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ABSTRACT 

This report documents work sponsored by the U.S. Nuclear Regulatory Commission (NRC) at 
the Oak Ridge National Laboratory (ORNL) as part of the RES project, “Application of Point 
Precipitation Frequency Estimates to Watersheds.” This project was implemented as part of the 
Probabilistic Flood Hazard Assessment (PFHA) Research Program.   The objective of the PFHA 
Research Program is to develop tools and guidance on the use of PFHA methods to risk-inform 
NRC’s licensing of new facilities as well as licensing and oversight of currently operating 
facilities as they relate to flooding hazards. 

Many nuclear power plants (NPPs) are located on or near rivers so riverine flooding hazards 
need to be considered in their design and operation. Probabilistic riverine flood models are 
important tools for realistic assessment of flooding risks. However, these models require areal 
estimates of the depth, duration, and frequency of rainfall distributed over the watershed, which 
are not often available. Point precipitation frequency estimates are more widely available. For 
example, the National Oceanic and Atmospheric Administration (NOAA) has published NOAA 
Atlas 14, which provides point precipitation frequency estimates for 5-minute through 60-day 
durations at average recurrence intervals of 1-year through 1,000-year. The research 
documented in this report addresses areal reduction factors (ARFs), which can be used to 
convert the widely available point precipitation frequency estimates, to estimates of areal 
precipitation frequency over a watershed.  

The most widely used ARF source is Technical Paper 29 (TP-29) published by the then U.S. 
Weather Bureau in 1958. However, both the methods and the underlying precipitation data used 
to produce TP-29 are seriously out of date. For example, due to the small gauge network 
available at the time of TP-29’s compilation, ARF estimates developed are only for watersheds 
smaller than about 400 square miles. Due to the relatively short record lengths of precipitation 
data available, frequency considerations could not be accurately determined. Other factors such 
as regional climate and seasonality were not addressed.  

Several newer methods have been published since TP-29 was developed and both the type and 
quantity of precipitation data have increased significantly, along with computational resources 
and analytical tools such as geographic information systems. This report reviewed and 
assessed the available precipitation products and methods for conducting ARF analysis. The 
work applied up-to-date precipitation data products and analysis methods with a novel 
watershed-based approach to investigate how ARF estimates vary across different methods, 
data sources, geographical locations, return periods, and seasons.  

The overall findings reported here regarding basic ARF trends are in line with other recent 
studies showing that ARFs decrease with increasing area, increase with increasing duration, 
and decrease with increasing return period. This study found significant differences among the 
available ARF methods. This work also found a strong geographical variability across different 
US hydrologic regions, suggesting that the ARF are specific to regional climate patterns and 
geographical characteristics and should not be applied arbitrarily to other locations. The results 
also reveal the importance of data record length, especially for high return level ARFs.  

The work reported in NUREG/CR-7271 will assist NRC staff in assessing different classes of 
ARF methods in conjunction with available rainfall data sets. It will also support the development 
of guidance for application of point precipitation data in PFHAs. It should be noted that the ARF 
values presented in this report for any location or region were developed for the purposes of 
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comparing methods and investigating the factors that influence ARFs. They should not be 
considered official and should not be used in leu of a site-specific analysis. 
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FOREWORD 

This report (NUREG/CR-7271) documents work sponsored by the U.S. Nuclear Regulatory 
Commission (NRC) as part of the RES project “Application of Point Precipitation Frequency 
Estimates to Watersheds”. The research conducted supports the NRC’s Probabilistic Flood 
Hazard Assessment (PFHA) program. The objective of the project was to assist NRC in 
assessing different classes of fixed-area precipitation areal reduction factors (ARF) methods in 
conjunction with available rainfall data sets to support the development of guidance for 
application of PFHA. Given the limitations of available ARF products being used today (e.g., TP-
29) and with the advance of recent observational precipitation products and computational
capabilities, more comprehensive ARF evaluations can be made to understand how ARF
estimates vary across different methods, data sources, geographical locations, return periods,
and seasons. These topics are explored in this study.

This research is part of the NRC’s PFHA Research Program and is to assist NRC in assessing 
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to 
support development of guidance for application of NPP-PFHA. The work will aid the 
development of guidance on the use of PFHA methods and support risk-informing NRC’s 
licensing framework (flood hazard design standards at proposed new facilities as well as 
significance determination tools for evaluating potential deficiencies related to flood protection at 
operating facilities). The tools and guidance developed will support and enhance NRC’s 
capacity to perform thorough and efficient reviews of license applications and license 
amendment requests. They will also support risk-informed significance determination of 
inspection findings, unusual events and other oversight activities. 

NUREG/CR-7271 summarizes available precipitation products and methods for conducting ARF 
analysis. Using this information, a series of use case studies are developed for both regional 
ARF assessment and for contiguous U.S. (CONUS)-scale assessment. The use case findings 
produce ARF relationships which are in line with available literature; they also demonstrate the 
importance of precipitation data source and ARF fitting method which both contribute to ARF 
uncertainty. In particular, the importance of available data length is highlighted given ARFs are 
often sought for long return periods. The study demonstrates the need to improve ARFs with 
new data and methods for more reliable areal extreme precipitation estimates to support PFHA 
applications. 

The main objective of this study is to assist NRC in assessing different classes of fixed-area 
ARF methods in conjunction with available rainfall data sets to support the development of 
guidance for application of PFHA. The results of this study are for demonstration purposes only 
and are not intended to be used for ARF application. Additional research and development 
efforts, with thorough quality assurance and control performed, should be performed to develop 
a reliable national ARF product suitable for PFHA application. 

The discussion of specific references, methods, software, or tools in this NUREG/CR does not 
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory 
Commission or Oak Ridge National Laboratory. The case study results presented herein are the 
result of research efforts only, do not incorporate uncertainty quantification, and should not be 
directly incorporated for application. They are intended to demonstrate some of the primary 
factors affecting areal reduction factor estimation. 
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EXECUTIVE SUMMARY 

This research is part of the NRC’s PFHA Research Program and is to assist NRC in assessing 
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to 
support development of guidance for application of NPP-PFHA. The work will aid the 
development of guidance on the use of PFHA methods and support risk-informing NRC’s 
licensing framework (flood hazard design standards at proposed new facilities as well as 
significance determination tools for evaluating potential deficiencies related to flood protection at 
operating facilities). The tools and guidance developed will support and enhance NRC’s 
capacity to perform thorough and efficient reviews of license applications and license 
amendment requests. They will also support risk-informed significance determination of 
inspection findings, unusual events and other oversight activities. 

To support PFHA of nuclear power plants (NPPs), probabilistic estimates of extreme rainfall 
depth across various watershed sizes are required. Nevertheless, most existing precipitation 
frequency analysis (PFA) products (such as NOAA Atlas 14) provide frequency estimates of 
“point” precipitation that can only be representative for a small domain and are not appropriate 
for large-scale watershed modeling applications. The ARF examined in this study, which is the 
ratio of areal extreme rainfall depth to point-based extreme rainfall depth, is one commonly-used 
approach to derive areal extreme rainfall estimates from conventional point-based PFA 
products. 

An ARF can be generally defined as the ratio of areal extreme rainfall depth (i.e., total observed 
rainfall volume across an area divided by the area of interest) to point-based extreme rainfall 
depth (i.e., observed rainfall depth at a point location or for a representatively small area). The 
use of ARF is necessary because networks of rain gauges with long periods of record, which 
are needed for accurate areal rainfall frequency estimation, are generally sparse and do not 
allow for an appropriate characterization of the associated spatial rainfall patterns. If the ARF 
relationship is known, point-based PFA products and ARF can be used to approximate areal 
extreme rainfall for a watershed.  

Compared to modern PFA products, the progress of ARF development in the U.S. is relatively 
slow, and the TP-29 ARFs published in the 1950s are still used in practice. These TP-29 
estimates suffer from major limitations, including the use of very limited rain gauge data, the 
application to only small area sizes, and the lack of variation across geographic location, return 
period, and seasonality. Given these limitations and with the advance of recent observational 
precipitation products and computational capabilities, more comprehensive ARF evaluations 
can be made to understand how ARF estimates vary across different methods, data sources, 
geographical locations, return periods, and seasons. These topics are explored in this study. 

To improve the understanding of ARF variability, this study conducts a comprehensive review of 
recent ARF research, summarizes potential precipitation products for ARF applications, and 
provides use case studies to demonstrate the derivation of ARF in several selected hydrologic 
regions in the U.S. The survey of available precipitation products covers several major 
categories, including gauge-only, gauge-driven, radar-driven, satellite-driven, and reanalysis-
driven products. Each precipitation product is evaluated based on its availability, accuracy, 
spatiotemporal resolution, latency, and suitability for ARF assessment. Several precipitation 
products are subsequently selected for comparison in the use case studies. 
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A review of ARF research identifies the key factors affecting ARF estimation, including storm 
characteristics, geographic features, ARF methodology, and data. A critical review is conducted 
to summarize available ARF methods across five major types: empirical methods, spatial 
correlation methods, statistical crossing properties methods, spatial and temporal scaling 
methods, and extreme value theory methods. Each method is evaluated by its data 
dependency, required assumptions, analytical complexity, spatiotemporal scale, and whether it 
has been independently evaluated in other studies. Several suitable ARF methods are then 
selected and compared in the use case studies. 

The use case studies implement a novel watershed-based annual maximum precipitation 
searching approach to identify ARF samples across different watershed sizes for further ARF 
model fitting. Through these use cases, a quantitative comparison of major factors affecting 
ARFs is provided. The use cases include (1) regional assessments of ARFs for three selected 
hydrologic regions focusing on different precipitation products, and fitting models to demonstrate 
major factors affecting ARFs and (2) a CONUS assessment of ARFs across all hydrologic 
regions, focusing on the use of one precipitation product and one fitting model to demonstrate 
geographic variation in ARFs.  

The use case study results are generally in line with available literature which suggest ARFs 
decrease with increasing area, increase with increasing duration, and decrease with increasing 
return period. The results also demonstrate the importance of precipitation data source and ARF 
fitting method which both contribute to ARF uncertainty. In particular, the importance of 
available data length is highlighted given ARFs are often sought for long return periods. The 
study demonstrates the need to improve ARFs with new data and methods for more reliable 
areal extreme precipitation estimates to support PFHA applications. Based on the results, ARF 
characteristics and PFHA application challenges are also summarized in this report. The results 
of this study are for demonstration purposes only and are not intended to be used for ARF 
application. 

The discussion of specific references, methods, software, or tools in this NUREG/CR does not 
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory 
Commission or Oak Ridge National Laboratory. The case study results presented herein are the 
result of research efforts only, do not incorporate uncertainty quantification, and should not be 
directly incorporated for application. They are intended to demonstrate some of the primary 
factors affecting areal reduction factor estimation. 
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1 INTRODUCTION 

1.1 Background and Motivation 

Extreme precipitation and subsequent flooding play major roles in infrastructure design and 
engineered systems operation. For probabilistic flood hazard assessment (PFHA), probabilistic 
estimates of extreme rainfall depth across various durations (e.g., T-year d-hour rainfall depth) 
are key inputs for hydrologic and hydraulic (H&H) modeling. Such estimates are quantified 
through precipitation frequency analysis (PFA) based on long-term rain gauge observations. To 
avoid going through the entire chain of PFA (including rain gauge data collection and 
processing, annual or partial duration maxima searching, probabilistic density function selection 
and fitting, goodness-of-fit test, and regionalization), H&H engineers have often opted to look up 
pre-calculated T-year rainfall depths from existing PFA products such as the U.S. Weather 
Bureau Technical Paper No. 40 (TP-40; Hershfield, 1961) or its successor, the National Oceanic 
and Atmospheric Administration (NOAA) Atlas 14 (Bonnin et al., 2004 and other volumes). 
Spatiotemporal distribution and area adjustments are then applied to form rainfall hyetographs 
for H&H modeling application. 

However, one key feature that is easily overlooked is that most of the PFA products (including 
NOAA Atlas 14) provide frequency estimates of “point” precipitation, meaning that the results 
are representative only for a small domain and are not directly appropriate for large-scale 
watershed modeling applications. This happens because the annual (or partial duration) 
maxima of each rain gauge, which are the main inputs for PFA, are usually identified 
independently in time. Therefore, although they capture the local maximum precipitation, they 
do not jointly represent the areal maximum for a watershed. For instance, for watersheds 
governed by small-scale convective storm systems, the annual maximum precipitation captured 
by each gauge may be individually high but may result from different local thunderstorm events 
occurring at different times. In directly using the gauge-based extreme rainfall estimates to build 
design rainfall hyetographs for the entire watershed (without further adjustment), one may end 
up creating an unrealistically large rainfall depth that is not supported by historic observations. 

To properly identify areal extreme rainfall estimates for watershed-scale applications, one needs 
to either (1) perform watershed-specific PFA that is based on precipitation maxima searched for 
the entire watershed (rather than for individual rain gauges) or (2) use a suitable precipitation 
areal reduction factor (ARF) to perform conversion (reduction) from point-based extreme rainfall 
estimates to areal-based extreme rainfall estimates. Although the watershed-specific PFA 
approach may theoretically be more precise, it involves much larger labor and resource efforts 
that are not always feasible. On the other hand, the ARF approach can provide quick estimation 
of areal extreme rainfall and hence has been a popular alternative in many H&H applications. 

From a methodological perspective, the PFA methods (for either point-based or watershed-
specific assessments) have been more extensively studied. Since the publication of TP-40 in 
1961, widely-recognized frequency analysis methods have been developed, including the 
L-moment approach (Hosking and Wallis, 1992) that was used in the development of NOAA
Atlas 14. For ARF, while new methods have been developed in recent decades (see Section
3.2.2), research efforts in the United States (U.S.) are lagging, and there has yet to be a
national study of ARF comparable to NOAA Atlas 14. Some new ARF methods have been
developed to make use of modern spatiotemporal rainfall data (such as weather radar), while
some still rely upon rain gauge networks. However, none have found widespread acceptance
and use in H&H engineering practice.
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With H&H engineering applications and PFHA efforts requiring watershed-scale probabilistic 
precipitation estimates, there is a need to better understand how ARF methods can be applied 
to more effectively leverage existing point-based PFA products (such as NOAA Atlas 14). These 
considerations motivate the study described in this report. 

1.2 Nuclear Regulatory Context 

The U.S. Nuclear Regulatory Commission (NRC) has developed regulations regarding the siting 
and design of nuclear power plants (NPPs) which consider various natural hazards, including 
flooding. Code of Federal Regulations (CFR) Title 10, Part 50 and Part 52, address design 
criteria for NPPs with respect to natural hazards, whereas 10 CFR Part 100 addresses siting 
criteria. Title 10 CFR Part 50, Appendix A, General Design Criterion (GDC) 2, “Design bases for 
protection against natural phenomena,” states that structures, systems, and components 
important to safety shall be designed to withstand the effects of natural phenomena that have 
been historically reported for the site and surrounding area, with sufficient margin for the limited 
accuracy, quantity, and period of time in which the historical data have been accumulated. The 
regulation also states that the design bases shall reflect appropriate combinations of the effects 
of normal and accident conditions with the effects of the natural phenomena. 

Title 10 CFR Part 52, more specifically 10 CFR Part 52.17(a)(1)(vi), for early site permits (ESPs) 
and 10 CFR Part 52.79 (a)(1)(iii) for combined licenses provide the requirements for new 
reactor applications as they relate to the hydrologic characteristics of the proposed site. These 
regulations require consideration of the most severe of the natural phenomena that have been 
historically reported for the site and surrounding area and with sufficient margin for the limited 
accuracy, quantity, and period of time in which the historical data have been accumulated. The 
requirements to consider physical site characteristics (including hydrologic features) in site 
evaluations are specified in 10 CFR Part 100.10(c) for applications before January 10, 1997, 
and 10 CFR Part 100.20(c) for applications on or after January 10, 1997. 

NRC regulatory guidance for flood hazard assessments currently focuses on using 
deterministically derived, conservative estimates of key flood-causing mechanisms (e.g., 
probable maximum precipitation [PMP], probable maximum flood [PMF]) to provide the 
“sufficient margin” called for in the regulations. The magnitude of the provided margin is not 
explicitly quantified in either a physical or risk perspective. Probabilistic treatment of flood 
hazard phenomena can provide quantitative estimates of the flood safety margin and thus 
contribute to the risk-informed assessment of flooding hazards, but regulatory guidance on the 
use of probabilistic methods for riverine flood hazard assessment at NPP sites is lacking. 

1.3 Areal Reduction Factors 

An ARF can be generally defined as the ratio of areal extreme rainfall depth (i.e., total observed 
rainfall volume across an area divided by the area of interest) to point-based extreme rainfall 
depth (i.e., observed rainfall depth at a point location or for a representatively small area). For 
instance, for a watershed 𝐴 of interest, given that 𝑃𝑊 is the areal average extreme rainfall depth 

estimate for the entire watershed (can be derived from watershed-specific PFA) and 𝑃𝑝𝑡 is the 

representative point-based extreme rainfall depth within the watershed (can be determined from 
existing PFA products), the ARF can be formulated as 

𝐴𝑅𝐹 =
𝑃𝑊

𝑃𝑝𝑡
 , (1)
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Since the value of 𝑃𝑊 should be always smaller than that of 𝑃𝑝𝑡, the value of ARF should be less 

than 1. Also, when the watershed area is very small, it is expected that the value of 𝑃𝑊 will 

approach 𝑃𝑝𝑡 and hence ARF will have an upper bound of 1 when a watershed area 

approaches 0. 

The use of ARF is necessary because networks of rain gauges with long periods of record, 
which are needed for accurate areal rainfall frequency estimation, are generally sparse and do 
not allow for an appropriate characterization of the associated spatial rainfall patterns. If the 
ARF relationship is known, point-based PFA products and ARF can be used to approximate 
areal extreme rainfall for a watershed. This approach has been used in many hydrologic 
applications, including stormwater management (e.g., MGNDCT, 2012; CWCB, 2006) and dam 
safety assessment (e.g., USBR, 2004). In the U.S., the most commonly used ARF chart was 
published by the U.S. Weather Bureau in the five-part Technical Paper No. 29 (TP-29; U.S. 
Weather Bureau, 1957, 1958a, 1958b, 1959, 1960). The same ARF chart (Figure 1-1) was 
provided for all TP-29 regions with durations ranging from 30-minute to 24-hour durations and 
watershed sizes up to 1,036 km2 (400 mi2). 

Figure 1-1 TP-29 ARF Curves (Source: U.S. Weather Bureau, 1957) 

Although the TP-29 ARF chart was published decades ago, it is still used in many engineering 
applications. Considering current data, methodology, and numerical standards, this practice is 
problematic from several perspectives: 

• The TP-29 ARFs are based on very limited data (approximately 20 rain gauges from a
dense network with an average record length of about 11 years). Newer, high-resolution
spatial rainfall observations have not been incorporated to update TP-29.

• The TP-29 ARFs are available only for relatively small areas (less than 1,036 km2 [400
mi2]). Many NPP watersheds are far larger than this threshold.
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• The TP-29 ARFs do not vary with geographic location (i.e., the same ARFs are used 
across the five regions of TP-29). This condition implies that the same ARF values can 
be applied regardless of local climate conditions, which is inconsistent with findings from 
other follow-up ARF studies. 

• The TP-29 ARFs do not vary with return period, which is inconsistent with findings from 
many follow-up ARF studies. 

• The TP-29 ARFs do not vary with season, which is questionable since the controlling 
extreme rainfall processes in a region can be quite different across warm and cool 
seasons. 

Clearly, there is a need to update ARFs based on improved data and methods. With the 
advance of recent observational precipitation products and computational capabilities, more 
comprehensive ARF evaluations can be made to understand how ARF estimates vary across 
different methods, data sources, geographical locations, return periods, and seasons. These 
topics are explored in this study. 

1.4 Fixed-Area versus Storm-Centered ARFs 

In the context of PFHA, the goal of ARF is to bridge point-based and areal-based probabilistic 
extreme rainfall estimates. Therefore, the annual (or partial duration) maximum precipitation 
samples used in ARF analysis should also be searched following a similar approach to the 
maxima for PFA (i.e., precipitation maxima searched with a given spatial-filter and d-hour 
temporal window at a specific geographic location). Under this approach, the identified 
maximum samples represent the highest precipitation depth within a d-hour window, in which it 
may be a subset of a long-term rainfall event or composed of multiple sequential short-term 
rainfall events. In any case, these maxima represent the heaviest precipitation observed within a 
d-hour window at a selected location of interest, which is important for forming the most critical 
design events for H&H modeling application. In other words, ARFs for use with precipitation 
frequency estimates are normally referred to as “fixed-area” (or “geographically-fixed-area”) 
methods. Further formulation and discussion of maximum precipitation searching through the 
“fixed-area” approach are provided in Section 4.3.1 of this report. 

To avoid potential confusion, it should be clarified that the “fixed-area” ARFs are distinct from 
“storm-centered” ARFs that are developed based on the analysis of individual storm events. The 
storm-centered ARFs are usually seen in storm-based, deterministic PMP analysis. Through the 
analysis of major historic storms, the maximum average rainfall depths across various durations 
and storm areas are identified; then they are presented in the form of depth-area-duration 
(DAD) tables or curves. By calculating the depth ratios between different cells in the DAD table, 
the storm-centered ARFs can be formed. 

While both types of ARFs are used in flood hazard assessments, because of their different 
methodological features, their areas of application are distinct; thus, they should not be mixed. 
Because of a lack of formal PFA considerations, it is challenging to assign frequency and risk 
estimates to storm-centered ARFs. Numerically speaking, the values of storm-centered ARFs 
are smaller than those of fixed-area ARFs (Sivapalan and Blöschl, 1998; Svensson and Jones 
2010); hence, applying storm-centered ARFs in PFHA (without further adjustment or treatment) 
will lead to underestimation of areal extreme precipitation estimates. 
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Given the specific objective to explore issues associated with ARFs for future PFHA 
applications, this research effort focuses only on fixed-area ARFs. 

1.5 Research Objective 

The objective of this study is to assist NRC in assessing different classes of fixed-area ARF 
methods in conjunction with available rainfall data sets to support the development of guidance 
for application of NPP PFHA. As mentioned in Section 1.2, NRC regulatory guidance for flood 
hazard assessments is currently deterministic in nature and does not enable explicit 
quantification of flood safety margin. In contrast, probabilistic approaches to flood hazard 
assessment could contribute to the risk-informed assessment of flooding hazards. However, 
regulatory guidance on the use of probabilistic methods for riverine flood hazard assessment at 
NPP sites is lacking. 

This research project is part of the NRC’s PFHA Research plan.1 The work will aid the 
development of guidance on the use of PFHA methods and support informing NRC’s licensing 
framework regarding risk (flood hazard design standards at proposed new facilities, as well as 
significance determination tools for evaluating potential deficiencies related to flood protection at 
operating facilities). The tools and guidance developed will support and enhance NRC’s 
capacity to perform thorough and efficient reviews of license applications and license 
amendment requests. They will also support risk-informed significance determination of 
inspection findings, unusual events, and other oversight activities. 

This report summarizes the overall findings from this ARF project. The report is organized into 
the following sections: 

• Section 2 provides a summary of available precipitation data products that can 
potentially be used for ARF assessment. 

• Section 3 provides a critical review of available ARF methods with a view to addressing 
the deficiencies in the commonly used methods for PFHA. 

• Section 4 demonstrates the use of the promising method/data set combinations for ARF 
estimation using case studies for selected river basins. 

• Section 5 provides the overall conclusion and recommendations for the development 
and application of ARF in future PFHA studies. 

It should be emphasized that the main purpose of this research project is to improve the overall 
understanding of ARFs to support broader NPP PFHA efforts. However, the goal is not to 
provide national ARF estimates for direct applications. In the authors’ view, the application of 
ARF for flood hazard assessment requires further site- or watershed-specific considerations, 
and it is not within the scope of this project to provide application-ready ARFs for a wide variety 
of potential usages. The discussion of specific references, methods, software, or tools in this 
report also does not constitute an endorsement or approval for any specific use by the NRC or 
Oak Ridge National Laboratory (ORNL). The case study results presented herein are the result 
of research efforts only, do not incorporate uncertainty quantification, and should not be directly 

 
 
1 The NRC PFHA Research Plan (Version 2014-10-23) is available online at 
https://www.nrc.gov/docs/ML1429/ML14296A442.pdf  

https://www.nrc.gov/docs/ML1429/ML14296A442.pdf
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incorporated for application. They are intended to demonstrate some of the primary factors 
affecting areal reduction factor estimation. 
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2 PRECIPITATION PRODUCTS FOR ARF ANALYSIS 

In this section, various existing precipitation products that can potentially be used for ARF 
analysis are reviewed and discussed. Each precipitation product is evaluated based on its 
availability, accuracy, spatiotemporal resolution, latency, and suitability for ARF assessment. 
Several precipitation products are subsequently selected for comparison in the use case studies 
as described in Section 4. 

2.1 Overview of Precipitation Products 

The U.S. government began taking organized weather observations through the establishment 
of the Army-operated Weather Bureau in 1870. Following the deadly rain-induced South Fork 
Dam failure near Johnstown, Pennsylvania, Congress established the weather service in 1890 
as a civilian agency by transferring the meteorological duties of the Army Signal Service to the 
newly created Weather Bureau in the Department of Agriculture. Soon thereafter, the nation’s 
largest and oldest weather network, the Cooperative Observer Program (COOP), was 
established in 1891. At that time, more than 2,000 weather stations were recording observations 
by volunteers; today more than 11,000 COOP volunteers record weather observations across 
the country. The current National Weather Service (NWS) was established in 1970 as part of 
the NOAA within the Commerce Department (National Ocean Service, 2018; National Weather 
Service, 2017a; National Weather Service, 2018). 

