# HEAT RELEASE RATES OF MULTIPLE TRANSIENT COMBUSTIBLES 

Date Published: July 2020
Prepared by:
K. McGrattan

National Institute of Standards and Technology

David Stroup, NRC Project Manager

This report was published as National Institute of Standards and Technology (NIST) Technical Note 2102 as part of a series of experiments funded by the U.S. Nuclear Regulatory
Commission's Office of Regulatory Research. The report has been re-published as an NRC Research Information Letter (RIL).

## Disclaimer

Legally binding regulatory requirements are stated only in laws, NRC regulations, licenses, including technical specifications, or orders; not in Research Information Letters (RILs). A RIL is not regulatory guidance, although NRC's regulatory offices may consider the information in a RIL to determine whether any regulatory actions are warranted.

# NIST Technical Note 2102 

# Heat Release Rates of Multiple Transient Combustibles 

Kevin McGrattan

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN. 2102


National Institute of Standards and Technology
U.S. Department of Commerce

# NIST Technical Note 2102 

# Heat Release Rates of Multiple Transient Combustibles 

Kevin McGrattan<br>Fire Research Division<br>Engineering Laboratory

This publication is available free of charge from:
https://doi.org/10.6028/NIST.TN. 2102

July 2020

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equipment are necessarily the best available for the purpose.

National Institute of Standards and Technology Technical Note 2102 Natl. Inst. Stand. Technol. Tech. Note 2102, 55 pages (July 2020) CODEN: NTNOEF

This publication is available free of charge from: https://doi.org/10.6028/NIST.TN. 2102


#### Abstract

The method for analyzing transient fires in NUREG/CR-6850 (EPRI 1011989), EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities, made use of limited available data, and its application resulted in conservative estimates of transient fire risk. To counter the lack of available data, additional testing was performed based on the transient fire events observed in the Electric Power Research Institute (EPRI) fire events database. NRC and EPRI collaborated on a set of 290 experiments to measure the HRRs of transient combustibles. These experiments were documented in NUREG-2232 (EPRI 3002015997), Heat Release Rate and Fire Characteristics of Fuels Representative of Typical Transient Fire Events in Nuclear Power Plants. Additional analysis and guidance for use of the transient data in fire PRAs was published in NUREG-2233 (EPRI 3002018231), Methodology for Modeling Transient Fires in Nuclear Power Plant Fire Probabilistic Risk Assessment.

This report documents heat release rate measurements of various transient combustibles; that is, non-permanent items found in industrial settings that can potentially contribute to an accidental fire. These items are often included in hypothetical fire scenarios that are modeled as part of risk analyses. Of particular interest in these experiments is the functional relationship between the peak heat release rate and the number of replicate items.

The data in this report will be used to support the development and validation of a spreadsheet to calculate the combined HRR for multiple burning items. The results from this testing effort will support more realistic modeling and analysis of transient fire risk for licensing and other risk-informed applications.


## Key words

Oxygen consumption calorimetry, Transient combustibles.

## Contents

1 Introduction ..... 1
2 Description of Experiments ..... 2
3 Results ..... 5
3.1 Test 1, Single Box with Crinkle Paper ..... 7
3.2 Test 2, Two Boxes with Crinkle Paper ..... 8
3.3 Test 3, Four Boxes with Crinkle Paper ..... 9
3.4 Test 4, Eight Boxes with Crinkle Paper ..... 10
3.5 Test 5, Two Pallets, Stacked ..... 11
3.6 Test 6, Four Pallets, Stacked ..... 12
3.7 Test 7, Four Pallets, Two Stacks of Two ..... 13
3.8 Test 8, Eight Pallets, Four Stacks of Two ..... 14
3.9 Test 9, Eight Pallets, One Stack ..... 15
3.10 Test 10, Single Box of Rags ..... 16
3.11 Test 11, Four Boxes of Rags ..... 17
3.12 Test 12, Four Boxes of Rags, Separated ..... 18
3.13 Test 13, Single Wood Crib ..... 19
3.14 Test 14, Two Wood Cribs, Side by Side ..... 20
3.15 Test 15, Four Wood Cribs, Two by Two Array ..... 21
3.16 Test 16, Eight Wood Cribs, Four Stacks of Two ..... 22
3.17 Test 17, Single Plastic Trash Bin Filled with Crinkle Paper ..... 23
3.18 Test 18, Two Plastic Trash Bins Filled with Crinkle Paper ..... 24
3.19 Test 19, Four Plastic Trash Bins Filled with Crinkle Paper ..... 25
3.20 Test 20, Four Plastic Trash Bins Filled with Crinkle Paper Atop Two Pallets ..... 26
3.21 Test 21, Eight Boxes Filled with Crinkle Paper Atop Two Pallets ..... 27
3.22 Test 22, Single Hanging Plastic Tarp ..... 28
3.23 Test 23, Single Hanging Plastic Tarp, Replicate 2 ..... 29
3.24 Test 24, Two Hanging, Overlapping Plastic Tarps ..... 30
3.25 Test 25, Single Box, Plastic Commodity ..... 31
3.26 Test 26, Two Boxes, Plastic Commodity ..... 32
3.27 Test 27, Four Boxes, Plastic Commodity ..... 33
3.28 Test 28, Eight Boxes, Plastic Commodity ..... 34
3.29 Test 29, Single Plastic Bin Filled with Rags and Paper ..... 35
3.30 Test 30, Two Plastic Bins Filled with Rags and Paper ..... 36
3.31 Test 31, Four Plastic Bins Filled with Rags and Paper ..... 37
3.32 Test 32, Single Box with Crinkle Paper, Single Ignition Point ..... 38
3.33 Test 33, Two Boxes with Crinkle Paper, Single Ignition Point ..... 39
3.34 Test 34, Four Boxes with Crinkle Paper, Single Ignition Point ..... 40
3.35 Test 35, Eight Boxes of Rags ..... 41
3.36 Test 36, Two Plastic Trash Bins Filled with Crinkle Paper, One Inside the Other ..... 42
3.37 Test 37, Four Boxes with Crinkle Paper, Separated ..... 43
3.38 Test 38, Four Boxes with Crinkle Paper, Separated ..... 44
3.39 Test 39, Four Plastic Trash Bins Filled with Crinkle Paper, Separated ..... 45
3.40 Test 40, Four Boxes, Plastic Commodity ..... 46
4 Discussion ..... 47
4.1 Boxes ..... 48
4.2 Wood Pallets and Cribs ..... 50
4.3 Plastic Trash Bins ..... 52
4.4 Combinations ..... 53
4.5 Separations ..... 54
5 Conclusion ..... 55
Acknowledgments ..... 55
References ..... 55
List of Tables
1 Average heat and product yields of the various test items ..... 5
2 Summary of test results ..... 6
List of Figures
1 Description of test items ..... 3
2 Description of test items (cont.) ..... 4
3 Photographs of Test 1 ..... 7
4 Photographs of Test 2 ..... 8
5 Photographs of Test 3 ..... 9
6 Photographs of Test 4 ..... 10
7 Photographs of Test 5 ..... 11
8 Photographs of Test 6 ..... 12
9 Photographs of Test 7 ..... 13
10 Photographs of Test 8 ..... 14
11 Photographs of Test 9 ..... 15
12 Photographs of Test 10 ..... 16
13 Photographs of Test 11 ..... 17
14 Photographs of Test 12 ..... 18
15 Photographs of Test 13 ..... 19
16 Photographs of Test 14 ..... 20
17 Photographs of Test 15 ..... 21
18 Photographs of Test 16 ..... 22
19 Photographs of Test 17 ..... 23
20 Photographs of Test 18 ..... 24
21 Photographs of Test 19 ..... 25
22 Photographs of Test 20 ..... 26
23 Photographs of Test 21 ..... 27
24 Photographs of Test 22 ..... 28
25 Photographs of Test 23 ..... 29
26 Photographs of Test 24 ..... 30
27 Photographs of Test 25 ..... 31
28 Photographs of Test 26 ..... 32
29 Photographs of Test 27 ..... 33
30 Photographs of Test 28 ..... 34
31 Photographs of Test 29 ..... 35
32 Photographs of Test 30 ..... 36
33 Photographs of Test 31 ..... 37
34 Photographs of Test 32 ..... 38
35 Photographs of Test 33 ..... 39
36 Photographs of Test 34 ..... 40
37 Photographs of Test 35 ..... 41
38 Photographs of Test 36 ..... 42
39 Photographs of Test 37 ..... 43
40 Photographs of Test 38 ..... 44
41 Photographs of Test 39 ..... 45
42 Photographs of Test 40 ..... 46
43 Increase in peak HRR as a function of increasing surface area ..... 47
44 HRR of boxes filled with paper and ignited at a single point ..... 48
45 Heat Release Rate of boxes filled with paper, plastic and rags ..... 49
46 Heat Release Rate of pallets and cribs ..... 51
47 Heat Release Rate of plastic trash bins ..... 52
48 Heat Release Rate of four boxes filled with crinkle paper ..... 54

