

PROCEEDINGS OF NRC ANNUAL PROBABILISTIC FLOOD HAZARD ASSESSMENT RESEARCH WORKSHOPS I-IV

2015–2019 Rockville, MD

Date Published: February 2020

Prepared by: M. Carr T. Aird J. Kanney

U.S Nuclear Regulatory Commission Rockville, MD 20852

Part 1: First Annual NRC Probabilistic Flood Hazard Assessment Research Workshop

Research Information Letter Research Office of Nuclear Regulatory Research

Disclaimer

Legally binding regulatory requirements are stated only in laws, NRC regulations, licenses, including technical specifications, or orders; not in Research Information Letters (RILs). A RIL is not regulatory guidance, although NRC's regulatory offices may consider the information in a RIL to determine whether any regulatory actions are warranted.

ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) is conducting a multiyear, multi-project Probabilistic Flood Hazard Assessment (PFHA) Research Program to enhance the NRC's risk-informed and performance-based regulatory approach with regard to external flood hazard assessment and safety consequences of external flooding events at nuclear power plants (NPPs). It initiated this research in response to staff recognition of a lack of guidance for conducting PFHAs at nuclear facilities that required staff and licensees to use highly conservative deterministic methods in regulatory applications. Risk assessment of flooding hazards and consequences of flooding events is a recognized gap in NRC's risk-informed, performance-based regulatory framework. The objective, research themes, and specific research topics are described in the RES Probabilistic Flood Hazard Assessment Research Plan. While the technical basis research, pilot studies and guidance development are ongoing, RES has been presenting Annual PFHA Research Workshops to communicate results, assess progress, collect feedback and chart future activities. These workshops have brought together NRC staff and management from RES and User Offices, technical support contractors, as well as interagency and international collaborators and industry and public representatives.

These conference proceedings transmit the agenda, abstracts, presentation slides, summarized questions and answers, and panel discussion for the first four Annual U.S. Nuclear Regulatory Commission (NRC) Probabilistic Flood Hazard Assessment Research Workshops held at NRC Headquarters in Rockville, MD. The workshops took place on October 14–15, 2015; January 23–25, 2017; December 4–5, 2017; and April 30–May 2, 2019. The first workshop was an internal meeting attended by NRC staff, contractors, and partner Federal agencies. The following workshops were public meetings and attended by members of the public; NRC technical staff, management, and contractors; and staff from other Federal agencies. All of the workshops began with an introductory session that included perspectives and research program highlights from the NRC Office of Nuclear Regulatory Research and also may have included perspectives from the NRC Office of New Reactors and Office of Nuclear Regulation, the Electric Power Research Institute (EPRI), and industry representatives. NRC and EPRI contractors and staff as well as invited Federal and public speakers gave technical presentations and participated in various styles of panel discussion. Later workshops included five focus areas:

- (1) leveraging available flood information
- (2) evaluating the application of improved mechanistic and climate probabilistic modeling for storm surge, climate and precipitation
- (3) probabilistic flood hazard assessment frameworks
- (4) potential impacts of dynamic and nonstationary processes
- (5) assessing the reliability of flood protection and plant response to flooding events

TABLE OF CONTENTS

ABSTRACT	III
ABBREVIATION AND ACRONYMS	X
INTRODUCTION	XXXVII
BACKGROUND	xxxvII
WORKSHOP OBJECTIVES	xxxvII
WORKSHOP SCOPE	xxxvIII
SUMMARY OF PROCEEDINGS	xxxvIII
Related Workshops	xxxix
1 FIRST ANNUAL NRC PROBABILISTIC FLOOD HAZARD ASSESSMENT RESEAR WORKSHOP	
1.1 INTRODUCTION.	
1.1.1 Organization of Conference Proceedings	
1.2 Workshop Agenda	
1.3 PROCEEDINGS	
1.3.1 Day 1: Session I: Program Overview 1.3.1.1 Opening Remarks	
1.3.1.2 NRC PFHA Research Program Overview.	
1.3.1.3 NRO Perspectives on Flooding Research Needs.	
1.3.1.4 Office of Nuclear Reactor Regulation Perspectives on Flooding Research Needs	
1.3.2 Day 1: Session II: Climate 1.3.2.1 Regional Climate Change Projections—Potential Impacts to Nuclear Facilities	
1.3.3 Day 1: Session III: Precipitation	
1.3.3.1 Estimating Precipitation—Frequency Relationships in Orographic Regions	
1.3.3.2 Numerical Simulation of Local Intense Precipitation	
1.3.3.3 SHAC-F (Local Intense precipitation) 1.3.4 Day 2: Session IV: Riverine and Coastal Flooding Processes	
1.3.4.1 PFHA Technical Basis for Riverine Flooding	
1.3.4.2 PFHA Framework for Riverine Flooding	
1.3.4.3 State of Practice in Flood Frequency Analysis	
1.3.4.4 Quantification and Propagation of Uncertainty in Probabilistic Storm Surge Models	
1.3.4.5 USBR Dam Breach Physical Modeling 1.3.5 Day 2: Session V: Plant Response to Flooding Events	
1.3.5.1 Effects of Environmental Factors on Flood Protection and Mitigation Manual Action	
1.3.5.2 Flooding Information Digests.	
1.3.5.3 Framework for Modeling Total Plant Response to Flooding Events	1-250
1.3.5.4 Performance of Penetration Seals	1-261
1.4 SUMMARY	1-265
1.5 Workshop Participants	1-267
2 SECOND ANNUAL NRC PROBABILISTIC FLOOD HAZARD ASSESSMENT RESEA	ARCH
WORKSHOP	2-1

2.1 INTRODUCTION	
2.2 Workshop Agenda	2-3
2.3 PROCEEDINGS	2-7
2.3.1 Day 1: Session 1A - Introduction	
2.3.1.1 Welcome	
2.3.1.2 PFHA Research Needs for New and Operating Reactors	
2.3.1.3 Use of Flooding Hazard Information in Risk-Informed Decision-making	
2.3.1.4 Flooding Research Needs: Industry Perspectives on Development of External Flood	
Frequency Methods	2-30
2.3.1.5 NRC Flooding Research Program Overview	2-38
2.3.1.6 EPRI Flooding Research Program Overview	
2.3.2 Day 1: Session 1B - Storm Surge Research	2-50
2.3.2.1 Quantification of Uncertainty in Probabilistic Storm Surge Models	2-50
2.3.2.2 Probabilistic Flood Hazard Assessment—Storm Surge	2-75
2.3.3 Day 2: Session 2A - Climate and Precipitation	2-85
2.3.3.1 Regional Climate Change Projections: Potential Impacts to Nuclear Facilities	2-85
2.3.3.2 Numerical Modeling of Local Intense Precipitation Processes	2-98
2.3.3.3 Extreme Precipitation Frequency Estimates for Orographic Regions	2-148
2.3.3.4 Local Intense Precipitation Frequency Studies,	2-165
2.3.4 Day 2: Session 2B - Leveraging Available Flood Information I	2-177
2.3.4.1 Development of Flood Hazard Information Digest for Operating NPP Sites	2-177
2.3.4.2 At-Streamgage Flood Frequency Analyses for Very Low Annual Exceedance Probabil	
from a Perspective of Multiple Distributions and Parameter Estimation Methods	
2.3.4.3 Extending Frequency Analysis beyond Current Consensus Limits	
2.3.5 Day 2: Session 2C - Leveraging Available Flood Information II	
2.3.5.1 Collection of Paleoflood Evidence	
2.3.5.2 Paleofloods on the Tennessee River—Assessing the Feasibility of Employing Geologi	
Records of Past Floods for Improved Flood Frequency Analysis	
2.3.6 Day 2: Session 2D - Reliability of Flood Protection and Plant Response I	
2.3.6.1 EPRI Flood Protection Project Status 2.3.6.2 Performance of Flood-Rated Penetration Seals	
2.3.6.2 Performance of Flood-Rated Penetration Seals	
2.3.7 Day 2: Daily wrap-op Question and Answer Period	
2.3.8.1 Effects of Environmental Factors on Manual Actions for Flood Protection and Mitigatio	
Nuclear Power Plants	
2.3.8.2 Modeling Total Plant Response to Flooding Event	
2.3.9 Day 3: Session 3B - Frameworks I	
2.3.9.1 Technical Basis for Probabilistic Flood Hazard Assessment	
2.3.10 Day 3: Session 3C - Frameworks II	
2.3.10.1 Evaluation of Deterministic Approaches to Characterizing Flood Hazards	
2.3.10.2 Probabilistic Flood Hazard Assessment Framework Development	
2.3.10.3 Riverine Flooding and Structured Hazard Assessment Committee Process for Flood	
(SHAC-F),	-
2.3.11 Day 3: Session 3D - Panel Discussion	. 2-367
2.3.11.1 National Oceanic and Atmospheric Administration/National Weather Service (NOAA/	
	2-367
2.3.11.2 U.S. Army Corps of Engineers	
2.3.11.3 Tennessee Valley Authority (TVA)	
2.3.11.4 U.S. Department of Energy (DOE)	
2.3.11.5 Institut de Radioprotection et de Sûreté Nucléaire	2-391

2.3.11.6 Discussion	
2.3.12 Day 3: Session 3E - Future Work in PFHA	
2.3.12.1 Future Work in PFHA at EPRI	
2.3.12.2 Future Work in PFHA at NRC	2-407
2.4 SUMMARY	2-417
2.5 PARTICIPANTS	2-419
3 THIRD ANNUAL NRC PROBABILISTIC FLOOD HAZARD ASSESSMENT RESE	ARCH
WORKSHOP	3-1
3.1 INTRODUCTION 3.1.1 Organization of Conference Proceedings	
3.2 Workshop Agenda	3-3
3.3 PROCEEDINGS	3-9
3.3.1 Day 1: Session 1A - Introduction	
3.3.1.1 Welcome	
3.3.1.2 NRC Flooding Research Program Overview	
3.3.1.3 EPRI Flooding Research Program Overview	
3.3.2 Day 1: Session 1B - Climate and Precipitation	
3.3.2.1 Regional Climate Change Projections: Potential Impacts to Nuclear Facilities	
3.3.2.2 Numerical Modeling of Local Intense Precipitation Processes	
3.3.2.3 Research on Extreme Precipitation Estimates in Orographic Regions	
3.3.3 Day 1: Session 1C - Storm Surge	
3.3.3.1 Quantification of Uncertainty in Probabilistic Storm Surge Models	3-94
3.3.3.2 Probabilistic Flood Hazard Assessment – Storm Surge	
3.3.4 Day 1: Session 1D - Leveraging Available Flood Information I	3-116
3.3.4.1 Flood Frequency Analyses for Very Low Annual Exceedance Probabilities using	Historic
and Paleoflood Data, with Considerations for Nonstationary Systems	3-116
3.3.4.2 Extending Frequency Analysis beyond Current Consensus Limits	
3.3.4.3 Development of External Hazard Information Digests for Operating NPP sites	
3.3.5 Day 1: Session 1E - Paleoflood Studies	
3.3.5.1 Improving Flood Frequency Analysis with a Multi-Millennial Record of Extreme	
the Tennessee River near Chattanooga,	
3.3.5.2 Collection of Paleoflood Evidence	
3.3.6 Day 2: Daily Wrap-up Session / Public Comments	
3.3.7 Day 2: Poster Session	
3.3.7.1 Poster Abstracts	
3.3.7.2 Posters	
3.3.8 Day 2: Session 2A - Reliability of Flood Protection and Plant Response I	
3.3.8.1 Performance of Flood- Rated Penetration Seals	
3.3.8.2 EPRI Flood Protection Project Status	
3.3.8.3 A Conceptual Framework to Assess Impacts of Environmental Conditions on Ma Actions for Flood Protection and Mitigation at Nuclear Power Plants	
3.3.8.4 External Flooding Walkdown Guidance	
3.3.8.5 Erosion Testing of Zoned Rockfill Embankments	
3.3.9 Day 2: Session 2B - Frameworks I	
3.3.9.1 A Framework for Inland Probabilistic Flood Hazard Assessments: Analysis of Ex	
Water Equivalent in Central New Hampshire	
3.3.9.2 Structured Hazard Assessment Committee Process for Flooding (SHAC-F) for F	
Flooding	

	3.3.10 Day 2: Session 2C - Panel Discussions	. 3-316
	3.3.10.1 Flood Hazard Assessment Research and Guidance Activities in Partner Agencies 3.3.10.2 External Flooding Probabilistic Risk Assessment (PRA): Perspectives on Gaps and	
	Challenges	
	3.3.11 Day 2: Session 2D - Future Work in PFHA	. 3-375
	3.3.11.1 Future Work in PFHA at EPRI	3-375
	3.3.11.2 Future Work in PFHA at NRC	
	3.3.12 Day 2: Final Wrap-up Session / Public Comment	. 3-388
	3.4 SUMMARY	3-389
	3.5 WORKSHOP PARTICIPANTS	
4	FOURTH ANNUAL NRC PROBABILISTIC FLOOD HAZARD ASSESSMENT RESEAR WORKSHOP	
	4.1 INTRODUCTION	4-1
	4.1.1 Organization of Conference Proceedings	4-1
	4.2 WORKSHOP AGENDA	4-2
	4.3 PROCEEDINGS	4-9
	4.3.1 Day 1: Session 1A - Introduction	
	4.3.1.1 Introduction	
	4.3.1.2 NRC Flooding Research Program Overview	
	4.3.1.3 EPRI External Flooding Research Program Overview	
	4.3.1.4 Nuclear Energy Agency, Committee on the Safety of Nuclear Installations (CSNI): Wo Group on External Events (WGEV).	rking
	4.3.2 Day 1: Session 1B - Coastal Flooding	
	4.3.2.1 KEYNOTE: National Weather Service Storm Surge Ensemble Guidance	
	4.3.2.2 Advancements in Probabilistic Storm Surge Models and Uncertainty Quantification Us	
	Gaussian Process Metamodeling.	
	4.3.2.3 Probabilistic Flood Hazard Assessment Using the Joint Probability Method for Hurric	ane
	Storm Surge.	
	4.3.2.4 Assessment of Epistemic Uncertainty for Probabilistic Storm Surge Hazard Assessme	
	Using a Logic Tree Approach	
	4.3.2.5 Coastal Flooding Panel	
	4.3.3 Day 1: Session 1C - Precipitation	
	4.3.3.1 KEYNOTE: Satellite Precipitation Estimates, GPM, and Extremes	4-98
	4.3.3.2 Hurricane Harvey Highlights: Need to Assess the Adequacy of Probable Maximum	
	Precipitation Estimation Methods.	
	4.3.3.3 Reanalysis Datasets in Hydrologic Hazards Analysis	
	4.3.3.4 Current Capabilities for Developing Watershed Precipitation-Frequency Relationships Storm-Related Inputs for Stochastic Flood Modeling for Use in Risk-Informed	
	Decisionmaking	
	4.3.3.5 Factors Affecting the Development of Precipitation Areal Reduction Factors	
	4.3.3.6 Precipitation Panel Discussion.	
	4.3.4 Day 2 Session 2A - Riverine Flooding	
	4.3.4.1 KEYNOTE: Watershed Level Risk Analysis with HEC-WAT	
	4.3.4.2 Global Sensitivity Analyses Applied to Riverine Flood Modeling	
	4.3.4.3 Detection and Attribution of Flood Change Across the United States	
	4.3.4.4 Bulletin 17C: Flood Frequency and Extrapolations for Dams and Nuclear Facilities 4.3.4.5 Riverine Paleoflood Analyses in Risk-Informed Decisionmaking: Improving Hydrologic	
	4.3.4.5 Riverine Paleonood Analyses in Risk-miorined Decisionmaking, improving Hydrologic Loading Input for USACE Dam Safety Evaluations	

4.3.4.6 Improving Flood Frequency Analysis with a Multi-Millennial Record of Extreme Floods	
the Tennessee River near Chattanooga, TN	
4.3.4.7 Riverine Flooding Panel Discussion 4.3.5 Day 2: Session 2B - Modeling Frameworks	
4.3.5 Day 2. Session 2B - Modeling Frameworks 4.3.5.1 Structured Hazard Assessment Committee Process for Flooding (SHAC-F)	
4.3.5.1 Structured Hazard Assessment Committee Process for Flooding (SHAC-F)	
4.3.5.3 Development of Risk-Informed Safety Margin Characterization Framework for Flooding	4-272 a.of
4.5.5.5 Development of Risk-informed Safety Margin Characterization Framework for Flooding Nuclear Power Plants.	
4.3.5.4 Modeling Frameworks Panel Discussion.	
4.3.6 Day 2: Poster Session 2C	
4.3.6.1 Coastal Storm Surge Assessment using Surrogate Modeling Methods	
4.3.6.2 Methods for Estimating Joint Probabilities of Coincident and Correlated Flooding	
Mechanisms for Nuclear Power Plant Flood Hazard Assessments.	4-312
4.3.6.3 Modelling Dependence and Coincidence of Flooding Phenomena: Methodology and	
Simplified Case Study in Le Havre in France	
4.3.6.4 Current State-of-Practice in Dam Risk Assessment	
4.3.6.5 Hurricane Harvey Highlights Challenge of Estimating Probable Maximum Precipitation	
4.3.6.6 Uncertainty and Sensitivity Analysis for Hydraulic Models with Dependent Inputs	
4.3.6.7 Development of Hydrologic Hazard Curves Using SEFM for Assessing Hydrologic Ris	
Rhinedollar Dam, CA.	
4.3.6.8 Probabilistic Flood Hazard Analysis of Nuclear Power Plant in Korea 4.3.7 Day 3: Session 3A - Climate and Non-Stationarity	
4.3.7 Day 5. Session 5A - Climate and Non-Stationarty	4-329
4.3.7.1 KEYNOTE: Hydroclimatic Extremes Trends and Projections: A view from the Fourth National Climate Assessment	1 220
4.3.7.2 Regional Climate Change Projections: Potential Impacts to Nuclear Facilities	
4.3.7.3 Role of Climate Change/Variability in the 2017 Atlantic Hurricane Season	
4.3.7.4 Climate Panel Discussion.	
4.3.8 Day 3: Session 3B - Flood Protection and Plant Response	
4.3.8.1 External Flood Seal Risk-Ranking Process	
4.3.8.2 Results of Performance of Flood-Rated Penetration Seals Tests	
4.3.8.3 Modeling Overtopping Erosion Tests of Zoned Rockfill Embankments	
4.3.8.4 Flood Protection and Plant Response Panel Discussion	
4.3.9 Day 3: Session 3C - Towards External Flooding PRA	4-423
4.3.9.1 External Flooding PRA Walkdown Guidance	4-423
4.3.9.2 Updates on the Revision and Expansion of the External Flooding PRA Standard	4-435
4.3.9.3 Update on ANS 2.8: Probabilistic Evaluation of External Flood Hazards for Nuclear Fa	cilities
	4-446
4.3.9.4 Qualitative PRA Insights from Operational Events of External Floods and Other Storm	
Related Hazards.	
4.3.9.5 Towards External Flooding PRA Discussion Panel	4-464
4.4 SUMMARY	4-475
4.5 Workshop Participants	4-477
5 SUMMARY AND CONCLUSIONS	5-489
5.1 SUMMARY	5-489
5.2 Conclusions	5-489
ACKNOWLEDGEMENTS	5-490

5

ABBREVIATION AND ACRONYMS

σ	sigma, standard deviation
°C	degrees Celsius
°F	degrees Fahrenheit
¹³ C-NMR	carbon-13 nuclear magnetic resonance
¹⁴ C	carbon-14
17B	Guidelines for Determining Flood Flow Frequency—Bulletin 17B, 1982
17C	Guidelines for Determining Flood Flow Frequency—Bulletin 17C, 2018
1-D	one dimensional
20C	20th Century Reanalysis
2BCMB	Level 2—DPR and GMI Combine
2-D	two dimensional
3-D	three dimensional
AAB	Accident Analysis Branch in NRC/RES/DSA
AB	auxiliary building
AC, ac	alternating current
ACCP	Alabama Coastal Comprehensive Plan
ACE	accumulated cyclone energy, an approximation of the wind energy used by a tropical system over its lifetime
ACM	alternative conceptual model
ACME	Accelerated Climate Modeling for Energy (DOE)
ACWI	Advisory Committee on Water Information
AD	anno Domini
ADAMS	Agencywide Documents Access and Management System
ADCIRC	ADvanced CIRCulation model
AEP	annual exceedance probability
AEP4	Asymmetric Exponential Power distribution
AFW	auxiliary feedwater
AGCMLE	Assistant General Counsel for Materials Litigation and Enforcement in NRC/OGC/GCHA
AGCNRP	Assistant General Counsel for New Reactor Programs in NRC/OGC/GCHA
AGFZ	Azores–Gibraltar Transform Fault
AGL	above ground level
AIC	Akaike Information Criterion

AIMS	assumptions, inputs, and methods
AIRS	Advanced InfraRed Sounder
AIT	air intake tunnel
AK	Alaska
AM	annual maxima
AMJ	April, May, June
AMM	Atlantic Meridional Mode
AMO	Atlantic Multi-Decadal Oscillation
AMS	annual maxima series
AMSR-2	Advance Microwave Scanning Radiometer
AMSU	Advanced Microwave Sounding Unit
ANN	annual
ANO	Arkansas Nuclear One
ANOVA	analysis of variance decomposition
ANS	American Nuclear Society
ANSI	American National Standards Institute
ANVS	Netherlands Authority for Nuclear Safety and Radiation Protection
AO	Assistant for Operations in NRC/OEDO
AOP	abnormal operating procedure
APF	annual probability of failure
APHB	Probabilistic Risk Assessment Operations and Human Factors Branch
API	application programming interface
APLA/APLB	Probabilistic Risk Assessment Licensing Branch A/B in NRC/NRR/DRA
APOB	PRA Oversight Branch in NRC/NRR/DRA
AR	atmospheric river
AR	Arkansas
AR4, AR5	climate scenarios from the 4th/5th Intergovernmental Panel on Climate Change Reports / Working Groups
ARA	Applied Research Associates
ArcGIS	geographic information system owned by ESRI
ARF	areal reduction factor
ARI	average return interval
ARR	Australian Rainfall-Runoff Method
AS	adjoining stratiform
ASM	annual series maxima

ASME	American Society of Mechanical Engineers
ASN	French Nuclear Safety Authority (Autorité de Sûreté Nucléaire)
ASTM	American Society for Testing and Materials
ATMS	Advance Technology Microwave Sounder
ATWS	anticipated transient without scram
AVHRR	Advance Very High Resolution Radiometer
B&A	Bittner & Associates
BATEA	Bayesian Total Error Analysis
BB	backbuilding/quasistationary
BC	boundary condition
Bel V	subsidiary of Belgian Federal Agency for Nuclear Control (FANC)
BHM	Bayesian Hierarchical Model
BIA	Bureau of Indian Affairs
BMA	Bayesian Model Averaging
BQ	Bayesian Quadrature
BWR	boiling-water reactor
CA	California
CAC	common access card
CAPE	Climate Action Peer Exchange
CAPE	convective available potential energy
CAS	corrective action study
CAS2CD	CAScade 2-Dimensional model (Colorado State)
Cat.	category on the Saffir-Simpson Hurricane Wind Scale
CBR	center, body, and range
CC	Clausius-Clapeyron
CC	climate change
CCCR	Center for Climate Change Research
CCDP	conditional core damage probability
CCI	Coppersmith Consulting Inc.
CCSM4	Community Climate System Model version 4
CCW	closed cooling water
CDB	current design basis
CDF	core damage frequency
CDF	cumulative distribution function

CE	common era
CEATI	Centre for Energy Advancement through Technological Innovation
CEET	cracked embankment erosion test
CENRS	National Science and Technology Council Committee on Environment, Natural Resources, and Sustainability
CESM	Community Earth System Model
CFD	computational fluid dynamics
CFHA	comprehensive flood hazard assessment
CFR	Code of Federal Regulations
CFSR	Climate Forecast System Reanalysis
CHIPs	Coupled Hurricane Intensity Prediction System
CHiRPs	Climate Hazards Group infraRed Precipitation with Station Data
CHL	Coastal and Hydraulics Laboratory
CHRP	Coastal Hazard Rapid Prediction, part of StormSIM
CHS	Coastal Hazards System
CI	confidence interval
CICS-NC	Cooperative Institute for Climates and Satellites—North Carolina
CIPB	Construction Inspection Management Branch in NRC/NRO/DLSE
CIRES	Cooperative Institute for Research in Environmental Sciences
CL	confidence level
CL-ML	homogeneous silty clay soil
CMC	Canadian Meteorological Center forecasts
CMIP5	Coupled Model Intercomparison Project Phase 5
CMORPH / C- MORPH	Climate Prediction Center Morphing Technique
CNE	Romania Consiliul National al Elevilor
CNSC	Canadian Nuclear Safety Commission
СО	Colorado
CoCoRaHS	Community Collaborative Rain, Hail & Snow Network (NWS)
COE	U.S. Army Corps of Engineers (see also USACE)
COL	combined license
COLA	combined license application
COM-SECY	NRC staff requests to the Commission for guidance
CONUS	Continental United States
COOP	Cooperative Observer Network (NWS)

COR	contracting officer's representative
CPC	Climate Prediction Center (NOAA)
CPFs	cumulative probability functions
CR	comprehensive review
CRA	computational risk assessment
CRB	Concerns Resolution Branch in NRC/OE
CRL	coastal reference location
CRPS	continuous ranked probability score
CSNI	Committee on the Safety of Nuclear Installations
CSRB	Criticality, Shielding & Risk Assessment Branch in NRC/NMSS/DSFM
CSSR	Climate Science Special Report (by the U.S. Global Change Research Program)
CSTORM	Coastal Storm Modeling System
CTA Note	note to Commissioners' Assistants
CTXS	Coastal Texas Study
Cv	coefficient of variation
CZ	capture zone
DC	District of Columbia
DAD	depth-area-duration
DAMBRK	Dam Break Flood Forecasting Model (NWS)
DAR	Division of Advanced Reactors in NRC/NRO
DayMet	daily surface weather and climatological summaries
dBz	decibel relative to z, or measure of reflectivity of radar
DCIP	Division of Construction Inspection and Operational Programs in NRC/NRO
DDF	depth-duration-frequency curve
DDM	data-driven methodology
DDST	database of daily storm types
DE	Division of Engineering in NRC/RES
DHSVM	distributed hydrology soil vegetation model, supported by University of Washington
DIRS	Division of Inspection and Regional Support in NRC/NRR
DJF	December, January, February
DLBreach	Dam/Levee Breach model developed by Weiming Wu, Clarkson University
DLSE	Division of Licensing, Siting, and Environmental Analysis in NRC/NRO

DOE	U.S. Department of Energy
Dp	pressure deficit
DPI	power dissipation index
DPR	Division of Preparedness and Response in NRC/NSIR
DPR	Dual Frequency Precipitation Radar
DQO	data quality objective
DRA	Division of Risk Assessment in NRC/NRR
DRA	Division of Risk Analysis in NRC/RES
DREAM	Differential Evolution Adaptive Metropolis
DRP	Division of Reactor Projects in NRC/R-I
DRS	Division of Reactor Safety In NRC/R-I and R-IV
DSA	Division of Systems Analysis in NRC/RES
DSEA	Division of Site Safety and Environmental Analysis, formerly in NRC/NRO, now in DLSE
DSFM	Division of Spent Fuel Management in NRC/NMSS
DSI3240	NCEI hourly precipitation data
DSMS	Dam Safety Modification Study
DSMS	digital surface models
DSPC	USACE Dam Safety Production Center
DSRA	Division of Safety Systems, Risk Assessment and Advanced Reactors in NRC/NRO (merged into DAR)
DSS	Division of Safety Systems in NRC/NRR
DSS	Hydrologic Engineering Center Data Storage System
DTWD	doubly truncated Weibull distribution
DUWP	Division of Decommissioning, Uranium Recovery, and Waste Programs in NRC/NMSS
DWOPER	Operational Dynamic Wave Model (NWS)
dy	day
EAD	expected annual damage
EB2/EB3	Engineering Branch 2/3 in NRC/R-IV/DRS
EBTRK	Tropical Cyclone Extended Best Track Dataset
EC	Eddy Covariance Method
EC	environmental condition
ECC	ensemble copula coupling
ECCS	emergency core cooling systems pump

ECs	environmental conditions
EDF	Électricité de France
EDG	emergency diesel generator
EF	environmental factor
EFW	emergency feedwater
EGU	European Geophysical Union
EHCOE	NRC External Hazard Center of Expertise
EHID	External Hazard Information Digest
EIRL	equivalent independent record length
EIS	environmental impact statement
EKF	Epanechikov kernel function
EMA	expected moments algorithm
EMCWF	European Centre for Medium-Range Weather Forecasts
EMDR	eastern main development region (for hurricanes)
EMRALD	Event Model Risk Assessment using Linked Diagrams
ENSI	Swiss Federal Nuclear Safety Inspectorate
ENSO	El Niño Southern Oscillation
EPA	U.S. Environmental Protection Agency
EPIP	emergency plan implementing procedure
EPRI	Electric Power Research Institute
ER	engineering regulation (USACE)
ERA-40	European ECMWF reanalysis dataset
ERB	Environmental Review Branch in NRC/NMSS/FCSE
ERDC	Engineer Research and Development Center (USACE)
ERL	equivalent record length
ESCC	Environmental and Siting Consensus Committee (ANS)
ESEB	Structural Engineering Branch in NRC/RES/DE
ESEWG	Extreme Storm Events Work Group (ACWI/SOH)
ESP	early site permit
ESRI	Environmental Systems Research Institute
ESRL	Earth Systems Research Lab (NOAA/OAR)
EST	Eastern Standard Time
EST	empirical simulation technique
ESTP	enhanced storm transposition procedure

ET	event tree
ET	evapotranspiration
ET/FT	event tree/fault tree
ETC	extratropical cyclone
EUS	eastern United States
EV4	extreme value with four parameters distribution function
EVA	extreme value analysis
EVT	extreme value theory
EXHB	External Hazards Branch in NRC/NRO/DLSE
Exp	experimental
f	annual probability of failure (USBR, USACE)
F1, F5	tornado strengths on the Fujita scale
FA	frequency analysis
FADSU	fluvial activity database of the Southeastern United States
FAQ	frequently asked question
FAST	Fourier Analysis Sensitivity Test
FBPS	flood barrier penetration seal
FBS	flood barrier system
FCM	flood-causing mechanism
FCSE	Division of Fuel Cycle Safety, Safeguards & Environmental Review in NRC/NMSS
FD	final design
FDC	flood design category (DOE terminology)
FEMA	Federal Emergency Management Agency
FERC	Federal Energy Regulatory Commission
FFA	flood frequency analysis
FFC	flood frequency curve
FHRR	flood hazard reevaluation report
FITAG	Flooding Issues Technical Advisory Group
FL	Florida
FLDFRQ3	U.S. Bureau of Reclamation flood frequency analysis tool
FLDWAV	flood wave model (NWS)
FLEX	diverse and flexible mitigation strategies
Flike	extreme value analysis package developed University of Newcastle, Australia

FLO-2D	two-dimensional commercial flood model
FM Approvals	Testing and Certification Services Laboratories, originally Factory Mutual Laboratories
f-N	annual probability of failure vs. average life loss, N
FOR	peak flood of record
FPM	flood protection and mitigation
FPS	flood penetration seal
FRA	Flood Risk Analysis Compute Option in HEC-WAT
FRM	Fire Risk Management, Inc.
FSAR	final safety analysis report
FSC	flood-significant component
FSG	FLEX support guidelines
FSP	flood seal for penetrations
FT	fault tree
ft	foot
FXHAB	Fire and External Hazards Analysis Branch in NRC/RES/DRA
FY	fiscal year
G&G	geology and geotechnical engineering
GA	generic action
GCHA	Deputy General Counsel for Hearings and Administration in NRC/OGC
GCM	Global Climate Model
GCRP	U.S. Global Change Research Program
GCRPS	Deputy General Counsel for Rulemaking and Policy Support in NRC/OGC
GEFS	Global Ensemble Forecasting System
GeoClaw	routines from Clawpack-5 ("Conservation Laws Package") that are specialized to depth-averaged geophysical flows
GEO-IR	Geostationary Satellites—InfraRed Imagery
GEV	generalized extreme value
GFDL	Geophysical Fluid Dynamics Lab (NOAA)
GFS	Global Forecast System
GHCN	Global Historical Climatology Network
GHCND	Global Historical Climatology Network-Daily
GIS	geographic information system
GISS	Goddard Institute for Space Studies (NASA)

GKF	Gaussian Kernel Function
GL	generic letter
GLO	generalized logistic distribution
GLRCM	Great Lakes Regional Climate Model
GLUE	generalized likelihood uncertainty estimation
GMAO	Global Modeling and Assimilation Office (NASA)
GMC	ground motion characterization
GMD	geoscientific model development
GMI	GPM microwave imager
GMSL	global mean sea level
GNO	generalized normal distribution
GoF	goodness-of-fit
GPA/GPD	generalized Pareto distribution
GPCP SG	Global Precipitation Climatology Project—Satellite Gauge
GPLLJ	Great Plains lower level jet
GPM	Gaussian process metamodel
GPM	global precipitation measurement
GPO	generalized Pareto distribution
GPROF	Goddard profile algorithm
GRADEX	rainfall-based flood frequency distribution method
Grizzly	simulated component aging and damage evolution events RISMC tool
GRL	Geophysical Research Letters
GRS	Gesellschaft für Anlagen- und Reaktorsicherheit—Global Research for Safety
GSA	global sensitivity analysis
GSFC	Goddard Space Flight Center
GSI	generic safety issue
GUI	graphical user interface
GW-GC	Well-graded gravel with clay and sand
GZA	a multidisciplinary consulting firm
h	second shape parameter of four-parameter Kappa distribution
h/hr	hour
H&H	hydraulics and hydrology
HAMC	hydraulic model characterization

HBV	rainfall runoff model Hydrologiska Byråns Vattenbalansalvdening, supported by the Swedish Meteorological and Hydrological Institute
HCA	hierarchical clustering analysis
HCTISN	Supreme Committee for Transparency and Information on Nuclear Safety (France)
HCW	hazardous convective weather
HDSC	NOAA/NWS/OWP Hydrometeorological Design Studies Center
HEC	Hydrologic Engineering Center, part of USACE/Institute for Water Resources
HEC-1	see HEC-HMS
HEC-FIA	Hydrologic Engineering Center Flood Impact Analysis Software
HEC-HMS	Hydrologic Modeling System
HEC-LifeSim	Hydrologic Engineering Center life loss and direct damage estimation software
HEC-MetVue	Hydrologic Engineering Center Meteorological Visualization Utility Engine
HEC-RAS	Hydrologic Engineering Center River Analysis System
HEC-ResSim	Hydrologic Engineering Center Reservoir System Simulation
HEC-SSP	Hydrologic Engineering Center Statistical Software Package
HEC-WAT	Hydrologic Engineering Center Watershed Analysis Tool
HEP	human error probability
HF	human factors
HFRB	Human Factors and Reliability Branch in NRC/RES/DRA
HHA	hydrologic hazard analysis
HHC	hydrologic hazard curve
НІ	Hawaii
HLR	high-level requirement
HLWFCNS	Assistant General Counsel for High-Level Waste, Fuel Cycle and Nuclear Security in NRC/OGC/GCRPS
HMB	Hazard Management Branch in NRC/NRR/JLD, realigned
HMC	hydraulic/hydrologic model characterization
HMR	NOAA/NWS Hydrometeorological Report
HMS	hydrologic modeling system
HOMC	hydrologic model characterization
hPa	hectopascals (unit of pressure)

HR	homogenous region
HRA	human reliability analysis
HRL	Hydrologic Research Lab, University of California at Davis
HRRR	NOAA High-Resolution Rapid Refresh Model
HRRs	Fukushima Hazard Reevaluation Reports (EPRI term)
HRU	hydrologic runoff unit approach
HUC	hydrologic unit code for watershed (USGS)
HUNTER	human actions RISMC tool
HURDAT	National Hurricane Centers HURricane DATabases
Hz	hertz (1 cycle/second)
IA	integrated assessment
IA	Iowa
IAEA	International Atomic Energy Agency
IBTrACS	International Best Track Archive for Climate Stewardship
IC	initial condition
ICOLD	International Commission on Large Dams
ID	information digest
IDF	intensity-duration frequency curve
IDF	inflow design flood
IE	initiating event
IEF	initiating event frequency
IES	Dam Safety Issue Evaluation Studies
IHDM	Institute of Hydrology Distributed Model, United Kingdom
IID	independent and identically distributed
IL	Illinois
IMERG	Integrated Multi-satellitE Retrievals for GPM
IMPRINT	Improved Performance Research Integration Tool
in	inch
IN	information notice
INES	International Nuclear and Radiological Event Scale
INL	Idaho National Laboratory
IPCC	Intergovernmental Panel on Climate Change
IPE	individual plant examination
IPEEE	individual plant examination for external events

IPET	Interagency Performance Evaluation Taskforce for the Performance Evaluation of the New Orleans and Southeast Louisiana Hurricane Protection System
IPWG	International Precipitation Working Group
IR	infrared
IR	inspection report
IRIB	Reactor Inspection Branch in NRC/NRR/DIRS
IRP	Integrated Research Projects (DOE)
IRSN	Institut de Radioprotection et de Sûreté Nucléaire (France's Radioprotection and Nuclear Safety Institute)
ISG	interim staff guidance
ISI	inservice inspection
ISR	interim staff response
IT	information technology
IVT	integrated vapor transport
IWR	USACE Institute for Water Resources
IWVT	integrated water vapor tendency
J	joule
JJA	June, July, August
JLD	Japan Lesson-learned Directorate or Division in NRC/NRR, realigned
JPA	Joint Powers Authority (FEMA Region II)
JPA	joint probability analysis
JPM	joint probability method
JPM-OS	Joint Probability Method with Optimal Sampling
К	degrees Kelvin
KAERI	Korea Atomic Energy Research Institute
KAP	Kappa distribution
k _d	erodibility coefficient
kg	kilogram
kHz	kilohertz (1000 cycles/second)
km	kilometer
KS	Kansas
LA	Louisiana
LACPR	Louisiana Coastal Protection and Restoration Study
LAR	license amendment request

L-C _v	coefficient of L-variation
LEO	low earth orbit
LER	licensee event report
LERF	large early release frequency
LIA	Little Ice Age
Lidar	light imaging, detection and ranging; surveying method using reflected pulsed light to measure distance
LIP	local intense precipitation
LMI	lifetime maximum intensity
LMOM / LMR	L-moment
LN4	Slade-type four parameter lognormal distribution function
LOCA	localized constructed analog
LOCA	loss-of-coolant accident
LOOP	loss of offsite power event
LOUHS	loss of ultimate heat sink event
LPIII / LP-III, LP3	Log Pearson Type III distribution
LS	leading stratiform
LS	local storm
LSHR	late secondary heat removal
LTWD	Left-truncated Weibull distribution
LULC	land use and land cover
LWR	light-water reactor
LWRS	Light-Water Reactor Sustainability Program
m	meter
MA	Massachusetts
MA	manual action
MAAP	coupling accident conditions RISMC tool
MAE	mean absolute error
MAM	March, April, May
MAP	mean annual precipitation
MASTODON	structural dynamics, stochastic nonlinear soil-structure interaction in a risk framework RISMC tool
mb	millibar
MCA	medieval climate anomaly
MCC	mesoscale convective complex

MCI	Monte Carlo integration
MCLC	Monte Carlo Life-Cycle
MCMC	Markov chain Monte Carlo method
MCRAM	streamflow volume stochastic modeling
MCS	mesoscale convective system
MCS	Monte Carlo simulation
MCTA	Behrangi Multisatellite CloudSat TRMM Aqua Product
MD	Maryland
MDL	Meteorological Development Laboratory (NWS)
MDR	Main Development Region (for hurricanes)
MDT	Methodology Development Team
MEC	mesoscale storm with embedded convection
MEOW	Maximum Envelopes of Water
MetStorm	storm analysis software by MetStat, second generation of SPAS
MGD	meta-Gaussian distribution
MGS Engineering	engineering consultants
MHS	microwave humidity sounder
MIKE SHE/ MIKE 21	integrated hydrological modeling system
MLC	mid-latitude cyclone
MLE	maximum likelihood estimation
mm	millimeter
MM5	fifth-generation Penn State/NCAR mesoscale model
MMC	mesh-based Monte Carlo method
MMC	meteorological model characterization
MMF	multimechanism flood
MMP	mean monthly precipitation
MN	Minnesota
MO	Missouri
Mode 3	Reactor Operation Mode: Hot Standby
Mode 4	Reactor Operation Mode: Hot Shutdown
Mode 5	Reactor Operation Mode: Cold Shutdown
MOM	Maximum of MEOWs
MOU	memorandum of understanding
MPE	multisensor precipitation estimates

mph	miles per hour
MPS	maximum product of spacings
MRMS	Multi-Radar Multi-Sensor project (NOAA/NSSL)
MS	Mississippi
MSA	mitigating strategies assessment
MSFHI	mitigating strategies flood hazard information
MSL	mean sea level
MSWEP	multisource weighted-ensemble precipitation dataset
MVGC	multivariable Gaussian copula
MVGD	multivariable Gaussian distribution
MVTC	multivariable student's t copula
Ν	average life loss (USBR, USACE)
NA14	NOAA National Atlas 14
NACCS	North Atlantic Coast Comprehensive Study
NAEFS	North American Ensemble Forecasting System
NAIP	National Agricultural Imagery Program
NAM-WRF	North American Mesoscale Model—WRF
NAO	North Atlantic Oscillation
NARCCAP	North American Regional Climate Change Assessment Program
NARR	North American Regional Reanalysis (NOAA)
NARSIS	European Research Project New Approach to Reactor Safety Improvements
NASA	National Aeronautics and Space Administration
NAVD88	North American Vertical Datum of 1988
NBS	net basin scale
NCA3/NCA4	U.S. Global Change Research Program Third/Fourth National Climate Assessment
NCAR	National Center for Atmospheric Research
NCEI	National Centers for Environmental Information
NCEP	National Centers for Environmental Prediction (NOAA)
ND	North Dakota
NDFD	National Digital Forecast Database (NWS)
NDSEV	number of days with severe thunderstorm environments
NE	Nebraska
NEA	Nuclear Energy Agency

NEB	nonexceedance bounds
NEI	Nuclear Energy Institute
NESDIS	NOAA National Environmental Satellite, Data, and Information Service
NEUTRINO	a general-purpose simulation and visualization environment including an SPH solver
NEXRAD	next-generation radar
NHC	National Hurricane Center
NI DAQ	National Instruments Data Acquisition Software
NID	National Inventory of Dams
NIOSH	National Institute for Occupational Safety and Health
NLDAS	North American Land Data Assimilation System
nm	nautical miles
NM	New Mexico
NMSS	NRC Office of Nuclear Material Safety and Safeguards
NOAA	National Oceanic and Atmospheric Administration
NOED	notice of enforcement discretion
NPDP	National Performance of Dams Program
NPH	Natural Phenomena Hazards Program (DOE)
NPP	nuclear power plant
NPS	National Park Service
NRC	U.S. Nuclear Regulatory Commission
NRCS	Natural Resources Conservation Service
NRO	NRC Office of New Reactors
NRR	NCEP-NCAR Reanalysis
NRR	NRC Office of Nuclear Reactor Regulation
NSE	Nash-Sutcliffe model efficiency coefficient
NSIAC	Nuclear Strategic Issues Advisory Committee
NSIR	NRC Office of Nuclear Security and Incident Response
NSSL	National Severe Storms Laboratory (NOAA)
NSTC	National Science and Technology Council
NTTF	Near-Term Task Force
NUREG	NRC technical report designation
NUVIA	a subsidiary of Vinci Construction Group, offering expertise in services and technology supporting safety performance in nuclear facilities
NWS	National Weather Service

NY	New York
OAR	NOAA Office of Oceanic and Atmospheric Research
OE	NRC Office of Enforcement
OECD	Organization for Economic Co-operation and Development
OEDO	NRC Office of the Executive Director for Operations
OGC	NRC Office of the General Counsel
OHC	ocean heat content
OK	Oklahoma
OR	Oregon
ORNL	Oak Ridge National Laboratory
OSL	optically stimulated luminescence
OTC	once-through cooling
OWI	Ocean Wind Inc.
OWP	NOAA/NWS Office of Water Prediction
Ρ	present
P/PET	precipitation over PET ratio, aridity
Ра	pascal
PB1	Branch 1 in NRC/R-I/DRP
PBL	planetary boundary layer
PCA	principal component analysis
PCHA	probabilistic coastal hazard assessment
PCMQ	Predictive Capability Maturity Quantification
PCMQBN	Predictive Capability Maturity Quantification by Bayesian Net
PD	performance demand
PDF	probability density function
PDF	performance degradation factor
PDS	partial-duration series
PE3	Pearson Type III distribution
PeakFQ	USGS flood frequency analysis software tool based on Bulletin 17C
PERSIANN-CCS	Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (University of California at Irvine Precipitation Algorithm)
PERT	program evaluation review technique
PET	potential evapotranspiration
P-ETSS	Probabilistic Extra-Tropical Storm Surge Model

PF	paleoflood
PF/P-F	precipitation frequency
PFAR	precipitation field area ratio
PFHA	probabilistic flood hazard assessment
PFM	potential failure mode
PI	principal investigator
P-I	pressure-impulse curve
PIF	performance influencing factor
PILF	potentially influential low flood
PM	project manager
PMDA	Program Management, Policy Development & Analysis in NRC/RES
PMF	probable maximum flood
PMH	probable maximum hurricane
PMP	probable maximum precipitation
PMW	passive microwave
PN	product number
PNAS	Proceedings of the National Academy of Sciences of the United States of America
PNNL	Pacific Northwest National Laboratory
POANHI	Process for Ongoing Assessment of Natural Hazard Information
POB	Regulatory Policy and Oversight Branch in NRC/NSIR/DPR
POR	period of record
PPRP	participatory peer review panel
PPS	Precipitation Processing System
PR	Puerto Rico
PRA	probabilistic risk assessment
PRAB	Probabilistic Risk Assessment Branch in NRC/RES/DRA
PRB	Performance and Reliability Branch in NRC/RES/DRA
PRISM	a gridded dataset developed through a partnership between the NRCS National Water and Climate Center and the PRISM Climate Group at Oregon State University, developers of PRISM (the Parameter-elevation Regressions on Independent Slopes Model)
PRMS	USGS Precipitation Runoff Modelling System
Prométhée	IRSN software based on PROMETHEE, the Preference Ranking Organization METhod for Enrichment Evaluation
PRPS	Precipitation Retrieval Profiles Scheme

PS	parallel stratiform
PSA	probabilistic safety assessment, common term for PRA in other countries
PSD	Physical Sciences Division in NOAA/OAR/ESRL
PSF	performance shaping factor
psf	pounds per square foot
PSHA	probabilistic seismic hazard assessment
PSI	paleostage indicators
PSSHA	probabilistic storm surge hazard assessment
P-Surge	probabilistic tropical cyclone storm surge model
PTI	project technical integrator
PVC	polyvinyl chloride
Pw/PW	precipitable water
PWR	pressurized-water reactor
Q	quarter
QA	quality assurance
QC	quality control
QI	Quality Index
QPE	quantitative precipitation estimates
QPF	quantitative precipitation forecast
R	a statistical package
R 2.1	NTTF Report Recommendation 2.1
R&D	research and development
R2	coefficient of determination
RAM	regional atmospheric model
RASP	Risk Assessment of Operational Events Handbook
RAVEN	risk analysis in a virtual environment probabilistic scenario evolution RISMC tool
RC	reinforced concrete
RCP (4.5, 8.5)	representative concentration pathways
RELAP-7	reactor excursion and leak analysis program transient conditions RISMC tool
RENV	Environmental Technical Support Branch in NRC/NRO/DLSE
REOF	rotated empirical orthogonal function
RES	NRC Office of Nuclear Regulatory Research

RF	riverine flooding
RFA	regional frequency analysis
RFC	River Forecast Center (NWS)
RG	regulatory guide
RGB	red, green, and blue imagery (NAIP)
RGB-IF	red, green, blue, and infrared imagery (NAIP)
RGC	regional growth curve
RGGIB	Regulatory Guidance and Generic Issues Branch in NRC/RES/DE
RGS	Geosciences and Geotechnical Engineering Branches now in NRC/NRO/DLSE, formerly in NRC/NRO/DSEA
RHM	Hydrology and Meteorology Branch formerly in NRC/NRO/DSEA
RI	Rhode Island
R-I, R-II, R-III, R-IV	NRC Regions I, II, III, IV
RIC	Regulatory Information Conference, NRC
RIDM	risk-informed decisionmaking
RILIT	Risk-Informed Licensing Initiative Team in NRC/NRR/DRA/APLB
RISMC	risk information safety margin characterization
R _{max}	radius to maximum winds
RMB	Renewals and Materials Branch in NRC/NMSS/DSFM
RMC	USACE Risk Management Center
RMSD	root-mean-square deviation
RMSE	root mean square error
ROM	reduce order modeling
ROP	Reactor Oversight Process
RORB-MC	an interactive runoff and streamflow routing program
RPAC	formerly in NRC/NRO/DSEA
RRTM	Rapid Radiative Transfer Model Code in WRF
RRTMS	RRTM with GCM application
RS	response surface
RTI	an independent, nonprofit institute
RV	return values
SA	storage area
SACCS	South Atlantic Coastal Comprehensive Study
SAPHIR	Sounding for Probing Vertical Profiles of Humidity

SAPHIRE	Systems Analysis Programs for Hands-on Integrated Reliability Evaluations
SBDFA	simulation-based dynamic flooding analysis framework
SBO	station blackout
SBS	simulation-based scaling
SC	safety category (ANS 58.16-2014 term)
SC	South Carolina
SCAN	Soil Climate Analysis Network
SCRAM	immediate shutdown of nuclear reactor
SCS	curve number method
SD	standard deviation
SDC	shutdown cooling
SDP	significance determination process
SDR	Subcommittee on Disaster Reduction
SECY	written issues paper the NRC staff submits to the Commission
SEFM	Stochastic Event-Based Rainfall-Runoff Model
SER	safety evaluation report
SGSEB	Structural, Geotechnical and Seismic Engineering Branch in NRC/RES/DE
SHAC-F	Structured Hazard Assessment Committee Process for Flooding
SHE	Systém Hydrologique Européan
SITES	model that uses headcut erodibility index by USDA-ARS and University of Kansas "Earthen/Vegetated Auxiliary Spillway Erosion Prediction for Dams"
SLC	sea level change
SLOSH	Sea Lake and Overland Surges from Hurricanes (NWS model)
SLR	sea level rise
SMR	small modular reactor
SNOTEL	snow telemetry
SNR	signal-to-noise ratio
SOH	Subcommittee on Hydrology
SOM	self-organizing map
SON	September, October, November
SOP	standard operating pressure
SPAR	standardized plant analysis risk
SPAS	Storm Precipitation Analysis System (MetStat, Inc.)

