well BJ	5/6/2020	3,690
Well BJ	6/2/2020	3,750
Well BJ	7/7/2020	3,230
Well BJ	8/3/2020	2,430
Well BJ	9/9/2020	2,650
Well BJ	10/5/2020	2,190
Well BJ	11/2/2020	2,350
Well BJ	12/8/2020	2,700
Well BK	5/5/2020	< 175
Well BK	11/2/2020	< 179
Well BL	5/5/2020	< 174
Well BL	11/4/2020	< 184
Well BM	2/3/2020	373
Well BM	5/6/2020	490
Well BM	8/3/2020	520
Well BM	11/4/2020	541
Well BN	2/4/2020	573
Well BN	5/5/2020	796
Well BN	8/5/2020	276
Well BN	11/3/2020	279
Well BO	2/4/2020	584
Well BO	5/5/2020	261
Well BO	8/5/2020	< 186
Well BO	11/3/2020	< 186
Well BP	5/6/2020	< 173
Well BP	11/2/2020	< 184

Table 55, Tritium Analytical Results, HCGS RGPP Wells

Annual Radioactive Effluent Release ReportYEAR: 2020Page 131 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Well ID	Sample Date	Tritium Result (pCi/L)
Well BQ	2/4/2020	< 180
Well BQ	5/7/2020	< 176
Well BQ	8/6/2020	< 180
Well BQ	11/5/2020	< 184
Well BR	5/6/2020	< 173
Well BR	11/2/2020	< 183
Well BS	5/6/2020	< 170
Well BS	11/2/2020	< 185
Well BT	5/4/2020	< 173
Well BT	11/3/2020	< 185

Table 44, Tritium Analytical Results, HCGS RGPP Wells(continued)

Notes:

pCi/L Picocuries per liter

< Tritium not detected above indicated concentration

261 Bolded values indicate tritium was detected

Annual Radioactive Effluent Release ReportYEAR: 2020Page 132 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Well ID	Sample Date	Tritium Result (pCi/L)
Well AL	5/4/2020	428
Well AL	11/2/2020	285
Well BA	5/7/2020	< 187
Well BA	11/4/2020	< 184
Well BB	5/7/2020	< 184
Well BB	11/4/2020	< 183
Well BC	1/7/2020	2,150
Well BC	2/3/2020	2,220
Well BC	3/3/2020	1,580
Well BC	4/8/2020	1,590
Well BC	5/5/2020	2,110
Well BC	6/2/2020	1,820
Well BC	7/7/2020	1,050
Well BC	8/3/2020	751
Well BC	9/9/2020	751
Well BC	10/8/2020	785
Well BC	11/4/2020	3,550
Well BC	12/10/2020	989
Well BD	2/3/2020	286
Well BD	5/4/2020	350
Well BD	8/3/2020	403
Well BD	11/3/2020	764
Well BE	2/3/2020	991
Well BE	5/5/2020	697
Well BE	6/2/2020	608
Well BE	8/3/2020	443
Well BE	11/3/2020	552
Well BF	5/5/2020	< 176
Well BF	11/4/2020	< 178
Well BG	2/3/2020	206
Well BG	5/6/2020	< 176
Well BG	8/3/2020	< 155
Well BG	11/5/2020	< 178
Well BU	5/5/2020	< 179
Well BU	11/3/2020	< 186
Well T	2/4/2020	< 173
Well T	5/6/2020	< 180
Well T	8/3/2020	< 160
Well T	11/5/2020	< 182

Table 56, Tritium Analytical Results, SGS RGPP Wells

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 133 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Well ID	Sample Date	Tritium Result (pCi/L)
Well U	2/4/2020	295
Well U	3/3/2020	358
Well U	5/6/2020	268
Well U	8/3/2020	249
Well U	11/5/2020	267
Well V	1/7/2020	271
Well V	7/8/2020	203
Well W	1/7/2020	2,350
Well W	4/8/2020	2,210
Well W	7/8/2020	1,860
Well W	10/5/2020	1,860
Well Y	5/7/2020	< 182
Well Y	11/4/2020	< 186
Well Z	5/7/2020	450
Well Z	11/4/2020	495

			/ // //
Table 45, Tritium	Analytical Results.	SGS RGPP Wells	(continued)

Notes:

pCi/L	Picocuries per liter
<	Tritium not detected above indicated concentration
545	Bolded values indicate tritium was detected