Over the years, various technology advancements have enabled increased spatial and temporal 
precipitation observation coverage in the U.S. Standard rain gauges have been installed across 
all U.S. states and territories. During World War II, military radar operators who had noticed 
returned echoes from precipitation began developing operational weather radars. Further 
development of radar in the 1940s provided a way to measure weather-related phenomena 
across wide areas using a single device or network of devices, and the first radar designed 
specifically for meteorological use was unveiled in 1954. In the late 1950s, weather satellites 
were developed and launched, enabling long-distance meteorological observations made from 
orbit. In the 1990s, meteorological reanalysis data sets were first produced to derive 
meteorological estimates based on incomplete observational data and simulated atmospheric 
processes; such reanalysis products have been used primarily for climate assessments. 
Additional information and detailed descriptions of gauge, radar, satellite, and meteorological 
reanalysis products are provided in Section 2.2. 

2.1.1 Categories of Precipitation Products 

Regarding the use of the term “data,” while the precipitation products described herein are 
developed based on various information types and methodologies, many products do not 
provide direct precipitation measurement. Gauge observations provide direct precipitation 
measurement; however, radar, satellite, and reanalysis products include interpretative 
precipitation estimates computed through various methods. Although data sets are developed 
for each precipitation product, it is important to note the difference between direct precipitation 
measurements and indirect estimates. 

In this report, precipitation products are organized into five different categories: 

• Gauge-only: direct rain gauge observations (for more information, see Section 2.2.1) 
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• Gauge-driven: gridded estimates produced from a series of rain gauges (for more 
information, see Section 2.2.2) 

• Radar-driven: estimates produced from a radar network, often merged with gauge 
estimates (for more information, see Section 2.2.3) 

• Satellite-driven: estimates produced from satellites, often merged with gauge estimates 
(for more information, see Section 2.2.4) 

• Reanalysis-driven: reconstructed historical weather using global or regional weather 
forecasting models (for more information, see Section 2.2.5) 

2.1.2 Key Metrics for Consideration 

To develop areal precipitation frequency estimates and/or ARF, various metrics may be useful 
in considering the quality of available precipitation products. Among the most important metrics 
are the following: 

• Accuracy/precision: How reliable are the precipitation estimates available from the 
product, and what sources of error and uncertainty exist? (See the product-specific 
sections later in this report for more information on product error and uncertainty.) 

• Temporal coverage: For what time period are the precipitation estimates available, and 
are there any gaps in temporal coverage? 

• Data latency: How regularly are the precipitation estimates uploaded online? 

• Spatial coverage: For what regions are the precipitation estimates available? 

• Temporal resolution: How frequently are precipitation estimates provided? 

• Spatial resolution: For what horizontal spacing or area size are individual precipitation 
estimates available? 

Ideally, to derive reliable ARF and/or areal extreme rainfall estimates through PFA, one would 
use precipitation products with the lowest measurement uncertainties (such as gauges), longest 
records (preferably more than 30 years of records), highest spatial density and largest spatial 
coverage (to capture extreme rainfall depth across various storm areas), and hourly or 
subhourly temporal resolution (to capture local intense precipitation). However, such criteria are 
unlikely to be satisfied universally across all parts of the U.S. Depending on data availability, 
controlling extreme rainfall types, and the selected ARF method in a watershed of interest, a 
preferred precipitation product or a mix of various products may be required. 

2.2 Summary of Available Precipitation Products 

For a detailed comparative summary of the available precipitation products available in the U.S., 
please see Appendix A. 

Each of the following subsections provides a general overview, metric-based description, and 
error and uncertainty discussion of the available precipitation products. 
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2.2.1 Gauge-only Precipitation Data Sets 

Gauge-based precipitation observations are collected from a variety of sources across the U.S. 
Most measurements are made using either standard 8-inch (20-cm) diameter non-recording rain 
gauges or Fischer-Porter recording rain gauges. Standard rain gauges include a funnel 
emptying into a graduated cylinder positioned inside a larger container for overflow. Fischer-
Porter rain gauges mechanically convert the water weight into precipitation depth and record 
every 15 minutes. Tipping buckets are also used to automatically record precipitation 
accumulations. Some gauges may include heating capabilities to melt frozen precipitation for 
accurate measurement (National Weather Service, 2017b; Kuligowski, 1997). Wind shields are 
sometimes installed in locations where wind effects that reduce gauge catch cannot be reduced 
by site selection. 

2.2.1.1 Product Description 

For all U.S. states and territories, NOAA National Centers for Environmental Information (NCEI)2 
provide hourly and 15-minute precipitation gauge data (items 1 and 2 in Table A-1). At the time 
of this report’s preparation,3 observations since 2013 had not yet been publicly released for both 
data sets. The hourly data set (DSI-3240) includes measurements from more than 7,000 NWS, 
Federal Aviation Administration (FAA), and COOP stations in the U.S. and U.S. territories, with 
data available since 1940 for some stations. The 15-minute data set (DSI-3260) includes 
measurements from more than 3,600 NWS, FAA, and COOP stations in the U.S and U.S. 
territories, with data available since 1970 for some stations. The hourly and 15-minute stations 
mostly consist of Automated Weather and Observing System (AWOS) units, primarily managed 
by the FAA, and Automated Surface Observing System (ASOS) units, managed cooperatively 
by the NWS, FAA, and Department of Defense. 

NOAA NCEI also provides a Global Historical Climatology Network (GHCN) database consisting 
of more than 100,000 stations reporting daily precipitation worldwide (item 3 in Table A-1). Data 
are available since 1870 for some stations, and the station data are updated every month. Data 
in the U.S. have been collected from FAA; COOP; the Community Collaborative Rain, Hail, and 
Snow Network (CoCoRaHS); and other daily data sources. 

2.2.1.2 Error and Uncertainty 

In general, gauged data are considered “ground truth” for precipitation estimates. The three 
NOAA NCEI data sets represent actual observed measurements that may offer the most 
accurate precipitation estimates at point locations. Gauge observations have historically been 
used as the main input in PFA products (including NOAA Atlas 14). However, since the data 
collected are point measurements, they may not be representative of a region and are thus 
commonly used to produce gridded products or to calibrate radar products. 

Aside from tipping error, wetting loss, and potential mechanical failure, the most apparent error 
with gauged data is undercatch, which may occur during measurement, especially during windy 
or snowy conditions (Sieck et al., 2007; Mekonnen et al., 2015). A comprehensive review of 
possible sources of rainfall observation uncertainty is presented by McMillan et al. (2012). 
Overall, existing literature suggests undercatch of gauges mounted at a 1 m height could have 

 
 
2 Formerly the National Climatic Data Center (NCDC) before dissolving in 2015. 
3 Data accessed in February 2019. 
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5–16% error on average and 0–75% error per storm. Wind field deformation may cause 2–10% 
error for rain and 10–50% error for snow, wetting loss can cause 2–15% error in summer and 1–
8% error in winter, and tipping error per 1 mm of rain can be up to 10%, depending on gauge 
type and rain rate (see Table 1 of McMillan et al. [2012] for further information). 

Unlike the DSI-3240 and DSI-3260 data sets, the GHCN data set pulls from CoCoRaHS. This 
network of volunteer observers represents a significant source of precipitation observations but 
is not subject to a strict quality control protocol. While volunteers are encouraged to complete 
training courses, it is not required. Limited automated, web-based checks and personnel checks 
are conducted to identify errors, but the nature of a volunteer network introduces increased error 
potential compared with a federally managed and quality-controlled network. 

The distribution of gauged data in both time and space is inconsistent, making precipitation 
estimates for certain locations difficult. For example, gauge coverage over some of the 
mountains, deserts, and plains of the western U.S. and Great Plains is sparse and could 
increase uncertainty in spatially interpolating precipitation estimates. In addition, with the 
diversity of gauge types available, differences in instrument performance (e.g., undercatch) can 
affect results, and correction may be needed in merging data. 

2.2.2 Gauge-driven Precipitation Products 

Given the temporal and spatial variability among observing gauge locations, gauge-driven 
precipitation products provide a useful way to assimilate individual gauge data and provide 
gridded estimates. 

2.2.2.1 Product Description 

Gauge-driven precipitation products are gridded products that (primarily) process daily gauge-
based data to form gridded estimates (items 4–9 in Table A-1). During the gridding process, 
topographical, orographical, or statistical adjustments are made in many of the products. 
Therefore, gridded precipitation products are not simple spatial interpolations across available 
gauge observations. 

Daymet, maintained by ORNL, provides daily gauge-based gridded precipitation estimates for 
1980–2017 throughout all of North America at a 1-km horizontal resolution (Thornton et al., 
1997 and 2017; item 4 in Table A-1). Daymet currently offers the highest spatial resolution 
among all publicly available gauge-based gridded precipitation data sets in the U.S. Daymet 
estimates include topographical adjustment based on elevation. However, since Daymet did not 
fully resolve rain shadow barrier effects, it may overestimate precipitation in the mountainous 
regions (e.g., in many parts of the western U.S.). The Daymet data set is currently updated 
annually. 

Another widely used, gridded precipitation product is the Parameter-elevation Regressions on 
Independent Slopes Model (PRISM; Daly et al., 1994) data set, produced by the Oregon State 
University. With a daily temporal resolution, PRISM has offered gridded precipitation estimates 
since 1981 for the lower 48 U.S. states (i.e., the Contiguous U.S. [CONUS]) at a 1/24° (~4 km) 
horizontal resolution (item 5 in Table A-1). PRISM brings a combination of climatological and 
statistical concepts to the analysis of orographic precipitation. Given PRISM’s ability to account 
for topographical effects and some other orographic adjustment factors (Daly et al. 2002), it is 
one of the best available grid-based meteorological data sets. NOAA Atlas 14 also used the 
PRISM spatial interpolation algorithm in its assessment. The daily PRISM is a relatively recent 
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product of the widely used monthly PRISM data set, which has offered monthly gridded 
precipitation estimates since 1900 at the same 4-km horizontal spacing. The gridded daily 
PRISM data are updated automatically and are partially assimilated with radar data in its post-
2002 daily precipitation output. An 800-m horizontal resolution data set is also available for a fee 
from the PRISM website. 

The Livneh Daily CONUS Near-surface Gridded Meteorological Data produced by the University 
of Colorado offers daily gauge-based gridded precipitation estimates for 1950–2013 for the 
CONUS, Mexico, and the part of Canada south of 53°N at a 1/16° (~6 km) horizontal resolution 
(Livneh et al., 2015; item 6 in Table A-1). The Livneh product builds upon (and essentially 
replaces) the previous Maurer Gridded Meteorological Data product from Santa Clara 
University, which provides daily gauge-based gridded precipitation estimates for 1949–2010 for 
the CONUS and British Columbia in Canada at a 1/8° (~12 km) horizontal resolution (Maurer et 
al., 2002; item 7 in Table A-1). Both the Livneh and Maurer data sets include elevation-based 
topographical adjustments. They have been widely used as the meteorological input to drive the 
Variable Infiltration Capacity hydrologic model (VIC; Liang et al. 1994 and 1996) in many hydro-
climatic studies (e.g., Bennett et al., 2018; Gutmann et al., 2014; Mizukami et al., 2017; 
Sheffield et al., 2006; Wood et al., 2004). 

The NOAA Climate Prediction Center (CPC) produces the CPC Unified Gauge-based Analysis 
of Daily Precipitation over CONUS, which provides daily gauge-based gridded precipitation 
estimates for 1948–2006 for the CONUS at a 1/4° (~25 km) horizontal resolution (item 8 in 
Table A-1). Given its coarser spatial resolution, topographic and orographic adjustments were 
not applied. This can lead to underestimated precipitation in mountainous regions. 

Compared with the previous gridded precipitation products (items 4–8 in Table A-1), the 
National Center for Atmospheric Research (NCAR) Gridded Ensemble Precipitation and 
Temperature Estimates over the Contiguous United States (Newman et al., 2015; item 9 in 
Table A-1)—available from 1980–2012 for the CONUS, northern Mexico and southern Canada 
at a 1/8° (~12 km) horizontal resolution—is a conceptually different product. Newman et al. 
(2015) expanded the concept of probabilistic interpolation by Clark and Slater (2006). Instead of 
providing only one set of most likely values (as is provided by other gridded products), Newman 
et al. (2015) provided a 100-member ensemble of historic precipitation in which each realization 
is embedded with spatially-correlated random signals to account for the uncertainties from 
measurements and other sources. Although each ensemble member is different, their collective 
ensemble mean is similar to those of other gridded precipitation data sets. This data set can be 
easily used for ensemble hydrologic simulation to understand how uncertainties may propagate 
through different steps of H&H modeling. 

2.2.2.2 Error and Uncertainty 

For gridded gauge-driven precipitation products, any error or uncertainty in the gauge data 
propagates to the gridded applications. Spatial smoothing may help reduce some of the errors 
or uncertainties presented from a single station, but such benefits have not been quantified. 

One of the major differences among the various gridded products (also a source of uncertainty) 
is how precipitation is spatially distributed over complex terrain. PRISM spatially distributes 
precipitation using precipitation/elevation regressions. Daymet spatially distributes precipitation 
through an iterative station density algorithm. Livneh spatially distributes precipitation over 
complex terrain using a satellite-based estimate of peak snow water equivalent. Maurer spatially 
distributes precipitation using PRISM. An intercomparison of gridded precipitation data sets 
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covering PRISM, Daymet, Livneh, and Newman in the western U.S. by Henn et al. (2017) 
suggested that the greatest absolute differences in annual total precipitation occurred in 
maritime mountain ranges and high-elevation areas of the Western U.S. (200 mm/year or 
greater on average, around 5–60%). Oubeidillah et al. (2014) compared the mean and 95% 
percentiles of PRISM, Daymet, and Maurer and suggested that higher-spatial-resolution data 
sets (i.e., PRISM and Daymet) performed better than the coarser-resolution data sets, 
particularly in capturing precipitation extremes. 

2.2.3 Radar-driven Precipitation Products 

While early weather radar systems (e.g., WSR-57 and WSR-74) enabled detection of 
precipitation in the atmosphere, a major breakthrough came through the development and 
deployment of Doppler radar. The Next-Generation Radar (NEXRAD), WSR-88D Doppler radar, 
was developed in the 1970s and 1980s and achieved first operational use in 1992. Beyond 
detecting the position of precipitation, Doppler radar also captures movement toward or away 
from the radar by sending horizontal radio waves and interpreting the shift in response (NCEI, 
2018; Rinehart, 1997). Another major breakthrough came with the development of dual-
polarization Doppler radar, in which both horizontal and vertical waves are sent. The addition of 
vertical wave transmittal provides information on the vertical motion of particles and helps 
distinguish differences in precipitation type (e.g., rain, hail, or snow). Dual polarization was 
added to existing WSR-88D radars starting in 2010, and by 2013 all NEXRAD radars were 
equipped with dual polarization. For a more detailed description of dual-polarization radar, see 
Cifelli and Chandrasekar (2013). The NEXRAD system currently comprises 160 sites 
throughout the United States and select overseas locations (NCEI, 2018). 

2.2.3.1 Product Description 

A series of data post-processing steps are required to convert the measured radar reflectivity 
into estimated rainfall depth. Multiple radar-driven precipitation products are available and 
include varying levels of post-processing and/or bias correction. These products are introduced 
below and presented in order from lowest to highest complexity. 

The most fundamental radar-driven rainfall products are NEXRAD Level-II and Level-III. The 
NCEI provides NEXRAD Level-II and Level-III data for most of the United States (item 10 in 
Table A-1) and U.S. territories. Measurements are updated automatically and are made every 4 
to 10 minutes. The WSR-88D radars originally provided radar reflectivity at 1.0 degrees 
azimuthal by 1 km range gate resolution to a range of 460 km, and Doppler velocity and 
spectrum width at 1.0 degree azimuthal by 250 m range gate resolution to a range of 230 km. In 
2008, the WSR-88D radars were upgraded with increased spatial resolution (referred to as 
“super resolution”) to provide radar reflectivity at 0.5 degrees azimuthal by 250 m range gate 
resolution to a range of 460 km, and Doppler velocity and spectrum width at 0.5 degree 
azimuthal by 250 m range gate resolution to a range of 300 km. Level-II data contain initially 
processed (base) data at high resolution and are essentially raw data. These data include 
reflectivity, radial velocity, spectrum width for single-polarization radar and the addition of 
differential reflectivity, co-polar correlation coefficient, and differential phase for dual-polarization 
radar. Level-III data include further processed data at a lower resolution deemed more 
appropriate for common use. Over 75 Level-III products are routinely provided by NCEI, and the 
precipitation-specific data include 1-hour, 3-hour, and total storm precipitation. Both Level-II and 
Level-III products are derived solely from NEXRAD radar observations (NCEI, 2018). 
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To support operational river forecasting, the NOAA/NWS National Centers for Environmental 
Prediction (NCEP) and River Forecasting Centers (RFCs) further conduct a series of data 
processing efforts to increase the accuracy of radar-driven rainfall estimates. These efforts were 
originally structured into four consecutive stages (Stage I to Stage IV), although the structure 
has been revised with the advancement of procedures and technologies. Some terminologies 
are still in use now but with adjusted meanings (NOAA, 2018): 

• Stage I referred to the radar-only digital precipitation arrays (DPAs) that use radar 
reflectivities to estimate rainfall depth on 4 km, 131×131 polarstereographic grids 
centered on individual radar sites. Note that one main difference between Level-II/III and 
Stage I products is the different spatial grids. 

• Stage II referred to the merged data of Stage I and automatic rainfall gauge 
observations (available since 1996 in the CONUS; item 11 in Table A-1). In the past, this 
process was carried out at each of the 12 CONUS RFCs, as well as at the NCEP, and 
was used as input for Stage III. With the change of process from Stage III to quantitative 
precipitation estimates (QPE) at RFC, the meaning of Stage II has changed. Currently, 
Stage II refers to the multisensor product that has not undergone quality control (QC), 
which is generated directly from the radar and gauge data at NCEP (i.e., NCEP Stage 
II). 

• Stage III referred to the 1-hour and 6-hour analyses conducted by RFCs based on RFC-
mosaicked Stage II with manual QC (available since 2002 in all 14 RFCs; item 12 in 
Table A-1). Currently most RFCs have transitioned from Stage III to multisensor 
precipitation estimator. Western RFCs have transitioned to Mountain Mapper, and 
Arkansas-Red Basin RFC is using a local bias adjustment algorithm. The regional 1-
hour/6-hour estimates provided by RFCs to NCEP are collectively called QPE. 

• Stage IV referred to the final radar-driven rainfall product produced at NCEP (available 
since 2002 in the CONUS, excluding the California-Nevada and Northwest RFCs; item 
13 in Table A-1). It is based on the QPEs (after manual QC) provided by the RFCs. 
NCEP merges all RFC QPEs into a national NCEP Stage IV product. 

The Multi-Radar/Multi-Sensor System (MRMS) produced by the NOAA National Severe Storms 
Laboratory provides automatic 2-minute resolution precipitation estimates based on a series of 
algorithms integrating radar and gauge data with lightning detection systems and forecast 
models (item 14 in Table A-1). The information produced is mostly used for extreme weather 
forecasting and other purposes, and historical simulations are not publicly archived. The 
CONUS and adjacent portions of Canada and Mexico are covered by MRMS. 

2.2.3.2 Error and Uncertainty 

Although radar can capture the spatial distribution of extreme storms that cannot be measured 
by conventional gauges, the accuracy of radar-based precipitation products can be limited by 
nonlinear reflectivity-rainfall relationships, variations in vertical reflectivity, blockages, and spatial 
and temporal sampling (AghaKouchak et al., 2010). Because of some coverage gaps and 
limitations of radar penetration in mountainous terrain, radar data are not available in some 
parts of the U.S. Krajewski et al. (2010) compared radar rainfall estimates and rain gauge 
observations for 20 selected storms and reported around 15–91% average differences. From a 
statistical sampling perspective, unlike rain gauges that continuously measure cumulative 
precipitation at a fixed location, radar rainfall is based on measurements of instantaneous 
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reflectivity during each scan (currently every 4–10 minutes). The intrinsic assumptions are that 
the scan interval is sufficiently short, and each instantaneous scan can be representative for the 
entire interval. Nevertheless, given the high variability of extreme storms, such assumptions 
involve high uncertainties, and hence further adjustments and assimilation using gauge 
observation are required. An evaluation performed by Gourley et al. (2010) suggests that the 
Stage IV product has the highest correlation coefficient to gauge observations among various 
gridded rainfall products. Cunha et al. (2013) find that dual-polarization radars generally provide 
lower error than single-polarization radars, but that the error is fundamentally dependent on 
range sampling; radar rainfall error is found to decrease for larger temporal and spatial scales. 
Seo et al. (2015) also find dual-polarization to provide higher accuracy than single-polarization. 

2.2.4 Satellite-driven Precipitation Products 

Satellites have been used to observe weather phenomena for decades, with temperature 
measurements first recorded in the late 1960s and precipitation measurements becoming 
available in the 1990s. Precipitation detection is accomplished through the use of radar, 
microwave imaging, and lightning sensors. 

2.2.4.1 Product Description 

In 1997, a joint effort between the National Aeronautics and Space Administration (NASA) and 
Japan Aerospace Exploration Agency (JAXA) launched the Tropical Rainfall Measuring Mission 
(TRMM) satellite equipped with the first orbiting precipitation radar. Before ending its mission in 
2015, the TRMM orbited at an elevation of approximately 400 km and completed an orbit every 
92.5 minutes. The TRMM Multi-Satellite Precipitation Analysis (TMPA) merges the data 
collected from TRMM with data from other satellites, gauges, and other sources to produce 3-
hourly precipitation estimates at a 1/4 deg (~25 km) horizontal resolution (item 15 in Table A-1). 
Global coverage is provided from 60 degrees S to 60 degrees N. Although the TRMM went 
offline in 2015, TMPA products were still produced through early 2018. 

NASA and JAXA jointly launched TRMM’s replacement, the Global Precipitation Measurement 
(GPM) international satellite mission, in 2014 (item 16 in Table A-1). GPM provides global 
coverage from 60 degrees S to 60 degrees N. Compared with TMPA, GPM provides higher 
spatial and temporal resolution, offering 30-minute precipitation accumulations at a resolution of 
0.1 deg (~10 km). 

2.2.4.2 Error and Uncertainty 

Given satellites’ broad spatial coverage, TRMM is a valuable resource for regions without a 
dense gauge network or weather monitoring radars. However, the use of satellite-based 
precipitation products is not advantageous in many parts of the U.S. given the existence of 
various gauge- or radar-based precipitation products. 

From a statistical sampling perspective, satellite-based precipitation products also suffer from a 
similar but more severe measurement issue compared with weather radar. Though using a 
multi-satellite approach can increase measuring frequency, significant inconsistencies and gaps 
in temporal coverage exist which may decrease accuracy compared with radar and gauge 
estimates. Several studies have reported that systematic error in satellite measurements 
increases as the rain rate increases (AghaKouchak et al., 2012). Petkovic and Kummerow 
(2017) evaluate the source of error in passive TRMM microwave imager sensors over certain 
regions. Tian and Peters-Lidard (2010) present a global map of measurement uncertainty in 
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satellite-based precipitation estimates, finding higher uncertainty nearer the poles. An evaluation 
performed by Gourley et al. (2010) suggests that Stage IV provides more accurate precipitation 
measurements than TRMM. The use of satellite-based precipitation products is most beneficial 
for regions with a minimum number of rain gauges and without reliable radar measurement, 
such as parts of the mountainous western United States. 

2.2.5 Reanalysis-driven Precipitation Products 

Meteorological reanalysis products have been widely used by the meteorological, climatological, 
and hydrological communities in understanding historic weather patterns. Meteorological 
reanalysis provides reconstructed historic weather simulations using global weather forecasting 
models with observations collected from various instruments (but not rainfall depth from rain 
gauges until recently; see Reichle et al., 2017). The simulations provide comprehensive 
snapshots of 3-dimensional meteorological conditions (e.g., wind, pressure, total precipitable 
water) at regular intervals over long time periods, often years or decades (Parker, 2016). There 
have been multiple international efforts to generate reanalysis data sets to support various 
missions. 

2.2.5.1 Product Description 

NOAA NCEP has produced several precipitation reanalysis data sets, including NCEP/NCAR 
Reanalysis 1 (item 17 in Table A-1), NCEP/Department of Energy Reanalysis 2 (item 18 in 
Table A-1), North American Regional Reanalysis (NARR; item 19 in Table A-1), and Climate 
Forecast System Reanalysis (CFSR; item 20 in Table A-1). Reanalysis 1 offers 6-hourly global 
precipitation estimates at a 1.875° horizontal resolution for the period since 1948 and is updated 
daily. Reanalysis 2 provides similar information, is available from 1979, and is updated monthly. 
CFSR provides similar global information and coverage as Reanalysis 2 but includes an 
enhanced 0.313° (~35 km) horizontal resolution and has started to incorporate gauge rainfall 
observations in its data assimilation. NARR is a specific use case of the high-resolution NCEP 
Eta Model to provide 3-hourly precipitation estimates over North America at a 32 km resolution; 
data are available from 1979 to 2014, and no update is currently scheduled. 

NASA produces the Modern-Era Retrospective analysis for Research and Application, Version 2 
(MERRA-2; item 21 in Table A-1), which offers global hourly precipitation estimates at a 0.5° 
latitude by 0.625° longitude resolution and has been available since 1980. Compared with 
NCEP reanalysis, NASA reanalysis uses more remotely sensed information courtesy of NASA 
satellites. MERRA-2 has also started to incorporate gauge rainfall observations in its data 
assimilation system. 

The Japan Meteorological Agency produces the Japanese 55-year Reanalysis (JRA-55; item 22 
in Table A-1), which offers global 3-hourly precipitation estimates at a 55-km horizontal 
resolution and is available since 1958. 