## 1. Introduction

In 2018, the Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) collaborated on a set of experiments to measure the heat release rate (HRR) of "transient combustibles;" that is, items one might find in industrial spaces on a temporary basis, in particular nuclear power plants. For example, during maintenance work, items such as trash bins, pallets, cardboard boxes, and so on, might remain in an area for a limited time period. These items are typically not accounted for when designing the fire protection system, but they are considered as part of a probabilistic risk analysis (PRA). A key parameter in such an analysis is the maximum heat release rate an item can generate if it accidentally catches fire, and the time to reach that peak following ignition.

The results of 290 HRR measurements made by the NRC and EPRI are documented in Ref. [1]. Additional analysis is found in Ref. [2]. The purpose of the current report is to document additional experiments to determine the relationship between the peak HRR and the number of multiple combustible items. In other words, if the peak HRR of a single item is 100 kW , will the peak HRR of two such items be 200 kW ? Or, if the peak HRR of item A is 100 kW , and item B 200 kW , will the peak HRR of items A and B be 300 kW ?

## 2. Description of Experiments

In December 2019 and February 2020 ${ }^{1}$, 40 fire experiments were conducted at the National Fire Research Laboratory at NIST, Gaithersburg, on behalf of the U.S. Nuclear Regulatory Commission. All of the experiments but two were conducted under a $6.1 \mathrm{~m}(20 \mathrm{ft})$ by 6.1 m hood with a nominal capacity of 3 MW . Two experiments were conducted under a larger hood of dimension $12.4 \mathrm{~m}(40 \mathrm{ft})$ by $8.4 \mathrm{~m}(28 \mathrm{ft})$ with a nominal capacity of 10 MW . The exhaust rate of the smaller hood ranged between approximately $13 \mathrm{~m}^{3} / \mathrm{s}\left(27500 \mathrm{ft}^{3} / \mathrm{min}\right)$ to $17 \mathrm{~m}^{3} / \mathrm{s}\left(36000 \mathrm{ft}^{3} / \mathrm{min}\right)$. The larger hood was set to approximately $42 \mathrm{~m}^{3} / \mathrm{s}\left(89000 \mathrm{ft}^{3} / \mathrm{min}\right)$. Details on the facility and measurements can be found in Ref. [3].

The items burned are described in Figs. 1 and 2. These consist of commercially available materials constructed mainly of wood, paper, and plastics. Each item was weighed ${ }^{2}$ before and after the experiment on a load cell accurate to 10 g . A steel garbage can partially filled with water was used to collect and weigh the burn residue after each experiment.

The fires were all ignited using one or more 7.5 cm ( 3 in ) segments of approximately $1 \mathrm{~cm}(0.5 \mathrm{in})$ diameter cotton rope soaked in approximately 10 mL of acetone. For some items like the wood cribs and pallets, a small amount of crinkle paper was used to sustain the ignition until steady burning was achieved.

The floor beneath the burning item was protected with a single layer of gypsum board covered by a single layer of concrete board. If plastics were involved, the test item was placed in a steel pan to contain the molten plastic.

[^0]Box \#1: Single-wall corrugated box with nominal dimensions 61 cm by 61 cm by 46 cm ( 24 in by 24 in by 18 in ) filled with "crinkle paper," a common packing material made by shredding craft paper. The box alone had a mass of approximately 1.6 kg ( 3.5 lb ), and the box and paper combined had a mass of $8.0 \mathrm{~kg}(18 \mathrm{lb})$. The box top flaps were closed, end over end, but not sealed with tape.
Box \#2: Single-wall corrugated box with nominal dimensions 41 cm by 30 cm by 30 cm ( 16 in by 12 in by 12 in) filled with dry cotton rags. The box alone had a mass of approximately $0.8 \mathrm{~kg}(1.8 \mathrm{lb})$, and the box and rags combined had a mass of approximately $4.5 \mathrm{~kg}(10 \mathrm{lb})$. The box top was taped shut for the burns.
Box \#3: Single-wall corrugated box with nominal dimensions 53 cm by 53 cm by 53 cm ( 21 in by 21 in by 21 in ) filled with 100 rigid polystyrene cups. The corrugated box and inner liners alone had a mass of approximately $3.5 \mathrm{~kg}(7.7 \mathrm{lb})$, and the total combined mass was approximately 7.0 kg ( 15 lb ). The top was taped shut. This item was originally developed by FM Global for use in rack storage commodity testing.

Tarp: Lightweight plastic tarp with dimensions 3.0 m by 2.4 m ( 10 ft by 8 ft ) draped across a steel rod. Its mass was approximately 0.8 kg ( 1.8 lb ).


Figure 1: Description of test items.

Pallet: Pine wood pallet with dimensions 122 cm by 102 cm by 12 cm ( 48 in by 40 in by 4.75 in ). Its mass was approximately 16.0 kg ( 35 lb ). Its moisture content was less than $5 \%$. Shown at right are two pallets, which were ignited with $1 \mathrm{~kg}(2.2 \mathrm{lb})$ of crinkle paper distributed evenly throughout the lower pallet.

Crib: Pine wood crib with dimensions 56 cm by 56 cm by 46 cm ( 22 in by 22 in by 18 in ) constructed of slats with a cross-section 3.8 cm ( 1.5 in ) square. Its mass was approximately $39 \mathrm{~kg}(86 \mathrm{lb})$. Its moisture content was less than $5 \%$. It was ignited with $0.75 \mathrm{~kg}(1.7 \mathrm{lb})$ of crinkle paper stuffed in the space below the first row of slats.