SPH	smoothed-particle hydrodynamics
SPRA	PRA and Severe Accidents Branch in NRC/NRO/DESR (formerly in DSRA)
SRA	senior reactor analyst
SRES A2	NARCCAP A2 emission scenario
SRH2D/SRH-2D	USBR Sedimentation and River Hydraulics—Two-Dimensional model
SRM	staff requirements memorandum
SRP	standard review plan
SRR	storm recurrence rate
SSAI	Science Systems and Applications, Inc.
SSC	structure, system, and component
SSHAC	Senior Seismic Hazard Assessment Committee
SSM	Swedish Radiation Safety Authority (Strål säkerhets mydigheten)
SSMI	Special Sensor Microwave Imager
SSMIS	Special Sensor Microwave Imager/Sounder
SSPMP	site-specific probable maximum precipitation
SST	sea surface temperature
SST	stochastic simulation technique
SST	stochastic storm transposition
SSURGO	soil survey geographic database
ST4 or Stage IV	precipitation information from multisensor (radar and gauges) precipitation analysis
STEnv	severe thunderstorm environment
STM	stochastic track method
StormSIm	stochastic storm simulation system
STSB	Technical Specifications Branch in NRC/NRR/DSS
STUK	Finland Radiation and Nuclear Safety Authority
STWAVE	STEady-state spectral WAVE model
SÚJB	Czech Republic State Office for Nuclear Safety
SWAN	Simulation Waves Nearshore Model
SWE	snow-water equivalent
SWL	still water level
SWMM	EPA Storm Water Management Model
SWT	Schaefer-Wallis-Taylor Climate Region Method
TAG	EPRI Technical Assessment Guide

TC	tropical cyclone
TCI	TRMM Combined Instrument
Td	daily temperature
TDF	transformed extreme value type 1 distribution function (four parameter)
TDI	technically defensible interpretations
TELEMAC	two-dimensional hydraulic model
TELEMAC 2D	a suite of finite element computer programs owned by the Laboratoire National d'Hydraulique et Environnement (LNHE), part of the R&D group of Électricité de France
T-H	thermohydraulic
ТІ	technical integration
ТІ	technology innovation project
TL	training line
ТМІ	Three Mile Island
ТМІ	TRMM Microwave Imager
TMPA	TRMM Multisatellite Precipitation Analysis
TN	Tennessee
TOPMODEL	two-dimensional distributed watershed model by Keith Beven, Lancaster University
TOVS	Television-Infrared Observation Satellite (TIROS) Operational Vertical Sounder
TP-#	Test Pit #
TP-29	U.S. Weather Bureau Technical Paper No. 29
TP-40	Technical Paper No. 40, "Rainfall Frequency Atlas of the U.S.," 1961
TR	USACE technical report
TREX	two-dimensional, runoff, erosion, and export model
TRMM	Tropical Rainfall Measuring Mission
TRVW	Tennessee River Valley Watershed
TS	technical specification
TS	trailing stratiform
TSR	tropical-storm remnant
TUFLOW	two-dimensional hydraulic model
TVA	Tennessee Valley Authority
ТХ	Texas
U.S. or US	United States
UA	uncertainty analysis

UC	University of California
UH	unit hydrograph
UKF	uniform kernel function
UKMET	medium-range (3- to 7-day) numerical weather prediction model operated by the United Kingdom METeorological Agency
UL	Underwriters Laboratories
UMD	University of Maryland
UNR	user need request
UQ	uncertainty quantification
URMDB	Uranium Recovery and Materials Decommissioning Branch in NRC/NMSS/DUWP
USACE	U.S. Army Corps of Engineers (see also COE)
USACE-NWD	USACE NorthWest Division
USBR	U.S. Bureau of Reclamation
USDA	U.S. Department of Agriculture
USDA-ARS	United State Department of Agriculture—Agricultural Research Service
USFWS	U.S. Fish and Wildlife Service
USGS	United States Geological Survey
UTC	coordinated universal time
VA	Virginia
VDB	validation database
VDMS	Validation Data Management System
VDP	validation data planning
VIC	Variable Infiltration Capacity model
VL-AEP	very low annual exceedance probability
W	watt
WAK	Wakeby distribution
WASH-1400	Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants [NUREG-75/014 (WASH-1400)]
WB	U.S. Weather Bureau
WBT	wet bulb temperature
WEI	Weibull distribution
WGEV	Working Group on External Events
WGI	Working Group I
WI	Wisconsin

WinDamC	USDA/NRCS model for estimating erosion of earthen embankments and auxiliary spillways of dams
WL	water level
WMO	World Meteorological Organization
WRB	Willamette River Basin
WRF	Weather Research and Forecasting model
WRR	Water Resources Research (journal)
WSEL/WSL	water surface elevation
WSM6	WRF Single-Moment 6-Class Microphysics Scheme
WSP	USGS Water Supply Paper
XF	external flooding
XFEL	external flood equipment list
XFOAL	external flood operation action list
XFPRA	external flooding PRA
yr	year
yrBP	years before present
Z	Zulu time, equivalent to UTC

INTRODUCTION

Background

The NRC is conducting a multiyear, multi-project Probabilistic Flood Hazard Assessment (PFHA) Research Program. It initiated this research in response to staff recognition of a lack of guidance for conducting PFHAs at nuclear facilities that required staff and licensees to use highly conservative deterministic methods in regulatory applications. The staff described the objective, research themes, and specific research topics in the "Probabilistic Flood Hazard Assessment Research Plan," Version 2014-10-23, provided to the Commission in November 2014 (ADAMS Accession Nos. <u>ML14318A070</u> and <u>ML14296A442</u>). The PFHA Research Plan was endorsed in a joint user need request by the NRC Office of New Reactors and Office of Nuclear Reactor Regulation (UNR NRO-2015-002, ADAMS Accession No. <u>ML15124A707</u>). This program is designed to support the development of regulatory tools (e.g., regulatory guidance, standard review plans) for permitting new nuclear sites, licensing new nuclear facilities, and overseeing operating facilities. Specific uses of flooding hazard estimates (i.e., flood elevations and associated affects) include flood-resistant design for structures, systems, and components (SSCs) important to safety and advanced planning and evaluation of flood protection procedures and mitigation.

The lack of risk-informed guidance with respect to flooding hazards and flood fragility of SSCs constitutes a significant gap in the NRC's risk-informed, performance-based regulatory approach to the assessment of hazards and potential safety consequences for commercial nuclear facilities. The probabilistic technical basis developed will provide a risk-informed approach for improved guidance and tools to give staff and licensees greater flexibility in evaluating flooding hazards and potential impacts to SSCs in the oversight of operating facilities (e.g., license amendment requests, significance determination processes (SDPs), notices of enforcement discretion (NOEDs)) as well as licensing of new facilities (e.g., early site permit applications, combined license (COL) applications), including proposed small modular reactors (SMRs) and advanced reactors. This methodology will give staff more flexibility in assessing flood hazards at nuclear facilities so the staff will not have to rely on the use of the current deterministic methods, which can be overly conservative in some cases.

The main focus areas of the PFHA Research Program are to (1) leverage available frequency information on flooding hazards at operating nuclear facilities and develop guidance on its use, (2) develop and demonstrate a PFHA framework for flood hazard curve estimation, (3) assess and evaluate application of improved mechanistic and probabilistic modeling techniques for key flood-generating processes and flooding scenarios, (4) assess potential impacts of dynamic and nonstationary processes on flood hazard assessments and flood protection at nuclear facilities, and (5) assess and evaluate methods for quantifying reliability of flood protection and plant response to flooding events. Workshop organizers used these focus areas to develop technical session topics for the workshop.

Workshop Objectives

The Annual PFHA Research Workshops serve multiple objectives: (1) inform and solicit feedback from internal NRC stakeholders, partner Federal agencies, industry, and the public about PFHA research being conducted by the NRC Office of Nuclear Regulatory Research (RES), (2) inform internal and external stakeholders about RES research collaborations with Federal agencies, the Electric Power Research Institute (EPRI) and the French Institute for Radiological and Nuclear

Security (IRNS) and (3) provide a forum for presentation and discussion of notable domestic and international PFHA research activities.

Workshop Scope

Scope of the workshop presentations and discussions included:

- Current and future climate influences on flooding processes
- Significant precipitation and flooding events
- Statistical and mechanistic modeling approaches for precipitation, riverine flooding, and coastal flooding processes
- Probabilistic flood hazard assessment frameworks
- Reliability of flood protection and mitigation features and procedures
- External flooding probabilistic risk assessment

Summary of Proceedings

These proceedings transmit the agenda, abstracts, and slides from presentations and posters presented, and chronicle the question and answer sessions and panel discussions held, at the U.S. Nuclear Regulatory Commission's (NRC's) Annual Probabilistic Flood Hazard Assessment (PFHA) Research Workshops, which take place approximately annually at NRC Headquarters in Rockville, MD. The first four workshops took place as follows:

- 1st Annual NRC PFHA Research Workshop, October 14–15, 2015
- 2nd Annual NRC PFHA Research Workshop, January 23–25, 2017 (Agencywide Documents Access and Management System (ADAMS) Accession No. <u>ML17040A626</u>)
- 3rd Annual NRC PFHA Research Workshop, December 4–5, 2017 (ADAMS Accession No. <u>ML17355A071</u>)
- 4th Annual NRC PFHA Research Workshop, April 30–May 2. 2019 (ADAMS Accession No. <u>ML19156A446</u>)

These proceedings include presentation abstracts and slides and a summary of the question and answer sessions. The first workshop was limited to NRC technical staff and management, NRC contractors, and staff from other Federal agencies. The three workshops that followed were meetings attended by members of the public; NRC technical staff, management, and contractors; and staff from other Federal agencies. Public attendees over the course of the workshops included industry groups, industry members, consultants, independent laboratories, academic institutions, and the press. Members of the public were invited to speak at the workshops. The fourth workshop included more invited speakers from the public than from the NRC and the NRC's contractors.

The proceedings for the second through fourth workshops include all presentation abstracts and slides and submitted posters and panelists' slides. Workshop organizers took notes and audio-recorded the question and answer sessions following each talk, during group panels, and during end-of-day question and answer session. Responses are not reproduced here verbatim and were generally from the presenter or co-authors. Descriptions of the panel discussions identify the speaker when possible. Questions were taken orally from attendees, on question cards, and over the telephone.

Related Workshops

An international workshop on PFHA took place on January 29–31, 2013. The workshop was devoted to sharing information on PFHAs for extreme events (i.e., annual exceedance probabilities (AEPs) much less than $2x10^{-3}$ per year) from the Federal community). The NRC issued the proceedings as NUREG/CP-302, "Proceedings of the Workshop on Probabilistic Flood Hazard Assessment (PFHA)," in October 2013 (ADAMS Accession No. <u>ML13277A074</u>).

1 FIRST ANNUAL NRC PROBABILISTIC FLOOD HAZARD ASSESSMENT RESEARCH WORKSHOP

1.1 Introduction

This chapter details the 1st Annual NRC Probabilistic Flood Hazard Assessment Research Workshop held at U.S. Nuclear Regulatory Commission (NRC) Headquarters in Rockville, MD, on October 14–15, 2015. Participants in this workshop were limited to NRC technical staff and management, NRC contractors, and staff from other Federal agencies..

The first day of the workshop began with presentations from staff in the NRC Office of Nuclear Regulatory Research (RES), Office of New Reactors (NRO), and the Office of Nuclear Reactor Regulation (NRR). The RES presentation gave an overview of the RES Probabilistic Flood Hazard Assessment (PFHA) Research Program. Presentations by NRO and NRR staff provided perspectives on research needs and priorities related to flood hazard assessment and analysis of risks from flooding. The balance of the workshop included presentations from RES contractors describing the individual research projects comprising the PFHA Research Program.

1.1.1 Organization of Conference Proceedings

Section 1.2 provides the agenda for this workshop.

Section 1.3 presents the proceedings from the workshop, including a session summary and presentation slides.

Section 1.4 summarizes the workshop.

Section 1.5 lists the workshop attendees, including remote participants.

1.2 Workshop Agenda

First Annual NRC Probabilistic Flood Hazard Assessment Research Workshop at NRC Headquarters in Rockville, Maryland

AGENDA: OCTOBER 14, 2015

08:30–08:45	Opening Remarks
	Richard Correia, Director, Division of Risk Analysis, Office of Nuclear
	Regulatory Research; William Ott, Chief, Environmental Transport Branch,
	Division of Risk Analysis
08:45-09:00	Orientation and Introductions

Session I—Program Overview

09:00–10:15	NRC PFHA Research Program Overview Joseph Kanney, NRC
10:15–10:30	Break
10:30–1:15	Office of New Reactors Perspectives on Flooding Research Needs Michelle Bensi and Christopher Cook, NRC
11:15–12:00	Office of Nuclear Reactor Regulation Perspectives on Flooding Research Needs Jeffrey Mitman, NRC
12:00–13:00	Lunch

Session II – Climate

13:00–13:45 Regional Climate Change Projections—Potential Impacts to Nuclear Facilities *Ruby Leung, Rajiv Prasad and Lance Vail, Pacific Northwest National Laboratory (PNNL)*

Session III – Precipitation

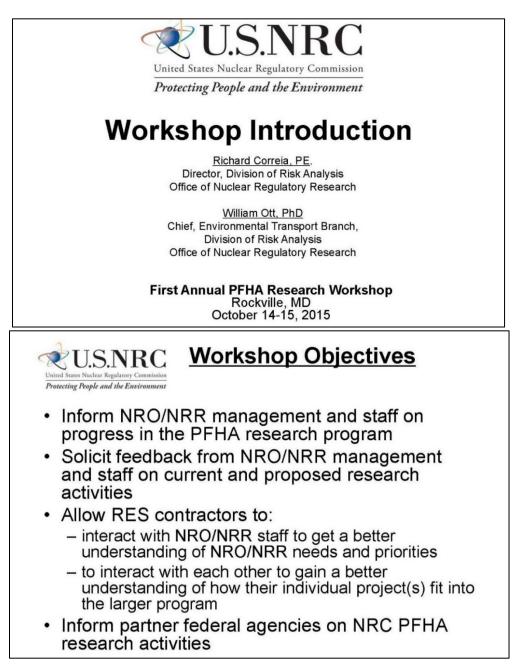
13:45–14:30	Estimating Precipitation—Frequency Relationships in Orographic Regions David Keeney and Katie Holman, U.S. Bureau of Reclamation (USBR)
14:30–15:15	Numerical Simulation of Local Intense Precipitation M. Levent Kavvas, Kei Ishida and Mathieu Mure-Ravaud, University of California at Davis
15:15–15:30	Break
15:30–16:30	SHAC-F (Local Intense Precipitation) Rajiv Prasad, Robert Bryce, Philip Meyer and Lance Vail, PNNL; Kevin Coppersmith, CCI
16:30–17:00	Day 1 Wrap-up

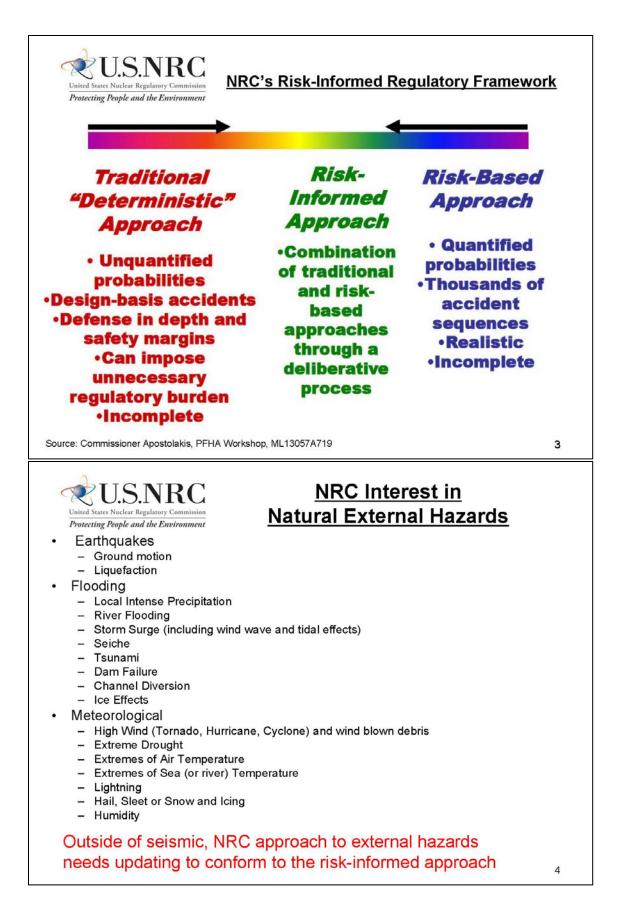
Session IV: Riverine and Coastal Flooding Processes

08:00–08:45	PFHA Technical Basis for Riverine Flooding Rajiv Prasad and Philip Meyer, PNNL
08:45–09:30	PFHA Framework for Riverine Flooding Brian Skahill and Aaron Byrd, US Army Corps of Engineers (USACE)
09:30–10:15	State of Practice in Flood Frequency Analysis Timothy Cohn, US Geological Survey (USGS); Joseph Wright, USBR
10:15–10:30	Break
10:30–11:15	Quantification and Propagation of Uncertainty in Probabilistic Coastal Storm Surge Models Norberto Nadal-Caraballo, Jeffrey Melby and Victor Gonzalez, USACE
11:15–12:00	USBR Dam Breach Physical Modeling Tony Wahl, USBR

12:00–13:00 Lunch

Session V: Plant Response to Flooding Events


13:00–14:15	Effects of Environmental Factors on Flood Protection and Mitigation Manual Actions
	Rajiv Prasad, Garill Coles, Kristi Branch, Angela Dalton and Nancy Kohn, PNNL; Timothy Carter, BCO; and Alvah Bittner, Bittner and Associates (B&A)
14:15–15:00	Flooding Information Digests
	Kellie Kvarfordt and Curtis Smith, Idaho National Laboratory (INL)
15:00–15:45	Framework for Modeling Total Plant Response to Flooding Events
	Zhegang Ma and Curtis Smith, INL
15:45–16:00	Performance of Penetration Seals
	Jacob Philip, NRC
16:00–16:30	Observations/Comments from NRO/NRR Staff and Management
16:30–1700	Open Discussion


1.3 Proceedings

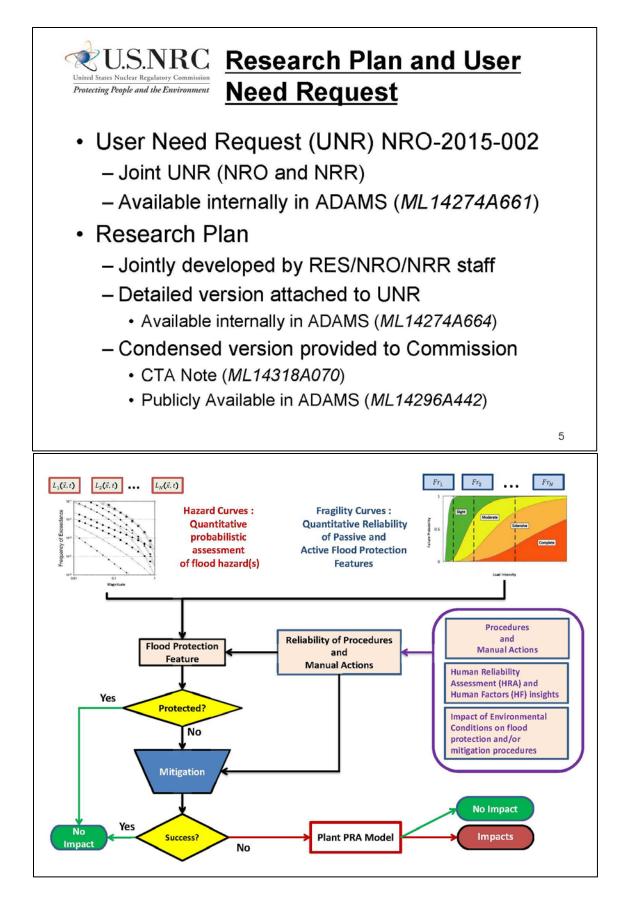
1.3.1 Day 1: Session I: Program Overview

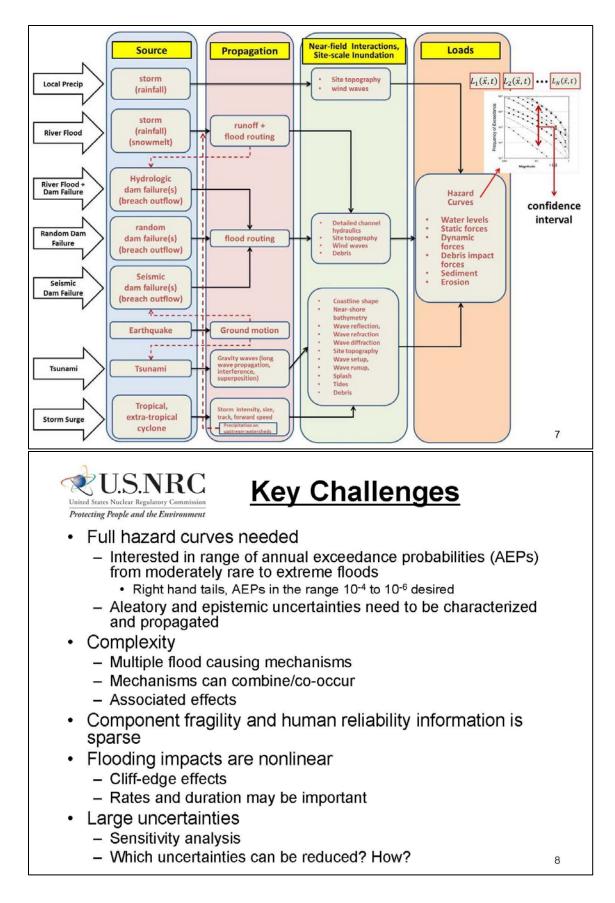
The workshop commenced with opening remarks from RES Division of Risk Analysis (DRA) management. The opening remarks covered workshop objectives and described how the PFHA research relates to the NRC's broad interests in external hazards assessment and the NRC's risk-informed regulatory framework.

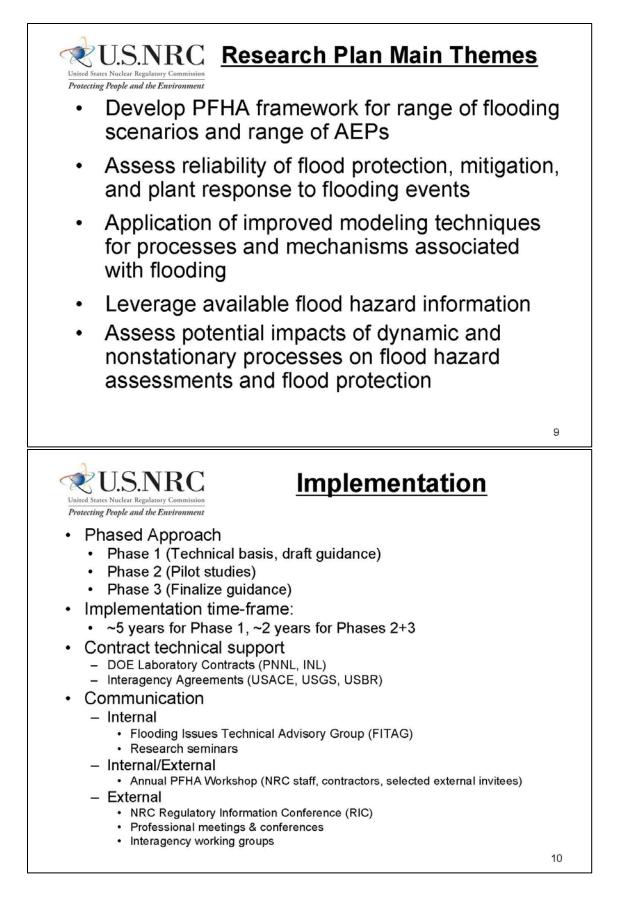
1.3.1.1 Opening Remarks. Richard Correia, Director, Division of Risk Analysis, Office of Nuclear Regulatory Research; William Ott, Chief, Environmental Transport Branch, Division of Risk Analysis

1.3.1.2 NRC PFHA Research Program Overview. Joseph Kanney, NRC

PFHA Research Program Overview



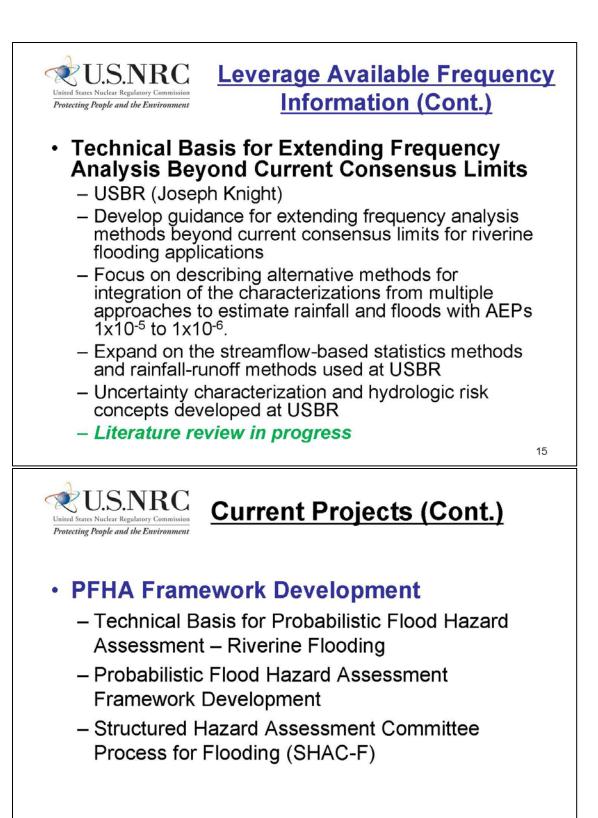

U.S.NRC **PFHA Research Objectives**


Protecting People and the Environment

- Support development of <u>risk-informed</u> licensing and oversight guidance and tools for assessing flooding hazards and consequences
 - Addresses significant gap in probabilistic basis for external hazards
 Seismic and wind hazard assessments currently have probabilistic basis
- Support both new reactor licensing and oversight of operating reactors
 - Design basis flood hazard assessments for new facilities
 - 10 CFR Part 50 traditional construction permits and operating licenses
 - 10 CFR Part 52 early site permits (ESPs), combined operating licenses (COLs)
 - Operating reactor oversight program (ROP)
 - Significance determination process (SDP) analyses for evaluating deficiencies related to flood protection at operating facilities

4

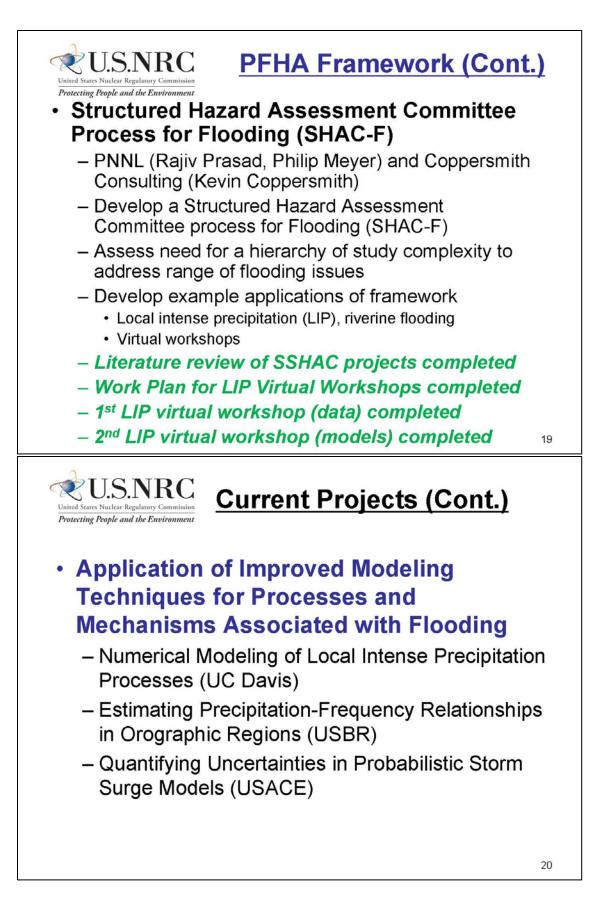
Overview and Brief Status of Current Projects


Current Projects

- Leveraging Available Flooding Information
 - Development of Flood Hazard Information Digests (INL)
 - Guidance on Application of Frequency Analysis Methods
 - Guidance on Application of State-of-Practice Flood Frequency Analysis Methods and Tools (USGS)
 - Technical Basis for Extending Frequency Analysis Beyond Current Consensus Limits (USBR)

- Practice Flood Frequency Analysis Methods and Tools
 - USGS (Tim Cohn, William Asquith, Julie Kiang)
 - Focus on best practices for characterizing the full uncertainty in flood frequency estimation using current consensus methods
 - Provide guidance on judging the validity of extrapolating hydrologic hazard curves to the ranges of interest for nuclear power plant applications.

- Contract awarded in mid-September


- Technical Basis for Probabilistic Flood Hazard Assessment – Riverine Flooding
 - PNNL (Rajiv Prasad, Philip Meyer)
 - Critical review of the state of practice in PFHA modeling for riverine flooding (absent dam failure)
 - · Data-driven and simulation approaches
 - Draft NUREG report currently under review
 - Final report should be completed by end of October

PFHA Framework (Cont.)

- Probabilistic Flood Hazard Assessment Framework Development – LIP, Riverine
 - USACE (Aaron Byrd, Brian Skahill)
 - Develop PFHA Framework for range of flooding scenarios and annual exceedance probabilities (AEPs)
 - Focus on local intense precipitation (LIP) and riverine flooding
 - Literature review completed
 - Framework elements currently being investigated comprise:
 - Markov Chain Monte Carlo (MCMC) simulation
 - Bayesian Hierarchical Modeling for both precipitation and stream flows (spatial and temporal correlations)
 - Bayesian Model Averaging (epistemic uncertainty)

18

1-17

- Quantifying Uncertainties in Probabilistic Storm Surge Models
 - USACE (Norberto Nadal-Caraballo, Jeff Melby, Mary Cialone, Victor Gonzalez, Chris Massy)
 - Fully quantify epistemic and aleatory uncertainties inherent in probabilistic storm surge modeling.
 - Assess propagation of uncertainties in joint probability analyses of storm surge hazard
 - Literature review on previous storm surge modeling studies has been completed
 - Draft Report on Epistemic Uncertainties in Storm Recurrence Rate Models is under review
 - Work plan for Exploring Technically Defensible Data, Models, and Methods for Defining Joint Probability of Storm Parameters completed

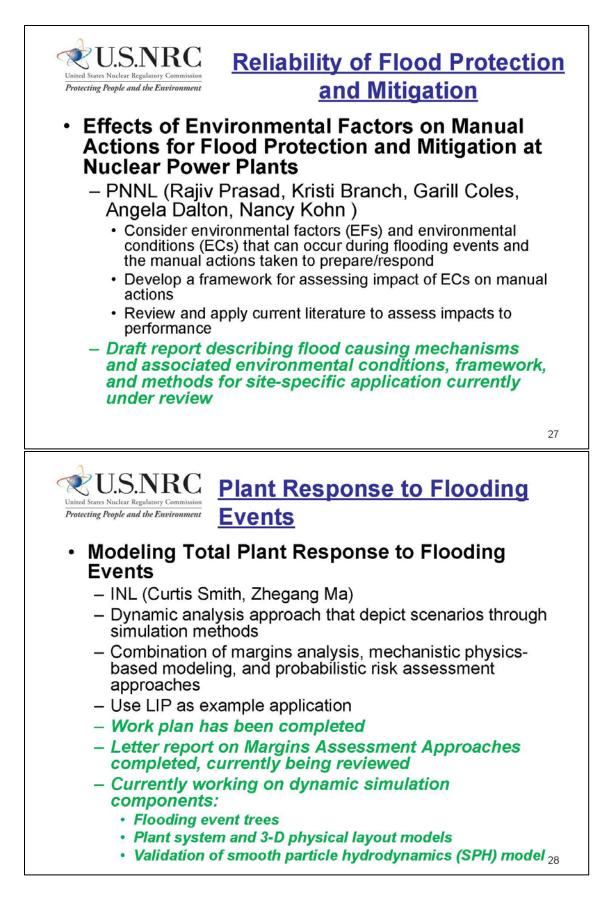
23

Current Projects (Cont.)

- Reliability of Flood Protection and Mitigation
 - Performance of Penetration Seals (FRM)
 - Erosion Processes in Embankment Dams (USBR)
 - Effects of Environmental Factors on Manual Actions for Flood Protection and Mitigation at Nuclear Power Plants (PNNL)

Reliability of Flood Protection and Plant Response to Flooding Events (Cont.)

Performance of Penetration Seals


- Fire Risk Management Inc. (Mark Cummings)
 - Subcontractors: Alion, Nuvia
- Develop standard testing procedures, acceptance criteria, and protocols to assess effectiveness and performance
- Testing of selected penetration seal designs
- Contract recently awarded

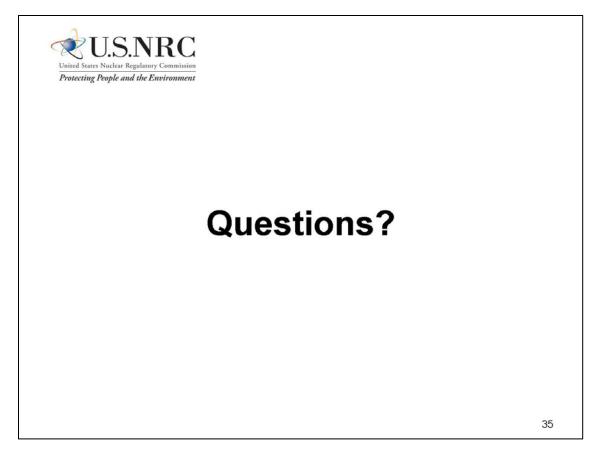
Reliability of Flood Protection and Mitigation

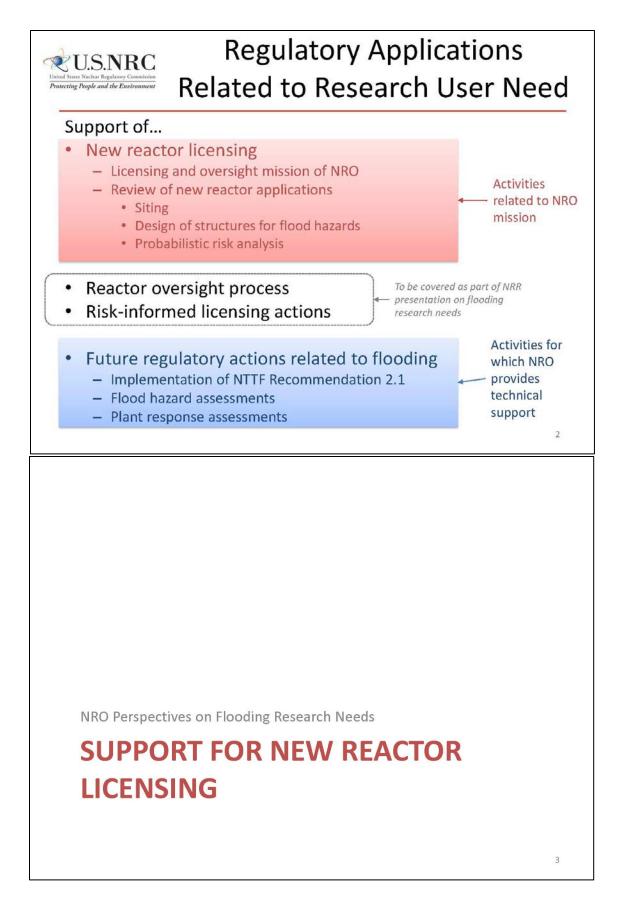
Erosion Processes in Embankment Dams

- USBR (Tony Wahl)
- Study dam breach processes through physical hydraulic model tests
 - Construct 2 zoned physical models of rockfill dams with clay cores and filter zones.
 - One model to be tested with overtopping flow, and the second to be tested with internal erosion through a designed embankment defect (piping)
 - Post-test data analysis will include the development of correlations between measured variables, comparison to established relationships from previous research on this topic, and comparison of test results to predictions made with breach erosion computer models.
- Shakedown test of new test facility completed
 - Homogeneous cohesive embankment, with internal erosion through a pre-formed flaw
- First rockfill dam model under construction

- Regional Climate Change Projections: Potential Impacts to Nuclear Facilities
 - PNNL (Ruby Leung, Rajiv Prasad)
 - Annual review of climate science and modeling research and assessments of potential impacts to NPPs
 - Hydrological and non-hydrological impacts
 - Project Update webinar held June 15th
 - Reviewed scope of reports, information sources to be used, initial observations
 - First annual report to be submitted October 30th

29


Support for NTTF Phase 2 Decisions


Plans for New Project Starts

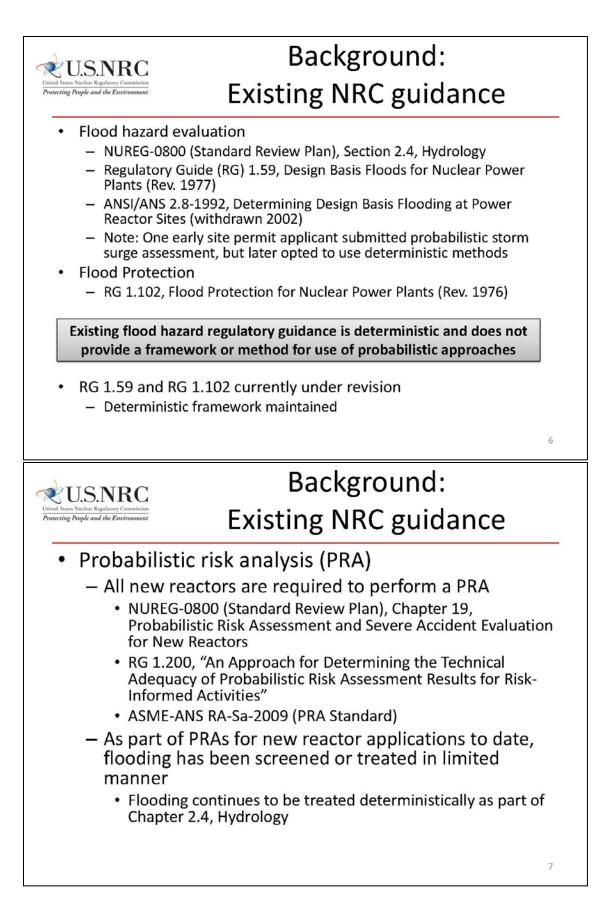
1.3.1.3 NRO Perspectives on Flooding Research Needs. Michelle Bensi and Christopher Cook, NRC

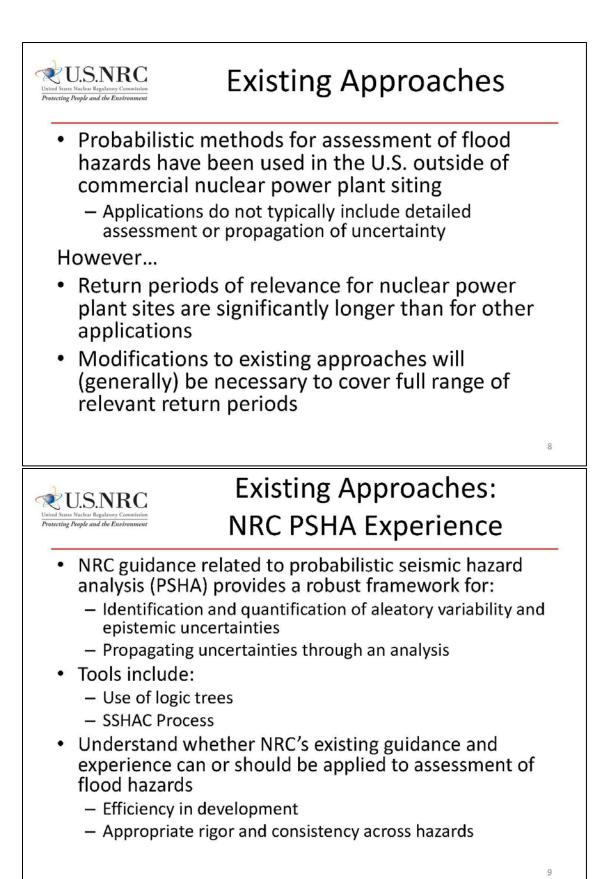
Motivation

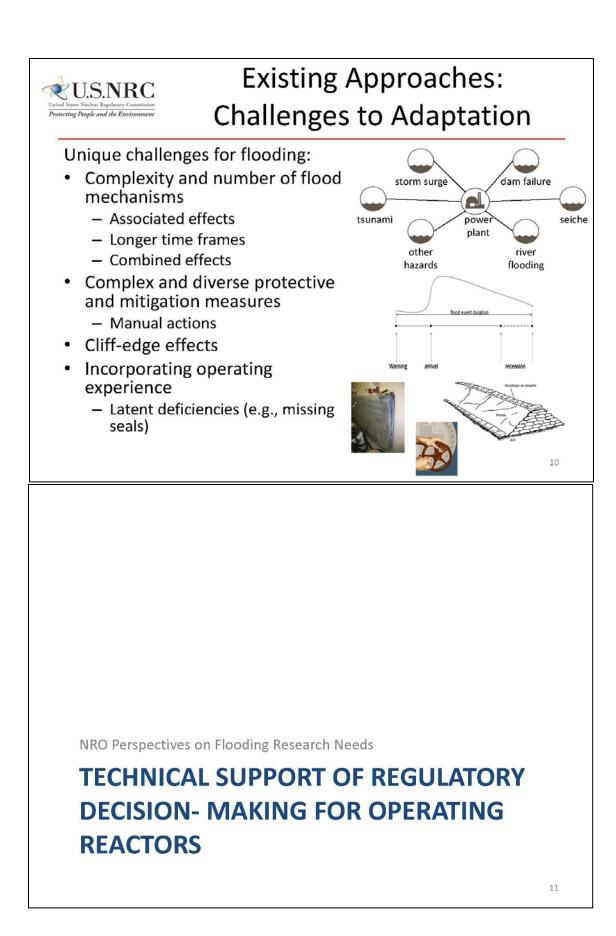
- NRC utilizes a risk-informed regulatory framework
- PRA Policy Statement
 - Formalized the Commission's commitment to riskinformed regulation through expanded use of PRA
 - NRC will increase the use of PRA methods in regulatory matters to the extent supported by the state-of-the-art in PRA methods/data and in a manner that complements the NRC's deterministic approaches

U.S.NRC

Motivation (con'd)


4


5


- As the NRC has become increasingly riskinformed, the assessment of flood hazards has lagged behind other natural hazards
- Need for probabilistic approaches for hazard assessment and PRAs

New reactors

- Operating reactors (discussed later)
- Build on and adapt existing approaches to advance state of practice efficiently

Background: Post-Fukushima Activities Related to Flooding

NTTF 2.3 – Walkdowns

Licensees identify and address degraded, nonconforming, or unanalyzed conditions relative to a plant's current licensing and design bases.