The European Centre for Medium-Range Weather Forecasts produces the ERA-Interim 
reanalysis product, which offers global 6-hourly precipitation estimates at a 0.7° (~78 km) 
horizontal resolution and is available from 1979 (item 23 in Table A-1). ERA-Interim will be 
replaced in 2019 by ERA5, which will offer 31-km global resolution (compared with 79-km in 
ERA-Interim), hourly data (compared with 6-hourly in ERA-Interim) and improved atmospheric 
parameterization. 
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2.2.5.2 Error and Uncertainty 

Among the various types of precipitation products summarized in this report, reanalysis-driven 
precipitation is most different from rain gauge observations, mainly because two factors: (1) 
reanalysis data sets typically have very coarse spatial resolution and (2) reanalysis data sets 
typically do not assimilate observations from rain gauges. Recent reanalysis products such as 
CFSR and MERRA-2 start to incorporate gauge observations to correct model generate 
precipitation (Reichle et al., 2017). Despite the relatively poor utility of reanalysis-based 
precipitation, other reanalysis variables such as total precipitable water and 3-dimensional wind 
and pressure fields are considered reliable and sometimes have been treated as surrogates of 
observations. A comprehensive global-scale evaluation of 23 precipitation data sets (satellite- 
and reanalysis-based) by Beck et al. (2017) reported large differences in estimation accuracy 
among the data sets and highlighted the benefits of careful data merging across gauge-, 
satellite- and reanalysis-based precipitation estimates. 

2.3 Considerations for ARF 

In this section, a total of 23 publicly available precipitation products based on gauge, radar, 
satellite, and reanalysis data are described. Data metrics (including data set type, temporal and 
spatial coverage, and latency) for these products are tabulated in APPENDIX A for further ARF 
analysis consideration. 

To reliably derive areal extreme rainfall and ARF estimates through PFA, precipitation products 
with low measuring uncertainty, long records, high spatial density, large spatial coverage, and 
fine temporal resolution are desired. In general, the gauge-only precipitation data sets should 
have the highest (point) measurement accuracy. In addition, since the gauge-only precipitation 
data sets are also the common input to most point-based PFA products (including NOAA Atlas 
14), they may provide the best data consistency for ARF derivation. However, spatial 
disaggregation of gauge precipitation measurements into watersheds is not a trivial task since 
one needs to consider various topographic, orographic, and local adjustments (especially in 
complex terrain). The processing of gauge observations (e.g., format transform, quality control, 
treatment of missing values) is also more cumbersome than other approaches. As a result, the 
use of gauge-only precipitation data sets likely demands more labor and resources compared 
with other alternative precipitation data products. 

Compared with gauge-only precipitation data sets, several gauge-driven precipitation products 
are easier to use and quite popular in many hydrologic studies. Despite some differences in 
methodologies, these products all consider potential topographic effects on precipitation. 
However, although they are all (mostly) based on gauge observations, different data processing 
and quality control procedures (that are not fully open to the public) are used in each product. 
As a result, it is challenging to conduct further review and understand their inter-product 
differences. Most gauge-driven precipitation products are also limited to daily temporal 
resolution and hence cannot support subdaily ARF analysis. 

Given the advance of monitoring technologies, both radar-driven and satellite-driven 
precipitation products provide new opportunities to better understand the spatiotemporal 
structures of extreme precipitation. While both types of products can better capture the 
instantaneous and relative magnitude of extreme storms, they cannot provide temporally 
continuous and accurate measurement of precipitation depth at a given location. As a result, 
assimilation and bias-correction of raw radar-driven and satellite-driven precipitation products by 
gauge observations are necessary. When both types of products are available, it is also 
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recommended to first consider radar-driven rather than satellite-driven precipitation products. In 
addition, given their relatively shorter periods of record, radar- and satellite-based products may 
not be used to credibly estimate long-return-period extreme rainfall (e.g., it is questionable to 
estimate 100-year rainfall depth from 16 years of data). The limited period of data collection is of 
particular concern for the purpose of PFHA. 

Among all types of precipitation products, reanalysis-driven precipitation estimates can be the 
most limiting. Various studies have reported large differences between reanalysis-driven and 
observed precipitation. Although the reanalysis products can provide a suite of best-available 
meteorological conditions (e.g., wind, pressure, total precipitable water), they do not seem to 
have the required accuracy to support PFA and ARF derivation. Therefore, use of the 
reanalysis-driven precipitation in PFA is not recommended (unless all other alternative products 
are unavailable). 

Since no existing precipitation product can meet all desired data criteria consistently across all 
of the U.S., region-specific considerations are needed. To explore and demonstrate the 
sensitivity of ARF associated with precipitation products, several precipitation products are 
selected for comparison in the use case studies documented in Section 4. 
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3 METHODS FOR ARF ANALYSIS 

This section reviews and discusses various methods that can potentially be used for ARF 
analysis. Each method is evaluated by its data dependency, required assumptions, analytical 
complexity, spatiotemporal scale, and whether it has been independently evaluated in other 
studies. Several suitable ARF methods are then selected and compared in the use case studies 
in Section 4. 

3.1 Factors Affecting ARF 

We start by summarizing the main factors that affect ARF in Table 3-1. These factors are 
classified by storm characteristics (Section 3.1.1), geographic features (Section 3.1.2), ARF 
methodology (Section 3.1.3), and source of rainfall data (Section 3.1.4). Recent review articles 
(e.g., Svensson and Jones, 2010; Pietersen et al., 2015; Pavlovic et al., 2016) provide insights 
into how these factors could qualitatively or quantitatively affect ARF. Discussion, along with 
comments on the relevance to PFHA at NPP sites (included as indented, bulletized text 
throughout Section 3.1), are provided in the remainder of this section. 

Table 3-1 Summary of Factors Affecting Precipitation ARF Calculations 

Storm 
Characteristics 
(Section 3.1.1) 

Geographic 
Features 
(Section 3.1.2) 

ARF Methodology 
(Section 3.1.3) 

Sources of Rainfall 
Data 
(Section 3.1.4) 

• Storm duration 

• Storm type 

• Seasonality 

• Return period 

• Geographic 
location 

• Regional climate 
pattern 

• Watershed 
geometry 

• Watershed 
topography 

• Empirical versus 
analytical 

• Storm-centered 
versus fixed-area 

• Spatial averaging 

• Probabilistic 
distributions 

• Types of rainfall 
products 

• Period of record 

• Data integration 

• Measurement 
uncertainty 

 

3.1.1 Storm Characteristics 

Storm characteristics are perhaps the most sensitive factors affecting ARF. Pietersen et al. 
(2015) identified predominant weather types, storm durations, seasonal factors, and recurrence 
intervals as primary contributors to inconsistencies across multiple ARF findings. 

Storm Duration: In addition to storm area, storm duration is one of the most-commonly reported 
factors affecting ARF. Many conventionally used ARFs (e.g., TP-29) reported higher ARF 
values (closer to 1) at longer durations (1 day or above) and lower ARF values at shorter 
durations (subdaily). However, some studies (e.g., Huff, 1995; Clark and Rakhecha, 2002; 
Ramos et al., 2005) reported minimal impact of storm duration on ARF, although such studies 
analyzed only limited storm durations. 

• For the purpose of PFHA, longer-duration ARF is likely to be the focus for NPPs located 
in large watersheds. Other NPPs located in smaller watersheds or in watersheds with 
short lag times may require shorter-duration ARF. Depending on the specific modeling 
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needs (e.g., for watershed-scale flooding or for local intense precipitation), ARF with the 
most suitable duration should be derived to support PFHA applications. 

Storm Type: Extreme precipitation events are usually classified into larger-scale tropical and 
synoptic (e.g., frontal) systems and smaller-scale convective (e.g., thunderstorm) systems that 
have distinct spatial rainfall patterns. Skaugen (1997) identified spatial correlation structures for 
small- and large-scale precipitation using statistical pattern recognition of daily rainfall 
parameters and found that precipitation intensity for small-scale convective events decreases 
more rapidly than for large-scale frontal systems (i.e., the ARF would decay more rapidly for 
small-scale events). However, since storm type can be addressed only through the less 
conservative storm-centered approach, it is typically not called out in most fixed-area 
assessments. Storm type can instead be indirectly represented through storm area and 
duration, with larger area/duration ARF primarily covering tropical/synoptic systems and smaller 
area/duration ARF primarily covering convective systems. In addition, certain storm types occur 
more commonly and would be more highly represented in the historical record in certain 
geographic locations. For instance, convective systems are more frequent in the Midwest, while 
tropical and extra-tropical storm remnants are more common in the Southeast and Northeast, 
respectively. Since intense, small-scale convective events typically occur during warm seasons 
(e.g., May–October), seasonal assessment can be another way to indirectly assess the effects 
of storm type on ARF. 

• Existing literature does not offer an effective way to quantify the effects of storm type on 
ARF when a fixed-area assessment approach is used. Employing storm type 
classification on historic events is a tedious and somewhat subjective process which 
may not yield specific benefits for ARF derivation. Given that the effects of storm type 
can be indirectly incorporated through storm area and duration and vary by region, for 
the purpose of PFHA on NPP sites, assessment of effects of storm type on ARF may not 
be a priority. If needed, a hybrid approach can be developed to specifically address the 
effects of storm type on ARF. 

Seasonality: Huff and Shipp (1969) and Allen and DeGaetano (2005b) both report smaller ARFs 
associated with the warm season compared with the cool season. Svensson and Jones (2010) 
reasons that this finding likely results from increased convective activities present in the warm 
season. Various literature suggests that increased convection (which is associated with 
concentrated, high-intensity precipitation over relatively small areas) could explain why warm 
season ARFs are smaller than cool season ARFs. For regions with significant seasonal rainfall 
variability, the effects of seasonality on ARF can be expected. 

• In considering the impacts of all season precipitation events versus cool season rain-on-
snow events on an NPP site of interest, calculation of season-specific ARFs may be 
needed for hydrologic applications. The (default) all season ARF is likely to be smaller 
than cool season ARF and would lead to an underestimation of ARF during cool season 
applications. Thus, a dedicated cool season ARF is likely needed. 

Return Period: Strong evidence exists in the literature to suggest that ARF varies with return 
period. Bell (1976) reported that ARFs decrease more rapidly for increasing return periods, an 
observation which is also found in Stewart (1989), Skaugen (1997), Allen and DeGaetano 
(2005a), and Asquith and Famiglietti (2000). However, perhaps because of data limitation, both 
U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) and 
United Kingdom (UK) Flood Studies Report (NERC, 1975) ARFs disregard the potential effects 
due to return period, while Grebner and Roesch (1997) evaluate return period and find ARFs to 
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be independent of return period in Switzerland. Using more recent radar-based rainfall product, 
Pavlovic et al. (2016) show that ARF derived for the State of Oklahoma are dependent upon 
return periods. 

• Although return period was not represented in the conventional TP-29 ARF, its potential 
influences should not be neglected and are certainly relevant to PFHA at NPP sites. 
However, the main challenge arises in estimating long-return-period (e.g., greater than 
100-year level) ARF estimates based on limited historic observations (i.e., decades of 
data). To overcome the data limitation, a possible approach in assisting the development 
of long-return-period (i.e., low frequency) ARF is through multi-ensemble simulation 
using numerical weather simulation models. Modern high-performance-computing 
capabilities have gradually matured enough to enable examining the areal-point extreme 
precipitation relationship through computationally intensive, process-based modeling. 
Until such progress has been made to improve the reliability of low-frequency extreme 
precipitation depth, the ARF estimates at long return periods solely based on 
observations should be treated with extreme caution. 

3.1.2 Geographic Features 

Geographic features such as location, regional climate pattern, watershed geometry, and 
topography affect both point and areal precipitation features as well as their ARF relationship. 
However, the U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 
1960) and United Kingdom Flood Studies Report (NERC, 1975) ARFs were usually applied 
across various locations without considering the potential geographical differences. This is an 
area that can be improved in PFHA for NPP sites. 

Geographic Location: Comparisons among ARFs in different geographic locations have 
supported the concept that ARFs vary with location. For example, Omolayo (1993) found higher 
1-day ARFs in the U.S. than in Australia; Asquith and Famiglietti (2000) found higher ARFs in 
the eastern U.S. than in Texas; and Zehr and Myers (1984) found more rapid ARF decline in the 
Southwest U.S. than the rest of the country. Bell (1976) and Stewart (1989) both found very 
weak correlations between ARF and latitude, indicating that ARFs may be higher at more 
northerly latitudes. In addition, the frequency and intensity of certain storm types varies across 
locations. As Skaugen (1997) points out, extreme point precipitation tends to occur more 
frequently inland, whereas large, synoptic-scale precipitation events tend to occur closer to the 
coast. 

• When local data are sufficient, the most defensible approach will be to derive site-
specific ARF that can best reflect the geographical influences for a site of interest. If the 
preference is to use ARF from other published studies, the selection should consider if 
geographical features are sufficiently similar to avoid erroneous ARF values for 
applications. 

Regional Climate Pattern: Since precipitation patterns are fundamentally tied to regional climate, 
ARF studies have commonly reported (mostly qualitatively) the impact of regional climate on 
ARFs. As mentioned earlier, the results of Omolayo (1993), Asquith and Famiglietti (2000), and 
Zehr and Myers (1984) all indicate variations in ARF with geographic location; however, these 
findings also indicate lower ARFs in drier climates (e.g., Australia, Texas, Southwest U.S.) 
compared with wetter climates (U.S., eastern U.S.). Stewart (1989) shows that ARFs were 
correlated with long-term average annual rainfall, indicating a connection between climate and 
ARF. 
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Microclimates from urban rainfall effects may also affect ARFs. Huff (1995) evaluates ARFs for 
storms occurring in urban and rural areas, finding that precipitation may decrease more slowly 
in urban areas than in surrounding rural areas for a 500-km2 (193-mi2) area and may decrease 
more rapidly in urban areas than in surrounding rural areas for larger areas. The study, 
however, was based on only 8 urban storms in Chicago and 67 rural storms in the surrounding 
rural region, and Huff (1995) reported that the anomaly could result from natural variation. 

• Although it is clear that regional climate pattern has a direct linkage to ARF, there has 
not been an effort to include climate variables (e.g., annual precipitation) in the 
numerical ARF representation. This can be worth exploring in future research efforts, 
and the results should help in deriving a more generalized ARF model for regions 
without sufficient data to derive site-specific ARF. 

Watershed Geometry: In computing areal average rainfall (and hence ARF), the geometry of the 
watershed can play a role. For example, if typical rainfall patterns (e.g., shape and movement) 
vary greatly from the watershed geometry, observed areal rainfall characteristics may vary. This 
effect could be most pronounced for irregular or elongated catchment shapes. However, 
Veneziano and Langousis (2005) found that the effect of watershed geometry is generally small 
and that highly elongated watersheds are rare. 

• Although watershed shape and geometry may affect ARF, the influence should be 
relatively minor and can be reasonably neglected for most NPP sites. The potential 
impact may still need to be evaluated if the shape of a contributing watershed is highly 
irregular or elongated. 

• Note that in considering ARFs for a large watershed, ARFs specific to multiple sub-
watersheds may be sought for hydrologic modeling application. In such cases, it is 
important to ensure that the total mass balance of rainfall estimated for the full area of 
interest is reflected in the sub-watershed ARF estimates. To be more specific, the overall 
watershed-wide ARF should be governed by the total area of the watershed. If the sub-
watershed ARFs are evaluated for each of the hydrologic modeling units (based on the 
individual area of each sub-watershed), these sub-watershed ARFs should be further 
rescaled to match the overall watershed-scale ARF. In other words, since the 
aggregation of ARFs applied within multiple smaller sub-watersheds would increase the 
total precipitation volume compared with application of the overall watershed ARF, 
adjustments would be needed to ensure conservation of total rainfall mass. 

Watershed Topography: Topography plays an important role in precipitation processes through 
various orographic effects, and the frequency of particular storm patterns may change with 
topography. For example, Stewart (1989) reports a relationship between ARF and long-term 
average annual rainfall; however, a strong correlation between long-term average annual rainfall 
and elevation also was found. Thus, topography could have contributed to the relationship found 
between ARF and long-term average annual rainfall. Gauged precipitation observations are 
typically sparser in high-elevation locations, partially because of lower population densities. 
From a calculation standpoint, using low-density, high-elevation observations to calculate areal 
precipitation could prove unrepresentative of the region being considered; however, Allen and 
DeGaetano (2005b) find little variation in ARF based on gauge density. 

• To ensure that the potential influence of topography is properly accounted for in ARF, it 
is important to assess whether the selected precipitation product has been adjusted for 
topography (e.g., PRISM and Daymet). The conventional Thiessen polygon spatial 
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averaging approach does not account for the potential influence due to topography and 
can lead to biased areal precipitation estimates in topographically complex regions. As 
with regional climate pattern, the quantitative influence of topography on ARF can be 
worth exploring in future research efforts, and the results should help in deriving a more 
generalized ARF model for regions without sufficient data to derive site-specific ARF. 

3.1.3 ARF Methodology 

While multiple ARF methods have been developed since TP-29, there is no consensus 
guidance on which newer ARF methods may be superior (or preferable). Most studies were 
proposed and conducted for specific regions. Intercomparison studies such as Pietersen et al. 
(2015) and Pavlovic et al. (2016) are needed for more locations and to cover more potential 
methods. Further research could guide ARF model selection by providing quantifiable metrics 
for comparison among alternative ARF methods. The general classification and considerations 
are discussed below with further method-specific review provided in Section 4. 

Empirical versus Analytical: Empirical ARF refers to the regionally smooth ARF relationship 
based on a large number of samples (derived from pairs of gauges or from smaller sub-areas) 
without an underlying analytical theory. Most ARFs used in practice (e.g., U.S. Weather Bureau, 
1957, 1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) fall into the empirical category. 
Several newer analytical approaches have been developed using various methodologies, 
including correlation analysis, crossing properties, scaling relationships, and storm movement.  

• To select an appropriate ARF model for application, both empirical and analytical ARF 
calculation approaches should be considered and compared for the purpose of PFHA at 
NPP sites. A hybrid method (i.e., fitting parameters of an analytical model by site-specific 
empirical samples) offers another promising approach. 

Fixed-area versus Storm-centered: The more commonly used empirical ARF approaches (e.g., 
U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) follow a fixed-
area approach in which the ARF calculation domain is geographically fixed. In contrast, some 
other studies calculate ARF using a storm-centered approach in which the area analyzed 
changes for each storm, while the point precipitation for ARF calculation is based on the 
maximum rainfall observed. Asquith and Famiglietti (2000) point out that one challenge 
associated with storm-centered ARF approaches is difficulty with handling multi-centered 
storms. Omolayo (1993) report that storm-centered ARFs are incorrect for estimating areal 
precipitation frequency from point precipitation observations. However, Omolayo (1993) and 
Svensson and Jones (2010) acknowledge that they can be used for PMP studies since there is 
no frequency associated with PMP. From a conservativeness standpoint, storm-centered ARFs 
have been shown to be less conservative than fixed-area ARFs (Sivapalan and Blöschl, 1998; 
Svensson and Jones 2010). 

• Although storm-centered ARF relationships have been used in PMP studies (in the form 
of DAD curves), those are in a different context and should not be used to derive areal 
rainfall frequency estimate. Furthermore, given concerns with the appropriateness of 
storm-centered ARF approaches (Omolayo, 1993) and application-related challenges 
(e.g., multi-center storms), storm-centered ARF is not recommended for PFHA at NPP 
sites. As highlighted in Section 1.4, this study focuses only on the fixed-area ARF 
approach. 
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Spatial Averaging: In spatially aggregating gauge rainfall observations to estimate areal 
precipitation, various methods may be used. Most commonly, simple unweighted areal 
averages, Theissen polygons, and inverse distance weighting are used to compute areal 
precipitation. In topographically complex regions, additional adjustments based on topography 
need to be considered during spatial averaging. The case studies by Allen and DeGaetano 
(2005a) found small differences in ARFs derived by using simple unweighted areal averages, 
Theissen polygons, and inverse distance weighting, but also acknowledge that these simpler 
interpolation methods do not account for topography. Pavlovic et al. (2016) suggest that the 
spatial averaging method has a significant influence on the ARF; hence, they eventually use 
radar-based data instead of gauge rainfall in their Oklahoma study. 

• The potential effect of spatial averaging on ARF is likely affected by the homogeneity of 
precipitation extremes within a region. As discussed previously with respect to 
watershed topography, spatial averaging methods that cannot address topographical 
influences (e.g., Theissen polygons) would likely result in biased areal rainfall estimates 
in topographically complex regions. This issue can be further challenged by storm type 
considerations and gauge density. In regions with very few gauge stations, small-scale 
convective storms may not be fully captured, leading to underestimation of extreme 
storms. Therefore, while simple unweighted areal averages can be adequate for spatially 
homogeneous regions, various weighting methods or meteorological data assimilation 
approaches should be compared and evaluated in highly heterogeneous regions. 

Probabilistic Distributions: Some ARF methods rely on various types of probabilistic distributions 
(e.g., Rodriguez-Iturbe and Mejía, 1974; Bacchi and Ranzi, 1996; Grebner et al., 1998; De 
Michele et al., 2001). These distributions are used to model point extreme rainfall processes, 
areal dependence structure, or both. For instance, Sivapalan and Blöschl (1998) assume that 
point rainfall would follow an exponential distribution, whereas the areal average rainfall would 
follow a gamma distribution. Overeem et al. (2009) and (2010) proposed a regional generalized 
extreme value (GEV) distribution that captures both point and areal probability distribution. 
Consequently, typical issues associated with frequency analysis—such as annual maximum 
series (AMS) processing, fitting techniques (e.g., maximum likelihood), and goodness-of-fit 
tests—would affect the derivation of ARF. 

• Since the main purpose of ARF within the PFHA framework is to estimate areal PFA 
estimates from point-based PFA products that have been derived through rigorous 
frequency analysis, the specific requirements and consideration of probability distribution 
fitting and testing should be quite familiar to the users. For a targeted NPP watershed, 
one may follow the concept of conventional PFA to test and select a most suitable 
probabilistic distribution to model areal extreme precipitation (i.e., a specific distribution 
such as GEV is not necessary). However, while it is important to evaluate the type of 
distribution to be used, it is also critical to assess whether there are sufficient statistical 
samples to support parameter estimation. 

3.1.4 Data 

The final category relates to the rainfall data used to estimate ARF. Factors include types of 
rainfall products, period of record, data integration, and measurement uncertainty. 

Types of Precipitation Products: The conventional ARFs (e.g., U.S. Weather Bureau, 1957, 
1958a, 1958b, 1959, 1960; NERC, 1975; Bell, 1976) were developed using gauge rainfall 
observations; however, the increased availability of other rainfall products (e.g., radar-based 
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rainfall estimates) have enabled additional accessibility for ARF calculation. Durrans et al. 
(2002) report radar-based 100-year return period estimates to be 20–35% lower than gauge-
based estimates found in TP-40 (Hershfield, 1961) and HYDRO-35 (Frederick et al., 1977). 
Short radar records, heterogeneous data treatment, natural climate variability, and radar data 
calibration have all been identified as potential contributors to the differences in radar-based 
and gauge-based extreme rainfall estimates (Svensson and Jones, 2010). In calculating ARF, 
however, these differences are generally assumed to cancel out, since point and areal 
estimates are subject to the same types of biases. Durrans et al. (2002) report that while radar-
based ARFs are largely consistent with earlier gauge-based ARFs, they do not decrease with 
area as rapidly as do gauge-based ARFs; however, Allen and DeGaetano (2005b) report the 
opposite conclusion. Other rainfall products, such as those from satellite observations or 
reanalysis, could also be evaluated but have not been commonly applied to ARF calculation. 
For example, Kok et al. (2017) evaluate the feasibility of using satellite observations to compute 
ARFs in Malaysia, while Fouchier et al. (2015) evaluate probabilistic ARF in France using a 
reanalysis product. Pavlovic et al. (2016) state that the daily ARF curves obtained using the 
radar-based Stage IV and gauge-based PRISM match each other closely. 

• Given the availability of a variety of precipitation products (as discussed in Section 2), 
the required effort for intensive gauge data processing is largely reduced. However, this 
also raises a new concern regarding how the differences among existing precipitation 
products may affect ARF. When a situation allows, both gauge and radar-based 
precipitation products can be evaluated and compared to check how their differences 
may affect the derived ARF values. The satellite- and reanalysis-driven precipitation 
products, on the other hand, would likely involve larger uncertainty. ARF computed using 
those data may be less accurate and should be applied with caution. 

Period of Record: Since radar-based precipitation products are relatively new, the short period 
of record represents a major limitation for computing radar-based ARFs (Durrans et al., 2002). 
Satellite-based precipitation products also suffer from a relatively short period of record. 
Although gauge observations benefit from a longer period of record, the periods among gauges 
may be inconsistent and are more difficult to process and analyze. 

• The limited period of record would prohibit reliable ARF estimation for long return 
periods. If long-return-period ARF estimates are sought, the maximum number of data 
should be collected for analysis. 

Data Integration: Asquith and Famiglietti (2000) evaluate the aggregation of multiple overlapping 
rain gauge networks near Houston, TX, and conclude that “differing precipitation-monitoring 
networks cannot be indiscriminately combined.” In terms of station density, Allen and 
DeGaetano (2005a) find that differences in station density and interpolation method had minimal 
effect on ARF calculation in New Jersey and North Carolina. Moving forward, the integration 
among different precipitation products will likely receive increasing attention, although such an 
approach has yet to be used for ARF study. 

• For data-limited regions, aggregation of multiple precipitation products will likely be one 
of the few viable approaches. However, potential issues resulting from data integration 
(specifically for ARF) are not clearly understood. ARF products created using integrated 
data sets should be carefully reviewed. 