Annual Radioactive Effluent Release ReportYEAR: 2020Page 134 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

Well ID	Sample Date	Tritium Result (pCi/L)
Well AA	1/8/2020	3,220
Well AA	4/9/2020	982
Well AA	5/6/2020	761
Well AA	6/2/2020	1,190
Well AA	8/5/2020	1,090
Well AA-V	1/8/2020	2,550
Well AA-V	4/9/2020	951
Well AA-V	7/10/2020	3,330
Well AA-V	10/7/2020	5,730
Well AB	1/9/2020	6,350
Well AB	4/9/2020	6,690
Well AB	7/7/2020	8,370
Well AB	10/7/2020	8,440
Well AC	1/6/2020	29,100
Well AC	2/3/2020	22,200
Well AC	3/3/2020	40,500
Well AC	4/7/2020	34,100
Well AC	5/4/2020	41,700
Well AC	6/2/2020	40,200
Well AC	7/6/2020	32,600
Well AC	8/3/2020	23,000
Well AC	9/9/2020	24,600
Well AC	10/6/2020	22,600
Well AC	11/3/2020	16,500
Well AC	12/10/2020	29,300
Well AD	1/9/2020	11,500
Well AD	4/9/2020	9,260
Well AD	7/7/2020	9,460
Well AD	10/7/2020	8,340
Well AE	1/9/2020	9,620
Well AE	4/6/2020	6,610
Well AE	7/9/2020	18,300
Well AE	10/7/2020	11,600
Well AF	1/9/2020	< 183
Well AF	7/9/2020	248

Table 57, Tritium Analytical Results, Investigation & Monitoring Wells

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 135 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

	Wells (continued)			
Well ID	Sample Date	Tritium Result (pCi/L)		
Well AF-V	4/8/2020	273		
Well AF-V	7/7/2020	310		
Well AF-V	10/7/2020	512		
Well AG-D	1/7/2020	905		
Well AG-D	7/9/2020	784		
Well AG-S	1/7/2020	821		
Well AG-S	7/9/2020	726		
Well AH-D	1/9/2020	627		
Well AH-D	7/7/2020	487		
Well AH-S	1/9/2020	636		
Well AH-S	7/7/2020	439		
Well Al	1/7/2020	3,280		
Well Al	7/6/2020	2,160		
Well AJ	7/7/2020	292		
Well AM	1/6/2020	26,400		
Well AM	4/7/2020	21,400		
Well AM	7/6/2020	4,510		
Well AM	10/6/2020	10,500		
Well AN	1/9/2020	22,600		
Well AN	2/4/2020	19,900		
Well AN	4/21/2020	17,600		
Well AN	5/4/2020	16,400		
Well AN	6/2/2020	20,500		
Well AN	7/7/2020	19,900		
Well AN	8/3/2020	17,700		
Well AN	9/8/2020	15,400		
Well AP	1/8/2020	3,210		
Well AP	8/5/2020	1,730		
Well AR	1/9/2020	3,980		
Well AR	4/6/2020	5,680		
Well AR	7/9/2020	5,350		
Well AR	10/7/2020	7,060		
Well AS	1/9/2020	3,700		
Well AS	7/9/2020	5,070		
Well AT	1/9/2020	1,440		
Well AT	7/7/2020	1,660		
Well BH-V	1/8/2020	< 181		
Well BH-V	7/7/2020	290		
Well BM-V	1/8/2020	< 185		
Well BM-V	7/7/2020	< 195		

Table 46, Tritium Analytical Results, Investigation & Monitoring Wells (continued)