Bin \#1: Cylindrical, open-top plastic trash bin approximately 71 cm (28 in) tall with an opening diameter of 51 cm (20 in). Its mass was approximately 2.7 kg ( 5.9 lb ). The bin was half filled with crinkle paper for a combined mass of $5.0 \mathrm{~kg}(11 \mathrm{lb})$.


Bin \#2: The same as Bin \#1, but with the rags and cardboard of Box \#2 mixed in. The total mass was approximately $9.5 \mathrm{~kg}(21 \mathrm{lb})$.


Figure 2: Description of test items (cont.)

## 3. Results

The heat release rate (HRR) and photographs of each experiment are given in Figs. 3 through 42.

A summary of the 40 experiments is given in Table 2. The uncertainty of each measurement includes both aleatoric and epistemic sources and is expressed in terms of a $95 \%$ confidence interval, sometimes referred to as $2 \sigma$ uncertainty because it is equivalent to two standard deviations. The uncertainty calculation for a particular heat release rate measurement is fairly complex, but, in general, the relative uncertainty is approximately $7 \%$ for general combustibles for which the combustion kinetics are unknown; and $4.5 \%$ for materials with known chemical make-up. The difference in uncertainty values is largely due to the uncertainty of the heat of combustion based on oxygen consumption, $\Delta H_{\mathrm{O}_{2}}$. For these experiments, items containing only wood and paper were taken as "cellulose" and assigned a value of $13.61 \mathrm{~kJ} / \mathrm{kg}$ of oxygen consumed [4]; whereas an average value of $13.1 \mathrm{~kJ} / \mathrm{kg}$ was assigned to the items that contained plastics or other materials. Further details of the calorimetry and uncertainty calculation can be found in Ref. [3].

Note that in Table 2 where no value is given, the measured quantity was found to be less than its uncertainty value.

Table 1 provides the average heats of combustion and product yields for the items described in Figs. 1 and 2, excluding the tarps for which reliable yields could not be determined. The gas species and soot yields and the heat of combustion are calculated by dividing the measured total heat or mass in the exhaust hood by the measured mass loss of the fuels. That is, these values represent heat or mass generated per unit mass of fuel consumed. The Residue Yield is calculated by dividing the final mass by the initial mass of the item. Note that in order to burn as much of the items as possible, it was necessary to mix up the residue with a pike hook until all of the combustible material had been consumed.

Table 1: Average heat and product yields of the various test items.

| Item | $\Delta H(\mathrm{MJ} / \mathrm{kg})$ | CO Yield | $\mathrm{CO}_{2}$ Yield | Soot Yield | Residue Yield |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Box \#1 | $14.8 \pm 0.5$ | $0.039 \pm 0.001$ | $1.48 \pm 0.05$ | $0.0014 \pm 0.0003$ | $0.031 \pm 0.016$ |
| Box \#2 | $13.8 \pm 0.5$ | $0.066 \pm 0.003$ | $1.33 \pm 0.05$ | $0.0042 \pm 0.0019$ | $0.035 \pm 0.020$ |
| Box \#3 | $25.4 \pm 1.5$ | $0.055 \pm 0.002$ | $2.13 \pm 0.08$ | $0.0976 \pm 0.014$ | $0.003 \pm 0.002$ |
| Pallet | $17.2 \pm 0.5$ | $0.031 \pm 0.001$ | $1.66 \pm 0.06$ | $0.0033 \pm 0.0006$ | $0.059 \pm 0.024$ |
| Crib | $16.7 \pm 0.5$ | $0.023 \pm 0.001$ | $1.63 \pm 0.06$ | $0.0020 \pm 0.0003$ | $0.053 \pm 0.034$ |
| Bin \#1 | $27.6 \pm 1.7$ | $0.021 \pm 0.004$ | $2.18 \pm 0.08$ | $0.0153 \pm 0.0027$ | $0.090 \pm 0.040$ |
| Bin \#2 | $20.8 \pm 1.2$ | $0.031 \pm 0.001$ | $1.80 \pm 0.07$ | $0.0099 \pm 0.0029$ | $0.040 \pm 0.020$ |