Measurement Uncertainty: The various precipitation products exhibit different measurement 
error and uncertainty, as described in Section 2. When applicable, preference should be given 
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to those precipitation products with relatively smaller measurement uncertainty. Nevertheless, 
since the ARF represents a depth ratio, it is usually assumed that the systematic measuring 
biases can be largely canceled out. Thus, the measurement uncertainty may not be as critical to 
other factors that affect ARF. 

• Conventionally, hydrologic and hydraulic engineers have treated gauge observation (and 
increasingly, radar-based precipitation data) as ground truth values, often without 
considering its uncertainty. With the improved understanding of measurement 
uncertainty and availability of multiple precipitation products, measurement uncertainty 
can be quantitatively addressed in PFHA for NPP sites. 

3.2 Critical Review of ARF Methods 

3.2.1 Qualitative Assessment Considerations 

In evaluating the suitability of an ARF method for PFHA, several key qualities should be 
considered, including the following: 

• Spatiotemporal Scale and Resolution—Was the method developed at a comparable 
spatial scale (e.g., over 10,000 km2) to the targeted NPP watershed size and does it 
offer the desired temporal resolution (e.g., 3-day or 1-hour)? 

• Data Sufficiency and Dependency—Was the method developed based on a sufficiently 
large and complete data set? Does the method heavily rely on the quality and quantity of 
the input data, and are those data readily available, accessible, and reliable? If data 
availability is an issue for a specific NPP site, does the method entail a sufficient 
process-based foundation to support reasonable implementation with minimum data 
input? 

• Required Assumptions—Does the method require various assumptions that may have 
been oversimplified or impractical? 

• Analytical Complexity—Is the method difficult to follow or to reproduce (e.g., requires 
excessive computational resources or cannot be easily applied using existing software 
packages or tool sets) so that it is challenging to implement or review? 

• Independent Evaluation—Has the method been tested and shown to perform as 
expected through independent evaluation by a third party? 

• Site-specific Transferability—Is the method applicable to the NPP site or watershed of 
interest or is its application beyond the original study limited by geographic or 
climatologic features? 

These considerations are discussed and commented for various ARF methods reviewed in this 
section. 

3.2.2 Available ARF Methods 

Some of the currently available ARF methods are summarized in this section, including 

• Empirical methods (Section 3.2.2.1) 
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• Spatial correlation methods (Section 3.2.2.2) 

• Statistical crossing properties methods (Section 3.2.2.3) 

• Spatial and temporal scaling methods (Section 3.2.2.4) 

• Extreme value theory methods (Section 3.2.2.5) 

A comprehensive summary of available ARF methods is also provided in Pietersen et al. (2015); 
additional information on ARF methods can be found in Svensson and Jones (2010), while an 
intercomparison among a few selected methods is provided in Pavlovic et al. (2016). The 
reviewed methods are summarized in Table 3-2 and discussed in the sections below. 

Table 3-2  Summary of Available ARF Calculation Methods 

Empirical Methods 

US Weather Bureau (TP-29; 1957, 1958a, 1958b, 1959, 1960)  
Leclerc and Schaake (1972) 

United Kingdom Approach (NERC, 1975; Bell, 1976) 
Koutsoyiannis and Xanthopoulos (1999) 

National Weather Service (TR-24; Myers and Zehr, 1980) 

Annual-maxima-centered (Asquith and Famiglietti, 2000) 

Swiss Approach (Grebner et al., 1998) 

Australian Rainfall and Runoff Approach (Nathan and Weinmann, 2016) 

Spatial Correlation Methods 

Rodriguez-Iturbe and Mejía (1974) 

Sivapalan and Blöschl (1998) 

Omolayo (1989) 

Statistical Crossing Properties Methods 

Bacchi and Ranzi (1996) 

Spatial and Temporal Scaling Methods 

De Michele et al. (2001) 

Veneziano and Langousis (2005) 

Extreme Value Theory Methods 

Durrans et al. (2002) 

Allen and DeGaetano (2005a) 

Lombardo et al. (2006) 

Overeem et al. (2010) 
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3.2.2.1 Empirical Methods 

Empirical ARF methods originated from TP-29 by the U.S. Weather Bureau (1957, 1958a, 
1958b, 1959, 1960). The following text describes TP-29 and various empirical ARF calculation 
methods that have since been developed. 

U.S. Weather Bureau TP-29 Approach (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) 

The U.S. Weather Bureau TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) 
represents the first assessment of ARFs and provides a series of curves to estimate areal 
rainfall based on point rainfall. ARFs were developed for 0.5-, 1-, 3-, 6-, and 24-hour durations 
for area sizes up to 1,036-km2 (400-mi2; see Figure 3-1) and were assumed generalizable 
regardless of geographic location or return period. The TP-29 estimates were derived by 
analyzing six rain gauge networks in the U.S. with individual gauges nearly uniformly spaced 
and gauge records ranging from 7 to 15 years. These networks are located between 80 and 90 
degrees W longitude and 35–40 degrees N latitude. 

To compute ARF, the TP-29 approach relates the mean annual maximum areal rainfall to the 
mean annual maximum point rainfall for all stations and all years. The ARF is calculated for a 
specific duration as follows (formula modified from Pietersen et al., 2015): 

𝐴𝑅𝐹 =
𝑁 ∑ ∑ 𝑤𝑖𝑃𝑖𝑗̿̿ ̿̿𝑛

𝑗=1
𝑁
𝑖=1

∑ ∑ 𝑃𝑖𝑗
𝑛
𝑗=1

𝑁
𝑖=1

 , (2)  

where   

𝑁 = number of stations within the catchment area  

𝑛 = record length (years)  

𝑃𝑖𝑗
̿̿ ̿ = point rainfall of station i coincident with the annual 

maximum areal rainfall in year j (mm) 
 

𝑃𝑖𝑗 = annual maximum point rainfall of station i in year j 
(mm) 

 

𝑤𝑖 = Thiessen weighting factor for station i  

During year j, 𝑃𝑖𝑗 represents the annual maximum point rainfall of station i which may occur at 

different timing across the year. On the other hand, 𝑃𝑖𝑗
̿̿ ̿ refers to the single largest storm event 

during year j. A Thiessen weighting factor 𝑤𝑖 is used to assign the importance of each station in 

which ∑ 𝑤𝑖
𝑁
𝑖=1 = 1. Since 𝑃𝑖𝑗 should always be greater than 𝑃𝑖𝑗

̿̿ ̿, ARF calculated by Equation (2) 

has an upper bound at 1. Given the nearly uniform spatial distribution of the gauge stations, TP-
29 assumes equal weighting among all gauge observations. For nonuniform rain gauge 
networks, Equation (2) can be revised to include a weighted factor for each point rainfall (see 
Pietersen et al. 2015). 
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Figure 3-1 TP-29 ARF Curves (Source: U.S. Weather Bureau, 1957) 

Although newer methods have been developed, TP-29 remains the most commonly used ARF 
calculation method applied in the U.S. Leclerc and Schaake (1972) fit the TP-29 ARF results 
using the following equation: 

𝐴𝑅𝐹(𝐴, 𝐷) = 1 − 𝑒𝑎𝐷𝑏
+ 𝑒(𝑎𝐷𝑏−𝑐𝐴) , (3) 

where   

𝐴 = area (km2)  

𝐷 = duration (hours)  

𝑎, 𝑏, 𝑐 = fitted parameters   

United Kingdom Approach (NERC, 1975; Bell, 1976) 

Essentially following the same approach as used in TP-29 (U.S. Weather Bureau, 1957, 1958a, 
1958b, 1959, 1960), the United Kingdom Flood Studies Report (NERC, 1975) calculates ARF 
using a computationally convenient assumption that ARF can be calculated as the average of 
the area-to-point ratios computed from annual maximum events. The ARF is calculated as 
(formula from Pietersen et al., 2015) 
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𝐴𝑅𝐹 =
1

𝑛𝑁
∑ ∑ (

𝑃𝑖𝑗
̿̿ ̿

𝑃𝑖𝑗
) ,

𝑛

𝑗=1

𝑁

𝑖=1

 (4)  

where   

𝑁 = number of stations within the catchment area  

𝑛 = record length (years)  

𝑃𝑖𝑗
̿̿ ̿ = point rainfall for station i coincident with the annual 

maximum areal rainfall in year j (mm) 
 

𝑃𝑖𝑗 = annual maximum point rainfall of station i in year j 
(mm) 

 

Compared with TP-29, the UK ARF covered a wider range of durations (1 minute to 25 days) 
and areas (1 km2 to 30,000 km2).  

An empirical equation representing the UK Flood Studies Report ARF curves was established 
by Koutsoyiannis and Xanthopoulos (1999). The ARF curve is calculated as 

𝐴𝑅𝐹(𝐴, 𝐷) = 1 −
𝑎𝐴(𝑏−𝑐 ln 𝐴)

𝐷𝑑 ≥ 0.25 , (5)  

where   

𝐴 = area (km2)  

𝐷 = duration (hours)  

𝑎, 𝑏, 𝑐, 𝑑 = fitted parameters  

A graphical representation of the Koutsoyiannis and Xanthopoulos (1999) fitted model is shown 
in Figure 3-2. The UK ARF curves were plotted in semi-log scale to better illustrate small and 
large area ARFs simultaneously on the same figure. This plot formatting technique is different 
from the linear technique used in Figure 1-1 for the TP-29 curves and results in curves which 
are concave down rather than concave up. 
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Figure 3-2  UK Flood Studies Report ARF Curves Based on Koutsoyiannis and 
Xanthopoulos Fitted Model  

While the Flood Studies Report (NERC, 1975) assumed return period had little effect on ARF 
calculation, Bell (1976) reexamined the approach by fitting exponential distributions to the areal 
and point annual maximum rainfall series and computing ARF for areal and point rainfall 
estimates of the same return period. Circular areas of 1,000 km2 (386 mi2) were evaluated with 
ARFs computed for up to a 24 h duration. Given spatial variability in gauge observation 
locations, Thiessen weighting was used to fit the annual maximum areal rainfall series. To better 
represent the area of consideration, the point rainfall frequency curve was fitted based on the 
Theisen-weighted means of annual maximum point rainfall. Fitting to an exponential distribution 
using the method of maximum likelihood was performed using a partial duration series of the 20 
highest events; this was performed separately for each sample area and for the point rainfall 
estimates. The ARF for the same return period was then calculated for return periods of 2–20 
years. The ARF is calculated as follows: 

𝐴𝑅𝐹𝑇 =
∑ (𝑤𝑖𝑃𝑖𝑗̿̿ ̿̿ )

𝑇
𝑁
𝑖=1

∑ (𝑤𝑖𝑃𝑖𝑗)
𝑇

𝑁
𝑖=1

 , (6)  

where   

𝐴𝑅𝐹𝑇 = areal reduction factor at return period 𝑇  

𝑇 = Return period (year)  

𝑃𝑖𝑗
̿̿ ̿ = point rainfall for station i coincident with the annual 

maximum areal rainfall in year j (mm) 
 

𝑃𝑖𝑗 = annual maximum point rainfall of station i in year j 
(mm) 

 

𝑤𝑖 = Theissen weighted factor for station i  
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Overall, the Bell (1976) results provide reasonable agreement with the NERC (1975) results, 
with specific additional findings including these: 

• A slight tendency for 24-h ARFs to increase for higher latitude (less than 3% bias)  

• A statistically significant tendency for ARFs to decrease for longer return periods (2–5% 
bias for 24-h duration and 5–15% bias for 1-h and 2-h durations). 

National Weather Service TR-24 Approach (Myers and Zehr, 1980; Zehr and Myers, 1984)  

NOAA Technical Report NWS 24 (TR-24; Meyers and Zehr, 1980) represents the current U.S. 
approach to ARF estimation, yet practitioners often still use TP-29 (U.S. Weather Bureau, 1957, 
1958a, 1958b, 1959, 1960). TR-24 uses annual maximum rainfall across station pairs to 
perform frequency analysis and was developed using data from the Chicago area but deemed 
applicable nationwide. The frequency analysis is estimated following Chow (1951, 1964) and 
based on a Gumbel fitting of a Fisher-Tippet type I distribution. Svensson and Jones (2010) 
states that “it is questionable whether the complicated methodology [used in TR-24] is justified 
as precipitation observations become more plentiful with time.” Figure 3-3 shows TR-24’s 
complex calculation process. The ARF is calculated as follows (formula from Pietersen et al., 
2015): 

𝐴𝑅𝐹 =
𝑃𝐴
̅̅ ̅(𝑓, ∆𝑡, 𝐴)

𝑃𝑃
̅̅ ̅(𝑓, ∆𝑡, 0)

  , (7)  

where   

𝑃𝐴
̅̅ ̅= average areal rainfall for a specific frequency (𝑓), 

duration (∆𝑡), and area (𝐴) (mm) 

 

𝑃𝑃
̅̅ ̅ = point rainfall for a specific frequency (𝑓), duration (∆𝑡), 

and area (𝐴) (mm) 

 

The subsequent publication of NOAA Technical Memorandum NWS HYDRO-40 (Zehr and 
Meyers, 1984) applied some modifications (by using a mixed statistical model) to account for 
the non-dense network of gauges in Arizona and western New Mexico. Compared with the 
previous national study, NWS HYDRO-40 reports larger decreases in ARFs for larger area sizes 
in the southwest U.S. 
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Figure 3-3 TR-24 ARF Calculation Process (Myers and Zehr, 1980) 

Annual-maxima-centered Approach (Asquith and Famiglietti, 2000) 

Asquith and Famiglietti (2000) follows a slightly different ARF calculation approach in which both 
the areal and point components of the ARF are calculated based on annual maximum point 
events; in this way, the approach focuses on specific events and represents a storm-centered 
approach. Once an annual maximum point precipitation is found, a pair-wise series of 
calculations are performed to find the ratio between each surrounding point precipitation and the 
target annual maximum point precipitation. These ratios, shown as 𝑆𝑇(𝑟) in Equation (8), are 
then plotted against the distance between each point pairing, and fitting is performed. The 
resulting areal estimate is thus calculated as a circular area. The ARF is calculated as follows 
(formula from Pietersen et al., 2015): 
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𝐴𝑅𝐹 =
∫ 2𝑟𝑆𝑇(𝑟)∆𝑟

𝑅

0

𝑅2
  , 

(8)  
 

where   

𝑅 = maximum radius of circular catchment or integration 

limit (km); the total circular area = 𝜋𝑅2 

 

𝑟 = radius of concentric circle within the catchment (km)  

𝑆𝑇(𝑟) = ratio between rainfall depth at a specific location, 
distance 𝑟 from the point of the design storm and 
annual maximum rainfall 

 

This process is conducted separately for each return period. The approach also enables simple 
customized evaluations, as it does not require a fixed area and can be spatially integrated once 
the paired ratios are determined. This approach requires dense gauge networks and results in 
more rapidly decreasing ARFs than does TP-29 (U.S. Weather Bureau, 1957, 1958a, 1958b, 
1959, 1960). As mentioned in Svensson and Jones (2010), since the approach centers around 
the annual maximum point events and therefore does not consider the annual maximum areal 
events, the areal estimate likely underestimates the ARF. 

Swiss Approach (Grebner et al., 1998) 

The Hydrological Atlas of Switzerland (Grebner et al., 1998) provides ARFs across eight 
geographic zones for durations of 3–72 hours and areas of up to 5,000 km2 (1,931mi2). Using 
hourly precipitation gauge data from 1981 to 1993, the 26 most intensive precipitation events 
per geographic zone and per duration class were summarized; thus, this approach is storm-
centered. The ARF is then statistically fit to the following formula: 

𝐴𝑅𝐹 =
𝑎0

(𝐴+𝑎2)𝑎1
+ 𝑎3𝑒−𝑎4𝐴  , (9)  

 

where   

𝐴 = rainfall storm areas (km2)  

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 = fitted parameters  

When A = 0, ARF should be 1. Therefore, an additional equation can be obtained: 

𝑎3 = 1 −
𝑎0

𝑎2
𝑎1

 , (10)  
 

As do other studies, Grebner et al. (1998) find ARFs for longer durations are flatter (i.e., 
decrease less rapidly) than ARFs for shorter durations. ARFs are also reported to be 
independent of return period.  

Australian Rainfall and Runoff Approach (Nathan and Weinmann, 2016) 

The Australian Government’s Australian Rainfall and Runoff (ARR) Guidelines (Nathan and 
Weinmann, 2016) provides a modified version of Bell’s ARF calculation method. For areas with 
sufficient data, hypothetical circular catchments are defined, and areal rainfall series are 
developed using areal weighting (e.g., Theissen weighting). The ARF is then calculated from the 
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ratio of the areal weighted rainfall quantile divided by the weighted point rainfall quantile. After 
ARFs are calculated across various catchment areas, durations, and return periods for as many 
locations as possible, the ARFs are averaged across the catchments and fitted to provide a 
prediction model for the region of interest. Nathan and Weinmann (2016) provide detailed 
application guidelines for computing ARFs for catchments up to 30,000 km2 (11,583 mi2) and for 
durations of up to 7 days. For application to small catchments, the authors recommend linearly 
interpolating ARFs between the equation-based 10-km2 ARF and an ARF of 1.0 for 0 km2. 

A generalized equation for catchment areas of 10–1,000 km2 and durations of 1–7 days (that 
may be suitable for PFHA at many NPP sites) is formulated as 

𝐴𝑅𝐹(𝐴, 𝐷, 𝐴𝐸𝑃) = 1 − 𝑎(𝐴𝑏 − 𝑐 log10 𝐷)𝐷−𝑑 

+ 𝑒𝐴𝑓𝐷𝑔(0.3 + log10 𝐴𝐸𝑃) 

+ ℎ10𝑖𝐴𝐷(0.3 + log10 𝐴𝐸𝑃)  

(11)  

where   

𝐴 = area (km2)  

𝐷 = duration (hours)  

𝐴𝐸𝑃 = annual exceedance probability  

𝑎 through 𝑖 = fitted parameters  

When A = 0, ARF should be 1. Therefore, an additional equation can be obtained to eliminate ℎ 
as a fitted parameter: 

ℎ = −
𝑎𝑐(log10 𝐷)𝐷−𝑑

0.3+log10 𝐴𝐸𝑃
 , 

(12)  
 

Overall, although empirically based methods require minimum analytical assumptions, they 
heavily rely on the amount and quality of the underlying data. The computational challenges are 
mostly for data processing and QC, but not so much for the implementation of a numerical ARF 
model. Also, given the empirical nature, empirically based ARF products may not be regionally 
transferable (nevertheless, many applications still use them in various distinct regions). These 
various empirically based ARFs are commonly used in practice across various countries. 

3.2.2.2 Spatial Correlation Methods 

Various ARF calculation methods are based on spatial correlation of rainfall fields and rely on 
assumptions of isotropy (i.e., spatial correlation does not vary significantly along a specific 
horizontal direction/orientation) and particular statistical distributions of the rainfall process. 

Original Spatial Correlation Approach (Rodriguez-Iturbe and Mejía, 1974) 

Rodriguez-Iturbe and Mejía (1974) represents the first assessment of ARFs using spatial 
correlation parameters. The ARF in this case is simplified to depend only on the correlation 
coefficient of rainfall data between any two point rainfall locations chosen at random from the 
study area, as follows: 
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𝐴𝑅𝐹 = √𝐸(𝜌(𝑑)) , 
(13)  
 

where   

𝐸(𝜌(𝑑)) = expected correlation coefficient for the characteristic 
correlation distance 

 

The method uses all precipitation data rather than only considering extreme events; thus, the 
randomly chosen locations are likely more evenly distributed than locations associated only with 
more extreme events. The correlation distance measures the mean separation between two 
point locations selected randomly from within the area of interest. A spatial correlation structure, 
either an exponentially decaying function or a Bessel-type correlation structure, is assumed to fit 
the rainfall data, with additional assumptions that the point precipitation is isotropic (i.e., any 
location within the area of interest exhibits the same probability law) and Gaussian. Svensson 
and Jones (2010) point out that this distribution is not typical of extreme, short-duration 
precipitation events and that a non-Gaussian distribution will result in inexact correspondence 
between the point and areal precipitation frequencies (i.e., a theoretically correct ARF will not be 
represented). 

Modified Spatial Correlation Approaches (Omolayo, 1989; Sivapalan and Blöschl, 1998) 

Omolayo (1989) documented an ARF approach in which rainfall depths are assumed to be log-
normally distributed in space. The calculated method produces ARFs that vary directly with 
spatial correlation coefficient and inversely with return period, standard deviation, and number of 
gauges. The full calculation is shown in Eq. (14), while Eq. (15) shows a reduced form when a 
normal distribution is assumed and Eq. (16) shows a further reduced form for when 𝑛 is large 
(formulas from Pietersen et al., 2015). Equation (16) provides a form resembling that derived by 
Rodriguez-Iturbe and Mejía (1974); however, the Omolayo (1989) expression includes a 
correlation coefficient averaged over the rain gauges rather than being expressed for a 
particular separation distance. The following formulas are taken from Pietersen et al. (2015): 
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LN distributed rainfall: 
 

𝐴𝑅𝐹1 =       𝐸𝑥𝑝 {𝐾𝑇𝜎 [√
1 + (𝑁 − 1)𝜌

𝑁
− 1]} 

(14) 

 

 

Normal distributed rainfall: 

𝐴𝑅𝐹2 =       √
1 + (𝑁 − 1)𝜌

𝑁
 

(15) 

 

 

Normal distributed rainfall (large number of rainfall stations) 

𝐴𝑅𝐹3 = √𝜌 (16) 
 

 

 
where 

  

𝐾𝑇 = frequency factor corresponding to return period  

𝑁 = number of rainfall stations  

𝑇 = return period (years)  

𝜎 = standard deviation of rainfall depth in the log domain 
(mm) 

 

𝜌 = Average spatial correlation coefficient  

Sivapalan and Blöschl (1998) propose a modification to the Rodriguez-Iturbe and Mejía (1974) 
approach, noting that the latter approach considers mean areal average rainfall, which does not 
change with the averaging area. To address the concern, Sivapalan and Blöschl (1998) 
consider extreme value distributions rather than parent distributions only and assume an 
exponential distribution for the point rainfall intensity. The final Sivapalan and Blöschl (1998) 
ARF expression using this method is complex but is dependent on the catchment area, spatial 
correlation length, duration, and return period; for very large return periods, Sivapalan and 
Blöschl (1998) find the ARF to vary with catchment area and correlation structure only. While 
ARFs are found to be loosely associated with duration, the authors note that the spatial 
correlation length (the most critical parameter) is closely related to duration and to storm type. 
The ARF is calculated as follows (formula from Pietersen et al., 2015): 
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𝐴𝑅𝐹 [𝑘2 (
𝐴

𝜆2
) , 𝑇𝑑 , 𝑇] =

𝑏(𝑇𝑑)𝑐(𝑇𝑑)𝑘2𝐹2(𝑘−2) −
𝑘2

𝐹1(𝑘−2)
𝑙𝑛 [𝑙𝑛 [

𝑇
𝑇 − 1]]

𝑏(𝑇𝑑)𝑐(𝑇𝑑) − 𝑙𝑛 [𝑙𝑛 [
𝑇

𝑇 − 1]]

    (17)  

where   

𝐴 = catchment area (km2)  

𝑏 = function of duration, where 𝑏(𝑇𝑑) = −0.05 + 0.25𝑇𝑑
0.49  

𝑐 = function of duration, where 𝑐(𝑇𝑑) = 0.2 + 20𝑇𝑑
−0.7  

𝐹1(𝑘−2) = 1 − 0.17 ln(𝑘−2)  

𝐹2(𝑘−2) = 0.39 + 0.61(𝑘−2)0.8  

𝑘2 = rainfall correlation structure  

𝑇 = return period (years)  

𝑇𝑑 = storm duration (hours)  

𝜆 = spatial correlation length (km)  

Although the development of the spatial correlation method can be traced back to Rodriguez-
Iturbe and Mejía (1974), it is unclear whether this type of method has been applied in practice. 
The method is, in theory, less dependent upon data (compared with the empirically based 
approach). However, retuning of the parameters based on local data may still be needed. 
Computational complexity will be mainly from modeling implementation and parameter fitting. It 
will also require further efforts to understand the underlying theory for proper applications, which 
may not be appealing to many users of ARF. 

3.2.2.3 Statistical Crossing Properties Methods 

Bacchi and Ranzi (1996) present a method based on the statistical crossing properties of 
rainfall. Following the method, rainfall properties that cross a high threshold of rainfall intensity 
are analyzed and integrated over space and time, assuming the crossings follow a Poisson 
distribution. The ARF is calculated as follows: 
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𝐴𝑅𝐹(𝐴, 𝐷, 𝐴𝐸𝑃) = 𝐹𝐴,𝐷
−1(1 − 𝐴𝐸𝑃) 𝐹𝐷

−1(1 − 𝐴𝐸𝑃)⁄  

𝐹𝐷(𝑏𝐷) = 𝑃𝑟𝑜𝑏[max 𝑋𝐷(𝑥, 𝑦, 𝑡) ≤ 𝑏𝐷, (𝑥, 𝑦) ∈ 𝐴, 𝑡 ∈ 𝐷] 

𝐹𝐴,𝐷(𝑏𝐴,𝐷) = 𝑃𝑟𝑜𝑏[max 𝑋𝐴,𝐷(𝑥, 𝑦, 𝑡) ≤ 𝑏𝐴,𝐷 , (𝑥, 𝑦) ∈ 𝐴, 𝑡 ∈ 𝐷] 

(18)  

where   

𝐴 = area under consideration (km2)  

D = duration (hours)  

𝐴𝐸𝑃 = annual exceedance probability  

𝐹𝐷(𝑏𝐷) = probability that the maximum value of the point rainfall 
intensity 𝑋𝐷 does not exceed 𝑏𝐷 over the period D and 
the spatial domain A 

 

𝐹𝐴,𝐷(𝑏𝐴,𝐷) = probability that the maximum value of the areal 
rainfall intensity 𝑋𝐴,𝐷 does not exceed 𝑏𝐴,𝐷 over the 

period D and the spatial domain A 

 

The authors note that the method may be useful for design storm applications in small urban 
catchments for short durations. This method may not be particularly useful for PFHA at NPP 
sites, since longer-duration and larger-area ARFs should be needed in most cases. 