NTTF 2.1 – Hazard Reevaluations

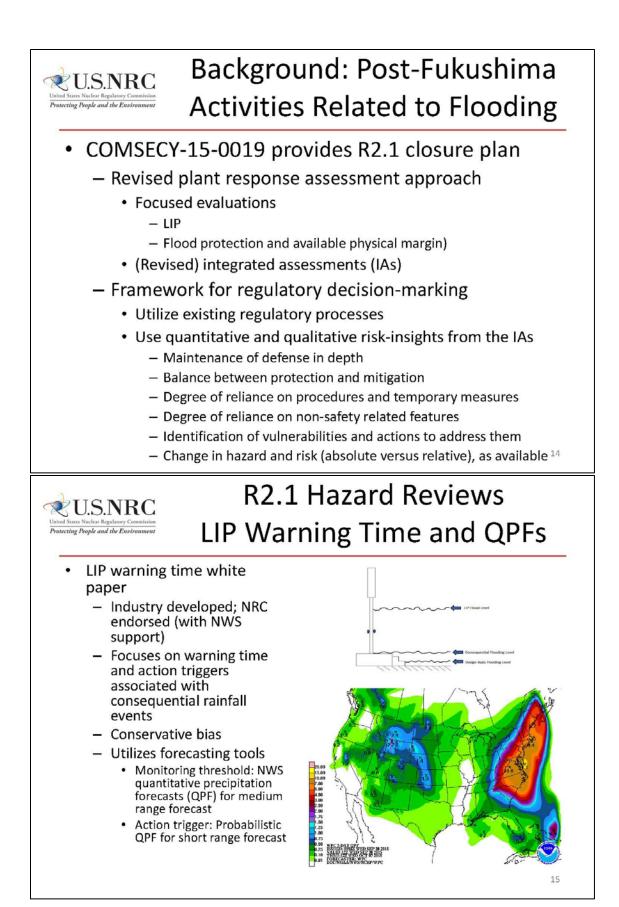
Licensees reevaluate flooding hazard based on present day guidance/methods used to define the design basis for new reactors.

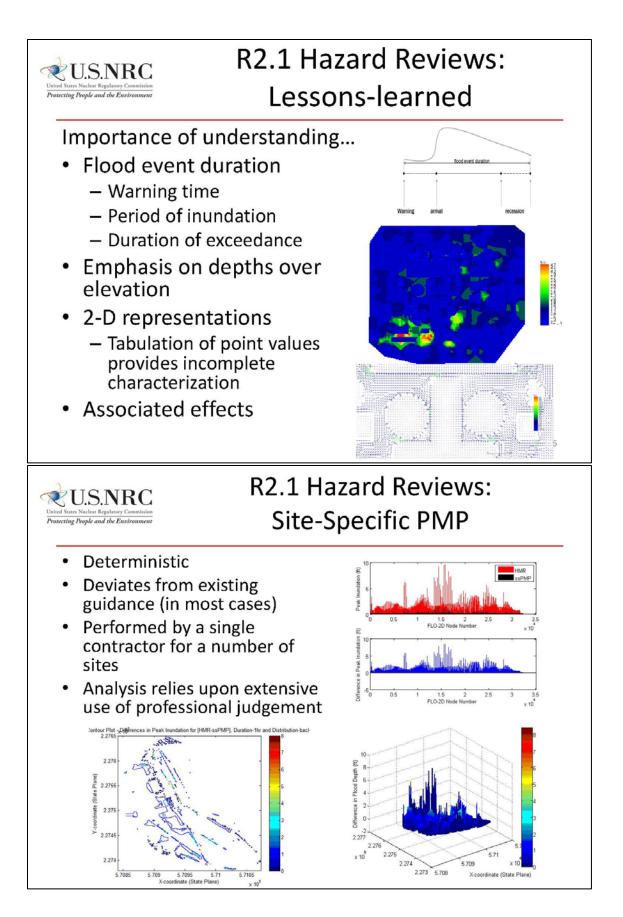
NTTF 2.1 - Interim Actions

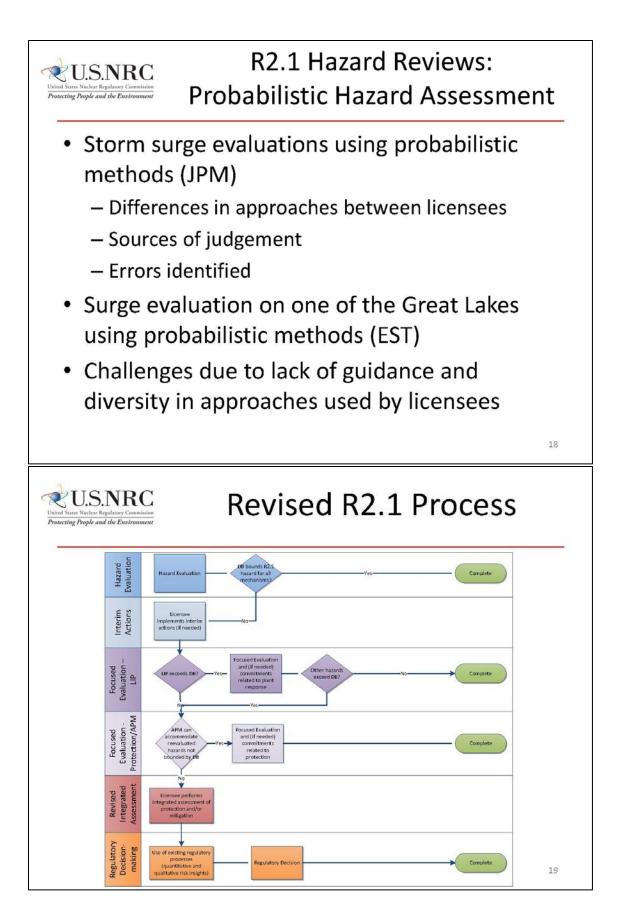
If the design basis does not bound reevaluated hazard: Licensees evaluate the need for interim actions while the longer-term integrated assessment is performed

NTTF 2.1 – Integrated Assessment & Focused Evaluations

If the design basis does not bound reevaluated hazard: Licensees assess plant response

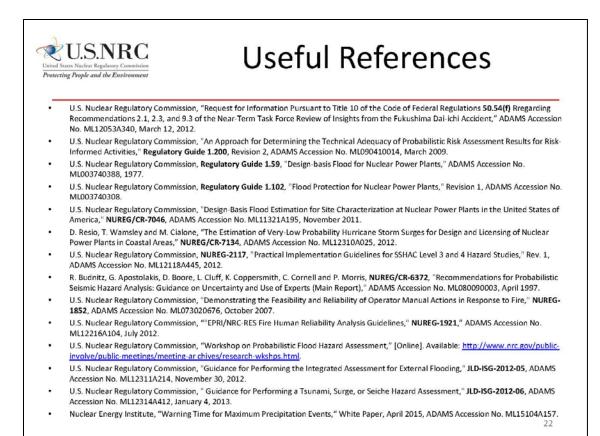

Regulatory Actions

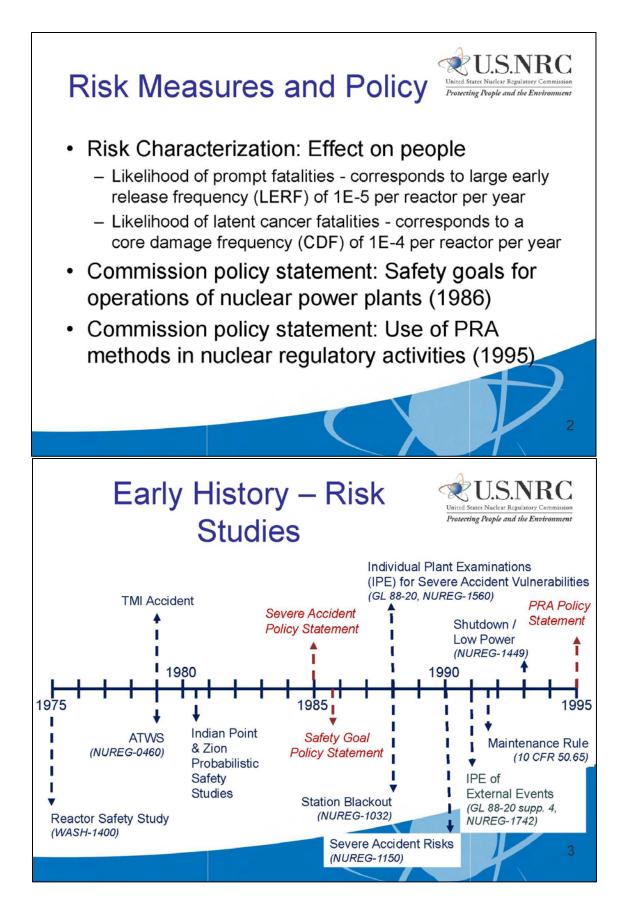

NRC staff determines whether additional regulatory actions are necessary to provide additional protection against the updated flooding hazards

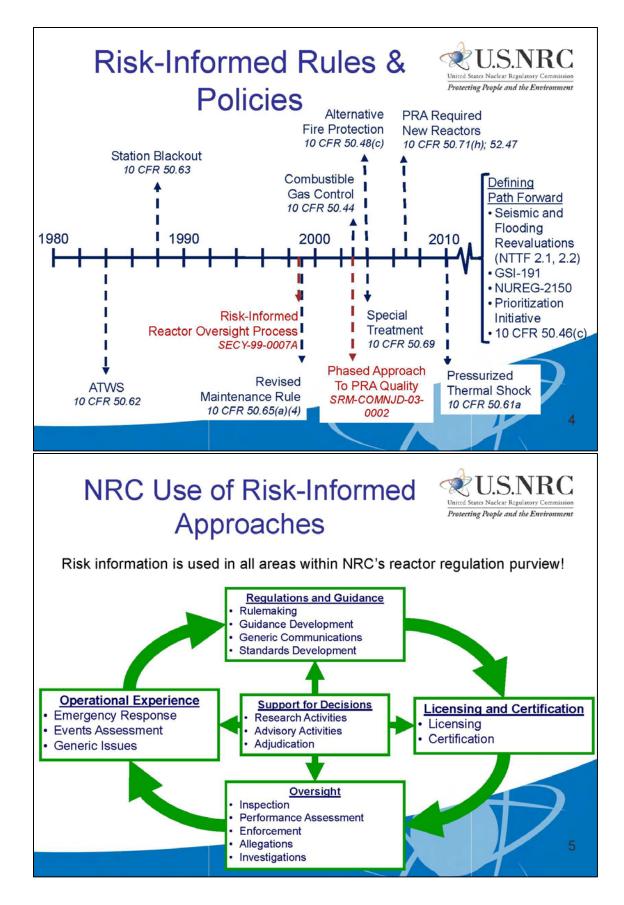


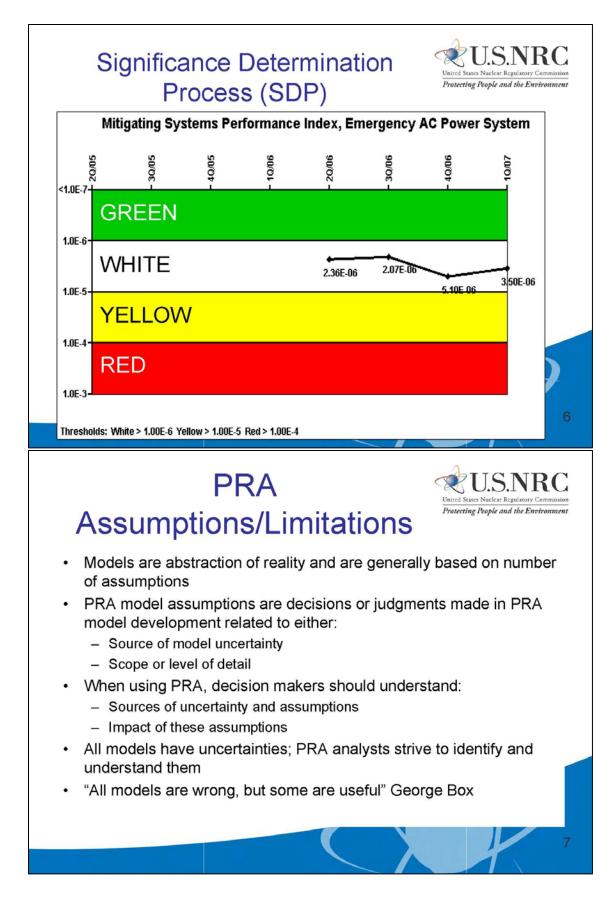

Background: Post-Fukushima Activities Related to Flooding

- March 12, 2012 50.54(f) letter
 - Gather sufficient information to determine whether licenses should be modified, suspended, or revoked
 - Walkdowns, hazard reevaluations, integrated assessments
- SRM to COMSECY-14-0037
 - Include graded approach regarding integrated assessments
 - Be risk-informed and performance-based
 - Reduce unnecessary conservatisms; identify areas with insufficient conservatisms
 - Evaluate changes to guidance to introduce more realism
 - Focus on scenarios with cliff-edges and potential for substantial safety benefit
 - Consider available physical margin data
 - Develop regulatory decision criteria and guidance




21

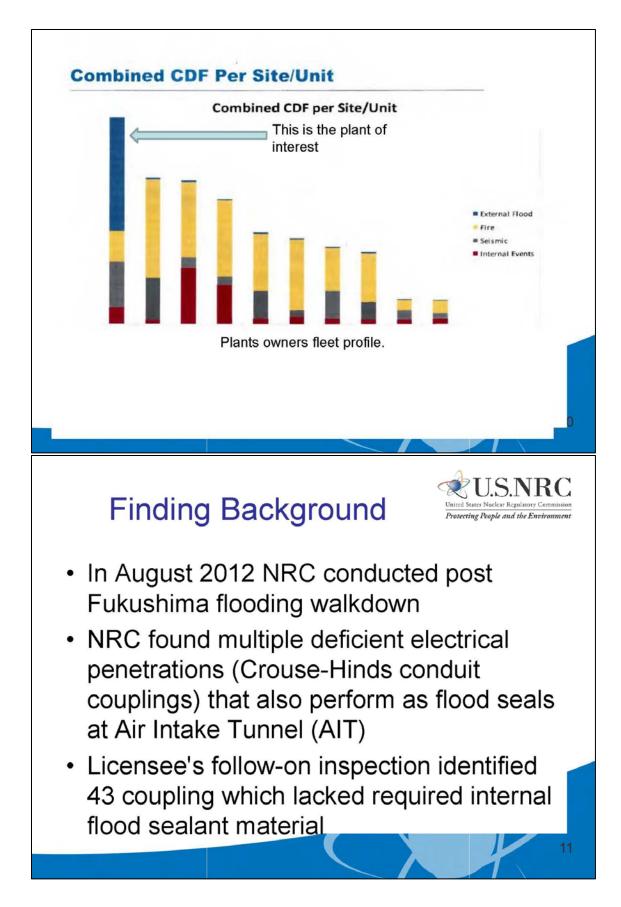



1.3.1.4 Office of Nuclear Reactor Regulation Perspectives on Flooding Research Needs. Jeffrey Mitman, NRC

Office of Nuclear Reactor Regulation Perspectives on Flooding Research Needs

Jeff Mitman Senior Reliability and Risk Analyst NRR/DRA/APHB October 14, 2015

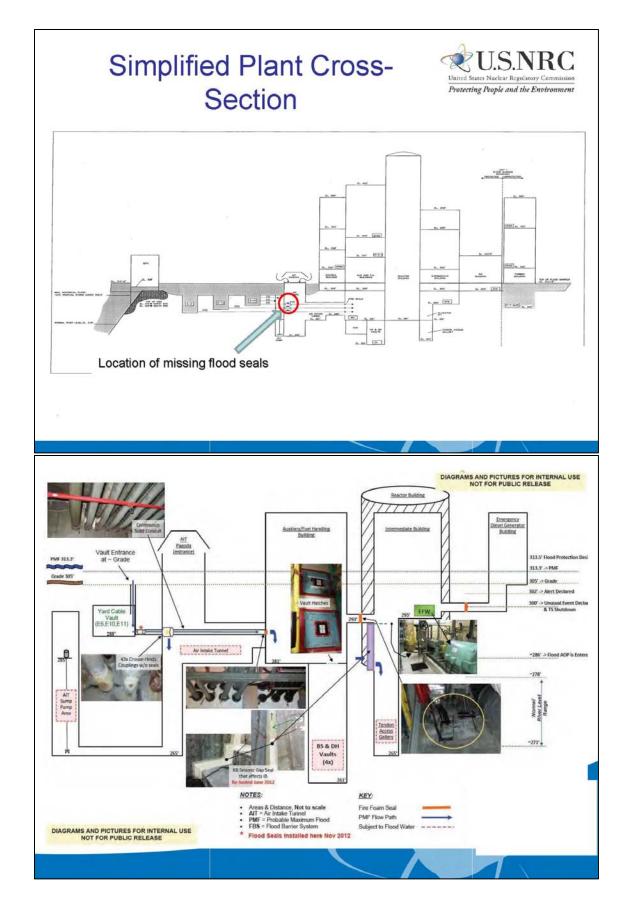
1-40

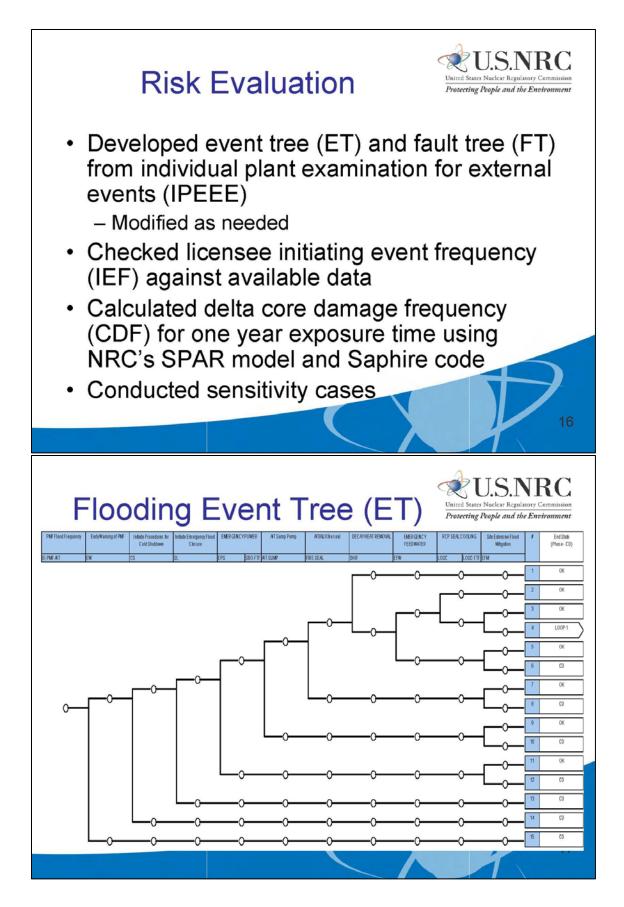

Challenges - Healthy Skepticism of PRA

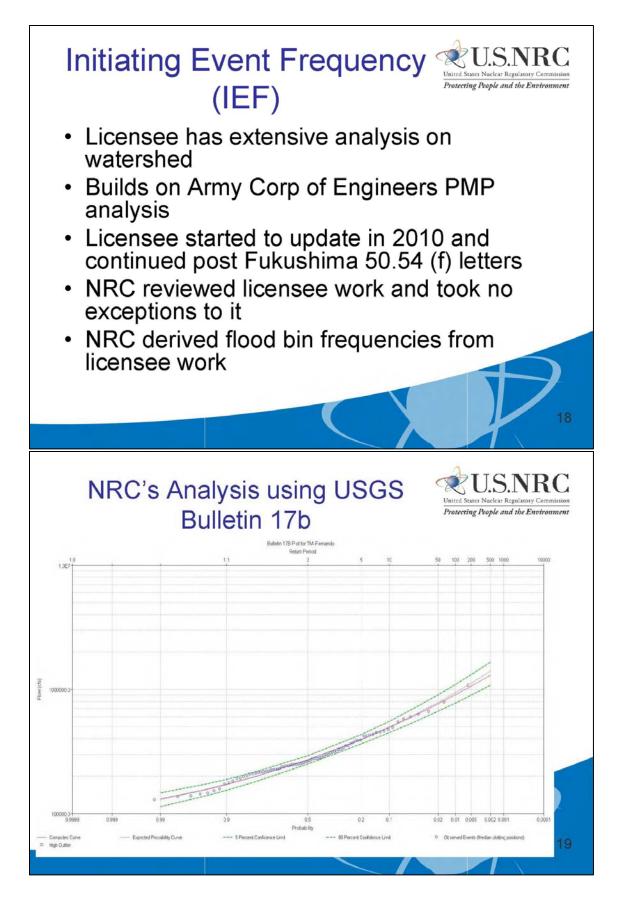
- Modeling assumptions
 - Mathematical approximations (e.g. linear failure rate, λT)
 - Ability to identify all relevant failure modes and to think in "failure space"
 - Ability to model human cognitive process
- Availability of data
- Reliance on expert estimation
- Vulnerable to bias
- · Presumption of binary states Boolean, not fuzzy logic
- · Uncertainties and their propagation
 - Epistemic
 - Aleatory (stochastic)
- Especially for SDP precision is not goal but accuracy is important
- We know there will be significant uncertainty and process is setup to deal with it
- · Timeliness is critical

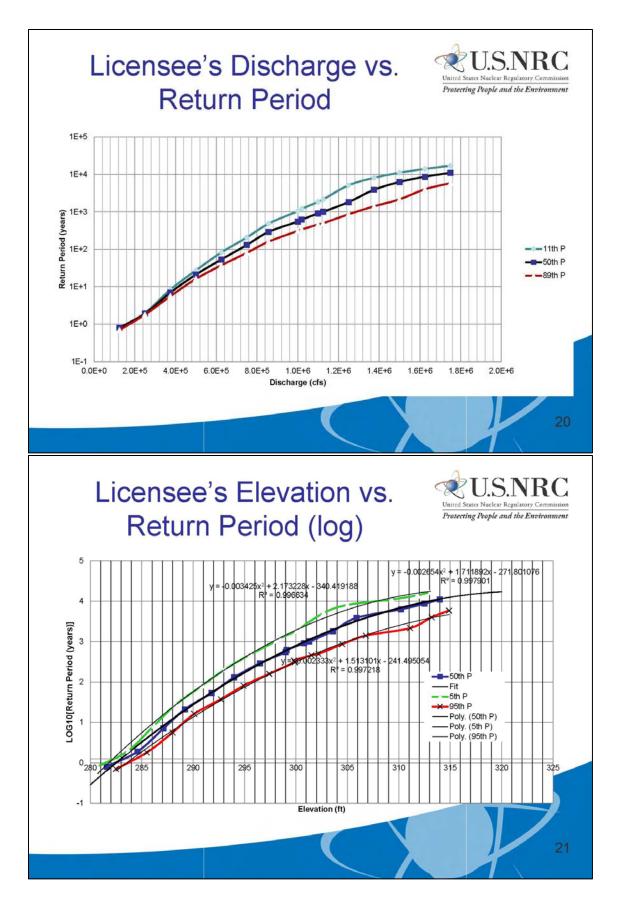
Flooding Example

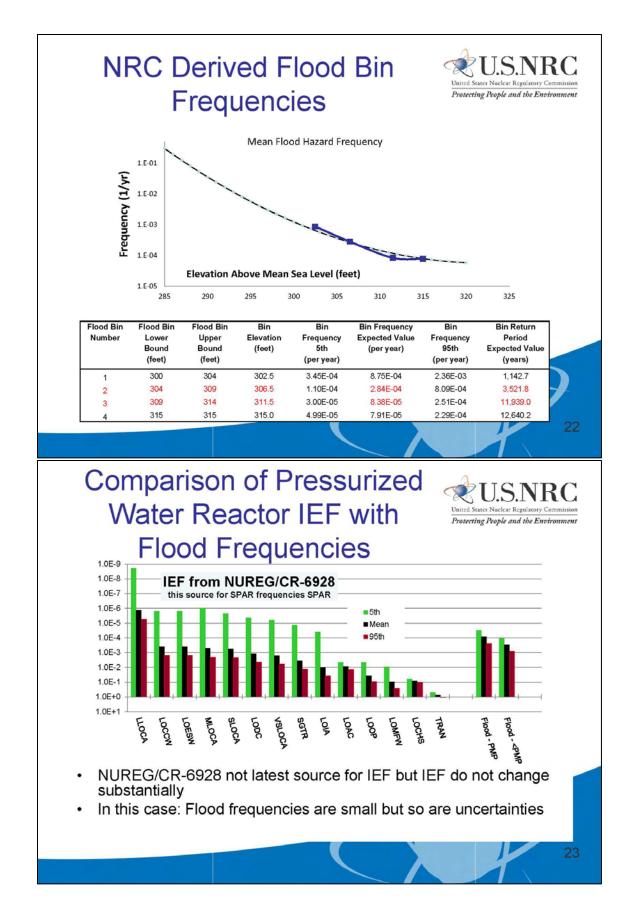
AIT Crouse-Hinds Conduit Couplings

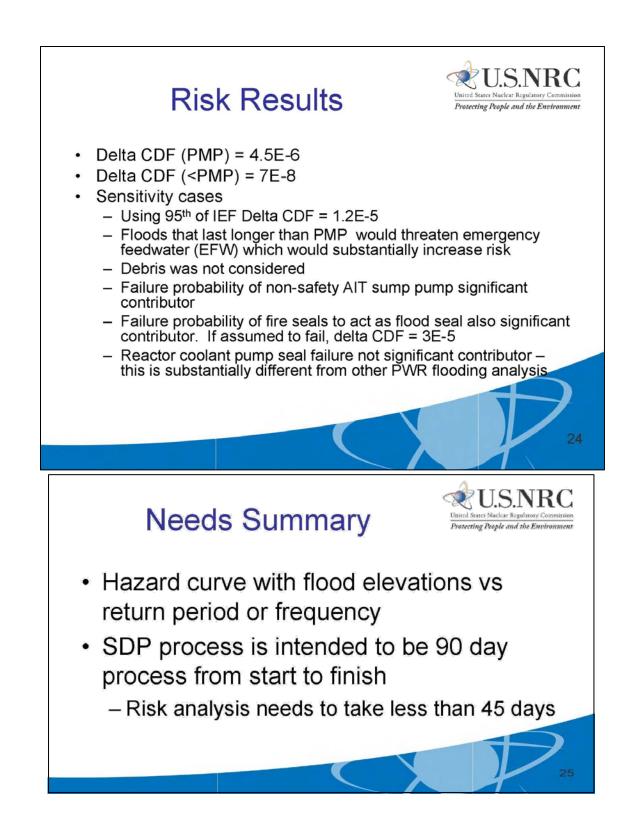


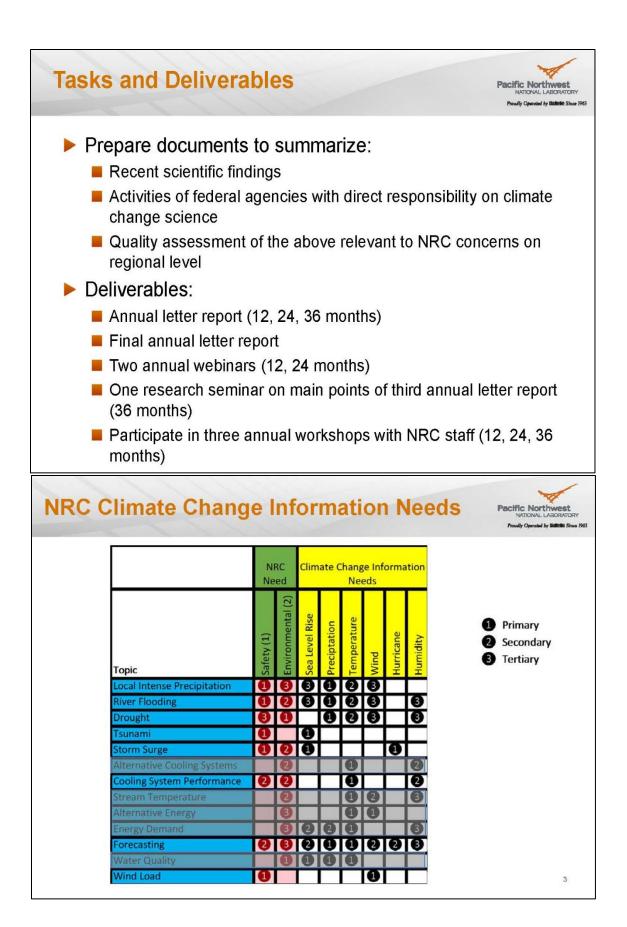


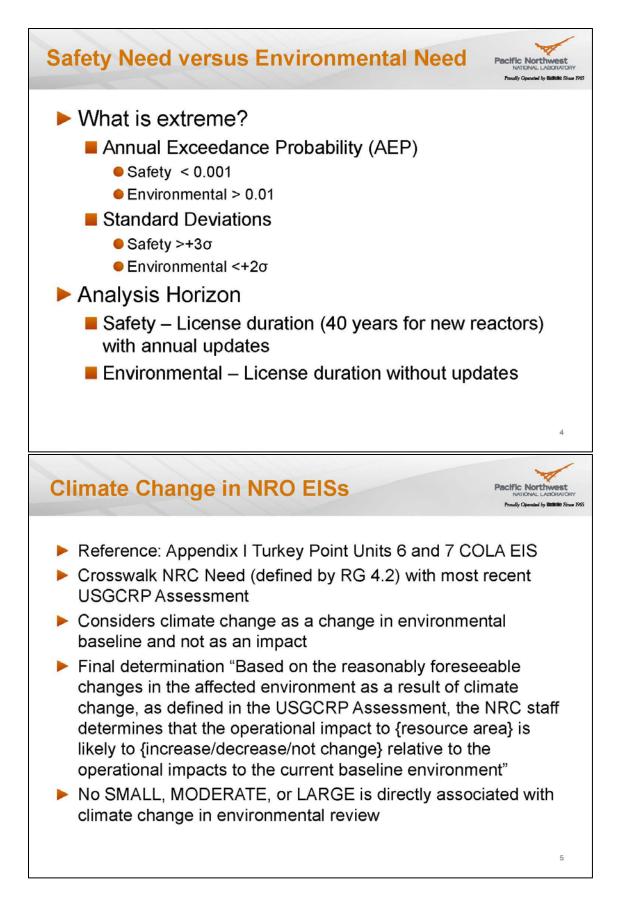

AIT Crouse-Hinds Conduit Couplings

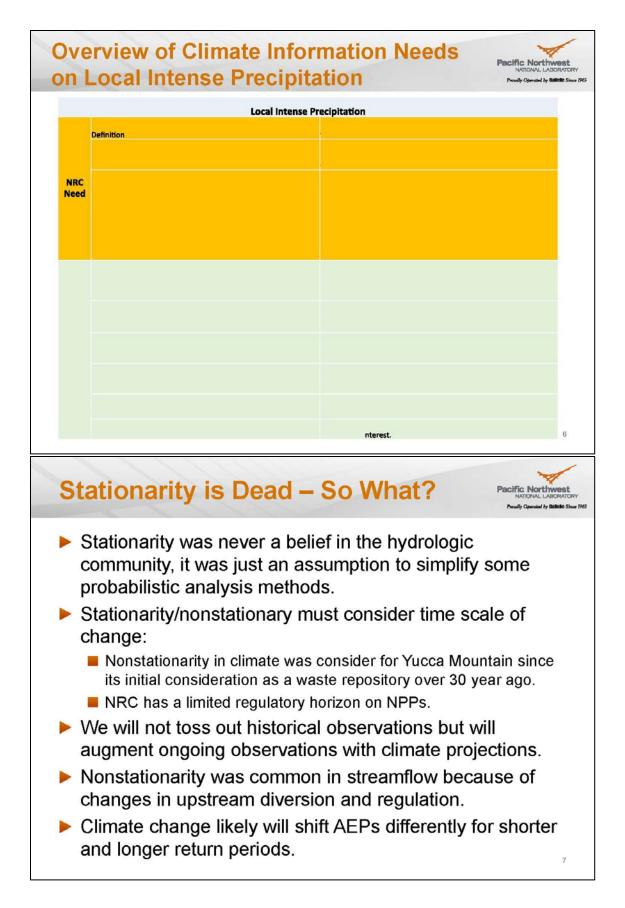


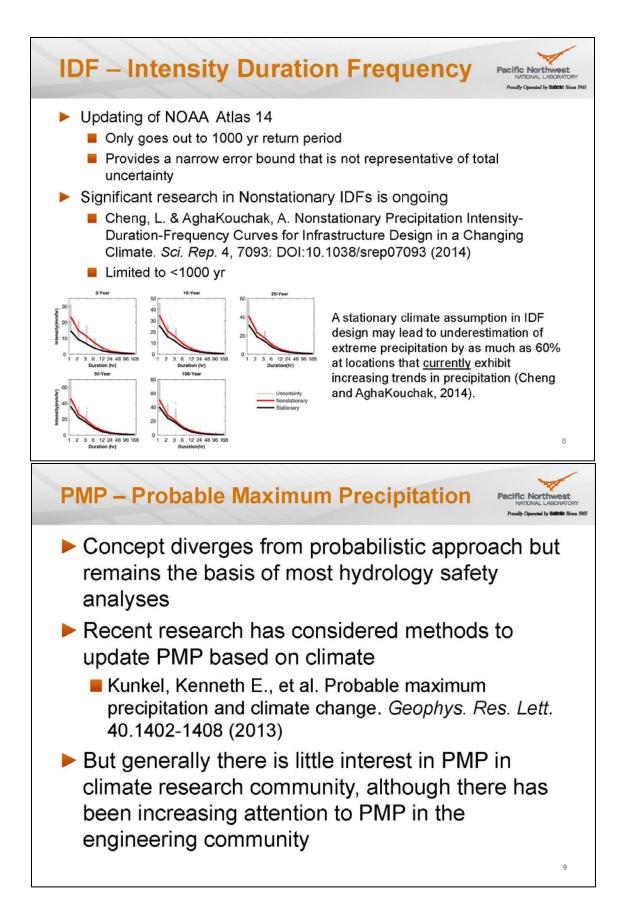


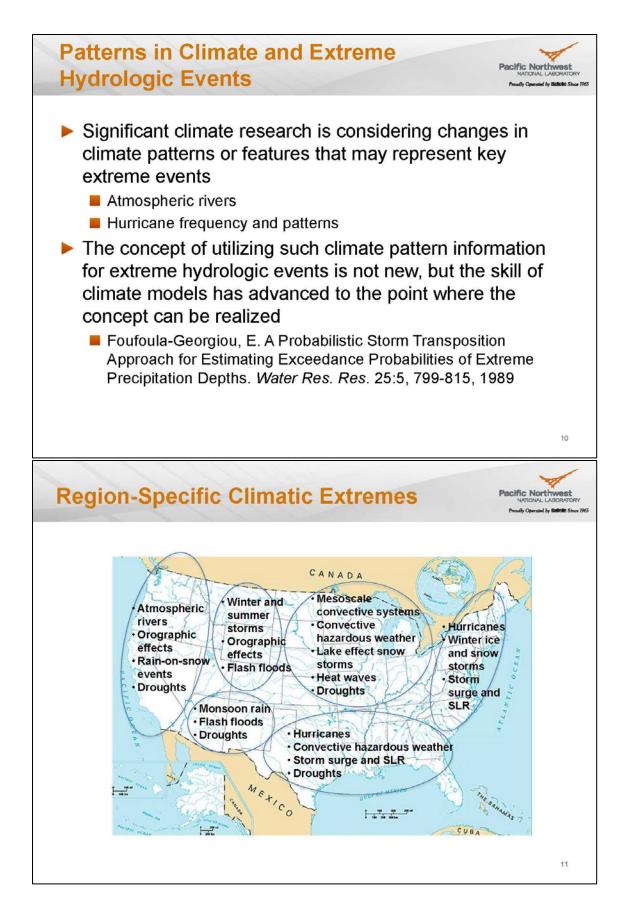


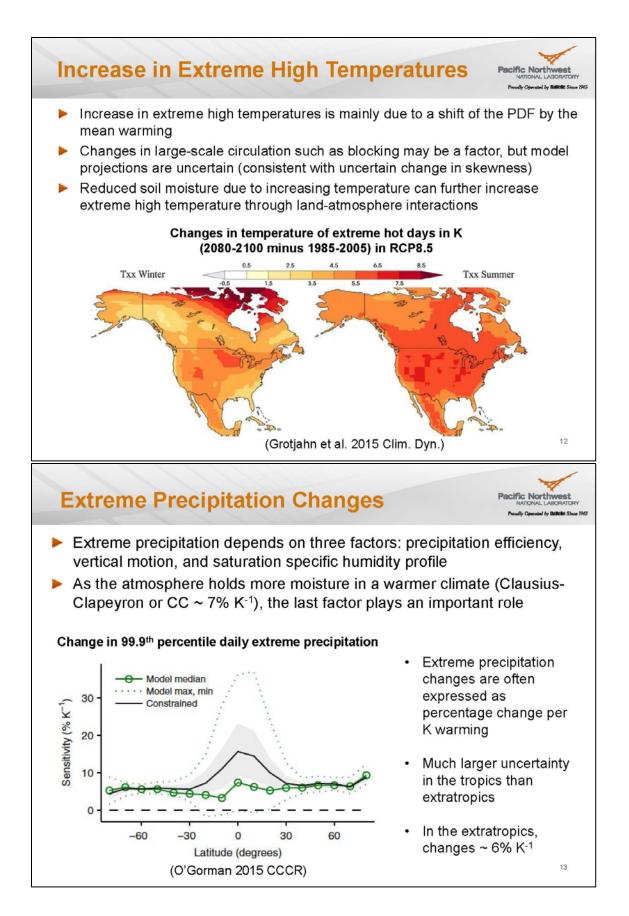


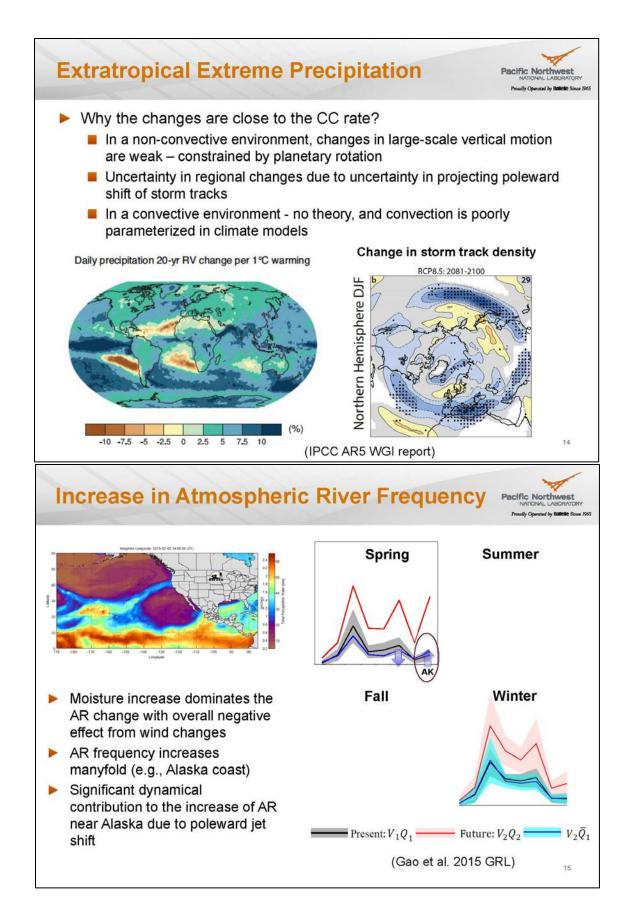

1.3.2 Day 1: Session II: Climate

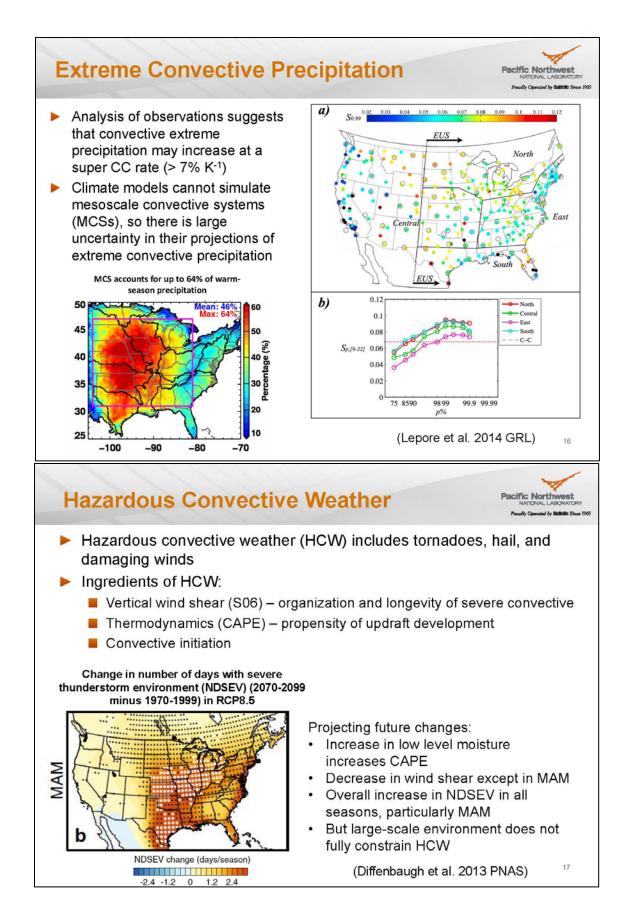

Session II of the workshop focused on NRC-funded climate change research devoted to understanding the scope and scale of potential impacts to nuclear facilities. The NRC PFHA Research Program has one funded project in this area with Pacific Northwest National Laboratory (PNNL). Thus, PNNL researchers gave the only presentation for this session, listed below and followed by a copy of the slides.