| ع10．0干 $660^{\circ} 0$ | 80＊0干ャI＇て | 200．0干 $+900^{\circ}$ | $S^{\prime} \mathrm{I} \mp \mathrm{S}^{\circ} \mathrm{SZ}$ | $て ゙ 0$ 干 $0 \cdot \downarrow$ | \＆$\downarrow$ 干0IL | 6EIFILOZ |  | 20．0干［1．0 | $20.0 \mp 00 \cdot 82$ | $\dagger$ | E\＃xog | 0t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $6100^{\circ} 0 \mp \varepsilon 150$ | 80＇0干と1＇ | 100．0干 $820^{\circ} 0$ | S＇IF6．SZ | $て ゙ 0 \mp 68$ | Lて干とSt | $6 \dagger$ 于 ¢ $0 L$ | L＇0干 I＇${ }^{\text {c }}$ I | て0．0干 $\dagger$ S．$冖$ | 20．0干00．0乙 | $\dagger$ | I\＃U！${ }^{\text {d }}$ | $6 \varepsilon$ |
| ¢000．0干 $¢ 200^{\circ} 0$ | S0．0干 IS＇I | 100．0干6E0＇0 | S．0干でSI | て， $0 \mp 6 \mathrm{Z}$ | SIFILt | 6L干†96I | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 20．0干 $86^{\circ} 0$ |  | $\dagger$ | I\＃xog | $8 \varepsilon$ |
| 9000＊0干 $¢ 200^{\circ} 0$ | ¢0．0干0＇${ }^{\circ} \mathrm{I}$ | $200 \cdot 0 \mp \varepsilon \leftarrow 0 \cdot 0$ | S．0干L＇$\dagger$ I | て．0干0．8 | SIF6St | $6 \varepsilon \mp 0 \varepsilon 6$ | $\dagger^{*} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | $20^{\circ} 0$ 干 $28^{\circ} 0$ | 20\％ $0000^{\circ}$ こと | t | I\＃xog | LE |
| ZLO0＇0干ヶIZ0＇0 |  | I00．0干 IZ0．0 | L＇I干 $8^{\circ} \angle Z$ | て＇0干S．てI | SIF $\mp$ ¢ | $6 乙 \mp 0 \varepsilon \mathcal{E}$ | L＇0干［＇${ }^{\circ} \mathrm{L}$ | $20^{\circ} 0 \mp 06^{\circ} 0$ | 20\％ 0 干00．01 | 乙 | $q$ I\＃U！${ }_{\text {d }}$ | $9 \varepsilon$ |
| － |  | \＆00＇0干 $¢ \angle 00^{\circ}$ |  | $\chi^{\circ} 0 \mp \mathrm{~S}^{\prime} \dagger$ | $\dagger \mathrm{I} \mp$ ¢と | $\varepsilon 1 \mp 06 乙$ | $\dagger^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 20．0干 18.1 | $20.0 \mp 00 \cdot 9 \varepsilon$ | 8 | て\＃xog | $\bigcirc \mathcal{L}$ |
| 0100 0 干 $6100^{\circ} 0$ | S0．0干とがI | 200．0干 $9 \downarrow 0^{\circ} 0$ | S．0干ナ゙けI | て．0干 $8^{\circ} 8$ | カI干でt | $\varepsilon 1 \mp 88 乙$ | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{C}$ I | 20．0干 27.1 | 20\％ 0 干00＇てを | $t$ | I\＃xog | $\dagger \mathcal{L}$ |
| － | S0．0干とが I | て00．0干てち0．0 | ¢．0干ギヤI | で0干1＊6 | L干とで | てIFL9て | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 200\％Sc．0 | $20.0 \mp 00 \cdot 91$ | 乙 | I\＃xog | $\varepsilon \varepsilon$ |
| － |  | 200．0干0S0．0 | ャ 0 ¢ $9^{\circ} \mathrm{E}$ I | $\mathrm{z}^{\circ} 0 \mp 8^{\circ} \mathrm{E}$ | $\varepsilon \mp+0 \mathrm{~L}$ | L干と\＆I | ャ＊ $0 \mp 9 \cdot \varepsilon$ I | 200\％ $0^{\circ} \mathrm{E}^{\circ} 0$ | 20．0干00．8 | 1 | I\＃xog | て\＆ |
| 9100．0干0010．0 | L0．0干ャ $8^{\prime}$ I | I00．0干てと0＊0 | と＇I干でIZ | て．0769 | 9ヵ干てLL | 99干てL6 | L＇0干［＇${ }^{\prime}$ I |  | $20^{\circ} 0$ 干 $78^{\circ} \mathrm{LE}$ | $\dagger$ | て\＃U！g | IE |
| $8100.0 \mp 9800^{\circ} 0$ | 90．0干S $L^{\circ}$ I | I00．0干て ${ }^{\circ} 0^{\circ} 0$ | でI干ャ゚0Z | で0干1．8 | てZ干0LE | て\＆干て9t | L＇0干 I＇${ }^{\prime}$ I | て007¢6．0 | 200\％ 51.61 | $\checkmark$ | て\＃U！g | $0 \varepsilon$ |
| $6200{ }^{\circ} \mathrm{O}$ 干 8010 0 | L0．0干 $78^{\circ} \mathrm{I}$ | 100．0干 6200 | でI干6．0Z | て．0干9 6 | II 干 06I | 91 干¢てZ | L＇0干［＇${ }^{\text {c }}$ L | $20 \cdot 0 \mp \varepsilon \varepsilon^{\circ} 0$ | 20．0干S＊＊ 6 | I | て\＃U！g | 62 |
| 110.0 干 $5800^{\circ}$ |  | 200\％$\mp \angle S 0^{\circ} 0$ | 917干し゚SZ | $て \cdot 0 \mp \varepsilon^{\circ} \mathrm{S}$ | $88 \mp 8$ ¢ $\dagger$ I | 9ちて干9て8て | L＇0干 I＇ $\mathrm{L}^{\prime}$ I | て0．0干［1．0 | $20.0 \mp 00.9 \mathrm{~s}$ | 8 | \＆\＃xog | 82 |
| 七10．0干960 0 | $80^{\circ} 0 \mp 60{ }^{\circ} \mathrm{Z}$ | 200．0干950\％ | S＇IFI＇SZ | $\chi^{\circ} 0 \mp 8^{\circ} \mathrm{S}$ | \＆$\dagger$ 干 00 L |  | L＇0干［＇$¢$ I | $20^{\circ} 0 \mp 90{ }^{\circ}$ | $20.0 \mp 00 \cdot 8 乙$ | $\dagger$ | £\＃xog | LZ |
| ع10．0干 $860^{\circ} 0$ | 80年干ャI＇Z | 200．0干 $6+0 \cdot 0$ |  | て＇0干 $\iota^{\circ} \mathrm{S}$ | IZ干¢S¢ | 19干888 |  | 20．0干 ¢0．0 | 20＇0 $\mp 86{ }^{\circ} \mathrm{E}$ I | 乙 | \＆\＃xog | 9 9 |
| ちL0．0干601 0 | 80＇0干と1＇ | 200．0干 IS0．0 | S＇IFザくて | で0干 ${ }^{\circ} \mathrm{*}$ | II干 $\dagger$ ¢ | と力干659 | L＇0干 I＇${ }^{\prime}$ I | 20．0干 $\mathrm{E}^{\circ} 0^{\circ}$ | 20．0干68．9 | 1 | \＆\＃xog | SZ |
| － | － | － | － | で0干でI | ¢＇ヵ干ど8 | ¢干9I | L＇0干 I＇${ }^{\prime}$ I | － | 20．0干9 ${ }^{\circ} \mathrm{I}$ | $\checkmark$ | d．reL | 七乙 |
| － | － | － | － | $\chi^{\prime} 0 \mp \mathcal{E}^{\prime} \mathrm{I}$ | － | 七干 II | L＇0干 I＇${ }^{\prime}$ I | － | $20^{\circ} 0 \mp 8 L^{\circ} 0$ | I | $\mathrm{drre}_{\mathrm{L}}$ | £Z |
| － | － | － | － | で0干 $8^{\circ} 0$ | － | †干てI | L＇0干 I＇${ }^{\circ} \mathrm{L}$ | － | 20\％ $0^{\circ} 8 L^{\circ} 0$ | I | ${ }^{\text {d．reL }}$ | て， |
| 2000．0 干 ¢ $0000^{\circ} 0$ | $90^{\circ} 0$ 干 $85^{\circ} \mathrm{I}$ | 100.0 干 810．0 | S．0干で91 | $て ゙ 0 \mp \mathrm{~S}^{\circ} \mathrm{Z}$ | 8t干90¢I | ¢ZIF0tてE | $\dagger^{*} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | $20^{\circ} 0 \mp ¢ \mathcal{E}^{\circ} \mathcal{E}$ | 20＊0干ャで96 | 8 | ${ }_{\mathrm{n}} \mathrm{I}$ \＃xog | IZ |
| ¢100．0干E600 0 | L0＇0干 $78^{\prime}$ I | $100{ }^{\circ} \mathrm{F}$ 于 $6100^{\circ} 0$ | でI干6．0Z | で0干9 ${ }^{\circ}$ | I9干8201 | SSIF6IEZ | L＇0干 I＇${ }^{\prime}$ I | て00\％$\dagger 9^{\circ} \mathrm{E}$ | 20\％ 0 干 $\downarrow 8{ }^{\circ} \mathrm{ZS}$ | $\dagger$ | ${ }_{\text {ı }}$ \＃U！${ }^{\text {U }}$ | 02 |
| IS00．0干 S810．0 | 80．0干でて | 100．0干6 $610{ }^{\circ}$ | L＇I干I＇8て | て＇0干9＇§ | 0\＆干てIS | It干 18 S | $L^{\prime} 0 \mp$ I＇${ }^{\prime}$ I | 200干¢ $\mathrm{L}^{\prime} \mathrm{I}$ | 20．0干00．0て | $\dagger$ | I\＃U！${ }^{\text {d }}$ | 6I |
| EL00 0 干 $\downarrow$ LIO 0 | 80＊0干とでて | 100．0干 $2100^{\circ} 0$ | L＇IFI＇8て | で0干 $\iota^{\prime} 8$ | SIF $\mp$ ¢ | IE干St力 | $L^{\prime} 0$ 于 I＇${ }^{\prime}$ I | 20＇0干 $98^{\circ} 0$ | 20．0干00．0I | $\checkmark$ | I\＃u！g | 8I |