3.2.2.4 Spatial and Temporal Scaling Methods 

Scaling Properties of Annual Maxima Approach (De Michele et al., 2001) 

De Michele et al. (2001) present an ARF method that reflects the scaling properties of rainfall in 
space in time, using the concepts of dynamic scaling and statistical self-affinity. The authors 
develop a model calibrated to empirically derived ARFs from 8 years of data gathered near 
Milan, Italy. The fitted results show reasonable agreement for durations of 1 and 3 h, but less 
agreement for durations of 20 min and 6 h. The results also show less agreement for increasing 
area sizes. This method was later tested by Pavlovic et al. (2016) in the Oklahoma study based 
on radar-driven observation. The ARF is calculated as follows (formula modified from Pietersen 
et al., 2015): 

𝐴𝑅𝐹(𝐴, 𝐷) = [1 + 𝜔 [
𝐴𝑧

𝐷
]

𝑏

]
−

𝜐

𝑏

 , (19)  

where   

𝐴 = area (km2)  

𝐷 = duration (hours)  

𝑏, 𝜐, 𝜔, 𝑧 = fitted parameters  

𝑇 = return period (years)  

Multifractal Scaling Properties of Annual Maxima Approach (Veneziano and Langousis, 2005) 

Veneziano and Langousis (2005) analyze ARF under the condition that space-time rainfall 
displays approximate multifractal scale invariance and found the multifractal approach to explain 
many features of empirical ARF charts. The study found that ARF varies with rainfall advection, 
basin shape, and return period and that such dependencies are difficult to quantify empirically. 
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Although the concepts of dynamic scaling and statistical self-affinity may not be familiar to many 
H&H modelers, the final ARF form (Eq. [19]) is in fact reasonably easy to fit and use. This 
spatial and temporal scaling approach also did not require the assumption of a specific type of 
distribution. Further testing can be performed to understand its transferability across different 
regions. 

3.2.2.5 Extreme Value Theory Methods 

Given the wide use of extreme value theory and GEV distribution in point rainfall frequency 
analysis, many methods extend such a concept into the estimation of ARF. It can either include 
a direct extension of point rainfall frequency analysis to areal rainfall observation at various 
areas (e.g., radar-driven rainfall aggregated at different grid resolutions) or fitting of a single 
regional GEV distribution across various areas. Many of these new methods use the radar-
driven observation (as opposed to the conventional gauge observation) to support the derivation 
of ARF. 

Extension of Point Rainfall Frequency Analysis (Durrans et al., 2002; DeGaetano, 2005a) 

Durrans et al. (2002) evaluated 4-km (2.49-mi) resolution radar-driven rainfall data over a 
rectangular area of the central U.S. for 1-, 2-, and 4-hour durations over a 7.5-year period. They 
used Gumbel distribution (a special case of GEV) for modeling the annual maximum series of 
both grid cell and areally averaged precipitation depths, which is a direct extension from the 
conventional point rainfall analysis approach. Durrans et al. (2002) found unexpectedly high 
ARFs above 1 for some averaging areas, noted issues with the period of record available and 
data processing heterogeneity, and reported that edge effects of the spatial smoothing algorithm 
can affect the results and produce ARFs greater than 1. Durrans et al. (2002) also reported 100-
year estimates that were 20–35% lower than gauge-based estimates from previous literature. 
The study also reports that radar-based ARFs are reasonably consistent with the TP-29 (U.S. 
Weather Bureau, 1957, 1958a, 1958b, 1959, 1960) estimates but that they do not decrease with 
area as rapidly as gauge-based estimates; it also reports that the radar-based ARF curves are 
similar across return periods but that ARFs decrease more rapidly for larger return periods. 

A study by Allen and DeGaetano (2005a) evaluated ARFs in New Jersey and North Carolina 
using 5 years’ worth of daily radar data with 2-km (1.24-mi) resolution. In contrast to findings 
from Durrans et al. (2002), Allen and DeGaetano (2005a) found that radar-based ARFs decay 
more rapidly for increasing area than gauge-based ARFs. For a 20,000 km2 (7,722 mi2) basin, 
the study found radar-based and gauge-based ARFs to differ by 11–32%. The study concluded 
that higher return periods are associated with lower ARFs, warm season (April–September) 
ARFs decay faster than cold season (October–March) ARFs, geographic variation in ARF is 
minimal but may vary depending on different primary precipitation mechanisms, Theissen-
weighted or inverse distance weighted averaging provides improvements over unweighted 
averages, and station density has little effect on ARF for the densities tested. 

A study by Lombardo et al. (2006) used 1-km2 (0.386-mi2) resolution radar data to estimate 
rainfall for areas of up to 900 km2 (347 mi2). The study found that ARFs for 200–900 km2 (77.2–
347 mi2), 25–50 year return periods, and 1–2 hour durations were much lower than empirical 
values from literature, ranging from 0.1–0.3 compared with 0.4–0.8 from literature. The authors 
suggest that the methodology should be applied in other locations to generalize the results. The 
ARF is calculated as (formula from Pietersen et al., 2015) 
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𝐴𝑅𝐹(𝑇𝑑,𝑇) =
𝑖𝐴(𝑇𝑑,𝑇)

𝑖𝐴=1(𝑇𝑑,𝑇)
  , (20)  

where   

𝐴 = area under consideration (km2)  

𝑖 = rainfall intensity (mm/h)  

𝑇 = return period (years)  

𝑇𝑑 = storm duration (hours)  

Regional Generalized Extreme Value Distribution Approach (Overeem et al., 2010) 

Another promising approach is to use the concept of covariance to generalize the point-based 
GEV into regional GEV distribution. Using 11-year high-quality radar rainfall data, Overeem et 
al. (2010) develop a generalized regional GEV distribution to estimate ARF for durations of from 
15 min to 24 h and area sizes of 6 to 1700 km2 for the Netherlands. This approach tries to fit a 
more generalized GEV that incorporates area and duration as co-variates in the GEV 
parameters. The ARFs are then calculated by using the generalized GEV. The approach is 
formulated as 

𝐴𝑅𝐹(𝐴, 𝐷, 𝐴𝐸𝑃) = 𝑃(𝐴, 𝐷, 𝐴𝐸𝑃) 𝑃(𝐴∗, 𝐷, 𝐴𝐸𝑃)⁄  

𝑃(𝐴, 𝐷, 𝐴𝐸𝑃) = 𝐺𝐸𝑉−1(1 − 𝐴𝐸𝑃|𝜇(𝐴, 𝐷), 𝛾(𝐴, 𝐷), 𝜅(𝐴)) 

𝜇(𝐴, 𝐷) = 𝑎𝐷𝑏 + (𝑐 + 𝑑 ln 𝐷)𝐴𝑒 
𝛾(𝐴, 𝐷) = 𝑓 𝑙𝑛 𝐴 + 𝑔 ln 𝐷 + ℎ 
𝜅(𝐴) = 𝑖 𝑙𝑛 𝐴 + 𝑗 

(21)  

where   

𝐴 = area (km2)  

𝐷 = duration (hours)  

𝐴𝐸𝑃 = annual exceedance probability  

𝑎 through 𝑗 = Overeem et al. (2010) parameters  

𝐴∗ = additional parameter representing selected minimum 
area 

 

Although parameter estimation is a bit more challenging than the conventional frequency 
analysis, this approach can fit a single distribution across various durations and areas and help 
derive ARF naturally. Nevertheless, note that depending on the form of the variates, the regional 
GEV may not have a bound when area approaches 0. In such cases, the values of ARF will also 
be affected by the selection of minimum area A* in the calculation. This factor will be tested in a 
follow-up case study. 

Extreme value theory methods represent a natural extension to the conventional point rainfall 
frequency analysis. Therefore, the data dependency and required assumptions are generally 
similar to the point rainfall frequency analysis. Computational complexity would inevitably 
increase given the expanded scope at the areal dimension. The co-variate–based GEV 
approach is a promising method. Nevertheless, further independent analysis and validation 
should be performed to better understand its capabilities and limitations. 
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3.3 Selection of Potential ARF Methods for PFHA 

To help narrow down the list of available ARF methods and identify several potentially suitable 
options for further evaluation in the use case study (Section 4), qualitative assessment 
considerations from Section 3.2.1 are used to guide the overall selection. Each qualitative 
assessment category (except for Site-specific Transferability) is assigned a 0 to 1 score; higher 
scores indicate the method could be more suitable for the PFHA need. The detailed qualitative 
assessment results are provided in Appendix B, Table B-1. General scoring rationales are 
described as follows: 

• Spatiotemporal Scale and Resolution—A score close to 1 indicates the original method 
was developed for a wide range of areas and durations; a score close to 0 indicates the 
method was developed only for limited areas and/or durations. In other words, 
considering the varying sizes of NPP watersheds in the U.S., a method with a wider 
range of spatiotemporal scales is preferred. 

• Data Sufficiency and Dependency—This includes two aspects related to data. 
Regarding data sufficiency, a higher score suggests the original method was developed 
based on a large set of observational data set (and vice versa). Regarding data 
dependency, a higher score suggests the data used for calculation are easily accessible 
and generally reliable and various data sources could be used; a lower score suggests 
the required data are highly limited and prevents general application. 

• Required Assumptions—A score close to 1 indicates few assumptions are required and 
the required assumptions are clear and supported by available literature; a score close 
to 0 indicates the assumptions are overly simplified or impractical. 

• Analytical Complexity—A score close to 1 indicates the method can be implemented 
with little or moderate effort; a score close to 0 indicates the method is computationally 
complex and/or requires significant effort to implement. 

• Independent Evaluation—A score close to 1 indicates the method has been 
independently evaluated with highly positive findings or has been applied widely in 
practice; a score close to 0 indicates the method either has not been independently 
reviewed in literature, has been found to have major flaws, or would not be practical for 
case study application. 

• Site-specific Transferability—This consideration is associated with a specific NPP site 
and is not considered now. If a specific NPP site is being considered, a higher 
transferability would suggest more similar geographical settings, local climate patterns, 
and/or site-specific features; a lower transferability would suggest dissimilar background 
and inappropriateness for NPP-PFHA application. 

For Empirical Methods, overall, a lower score is assigned to “Data Sufficiency and Dependency” 
and a higher score to “Required Assumption.” This reflects the nature of empirical methods, 
which are highly data driven. Among them, the size of study area mainly affects the evaluation 
of “Spatiotemporal Scale and Resolution.” While the U.S. Weather Bureau Approach receives a 
lower score (given its development for limited area sizes), a higher score is given to the United 
Kingdom Approach given its coverage of a large range of area and durations. It is worth noting 
that the fitted formulae were developed and provided by multiple empirical methods (e.g., 
Grebner et al., 1998). For the purpose of PFHA, one may easily refit these formulae using local 
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extreme precipitation information. Therefore, their “Analytical Complexity” receives a higher 
score than other empirical ARF products that provide only graphical charts. Note that while both 
the Asquith and Famiglietti (2000) and Grebner et al. (1998) approaches are storm-centered, 
the empirical model developed for the Swiss approach can be easily used to fit precipitation 
data for comparative curve fitting. 

Compared with the Empirical Methods, other methods developed with supporting theories 
generally received higher scores in “Data Sufficiency and Dependency” and lower scores in 
“Required Assumptions.” Again, “Spatiotemporal Scale and Resolution” was mainly evaluated 
based on the sizes of study areas and the range of durations demonstrated in the original 
papers or reports. The “Analytical Complexity” of these methods varies but in general should be 
more involved than the empirical methods. Further insight can be obtained from testing various 
methods in the case study in Section 4. 

It should be emphasized that the scores listed in Appendix B merely represent a qualitative 
understanding obtained during literature review. Depending on the intended PFHA applications, 
these selection criteria should be revised based on more specific needs. Overall, the following 
methods are selected for further evaluation and comparison in Section 4: 

• Empirical Methods 

o M1: Leclerc and Schaake (1972)— fitted formula of TP-29 ARF (Eq.[ 3]) 

o M2: Koutsoyiannis and Xanthopoulos (1999)—fitted formula of UK ARF (Eq. [5]) 

o M3: Swiss Approach—fitted formula (Eq. [6]) by Grebner et al. (1998) 

o M4: Australian Rainfall and Runoff Approach—fitted formula (Eq. [11]) by Nathan 
and Weinmann (2016) 

• Spatial and Temporal Scaling Method 

o M5: Dynamic Scaling Model (De Michele et al., 2001), Eq. ([19]) 

• Extreme Value Theory Method 

o M6: Regional GEV Model (Overeem et al., 2010), Eq. ([21]) 
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4 ARF USE CASE STUDIES 

Section 4 summarizes the study domain, data, methods, and results for several use cases 
designed to demonstrate ARF estimation in three selected regions and across the CONUS. A 
watershed-based annual maximum precipitation searching approach is used to identify ARF 
samples across different watershed sizes for further ARF model fitting. The use case study only 
considers fixed-area ARF; stormed-centered ARFs are considered less conservative for the 
purpose of PFHA and not evaluated in this study (as discussed in Section 1.4). Through these 
use cases, a quantitative comparison of major factors affecting ARFs is provided. The overall 
design of the use case study is summarized in Table 4-1. 

Table 4-1 Summary of the Overall Design of the Use Case Study 

Factors Considerations in the Use Case Study 

Study domains 
(geographical 
variability) 

• Regional assessments (with multiple precipitation products and ARF models) 

o Ohio (Hydrologic Region 05) 

o South Atlantic-Gulf (Hydrologic Region 03) 

o Mid-Atlantic (Hydrologic Region 02) 

• CONUS assessment (with one precipitation product and one ARF model) 

o 18 national hydrologic regions 

Precipitation 
products 

• DSI-3240: 1950–2013 NCEI hourly gauge observations 

• PRISM: 1981–2017 daily gridded precipitation (Daly et al., 1994) 

• Daymet: 1980–2017 daily gridded precipitation (Thornton et al., 1997) 

• Livneh: 1950–2013 daily gridded precipitation (Livneh et al., 2015) 

• ST4: 2002–2017 NCEP Stage-IV hourly radar-driven precipitation 

Maxima 
searching 

• Watershed-based annual maximum precipitation searching approach 

Area • From point location to different watersheds sizes 

Duration 
• Daily and above: 1-, 2-, and 3-day 

• Subdaily: 1-, 2-, 3-, 6-, 12-, and 18-hour (depending on data sets) 

Seasonality 

• All season: AMS searched during each calendar year 

• Warm season: AMS searched during May through October 

• Cool season: AMS searched during November through April 

Frequency 
(return period) 

• Average annual maximum precipitation (around 2-year return level) 

• 10- and 100-year precipitation (fitted by GEV) 

ARF models 

• M1: Leclerc and Schaake (1972) TP-29 Model 

• M2: Koutsoyiannis and Xanthopoulos (1999) United Kingdom–Natural 
Environment Research Council (UK-NERC) Model 

• M3: Hydrological Atlas of Switzerland Model (Grebner et al., 1998) 

• M4: Australian ARR Model (Nathan and Weinmann, 2016) 

• M5: De Michele (2001) Dynamic Scaling Model 

• M6: Regional GEV Model (Overeem et al., 2010) 

Fitting statistics 
• NSE: Nash-Sutcliffe model efficiency coefficient 

• RMSE: Root mean square error 
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The authors note that additional return periods beyond 100 years were also analyzed, but that 
due to the poor fitting model performance, the results of such analyses are not summarized in 
this report. The issue largely related to the limited observed data record length available from 
the precipitation products leading to high uncertainty in the model results. 

In addition, given the significant effort required to separate historical precipitation data based on 
storm type, the effect of storm type is not explicitly explored in this use case study. Instead, 
seasonality is used as an appropriate proxy parameter to demonstrate the potential influence of 
storm type on ARF. 

4.1 Study Domain 

The use cases include (1) regional assessments of ARFs for three selected hydrologic regions 
focusing on different precipitation products, and fitting models to demonstrate major factors 
affecting ARFs and (2) a CONUS assessment of ARFs across all hydrologic regions, focusing 
on the use of one precipitation product and one fitting model to demonstrate geographic 
variation in ARFs. 

4.1.1 Regional Assessments 

Three hydrologic regions (also known as the 2-digit hydrologic units, HUC02) are assessed to 
develop regional ARF models across different areas, durations, and return periods using 
different precipitation products and fitting models. These three HUC02 regions include Ohio 
(Region 05), Mid-Atlantic (Region 02), and South Atlantic-Gulf (Region 03). Maps of each region 
with its finer hydrologic units (i.e., HUC04 subregions, HUC06 basins, and HUC08 subbasins) 
are provided in Figure 4-1, Figure 4-2, and Figure 4-3, respectively. These regions were 
selected in this use case study because they represent regions with differing precipitation 
drivers for which data availability is good, and because of their relevance to existing and 
proposed NPPs. 
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Figure 4-1  Ohio (Region 05) 4-digit, 6-digit, and 8-digit Hydrologic Units (From Top 
Left to Bottom) 
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Figure 4-2  Mid-Atlantic (Region 02) 4-digit, 6-digit, and 8-digit Hydrologic Units (From 
Top Left to Bottom) 
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Figure 4-3  South Atlantic–Gulf (Region 03) 4-digit, 6-digit, and 8-digit Hydrologic Units 
(From Top Left to Bottom)  

4.1.2 CONUS Assessment 

The CONUS assessment uses one precipitation product (PRISM) and one fitting model (M5: De 
Michele Dynamic Scaling Model) to assess the geographic variations in ARFs across different 
areas, durations, and return periods. Each HUC02 region in the CONUS (Figure 4-4) is 
evaluated independently using the PRISM data and M5 fitting model. The decision to use 
PRISM data was largely motivated by its used in NOAA Atlas 14, complete CONUS coverage, 
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and good spatial resolution. The decision to use the M5 fitting model was largely motivated by 
its simplicity and generally good performance. 

 

Figure 4-4  HUC02 Hydrologic Regions in CONUS 

4.2 Selected Precipitation Products 

The data collected for use case application are from five different precipitation products, 
including hourly gauge observations (DSI-3240), daily PRISM, daily Daymet, daily Livneh, and 
hourly NCEP Stage-IV (ST4). A summary of the five selected precipitation products is provided 
in Table 4-2. DSI-3240 is selected for its high temporal resolution (hourly) and because such 
gauge observation is generally considered to be “ground truth” for observed precipitation. The 
radar-driven ST4 is selected because of its high temporal resolution (hourly) and because of 
radar’s unique strength in detecting spatial storm structures that cannot be measured by sparse 
rain gauges. The three gridded daily precipitation data products (PRISM, Daymet, Livneh) are 
selected for their wide applications in various hydrologic studies and because they can be easily 
analyzed using a similar approach. It is worth mentioning that the daily PRISM data also 
incorporate radar information in their post-2002 gridded precipitation. Given the influence of 
radar information, ST4 and post-2002 PRISM generally show more spatial variability than 
Daymet and Livneh, especially near boundaries of radar data availability. 

Among the gridded precipitation products, Daymet has the finest spatial resolution (1 km), 
followed by PRISM and ST4 (4 km), and then Livneh (6 km). Despite Livneh’s coarser spatial 
resolution, it has the longest record (64 years from 1950–2013), followed by Daymet (38 years 
from 1980–2017), PRISM (37 years from 1981–2017), and ST4 (16 years from 2002–2017). 
Since both spatial resolution and data length are important features affecting the accuracy of 
ARF, trade-offs exist in selecting the most appropriate precipitation product to support ARF 
calculation. 
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Additional treatment (e.g., spatial interpolation or Theisen polygon approach) is needed to 
process the DSI-3240 gauge observations for ARF calculation. Since DSI-3240 data collection, 
processing, quality control, and analysis require more effort, hourly gauge observations are 
analyzed only in the Ohio (Region 05) regional assessment. As an example, over 300 NCEI 
DSI-3240 stations with more than 30 years of record in Ohio (with density ~1400 km2 per 
station) are shown in Figure 4-5. The PRISM, Daymet, Livneh, and NCEP ST4 data are used 
across the three regional assessments. The CONUS assessment uses only PRISM data. 
Further discussion regarding the background and features of each selected data set can be 
found in Section 2.2. 
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Figure 4-5 NCEI Hourly Rainfall Stations with 30+ Years of Record in Ohio (Region 05) 

4.3 ARF Assessment 

The calculation of ARF involves three main steps: (1) AMS searching, (2) sample ARF 
calculation, and (3) ARF model fitting. Conceptually speaking, ARF derivation involves initial 
steps which are similar to the procedures of point-based frequency analysis, but extends the 
AMS searching and probabilistic density function (PDF) fitting from each point location to the 
watershed scale. The use case demonstrations follow a data-driven approach in which some 
level of quality assurance and control are performed, although the raw data are largely 
unaltered. This section provides a summary of calculation procedures employed in this case 
study. 

4.3.1 AMS Identification 

Similar to the procedures of PFA, the first step of ARF calculation is to identify maximum 
precipitation from either the AMS or partial duration series (PDS) approaches (i.e., PDS is an 
alternative approach that identifies all maximum precipitation samples above a defined 
threshold). To be consistent with the prominent literature (including NOAA Atlas 14), the AMS 
approach is used in this use case study. Also, for consistency (with NOAA Atlas 14), AMS are 
searched for each calendar year (January to December) instead of each water year (October to 



4-10

September). While some AMS may be different when searched by water year, the overall 
influence on the final PFA estimates should be very limited. 

Since the main purpose of ARF is to suggest how the values of extreme precipitation change 
across different spatial scales, the AMS identification should be conducted at various 
aggregated watershed or catchment scales. Using Figure 4-6 as an example, consider 
𝑅𝑔𝑟𝑖𝑑(𝑑, 𝑔) as a daily gridded precipitation field in which 𝑑 represents a certain day and

𝑔 represents a certain grid location. Given that extreme precipitation (e.g., mesoscale 
convective systems, tropical storms, hurricanes) may occur at different scales with large spatial 
variability, the annual maximum precipitation across all grids may occur at different times. With 
regard to understanding the frequency of extreme precipitation for a given catchment in this 
field, the average of grid-based AMS will likely overestimate the magnitude of extreme 
precipitation. Therefore, one should use the catchment shape as a spatial filter to first spatially 
aggregate daily precipitation from 𝑅𝑔𝑟𝑖𝑑(𝑑, 𝑔) to 𝑅𝐴𝑟𝑒𝑎(𝑑), and then identify AMS from this

aggregated precipitation time series for analysis. 

Figure 4-6 Spatial and Temporal Aggregation Diagram Used for Gridded Precipitation 
Products  Source: ©Commonwealth of Australia (Geoscience Australia) 2019. 
This Product is Released Under the Creative Commons Attribution 4.0 
International Licence. http://creativecommons.org/licenses/by/4.0/legalcode 

Following this concept, and taking the calendar year 2002 as an example, in searching the 
maximum 1-day precipitation at each PRISM grid within the entire Ohio River Basin, it is found 
that the timing of grid-based AMS spreads across different seasons and belongs to different 
events (Figure 4-7a). On the other hand, in searching the basin-wide maximum average 
precipitation of the entire Ohio River Basin, the 1-day AMS event is found to be on September 
27, 2002. In comparing grid-based and basin-wide AMS (Figure 4-7b and Figure 4-7c), it can be 
seen that while nearly half of the grid-based AMS are the same as basin-wide AMS, grid-based 
AMS reports high precipitation across the watershed. Therefore, using grid-based AMS to 
conduct point-based PFA will lead to higher extreme rainfall estimates than using areal PFA 
based on basin-wide AMS. It is intuitive that, when the catchment size increases, the AMS 
identified for the watershed will also become smaller compared with the average of AMS across 
all corresponding grids. This concept forms the basis of ARF as a reduction factor needed to 

http://creativecommons.org/licenses/by/4.0/legalcode
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convert point-based precipitation frequency estimates to areal estimates for watershed 
application. 

 

Figure 4-7 Example of AMS Searing in the Ohio River Basin 

Although previous areal AMS approaches have used different spatial aggregation techniques to 
analyze areal extreme precipitation (e.g., square n-by-n grids or circular windows), the U.S 
hydrologic unit code (HUC) watersheds are used as a spatial filter in this study. The HUC is a 
hierarchical labeling structure to organize U.S. watersheds across different sizes (e.g., Figure 
4-1, Figure 4-2, and Figure 4-3). For each hydrologic HUC02 region, spatially aggregated AMS 
are searched for each HUC04 subregion, HUC06 basin, and HUC08 subbasin. The overall AMS 
at the HUC02 region scale is not searched since in many cases HUC02 itself is not a single 
watershed (e.g., Region 02 Mid-Atlantic and Region 03 South Atlantic–Gulf). Since these HUC 
units are defined by watershed boundaries, this HUC-based spatial aggregation approach lends 
itself well to hydrologic applications, including the PFHA for NPPs. 