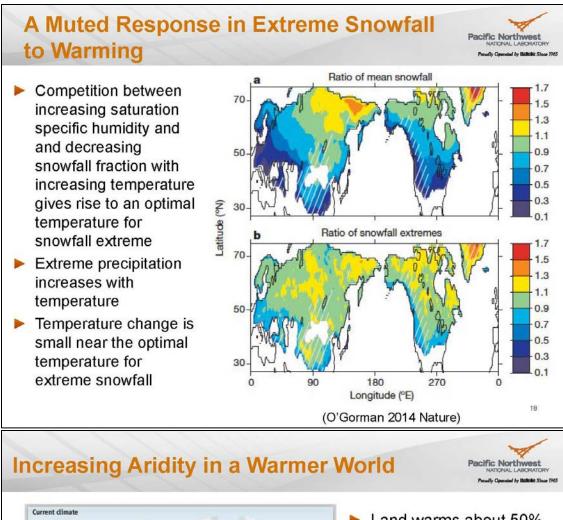

1.3.2.1 Regional Climate Change Projections—Potential Impacts to Nuclear Facilities. Ruby Leung, Rajiv Prasad, and Lance Vail, PNNL

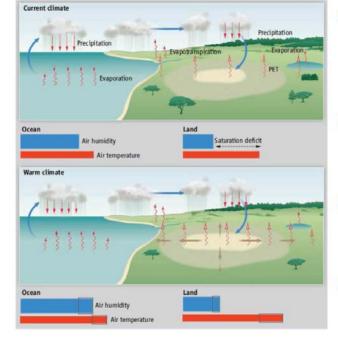

1		Pacific Northwest National Laboratory Proudy Operated by Ballete Since 1965
	Regional Climate Change Projectio Potential Impacts to Nuclear Facilit	
	L. Ruby Leung ¹ , Lance Vail ² , and Rajiv Prasad ²	
	¹ Atmospheric Sciences and Global Change Division ² Hydrology Group Pacific Northwest National Laboratory	
	First Annual NRC PFHA Research Program Workshop October 14-15, 2015, North Bethesda, MD	

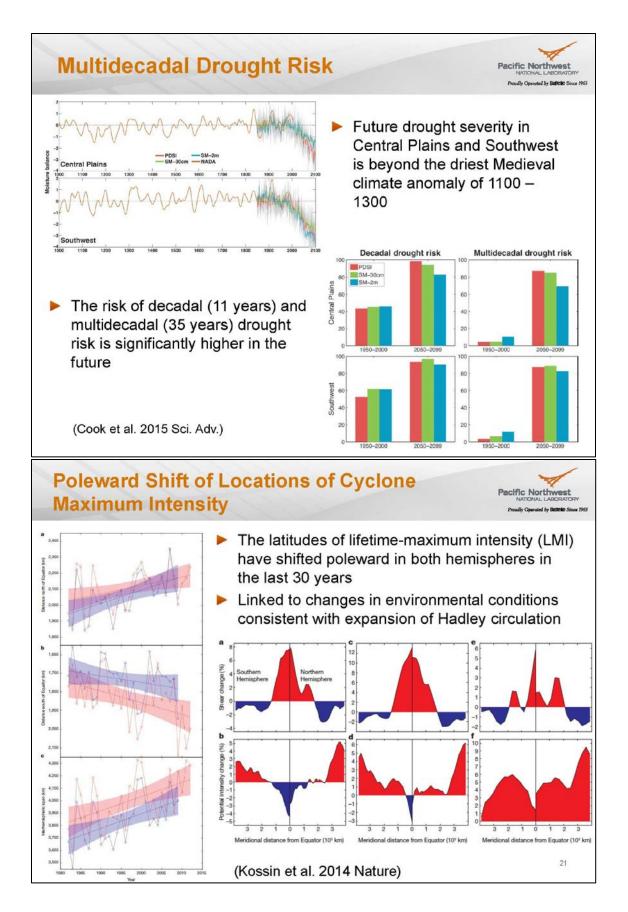


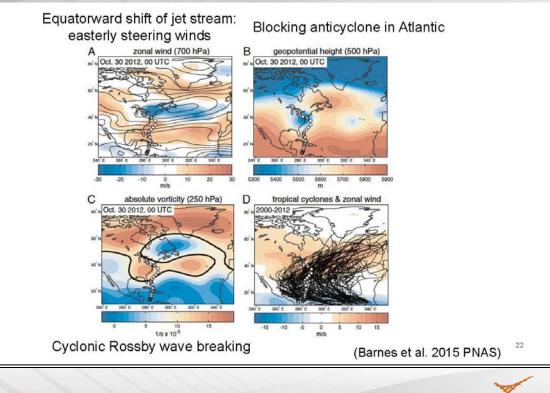






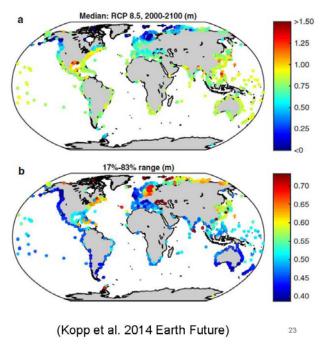






- Land warms about 50% more than the ocean because of limited availability of surface water
- Water vapor over land does not increase fast enough relative to the warming
- Larger saturation deficit increases PET and enhances aridity (P/PET)
- Regional changes are more complicated

(Sherwood and Fu 2014 Science)



Atmospheric Patterns that Steered Sandy onto the US Coast

Sea Level Rise

- Global coupled climate models are used to project dynamical sea level changes due to climate
- Large biases remained in equatorial and southern oceans, and continental ice sheet is missing in some coupled models
- By the end of the century, uncertainty related to Antarctic ice sheet dominates uncertainty in projecting regional SLR, but uncertainty in projecting dynamic sea level in North Atlantic dominates uncertainty in projecting SLR in Northeast US

Pacific Northwest

Pacific Northwest

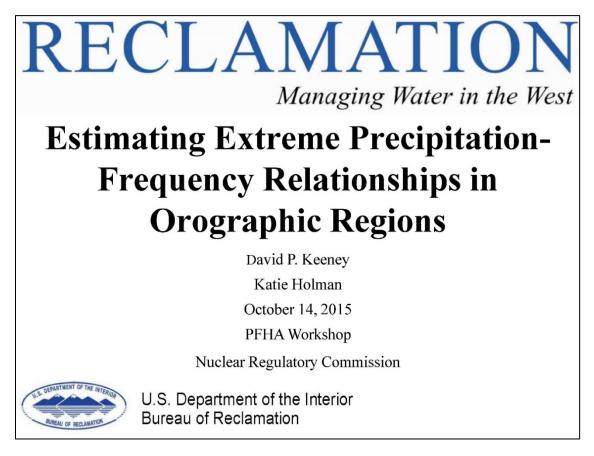
with Oderstal in Ratinia Since 1965

Climate Modeling

24

Pacific Northwest

- The skill of climate models has increased due to increasing model resolution, improved physics parameterizations, and representing processes missing from previous models
- A hierarchy of models and simulations are increasingly used in the last decade to advance theories and understanding of model biases and uncertainty
- There are multiple evidences that simulations of important climatic features such as jet stream and storm tracks converge at ~ 50km resolution, suggesting future generations of climate models applied at such resolution may provide more robust simulations and projections of large-scale circulation
- Future directions in climate modeling include adoption of seamless prediction (unified modeling) approach, interoperable modeling framework, disruptive computing technology, more attention to uncertainty quantification
- The first US Climate Modeling Summit was held in February 2015: brought together six premier US climate modeling centers (NOAA GFDL, NOAA NCEP, NASA GISS, NASA GMAO, CESM, DOE ACME) to strategize priorities of national interest
- CMIP6 final endorsement of MIPs in April 2015; GMD special issue on final CMIP6 experimental design and forcing by December 2015


Hydrologic Modeling

- Recent advances in hydrologic modeling have been predominately driven by advances in IT resources and the need to support assessments of impacts of climate change on water resources
- Enhanced data management infrastructure and new spatial data products (including remotely sensed information) have allowed more rapid and automated data assimilation into hydrologic models
- In order to assimilate products provided by the climatological community as inputs to their analyses, the hydrologic community has recently developed capabilities to provide meteorological records with multivariate coherence in space and time that allows generation of meaningful streamflow records based on the climate results
- The hydrological process models have not been noticeably altered over the past decades - while programming has improved and the spatial resolution has improved, the fundamental process representations remain rather simple expressions of conservation of mass (hydrology), conservation of energy (water temperature) and conservation of momentum (hydraulics)
- Improvement in spatial resolution and data assimilation of spatial data make it easier to use models but, unfortunately, no less likely to misuse models by not adequately confirming the model configuration and parameterization

1.3.3 Day 1: Session III: Precipitation

Session III of the workshop focused on NRC-funded precipitation-related research. Researchers from the U.S. Bureau of Reclamation (USBR) discussed statistical modeling approaches for estimating extreme precipitation in orographic regions (i.e., regions where complex terrain influences precipitation processes). Researchers from the University of California at Davis presented work exploring the feasibility of direct numerical simulation of intense precipitation processes associated with mesoscale convective systems and tropical cyclones. A joint presentation by staff from PNNL and Coppersmith Consulting, Inc. (CCI), discussed research conducted to extend and adapt the Senior Seismic Hazard Assessment Committee (SSHAC) process used in probabilistic seismic hazard assessments (PSHAs) to develop a structured hazard assessment committee for flooding (SHAC-F) and specifically to apply the process to local intense precipitation flooding.

1.3.3.1 Estimating Precipitation—Frequency Relationships in Orographic Regions. David Keeney and Katie Holman, USBR

Outline

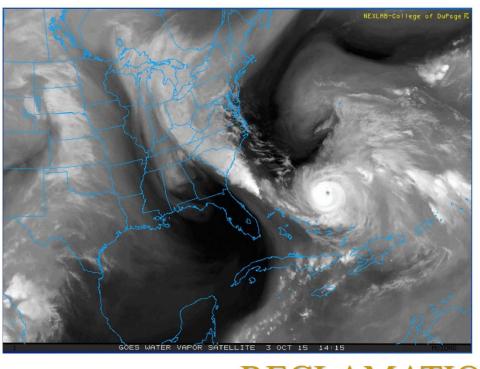
- Background
- Objectives of project
- Precipitation-frequency relationships
- Common practice at Reclamation
- Taylor Park Dam study
- Moving forward

RECLAMATION

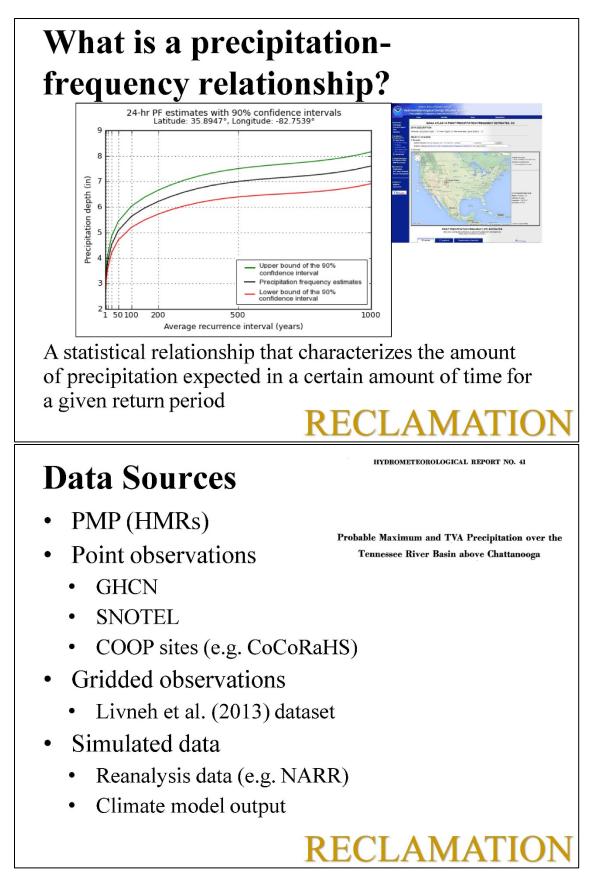
Background

- NRC requested research to improve PMP estimates in Eastern US
- Reclamation completed a pilot study for the Carolinas in 2011
- Phase II focuses on regional precipitationfrequency analyses in orographic regions

RECLAMATION


Objectives of the Phase II Project

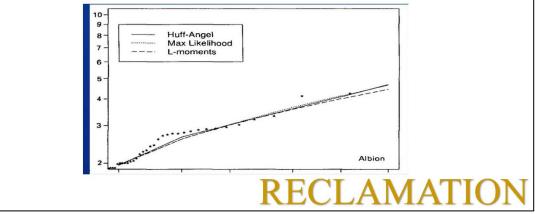
- Literature review of historical precipitation analysis including recent advances
- Orographic storm methodology

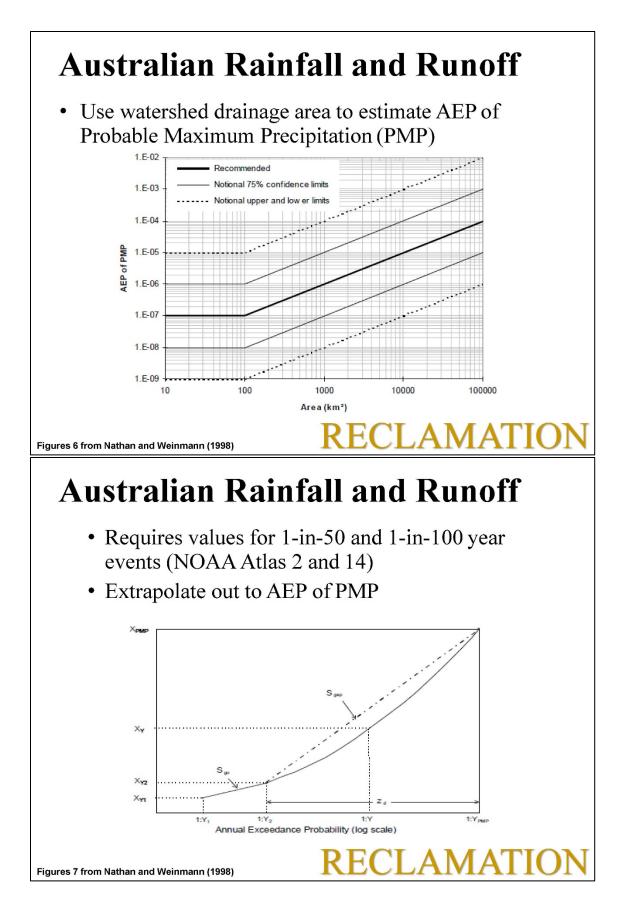


• Precipitation-frequency analysis

RECLAMATION

RECLAMATION


Methods of Estimation


- Huff-Angel
- Australian Rainfall and Runoff
- Maximum Likelihood Estimation
- Regional L-moments

RECLAMATION

Huff-Angel

- From Bulletin 71 in 1992
- Update to TP40, focus on Midwest
- Log-log graphical analysis
- Return periods from 2 months to 100 years
- Linear-fit for return periods ≥ 2 years

Maximum Likelihood Estimation

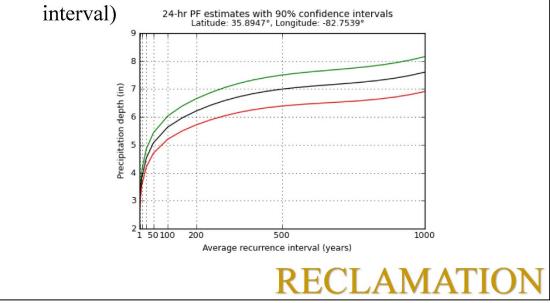
- Assume a distribution
- Estimate parameters based on set of observations
- Sensitive to short records (poor estimation)

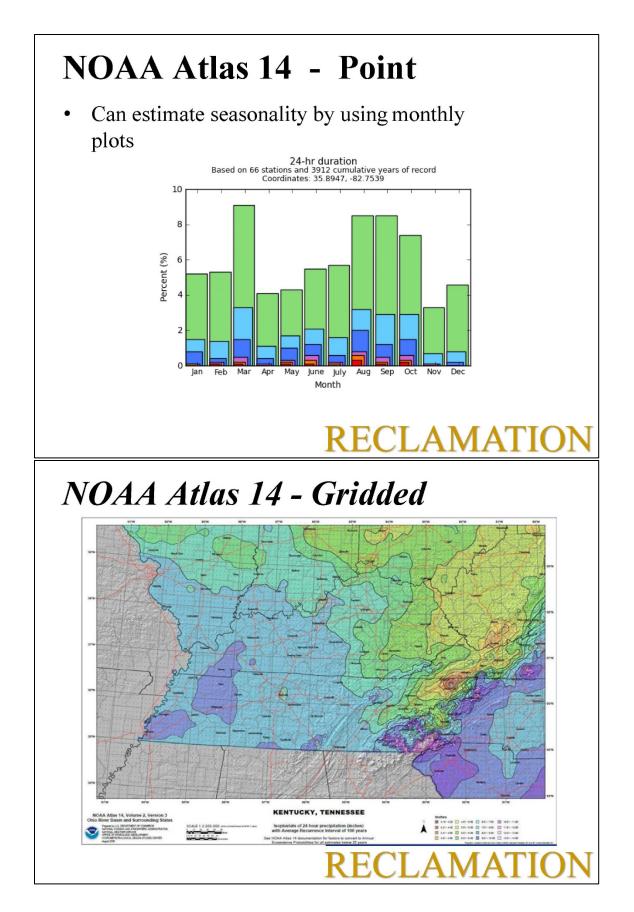
RECLAMATION

Maximum Likelihood Estimation

- Assume a distribution
- Estimate parameters based on set of observations
- Sensitive to short records (poor estimation)

RECLAMATION

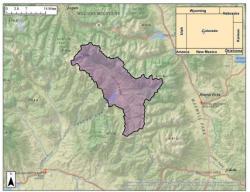

Regional L-moments


- From Hosking and Wallis in 1991
- Requires homogenous region (subjective)
- Utilizes data from many sites (minimize sampling errors)
- Goodness-of-fit test to obtain probability distribution

RECLAMATION

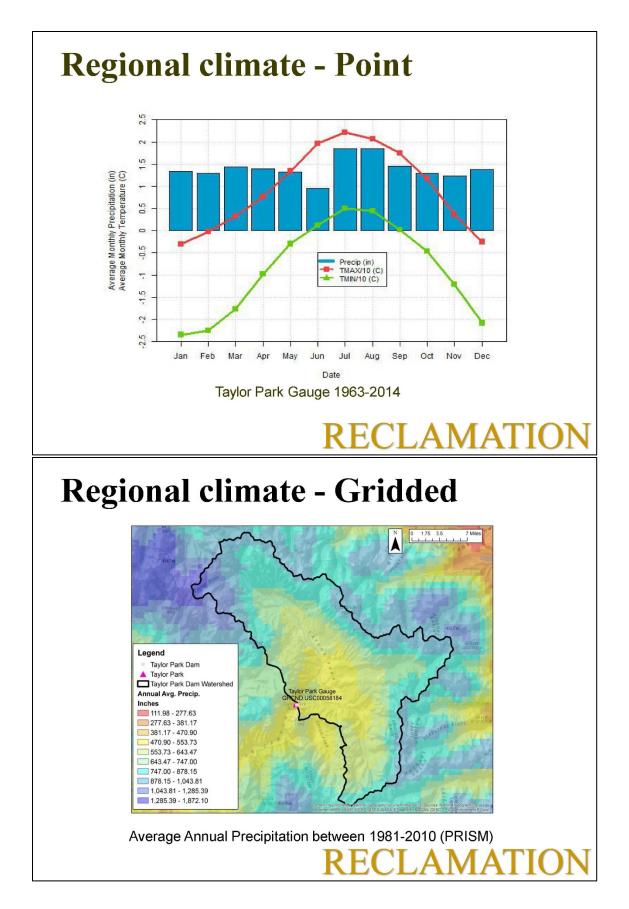
NOAA Atlas 14 - Point

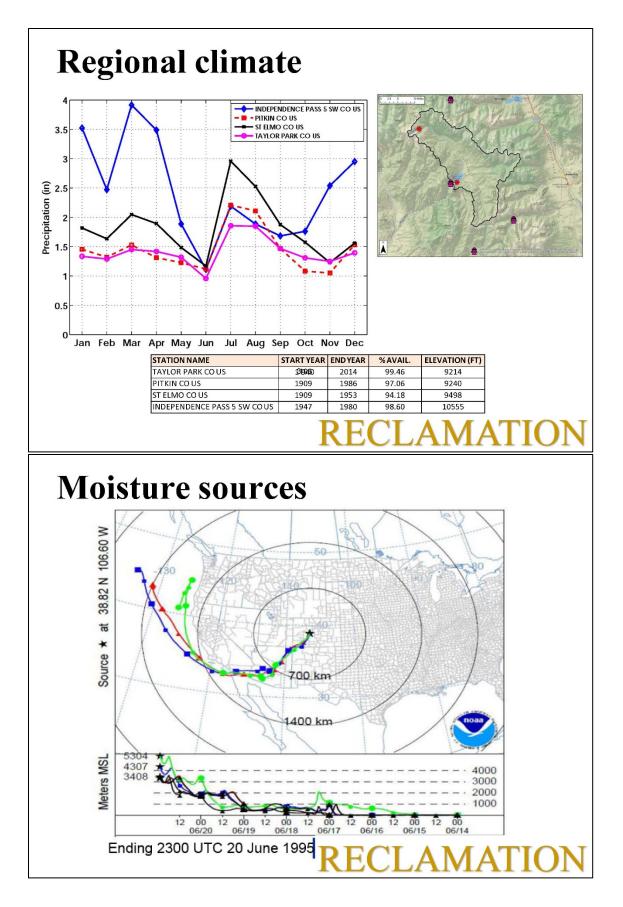
- Based on annual max
- Includes uncertainty (90% confidence

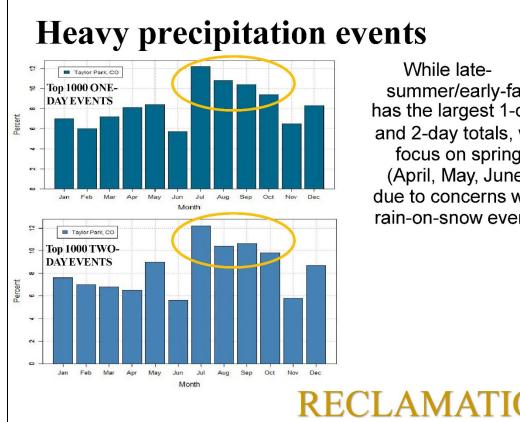

Reclamation methods

- Moving away from deterministic studies
 - Calculate PMP for historical purposes
 - Less interest in Inflow Design Floods or Probable Maximum Floods
- Precipitation-frequency analyses
 - ARR Method
 - Regional L-moments
- Incorporate uncertainty
 - Precipitation-frequency analysis
 - Hydrometeorological parameters (e.g. soil moisture, SWE, etc.)

RECLAMATION


Taylor Park Dam


- Location:
 - On the Taylor River, 32 miles west of Buena Vista, CO
- Dam:
 - Constructed between 1935-1937
 - 206' high earthfill structure
 - Elevation near 9,200'
 - Controls runoff from 255 mi²
- Purpose:
 - Irrigation



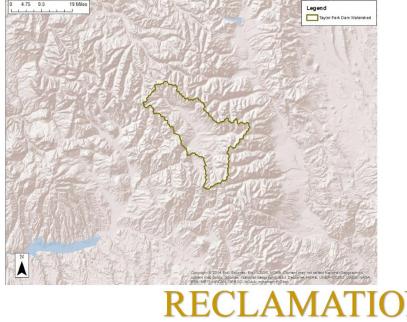
RECLAMATIO

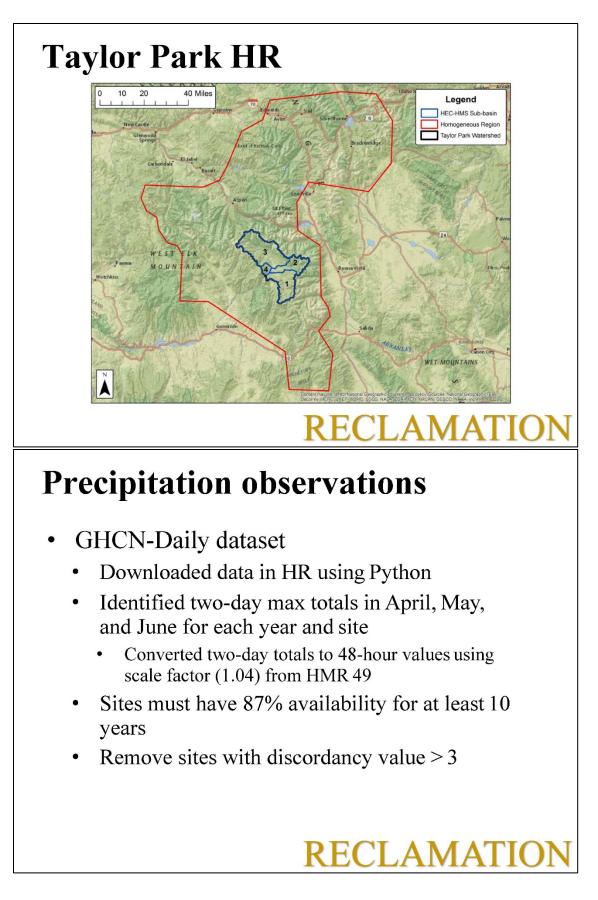
summer/early-fall has the largest 1-day and 2-day totals, we focus on spring (April, May, June) due to concerns with rain-on-snow events

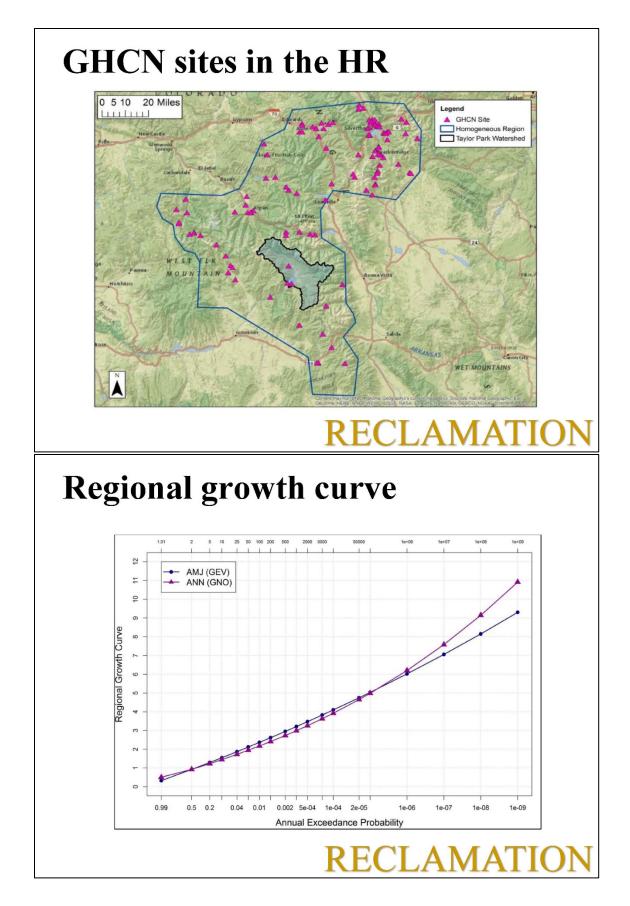
L-moments analysis

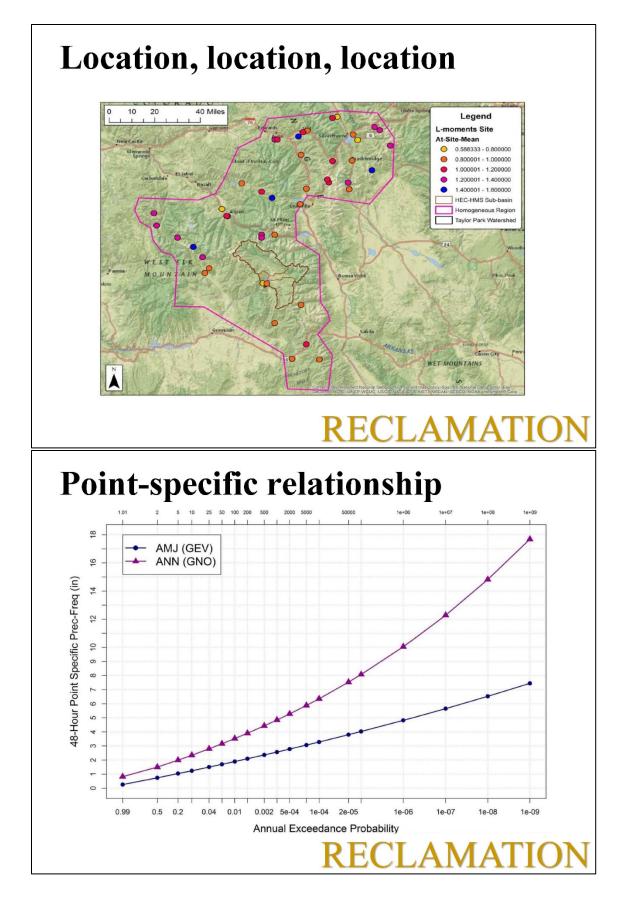
- Regional statistical method
- "Space for time" multiple gauges within homogeneous region
- Compute L-moment statistics for each gauge in homogeneous region
- Remove discordant gauges
- Compute regional growth curve based upon selected distribution
- Scale growth curve (point, basin, region)

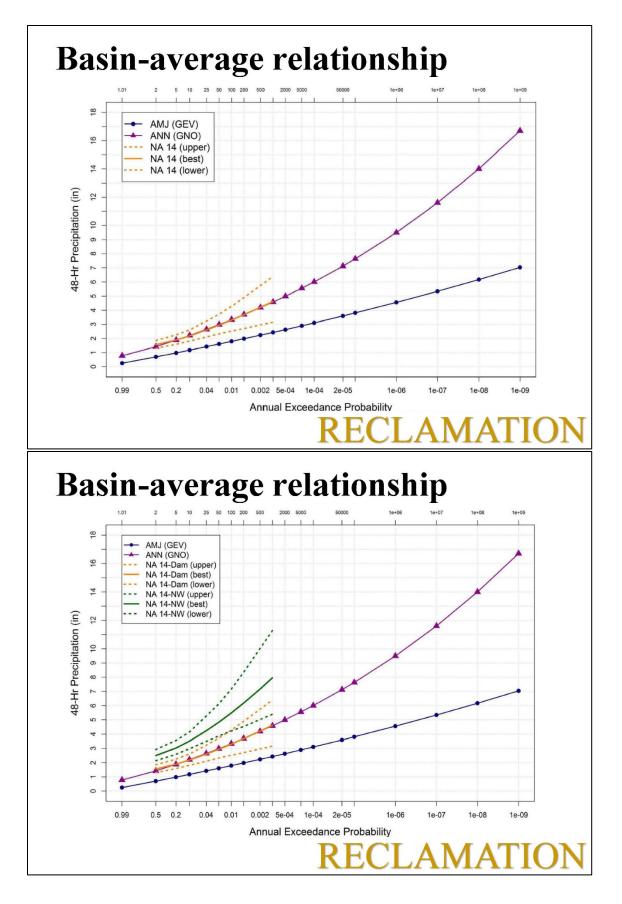
Homogeneous Region (HR)

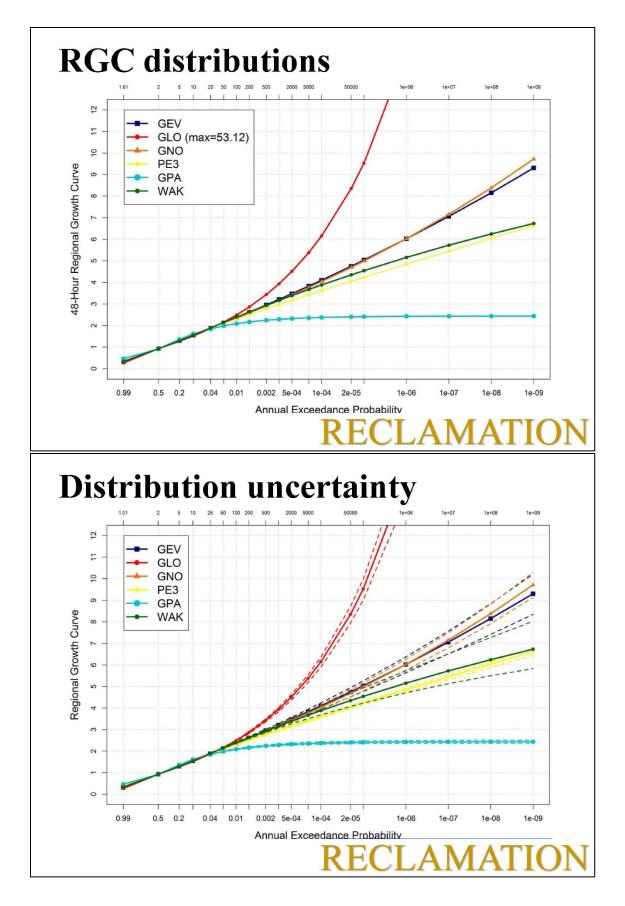

- Methods to define HR (Hosking and Wallis 1997)
 - Objective methods
 - *k* means (Self-Organizing Maps)
 - Hierarchical clustering analysis (HCA)
 - Principle component analysis (PCA)
 - Heterogeneity measure
 - Subjective methods
 - Geographical location
 - Seasonal timing of peak events
 - Mean annual precipitation (MAP)
 - Similar forcing mechanisms (synoptics)

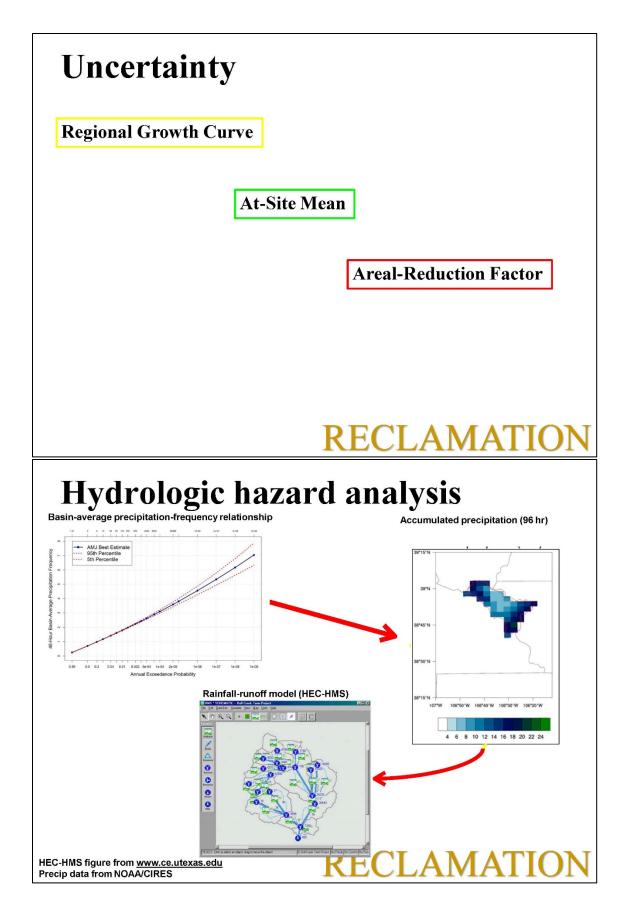

RECLAMATION


Delineating the HR


Example using the Taylor Park basin in


central C





Additional Tools

- Weather Research and Forecasting (WRF) model
 - Ensembles to estimate uncertainty in events
 - Modify terrain (and gradients in terrain)

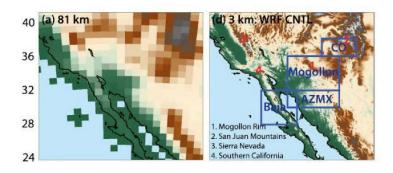
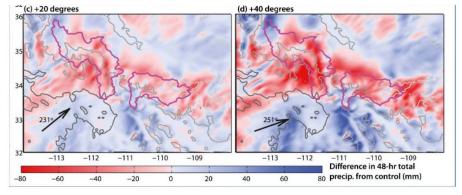



Figure 1 from Hughes et al. (2014)

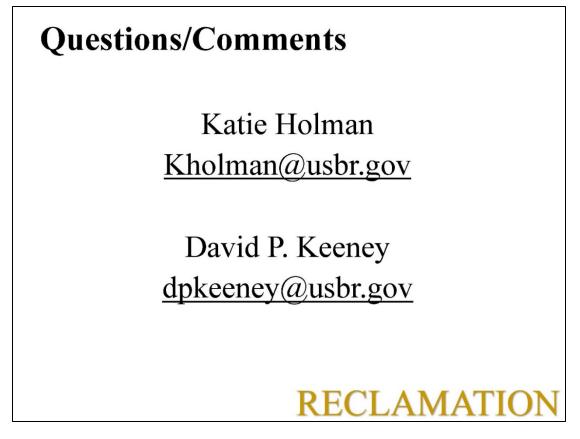
Additional Tools

- Linear model of orographic precipitation
 - Describes the pattern of precipitation arising from forced ascent of saturated air over topography
 - Explore assumptions behind PMP

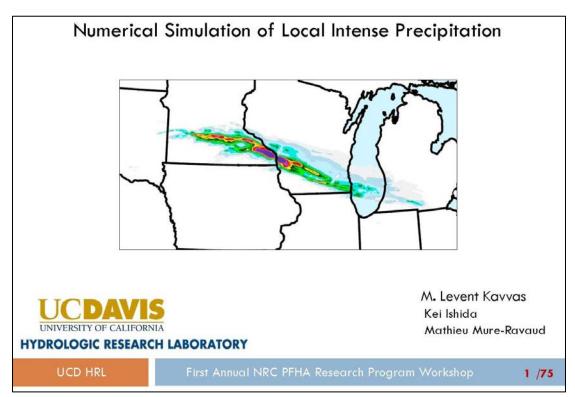
RECLAMATION

RECLAMATION

Additional Tools


- Bayesian Hierarchical Model
 - Composed of multiple levels that represent model formulation
 - Represents uncertainty in a system
 - Requires no homogenous region
 - Includes probability distribution for each model parameter

RECLAMATION

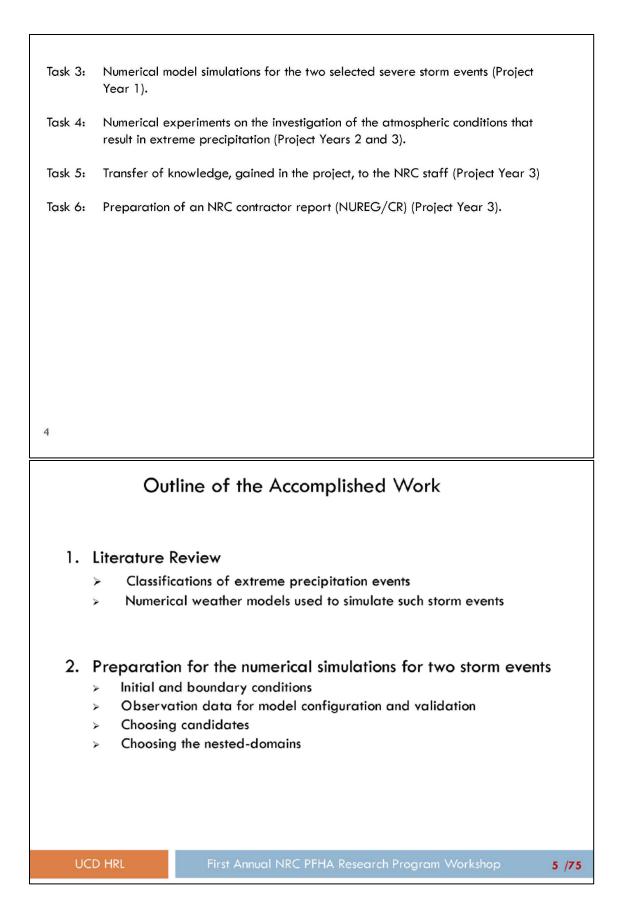

Conclusions

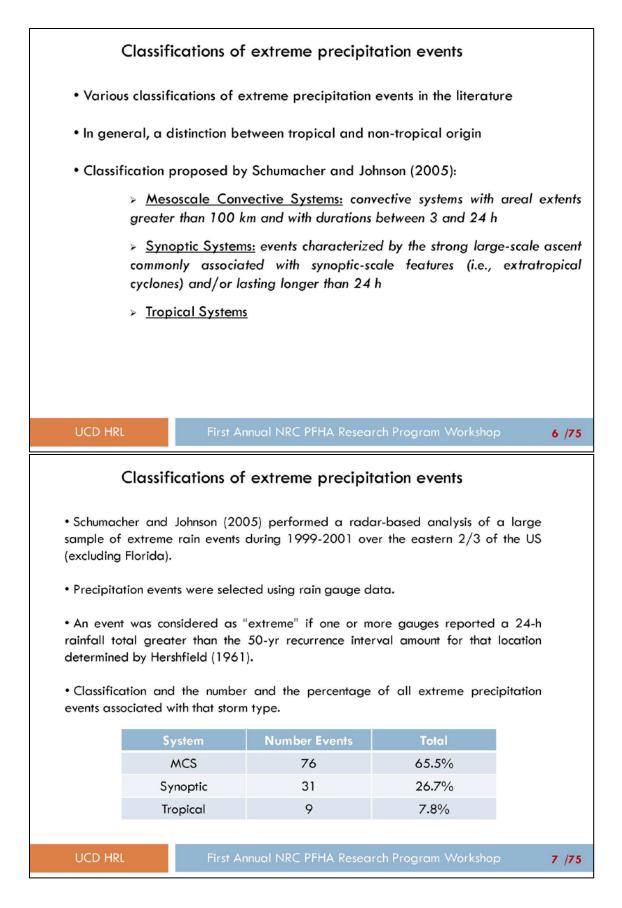
- Many methods for estimating precipitationfrequency relationships
 - Reclamation focuses on two methods
- Regional L-moments statistics to compute precipitation-frequency relationships
- Good for use in orographic regions
 - Topography plays a major role
- Uncertainty
 - Trying to improve estimation methods while propagating through hydrologic hazard analyses

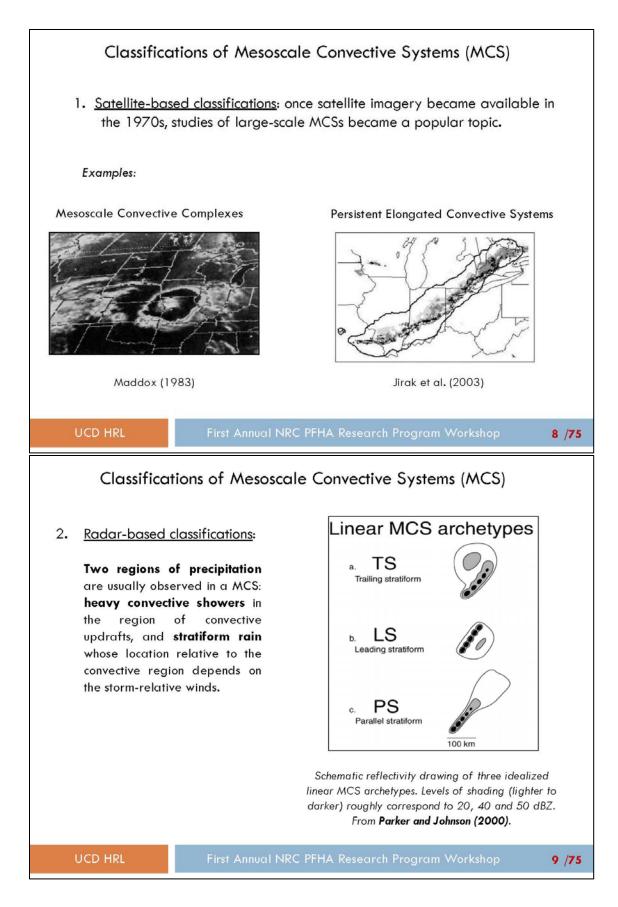
1.3.3.2 Numerical Simulation of Local Intense Precipitation. M. Levent Kavvas, Kei Ishida, Mathieu Mure-Ravaud, University of California at Davis

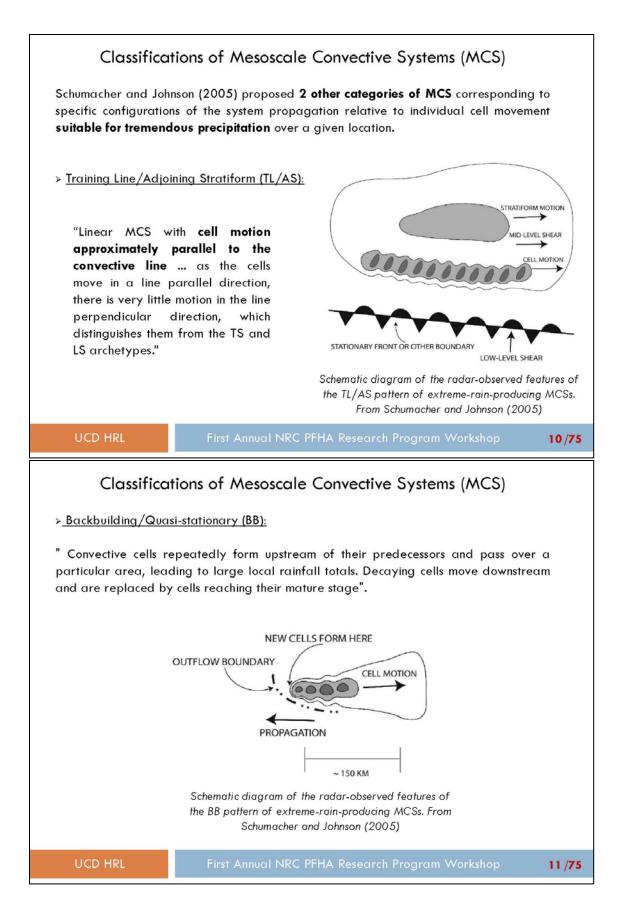
Objective of the 3-yr project (according to the statement of work):

"The objective of this work is to assess the suitability of a regional numerical weather model to simulate local intense precipitation processes and serve as a test bed for moisture maximization and storm transposition techniques, ultimately updating extreme precipitation estimates and quantifying uncertainty bounds."


This project started on May 12, 2015 (the receipt of the final modified contract from USGS). Hence, 5 months have passed since the start of this project.


SCOPE OF WORK OF THIS PROJECT:


Task 1: Literature review of previous studies related to local intense precipitation in the conterminous United States (Project Year 1).


Task 2:	Work Plan Development (Project Year 1)
	a) to select two representative case studies of severe storms over Conterminous
	United States;
	b) to select the datasets to be used for initial and boundary conditions for numerical model runs;
	c) select multi-sensor data for the analysis of precipitation processes, the
	calibration and validation of numerical model simulations and for uncertainty analysis;
	 d) lay out the methodology for the calibration and validation of the numerical atmospheric model with respect to the two selected severe storm events;
	e) lay out the uncertainty analysis methodology for the computation of uncertainties associated with various model configurations.