| LZ00．0干 $+600^{\circ} 0$ | 80．0干 Iでて | t00．0干6 6100 | L＇I干で8て | で0干ャ゚8 | 8干IをI | IIF6SI | L＇0干［＇${ }^{\prime}$ I | 200\％ $0^{\circ} \mathrm{E}^{\circ} 0$ | 20．0干00 ${ }^{\circ}$ | I | I\＃u！g | LI |
| L000．0干 $\dagger 200^{\circ} 0$ | 90．0干 ¢ $^{\circ}$ I | 100．0干920．0 | S．0干L＇9I | て＇0干S＇LE | 09I干0ZIS | 16干10¢Z | $\dagger^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 20．0干 L9 $^{\circ} \mathrm{OL}$ | 20\％0干ャI．8IE | 8 | q！̣ | 9I |
| ع000．0干9100．0 | 90．0干99＇I | 100．0干 IZ0．0 | S．0干0．LI | て＇0干S＇$\dagger$ 亿 | 6L干EZŞ | 8S干て0カI | $\dagger^{\circ} 0 \mp 9^{\circ} \mathrm{E}$ I | $20^{\circ} 0 \mp 8 E^{\circ} \mathrm{L}$ | 20．0干て0＇9SI | $\dagger$ | q！p | ¢I |
| †000．0干 I Z00 0 |  | 100．0干 ¢ 200 | S．0干8．91 | で0干9 1 IZ | 0ヵ干¢9てI | 8\＆干L06 | $\downarrow^{*} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | て0＇0干 $\dagger$ L＇t | 20．0干06．6L | 乙 | 9！10 | $\dagger \mathrm{I}$ |
| \＆000．0干 $0200^{\circ} 0$ | 90年干 $6 \mathrm{~S}^{\prime} \mathrm{I}$ | 100．0干 ¢ 200 |  | で0干I＇とて | 6 I 干 L6S | 81 干 96E | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | て0．0干¢8． | $20 \cdot 0 \mp 6 \varepsilon^{\circ} 6 \varepsilon$ | I | 9！．1． | £I |
| $\downarrow$ ち00．0干 6 S00 0 | ¢0 0 \％ $6 \varepsilon^{\prime} \mathrm{I}$ | 200．0干 ¢S0 0 | ャ0干0＊${ }^{\text {¢ }}$ | で0干で乌 | $8 \mp 9 \downarrow$ ¢ | 91干てちを | ャ 0 ¢ $9^{\circ} \mathrm{E}$ I | 200干650 | 200\％ 0 01 81 | $\dagger$ | て\＃xog | ZI |
| $8000^{\circ} 0$ 干 S $200^{\circ} 0$ | ¢0．0干0ガ I | 200．0干6 6 0 0 | ¢＇0干どャI | $て ゙ 0 \mp \varepsilon^{\prime} \varepsilon$ | 8干0¢て |  | $\downarrow^{\circ} 0 \mp 9^{\circ} \mathrm{E}$ I | 200干 $\mathrm{Sc}^{\circ} 0$ | $20.0 \mp 86.41$ | $\dagger$ | て\＃xog | II |
| $6100^{\circ} 0 \mp 9500^{\circ} 0$ | ¢0 0 干 ${ }^{\circ} \underbrace{\prime}$ I |  | S＇0干でヤI | $\chi^{\prime} 0 \mp \chi^{\prime} \varepsilon$ | て干て9 | 9干ャII | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | て00干と！ 0 | 20．0干0 ${ }^{\circ} \mathrm{*}$ | I | て\＃xog | 0I |
| †000．0 干 ¢ $100{ }^{\circ} 0$ | 90＇0干 ${ }^{\circ} 9^{\circ}$ I | 100．0干 $270{ }^{\circ} 0$ | 9＊0干S＇LI | $\mathrm{Z}^{\circ} 0 \mp 6^{\circ} \mathrm{S}$ | 69干98IZ | こてI干ItIE | $\dagger^{\circ} 0 \mp 9^{\circ} \mathrm{E}$ I | 200\％Iでし | 20．0干00．2とI | 8 |  | 6 |
| $9000^{\circ} 0$ 干 $6800^{\circ} 0$ | 90．0干99＇I | 100．0干 2 ¢0 0 | S．0干でしI | $\chi^{\prime} 0 \mp L^{\prime} \mathrm{E}$ | 0L干6てZZ | 8SI干ャLIt | $\downarrow^{*} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 20．0干¢S．9 | 20．0干¢で9とI | 8 |  | 8 |
| 2I00．0干 $2500^{\circ} 0$ | 90．0干 29.1 | 100．0干 $\angle 80^{\circ} 0$ |  | $\chi^{\prime} 0 \mp 8^{\circ} \mathrm{E}$ | 七\＆干て601 | 28干6t02 | $\downarrow^{*} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | 20．0干 $\mathcal{E} 8^{\circ} \mathrm{E}$ | 2000干0と＊99 | $\dagger$ | 19［1］$^{\text {d }}$ | $L$ |
| †000．0干 ¢ $200{ }^{\circ} 0$ | 90．0干 $89^{\circ} \mathrm{I}$ | 100．0干920．0 | 9＊0干どんI | $て ゙ 0 \mp \mathrm{~S}^{\circ} \mathrm{\dagger}$ | $\dagger \mathcal{\square} \boldsymbol{\varepsilon}$ LOI | \＆ $2 \mp 108 \mathrm{I}$ | $\downarrow^{\circ} 0 \mp 9{ }^{\circ} \mathrm{E}$ I | て0＇0干 $0 \varsigma^{\circ} \mathrm{E}$ | 20＇0干0t＇¢9 | $\dagger$ |  | 9 |
| $9000^{\circ} 0$ 干 ¢ $2000^{\circ} 0$ | 90．0干09 ${ }^{\circ}$ | I00．0干 8 E0\％ | S＇0干¢＇9I | $\chi^{\circ} 0 \mp 6{ }^{\circ} \mathrm{E}$ | 91 $\mp$ ZOS | 0ヵ干†を6 |  | て0＇0干と9＇て | $20 \cdot 0 \mp 00 \cdot \varepsilon \varepsilon$ | $\checkmark$ |  | S |
| 1000．0 $\mp$ ¢ $0000^{\circ} 0$ | 90．0干9 $5^{\circ} \mathrm{I}$ | I00．0干 0 ¢0\％ 0 | ¢．0干9．¢I | で0干1＇t | IE干6L6 | I0I干 I8Sて | ャ 0 ¢ $9^{\circ} \mathrm{E}$ I | て00干 8 て＇I | 200 0 于00 $\dagger 9$ | 8 | I\＃xog | $\dagger$ |
| \＆ $0000^{\circ} 0 \mp ¢_{000}{ }^{\circ}$ | ¢0．0干 IS ${ }^{\text {I }}$ | I00．0干ャ $0^{\circ} 0$ | $\mathrm{C}^{\prime} 0 \mp \mathrm{E}^{\prime} \mathrm{S}$ I | $\chi^{\circ} 0 \mp \varepsilon^{\prime} \varepsilon$ | SIF $\mp 6 \angle t$ |  | $\downarrow^{\circ} 0 \mp 9^{\circ} \mathrm{E}$ I | 200\％9900 | 20．0干00＇2を | $\dagger$ | I\＃xog | $\varepsilon$ |
| ¢000．0干 $0100^{\circ} 0$ | 90．0干 IS＇I | L00．0干980．0 | S．0干でSI | で0干6 ${ }^{\circ}$ | $8 \mp 9$ ¢ | Iて干I8t | $\dagger^{*} 0 \mp 9 \cdot \varepsilon I$ | 20．0干st＊ 0 | $20.0 \mp 00 \cdot 91$ | $\checkmark$ | I\＃xog | $\checkmark$ |
| \＆000．0干¢ $\mathrm{SHO}^{\circ} 0$ | S0．0干0 ${ }^{\circ} \mathrm{I}$ | L00．0干 $¢$ ¢ $0^{\circ} 0$ | S．0干0．SI | て＇0干 ${ }^{\prime} \cdot \dagger$ | 七干91I | ¢โ $\mp 87 \varepsilon$ | $\dagger^{*} 0 \mp 9{ }^{\circ} \mathrm{El}$ | 20．0干¢で0 | $20.0 \mp 00^{\circ} 8$ | 1 | I\＃xog | 1 |
| $\begin{gathered} \text { р } \rho^{2}!\lambda \\ 100 \mathrm{~S} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{pl} \partial!, \mathrm{X} \\ { }^{\mathrm{z}} \mathrm{O}, \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { piot } \\ \text { OP } \\ \hline \end{gathered}$ | $\begin{gathered} \hline\left(\delta_{y} / \mathrm{fW}\right) \\ H \nabla \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { (u!̣u) yerd } \\ \text { of əu!! } \\ \hline \end{gathered}$ | （CW） <br>  | （ $M y$ ） <br>  | $\begin{gathered} \hline\left(\begin{array}{c} \text { of/fN) } \\ { }^{2} \mathrm{O} H D \end{array}\right. \\ \hline \end{gathered}$ |  | （8y） ssent Ielu！uI | $\begin{gathered} \hline \text { süə } \\ { }^{\circ}{ }^{\prime} \\ \hline \end{gathered}$ | ШวีI | $\begin{aligned} & \hline{ }^{\circ} \mathrm{oN} \\ & \text { is } \mathrm{s} \mathrm{~L} \\ & \hline \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