In testing this HUC-based AMS identification approach, a larger data gap for large-area samples 
was observed (i.e., there are fewer HUC04s than HUC06s and HUC08s). To address this issue 
and increase the AMS samples to cover a wider range of watershed sizes, HUC accumulation 
technique is applied in this use case study for developing accumulated HUC units (HUCac). The 
concept of HUCac is illustrated in Figure 4-8. In the left panel of Figure 4-8, all HUC08s in the 
Ohio Region are shown with their upstream and downstream subbasin connectivity. Using this 
HUC08 connectivity information, taking HUC08 05090203 as an example (marked in blue in the 
right panel of Figure 4-8), all upstream contributing HUC08s to 05090203 are labeled and hence 
identify the entire upstream contributing area as HUCac (to HUC08 05090203). Following this 
approach, HUCac is identified for each of the HUC08s based on their upstream connectivity, 
and then search AMS for each HUCac. When an HUCac is identical to an existing HUC04, 
HUC06, and HUC08, it is neglected, to avoid double-sampling. 
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Figure 4-8  Example Spatial Aggregation of Ohio Region HUC08s to form a HUCac 
Upstream of HUC 08 05090203  

Following the HUCac implementation, the final Ohio (Region 05) AMS sampling consists of the 
following HUC-based spatial units, where the largest HUCac in this case is the entire Ohio River 
Basin (420,000 km2): 

• 120 HUC08:  290 – 840 km2 

• 21 HUC06:  4,400 – 54,000 km2 

• 7 HUC04:  15,000 – 85,000 km2 

• 46 HUCac:  4,600 – 420,000 km2 

To effectively summarize gridded precipitation (PRISM, Daymet, Livneh, and ST4), a conversion 
table is established indicating what grid points should be included in a specific HUC unit. This 
conversion table is then used to spatially average all hourly and daily gridded precipitation into 
different HUC-based precipitation for AMS identification. 

Since the DSI-3240 hourly gauge precipitation requires great analysis effort, it is only analyzed 
in Region 05 Ohio to assess the sensitivity of using different data. After performing processing 
and QC of all DSI-3240 hourly gauge data in and surrounding Region 05 Ohio, bilinear 
interpolation is used to spatially interpolate DSI-3240 values at each PRISM grid location. The 
HUC-based AMS identification approach is then followed to determine the AMS of DSI-3240. 
While the gauge data are ground-based and should ideally include topographic adjustments 
(e.g., elevation lapse rate), these considerations are not accounted for during spatial 
interpolation. This is acceptable in most of Region 05 Ohio, given its relatively flatter terrain, but 
it can present a greater impact for certain watersheds that contain significant topographic 
variation. In such cases, proper topography-informed adjustment approaches (such as those 
used in PRISM, Daymet, and Livneh) should be used to analyze spatial DSI-3240 precipitation. 

Overall, AMS are searched for different 

• Data 
o 1950–2013 DSI-3240 hourly gauge precipitation, spatially interpolated to the ~4 km 

resolution PRISM grids (Ohio only) 
o 1981–2017 PRISM daily gridded precipitation, ~4 km resolution 
o 1980–2017 Daymet daily gridded precipitation, 1 km resolution 
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o 2002–2017 ST4 hourly gridded precipitation, 4 km resolution 
o 1950–2013 Livneh daily gridded precipitation, ~6 km resolution 

• Durations 
o Daily and above: 1-, 2-, and 3-day 
o Subdaily for ST4 and DSI-3240 (Ohio only): 1-, 2-, 3-, 6-, 12-, and 18-hour 

• Spatial units 
o Grid (𝑃𝑔𝑟𝑖𝑑): annual at each grid 

o Areal (𝑃𝐻𝑈𝐶): annual at each HUC08, HUC06, HUC04, and HUCac 

• Seasons 
o All seasons (January through December) 
o Warm season (May through October) 
o Cool season (January through April and November through December) 

• Geographic coverage 
o Regional for Region 05 Ohio, Region 03 South Atlantic–Gulf, and Region 02 Mid-

Atlantic 
o National for each HUC02 hydrologic region (PRISM only) 

These calculated AMS values form the basis of the ARF calculation in this use case study. 

4.3.2 Sample ARF Calculation 

After AMS has been comprehensively searched for all HUCs and each grid point, the next step 
is to calculate the sample ARF at each HUC. These sample ARFs would represent the best-
available, watershed-specific ARF estimates at each HUC (assuming that there are sufficient 
historic observations to support the ARF estimate). The ARF samples across all HUCs can then 
be grouped and jointly fitted into an ARF model for more generalized representation (discussed 
in the following section). 

Let 𝑃𝑔𝑟𝑖𝑑(𝑦, 𝑔) represent the annual maximum precipitation at year 𝑦 and grid 𝑔, and 𝑃𝐻𝑈𝐶(𝑦) 

represent the annual maximum precipitation at year 𝑦 for a particular HUC. Considering all grids 

in the HUC unit, the first type of sample ARF, 𝐴𝑅𝐹𝑎𝑣𝑔, can be defined as 

𝐴𝑅𝐹𝑎𝑣𝑔 =
𝑃𝐻𝑈𝐶,𝑎𝑣𝑔

𝑃𝑔𝑟𝑖𝑑,𝑎𝑣𝑔
 ,      (22) 

𝑃𝐻𝑈𝐶,𝑎𝑣𝑔 =
∑ 𝑃𝐻𝑈𝐶(𝑦)

𝑁𝑦
𝑦=1

𝑁𝑦
  ,     (23) 

𝑃𝑔𝑟𝑖𝑑,𝑎𝑣𝑔 =
∑ ∑ 𝑃𝑔𝑟𝑖𝑑(𝑦,𝑔)

𝑁𝑔
𝑔=1

𝑁𝑦
𝑦=1

𝑁𝑦𝑁𝑔
 ,     (24) 

where 𝑁𝑦 is the total number of years, and 𝑁𝑔 is the total number of grid points in the HUC unit. 

Following the definition, 𝐴𝑅𝐹𝑎𝑣𝑔 presents the ratio of average areal AMS to the average grid-

based AMS. Approximately speaking, 𝐴𝑅𝐹𝑎𝑣𝑔 defined in this fashion would have a return period 

around 2 years. In rare cases, when calculating individual ARF values, it is possible to compute 
an ARF above 1.00. In these cases, the authors set the value to an upper ARF limit of 1.00. 

Another type of sample ARF involves the selection of a suitable PDF and PDF fitting so that 
frequency (return period) can be introduced into the calculation of ARF. Assuming that the GEV 
distribution is a suitable PDF in this case, the 𝑇-year 𝐴𝑅𝐹𝑇𝑦𝑟 can be defined as 
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𝐴𝑅𝐹𝑇𝑦𝑟 =
𝑃𝐻𝑈𝐶,𝑇𝑦𝑟

𝑃𝑔𝑟𝑖𝑑,𝑇𝑦𝑟,𝑎𝑣𝑔
 ,     (25) 

𝑃𝐻𝑈𝐶,𝑇𝑦𝑟 = 𝐺𝐸𝑉−1 (1 −
1

𝑇
|𝜇𝐻𝑈𝐶 , 𝛾𝐻𝑈𝐶 , 𝜅𝐻𝑈𝐶) ,  (26) 

𝑃𝑔𝑟𝑖𝑑,𝑇𝑦𝑟,𝑎𝑣𝑔 =
∑ 𝐺𝐸𝑉−1(1 −

1

𝑇
|𝜇𝑔, 𝛾𝑔 , 𝜅𝑔)

𝑁𝑔
𝑔=1

𝑁𝑔
 ,   (27) 

where 𝐺𝐸𝑉−1 represents the inverse of GEV; 𝜇𝐻𝑈𝐶, 𝛾𝐻𝑈𝐶, 𝜅𝐻𝑈𝐶 represent the GEV parameters 
estimated at the selected HUC unit using the HUC-based AMS; and 𝜇𝑔, 𝛾𝑔, 𝜅𝑔 represent the 

GEV parameters estimated at each grid point using the grid-based AMS. Clearly, other suitable 
PDFs may also be used to replace GEV to provide proper frequency estimates. 

In this use case study, the maximum likelihood approach is used to estimate the GEV 
parameters. After parameter fitting, the Kolmogorov–Smirnov (KS) test is used to examine the 
goodness-of-fit at a 5% significance level. If a specific case fails to pass the KS test, the data 
point is disregarded for further ARF model fitting. Overall, the average ARF from Eq. (21) and 
the 10- and 100-year estimates from Eq. (24) are used in the following section. 

Note that frequency can also be introduced into ARF from other approaches (e.g., Overeem et 
al., 2010). However, regardless of which approach is used, the limited data record would likely 
be the biggest hurdle to estimating long-return-level precipitation and ARF. Even with around 60 
years of long-term records (from Livneh and DSI-3240 data sets), there may not be sufficient 
data to support the estimate of precipitation and ARF with return periods greater than 100 years, 
as the uncertainty associated with extrapolating return period estimates well beyond the record 
length continues to rise. In addition, nonstationarity in a changing environment would add further 
complication to the frequency analysis. These more involved issues are noted but not examined 
in this use case study. 

4.3.3 ARF Model Fitting 

The final step of the regional ARF model development is to fit all ARF samples in a hydrologic 
region with a generalized ARF model. Six ARF models are used in this study. They include the 
Leclerc and Schaake TP-29 Model (M1), the Koutsoyiannis and Xanthopoulos UK-NERC Model 
(M2), the Hydrological Atlas of Switzerland Model (M3), the Australian ARR Model (M4), the De 
Michele Dynamic Scaling Model (M5), and the Regional GEV Model (M6). These ARF models 
are discussed in Section 3. 

M1: Leclerc and Schaake TP-29 Model 

The Leclerc and Schaake (1972) Model is an empirical equation representing the U.S. Weather 
Bureau TP-29 ARF curves (U.S. Weather Bureau, 1957, 1958a, 1958b, 1959, 1960). The M1 
model (Eq. [3] in Section 3.2.2.1) is a function of area A (km2 or mi2) and duration D (hours) with 
three parameters a, b, and c. 

To fit the three M1 parameters, the root mean square error (RMSE) between ARF samples and 
ARF model is minimized using the nonlinear programming solver (from Matlab). The 
performance of fitting is further evaluated by the Nash–Sutcliffe efficiency (NSE; McCuen et al., 
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2006) coefficient4. Given that M1 is not a function of return period, fitting is performed separately 
for each frequency level of interest (i.e., average AMS, 10-, and 100-year). An example of a 
typical M1 fitting is provided in Figure 4-9 (in semi-log scale to better illustrate ARF across a 
wide range of areas). 

 

Figure 4-9 Example of M1 ARF Model Fitting 

M2: Koutsoyiannis and Xanthopoulos UK-NERC Model 

An empirical equation representing the UK Flood Studies Report ARF curves was established 
by Koutsoyiannis and Xanthopoulos (1999). The M2 model (Eq. [5] in Section 3.2.2.1) is a 
function of area A (km2 or mi2) and duration D (hours) with four parameters a, b, c, and d. 

The fitting procedure for the four M2 parameters is similar to that for M1. Also, given that M2 is 
not a function of return period, fitting is performed separately for each frequency level of interest 
(i.e., average AMS, 10-, and 100-year). An example of a typical M2 fitting is provided in Figure 
4-10. 

 

Figure 4-10 Example of M2 ARF Model Fitting 

 
 
4 NSE coefficient values range from -∞ to 1 with an efficiency of 0 indicating the model predictions are as accurate as 
the mean of the observed data. Higher values correspond to better model predictions, and values of 0.5 or above 
are generally considered to indicate good performance. 



 

4-16 

M3: Hydrological Atlas of Switzerland Model 

The Hydrological Atlas of Switzerland (Grebner et al., 1998) provides a generalized equation for 
ARFs across different geographic zones of Switzerland. The M3 model (Eq. [9] in Section 
3.2.2.1) is a function of area A (km2 or mi2) with five parameters a0, a1, a2, a3, and a4. Since ARF 
should be 1 when A = 0, an additional equation (Eq. [10] in Section 3.2.2.1) can be used to 
reduce one parameter. 

We use a similar procedure to fit the remaining four M3 parameters. Unlike M1 and M2, M3 ARF 
is only a function of area (not duration). Therefore, fitting is performed separately for each 
duration and frequency level. An example of a typical M3 fitting is provided in Figure 4-11. 
Because of the reduced sample size, the fitting of M3 is generally more challenging than fitting 
of M1 and M2 and may be more sensitive to outliers in the fitting samples, especially at the 
higher return period level. 

 

Figure 4-11 Example of M3 ARF Model Fitting 

M4: Australian ARR Model 

The ARR Guidelines (Nathan and Weinmann, 2016) provide a series of equations for ARF 
calculation, including a generalizable equation used for catchment areas of 10–1,000 km2, and 
durations of 1–7 days. This equation is deemed reasonable to use for demonstration purpose. 
The M4 model (Eq. [11] in Section 3.2.2.1) is a function of area A (km2 or mi2), duration D 
(hours), and annual exceedance probability (AEP) with nine parameters (a through i). Similar to 
M3, an additional equation (Eq. [12] in Section 3.2.2.1) can be used to reduce one parameter for 
fitting. 

We use a similar procedure to fit the remaining eight M4 parameters. Unlike M1 through M3 
models, M4 ARF is a function of area, duration, and return period. Therefore, fitting is needed 
only once across all frequency levels. While fitting eight model parameters through nonlinear 
programming solver is more challenging, the M4 model has an extra return period dimension 
and can be more flexible for application. Nevertheless, note that unless credible higher-return-
level ARF samples (e.g., over 200 years) are included as a part of fitting, the fitted M4 model 
should not be used to derive ARF at a long-return-period level. An example of a typical M4 
fitting is provided in Figure 4-12. 
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Figure 4-12 Example of M4 ARF Model Fitting 

M5: De Michele Dynamic Scaling Model 

The previous four methods employed are empirical methods. The fifth model, De Michele (De 
Michele et al., 2001), is selected because of its good underlying theory based on spatial and 
temporal rainfall scaling. The M5 model (Eq. [19] in Section 3.2.2.4) is a function of area A (km2 
or mi2) and duration D (hours) with four parameters b, v, w, and z. 

A similar fitting procedure is used to estimate the four M5 parameters. Similar to M1 and M2, the 
M5 model is also a function of area and duration. Therefore, fitting is performed separately at 
each frequency level (i.e., average AMS, 10-, and 100-year). An example of a typical M5 fitting 
is provided in Figure 4-13. 

 

Figure 4-13 Example of M5 ARF Model Fitting 
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M6: Regional GEV Model 

A final ARF model based on the regional GEV distribution approach is developed by Overeem 
et al. (2010). Instead of using HUC-specific ARF samples for parameter estimation and regional 
ARF model development (such as M1 though M5), this approach tries to fit a more generalized 
GEV that incorporates area and duration as co-variates in the GEV parameters. The ARFs are 
then calculated using the generalized GEV. The M6 model (Eq. [21] in Section 3.2.2.5) is a 
function of area A (km2 or mi2), duration D (hours), and AEP with ten parameters (a through j). 

Note that, theoretically, 𝐴∗ in the denominator should be 0 (so that ARF represents the ratio of 
precipitation with area A divided by precipitation with area 0). However, the current formulation, 
𝑃(𝐴∗, 𝐷, 𝐴𝐸𝑃), will approach infinity when A approaches 0. 5 Therefore, 𝐴∗ needs to be treated as 
an additional parameter for estimation. Parameters 𝑎 through 𝑗 are estimated by the maximum 
likelihood approach through the same Matlab-based nonlinear programming solver used for 
M1–M5. Parameter 𝐴∗ is estimated by minimizing the RMSE between the ARF samples and the 
ARF model. Similar to the case of M4 model, fitting is needed only once across all frequency 
levels. An example of a typical M6 fitting is provided in Figure 4-14. 

 

Figure 4-14 Example of M6 ARF Model Fitting 

These six ARF models are fitted with different data sources in the three regions. In the national 
assessment, only the M5 De Michele model is fitted across all hydrologic regions for inter-
regional comparison.  

It is important to note that when comparing the fitted model results that the complexity of each 
model can impact model performance and uncertainty. Table 3-1 summarizes the fitting model 
complexity for M1 through M6. The six selected models each include area as an independent 
variable, with some including duration and AEP. They also include varying numbers of fitted 
parameters, ranging from 4 to 10. Since the case studies provide fitted model results as a 
function of area, duration, and AEP, the number of models fitted for each case study region is a 

 
 
5 Overeem (2010) documents its approach as applicable for areas of 6 km2 and larger. 
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function of the number of fitted parameters and the number of independent variable selections 
for which a unique model is needed.6  

It is noted that while a model form that includes area, duration, and AEP as independent 
variables (e.g., M4 and M6) helps reduce the number of models needed, it may yield lower 
performance since the variation in multiple variables is being explained by a single model. On 
the other hand, a model form that only includes area (e.g., M3) may yield good performance but 
requires a larger number of models to assess impacts of duration and AEP on ARF. 

In addition, a model which introduces many fitted parameters can increase performance but 
may not be theoretically justifiable given its complexity and uncertainty. 

Table 4-3 Summary of fitting model complexity 

Fitting 
Model 

Model Form 
Fitted 

Parameters 
# Models Fitted 

M1 𝐴𝑅𝐹 = 𝑓(𝐴, 𝐷) 3 (3 fitted parameters) × (# AEPs) 

M2 𝐴𝑅𝐹 = 𝑓(𝐴, 𝐷) 4 (4 fitted parameters) × (# AEPs) 

M3 𝐴𝑅𝐹 = 𝑓(𝐴) 4 (4 fitted parameters) × (# durations) × (# AEPs) 

M4 𝐴𝑅𝐹 = 𝑓(𝐴, 𝐷, 𝐴𝐸𝑃) 8 (8 fitted parameters) 

M5 𝐴𝑅𝐹 = 𝑓(𝐴, 𝐷) 4 (4 fitted parameters) × (# AEPs) 

M6 𝐴𝑅𝐹 = 𝑓(𝐴, 𝐷, 𝐴𝐸𝑃) 10 (10 fitted parameters) 

 

4.4 Use Case Results 

Using the data and methods described in Sections 4.2 and 4.3, respectively, the regional 
assessment results are summarized for Ohio (Section 4.4.1), Mid-Atlantic (Section 4.4.2), and 
South-Atlantic-Gulf (Section 4.4.3) regions and for the entire CONUS (Section 4.4.4). 

4.4.1 Ohio (Region 05) 

As described in Section 4.1.1, the regional assessment includes ARF estimates across the Ohio 
region using different fitting models, data sources, return periods, durations, and seasons. 
Results demonstrating the effects of these different features are provided below. Detailed 
results for Region 05 Ohio are provided in APPENDIX C. 

4.4.1.1 Effect of Fitting Model 

Figure 4-15 provides a comparison of six ARF models (M1–M6) and their NSE fitting statistics in 
Ohio at 1-day duration and 10-year return period using PRISM. The figure shows variability in 
the individual, site-specific HUC unit ARFs (black dots) with fitted model curves (colored lines) 
which generally follow the traditional ARF curve shape. The M1 and M6 models reveal different 
shapes with worse overall performance. The M2–M5 models produce similar curves, with the 
full-HUC02 ARF (~422,000 km2; 163,000 mi2) only varying from 0.40 to 0.47. The summary of 
NSE across different ARF models and frequency levels are further shown in Table 4-4. As noted 

 
 
6 For example, for M1, a unique model is needed for each AEP analyzed since the ARF model is a function of area   
and duration, but not AEP. 
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in the Section 4 introduction below Table 4-1, additional return periods beyond 100 years were 
also analyzed. However, due to the poor fitting model performance, the results of such analyses 
are not summarized in this report. The issue largely related to the limited observed data record 
length available from the precipitation products leading to high uncertainty in the model results. 

These findings indicate the importance of model selection and establish M1 and M6 as less-
preferred options. For M1, the Leclerc and Schaake (1972) equation was originally developed 
for the TP-29 results, which only provided ARF values or areas less than 1,036 km2 (400 mi2). 
When applying M1 for larger area ARF (e.g., 422,000 km2 [163,000 mi2] in Figure 4-15), it 
appears that M1 would reach a lower bound and cannot provide suitable fitting at the right tail. 
For M6, the ARF curve would reduce to a linear line at the semi-log scale (lower panel in Figure 
4-15) and cannot provide good fit compared to other models. 

 
Figure 4-15 Comparison of 1-day, 10-year Ohio ARF Fitting Using PRISM Precipitation 

Across Different ARF Models  Black dots represent calculated ARFs across 
HUC units; solid curves represent fitted models for M1–M6. Top and bottom 
panels include the same information in linear (top) and semi-log (bottom) scale. 
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Table 4-4  Comparison of 1-day Ohio ARF Fitting Using PRISM Precipitation Across 
Different ARF Models  Cell coloration indicates relative performance, with 
darker red colors indicating worse performance and white colors indicating better 
performance. 

Return Period 
NSE 

M1 M2 M3 M4 M5 M6 

Average AMS (~ 2-year) 0.72 0.93 0.94 0.93 0.94 0.84 

10-year 0.70 0.91 0.91 0.91 0.91 0.83 

100-year 0.49 0.67 0.69 0.68 0.68 0.62 

 

4.4.1.2 Effect of Data Source 

Figure 4-16 provides a comparison of five data sources (PRISM, Daymet, ST4, Livneh, and 
DSI3240) and their NSE fitting statistics in Ohio at 1-day duration and 10-year return period. 
The figure shows variability in the individual, site-specific HUC unit ARFs (colored dots) with 
fitted model curves (colored lines) which follow the traditional ARF curve shape. The ST4 case 
reveals overall lower ARFs than other cases, with worse overall performance. The models using 
Daymet, Livneh, PRISM, and DSI-3240 data produce more similar results. The summary of 
NSE across different precipitation products and frequency levels are further shown in Table 4-5. 
To better illustrate the effects of data source (and data length) on ARF fitting performance, 
analysis is extended to 200-, 500-, and 1000-year in Table 4-5. 

While the effect of data source is generally smaller than the effect of model, the differences 
across data sources are still large enough to be non-negligible. In particular, with the increase of 
return period, the radar-driven ST4 data can lead to significantly different ARFs than when using 
the gauge-only (DSI-3240) or gauge-driven (Daymet, Livneh, PRISM) precipitation products. 
This may be a result of shorter ST4 data record length. While ST4 is in hourly time step and can 
better represent spatial variability (through radar), it only has 16 years of record as compared to 
37–64 years of record for other precipitation products. 
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Figure 4-16   Comparison of 1-day, 10-year Ohio M5 ARF Fitted by Different Precipitation 
Products  Colored dots represent calculated ARFs across HUC units; solid 
curves represent fitted M5 models using different precipitation products. Top and 
bottom panels include the same information in linear (top) and semi-log (bottom) 
scale. 

Table 4-5 Comparison of 1-day Ohio M5 ARF Fitting across Different Data Sources  
Cell coloration indicates relative performance, with darker red colors indicating 
worse performance and white colors indicating better performance. 

Return Period 

NSE 

PRISM 
(1981–2017) 

Daymet 
(1980–2017) 

ST4 
(2002–2017) 

Livneh 
(1950–2013) 

DSI3240 
(1950–2013) 

Average AMS (~ 2-year) 0.94 0.95 0.91 0.92 0.95 

10-year 0.91 0.93 0.80 0.91 0.93 

100-year 0.68 0.74 0.09 0.80 0.85 

200-year 0.60 0.66 -0.01 0.73 0.79 

500-year 0.58 0.56 0.02 0.63 0.74 

1000-year 0.56 0.48 0.08 0.62 0.67 
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4.4.1.3 Effect of Return Period 

Figure 4-17 provides the 1-day Ohio M5-fitted ARF and associated performance statistics using 
PRISM precipitation product across different return periods. Additional fitting statistics across 
different return periods for other ARF models and precipitation products are shown in Table 4-4, 
and Table 4-5. The figure shows variability in the individual, site-specific HUC unit ARFs 
(colored dots) with fitted model curves (colored lines) which follow the traditional ARF curve 
shape. As expected, the 100-year curve reveals overall lower ARFs than the lower return 
periods, with worse overall performance. 

The model performance results demonstrate the importance of data record length. With the 
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance. 

While one can numerically calculate higher return period ARFs (e.g., 1000-year) through fitted 
GEV distribution for regional ARF model development, it was noticed that the spread across 
HUCs will become too large to reliably estimate ARF. Considering the limited observation 
record, it is likely that one may not credibly estimate long return period precipitation and ARF 
only through data driven approach. Further research that can utilize numerical weather model to 
assist the development of higher return ARFs should be considered. 
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Figure 4-17  Comparison of PRISM-based 1-day Ohio M5 ARF across Different 
Frequency Levels  Colored dots represent calculated ARFs across HUC units; 
solid curves represent fitted M5 models using PRISM. 

 

4.4.1.4 Effect of Duration 

Figure 4-18 provides the 10-year Ohio M5-fitted ARF and associated performance statistics 
using PRISM precipitation product across different durations. The figure shows variability in the 
individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines) 
which follow the traditional ARF curve shape. As expected, the 3-day curve reveals overall 
higher ARFs than the shorter durations, which matches the trend found in literature. The 
performance also slightly decreases for longer duration. The summary of NSE across different 
durations and frequency levels are further shown in Table 4-6. 
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Figure 4-18   Comparison of 10-year Ohio M5 ARF Using PRISM Precipitation across 
Different Durations  Colored dots represent calculated ARFs across HUC units; 
solid curves represent fitted M5 models using PRISM. 

Table 4-6 Comparison of Ohio M5 ARF fitting Using PRISM Precipitation across 
Different Durations  Cell coloration indicates relative performance, with darker 
red colors indicating worse performance and white colors indicating better 
performance. 

Return Period 
NSE 

1-day 2-day 3-day 

Average AMS (~ 2-year) 0.94 0.93 0.93 

10-year 0.91 0.89 0.91 

100-year 0.68 0.70 0.80 

 

To gain further insights into the variability of subdaily ARF, in Figure 4-19 provides a 
comparison of 10-year Ohio M5-fitted ARF using DSI-3240 hourly precipitation across 9 
different durations. DSI-3240 is selected for this comparison given its hourly resolution and 
relatively long record. Similar to the findings reported by NERC (1975), the subdaily ARF 
decreases with shortening durations. Such analysis can also be performed using the radar-
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driven hourly ST4 precipitation, but the limited ST4 period of record would lead to more noisy 
results especially at higher return levels (not shown). 

 

Figure 4-19 Comparison of 10-year Ohio M5 ARF Using DSI-3240 Precipitation across 
Different Durations  Colored dots represent calculated ARFs across HUC units; 
solid curves represent fitted M5 models using DSI-3240. 