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 136 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Wells (continued)			
Well ID	Sample Date	Tritium Result (pCi/L)	
Well BW	5/4/2020	702	
Well BW	11/5/2020	691	
Well BX	5/4/2020	554	
Well BX	11/5/2020	567	
Well BY	1/8/2020	139,000	
Well BY	2/4/2020	98,100	
Well BY	3/3/2020	91,900	
Well BY	4/6/2020	82,800	
Well BY	5/6/2020	75,000	
Well BY	6/2/2020	64,500	
Well BY	7/7/2020	66,800	
Well BY	8/6/2020	55,400	
Well BY	9/9/2020	58,700	
Well BY	10/5/2020	57,300	
Well BY	11/5/2020	46,300	
Well BY	12/8/2020	39,400	
Well BY-V	1/8/2020	7,000	
Well BY-V	4/6/2020	6,310	
Well BY-V	7/7/2020	11,400	
Well BY-V	10/5/2020	8,820	
Well BZ	5/6/2020	1,410	
Well BZ	11/5/2020	1,310	
Well CA	1/9/2020	1,400	
Well CA	7/8/2020	1,300	
Well DA	1/7/2020	2,360	
Well DA	4/7/2020	3,010	
Well DA	7/8/2020	4,920	
Well DA	9/9/2020	2,420	
Well DA	10/8/2020	2,250	
Well DA	11/4/2020	2,210	
Well DA	12/8/2020	3,360	
Well DB	1/6/2020	10,400	
Well DB	4/7/2020	11,300	
Well DB	7/6/2020	13,300	
Well DB	10/6/2020	11,300	
Well DC	1/6/2020	5,230	
Well DC	7/6/2020	10,300	
Well DC	9/9/2020	3,450	
Well DC	10/6/2020	4,610	
Well DC	11/3/2020	3,150	

Table 46, Tritium Analytical Results, Investigation & Monitoring Wells (continued)

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 137 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Wells (continued)			
Well ID	Sample Date	Tritium Result (pCi/L)	
Well DC	12/10/2020	6,650	
Well DD	1/6/2020	6,550	
Well DD	4/7/2020	5,210	
Well DD	7/6/2020	5,050	
Well DD	10/6/2020	5,700	
Well DE	1/6/2020	17,700	
Well DE	4/7/2020	14,700	
Well DE	7/6/2020	19,900	
Well DE	10/6/2020	18,900	
Well DE	11/3/2020	19,100	
Well DF	1/6/2020	1,390	
Well DF	7/6/2020	1,280	
Well DG	1/7/2020	4,080	
Well DG	4/8/2020	3,450	
Well DG	7/6/2020	3,560	
Well DG	10/8/2020	3,570	
Well DH	1/9/2020	10,500	
Well DH	4/8/2020	8,800	
Well DH	7/8/2020	10,300	
Well DH	10/8/2020	12,500	
Well DI	1/9/2020	3,850	
Well DI	4/8/2020	3,210	
Well DI	7/8/2020	1,820	
Well DI	10/8/2020	2,240	
Well DJ	1/9/2020	1,010	
Well DJ	7/8/2020	888	
Well EOW-4L [†]	1/9/2020	< 181	
Well K	1/8/2020	< 181	
Well K	7/8/2020	< 184	
Well L	1/7/2020	< 185	
Well L	7/7/2020	< 151	
Well M	1/7/2020	5,070	
Well M	4/9/2020	4,020	
Well M	7/6/2020	4,270	
Well M	10/5/2020	5,250	
Well N	1/6/2020	7,110	
Well N	4/7/2020	12,600	
Well N	7/6/2020	7,760	
Well N	10/6/2020	4,730	
Well O	1/9/2020	23,500	

Table 46, Tritium Analytical Results, Investigation & Monitoring

Annual Radioactive Effluent Release Report		YEAR: 2020	Page 138 of 140
Company: PSEG Nuclear LLC	Plant: Salem &	Hope Creek Ge	nerating Stations

Wells (continued)			
Well ID	Sample Date	Tritium Result (pCi/L)	
Well O	4/6/2020	56,100	
Well O	7/9/2020	16,000	
Well O	10/7/2020	15,700	
Well P	1/7/2020	< 180	
Well P	7/9/2020	< 149	
Well R	1/7/2020	4,150	
Well R	7/6/2020	3,890	
Well S	4/21/2020	7,640	
Well S	7/7/2020	15,100	
Well S	10/7/2020	13,800	
Well S-V	1/8/2020	3,000	
Well S-V	4/6/2020	2,270	
Well S-V	7/7/2020	1,980	
Well S-V	10/7/2020	2,570	
Well V	1/7/2020	271	
Well V	7/8/2020	203	
Well W	1/7/2020	2,350	
Well W	4/8/2020	2,210	
Well W	7/8/2020	1,860	
Well W	10/5/2020	1,860	

Table 46, Tritium Analytical Results, Investigation & Monitoring Wells (continued)

Notes:

pCi/L	Picocuries per liter
† < 1,860	Well EOW-4L was abandoned in May 2020. Tritium not detected above indicated concentration Bolded values indicate tritium was detected
20,000	Tritium was detected above the New Jersey Department of Environmental Protection (NJDEP) Class II-A Groundwater Quality Standard (GWQS) of 20,000 pCi/L.