### 3.1 Test 1, Single Box with Crinkle Paper

Single box with crinkle paper, ignited at the base of each vertical face. The spike in HRR just after 15 min resulted from stirring the residual material.



Figure 3: Heat release rate and photographs of Test 1.

### 3.2 Test 2, Two Boxes with Crinkle Paper

Two boxes with crinkle paper, ignited at the base of each vertical face. The spike in HRR just after 25 min resulted from stirring the residual material.



Figure 4: Heat release rate and photographs of Test 2.

### 3.3 Test 3, Four Boxes with Crinkle Paper

Four boxes with crinkle paper, ignited at the base of each vertical face. The spike in HRR after 30 min resulted from stirring the residual material.



Figure 5: Heat release rate and photographs of Test 3.

### 3.4 Test 4, Eight Boxes with Crinkle Paper

Eight boxes with crinkle paper, ignited at the base of each vertical face. The spikes in HRR after 30 min resulted from stirring the residual material.



Figure 6: Heat release rate and photographs of Test 4.

### 3.5 Test 5, Two Pallets, Stacked

Two wood pallets with 1 kg crinkle paper distributed evenly along the bottom of the stack. The fire was ignited with four igniters, one in each quadrant of the bottom pallet.



Figure 7: Heat release rate and photographs of Test 5.

### 3.6 Test 6, Four Pallets, Stacked

Four wood pallets, stacked, with 1 kg crinkle paper distributed evenly along the bottom of the stack. The fire was ignited with four igniters, one in each quadrant of the bottom pallet.



Figure 8: Heat release rate and photographs of Test 6.

### 3.7 Test 7, Four Pallets, Two Stacks of Two

Four wood pallets, two stacks of two, with 1 kg crinkle paper distributed evenly along the bottom of each stack. The fire was ignited with eight igniters, one in each quadrant of each stack.



Figure 9: Heat release rate and photographs of Test 7.

### 3.8 Test 8, Eight Pallets, Four Stacks of Two

Eight wood pallets, four stacks of two, with 1 kg crinkle paper distributed evenly along the bottom of each stack. The fire was ignited with 16 igniters, one in each quadrant of each stack.



Figure 10: Heat release rate and photographs of Test 8.

### 3.9 Test 9, Eight Pallets, One Stack

Eight wood pallets, stacked, with 1 kg crinkle paper distributed evenly along the bottom of the stack. The fire was ignited with four igniters, one in each quadrant of the stack.



Figure 11: Heat release rate and photographs of Test 9.

### 3.10 Test 10, Single Box of Rags

One box filled with cotton rags, ignited on four sides. The spikes in HRR after 20 min were caused by breaking up the pile of ash and debris.



Figure 12: Heat release rate and photographs of Test 10.

### 3.11 Test 11, Four Boxes of Rags

Four boxes filled with cotton rags, ignited at eight points. The spikes in HRR after 30 min were caused by breaking up the pile of ash and debris.



Figure 13: Heat release rate and photographs of Test 11.

### 3.12 Test 12, Four Boxes of Rags, Separated

Four boxes filled with cotton rags, separated by a half width, ignited at eight points. The spikes in HRR after 30 min were caused by breaking up the pile of ash and debris.



Figure 14: Heat release rate and photographs of Test 12.

### 3.13 Test 13, Single Wood Crib

Single wood crib with 0.75 kg crinkle paper evenly distributed at the base and ignited at two points. At approximately 48 min , the hot coals were spread out and raked into a water bath.



Figure 15: Heat release rate and photographs of Test 13.

### 3.14 Test 14, Two Wood Cribs, Side by Side

Two wood cribs with 0.75 kg crinkle paper evenly distributed at the base of each and ignited at four points.



Figure 16: Heat release rate and photographs of Test 14.

### 3.15 Test 15, Four Wood Cribs, Two by Two Array

Four wood cribs with 0.75 kg crinkle paper evenly distributed at the base of each and ignited at four points. At approximately 60 min , the hot coals were spread out and at 80 min raked into a water bath.



Figure 17: Heat release rate and photographs of Test 15.

### 3.16 Test 16, Eight Wood Cribs, Four Stacks of Two

Eight wood cribs, four stacks of two, with 0.75 kg crinkle paper evenly distributed at the base of each stack and ignited at four points.



Figure 18: Heat release rate and photographs of Test 16.

### 3.17 Test 17, Single Plastic Trash Bin Filled with Crinkle Paper

Single plastic trash bin, half filled with crinkle paper. Single ignition point on top of paper. After 50 min , the residue in the pan was spread out to hasten burning.