3

Classifications of Mesoscale Convective Systems (MCS)

Schumacher and Johnson (2005) obtained the following distribution for extreme rain events in the MCS category during 1999-2001 over the eastern 2/3 of the US (excluding Florida):

MCSs	Number Events	% of MCSs	% of all events
Training Line/Adjoining Stratiform (TL/AS)	24	31.6%	20.7%
Backbuilding/Quasi- stationary (BB)	15	19.7%	12.9%
Trailing Stratiform (TS)	13	17.1%	11.2%
Other MCS	12	15.8%	10.3%
Parallel Stratiform (PS)	7	9.2%	6.0%
Multiple MCSs	3	3.9%	2.6%
Leading Stratiform (LS)	2	2.6%	1.7%
Total	76	100%	65.5%

UCD HRL

First Annual NRC PFHA Research Program Workshop

12 /75

Numerical simulation of MCSs and tropical cyclones

University Numerical weather models mainly used in the literature to simulate MCSs:

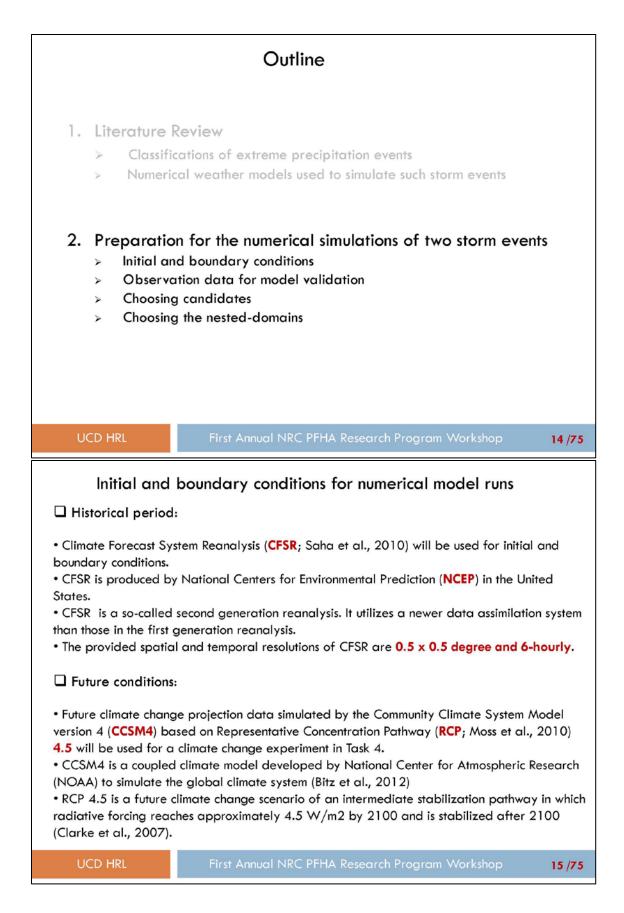
 MM5: Pennsylvania state University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (Dudhia et al., 1999)

- RAMS: Regional Atmospheric Modeling System (Pielke et al., 1992)
- ARPS: Advanced Regional Prediction System (Xue et al., 1995)
- MC2: Mesoscale Community model (Benoit et al., 1997)
- NCOMMAS: National Severe Storms Laboratory (NSSL) Collaborative Model for Mesoscale Atmospheric Simulation (Wicker and Wilhelmson, 1995)
- BRAMS: Brazilian Regional Atmospheric Modeling System
- (http://brams.cptec.inpe.br/)

WRF: Weather Research and Forecasting Model (Skamarock et al., 2008)

□ Numerical weather models mainly used in the literature to simulate **tropical** cyclones:

• GFDL: Geophysical Fluid Dynamics Laboratory Hurricane Prediction System (Kurihara et al., 1995; Kurihara et al., 1998; Bender et al., 2007).


 MM5: Pennsylvania state University/National Center for Atmospheric Research (PSU/NCAR) Mesoscale Model (Dudhia et al., 1999)

WRF: Weather Research and Forecasting Model (Skamarock et al., 2008)

UCD HRL

st Annual NRC PFHA Research Program Worksho

13 /75

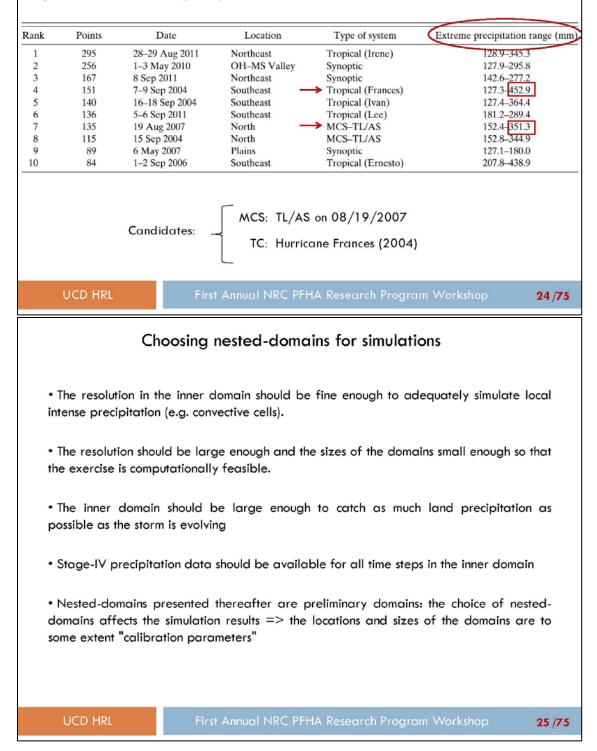
Observation data for model configuration and validation				
•The NCEP Stage-IV precipitation analyses will be used for the validation of numerical model runs and analysis of precipitation processes.				
	osaic of regional multi-sensor analysis generated by Nat River Forecast Centers (RFCs)	ional		
• It combines rain	gauge data and radar-estimated rainfall.			
• Available from 0	1/01/2002 to 08/31/2015			
• ~ 4 km resolution	ı			
and 24-hourly ar	lutions are available: 1-h, 6-h, and 24-h time intervals. The alyses are constantly quality controlled manually by the undergo less consistent quality control.			
	studies used Stage-IV precipitation analyses to invest tion events in the United States (e.g. Davis et al., 2006 Moo	-		
UCD HRL	First Annual NRC PFHA Research Program Workshop	16 /75		
Numerical si	mulation of one MCS and one tropical cyclone (TC	2)		
• Next step : A	mulation of one MCS and one tropical cyclone (TC Assessment of the capability of the WRF model intense precipitation caused by one MCS and o	to		
• Next step : A simulate local TC. • We need to find	Assessment of the capability of the WRF model	to ne		
 Next step : A simulate local TC. We need to find not already been 	Assessment of the capability of the WRF model intense precipitation caused by one MCS and o d a candidate for each case (one MCS and one TC) which h	to ne		
 Next step : A simulate local TC. We need to find not already been 	Assessment of the capability of the WRF model intense precipitation caused by one MCS and o d a candidate for each case (one MCS and one TC) which h subject to extensive numerical modelling.	to ne		
 Next step : A simulate local TC. We need to find not already been 	Assessment of the capability of the WRF model intense precipitation caused by one MCS and o d a candidate for each case (one MCS and one TC) which h subject to extensive numerical modelling.	to ne		
 Next step : A simulate local TC. We need to find not already been 	Assessment of the capability of the WRF model intense precipitation caused by one MCS and o d a candidate for each case (one MCS and one TC) which h subject to extensive numerical modelling.	to ne		

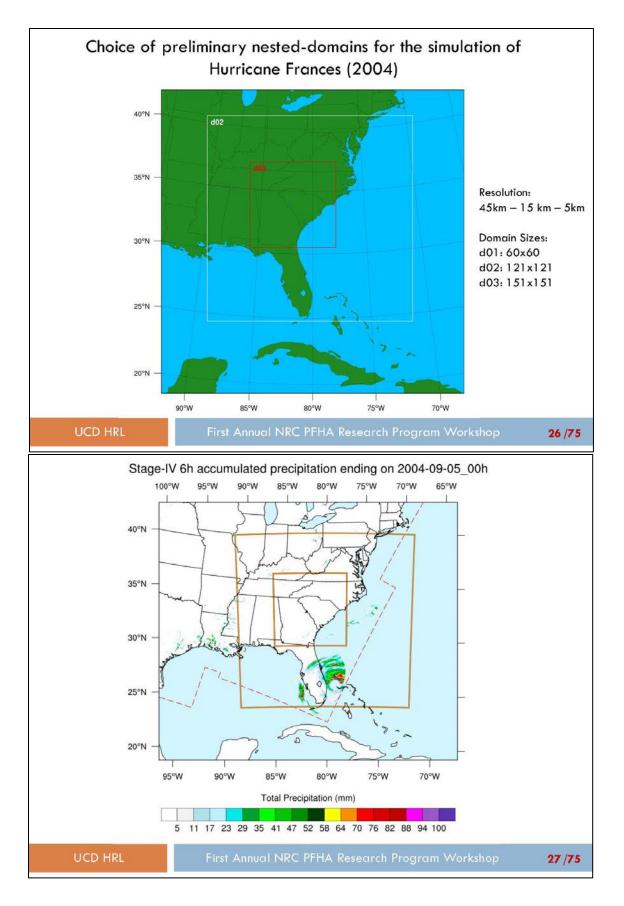
Туре	Date	Location	Reference
	19-20 Jul 1999	NE	
TL/AS	31 May-1 Jun 2000	MN, WI, IA	Schumacher and
	15 May 2001	MN, WI	Johnson (2005)
	6 -7 May 2000	МО	Schumacher and
BB	19-20 Jun 2001	KS	Johnson (2008)
	25-26 Jul 1999	KS	
	27-28 May 1998	AR	
	5-6 May 2000	ОК	
BB/quasi-stationary	3-4 Jun 2000	TX	Schumacher and
	18 Jun 2007	TX	Johnson (2009)
	20 Aug 2007	МО	
Quasi-stationary	28 Jul 1997	СО	Petersen et al. (1999)
Quasi-stationary	27 Jun 1995	VA	Pontrelli et al. (1999)
BB	27-28 Jul 2011	IA, IL	http://www.weather.g v/dvn/072711_dubuq eflashflood

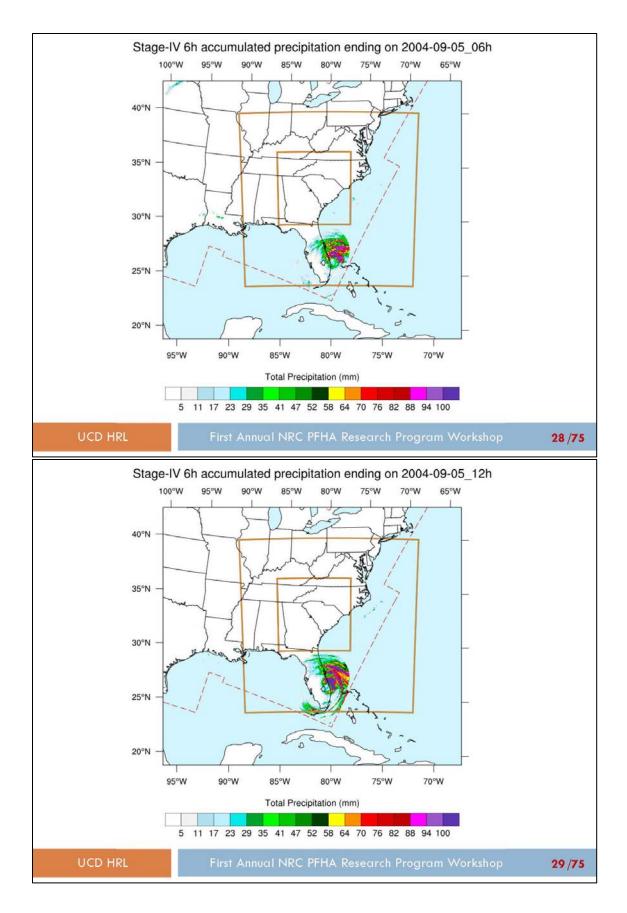
UCD HRL

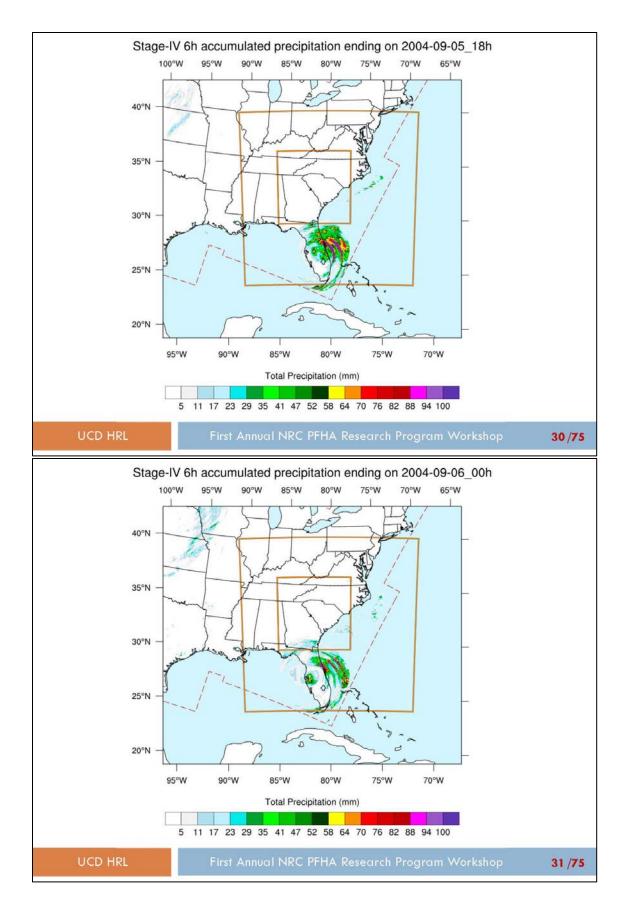
18 /75

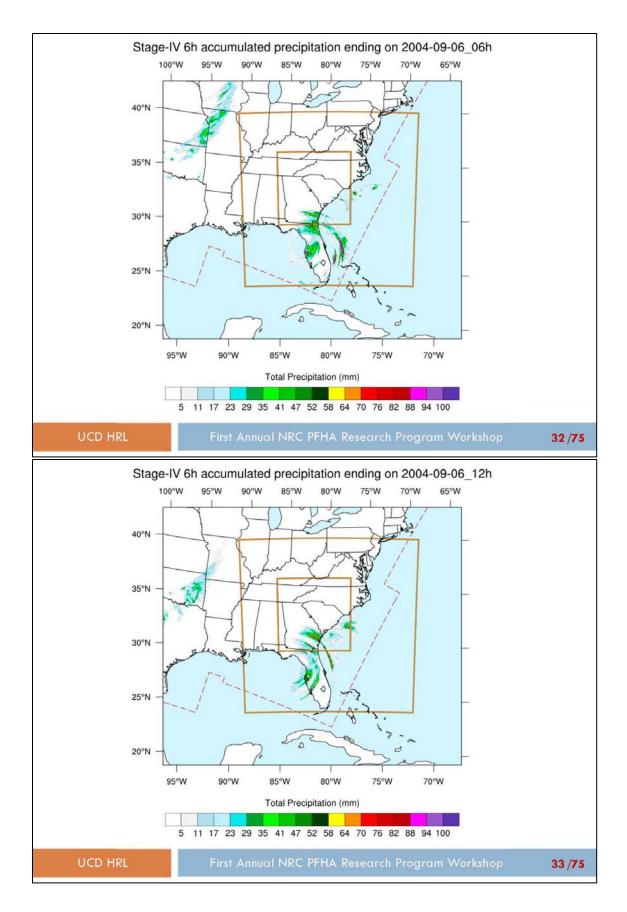
Tropical cyclones for 2002-12 according to the "State of climate" from 2002 to 2012

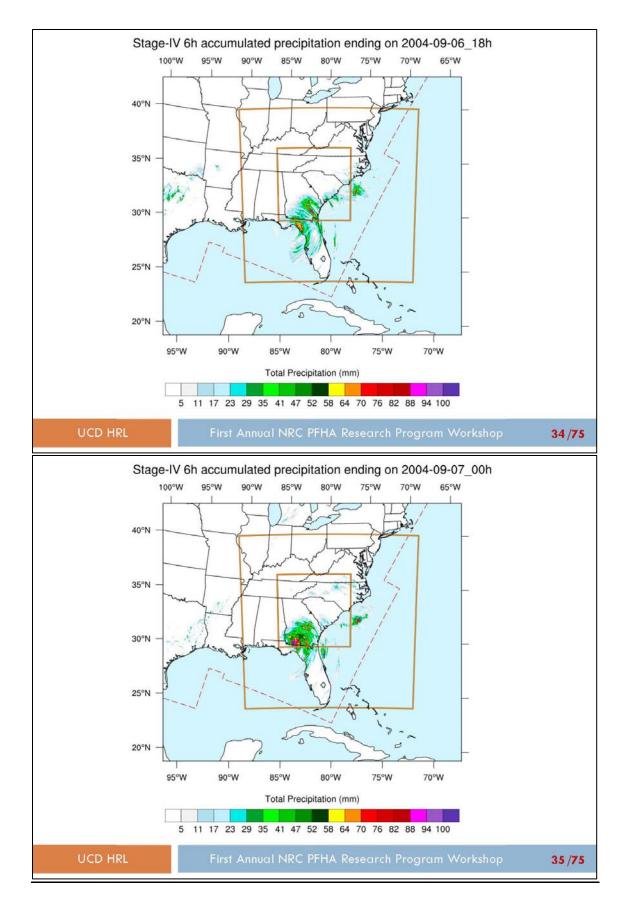

Year	Name	Date	Cat.	Remarks
	Bertha	08/04 -> 08/09	TS	Local precipitation amounts of 25-50 mm in southern Mississippi and Alabama
	Edouard	09/01 -> 09/06	TS	
	Fay	09/05 -> 09/08	TS	Produced on average more than 175 mm of rain over southeastern Texas
	Gustav	09/08 -> 09/15	2	
2002	Hanna	09/12 -> 09/15	TS	Brought 75-125 mm of precipitation to the Florida panhandle
2002	lsodore	09/14 -> 09/27	3	Brought extremely heavy rains (200-300 mm) to the Yucatan Peninsula. Rainfall exceeded 200 mm from eastern Louisiana to the western Florida panhandle, and also extended northward across Mississippi and Alabama. 300 mm at New Orleans
	Kyle	09/20 -> 10/14	1	
	Lili	09/21 -> 10/04	4	100-150 mm of precipitation between 2 and 5 Octobe across central and eastern Louisiana. 80 mm at New Orleans
			before Hurricane, that is to say: 18m/s < ensities according to the Saffir-Simpson so	
UCD HRL First Annual NRC PFHA Research Program Workshop 19/7				

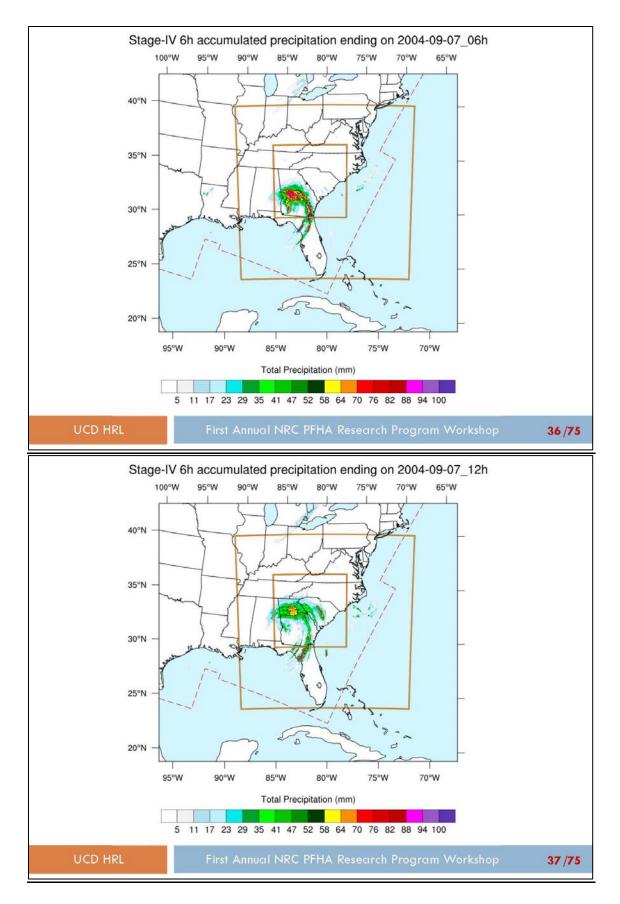

		06/28 ->		Produced more than 150 mm of rain across eastern
	Bill	07/02	TS	Louisiana, Mississippi, and western Alabama during 3
		07/02		June - 1 July
	Claudett	07/08 ->		Crossed eastern Texas on 15-16 July, generally
	е	07/17	1	producing totals of 75-100 mm
	- C	08/14 ->		
	Erika		1	Produced 75-100 mm of rain in northeastern Mexico
2003		08/17		and a range of 25-75 mm of rain in southern Texas
2000	Grace	08/30 ->	TS	Brought 75-100 mm of rain to southeastern Texas on 3
	Grace	09/02	15	August
		09/03 ->		Brought 100-125 mm of rain to west-central Florida o
	Henri	09/08	TS	6 September
		05/00		Rainfall totals averaged 100-200 mm across eastern
	100000000	09/06 ->		
	Isabel	09/20	5	North Carolina and Virginia, and 50-100 mm across
				West Virginia and eastern Ohio.
	Alex	07/31 ->	3	
	Alex	08/06	3	
		08/03 ->		
	Bonnie	08/14	TS	
	-			
	Charley	08/09 ->	4	
		08/14		
	Frances	08/24 ->	4	Brought more than 175 mm of rain to Florida, Georgi
205 -	Frances	09/10	4	and the western Carolinas
2004		08/27 ->		Produced extreme precipitation in the eastern part o
	Gaston	09/01	1	South Carolina
	lvan	09/02 ->	5	Produced more than 150 mm of rain from Alabama to
		09/24		Pennsylvania
		09/13 ->	2	Produced more than 100 mm rainfall totals from
	Jeanne	10/28	3	Florida to the western Carolinas
		10/08 ->		
		10,00 -	TS	
	Matthew	10/10		
	Matthew	10/10	First Annual NRC PFHA Resea	arch Program Workshop 20 /75
		10/10 RL	First Annual NRC PFHA Resea	arch Program Workshop 20 /75
		10/10 RL 07/04 ->	First Annual NRC PFHA Resea	arch Program Workshop 20 /75
	UCD HF	10/10 RL 07/04 -> 07/10		arch Program Workshop 20 /75
	UCD HF	10/10 RL 07/04 -> 07/10 07/11 ->	4	arch Program Workshop 20 /75
	UCD HF	10/10 RL 07/04 -> 07/10		urch Program Workshop 20 /75
	UCD HR Dennis Emily	07/04 -> 07/10 07/11 -> 07/21	4 5	arch Program Workshop 20 /75
	UCD HF	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 ->	4	arch Program Workshop 20 /75
2005	UCD HR Dennis Emily	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31	4 5	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 ->	4 5 5	arch Program Workshop 20 /75
	UCD HR Dennis Emily	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31	4 5	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina Ophelia	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 ->	4 5 5 1	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 ->	4 5 5	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina Ophelia	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26	4 5 5 1	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina Ophelia	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 ->	4 5 5 1	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina Ophelia Rita	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26	4 5 5 1 5	arch Program Workshop 20 /7 5
	UCD HR Dennis Emily Katrina Ophelia Rita Wilma	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 ->	4 5 5 1 5 5 5 5	arch Program Workshop 20 /75
2005	UCD HR Dennis Emily Katrina Ophelia Rita	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 ->	4 5 5 1 5	arch Program Workshop 20 /75
	UCD HR Dennis Emily Katrina Ophelia Rita Wilma	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14	4 5 5 1 5 5 5 5	arch Program Workshop 20 /75
2005	UCD HR Dennis Emily Katrina Ophelia Rita Wilma	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 ->	4 5 5 1 5 5 5 5	arch Program Workshop 20 /75
2005	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/14 08/24 -> 09/01	4 5 5 1 5 5 5 5 5 75	
2005	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 ->	4 5 5 1 5 5 5 5 75 75 1	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 ->	4 5 5 1 5 5 5 5 5 75	
2005	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17	4 5 5 1 5 5 5 5 7 5 7 5 1	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 ->	4 5 5 1 5 5 5 5 7 5 7 5 1	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Erin	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17	4 5 5 1 1 5 5 5 75 75 1 1 75	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Olga	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 ->	4 5 5 1 1 5 5 5 75 75 1 1 75 75 75	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Erin	10/10 C7/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 ->	4 5 5 1 1 5 5 5 75 75 1 1 75	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Olga	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/18 -> 09/23 09/26 10/16 -> 10/30 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27	4 5 5 1 1 5 5 5 75 75 1 1 75 75 75	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Olga	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27 08/25 ->	4 5 5 1 1 5 5 5 75 75 1 1 75 75 75	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Clga Fay	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/18 -> 09/23 09/26 10/16 -> 10/30 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27	4 5 5 1 1 5 5 5 75 75 1 75 75 75 75	Remnants of Tropical Storm Erin produced heavy
2005 2006	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Erin Olga Fay Gustav	10/10 RL 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27 08/25 ->	4 5 5 1 1 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Clga Fay	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/18 -> 09/23 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27 08/25 -> 09/04	4 5 5 1 1 5 5 5 75 75 1 75 75 75 75	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Erin Olga Fay Gustav	10/10 C7/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27 08/25 -> 09/04 08/28 -> 09/04 08/28 -> 09/04	4 5 5 1 1 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Erin Olga Fay Gustav	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 09/06 -> 09/06 -> 09/18 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/11 -> 08/25 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/25 -> 09/04 08/25 -> 09/04 08/28 -> 09/01 -> 09/01 ->	4 5 5 1 1 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Erin Olga Gustav Hanna	10/10 C7/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/18 -> 09/26 10/16 -> 10/30 06/10 -> 06/14 08/24 -> 09/01 08/15 -> 08/17 12/11 -> 12/13 08/15 -> 08/27 08/25 -> 09/04 08/28 -> 09/04 08/28 -> 09/04	4 5 5 1 1 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	Remnants of Tropical Storm Erin produced heavy
2005 2006 2007 2008	UCD HR Dennis Emily Katrina Ophelia Rita Wilma Alberto Ernesto Ernesto Erin Olga Gustav Hanna	10/10 07/04 -> 07/10 07/11 -> 07/21 08/23 -> 08/31 09/06 -> 09/23 09/24 09/25 10/16 -> 10/30 06/14 08/23 -> 09/26 10/16 -> 10/30 06/14 08/15 -> 08/17 12/11 -> 12/11 -> 12/13 08/27 08/25 -> 09/04 08/28 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 09/01 -> 0	4 5 5 1 1 5 5 5 5 7 5 7 5 7 5 7 5 7 5 7 5	Remnants of Tropical Storm Erin produced heavy rainfall from Texas to Kansas and Missouri

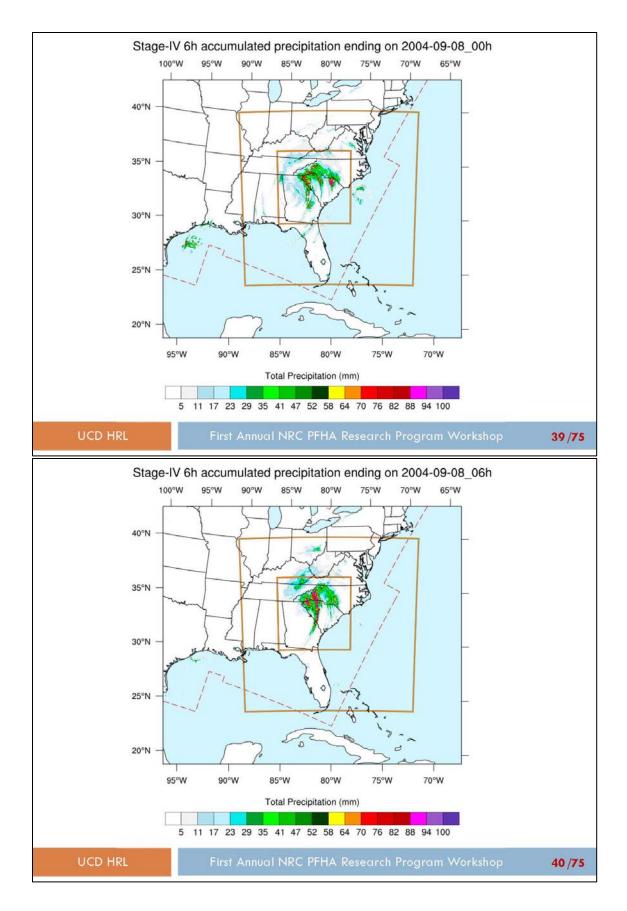

2000	Claudett e	08/16 -> 08/18	TS	
2009	Ida	11/04 -> 11/10	2	
2010	Bonnie	07/22 -> 07/24	TS	
2011	Irene	08/21 -> 08/28	3	Caused major flooding in the Northeast. Participated to above-average precipitation in the Northeast and Ohio Valley
	Lee	09/01 -> 09/06	TS	Participated to above-average precipitation in the Northeast and Ohio Valley
	Debby	06/23 -> 06/27	TS	Florida had its wettest summer on record, partially attributable to TS Debby
2012	lsaac	08/21 -> 09/01	1	Florida had its wettest summer on record, partially attributable to Hurricane Isaac. Produced heavy rainfall across Puerto Rico and the Dominican Republic.
	Sandy	10/21 -> 10/29	3	The most well-publicized and destructive storm of the year. Brought record early-season snowfall to the Appalachians.
2013	The "Stat		2013" does not mention any specific tropical cyclone a eason ties 1982 for the fewest hurricanes in the recer	affecting the USA this year. According to the report, the this torical record from 1950 to present.
L	JCD HR	L	First Annual NRC PFHA Resea	rch Program Workshop 22 /75
			Choosing candidates for sir	nulations
• Co	andidat	es must	be in the time range of the NCEP St	age-IV product (i.e., 2002-2015)
• Co	andidat	es must	nave produced local intense precipit	tation.
		informc difficult t	tion about precipitation ranges fo o find.	or intense precipitation events is
• Yet, such ranges have been documented in Stevenson and Schumacher (2014) for extreme precipitation events in the Central and Eastern United states during 2002-11.				
NC	EP stag	ge-IV pr	chumacher (2014) identified extreme cipitation analyses and the 50- ed by Hershfield (1961) for three du	and 100-yr recurrence interval
• Events were classified as either synoptic systems, tropical systems, or MCSs.				
• EV	enis we	ere classi		cal systems, or MCSs.

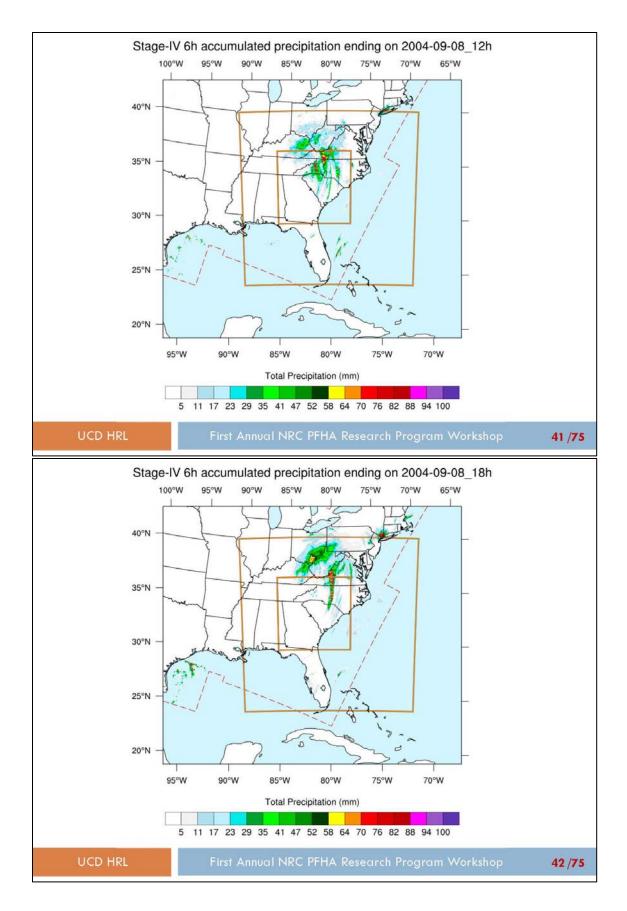

Choosing candidates for simulations

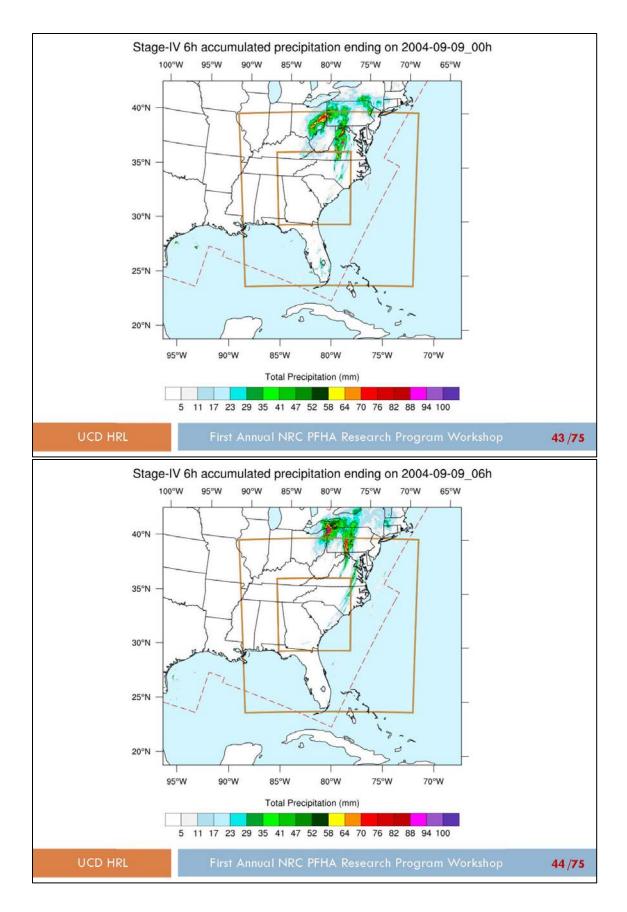

Stevenson and Schumacher (2014) identified the top 10 events in terms of the largest extent of the extreme precipitation field, corresponding to points where the 100-yr return period, 24-hr Hershfield (1961)'s threshold was exceeded:

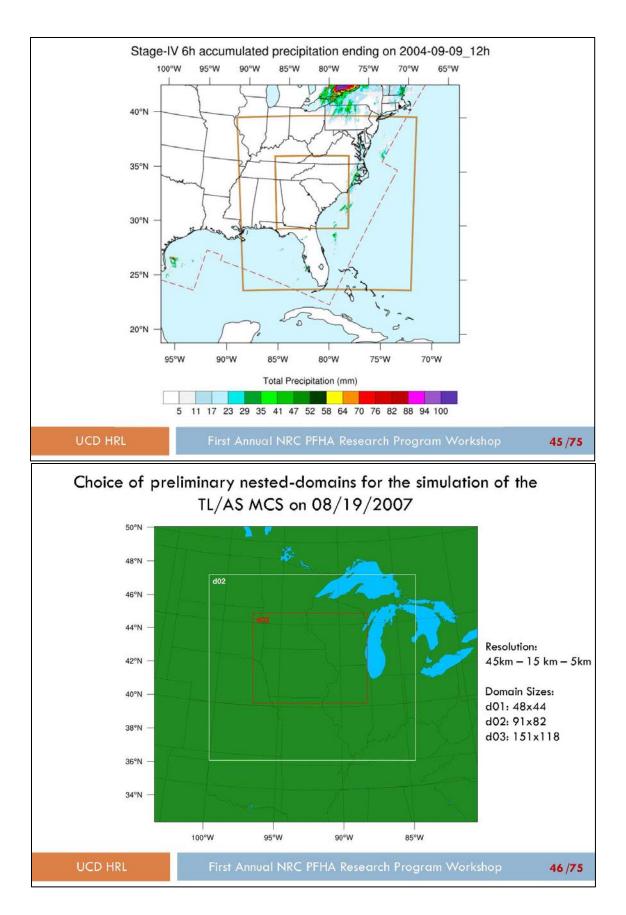


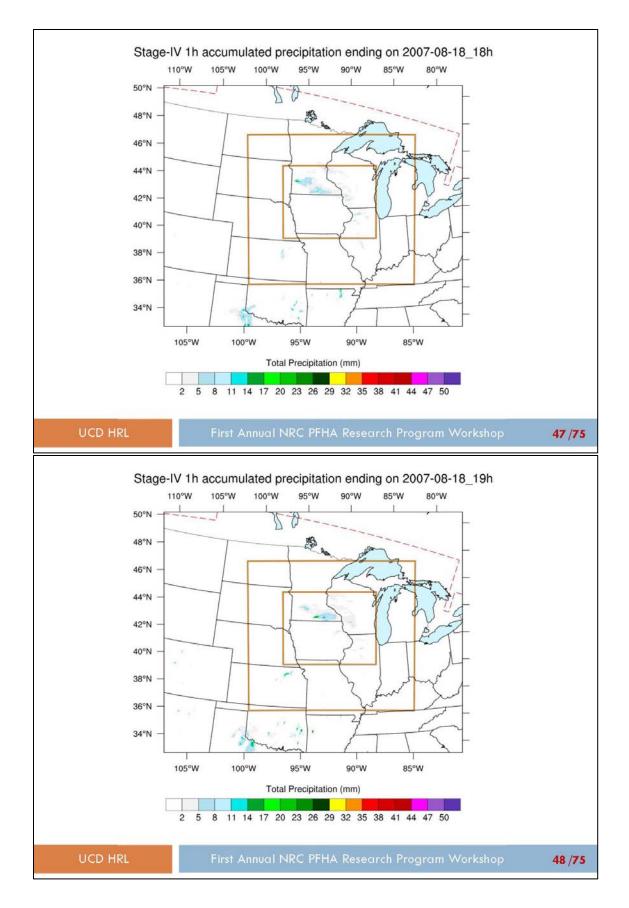


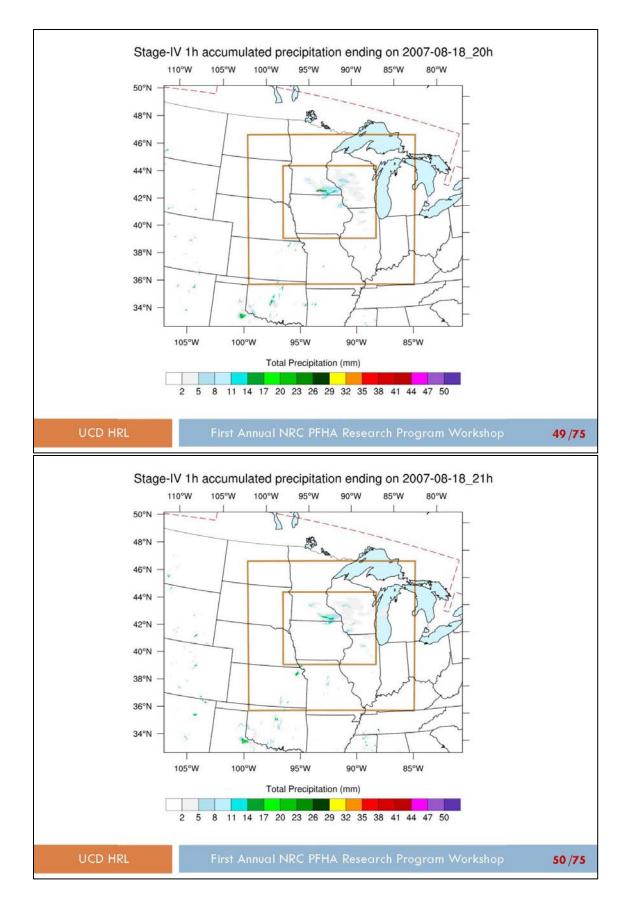


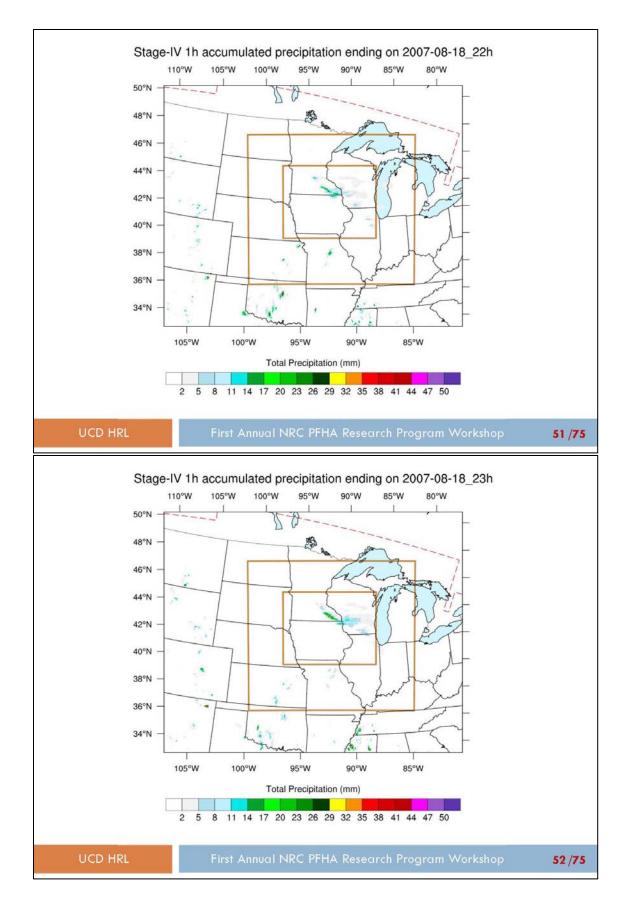


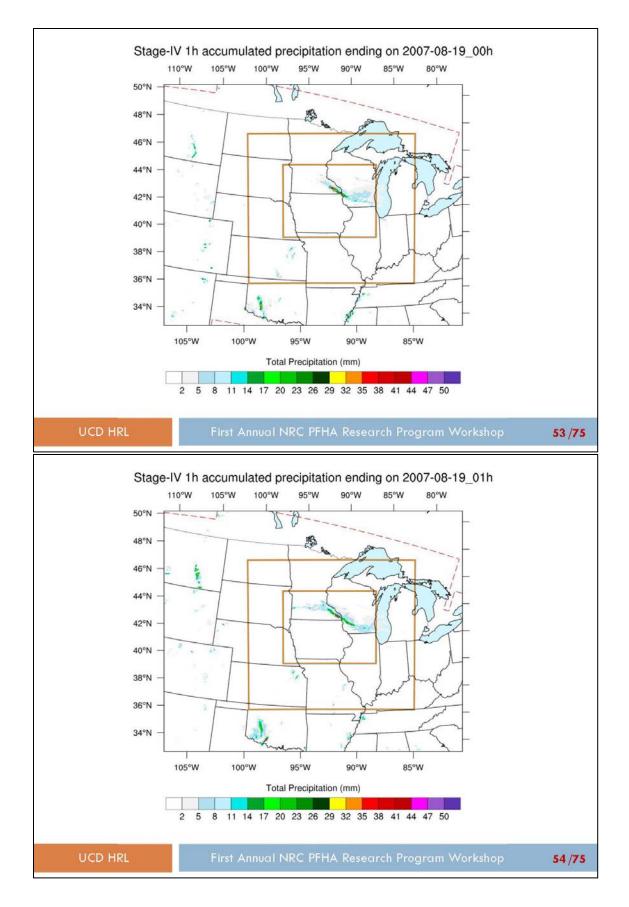


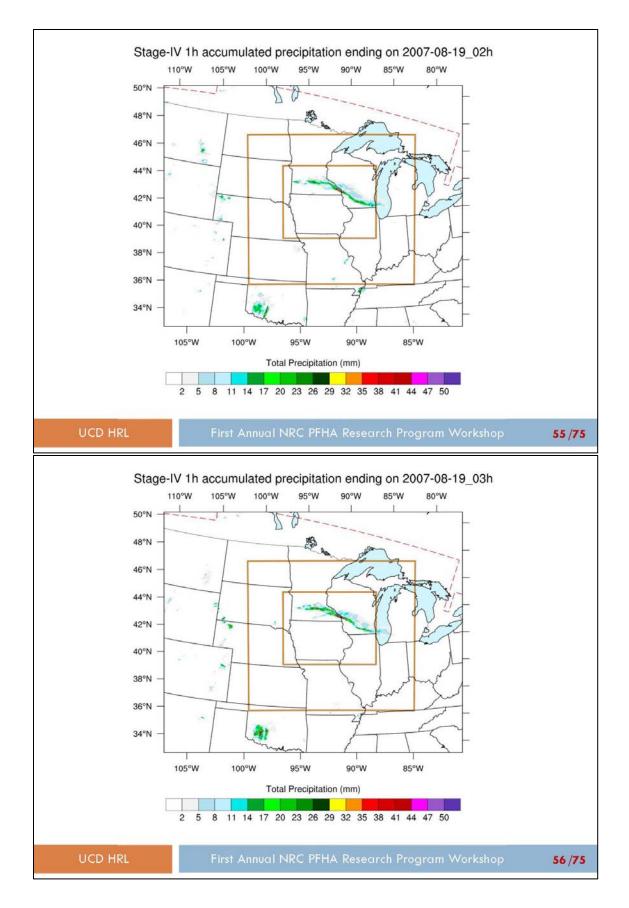


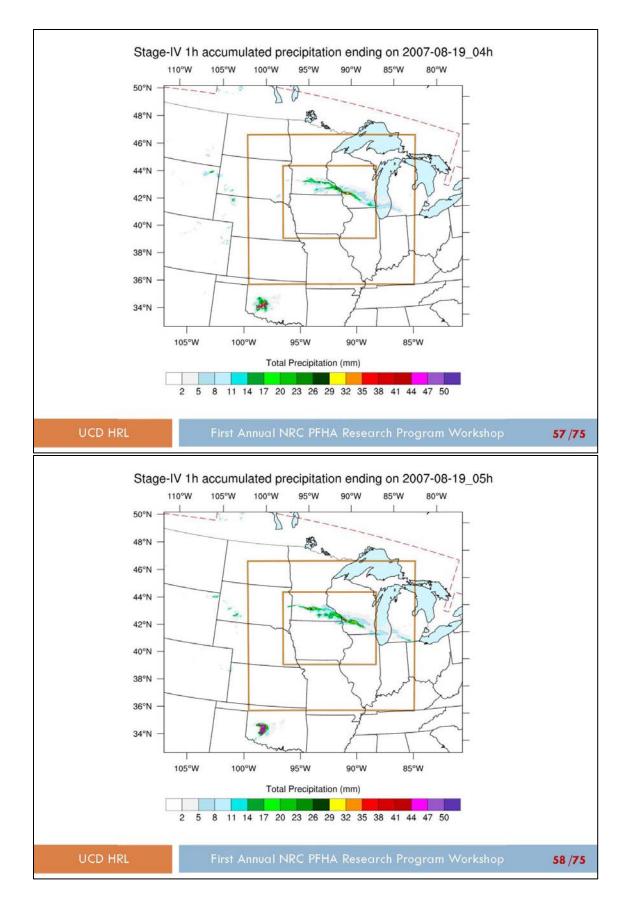


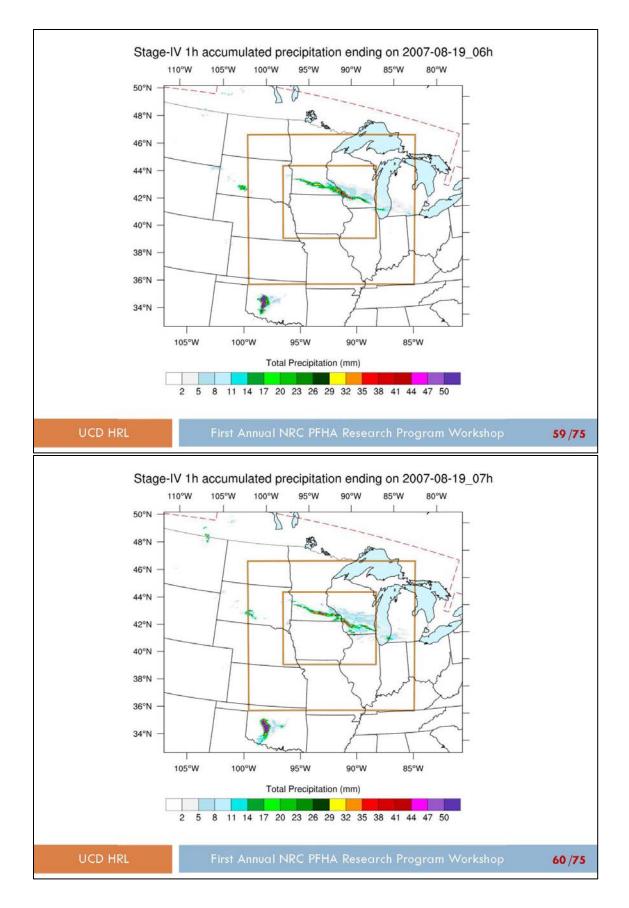


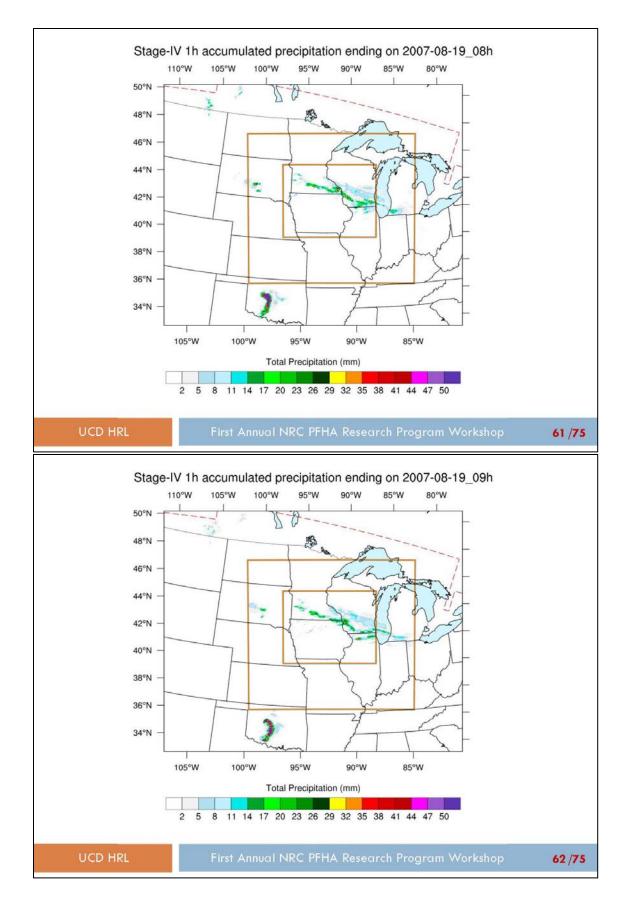


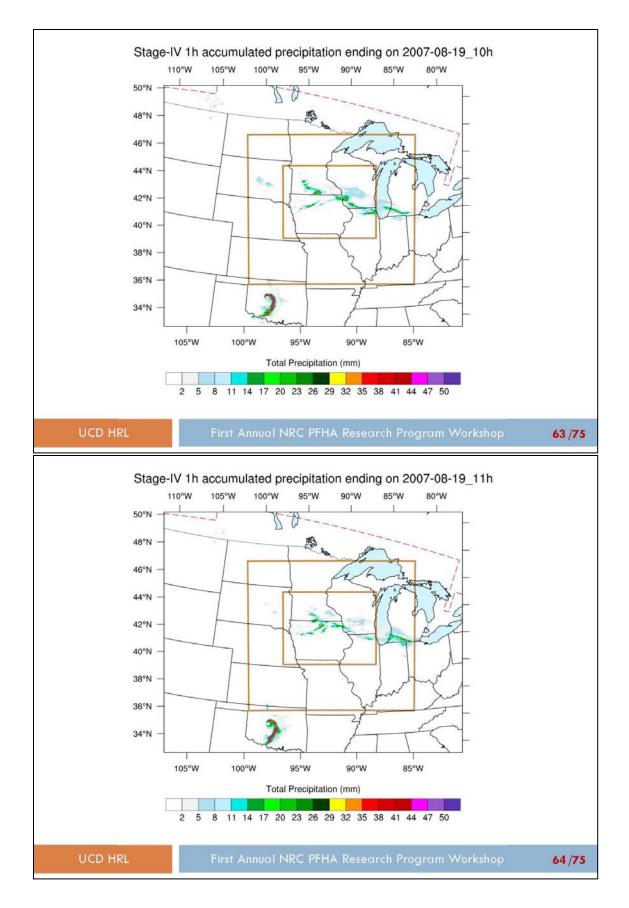


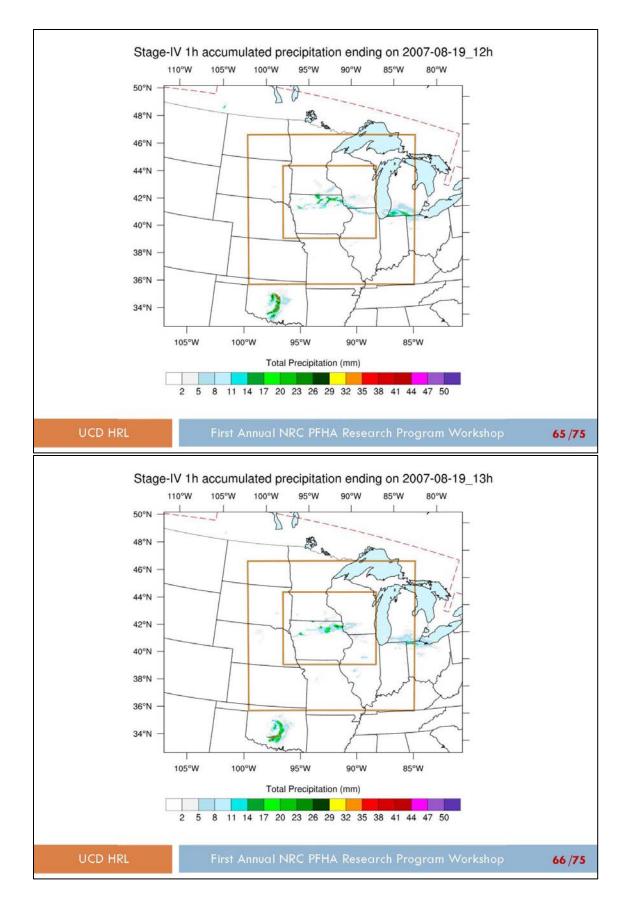


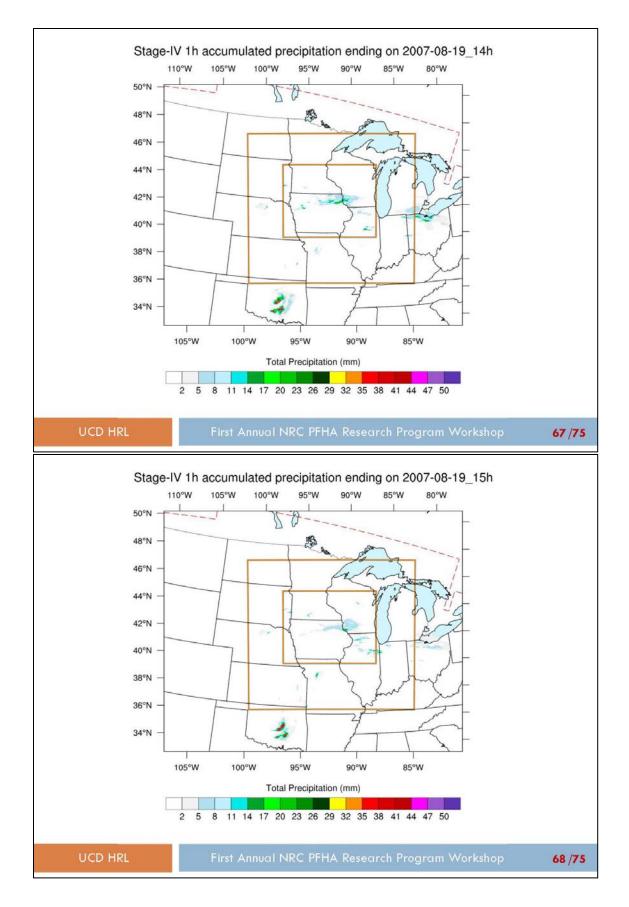


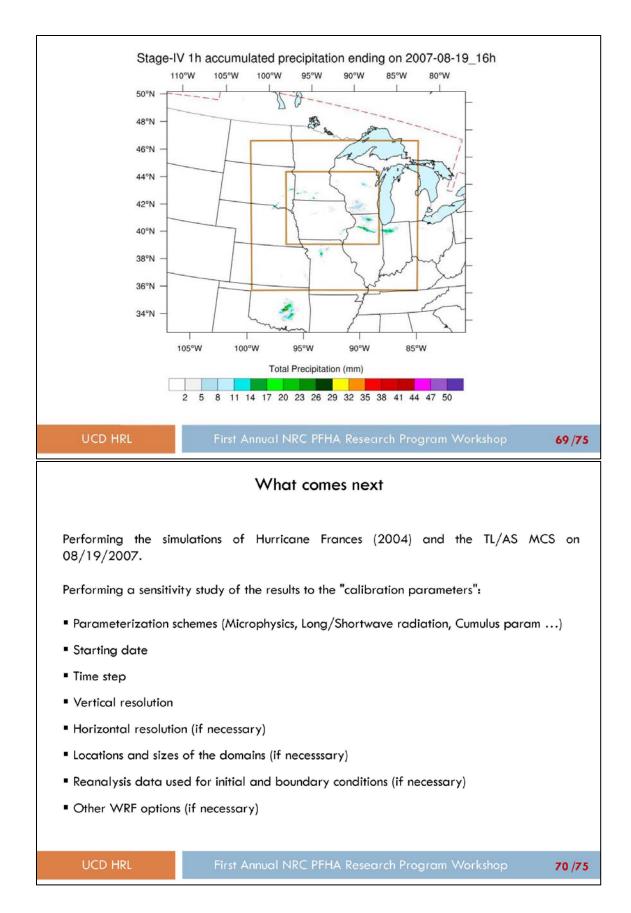












Parameterization schemes suggested in WRF user's guide for different applications						
Application	1-4 km grid distances, convection-permitting runs for 1-3 days run (as for the NCAR spring real- time convection forecast over the US in 2013)	10-20 km grid distances, 1-30 day runs (eg. NCAR daily real-time runs over the US)	Regional climate case at 10-30 km grid size (eg. Used in NCAR 's regional climate runs)	Hurricane application - 36,12, and 4 km nesting used by NCAR's real-time hurricane runs in 2012		
Microphysics	New Thompson et al.	New Thompson et al.	WSM6	WSM6		
Longwave radiation	RRTMG	RRTMG	RRTMG	RRTMG		
Shortwave radiation	RRTMG	RRTMG	RRTMG	RRTMG		
Radiation time step	10	15	10	10		
Surface layer	Eta similarity: based on Monin-Obukhov	Monin-Obukhov	Monin-Obukhov	Monin-Obukhov		
Land surface	Noah Land Surface Model	Noah Land Surface Model	Noah Land Surface Model	Noah Land Surface Model		
Planetary boundary layer	Mellor-Yamada-Janjic	Yonsei University	Yonsei University	Yonsei University		
Cumulus param.	No parameterization	Grel-Freitas	Tiedtke scheme (only on 36 and 12 km grid)	Tiedtke scheme (only on 36 and 12 km grid)		

UCD HRL

First Annual NRC PFHA Research Program Workshop

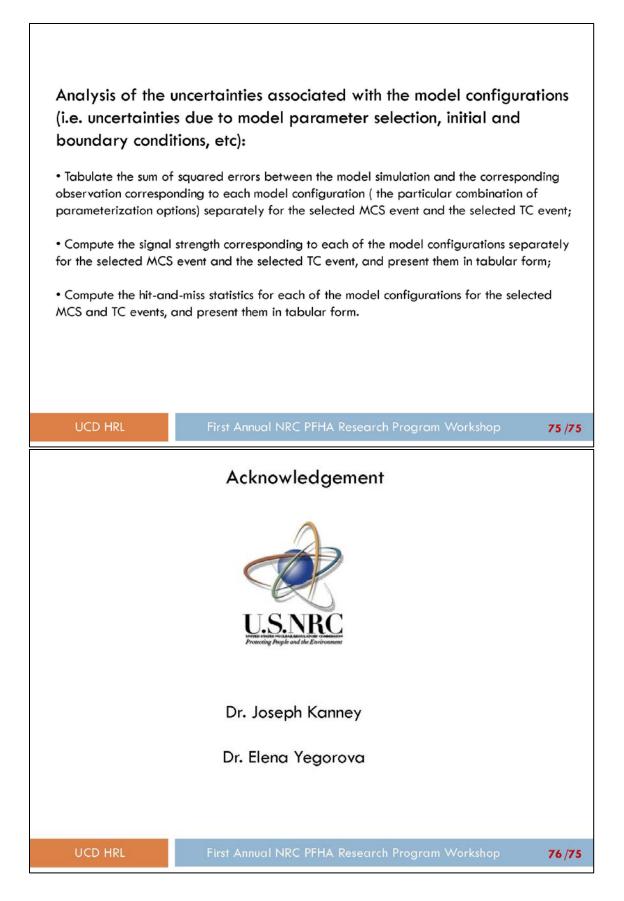
71 /75

Parameterizations for numerical simulation of TCs from the literature review

	Trenberth et al. (2007)	Davis et al. (2008)	Fierro et al. (2009)	Xiao et al. (2009)	Khain et al. (2010)	Sippel et al. (2011)
TC date and name	Ivan (2004) and Katrina (2005)	5 landfalling atlantic hurricanes	Hurricane Rita (2005)	Jeanne (2004), Katrina (2005) and Rita (2005)	Katrina (2005)	TC Debby (2006)
Grid resolution	4 km	12 - 4 - 1.33 km	inner from 1 to 5 km (sensitivity study)	12 - 4 -1.33 km	9 - 3 km	27 - 9 - 3 km
Number levels	34	х	43	х	31	27
microphysics	х	WSM3	New Thompson et al.	WSM3	New Thompson et al.	WSM6
PBL	Yonsei University scheme	Yonsei University scheme	Mellor- Yamada-Janjic scheme	Yonsei University scheme	х	Yonsei University scheme
cumulus param.	No parameterization	Kain-Fritsch (only on 12 km)	Kain-Fritsch (outer domain only)	Kain-Fritsch (outer domain only)	х	Kain-Fritsch (on 27 and 9 km)

	Correia Jr et al. (2008)	Schumacher et al. (2008)	Anabor et al. (2009)	Zhang and Pu (2011)	Trier et al. (2011)	Zhao (2012)	Cai and Yu (2012)	Wheatley e al. (2014)
MCS date	х	6-7 May 2000	х	12-13 June 2002	13 June 2002	3 July 2008	17 April 2011	4-5 July 200
MCS location	х	Missouri	South America	Kansas, Oklahoma, Texas	Oklahoma	China	China	Indiana an Ohio
MCS type	idealized 2D MCS	Quasi stationary BB	Composite 10 serial MCSs	x	TL in the morning	Quasi stationary BB	х	х
Size grid	10 km	9-3-1.33 km	10 km	9-3 km	3 km	15-5 km	13.5-4.5 km	15-3 km
Nb levels	51	48	32	38	42	41	Х	51
Microphysics	WSM6	Lin (Purdue)	Lin (Purdue)	Lin (Purdue)	Thompson et al.	Eta (15 km), Lin (5 km)	6 WSM6	Ensemble
Longwave radiation	х	RRTM	RRTM	RRTM	RRTM	RRTMG	sensitivity study	Ensemble
Shortwave radiation	х	Dudhia	Dudhia	Dudhia	Dudhia	RRTMG	sensitivity study	Ensemble
Land surface	х	Noah	5-layer from MM5	Noah	Noah	5-layer from MM5	х	Noah
PBL	Yonsei University	Yonsei University	Yonsei University	Yonsei University	Mellor- Yamada- Janjic	Yonsei University	х	Ensemble
cumulus param.	Kain-Fritsch	Kain-Fritsch (9 km)	Kain-Fritsch	Kain-Fritsch (9 km)	No param.	Grell- Devenyi (15 km)	Grell- Devenyi (13.5 km)	Ensemble

Validation of model results


Model results will be validated in two ways:

□ Simulated and observed precipitation fields will be plotted and the plots will be compared to each other.

In particular, Stage-IV precipitation analyses will be interpolated to the WRF grid in order to plot and calculate the error.

□ Simulated and observed precipitation fields will be compared by means of goodnessof-fit statistics.

UCD HRL

References

 Bender, M.A., Ginis, I., Tuleya, R., Thomas, B. and Marchok, T., 2007. The operational GFDL coupled hurricane-ocean prediction system and a summary of its performance. Monthly Weather Review, 135(12): 3965-3989.

Benolt, R. et al., 1997. The Canadian MC2: A semi-lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation. Monthly Weather Review, 125(10): 2382-2415.

Bitz, C.M. et al., 2012. Climate Sensitivity of the Community Climate System Model, Version 4. J. Clim., 25: 3053-3070.

Clarke, L. et al., 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, USA, pp. 154.

Davis, Christopher, Barbara Brown, and Randy Bullock. "Object-based verification of precipitation forecasts. Part II: Application to convective rain systems." Monthly Weather Review 134.7 (2006): 1785-1795.

 Dudhia, J., Gill, D., Manning, K., Wang, W. and Bruyere, C., 1999. PSU NCAR Mesoscale Modeling System Tutorial Class Notes and User's Guide: MM5 Modeling System Version 3.

Hershfield, D.M., 1961b. Rainfall frequency atlas of the United States: For durations from 30 minutes to 24 hours and return periods from 1 to 100 years. Department of Commerce, Weather Bureau.

Jirak, I.L., Cotton, W.R. and McAnelly, R.L., 2003. Satellite and radar survey of mesoscale convective system development. Monthly weather review, 131(10): 2428-2449.

Kurihara, Y., Bender, M.A., Tuleya, R.E. and Ross, R.J., 1995. Improvements in the GFDL hurricane prediction system. Monthly Weather Review, 123(9): 2791-2801.

Kurihara, Y., Tuleya, R.E. and Bender, M.A., 1998. The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Monthly weather review, 126(5): 1306-1322.

 Maddox, R.A., 1983. Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Monthly Weather Review, 111(7): 1475-1493.

 Moore, B.J., Mahoney, K.M., Sukovich, E.M., Clfelli, R. and Hamill, T.M., 2014. Climatology and Environmental Characteristics of Extreme Precipitation Events in the Southeastern United States. Monthly Weather Review, 143(3): 718-741.

Moss, Richard H., et al. "The next generation of scenarios for climate change research and assessment." Nature 463.7282 (2010): 747-756.

 Parker, Matthew D., and Richard H. Johnson. "Organizational modes of midlatitude mesoscale convective systems." Monthly weather review 128.10 (2000): 3413-3436.

Pielke, R. et al., 1992. A comprehensive meteorological modeling system—RAMS. Meteorology and Atmospheric Physics, 49(1-4): 69-91.

UCD HRL

First Annual NRC PFHA Research Program Workshop

77 /75

- Petersen, W.A. et al., 1999. Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bulletin of the American Meteorological Society, 80(2): 191-216.
- Pontrelli, M.D., Bryan, G. and Fritsch, J., 1999. The Madison County, Virginia, flash flood of 27 June 1995. Weather and forecasting, 14(3): 384-404.

Saha, Suranjana, et al. "The NCEP climate forecast system reanalysis." Bulletin of the American Meteorological Society 91.8 (2010): 10151057.

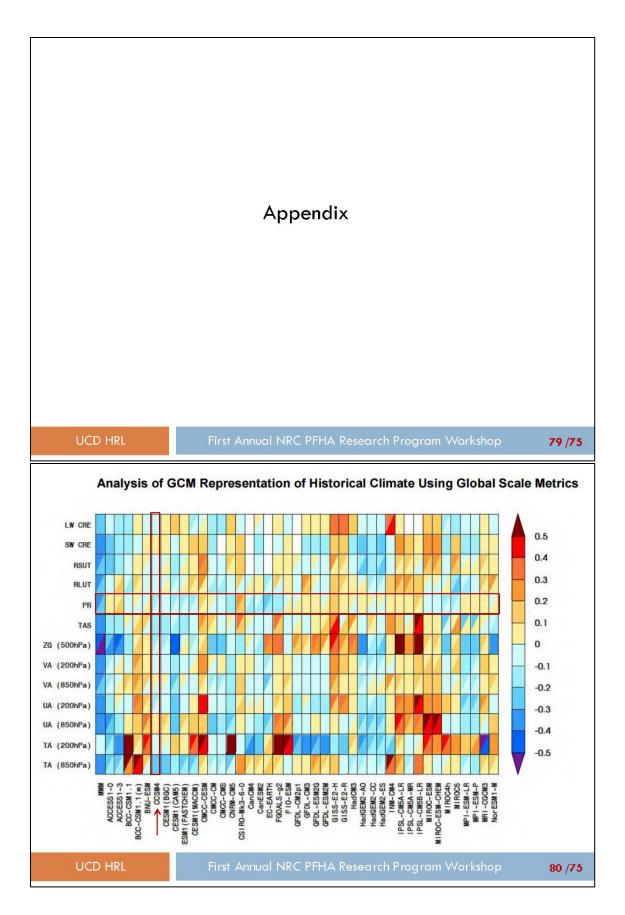
 Schumacher, R.S. and Johnson, R.H., 2005. Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Monthly weather review, 133(4): 961-976.

 Schumacher, R.S. and Johnson, R.H., 2008. Mesoscale Processes Contributing to Extreme Rainfall in a Midlatitude Warm-Season Flash Flood*. Monthly Weather Review, 136(10): 3964-3986.

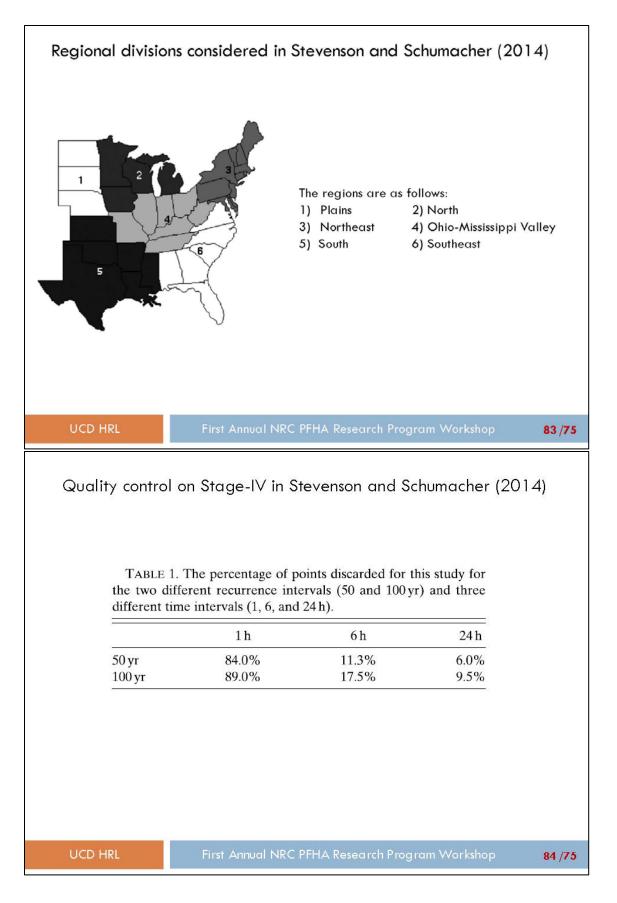
 Schumacher, R.S. and Johnson, R.H., 2009. Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather and Forecasting, 24(2): 555-574.

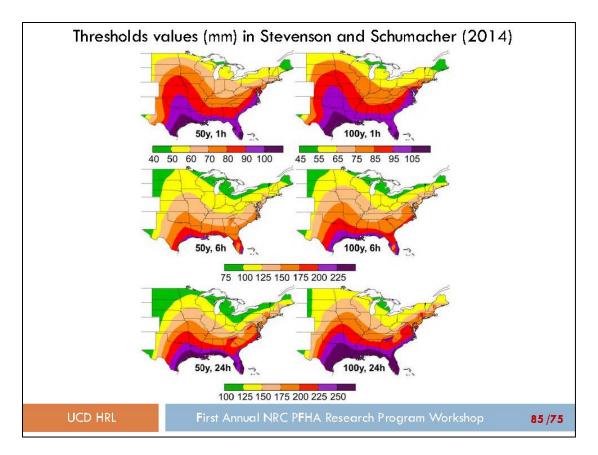
 Skamarock, W. et al., 2008. A description of the advanced research WRF version 3, NCAR, Tech. Note, Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research, Boulder, Colorado, USA.

• Stevenson, S.N. and Schumacher, R.S., 2014. A 10-year Survey of Extreme Rainfall Events in the Central and Eastern US using Gridded Multi-Sensor Precipitation Analyses. Monthly Weather Review(2014).

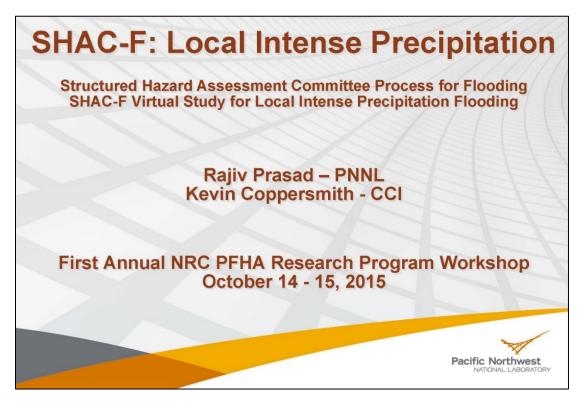

 Wicker, L.J. and Wilhelmson, R.B., 1995. Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. Journal of the Atmospheric Sciences, 52(15): 2675-2703.

• Xue, M., Droegemeier, K.K., Wong, V., Shapiro, A. and Brewster, K., 1995. ARPS version 4.0 user's guide. Center for Analysis and Prediction of Storms, University of Oklahoma, 100


UCD HRL


First Annual NRC PFHA Research Program Workshop

78 /75



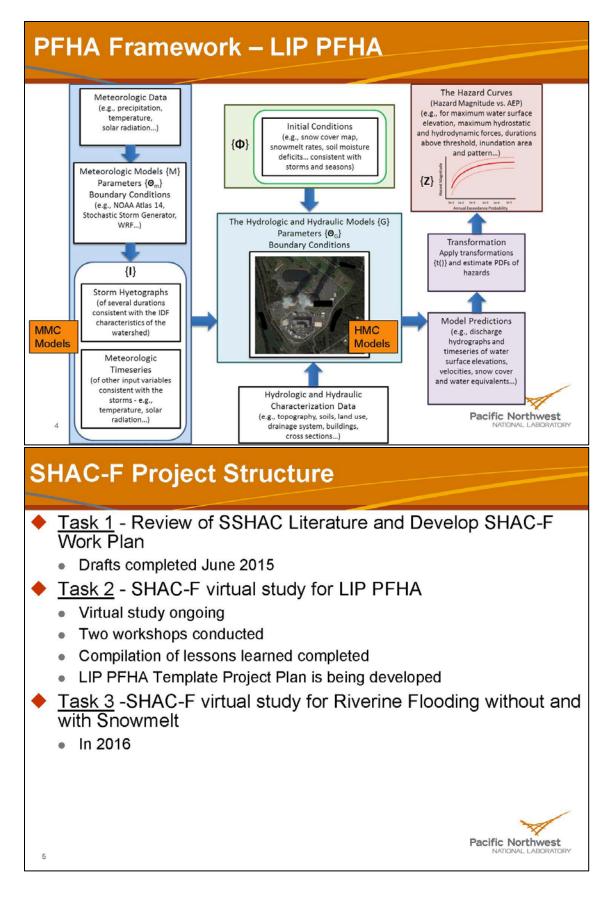
1.3.3.3 SHAC-F (Local Intense precipitation). Rajiv Prasad, Robert Bryce, Philip Meyer and Lance Vail, PNNL; and Kevin Coppersmith, CCI

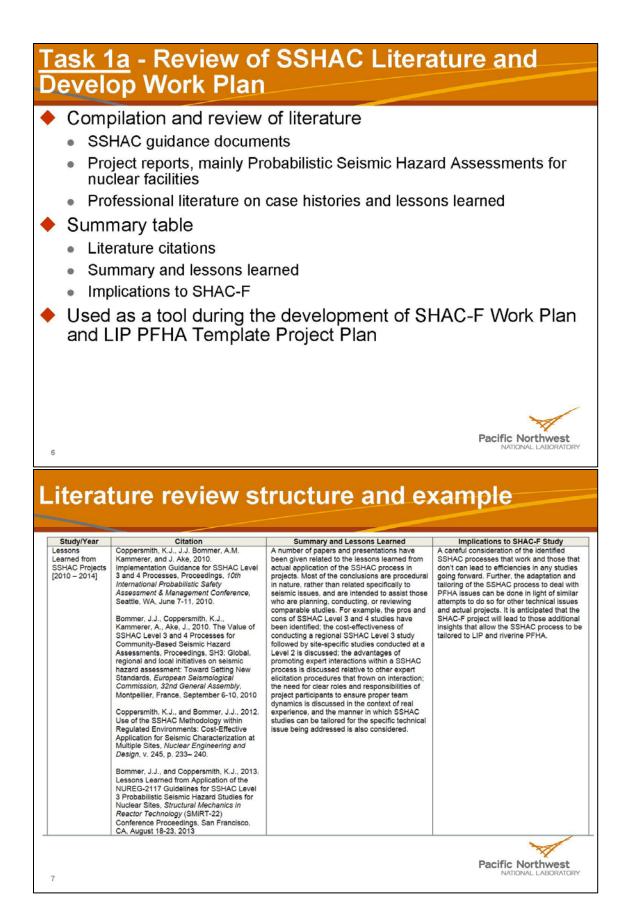
SHAC-F Project: Purpose and Approach Purpose

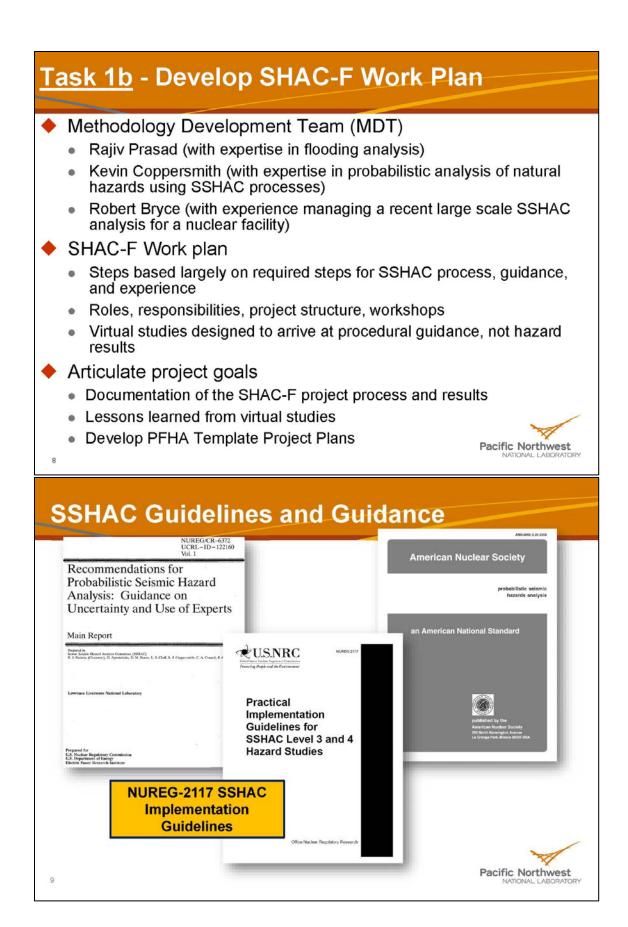
- Adapt the well-established Senior Seismic Hazard Assessment Committee (SSHAC) approach to Probabilistic Flood Hazard Assessment (PFHA)
- Termed the "Structured Hazard Assessment Committee Process for Flooding" (SHAC-F)
- Develop SHAC-F framework and guidance
- SSHAC process
 - Provides assurance that all data, models, and methods have been evaluated and that full range of knowledge and uncertainties is captured in the hazard analysis: provides needed inputs for PRA

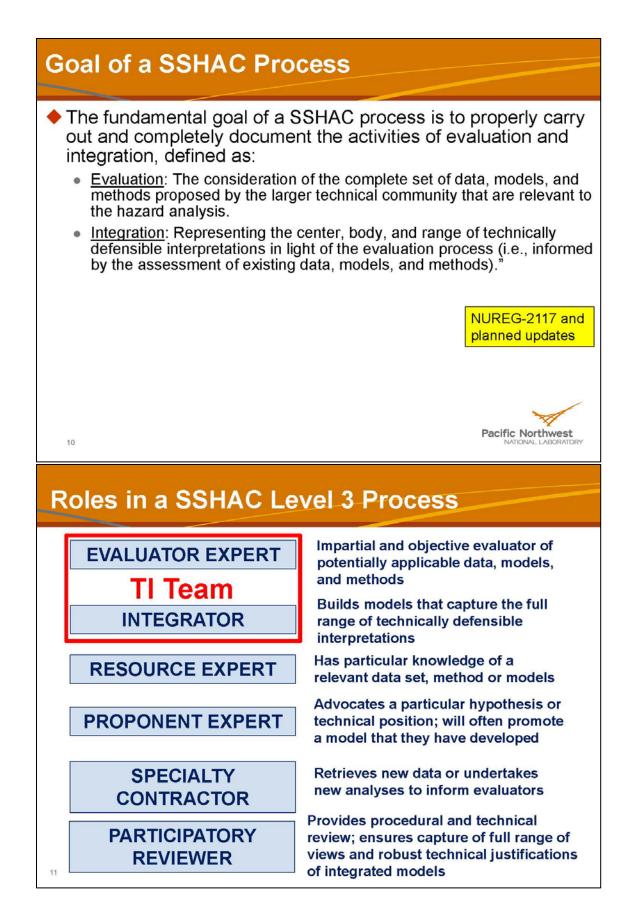
Approach for development of the SHAC-F framework

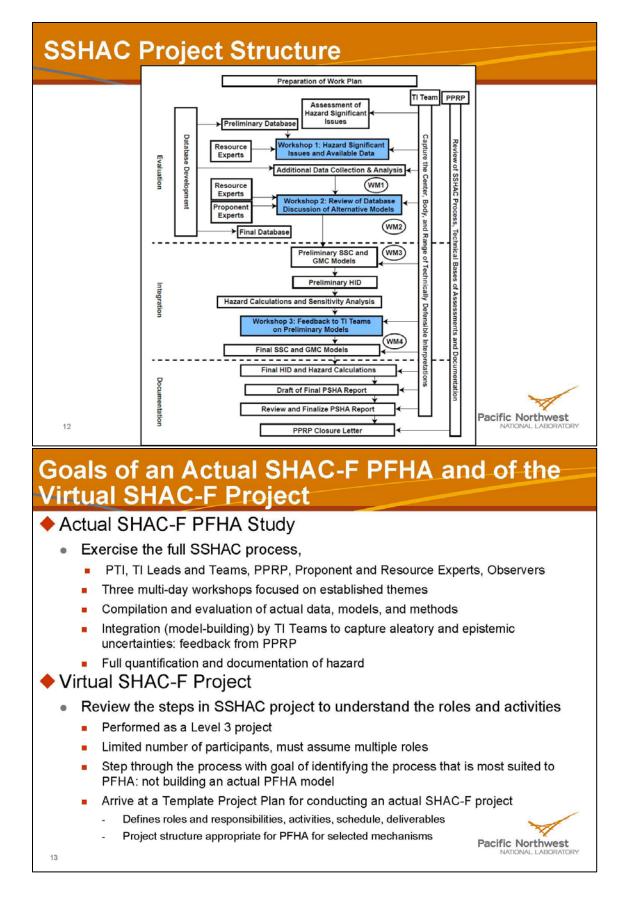
- Based on virtual implementation of the SSHAC process to PFHA for selected flood mechanisms
- Development of a Template Project Plan for selected flood mechanisms

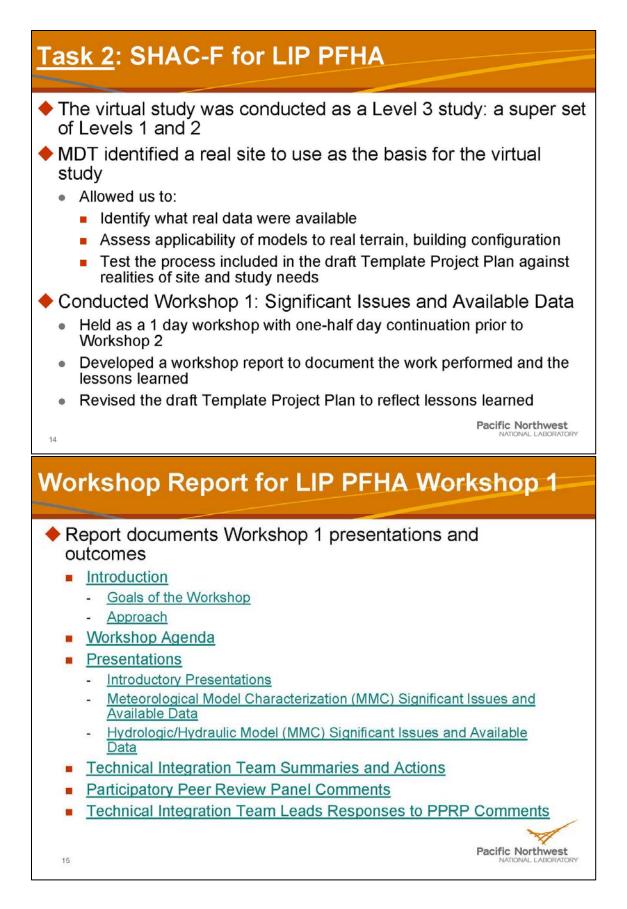

SHAC-F Project: Purpose and Approach

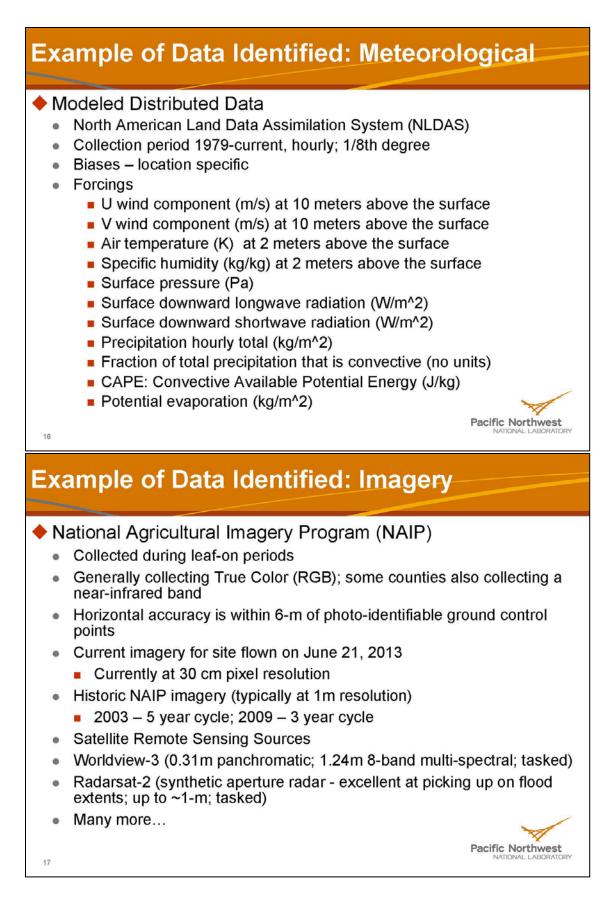

- Selected flood mechanisms
 - Local intense precipitation (LIP) flooding
 - Riverine flooding without snowmelt
 - Riverine flooding from combined rainfall and snowmelt
- Project adapts and tailors elements of SSHAC process
 - Implementing typical steps of SSHAC to PFHA in virtual studies
 - Documenting lessons learned
 - Refining Template Project Plan
- Activities and Products

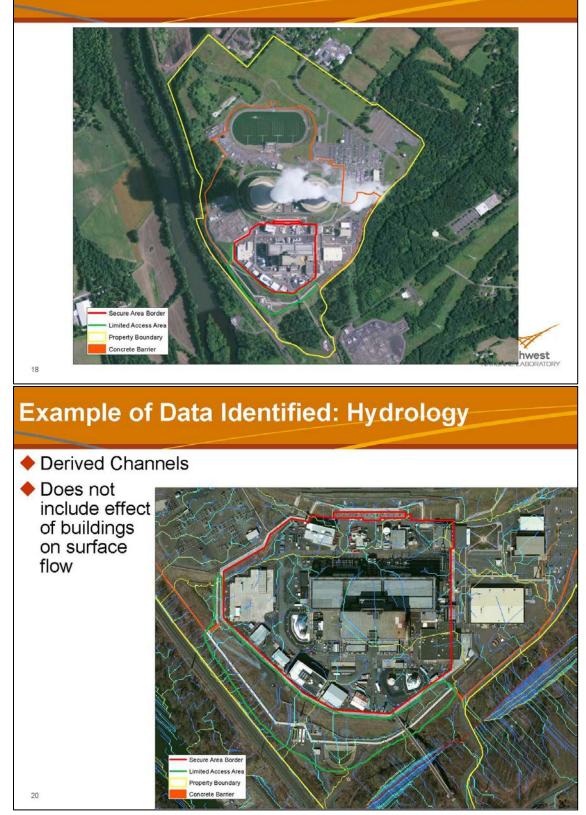

3

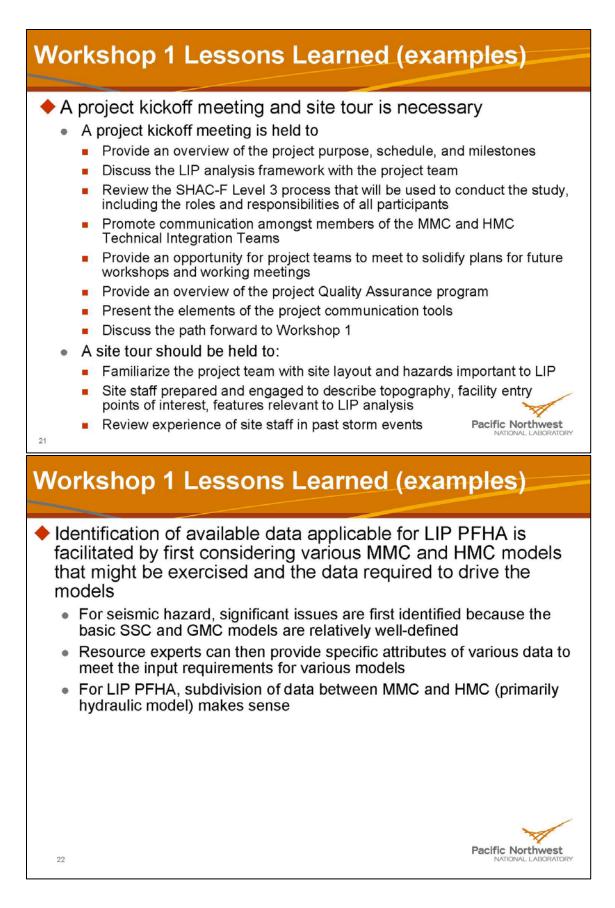

- SHAC-F Work Plan: defines the activities associated with the virtual studies for the SHAC-F project
- PFHA Template Project Plan: defines all elements of an actual SHAC-F study for a selected flood mechanism
 - Goal is to produce PFHA Template Project Plans
 - Guidance for SHAC-F PFHA studies