Annual Radioactive Effluent Release ReportYEAR: 2020Page 139 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

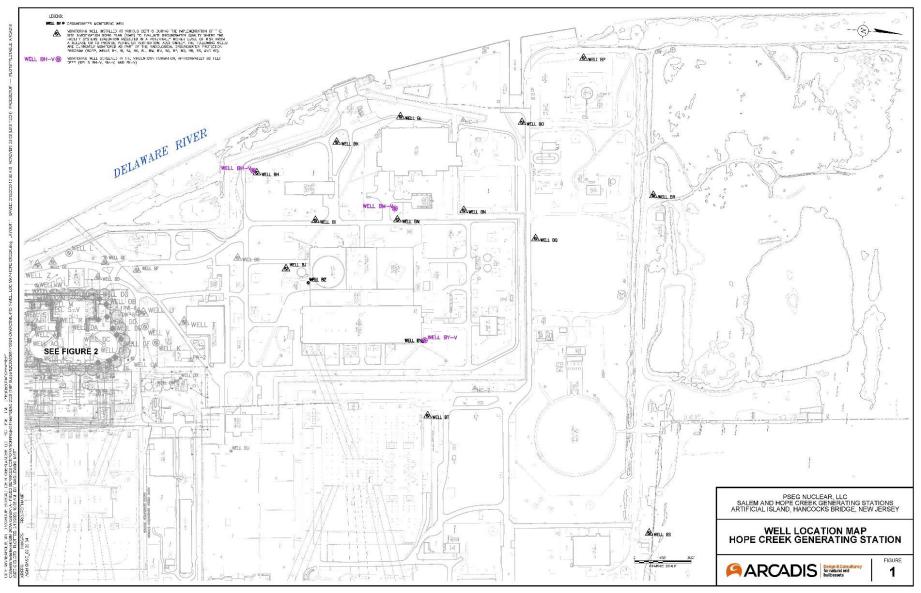


Figure 12, Well Location Map, Hope Creek Generating Station

Annual Radioactive Effluent Release ReportYEAR: 2020Page 140 of 140Company: PSEG Nuclear LLCPlant: Salem & Hope Creek Generating Stations

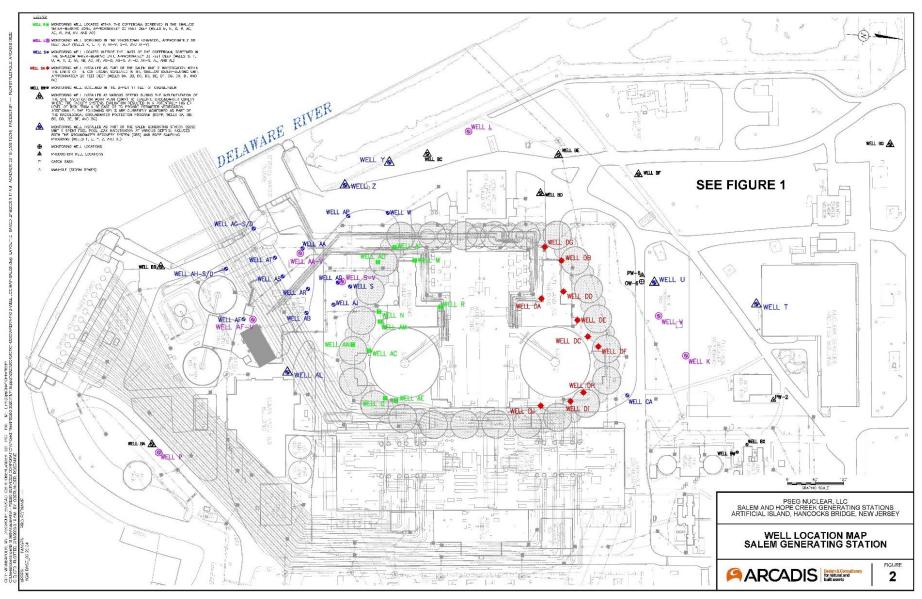


Figure 13, Well Location Map, Salem Generating Station