When performing fitting of M5 model, a further complication was encountered when trying to fit a 
single set of ARF parameters across both longer (1-, 2-, and 3-day) and shorter (less than 1-
day) duration ARF samples. With additional subdaily samples, the performance of fitting would 
start to decline (not shown). Therefore, instead of fitting a single set of ARF parameters across 
all durations, in Figure 4-19 each duration is fit separately. The implication is that, for the 
derivation of a generalized ARF model, one may need to develop separate models for long, 
medium and short durations. 

To provide a consistent comparison in this use case study, 1-, 2-, and 3-day ARF results are 
analyzed and presented since they are the common durations across different precipitation 
products. As discussed in Section 2.3, there are fewer subdaily resolution precipitation products 
to support subdaily ARF analysis. DSI-3240 has longer period of records and the highest point 
measurement accuracy, but it involves a much larger effort for data processing and spatial 
interpolation (in particular, considering the effects of topographic during interpolation). The novel 
radar-driven ST4 precipitation product can better capture the storm structures and has already 
been in grid format (i.e., easier to process). However, ST4 only has 16 years of records that 
significantly limits it applicability for higher return period ARF. Moving forward, alternative data 
approach such as merging of different precipitation products or incorporation of numerically 
simulated extreme events can be potential areas for further exploration. 

4.4.1.5 Effect of Seasonality 

Figure 4-20 provides the 1-day 10-year Ohio M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different seasons. The figure shows 
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variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves 
(colored lines) which follow the traditional ARF curve shape. The summary of NSE across 
different seasons and frequency levels are further shown in Table 4-7. 

 

Figure 4-20 Comparison of 1-day, 10-year Ohio M5 ARF Using PRISM Precipitation 
across Different Seasons  Colored dots represent calculated ARFs across HUC 
units; solid curves represent fitted M5 models using different precipitation 
products. Top and bottom panels include the same information in linear (top) and 
semi-log (bottom) scale. 

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is 
searched during May through October every year). The results suggest that the warm season 
ARF is close to all season ARF, while cool season ARF has a much higher value. The 
closeness between warm and all seasons indicates that the annual extreme precipitation in 
Ohio mainly occurs during warm season. The differences in warm and cool seasons ARF can 
be explained by their respective controlling extreme precipitation processes. In the Ohio Region, 
the major extreme precipitation events during warm season are meso-scale convective storms 
that area generally smaller in size and have larger spatial variability (leading to smaller ARF). 
On the other hand, the major extreme precipitation events in the Ohio Region during cool 
season are mostly large-scale frontal systems with relatively smaller spatial variability (as 
compared to warm season convective storms) that leads to larger ARF. For H&H applications 
such as simulation of rain-on-snow during cool season, the results suggest that a specific cool 
season ARF will be needed. The fitting performance of ARF across different seasons is largely 
similar with cool season having slightly smaller NSE. 
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Table 4-7 Comparison of 1-day Ohio M5 ARF Fitting Using PRISM Precipitation 
across Different Seasons  Cell coloration indicates relative performance, with 
darker red colors indicating worse performance and white colors indicating better 
performance. 

Return Period 

NSE 

All seasons 
Warm season 

(May–Oct) 
Cool season 

(Jan–Apr & Nov–Dec) 

Average AMS (~ 2-year) 0.94 0.95 0.94 

10-year 0.91 0.92 0.92 

100-year 0.68 0.67 0.61 

 

4.4.2 Mid-Atlantic (Region 02) 

As described in Section 4.1.1, the regional assessment includes ARF estimates across the Mid-
Atlantic region using different fitting models, data sources, return periods, durations, and 
seasons. Results demonstrating the effects of these different features are provided below. 
Detailed demonstration results for the Mid-Atlantic Region are provided in APPENDIX D. 

4.4.2.1 Effect of Fitting Model 

Figure 4-21 provides a comparison of six ARF models (M1–M6) and their NSE fitting statistics in 
Mid-Atlantic at 1-day duration and 10-year return period using PRISM. The figure shows 
variability in the individual, site-specific HUC unit ARFs (black dots) with fitted model curves 
(colored lines) which generally follow the traditional ARF curve shape. The summary of NSE 
across different ARF models and frequency levels is further shown in Table 4-8. 

The models reveal similarities, yet larger differences, compared to the better performance found 
in the Ohio region. Comparatively speaking, the M1 and M6 models (identified as less-preferred 
in Ohio) are also some of the worst performers in the Mid-Atlantic Region, while M4 also 
produces relatively low performance results, though no model produces particularly good 
results. These findings again indicate the importance of model selection. The relatively poorer 
performance in Region 02 (than Region 05) can be explained by the wider variability in the 
calculated HUC unit ARFs. Unlike the single watershed in Region 05 Ohio, Region 02 Mid-
Atlantic contains multiple independent HUC04-level watersheds and hence involves larger 
variabilities. Additionally, the terrain in Region 02 is more complicated than Region 05, and 
hence involves more types of extreme precipitation processes (e.g., from coastal hurricanes to 
topographically enhanced precipitation). Despite the weaker fitting, the overall findings across 
different models are still consistent with general understanding and expectation. 
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Figure 4-21 Comparison of 1-day, 10-year Mid-Atlantic ARF Fitting Using PRISM 

Precipitation across Different ARF Models  Black dots represent calculated 
ARFs across HUC units; solid curves represent fitted models for M1–M6. Top 
and bottom panels include the same information in linear (top) and semi-log 
(bottom) scale. 

Table 4-8 Comparison of 1-day Mid-Atlantic ARF Fitting Using PRISM Precipitation 
across Different ARF Models  Cell coloration indicates relative performance, 
with darker red colors indicating worse performance and white colors indicating 
better performance. 

Return Period 
NSE 

M1 M2 M3 M4 M5 M6 

Average AMS (~ 2-year) 0.72 0.80 0.81 0.80 0.80 0.65 

10-year 0.61 0.67 0.67 0.65 0.67 0.52 

100-year 0.12 0.15 0.15 0.11 0.15 0.02 

 

4.4.2.2 Effect of Data Source 

Figure 4-22 provides a comparison of four data sources (PRISM, Daymet, ST4, and Livneh) and 
their NSE fitting statistics in Mid-Atlantic at 1-day duration and 10-year return period (unlike 
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Ohio, the Mid-Atlantic region did not include DSI-3240). The figure shows variability in the 
individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines) 
which follow the traditional ARF curve shape. The summary of NSE across different 
precipitation products and frequency levels are further shown in Table 4-9. To better illustrate 
the effects of data source (and data length) on ARF fitting performance, the analysis is extended 
to 200-, 500-, and 1000-year in Table 4-9. 

As with the Ohio region results, the ST4 case reveals overall lower ARFs than other cases, with 
worse overall fitting performance. The models using Daymet, Livneh, PRISM, and DSI-3240 
data produce similar but not identical results. This again highlights the need to examine different 
datasets, as well as the importance of data record length (especially for higher return period 
estimates). As with the findings noted in Section 4.4.2.1, the overall performance in the Mid-
Atlantic region is relatively poorer, owing to variability in calculated HUC unit ARFs. ST4 again 
provides worse fitting for long return period ARF, due to its relatively shorter period of records. 

 
Figure 4-22 Comparison of 1-day, 10-year Mid-Atlantic M5 ARF Fitted by Different 

Precipitation Products  Colored dots represent calculated ARFs across HUC 
units; solid curves represent fitted M5 models using different precipitation 
products. Top and bottom panels include the same information in linear (top) and 
semi-log (bottom) scale. 
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Table 4-9 Comparison of 1-day Mid-Atlantic M5 ARF Fitting across Different Data 
Sources  Cell coloration indicates relative performance, with darker red colors 
indicating worse performance and white colors indicating better performance. 

Return Period 

NSE 

PRISM 
(1981–2017) 

Daymet 
(1980–2017) 

ST4 
(2002–2017) 

Livneh 
(1950–2013) 

DSI3240 
(1950–2013) 

Average AMS (~ 2-year) 0.80 0.71 0.74 0.83 -- 

10-year 0.67 0.63 0.45 0.75 -- 

100-year 0.15 0.17 0.29 0.28 -- 

200-year 0.12 0.11 0.27 0.18 -- 

500-year 0.12 0.09 0.25 0.17 -- 

1000-year 0.09 0.08 0.24 0.14 -- 

 

4.4.2.3 Effect of Return Period 

Figure 4-23 provides the 1-day Mid-Atlantic M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different return periods. Additional fitting 
statistics across different return periods for other ARF models and precipitation products are 
shown in Table 4-8, and Table 4-9. The figure shows variability in the individual, site-specific 
HUC unit ARFs (colored dots) with fitted model curves (colored lines) which follow the traditional 
ARF curve shape. As expected, the 100-year curve reveals overall lower ARFs than the lower 
return periods, with worse overall performance. Notably, this worse performance also results in 
a different shape to the curve, resulting in the 100-year curve and ARF values being higher than 
the other two curves at high area size. This is a result of poor statistical modeling given limited 
data. 

The model performance results demonstrate the importance of data record length. With the 
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance. The challenges 
associated the higher return period ARF are similar to the observations in Region 05 Ohio. 
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Figure 4-23 Comparison of PRISM-based 1-day Mid-Atlantic M5 ARF across Different 
Frequency Levels  Colored dots represent calculated ARFs across HUC units; 
solid curves represent fitted M5 models using PRISM. 

4.4.2.4 Effect of Duration 

Figure 4-24 provides the 10-year Mid-Atlantic M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different durations. The figure shows 
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves 
(colored lines) which follow the traditional ARF curve shape. As expected, the 3-day curve 
reveals overall higher ARFs than the shorter durations, which matches the trend found in 
literature. Unlike in the Ohio region, the Mid-Atlantic performance slightly increases for longer 
duration, but the increase is fairly small that may not be meaningful. However, the fitting 
performance in the Mid-Atlantic is lower than in the Ohio region. The summary of NSE across 
different durations and frequency levels are further shown in Table 4-10. 
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Figure 4-24 Comparison of 10-year Mid-Atlantic M5 ARF Using PRISM Precipitation 

across Different Durations  Colored dots represent calculated ARFs across 
HUC units; solid curves represent fitted M5 models using PRISM. 

Table 4-10 Comparison of Mid-Atlantic M5 ARF Fitting Using PRISM Precipitation 
across Different Durations  Cell coloration indicates relative performance, with 
darker red colors indicating worse performance and white colors indicating better 
performance. 

Return Period 
NSE 

1-day 2-day 3-day 

Average AMS (~ 2-year) 0.80 0.78 0.79 

10-year 0.67 0.62 0.69 

100-year 0.15 0.17 0.22 

 

4.4.2.5 Effect of Seasonality 

Figure 4-25 provides the 1-day 10-year Mid-Atlantic M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different seasons. The figure shows 
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves 
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(colored lines) which follow the traditional ARF curve shape. The summary of NSE across 
different seasons and frequency levels are further shown in Table 4-11. 

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is 
searched during May through October every year). Similar to Ohio, the warm season ARF is 
close to all season ARF. Cool season ARF is higher than both warm and all seasons, but in 
Mid-Atlantic the difference is relatively smaller. The closeness between warm and all seasons 
indicates that the annual extreme precipitation in Mid-Atlantic also mostly occurs during warm 
season. The difference between warm and cool season ARF can also be explained by the 
different controlling extreme precipitation processes (e.g., meso-scale versus frontal systems) 
across seasons. For H&H applications such as simulation of rain-on-snow during cool season, 
the results also suggest that a specific cool season ARF will be needed in the Mid-Atlantic 
region. Regarding fitting performance, both warm and all seasons provide worse fitting, 
particularly at higher return period. 

 

 

Figure 4-25 Comparison of 1-day, 10-year Mid-Atlantic M5 ARF Using PRISM 
Precipitation across Different Seasons  Colored dots represent calculated 
ARFs across HUC units; solid curves represent fitted M5 models using different 
precipitation products. Top and bottom panels include the same information in 
linear (top) and semi-log (bottom) scale. 
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Table 4-11 Comparison of 1-day Mid-Atlantic M5 ARF Fitting Using PRISM 
Precipitation across Different Seasons  Cell coloration indicates relative 
performance, with darker red colors indicating worse performance and white 
colors indicating better performance. 

Return Period 

NSE 

All seasons 
Warm season 

(May–Oct) 
Cool season 

(Jan–Apr & Nov–Dec) 

Average AMS (~ 2-year) 0.80 0.81 0.80 

10-year 0.67 0.67 0.78 

100-year 0.15 0.12 0.53 

 

4.4.3 South Atlantic-Gulf (Region 03) 

As described in Section 4.1.1, the regional assessment includes ARF estimates across the 
South Atlantic-Gulf region using different fitting models, data sources, return periods, durations, 
and seasons. Results demonstrating the effects of these different features are provided below. 
Detailed demonstration results for the South Atlantic-Gulf Region are provided in APPENDIX E. 

4.4.3.1 Effect of Fitting Model 

Figure 4-26 provides a comparison of six ARF models (M1–M6) and their NSE fitting statistics in 
South Atlantic-Gulf at 1-day duration and 10-year return period using PRISM. The figure shows 
variability in the individual, site-specific HUC unit ARFs (black dots) with fitted model curves 
(colored lines) which generally follow the traditional ARF curve shape. The summary of NSE 
across different ARF models and frequency levels is further shown in Table 4-12. 

The overall model performance in the South Atlantic-Gulf region is better than the Mid-Atlantic 
region but worse than the Ohio region. Comparatively speaking, the M1 and M6 models 
(identified as less-preferred in other two regions) are also some of the worst performers in the 
South Atlantic-Gulf Region. These findings again indicate the variabilities introduced by different 
models. The relatively weaker performance in Region 03 (than Region 05) can be explained by 
the wider variability in the calculated HUC unit ARFs. South Atlantic-Gulf is the 2nd largest 
hydrologic region in the U.S. that contains 18 independent HUC04-level watersheds along the 
southeastern coastline. Given its wider geographical coverage, it involves multiple types of 
extreme precipitation processes (e.g., from coastal hurricanes to topographic enhance 
precipitation near the Smokies) that lead to larger sample ARF variability. Nevertheless, the 
overall findings across different models are consistent with general understanding and 
expectation. 
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Figure 4-26 Comparison of 1-day, 10-year South Atlantic-Gulf ARF Fitting Using PRISM 

Precipitation across Different ARF Models  Black dots represent calculated 
ARFs across HUC units; solid curves represent fitted models for M1–M6. Top 
and bottom panels include the same information in linear (top) and semi-log 
(bottom) scale. 

Table 4-12 Comparison of 1-day South Atlantic-Gulf ARF Fitting Using PRISM 
Precipitation across Different ARF Models  Cell coloration indicates relative 
performance, with darker red colors indicating worse performance and white 
colors indicating better performance. 

Return Period 
NSE 

M1 M2 M3 M4 M5 M6 

Average AMS (~ 2-year) 0.64 0.72 0.72 0.71 0.72 0.65 

10-year 0.64 0.71 0.72 0.71 0.72 0.56 

100-year 0.35 0.43 0.44 0.43 0.44 0.24 

 

4.4.3.2 Effect of Data Source 

Figure 4-27 provides a comparison of four data sources (PRISM, Daymet, ST4, and Livneh) and 
their NSE fitting statistics in South Atlantic-Gulf at 1-day duration and 10-year return period 
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(unlike Ohio, the Mid-Atlantic region did not include DSI-3240). The figure shows variability in 
the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves (colored lines) 
which follow the traditional ARF curve shape. The summary of NSE across different 
precipitation products and frequency levels are further shown in Table 4-13. To better illustrate 
the effects of data source (and data length) on ARF fitting performance, the analysis is extended 
to 200-, 500-, and 1000-year in Table 4-13. 

As with the Ohio and Mid-Atlantic results, the ST4 case reveals overall lower ARFs than other 
cases, with worse overall fitting performance. The models using Daymet, Livneh, PRISM, and 
DSI-3240 data produce similar but not identical results. This again highlights the need to 
examine different datasets, as well as the importance of data record length (especially for higher 
return period estimates). As with the findings noted in Section 4.4.2.1, the overall performance 
in the South Atlantic-Gulf region is relatively poorer, owing to the large spatial coverage. ST4 
also provides worse fitting for long return period ARF, due to its relatively shorter period of 
records. 

 

 

Figure 4-27 Comparison of 1-day, 10-year South Atlantic-Gulf M5 ARF Fitted by 
Different Precipitation Products  Colored dots represent calculated ARFs 
across HUC units; solid curves represent fitted M5 models using different 
precipitation products. Top and bottom panels include the same information in 
linear (top) and semi-log (bottom) scale. 
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Table 4-13 Comparison of 1-day South Atlantic-Gulf M5 ARF Fitting across Different 
Data Sources  Cell coloration indicates relative performance, with darker red 
colors indicating worse performance and white colors indicating better 
performance. 

Return Period 

NSE 

PRISM 
(1981–2017) 

Daymet 
(1980–2017) 

ST4 
(2002–2017) 

Livneh 
(1950–2013) 

DSI3240 
(1950–2013) 

Average AMS (~ 2-year) 0.72 0.83 0.72 0.80 -- 

10-year 0.72 0.81 0.60 0.80 -- 

100-year 0.44 0.48 0.19 0.62 -- 

200-year 0.36 0.42 0.15 0.57 -- 

500-year 0.31 0.38 0.15 0.50 -- 

1000-year 0.27 0.34 0.14 0.44 -- 

 

4.4.3.3 Effect of Return Period 

Figure 4-28 provides the 1-day South Atlantic-Gulf M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different return periods. Additional fitting 
statistics across different return periods for other ARF models and precipitation products are 
shown in Table 4-12, and Table 4-13. The figure shows variability in the individual, site-specific 
HUC unit ARFs (colored dots) with fitted model curves (colored lines) which follow the traditional 
ARF curve shape. As expected, the 100-year curve reveals overall lower ARFs than the lower 
return periods, with worse overall performance.  

The model performance results demonstrate the importance of data record length. With the 
PRISM-based analysis using 37 years of data, estimation of longer return periods (e.g., 100-
year and above) becomes more challenging and results in worse performance. The challenges 
associated the higher return period ARF are similar to the observations in the Ohio and Mid-
Atlantic regions. 
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Figure 4-28 Comparison of PRISM-based 1-day South Atlantic-Gulf M5 ARF across 

Different Frequency Levels  Colored dots represent calculated ARFs across 
HUC units; solid curves represent fitted M5 models using PRISM. 

4.4.3.4 Effect of Duration 

Figure 4-29 provides the 10-year South Atlantic-Gulf M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different durations. The figure shows 
variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves 
(colored lines) which follow the traditional ARF curve shape. As expected, the 3-day curve 
reveals overall higher ARFs than the shorter durations, which matches the trend found in 
literature. Unlike in the Ohio region, the South Atlantic-Gulf performance slightly increases for 
longer duration. The summary of NSE across different durations and frequency levels are 
further shown in Table 4-14. 
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Figure 4-29 Comparison of 10-year South Atlantic-Gulf M5 ARF Using PRISM 
Precipitation across Different Durations  Colored dots represent calculated 
ARFs across HUC units; solid curves represent fitted M5 models using PRISM. 

Table 4-14 Comparison of South Atlantic-Gulf M5 ARF Fitting Using PRISM 
Precipitation across Different Durations  Cell coloration indicates relative 
performance, with darker red colors indicating worse performance and white 
colors indicating better performance. 

Return Period 
NSE 

1-day 2-day 3-day 

Average AMS (~ 2-year) 0.72 0.75 0.75 

10-year 0.72 0.75 0.73 

100-year 0.44 0.46 0.47 

 

4.4.3.5 Effect of Seasonality 

Figure 4-30 provides the 1-day 10-year Mid-Atlantic M5-fitted ARF and associated performance 
statistics using PRISM precipitation product across different seasons. The figure shows 
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variability in the individual, site-specific HUC unit ARFs (colored dots) with fitted model curves 
(colored lines) which follow the traditional ARF curve shape. The summary of NSE across 
different seasons and frequency levels are further shown in Table 4-15. 

The different seasons refer to when the AMS is looked up annually (e.g., warm season AMS is 
searched during May through October every year). Similar to Ohio and Mid-Atlantic, the warm 
season ARF is close to all season ARF, and the cool season ARF is higher than others. The 
closeness between warm and all seasons indicates that the annual extreme precipitation in 
South Atlantic-Gulf also mostly occurs during warm season. However, the difference between 
warm and cool season ARF is the smallest among all regions, suggesting that the effect of 
seasonality is less significant in the South Atlantic-Gulf region. This finding is consistent with the 
regional climate pattern of South Atlantic-Gulf that it’s the warmest among all three regions. 
Given that there is much less annual snowpack in this region, and the smaller differences 
between warm and cool season ARF, there may not be a significant need to develop season-
specific ARF for H&H applications. 

 

Figure 4-30 Comparison of 1-day, 10-year South Atlantic-Gulf M5 ARF Using PRISM 
Precipitation across Different Seasons  Colored dots represent calculated 
ARFs across HUC units; solid curves represent fitted M5 models using different 
precipitation products. Top and bottom panels include the same information in 
linear (top) and semi-log (bottom) scale. 
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Table 4-15 Comparison of 1-day South Atlantic-Gulf M5 ARF Fitting Using PRISM 
Precipitation across Different Seasons  Cell coloration indicates relative 
performance, with darker red colors indicating worse performance and white 
colors indicating better performance. 

Return Period 

NSE 

All seasons 
Warm season 

(May–Oct) 
Cool season 

(Jan–Apr & Nov–Dec) 

Average AMS (~ 2-year) 0.72 0.75 0.67 

10-year 0.72 0.68 0.64 

100-year 0.44 0.35 0.41 

 

4.4.4 CONUS Reconnaissance-level Assessment 

As described in Section 4.1.2, the national assessment includes ARF estimates at the HUC02 
level across all CONUS regions. These estimates are produced using daily PRISM precipitation 
data and the M5 De Michele fitting model. Additional demonstration results for the national 
assessment are provided in APPENDIX F. 

4.4.4.1 Effect of Geographic Location 

Figure 4-31 shows example ARF curves across the 18 CONUS HUC02 regions for 1-day 
duration and 100-year return period. The maximum area plotted for each region represents the 
largest HUC unit analyzed in the region. The results demonstrate that while ARF values are 
somewhat consistent for small area sizes (e.g., ARFs are within about 6% for areas below 259 
km2 [100 mi2]), the variation increases for larger areas. For example, at 25,900 km2 (10,000 
mi2), the fitted ARFs range from approximately 0.85 in the New England region (Region 01) to 
0.56 in the Souris-Red-Rainy (Region 09) and Texas-Gulf (Region 12) regions. This regional 
variation is illustrated in Figure 4-32, which generally shows that lower ARFs are found in the 
central U.S., with higher ARFs found in the eastern and western U.S. Several factors could 
contribute to this pattern, but it is expected that regional climate, coastal proximity, 
topographical influences, and frequency of certain storm types/intensities could influence AMS 
values across regions and influence ARF estimates. It is worth noting that the results in Figure 
4-31 and Figure 4-32 are for a 100-year return period based on 37 years of data; thus, the fitting 
performance (summarized in Table 4-16 and Table 4-17) is relatively poorer than for lower 
return periods. 
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Figure 4-31 CONUS ARF Assessment for 1-day Duration and 100-year Return Period 
Using PRISM-Daily Data and M5 Model Fitting 

 

Figure 4-32 CONUS ARF Assessment for 1-day Duration, 10,000-mi2 Area, and 100-year 
Return Period Using PRISM-daily Data and M5 Model Fitting 
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4.4.4.2 Effect of Return Period 

Figure 4-33 shows various maps of HUC02-level ARFs for 1-day duration. The maps are 
organized to demonstrate the influence of increasing return period when moving from left to 
right. Example plots are provided for different area sizes of 1,036 km2 (400 mi2; top row), 5,180 
km2 (2,000 mi2; middle row), and 25,900 km2 (10,000 mi2; bottom row). The results show a 
tendency for ARFs to decrease with increasing return period and to decrease with increasing 
area. The same general geographic pattern as discussed in Section 4.4.4.1 is also seen in 
these maps. Table 4-16 summarizes the regional NSE model performance statistics associated 
with the 1-day fittings. As expected, the performance degrades for higher return periods. The 
NSE values also vary regionally, with the lowest values found in regions 01 (New England), 02 
(Mid-Atlantic), 04 (Great Lakes), and 16 (Great Basin). While regions 01, 02, and 04 are all in 
the northeastern U.S., a clear explanation for the performance results is not apparent and would 
require further investigation. 

 

Figure 4-33 Map of CONUS 1-day ARFs Using PRISM-daily Data and M5 Model Fitting 
across Different Areas and Return Periods 



 

4-45 

Table 4-16 Comparison of 1-day CONUS Regional M5 ARF Fitting Using PRISM 
Precipitation across Different Return Periods  Cell coloration indicates 
relative performance, with darker red colors indicating worse performance and 
white colors indicating better performance. Note that the region numbers 
correspond to Figure 4-4, with lower numbers generally in the eastern U.S. and 
higher numbers generally in the western U.S. 