Figure 19: Heat release rate and photographs of Test 17.

### 3.18 Test 18, Two Plastic Trash Bins Filled with Crinkle Paper

Two plastic trash bins, half filled with crinkle paper. Single ignition point on top of paper in each bin. After 20 min , the residue in the pan was spread out to hasten burning.



Figure 20: Heat release rate and photographs of Test 18.

### 3.19 Test 19, Four Plastic Trash Bins Filled with Crinkle Paper

Four plastic trash bins, half filled with crinkle paper. Single ignition point on top of paper in each bin. The bins are wired together to ensure that the melt remains in the catch pan. After 40 min , the residue in the pan was spread out to hasten burning.



Figure 21: Heat release rate and photographs of Test 19.

### 3.20 Test 20, Four Plastic Trash Bins Filled with Crinkle Paper Atop Two Pallets

Four plastic trash bins, half filled with crinkle paper, atop two pallets. Single ignition point on top of paper in each bin and four ignition points in each quadrant of the pallet stack. The bins were wired together to ensure that the melt remains in the catch pan.



Figure 22: Heat release rate and photographs of Test 20.

### 3.21 Test 21, Eight Boxes Filled with Crinkle Paper Atop Two Pallets

Eight boxes filled with crinkle paper sit atop two pallets. The base of the pallet stack has 1 kg crinkle paper, evenly distributed and ignited in each quadrant.



Figure 23: Heat release rate and photographs of Test 21.

### 3.22 Test 22, Single Hanging Plastic Tarp

A single plastic tarp, initially hanging $30 \mathrm{~cm}(1 \mathrm{ft})$ above the floor, ignited in two locations. The fire spread slowly and erratically.



Figure 24: Heat release rate and photographs of Test 22.

### 3.23 Test 23, Single Hanging Plastic Tarp, Replicate 2

A single plastic tarp, with 15 cm (6 in) dragging on floor, ignited in two locations. The fire spread slowly and erratically.



Figure 25: Heat release rate and photographs of Test 23.

### 3.24 Test 24, Two Hanging, Overlapping Plastic Tarps

Two overlapping plastic tarps, with 15 cm (6 in) dragging on floor, ignited in two locations. The fire spread slowly and erratically.



Figure 26: Heat release rate and photographs of Test 24.

### 3.25 Test 25, Single Box, Plastic Commodity

Single box filled with polystyrene cups, ignited at the base of each vertical face.



Figure 27: Heat release rate and photographs of Test 25.

### 3.26 Test 26, Two Boxes, Plastic Commodity

Two boxes filled with polystyrene cups, ignited at the base of each vertical face.



Figure 28: Heat release rate and photographs of Test 26.

### 3.27 Test 27, Four Boxes, Plastic Commodity

Four boxes filled with polystyrene cups, ignited at the base of each vertical face.



Figure 29: Heat release rate and photographs of Test 27.

### 3.28 Test 28, Eight Boxes, Plastic Commodity

Eight boxes filled with polystyrene cups, ignited at the base of each vertical face.



Figure 30: Heat release rate and photographs of Test 28.

### 3.29 Test 29, Single Plastic Bin Filled with Rags and Paper

Single plastic bin with the same amount of crinkle paper as in Test 17, along with the entire box and rags of Test 10 . Single ignition point on top of paper and rags.



Figure 31: Heat release rate and photographs of Test 29.

### 3.30 Test 30, Two Plastic Bins Filled with Rags and Paper

Two plastic bins with the same amount of crinkle paper as in Test 17, along with the entire box and rags of Test 10 . Single ignition points on top of paper and rags.



Figure 32: Heat release rate and photographs of Test 30.

### 3.31 Test 31, Four Plastic Bins Filled with Rags and Paper

Four plastic bins with the same amount of crinkle paper as in Test 17, along with the entire box and rags of Test 10 . Single ignition points on top of paper and rags.



Figure 33: Heat release rate and photographs of Test 31.

### 3.32 Test 32, Single Box with Crinkle Paper, Single Ignition Point

Single box with crinkle paper, ignited at the base of one vertical face. The spike in HRR at 40 min resulted from stirring the residue.



Figure 34: Heat release rate and photographs of Test 32.

### 3.33 Test 33, Two Boxes with Crinkle Paper, Single Ignition Point

Two boxes with crinkle paper, ignited at the base of one vertical face. The spike in HRR at 40 min resulted from stirring the residue.



Figure 35: Heat release rate and photographs of Test 33.

### 3.34 Test 34, Four Boxes with Crinkle Paper, Single Ignition Point

Four boxes with crinkle paper, ignited at the base of one vertical face. The spike in HRR at 60 min resulted from stirring the residue.



Figure 36: Heat release rate and photographs of Test 34.

### 3.35 Test 35, Eight Boxes of Rags

Eight boxes filled with cotton rags, ignited at eight points. The spike in HRR at 60 min resulted from stirring the residue.



Figure 37: Heat release rate and photographs of Test 35.

### 3.36 Test 36, Two Plastic Trash Bins Filled with Crinkle Paper, One Inside the Other

Two plastic trash bins stacked together and filled with crinkle paper. Single ignition point on top of paper in the bin. The spike in HRR at 32 min and 46 min resulted from stirring the residue.



Figure 38: Heat release rate and photographs of Test 36.

### 3.37 Test 37, Four Boxes with Crinkle Paper, Separated

Four boxes with crinkle paper, ignited at the base of each exterior vertical face ( 8 ignition points). The boxes are separated by $0.6 \mathrm{~m}(2 \mathrm{ft})$. The residue was stirred up at approximately 20 min and 28 min .



Figure 39: Heat release rate and photographs of Test 37.

### 3.38 Test 38, Four Boxes with Crinkle Paper, Separated

Four boxes with crinkle paper, ignited at the base of each vertical face (16 ignition points). The boxes were separated by $0.6 \mathrm{~m}(2 \mathrm{ft})$. The residue was stirred up at approximately 23 min .



Figure 40: Heat release rate and photographs of Test 38.

### 3.39 Test 39, Four Plastic Trash Bins Filled with Crinkle Paper, Separated

Four plastic trash bins, half filled with crinkle paper, separated by the top diameter, and set within individual steel pans. Single ignition point on top of paper in each bin. The residue was stirred up at approximately 30 min and 40 min .



Figure 41: Heat release rate and photographs of Test 39.

### 3.40 Test 40, Four Boxes, Plastic Commodity

Four boxes filled with polystyrene cups, ignited at the base of each vertical face ( 16 ignition points). Similar to Test 27, but the boxes were separated by $0.53 \mathrm{~m}(21 \mathrm{in})$.



Figure 42: Heat release rate and photographs of Test 40.

## 4. Discussion

In general, the peak heat release rate (HRR) of the fires occurred at the same time or shortly after all of the exposed surface area of the burning item was engulfed in flame. This suggests that the peak HRR is proportional to the exposed surface area. Figure 43 displays the relationship between the increased peak HRR of multiple items as a function of the relative increase in surface area. In theory, the relationship should be linear, i.e. double the surface area, double the HRR. In the case of the box fires, two boxes sitting side be side have $8 / 5=1.6$ times the exposed surface area of a single box. A 2 by 2 array of four boxes has $12 / 5=2.4$ times the area. A 2 by 2 by 2 array of eight boxes has $20 / 5=4$ times the area. For stacked pallets, four pallets have approximately 1.8 times the surface area of two; eight pallets have approximately 3.4 times the surface area of two. However, for multiple cribs and bins, the exposed surface area is nearly linearly proportional to the number of items. There is a small amount of overlap in the exposed surfaces of the wood cribs, but not much.

Of course, there are exceptions to the simple rule, and in the sections to follow, the various items and test parameters are examined in more detail.


Figure 43: Increase in peak HRR as a function of increasing surface area.

### 4.1 Boxes

Figure 45 displays the HRR of one, two, four, and eight boxes filled with crinkle paper (top), polystyrene cups (middle), and cotton rags (bottom). The results for the crinkle paper and polystyrene cups are fairly typical for simply-shaped items whose burning rate is largely a function of surface area. The results for the boxes of rags, however, do not exhibit this simple trend, probably because the cotton rags are packed tightly in the boxes and do not burn readily. When the pile of residue was first stirred up, a considerable amount of the combustible mass remained buried under the pile of ash.

One complication of the simple assumption that peak HRR is proportional to exposed surface area is that in many instances, the fire does not or cannot engulf all of the exposed surface area at the same time. The location and power of the ignition source(s) is important. Consider the boxes of crinkle paper burned in Tests 32-34 (Fig. 44) versus Tests 1-3 (Fig. 45, top). In the former, only one igniter was used, whereas in the latter, an igniter was placed at the base of each exposed vertical surface. The peak HRR in Tests 1, 2, and 3 is $2.5,1.8$, and 3.3 times that of Tests 32,33 , and 34 . Tests $32-34$ do not exhibit the linear relationship between peak HRR and exposed surface area.


Figure 44: HRR of boxes filled with paper and ignited at a single point.


Figure 45: Heat Release Rate of boxes filled with crinkle paper (top), polystyrene cups (middle), and cotton rags (bottom).

### 4.2 Wood Pallets and Cribs

Wood pallets and cribs are often used in fire testing because they exhibit reliable and repeatable burning behavior. This can be seen in the results shown in Fig. 46. The top plot shows the HRR for single stacks of pallets consisting of two, four, and eight pallets (a single pallet is difficult to burn without a heat source to sustain the fire). The peak HRR is nearly linear with the number of pallets because the surface area is nearly linear with the number of pallets. This trend is noted by Babrauskas in the SFPE Handbook [5].


Figure 46: Heat Release Rate of pallets and cribs.

### 4.3 Plastic Trash Bins

The plastic trash bins were either partially filled with crinkle paper or completely filled with crinkle paper, cardboard, and rags. In the latter case (bottom graph of Fig. 47), the cellulosic fuels dominate the burning behavior and the simple trend in peak HRR emerges. In the former case, the trend for the peak HRR is less clear because the burning behavior is dominated by the melting, dripping, and pooling of plastic, something that is less repeatable in multiple experiments.


Figure 47: Heat Release Rate of plastic trash bins.

### 4.4 Combinations

There are a few examples where multiple items have been burned together and separately. For example, Test 20 is a combination of the items included in Tests 5 and 19, where four plastic bins filled with crinkle paper (Test 19) stand atop two pallets (Test 5). The resulting peak HRR of the combined items is $50 \%$ greater than the sum of the individual peak HRRs. However, Test 21 is a combination of Tests 4 and 5 (eight boxes sitting atop two pallets), but the peak HRR of the combined items is only $92 \%$ of the sum of the individual peak HRRs. In the first instance, it appears that the increased radiative feedback from the larger fire enhances the rate of burning of the combined itesm, yet this does not appear to the be the case in the second instance. For Test 36, two plastic bins are nested one inside the other, and the peak HRR doubles, even though the surface area changes very little. There does not appear to be a simple explanation of these cases, which is why the trend shown in Fig. 43 is fairly rough.

### 4.5 Separations

Most of the 40 experiments conducted involved multiple items placed closely together or stacked. However, in some experiments, the items were separated. By separating the items, the surface area is increased which ought to increase the peak HRR. However, this was not always the case. For example, Fig. 48 displays the HRR of four boxes filled with crinkle paper that were configured and ignited in different ways. In Test 3, the four boxes were placed side by side and ignited in 8 locations. In Test 35 , the four boxes were ignited only in one location. In Tests 37 and 38, the four boxes were separated by $0.6 \mathrm{~m}(2 \mathrm{ft})$ and ignited with 8 and 16 igniters, respectively. There is a significant difference in the peak HRR in these cases, owing as much to the number of igniters as to the nominal exposed surface area. Notice in Tests 3 and 37, the number of igniters is the same, and the initial peak in the HRR involves roughly the same amount of surface area; however in Test 37, where the boxes were separated, there is a second peak in the HRR owing to the additional exposed surface area.


Figure 48: Heat Release Rate of four boxes filled with crinkle paper.

## 5. Conclusion

Forty experiments were conducted in which multiple quantities of transient combustibles were burned and their heat release rates (HRR) measured, with the objective to determine the HRR of multiple items based on the HRR of a single item. The peak HRR is roughly proportional to the exposed surface area, but the configuration of items and the number of ignition points also play a role. Given the infinite number of potential combustibles, configurations, and ignition scenarios, it is not possible to develop a simple rule that would predict the increase in HRR given an increase in the number of combustibles. However, the assumption that the peak HRR is proportional to the exposed surface area will probably suffice for most practical applications.

## Acknowledgments

This work was partially funded by the U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research. Matthew Bundy, Michael Selepak, Marco Fernandez and Laurean DeLauter of the National Fire Research Laboratory assisted in conducting these experiments and in processing the data.

## References

[1] A. Lindeman, M. Randelovic, and M. Salley. Heat Release Rate and Fire Characteristics of Fuels Representative of Typical Transient Fire Events in Nuclear Power Plants. NUREG-2232, Nuclear Regulatory Commission, Washington, D.C., August 2019. This work is also published by the Electric Power Research Institute as EPRI 3002015997.
[2] M. Salley, A. Lindeman, and M. Randelovic. Methodology for Modeling Transient Fires in Nuclear Power Plant Fire Probabilistic Risk Assessment. NUREG-2233, Nuclear Regulatory Commission, Washington, D.C., December 2019. This work is also published by the Electric Power Research Institute as EPRI 3002016054.
[3] R.A. Bryant and M.F. Bundy. The NIST 20 MW Calorimetry Measurement System for Large-Fire Research. NIST Technical Note 2077, National Institute of Standards and Technology, Gaithersburg, Maryland, December 2019.
[4] M.J. Hurley, editor. SFPE Handbook of Fire Protection Engineering. Springer, New York, 5th edition, 2016.
[5] V. Babrauskas. SFPE Handbook of Fire Protection Engineering, chapter Heat Release Rates. Springer, New York, 5th edition, 2016.


[^0]:    ${ }^{1} 36$ of 40 experiments were conducted in December 2019; 4 experiments were conducted in February 2020.
    ${ }^{2}$ The mass measurements were made with a Mettler Toledo Jaguar series load cell with a range from 10 g to 150 kg .