Return Period 

NSE 

Region Number 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 

Avg. AMS 0.68 0.80 0.72 0.69 0.94 0.91 0.93 0.87 0.88 0.85 0.87 0.88 0.92 0.83 0.84 0.81 0.85 0.72 

GEV 10-yr 0.66 0.67 0.72 0.58 0.91 0.89 0.90 0.83 0.85 0.78 0.81 0.89 0.90 0.81 0.79 0.77 0.84 0.74 

GEV 100-yr 0.20 0.15 0.44 0.31 0.68 0.46 0.72 0.59 0.73 0.57 0.59 0.70 0.72 0.65 0.51 0.37 0.70 0.63 

 
4.4.4.3 Effect of Area and Duration 

Figure 4-34 shows various maps of HUC02-level ARFs for 100-year return period. The maps 
are organized to demonstrate the influence of increasing duration when moving from left to right. 
Example plots are provided for different area sizes of 1,036 km2 (400 mi2; top row), 5,180 km2 
(2,000 mi2; middle row), and 25,900 km2 (10,000 mi2; bottom row). The results show a tendency 
for ARFs to increase with increasing duration and to decrease with increasing area. The same 
general geographic pattern as discussed in Section 4.4.4.1 is also seen in these maps. Table 
4-17 summarizes the regional NSE model performance statistics associated with the 100-year 
fittings. The results demonstrate relatively low differences in performance across different 
durations. However, the NSE values vary regionally, with the lowest values found in regions 01 
(New England), 02 (Mid-Atlantic), 03 (South Atlantic-Gulf), 04 (Great Lakes), and 16 (Great 
Basin). While regions 01, 02, and 04 are all in the northeastern U.S., a clear explanation for the 
performance results is not apparent and would require further investigation. The relatively 
poorer performance in certain regions can be explained by the wider variability in the calculated 
HUC unit ARFs. One possible explanation for the wider variability is that these regions contain 
multiple independent HUC04-level watersheds and hence involves larger variabilities. It is also 
possible that terrain effects could play a role and that a mixture of more extreme precipitation 
processes (e.g., from coastal hurricanes to topographically enhanced precipitation). 
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Figure 4-34 Map of CONUS 100-year ARFs Using PRISM-daily Data and M5 Model 
Fitting across Different Durations and Areas 

Table 4-17 Comparison of 100-year CONUS Regional M5 ARF Fitting Using PRISM 
Precipitation across Different Durations   Cell coloration indicates relative 
performance, with darker red colors indicating worse performance and white 
colors indicating better performance. Note that the region numbers correspond to 
Figure 4-4, with lower numbers generally in the eastern U.S. and higher numbers 
generally in the western U.S. 

Duration 

NSE 

Region Number 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 

1-day 0.20 0.15 0.44 0.31 0.68 0.46 0.72 0.59 0.73 0.57 0.59 0.70 0.72 0.65 0.51 0.37 0.70 0.63 

2-day 0.29 0.17 0.46 0.33 0.70 0.67 0.70 0.58 0.70 0.59 0.62 0.71 0.73 0.62 0.57 0.50 0.65 0.60 

3-day 0.28 0.22 0.47 0.30 0.80 0.65 0.72 0.67 0.72 0.60 0.68 0.66 0.78 0.70 0.50 0.43 0.58 0.58 
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5 SUMMARY 

To support PFHA of NPPs, probabilistic estimates of extreme rainfall depth across various 
watershed sizes are required. Nevertheless, most existing PFA products (such as NOAA Atlas 
14) provide frequency estimates of “point” precipitation that can only be representative for a 
small domain and are not appropriate for large-scale watershed modeling applications. The ARF 
examined in this study, which is the ratio of areal extreme rainfall depth to point-based extreme 
rainfall depth, is one commonly-used approach to derive areal extreme rainfall estimates from 
conventional point-based PFA products. The use of ARF is necessary because high 
spatiotemporal resolution precipitation observations with long period of records, which are 
needed for accurate areal rainfall frequency estimation, are generally lacking and do not allow 
for an appropriate characterization of the associated spatial rainfall patterns. 

However, compared to modern PFA products, the progress of ARF development in the U.S. is 
relatively slow, and the TP-29 ARFs published in the 1950s are still used in practice. To improve 
understanding of ARF variabilities across different precipitation products, ARF models, return 
periods, geographical locations, and seasons, this study conducts a comprehensive review of 
recent ARF research, summarizes potential precipitation products for ARF applications, and 
provides use case studies to demonstrate the derivation of ARF in several selected hydrologic 
regions in the U.S. 

This research is part of the NRC’s PFHA Research Program and is to assist NRC in assessing 
different classes of fixed-area ARF methods in conjunction with available rainfall datasets to 
support development of guidance for application of NPP-PFHA. The work will aid the 
development of guidance on the use of PFHA methods and support risk-informing NRC’s 
licensing framework (flood hazard design standards at proposed new facilities as well as 
significance determination tools for evaluating potential deficiencies related to flood protection at 
operating facilities). The tools and guidance developed will support and enhance NRC’s 
capacity to perform thorough and efficient reviews of license applications and license 
amendment requests. They will also support risk-informed significance determination of 
inspection findings, unusual events and other oversight activities. 

The discussion of specific references, methods, software, or tools in this NUREG/CR does not 
constitute an endorsement or approval for any specific use by the U.S. Nuclear Regulatory 
Commission or Oak Ridge National Laboratory. The case study results presented herein are the 
result of research efforts only, do not incorporate uncertainty quantification, and should not be 
directly incorporated for application. They are intended to demonstrate some of the primary 
factors affecting areal reduction factor estimation. 

The main findings and recommendations are summarized in this section. 

5.1 ARF Characteristics in the United States 

Overall, the most general observations that can be made across all methods, precipitation 
products, and regions are: 

• ARF decreases with decreasing duration 

• ARF decreases with increasing area 

• ARF decreases with increasing return period (Figure 4-33) 
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In particular, the use case study results clearly suggest that ARF decreases with increasing 
return period (which was not provided in the conventional TP-29 ARF curves). This supports the 
need to develop frequency- (return period) specific ARF for H&H application. However, the 
results also suggest that the performance of long return period ARF is strongly controlled by the 
length of historic observation (e.g., the poor performance of 100-year ST4 ARF fitting given only 
16 years of observation). Therefore, when using purely observation-based approach (such as 
the one used in this study), it is questionable if one has sufficient ability and confidence to derive 
long-return period areal extreme rainfall and ARF estimates to support H&H application. This 
limitation should be clearly acknowledged when selecting and designing PFHA for NPP. Unless 
the data sufficiency issue is addressed, long return period ARFs should be estimated using 
more conservative (and reliable) short return period ARFs. Process-based numerical weather 
simulation can be a promising alternative to resolve this issue. 

Regarding ARF methods, the difference across different ARF models is found to be one factor 
affecting the estimation of regional ARF. In general, M2 (Koutsoyiannis and Xanthopoulos UK-
NERC Model), M3 (Hydrological Atlas of Switzerland Model), M4 (Australian ARR Model), and 
M5 (De Michele Dynamic Scaling Model) provide better fitting. While M3 (Hydrological Atlas of 
Switzerland Model) can fit well, it does not include duration as a variable and hence can be 
more sensitive to sample size and data quality. M4 (Australian ARR Model) is more difficult to fit 
(8 parameters), but it includes frequency levels in the model and can be overall more robust. M5 
(De Michele Dynamic Scaling Model) can fit well and has a good underlying theory, and hence 
is selected in the CONUS reconnaissance level assessment. Given that M1 (Leclerc & Schaake 
TP-29 Model) was developed for smaller area TP-29 values, it cannot provide good fitting when 
considering larger area ARF samples (which are likely be the case for many U.S. NPPs). While 
M6 (Regional GEV Model) has a good underlying theory, it’s more challenging for the ARF 
application. Further ad hoc adjustment is likely needed for M6. It’s difficult to fit one set of 
parameters for both longer and shorter durations. For the derivation of a generalized ARF 
model, one should develop separate models for long, medium and short durations. It is also 
acknowledged that other ARF models, which not selected in this use case study, can also be 
suitable choices as long as a good fitting performance can be demonstrated. Overall, only fixed-
area ARF (not storm-centered ARF) is evaluated since the fixed-area ARF is a more suitable 
choice for PFHA. If the goal is to identify ARF for deterministic applications (e.g., PMP and 
PMF), the storm-centered ARF would be a more suitable approach instead. 

Regarding data sources, while the effect of data sources is relatively smaller than the effect of 
ARF model, non-negligible differences are still found. The gridded precipitation products (e.g., 
Daymet, PRISM, Livneh) are easy to use, but given their limited temporal resolution, they 
cannot be used to derive subdaily ARF. The radar-driven precipitation product (ST4) can better 
capture high-resolution spatiotemporal storm structure. However, given its limited period of 
record, it provides the worst long return period ARF model fitting across all precipitation 
products. While gauge data (DSI-3240) is harder to process, it leads to one of the best ARF 
model fitting in Region 05 Ohio. With further consideration of topography-informed spatial 
interpolation, there is value to consider gauge data-based approach in future site-specific ARF 
studies. 

Regarding seasonality, in the three hydrologic regions examined in this study, the results 
suggest that the warm season ARF is close to all season ARF, while cool season ARF has a 
higher value. The closeness between warm and all seasons indicates that the annual extreme 
precipitation in these regions mainly occurs during warm season. The differences in warm and 
cool seasons ARF can be explained by their respective controlling extreme precipitation 
processes. In most regions, the major extreme precipitation events during warm season are 
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meso-scale convective storms that area generally smaller in size and have larger spatial 
variability (leading to smaller ARF). On the other hand, the major extreme precipitation events in 
most regions during cool season are mostly large-scale frontal systems with relatively smaller 
spatial variability (as compared to warm season convective storms) that leads to larger ARF. 
For the South Atlantic-Gulf region, the difference between warm and cool season ARF is the 
smallest, suggesting that the effect of seasonality is less significant in the overall warmer South 
Atlantic-Gulf region. For H&H applications such as simulation of rain-on-snow during cool 
season in Ohio and Mid-Atlantic regions, the results suggest that a specific cool season ARF 
will be needed. 

Regarding inter-regional differences, it is found that ARFs are lower in the central U.S., and 
higher in eastern and western U.S. Texas-Gulf (R12) & Souris-Red-Rainy (R09) are generally 
the lowest among all regions. The results clearly suggest a strong geographical variability 
associated with ARF. Therefore, ARF values produced from previous studies (e.g., TP-29) may 
not be indiscriminately used at different geographical locations. There is a need to derive 
region- or watershed-specific ARF for robust PFHA of national NPPs. 

5.2 Challenges for PFHA Applications 

While the results of this study suggest that, with the advance of precipitation products and more 
advanced ARF methods, more defensible ARF estimates can be derived for H&H applications, 
several major challenges are also identified. For the purpose of PFHA for NPPs, these 
challenges will need to be addressed in future studies. 

• Long return period areal extreme rainfall and ARF derivation: One major finding 
from this study is the challenge associated with long return period areal extreme rainfall 
and ARF derivation. “Long” return period in this case refers to when the desired return 
period is much longer than the period of records of the supporting precipitation data 
(e.g., deriving 1000-year extreme rainfall estimate based on 66 years of data). In 
particular, when compared to other general H&H applications, PFHA-NPP needs to 
evaluate the risks from highly extreme precipitation events (i.e., greater than 1000-year 
return levels), which may not be fully supported only by historic observations. In addition, 
the potentially changing climatic conditions may further complicate this challenge. From 
this perspective, this is a need to explore the derivation of long return period areal 
extreme rainfall and ARF through the assistance of process-based, numerical weather 
simulation. 

• Uncertainty quantification: While the variability of ARF across different factors (e.g., 
methods, data sources, geographical locations, and seasonality) were examined in this 
study, the statistical uncertainty of these ARF estimates were not evaluated. Existing 
statistical methods such as bootstrapping can be used to analyze the uncertainty and 
develop confidence intervals of the selected ARF. For the purpose of PFHA, the 
uncertainty of ARF should be considered as a part of the H&H application. 

• High spatiotemporal resolution dataset: Among the gridded precipitation products 
considered in this study (PRISM, Daymet, Livneh, and ST4), the spatial resolution (from 
1-km Daymet to ~6km Livneh) appears to be sufficient for the development of watershed 
scale ARF. In contrast, temporal data resolution may not be sufficient for some 
purposes. While DSI-3240 and ST4 provide hourly data, PRISM, Daymet, and Livneh 
only provide daily data. In addition, reanalysis-driven products provide subdaily data but 
are of higher spatial resolution. For hydrologic modeling purposes, subdaily data with 
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high spatial resolution may be needed, leaving DSI-3240 and ST4 as the potential 
options. However, these datasets each present challenges. While data from ST4 is of 
limited historical record (since 2002), data from DSI-3240 may extend across several 
decades; however, DSI-3240 requires greater processing and interpolation effort. As 
with the challenge of estimating long return period ARF, challenges associated with high 
spatiotemporal resolution could be overcome by using numerical weather simulation in 
future research efforts. 

• Subwatershed application: The use case studies documented in this report provide 
modeled results for HUC02 (hydrologic region) level assessments. For some regions, 
particularly where precipitation-producing processes (e.g., in coastal or mountainous 
locations) vary widely within the region, or regions that are composed of multiple 
independent watersheds (e.g., South-Atlantic Gulf region), some level of heterogeneity 
may exist in the ARF results and yield poorer fitting performance. Site-specific 
subwatershed application could yield more reliable results with better performance. 

• Need for a national ARF product: Perhaps most importantly, there is currently no new 
national ARF product (i.e., similar to NOAA Atlas 14) that provides geographically 
variable ARFs. Existing ARF products also do not consider the effects of return period or 
seasonality and are applicable for only small area sizes. While this study examined how 
ARFs may vary based on these different considerations, the results presented herein are 
for demonstration purposes only and are not intended to be used for ARF application 
without further site-specific evaluation. Additional research and development efforts, with 
thorough quality assurance and control performed, would be required to develop a 
reliable national ARF product suitable for PFHA application. Such efforts may be suitable 
for a federal agency with specific mission and objectives related to weather prediction 
and precipitation monitoring, such as NOAA. 
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A-1

APPENDIX A 
SUMMARY OF AVAILABLE PRECIPITATION PRODUCTS 

Table A-1 summarizes the precipitation products available for ARF analysis and various 
features of these products. They are organized by product type, including gauge-only, gauge-
driven, radar-driven, satellite-driven, and reanalysis-driven precipitation products. 

Descriptions of the precipitation products are provided in Section 2.2. 
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https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:0129374;view=html
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
ftp://ftp.nodc.noaa.gov/pub/data.nodc/nodc/archive/data/0129374/
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://www.engr.scu.edu/~emaurer/gridded_obs/index_gridded_obs.html
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
http://hydro.engr.scu.edu/files/gridded_obs/daily/ncfiles_2010/
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
https://data.noaa.gov/dataset/cpc-unified-gauge-based-analysis-of-daily-precipitation-over-conus
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
ftp://ftp.cdc.noaa.gov/Datasets/cpc_us_precip/
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://ncar.github.io/hydrology/models/GMET
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
https://www.earthsystemgrid.org/dataset/gridded_precip_and_temp.html
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https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ngdc.noaa.gov/metaview/page?xml=NOAA/NESDIS/NCDC/Geoportal/iso/xml/C00708.xml&view=getDataView&header=none
https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
https://www.ncdc.noaa.gov/nexradinv/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage2/
https://data.eol.ucar.edu/dataset/21.006
https://data.eol.ucar.edu/dataset/21.006
https://data.eol.ucar.edu/dataset/21.006
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
https://dipper.nws.noaa.gov/hdsb/data/nexrad/nexrad.html
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
http://www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/stage4/
https://data.eol.ucar.edu/dataset/21.093
https://data.eol.ucar.edu/dataset/21.093
https://data.eol.ucar.edu/dataset/21.093
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://www.nssl.noaa.gov/projects/mrms/
http://mrms.ncep.noaa.gov/data/
http://mrms.ncep.noaa.gov/data/
http://mrms.ncep.noaa.gov/data/
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APPENDIX B  
QUALITATIVE ASSESSMENT RESULTS FOR ARF METHODS 

Table B-1 documents the qualitative assessment results for ARF methods as described in in 
Section 3.3. The results were used to inform which methods would be used in the use case 
studies. 
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APPENDIX C  
OHIO (REGION 05) DETAILED RESULTS 

Additional information on the Ohio regional assessment results is provided in the figures below. 
Example information and discussion is provided in the main report. The plots include: 

Figure C-1 Calculated Ohio ARFs and Fitted Models for 1-day Duration and Average 
AMS Using Different Datasets and Fitted Models  Colored dots represent 
calculated ARFs across HUC units; solid curves represent fitted models. ........ C-2 

Figure C-3 Calculated Ohio ARFs and Fitted Models for 3-day Duration and Average 
AMS Using Different Datasets and Fitted Models  Colored dots represent 
calculated ARFs across HUC units; solid curves represent fitted models. ........ C-4 

Figure C-4 Calculated Ohio ARFs and Fitted Models for 1-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models .............................. C-5 

Figure C-5 Calculated Ohio ARFs and Fitted Models for 2-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models .............................. C-6 

Figure C-6 Calculated Ohio ARFs and Fitted Models for 3-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models .............................. C-7 

Figure C-7 Calculated Ohio ARFs and Fitted Models for 1-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models .............................. C-8 

Figure C-8 Calculated Ohio ARFs and Fitted Models for 2-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models .............................. C-9 

Figure C-9 Calculated Ohio ARFs and Fitted Models for 3-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models ............................ C-10 
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Figure C-1 Calculated Ohio ARFs and Fitted Models for 1-day Duration and Average 
AMS Using Different Datasets and Fitted Models  Colored dots represent 
calculated ARFs across HUC units; solid curves represent fitted models. 



C-3

Figure C-2 Calculated Ohio ARFs and Fitted Models for 2-day Duration and Average 
AMS Using Different Datasets and Fitted Models  Colored dots represent 
calculated ARFs across HUC units; solid curves represent fitted models.
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Figure C-3 Calculated Ohio ARFs and Fitted Models for 3-day Duration and Average 
AMS Using Different Datasets and Fitted Models  Colored dots represent 
calculated ARFs across HUC units; solid curves represent fitted models. 
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Figure C-4 Calculated Ohio ARFs and Fitted Models for 1-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure C-5 Calculated Ohio ARFs and Fitted Models for 2-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure C-6 Calculated Ohio ARFs and Fitted Models for 3-day Duration and 10-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure C-7 Calculated Ohio ARFs and Fitted Models for 1-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  



C-9

Figure C-8  Calculated Ohio ARFs and Fitted Models for 2-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure C-9  Calculated Ohio ARFs and Fitted Models for 3-day Duration and 100-year 
Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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APPENDIX D  
MID-ATLANTIC (REGION 02) DETAILED RESULTS 

Additional information on the Mid-Atlantic regional assessment results is provided in the figures 
below. Example information and discussion is provided in the main report. The plots include: 

Figure D-1 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 
Average AMS Using Different Datasets and Fitted Models .............................. D-2 

Figure D-2 Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 
Average AMS Using Different Datasets and Fitted Models .............................. D-3 

Figure D-3 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 
Average AMS Using Different Datasets and Fitted Models .............................. D-4 

Figure D-4 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 
10-year Return Period Using Different Datasets and Fitted Models ................. D-5 

Figure D-5  Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 
10-year Return Period Using Different Datasets and Fitted Models ................. D-6 

Figure D-6 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 
10-year Return Period Using Different Datasets and Fitted Models ................. D-7 

Figure D-7 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 
100-year Return Period Using Different Datasets and Fitted Models................ D-8 

Figure D-8 Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 
100-year Return Period Using Different Datasets and Fitted Models................ D-9 

Figure D-9 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 
100-year Return Period Using Different Datasets and Fitted Models............   D-10 
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Figure D-1 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 
Average AMS Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-2 Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 
Average AMS Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-3 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 
Average AMS Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  

  



 

D-5 

 

Figure D-4 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-5  Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-6 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 10-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-7 Calculated Mid-Atlantic ARFs and Fitted Models for 1-day Duration and 100-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-8 Calculated Mid-Atlantic ARFs and Fitted Models for 2-day Duration and 100-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure D-9 Calculated Mid-Atlantic ARFs and Fitted Models for 3-day Duration and 100-
year Return Period Using Different Datasets and Fitted Models  Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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APPENDIX E  
SOUTH ATLANTIC-GULF (REGION 03) DETAILED RESULTS 

Additional information on the South Atlantic-Gulf regional assessment results is provided in the 
figures below. Example information and discussion is provided in the main report. The plots 
include: 

Figure E-1 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and Average AMS Using Different Datasets and Fitted Models ...................... E-12 

Figure E-2 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and Average AMS Using Different Datasets and Fitted Models ...................... E-13 

Figure E-3 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and Average AMS Using Different Datasets and Fitted Models ...................... E-14 

Figure E-4 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models ......... E-15 

Figure E-5 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models ......... E-16 

Figure E-6 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models ......... E-17 

Figure E-7 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models ....... E-18 

Figure E-8 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models ....... E-19 

Figure E-9 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models ....... E-20 
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Figure E-1 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and Average AMS Using Different Datasets and Fitted Models   Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure E-2 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and Average AMS Using Different Datasets and Fitted Models Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure E-3 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and Average AMS Using Different Datasets and Fitted Models Colored dots 
represent calculated ARFs across HUC units; solid curves represent fitted 
models.  
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Figure E-4 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models  
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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Figure E-5 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models  
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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Figure E-6 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and 10-year Return Period Using Different Datasets and Fitted Models  
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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Figure E-7 Calculated South Atlantic-Gulf ARFs and Fitted Models for 1-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models  
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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Figure E-8 Calculated South Atlantic-Gulf ARFs and Fitted Models for 2-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models 
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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Figure E-9 Calculated South Atlantic-Gulf ARFs and Fitted Models for 3-day Duration 
and 100-year Return Period Using Different Datasets and Fitted Models 
Colored dots represent calculated ARFs across HUC units; solid curves 
represent fitted models.  
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APPENDIX F  
CONUS ASSESSMENT DETAILED RESULTS 

Additional information on the CONUS assessment results is provided in the figures below. 
Example information and discussion is provided in Section 4.4 of the main report. These results 
stem from ARF analysis using daily PRISM data and M5 fitting. The plots include: 

Figure F-1 CONUS ARF Assessment Maps for 1-day Duration and Average AMS 
Using PRISM-daily Data and M5 Model Fitting across Different Area 
Sizes ................................................................................................................ F-2 

Figure F-2 CONUS ARF Assessment Maps for 1-day Duration and 10-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different 
Area Sizes ....................................................................................................... F-3 

Figure F-3 CONUS ARF Assessment Maps for 1-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different 
Area Sizes ....................................................................................................... F-4 

Figure F-4 CONUS ARF Assessment Maps for 2-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different 
Area Sizes ....................................................................................................... F-5 

Figure F-5 CONUS ARF Assessment Maps for 3-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different 
Area Sizes ....................................................................................................... F-6 

Figure F-6 CONUS ARF Assessment Plot for 1-day Duration and Average AMS 
Using PRISM-daily Data and M5 Model Fitting ................................................ F-7 

Figure F-7 CONUS ARF Assessment Plot for 1-day Duration and 10-year Return 
Period Using PRISM-daily Data and M5 Model Fitting ..................................... F-8 

Figure F-8 CONUS ARF Assessment Plot for 1-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting ..................................... F-9 

Figure F-9 CONUS ARF Assessment Plot for 2-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting ................................... F-10 

Figure F-10 CONUS ARF Assessment Plot for 3-day duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting ................................... F-11 
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Figure F-1 CONUS ARF Assessment Maps for 1-day Duration and Average AMS Using 
PRISM-daily Data and M5 Model Fitting across Different Area Sizes 
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Figure F-2 CONUS ARF Assessment Maps for 1-day Duration and 10-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different Area 
Sizes  
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Figure F-3 CONUS ARF Assessment Maps for 1-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different Area 
Sizes 
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Figure F-4 CONUS ARF Assessment Maps for 2-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different Area 
Sizes 
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Figure F-5 CONUS ARF Assessment Maps for 3-day Duration and 100-year Return 
Period Using PRISM-daily Data and M5 Model Fitting across Different Area 
Sizes  
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The most widely used ARF source is Technical Paper 29 (TP-29) published by the then U.S. Weather
Bureau in 1958. However, both the methods and the underlying precipitation data used to produce TP-29 
are seriously out of date. For example, due to the small gauge network available at the time of TP-29’s 
compilation, ARF estimates developed are only for watersheds smaller than about 400 square miles. Due
to the relatively short record lengths of precipitation data available, frequency considerations could not be 
accurately determined. Other factors such as regional climate and seasonality were not addressed. 

Several newer methods have been published since TP-29 was developed and both the type and quantity 
of precipitation data have increased significantly, along with computational resources and analytical tools 
such as geographic information systems. This report reviewed and assessed the available precipitation
products and methods for conducting ARF analysis. The work applied up-to-date precipitation data
products and analysis methods with a novel watershed-based approach to investigate how ARF estimates
vary across different methods, data sources, geographical locations, return periods, and seasons.

Oak Ridge National Laboratory* 
P.O. Box 2008 
Oak Ridge, TN 37831 

Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission 
Washington, D.C. 20555-0001 

This report documents work sponsored by the U.S. Nuclear Regulatory Commission (NRC) at the Oak 
Ridge National Laboratory (ORNL) as part of the RES project, “Application of Point Precipitation 
Frequency Estimates to Watersheds.” This project was implemented as part of the Probabilistic Flood 
Hazard Assessment (PFHA) Research Program.   The objective of the PFHA Research Program is to 
develop tools and guidance on the use of PFHA methods to risk-inform NRC’s licensing of new facilities 
as well as licensing and oversight of currently operating facilities as they relate to flooding hazards.  Many 
nuclear power plants (NPPs) are located on or near rivers so riverine flooding hazards need to be 
considered in their design and operation. Probabilistic riverine flood models are important tools for realistic 
assessment of flooding risks. However, these models require areal estimates of the depth, duration, and 
frequency of rainfall distributed over the watershed, which are not often available. The research 
documented in this report addresses areal reduction factors (ARFs), which can be used to convert the 
widely available point precipitation frequency estimates, to estimates of areal precipitation frequency over 
a watershed.  

ARF, areal reduction factor, point precipitation frequency, hydrology, PFHA 
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