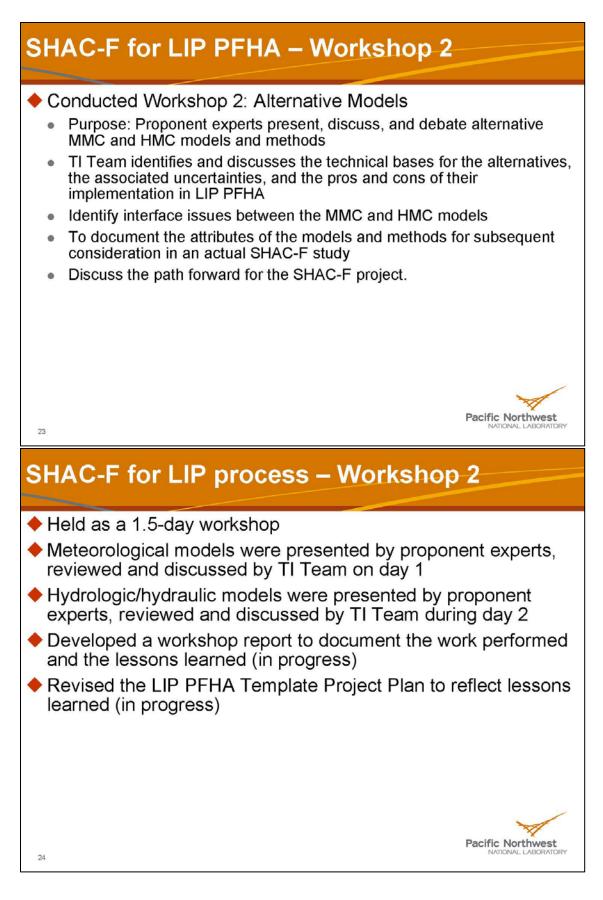


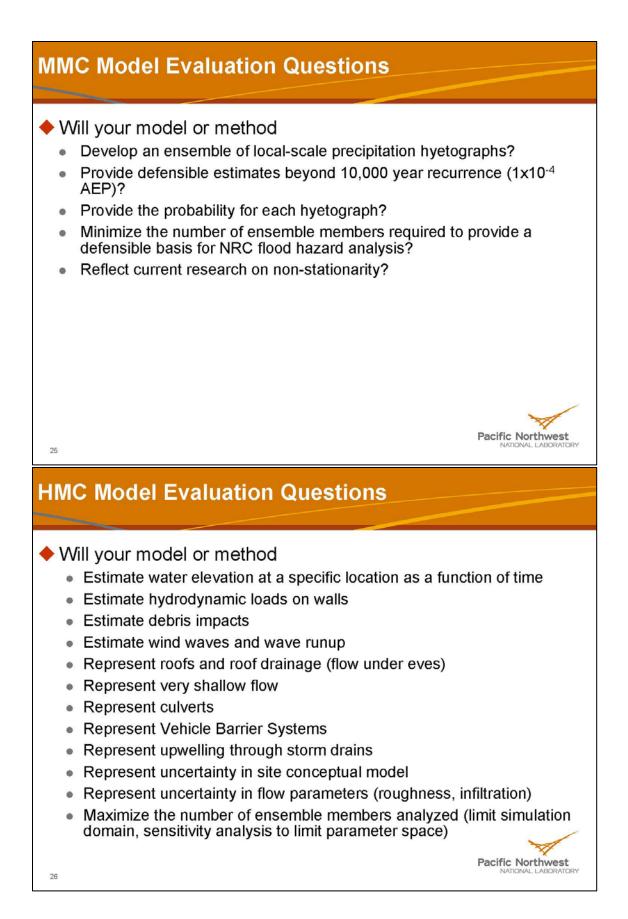




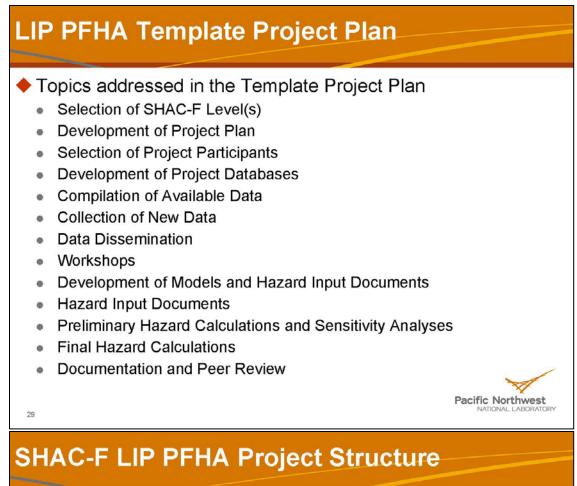


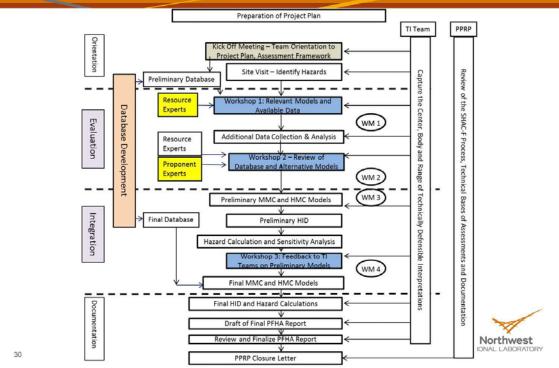


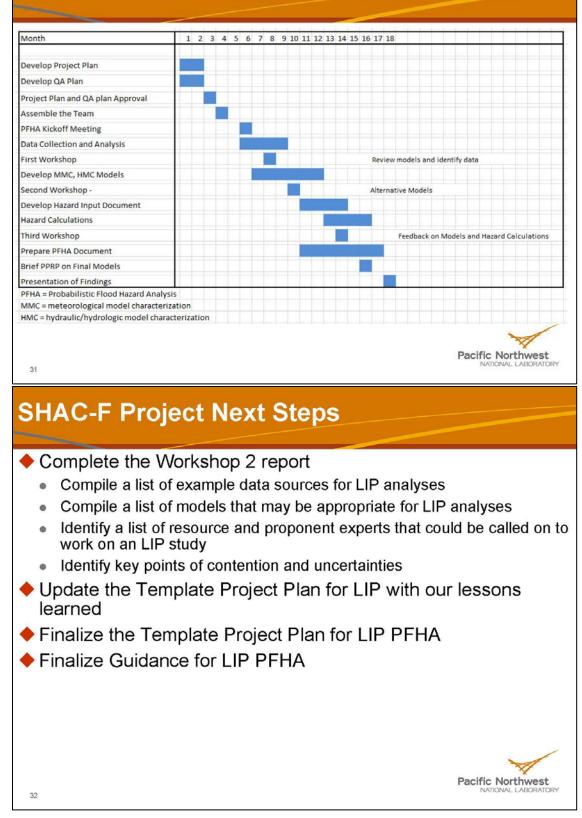


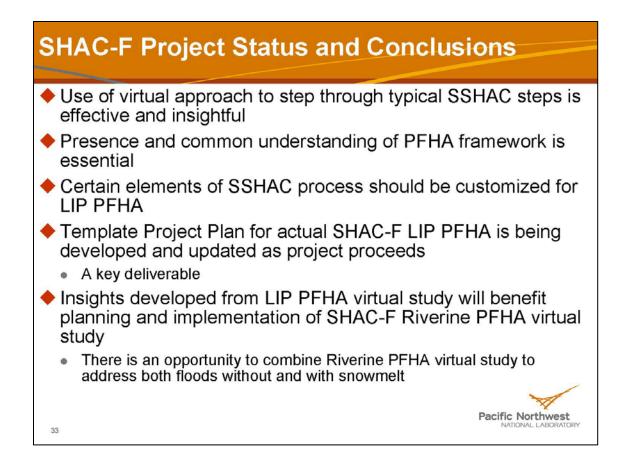


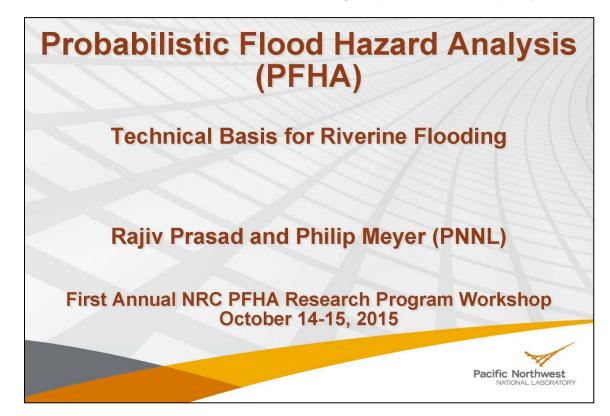
Example of Data Identified: Site Scale Imagery





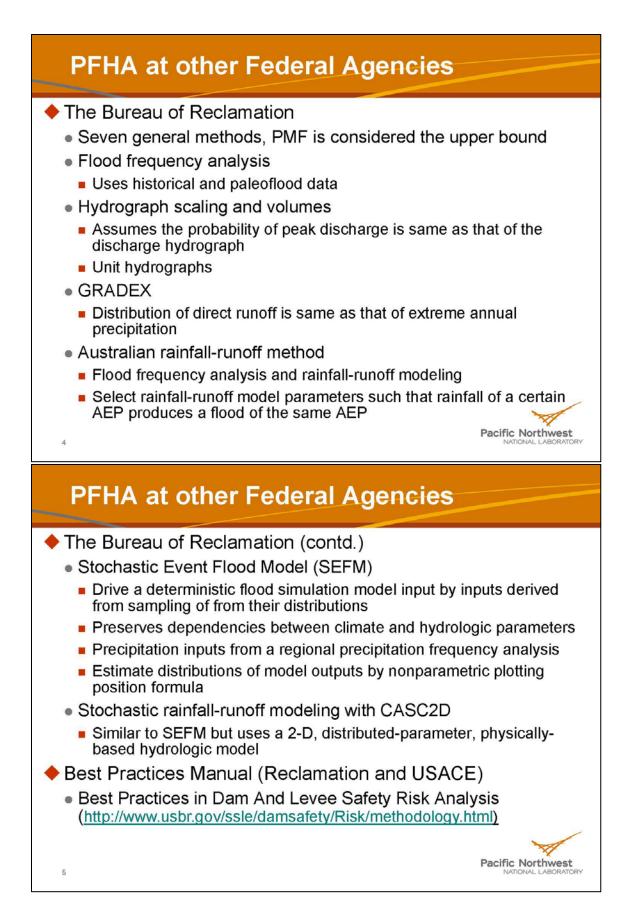

LIP PFHA: MMC Model Evaluation

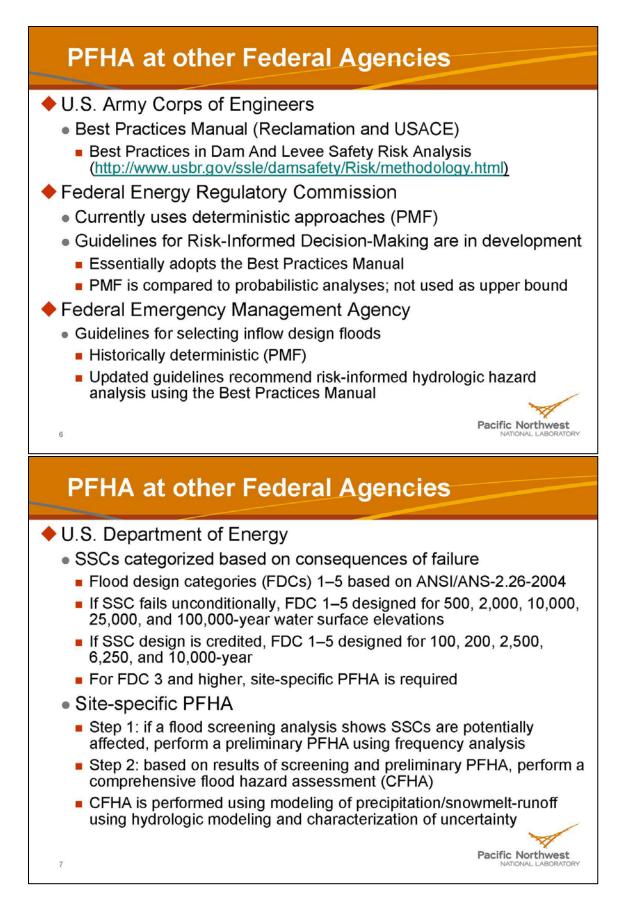

Atlas 14 Yes an	es, representing an nnual maximum eries, or a set of amples for a given uantile value. es, representing an nnual maximum eries, or a set of amples for a given uantile value.	uncertainty est defensible. Uni improved by cos sources of unce probability more etc.) Use of the PMP conservative est event magnitur the accuracy of extreme rainfal the PMP will in low probability of uncertainty, be improved by sources of unce probability more etc.)	extrapolated, but existing imates are unlikely to be certainty estimates could be insidering unmodeled ertainty (e.g., alternative dels, station correlation, 'value will result in more stimates of low probability des, but may not improve these estimates. Use of II events used to estimates Uncertainty estimates could y considering unmodeled retainty (e.g., alternative dels, station correlation, t Strucci	exceedance probability. Simulation of values at a given quantile by definition have an exceedance probability defined by the quantile. Yes, the annual maximum series by definition defines the annual exceedance probability. Simulation of values at a given quantile by definition have an exceedance probability defined by the quantile.		No. NOAA Atlas 14 is based on past events with limited information about how changes over time have occurred in the observations. No. NOAA Atlas 14 is based on past events with limited information about how changes over time have occurred in the observations.
Atlas 14 extension	nnual maximum eries, or a set of amples for a given uantile value.	conservative es event magnitur the accuracy of extreme rainfai the PMP will im low probability of uncertainty, be improved by sources of unce probability more etc.)	stimates of low probability des, but may not improve these estimates. Use of II events used to estimate aprove the defensibility of events and the estimates Uncertainty estimates could v considering unmodeled ertainty (e.g., alternative dels, station correlation,	series by definition defines the annual exceedance probability. Simulation of values at a given quantile by definition have an exceedance probability defined by the quantile.	importance sampling could be used to reduce the number of samples. Sampling a given quantile value requires AEP neutrality in which the AEP of the hazard is assumed to be identical to that of the precipitation event.	based on past events with limited information about how changes over time have occurred in the observations.
	HA Pr	ojec	t Struct	ture		
Pr	roject Qual Engineer	ity	Project S		PPRP	
		Pr	oject Technical	Integrator (PTI	1)	
	t Technical sources	Haza	ard Analyst	Data Bas	se Manager	
	y Contractors		MMC TI Lead	HMC TI Lead	Contraction Specialty Contraction Contract	
	ent Experts	j [MMC TI Team	HMC TI Team	Proponent	

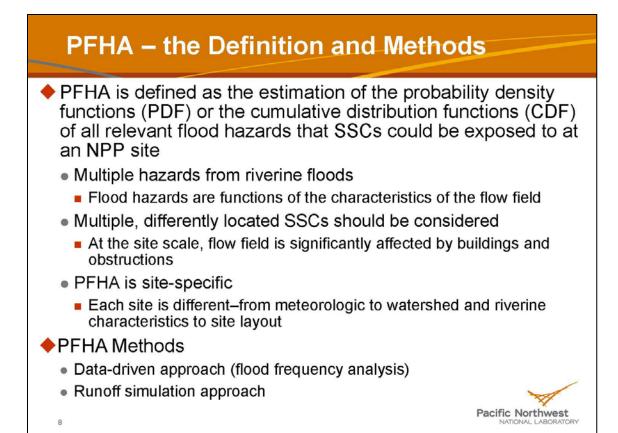

Idealized SHAC-F LIP PFHA Schedule of Activities

1.3.4 Day 2: Session IV: Riverine and Coastal Flooding Processes

Session IV of the workshop included presentations on NRC-funded research related to riverine and coastal flooding processes. Researchers from PNNL began the session by discussing work that compared statistical and simulation-based approaches for probabilistic assessment of riverine flooding hazards. Representatives from the U.S. Army Corps of Engineers (USACE) followed with a presentation on research to develop a PFHA framework for riverine flooding. The U.S. Geological Survey (USGS) and USBR presented a joint discussion on the current state of practice in riverine flood frequency analysis. A second research team from USACE followed with a discussion on its work to investigate uncertainty quantification in current probabilistic storm-surge modeling frameworks. A USBR researcher gave the final presentation, which described physical modeling to investigate erosion processes in earthen embankment dam breach .

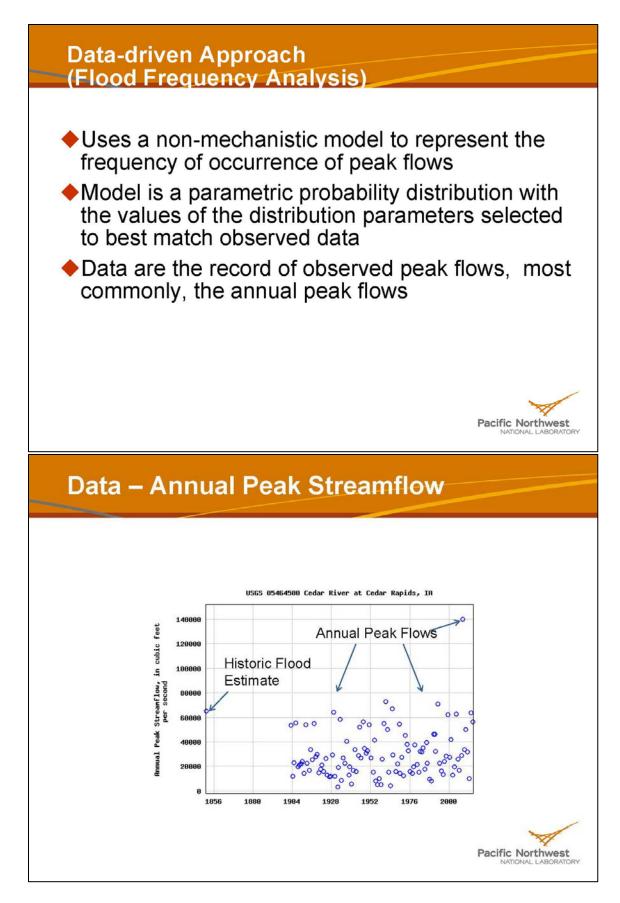


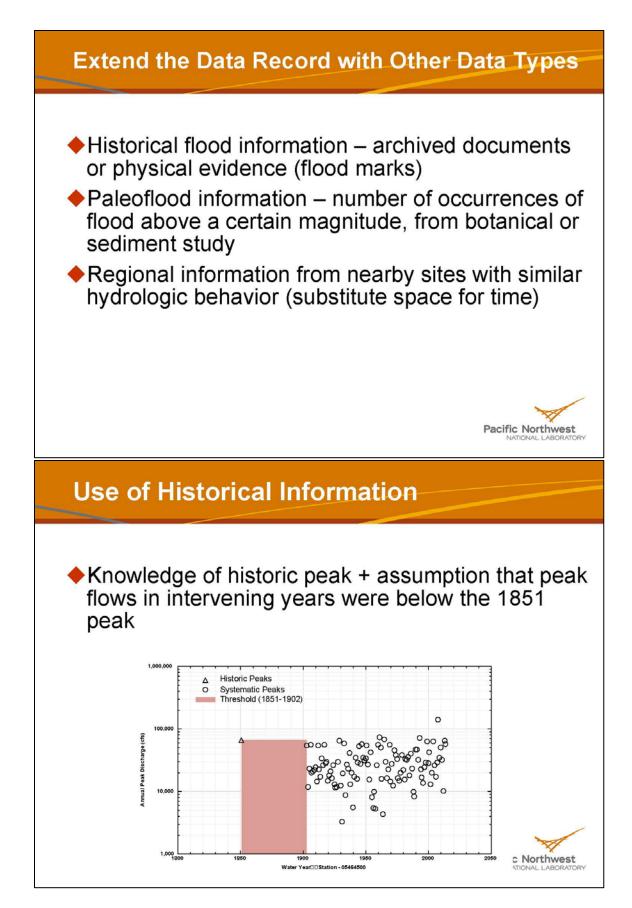

1.3.4.1 PFHA Technical Basis for Riverine Flooding. Rajiv Prasad and Philip Meyer, PNNL

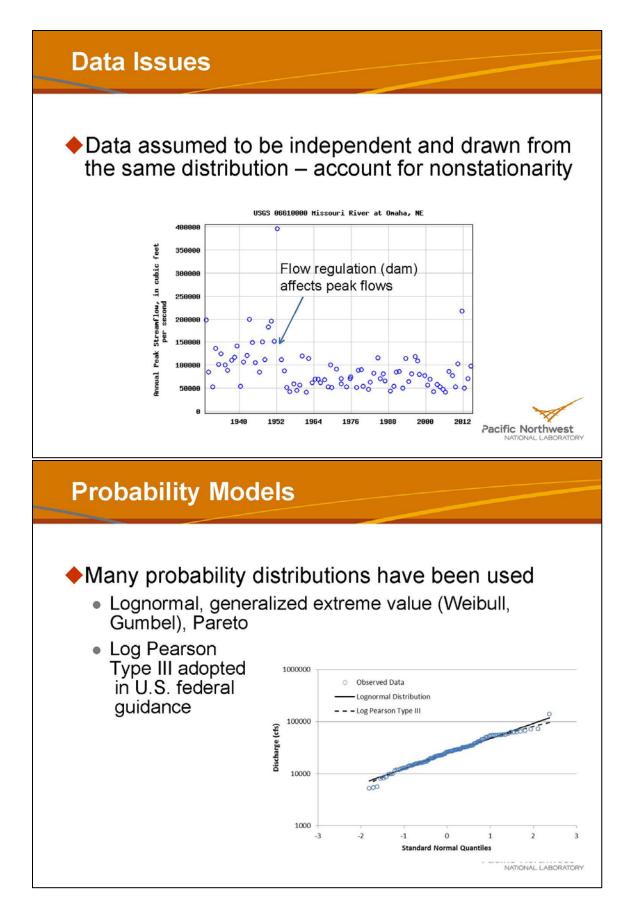

PFHA – the Need Long-stated NRC policy for implementing risk-informed approaches for external hazards including floods in this report riverine floods are the topic Current practice for external flood hazard assessment is based on deterministic, "probable maximum" events does not allow for determination of exceedance probabilities NRC guidance suggests that average annual exceedance probability (AEP) of about 1 x 10⁻⁶ is acceptable for flood design bases Risk-informed approaches need AEPs Probabilistic Risk Assessments need the complete probability distribution of flood hazards PFHA – the Scope Scope of PFHA Riverine floods Estimate flood Flood hazards of AEPs Hazard Assessment 1 x 10⁻³ to 1 x 10⁻⁴ completed Temporal Scope ESP Issued End of ESP ESP ~100 – 120 years Validity and COL End of COL Renewed COL Issued Renewed Validity based on approximate NPP permitting and licensing timeline 20 years 20 years 40 years 20 years Spatial Scope From watershed scale to site scale

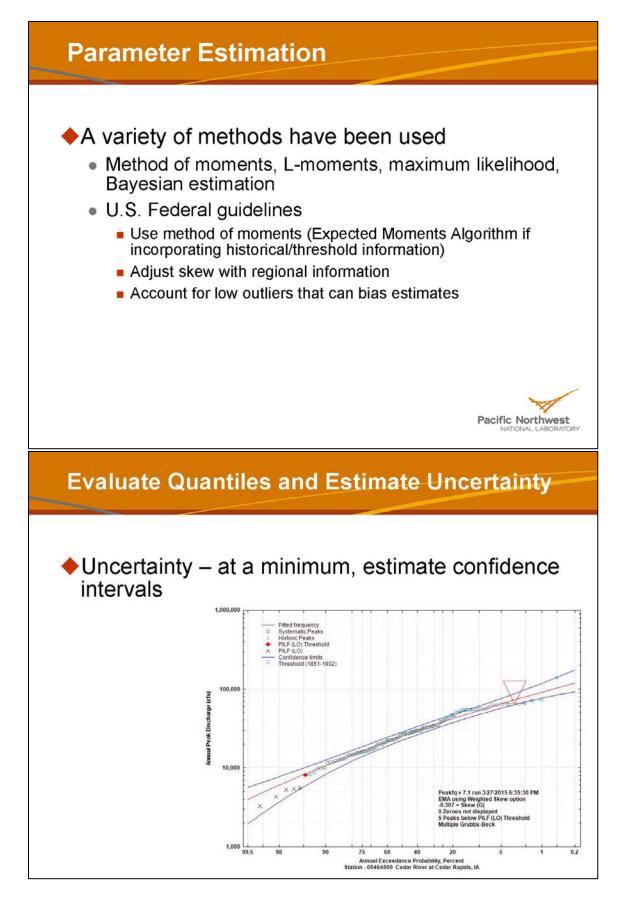
3

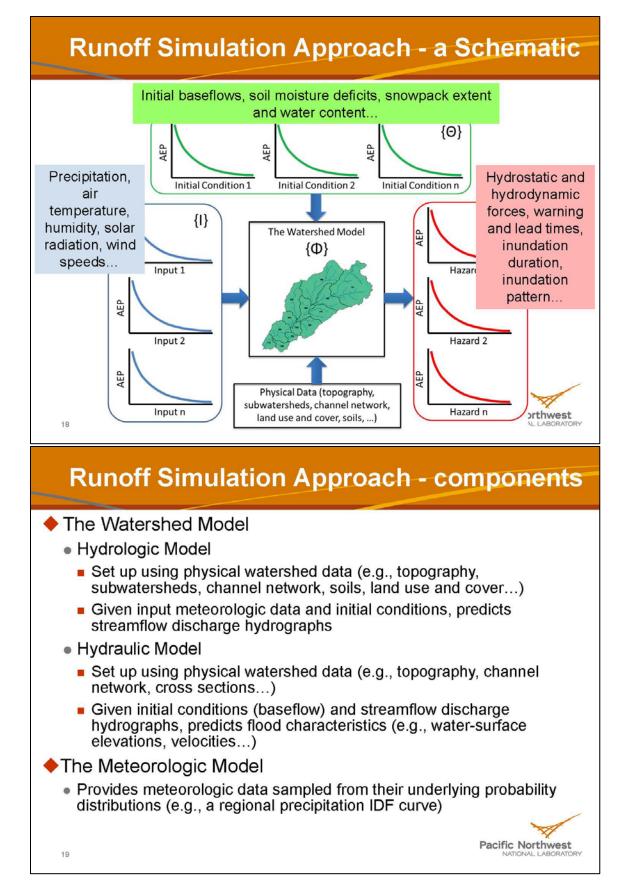
Pacific Northwest

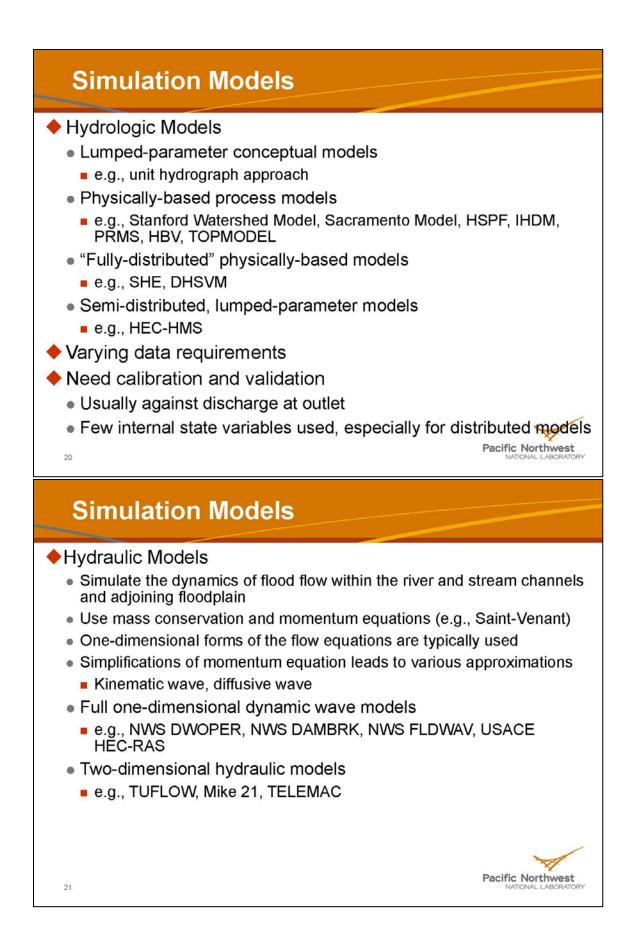






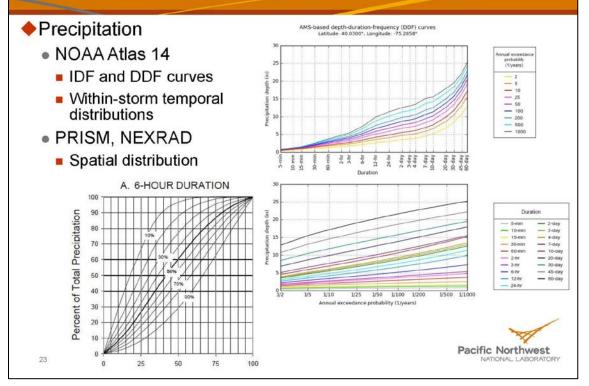

Flood Hazards

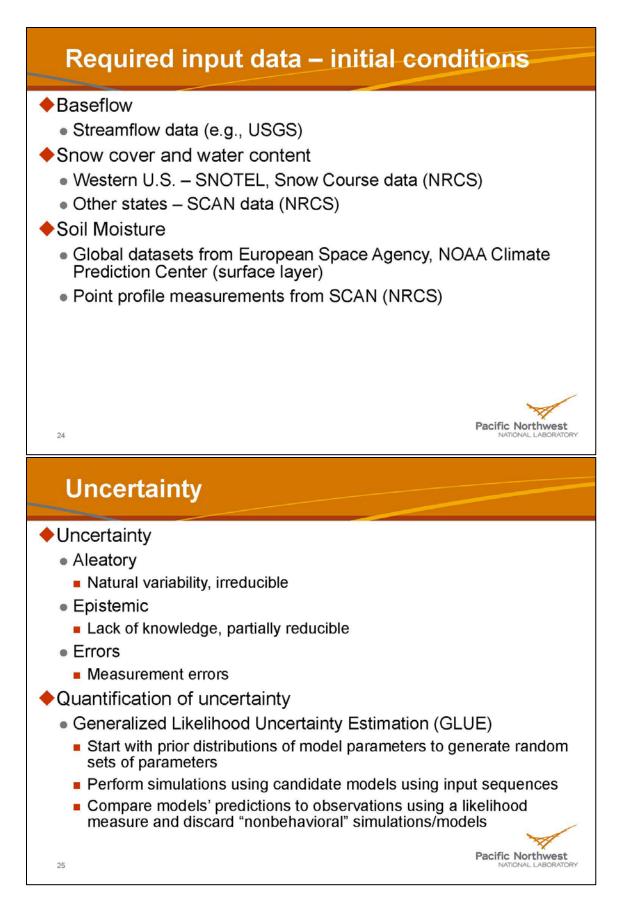

Flood Hazard	Flood Characteristic	Effects on SSCs	Relevant Scale
Hydrostatic load	Water-surface elevation	Loss of functionality from exceedance of the design basis	Site scale
Hydrodynamic Ioad	Water-surface elevation, flow velocity, flow density	Loss of functionality from exceedance of the design basis	Site scale
Inundation pattern	Water-surface elevation	Accessibility leading to loss of functionality	Site scale
Accumulation of water in SSCs	Water-surface elevation, time of inundation of openings	Loss of functionality	Site scale
Erosion	Flow velocity, discharge, turbulence, and duration	Loss of functionality	Site scale
Deposition	Flow velocity, discharge, turbulence, and duration	Accessibility leading to loss of functionality	Site scale
Impact load	Water-surface elevation, flow velocity, duration	Loss of functionality from exceedance of the design basis	Site scale
Warning and lead times	Discharge hydrograph	Accessibility leading to loss of functionality	Drainage area to site scale
Inundation duration	Discharge hydrograph, water- surface elevation	Accessibility leading to loss of functionality, loss of functionality from exceedance of the design basis	Drainage area to site scale

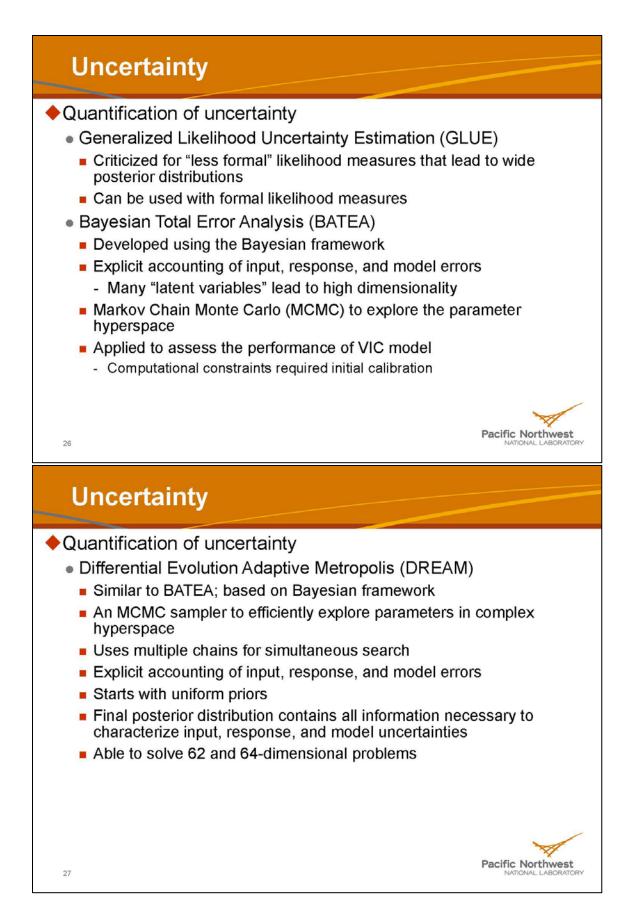


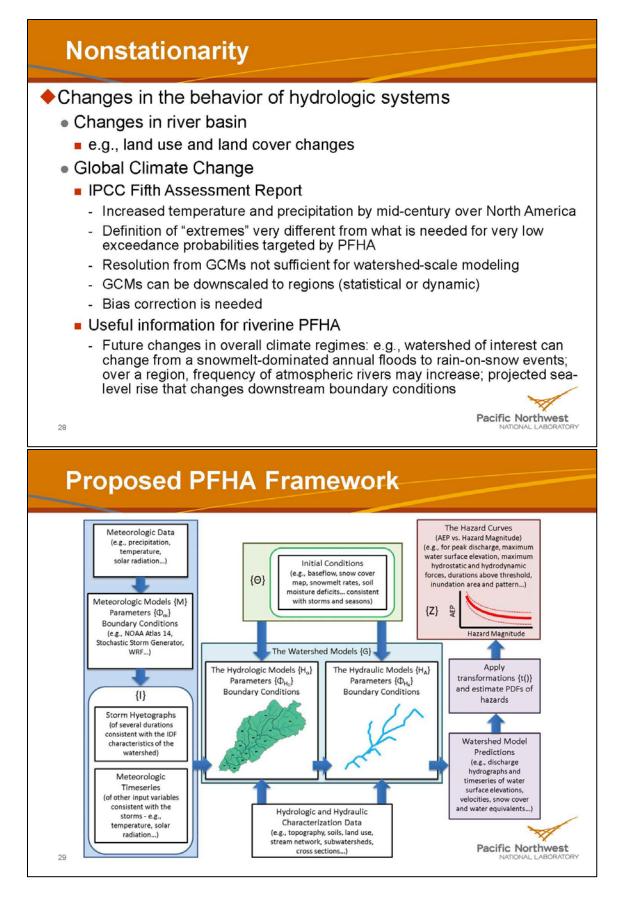
1-157

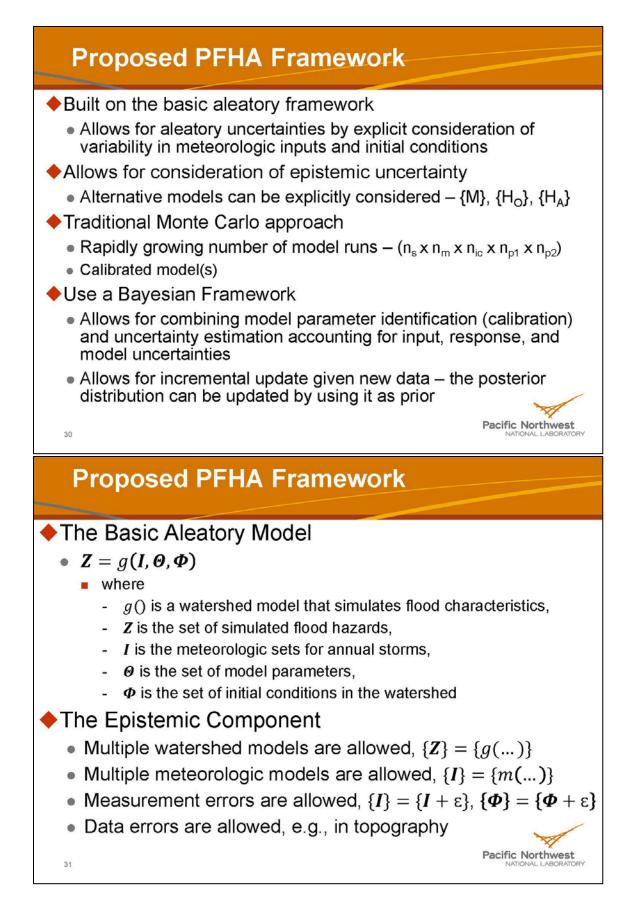
Physical data

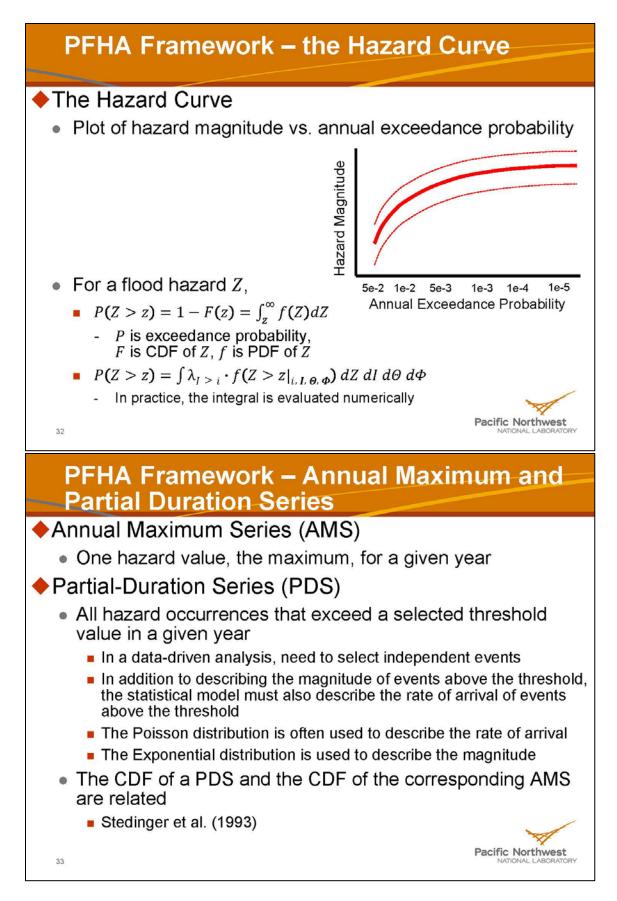

- Topography
- Watershed area, subwatersheds, drainage connectivity
- Land use and cover
- Soil types
- Channel lengths, connectivity, cross sections
- Sources in NUREG/CR-7046
- Hydrometeorologic input data
 - Precipitation
 - Air temperature
 - Solar radiation

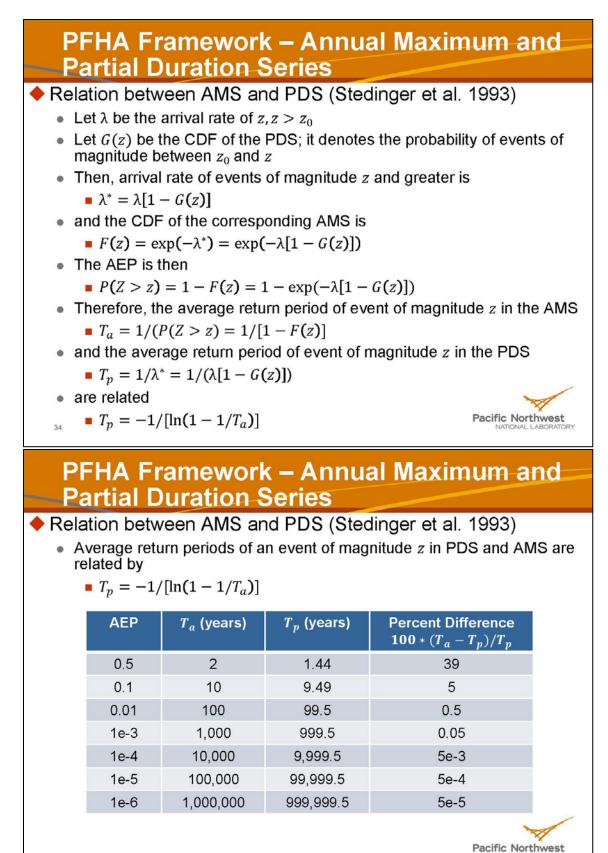

22

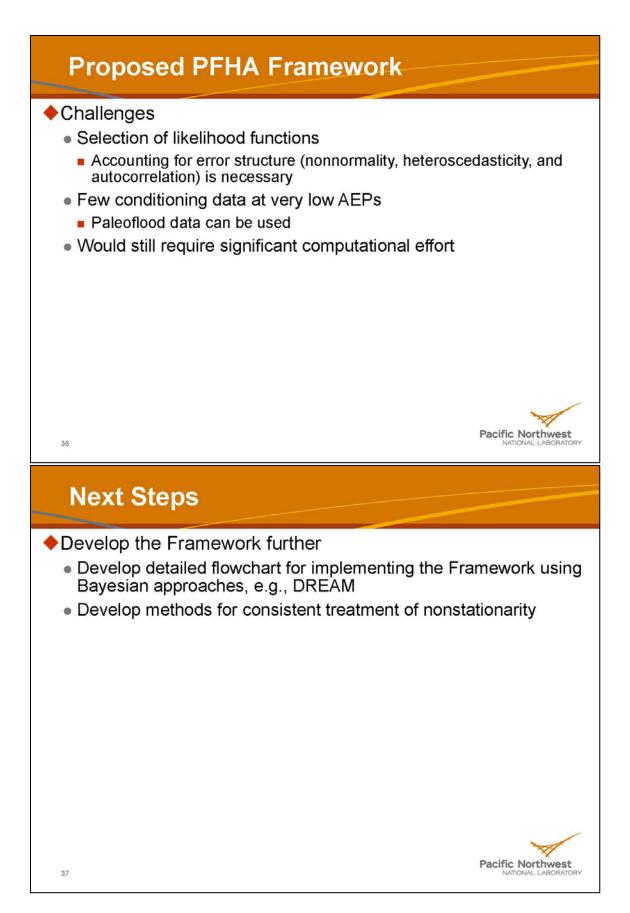

- Wind speeds and direction
- Temporal resolution and spatial coverage should be adequate

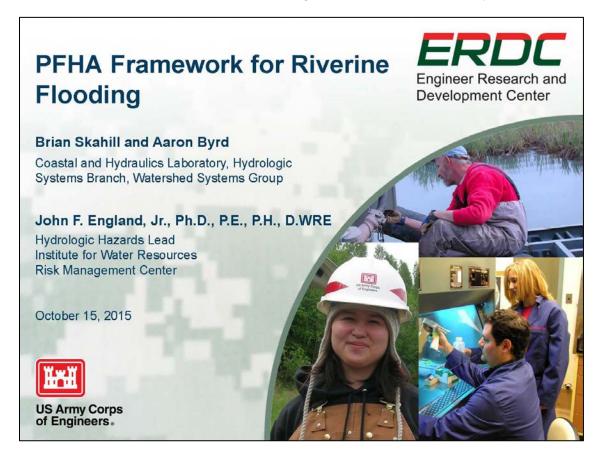

Pacific Northwest







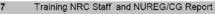




35

1.3.4.2 PFHA Framework for Riverine Flooding. Brian Skahill and Aaron Byrd, USACE

PFHA Framework Development


Objective. Develop and demonstrate an overall conceptual, mathematical and logical framework for probabilistic flood hazard assessment for inland and riverine sites (e.g. non-coastal sites). The framework will facilitate construction of site-specific flood hazard curves, and support full characterization of uncertainties in site-specific storm flood hazard estimates for the full range of return periods of interest for critical infrastructure facilities such as nuclear power plants.

Task Component Description

Literature review

1

- 2 Warm Season and Locally Intense Rainfall
- 3 Cool Season Rainfall
- 4 Site-scale Flooding
- 5 Watershed and Riverine Flooding
- 6 Dam/Levee Breech Riverine Flooding

BUILDING STRONG

Innovative solutions for a safer, better world

Context

General Requirement. For inland nuclear facility sites a PFHA must be able to incorporate probabilistic models for a variety of processes (e.g., precipitation, runoff, stream flow, operation of water control structures), allow for characterization and quantification of aleatory and epistemic uncertainties, facilitate propagation of uncertainties, and facilitate sensitivity analysis.

DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers CECW-P Washington, D.C. 20314-1000 CECW-E

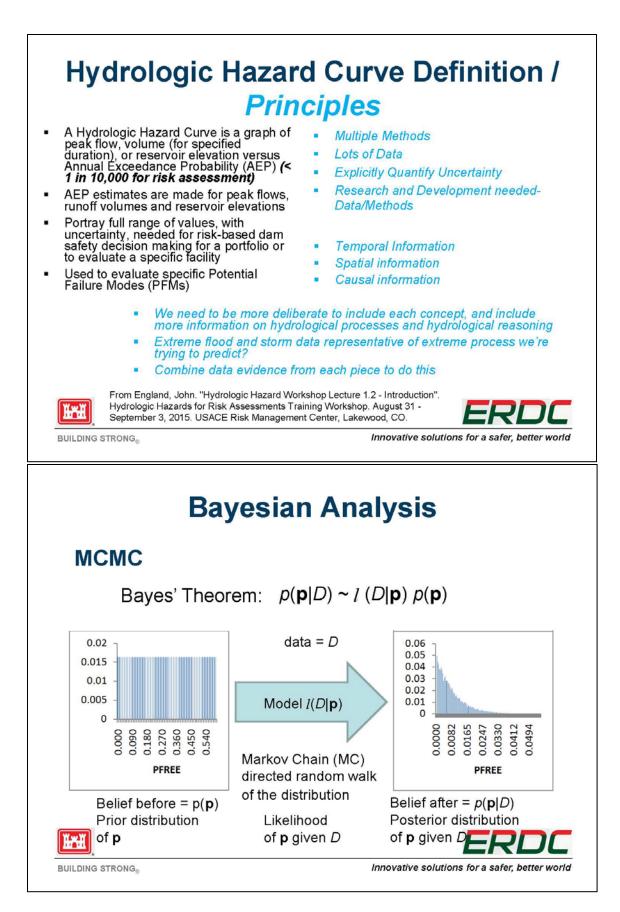
Regulation No. 1105-2-101

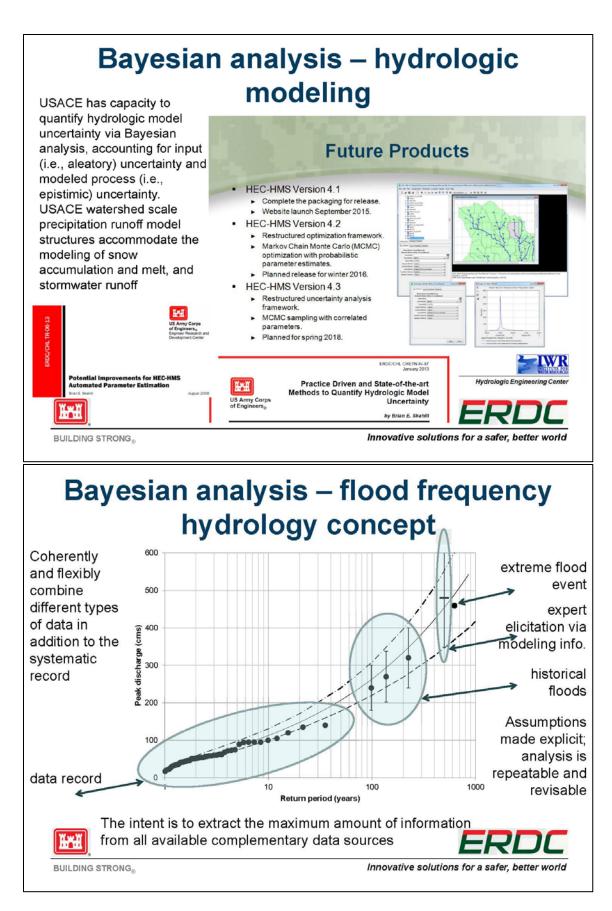
3 January 2006

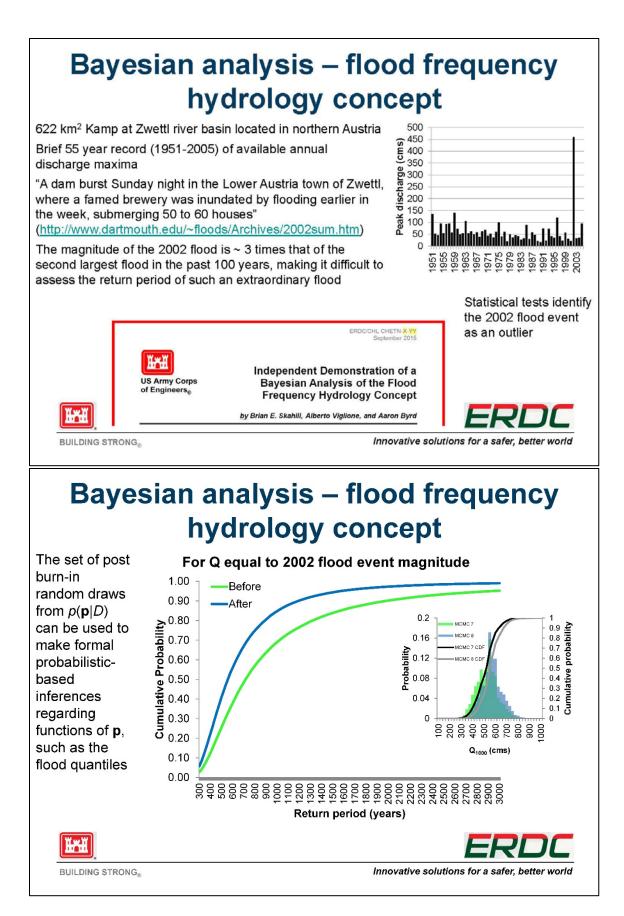
ER 1105-2-101

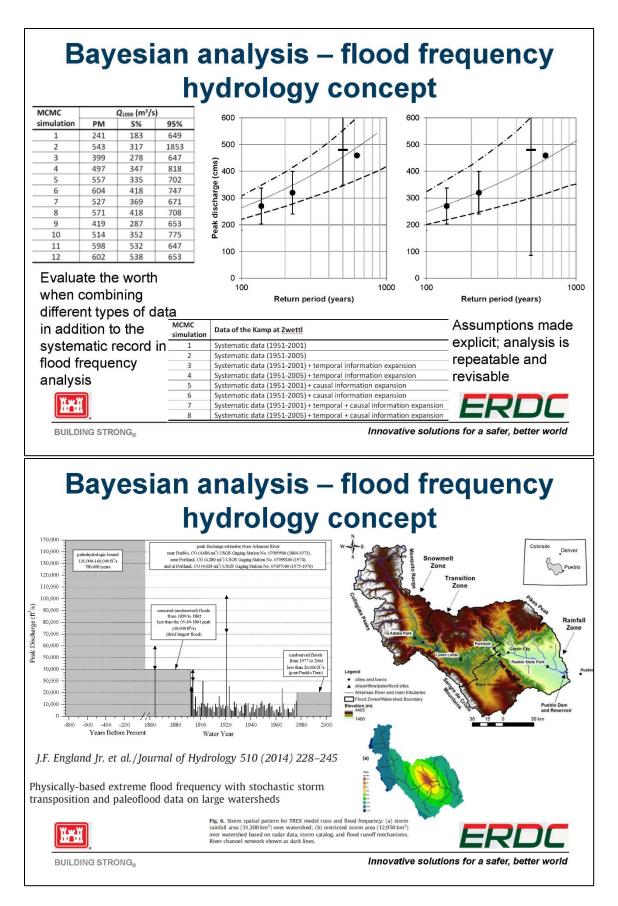
Planning RISK ANALYSIS FOR FLOOD DAMAGE REDUCTION STUDIES

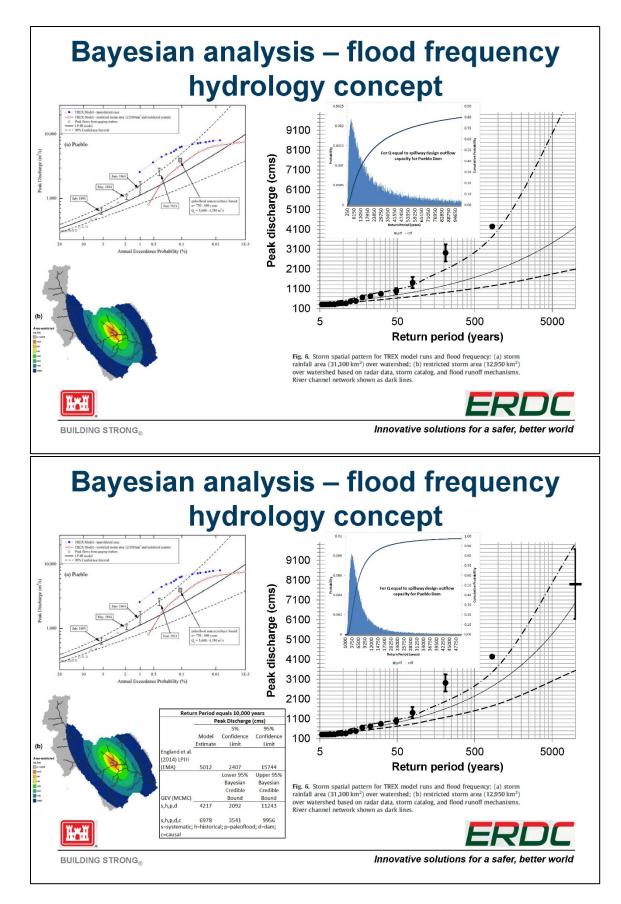
 <u>Purpose</u>. This regulation provides guidance on the evaluation framework to be used in Corps of Engineers flood damage reduction studies. It is jointly promulgated by Planning and Engineering.

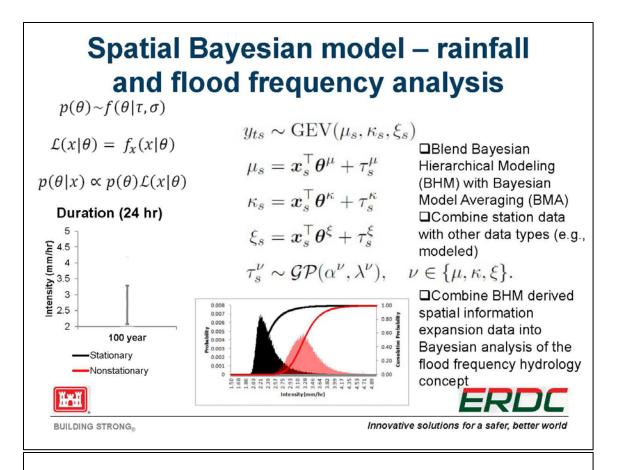

BUILDING STRONG®

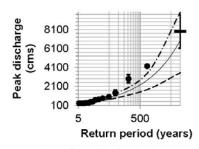

USACE Engineering Regulation requires the performance of risk and uncertainty analyses in the process of planning, design, and operation of all civil works flood risk management projects.


The ultimate goal of the policy guidance is probabilistic analysis of "all key variables, parameters, and components of flood damage reduction studies."



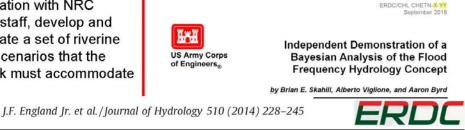

Innovative solutions for a safer, better world



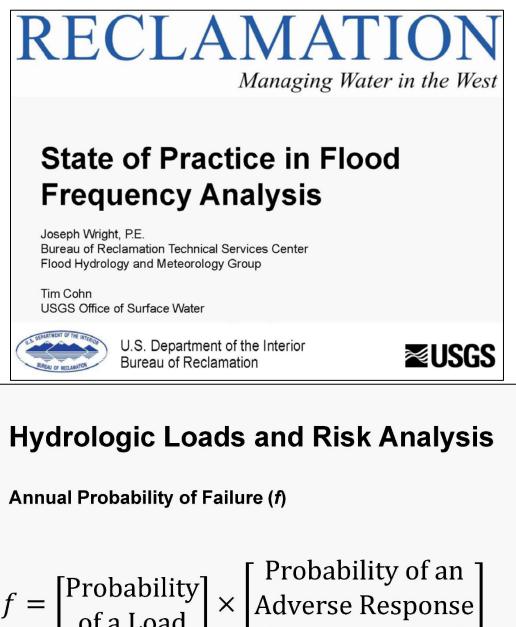


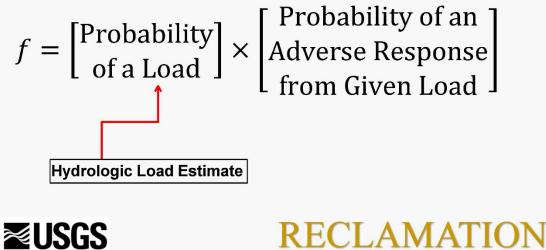
PFHA Framework For Riverine Flooding

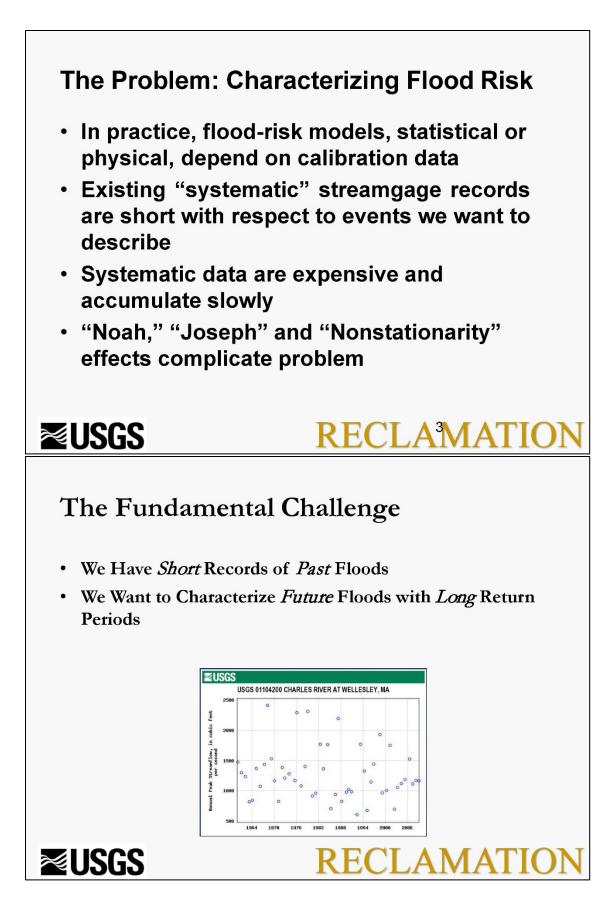
Probabilistic hydrologic hazard curve definition is based on the flood frequency hydrology concept (viz., extract the maximum amount of information from all available data sources - systematic data plus temporal/spatial/causal information expansion data), using formal Bayesian methods to flexibly combine the data.


BHM, BHM with BMA, BHM as spatial information expansion data in application of the flood frequency hydrology concept

How best to include causal information expansion data?

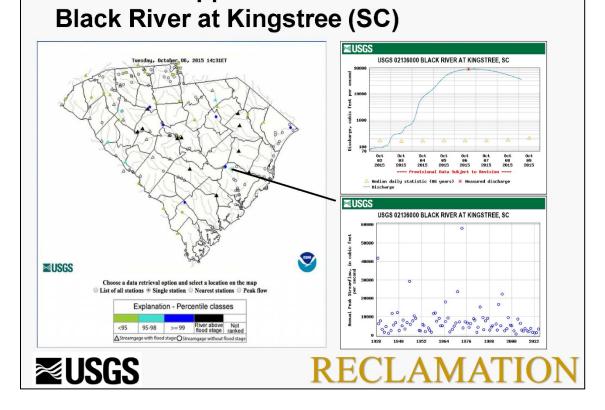

In cooperation with NRC technical staff, develop and demonstrate a set of riverine flooding scenarios that the framework must accommodate

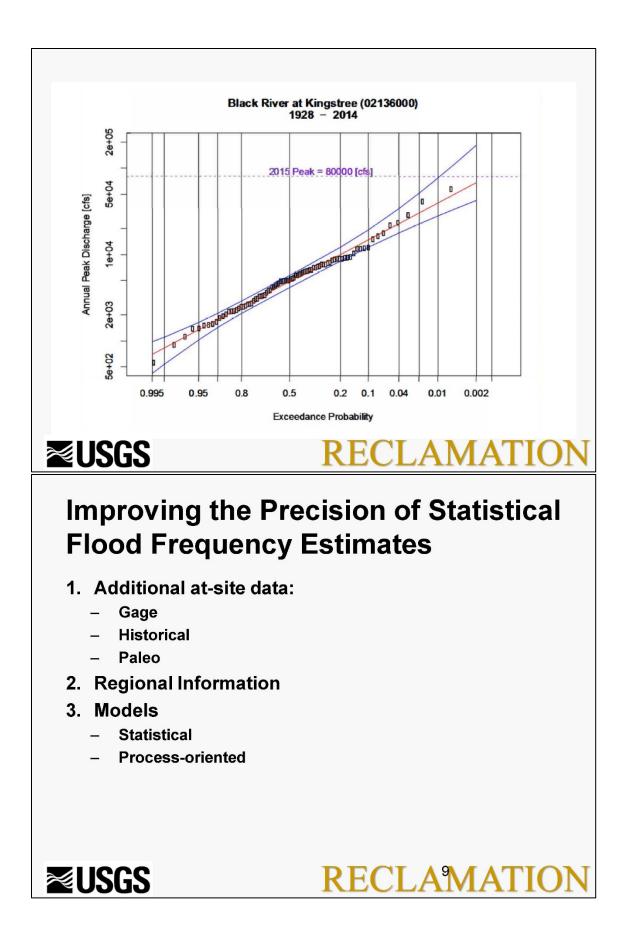

њн

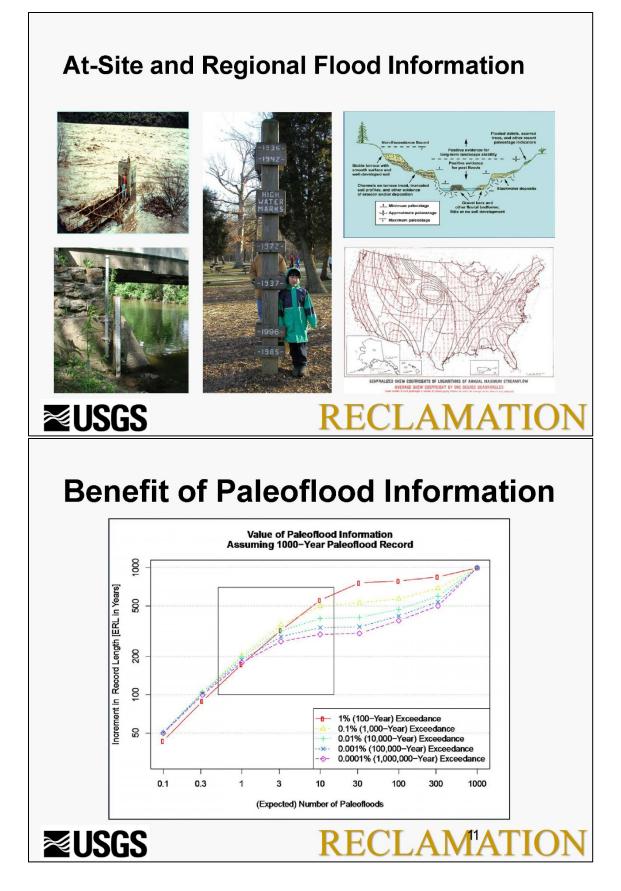


BUILDING STRONG® Thank you. Questions? Comments?

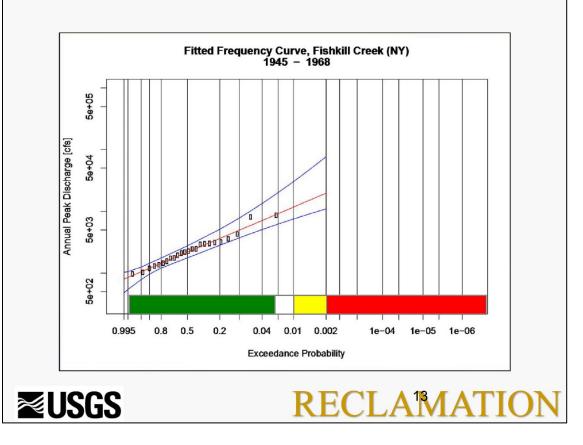
1.3.4.3 State of Practice in Flood Frequency Analysis. Timothy Cohn, USGS; and Joseph Wright, USBR

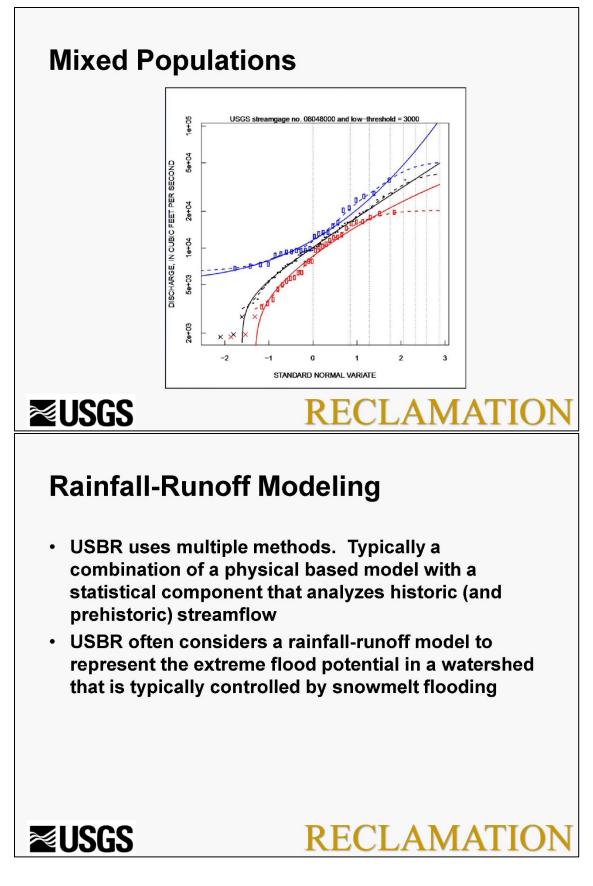


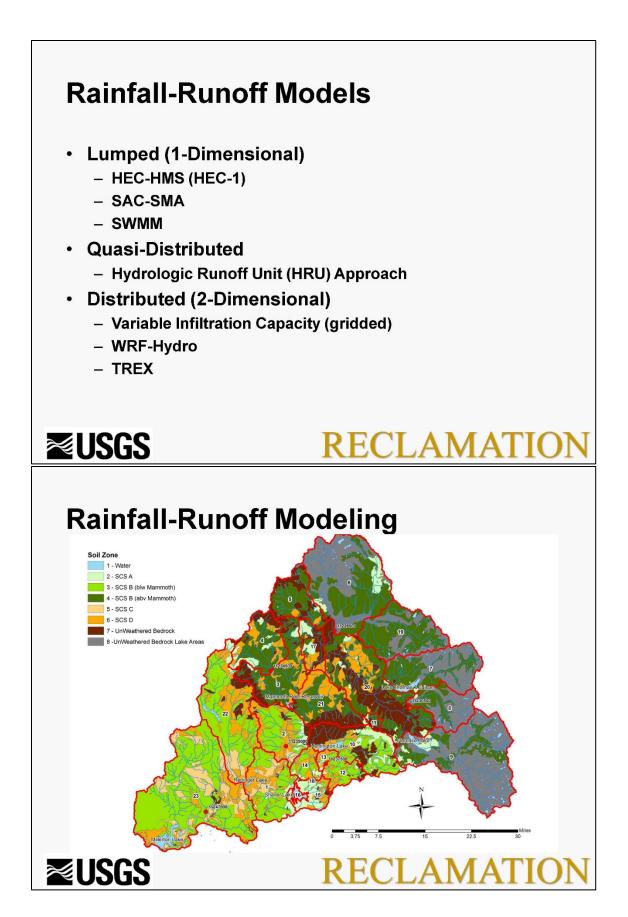


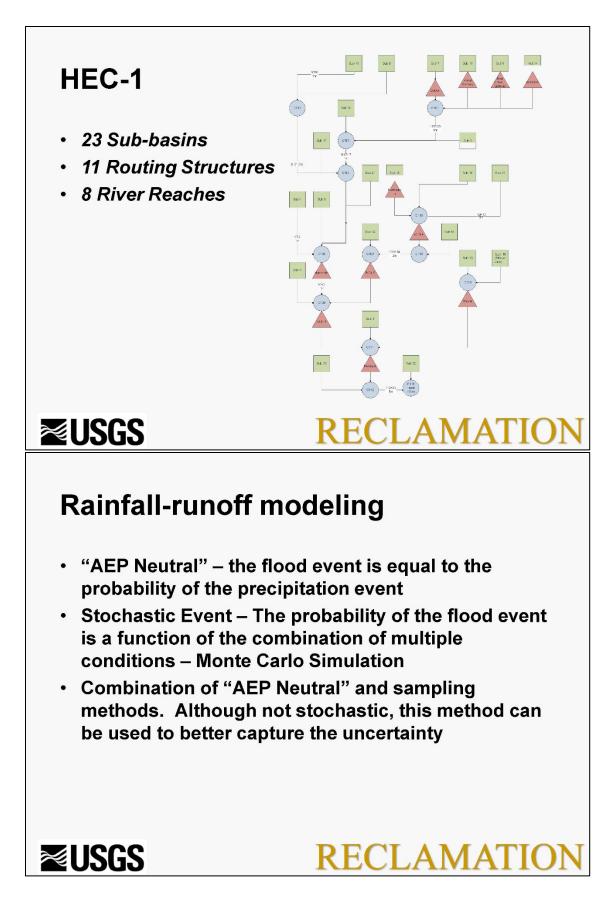

Bulletin 17B (1981) Guidelines Statistical Approach: 'or Determining • Log-Pearson Type 3 Dist' n Flood • Method of Moments DOW Frequency • Regional Skew • Procedures for Non-Standard Data • Weighted moments (Historical ed September 1981 information) • Conditional Probability SORY COMMITTEE Adjustment (Low outliers, zero flows) •Uncertainty (Confidence Limits)

RECLAMATION **Statistical Approach**




Credible Extrapolation

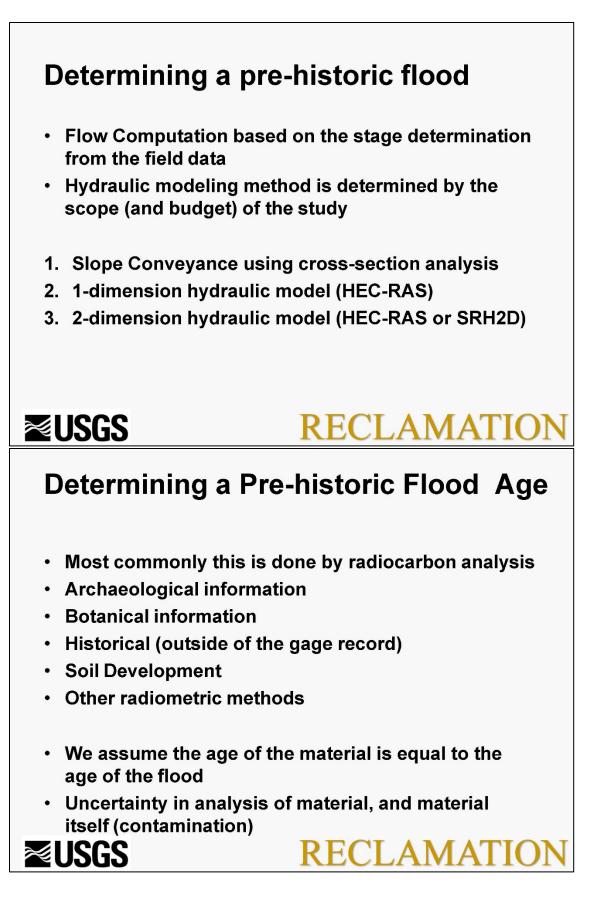

Type of Analysis	Typical Range	Range (Best)
At-Site Stream Gage	1 in 100	1 in 200
Regional Stream Gages	1 in 500	1 in 1,000
At-Site Stream Gage combined with Paleoflood Data	1 in 4,000	1 in 10,000
Regional Precipitation Data	1 in 2,000	1 in 10,000
Regional Streamflow and Regional Paleoflood Data	1 in 15,000	1 in 40,000

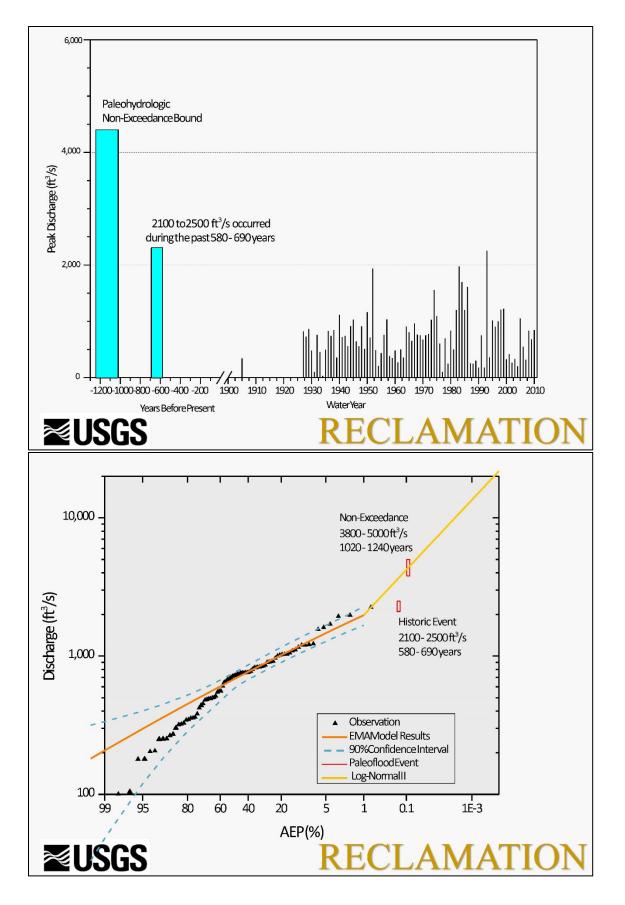

USGS

RECLAMATION

Rainfall-Runoff Modeling

- Precipitation Frequency
 - Regionalized precipitation (L-moments)
 - Australian Rainfall-Runoff
 - NOAA Atlas 14
- Temporal
 - Derived from observed data
 - Design templates (SCS Type II, USBR 2/3, etc)
- Spatial
 - Derived from observed data (at-site, transposition)
 - Design templates (HMRs)
 - Modeled (WRF)


USGS



How to use Paleoflood Data

- Paleoflood data can be combined with stream gage data to extrapolate peak discharge probabilities beyond the 1 in 100 AEP
- Graphical Approach
- Expected Moment Algorithm (EMA)
- Bayesian Maximum Likelihood (FLDFRQ3)

The Challenge of Nonstationarity

- Urbanization
- Landuse changes
- Encroachment on floodway
- Regulation (dams)
- Climate change

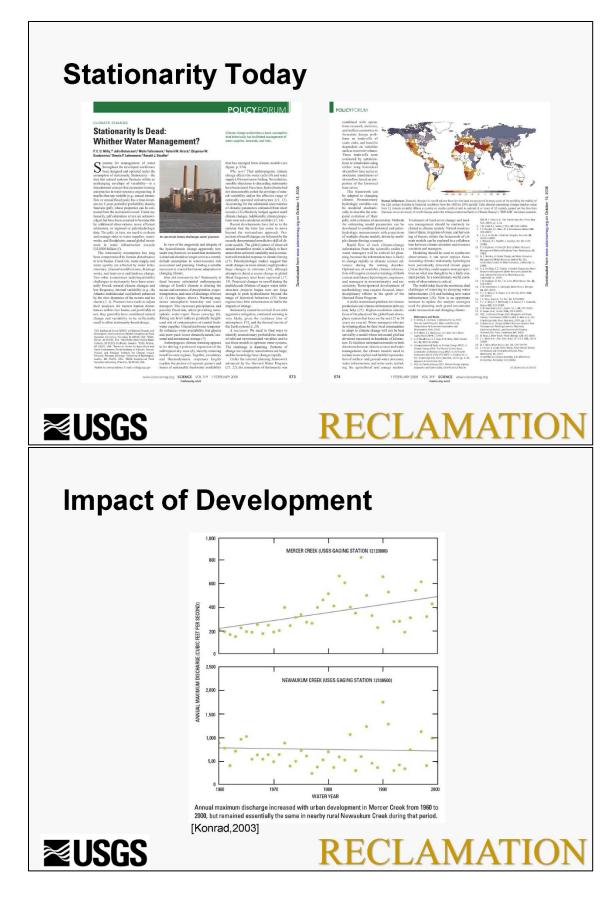
≊USGS

RECLAMATION

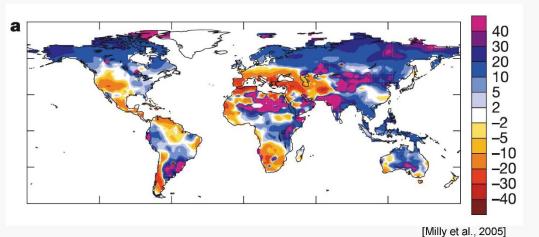
Stationarity c. 1981 (Bulletin 17B)

IV. Data Assumptions

Necessary assumptions for a statistical analysis are that the array of flood information is a reliable and representative time sample of random homogeneous events. Assessment of the adequacy and applicability of flood records is therefore a necessary first step in flood frequency analysis. This section discusses the effect of climatic trends, randomnes of events, watershed changes, mixed populations, and reliability of flow estimates on flood frequency analysis.

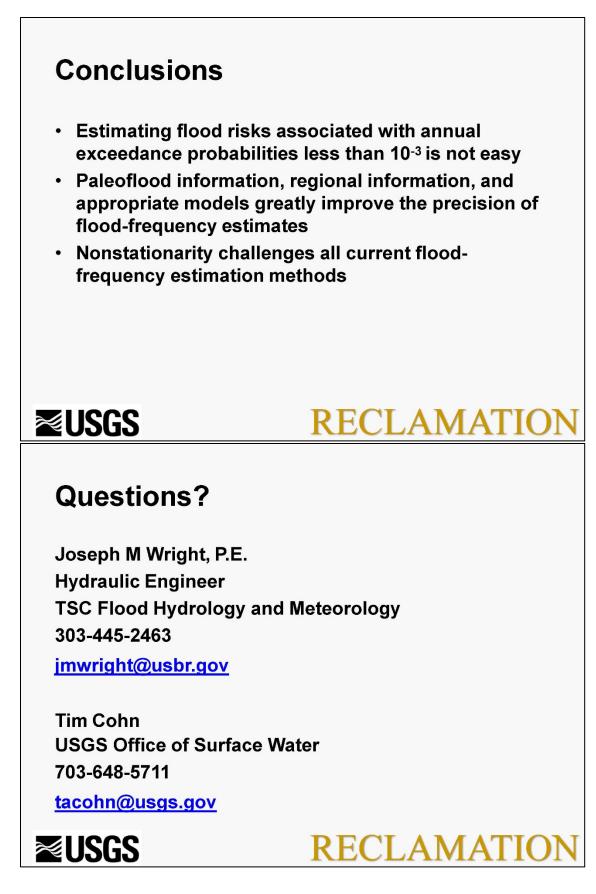

A. Climatic Trends

There is much speculation about climatic changes. Available evidence indicates that major changes occur in time scales involving thousands of years. In hydrologic analysis it is conventional to assume flood flows are not affected by climatic trends or cycles.


Climatic time invariance was assumed when developing this guide.

Projected Changes in 21st Century Runoff 100*(projected[2041-2060]-mean[1900-1970])/mean[1900-1970]

[winty et al., 2000]


≥USGS RECLAMATION

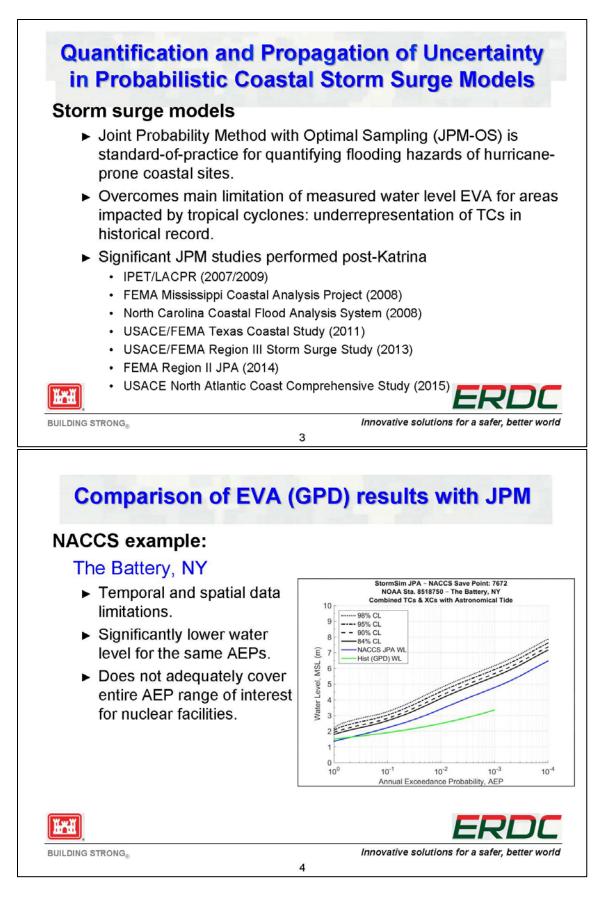
But... IPCC AR5 (Working Group I):

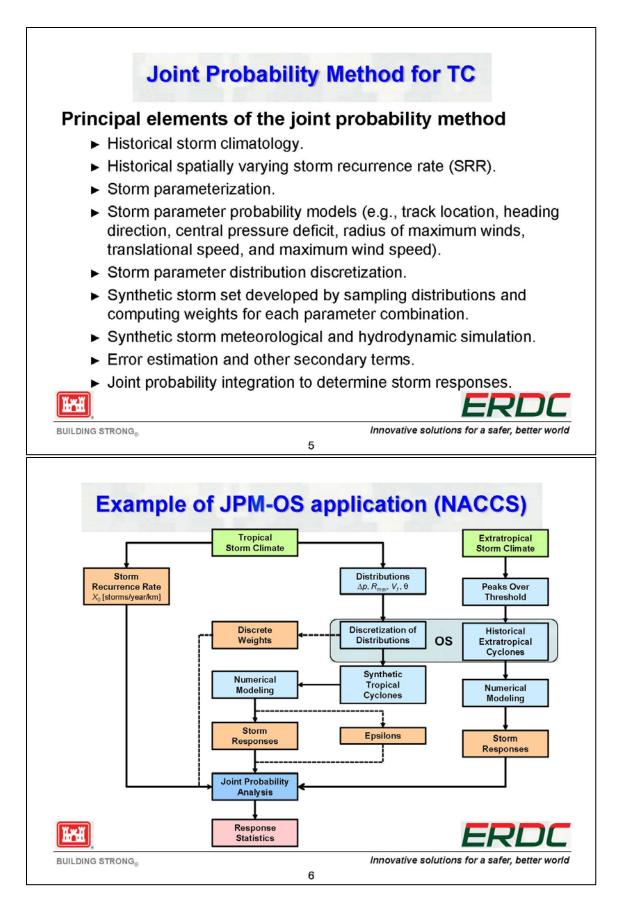
"While the most evident flood trends appear to be in northern high latitudes, where observed warming trends have been largest, in some regions no evidence of a trend in extreme flooding has been found, e.g., over Russia based on daily river discharge (e.g., Shiklomanov et al., 2007). Other studies for Europe (Hannaford and Marsh, 2008; Petrow and Merz, 2009; Renard et al., 2008) and Asia (e.g., Delgado et al., 2010; Jiang et al., 2008) show evidence for upward, downward or no trend in the magnitude and frequency of floods, so that <u>there is currently no</u> <u>clear and widespread evidence for observed changes in flooding</u> (except for the earlier spring flow in snow-dominated regions(Seneviratne et al., 2012a))."

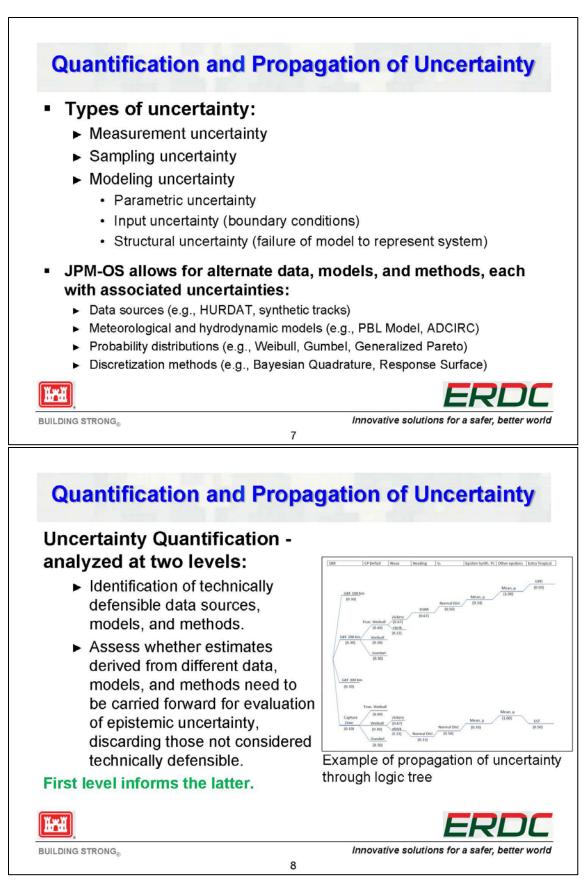
≊USGS

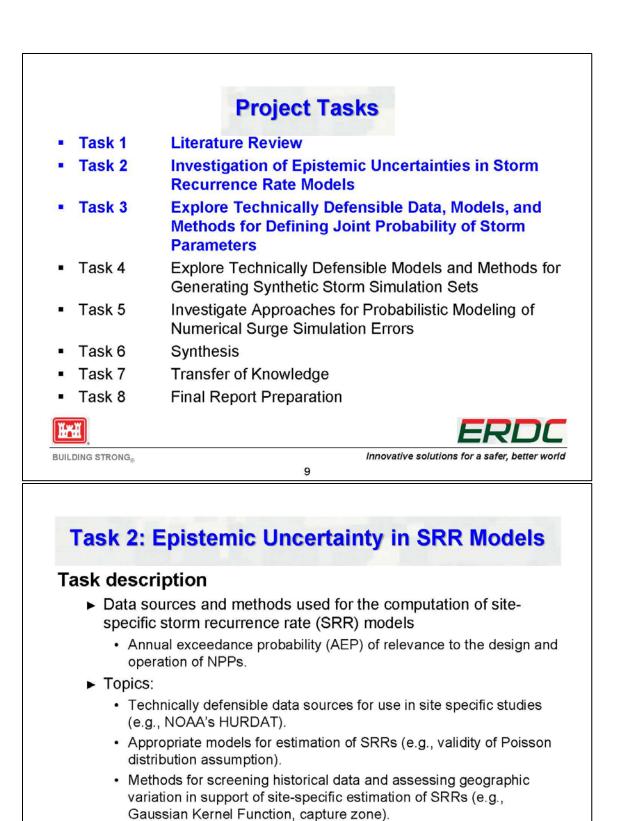
1.3.4.4 Quantification and Propagation of Uncertainty in Probabilistic Storm Surge Models Norberto Nadal-Caraballo, Jeffrey Melby and Victor Gonzalez, USACE

Quantification and Propagation of Uncertainty in Probabilistic Coastal Storm Surge Models

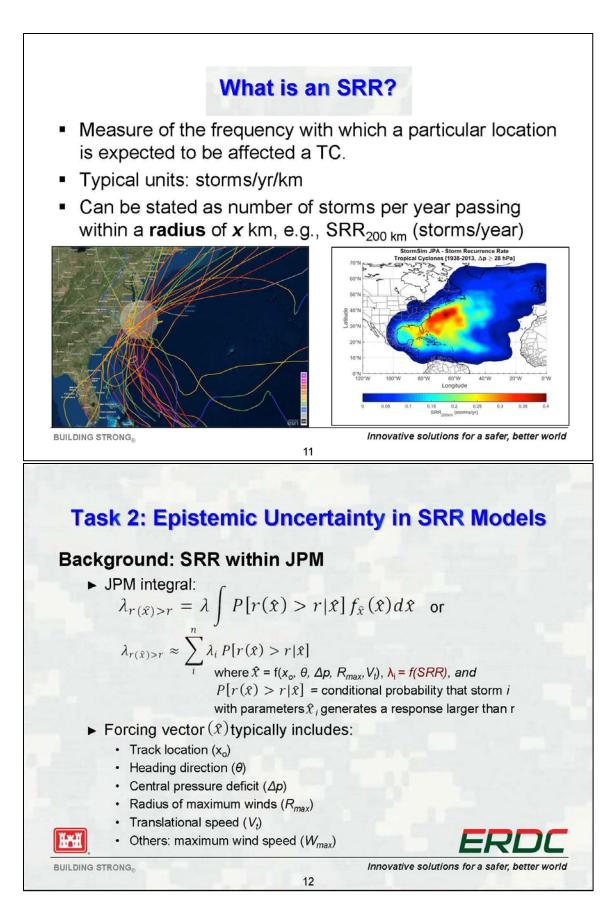

Background

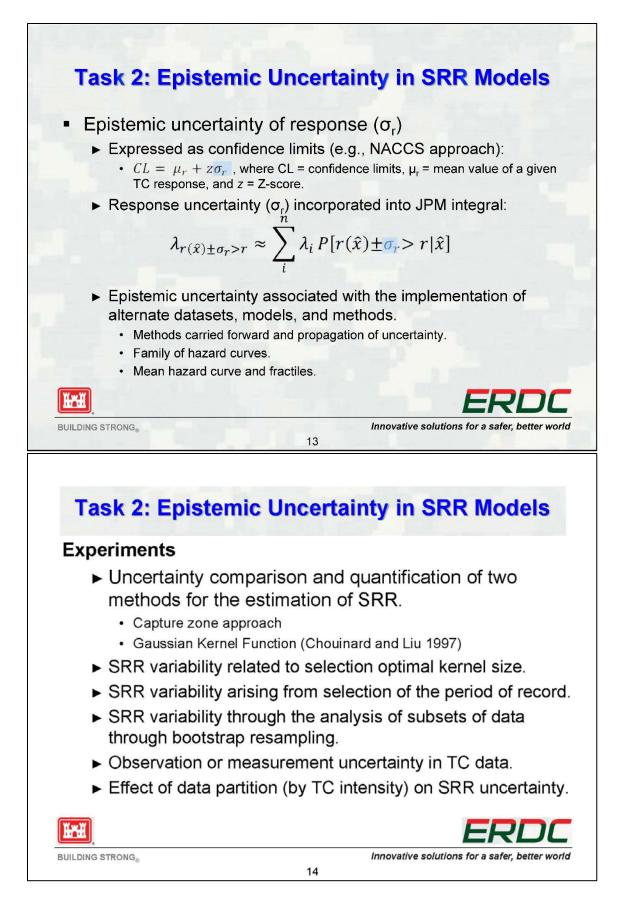

- Part of U.S. NRC's Probabilistic Flood Hazard Assessment (PFHA) research plan.
- Support risk-informed licensing and oversight guidance and tools for assessment of flooding hazards at nuclear facilities.
- Evaluate uncertainty associated with data, models, and methods used in probabilistic storm surge models used for coastal flood hazard assessment.
- Flooding hazard expressed as hazard curves with confidence limits that represent uncertainty.
- Annual exceedance probabilities (AEPs) of interest for nuclear facilities; including AEPs that go beyond traditional state-of-practice in non-nuclear facilities (e.g., 10⁻⁴ to 10⁻⁶).
- Critical: Quantify aleatory variability and epistemic uncertainty and uncertainty propagation.

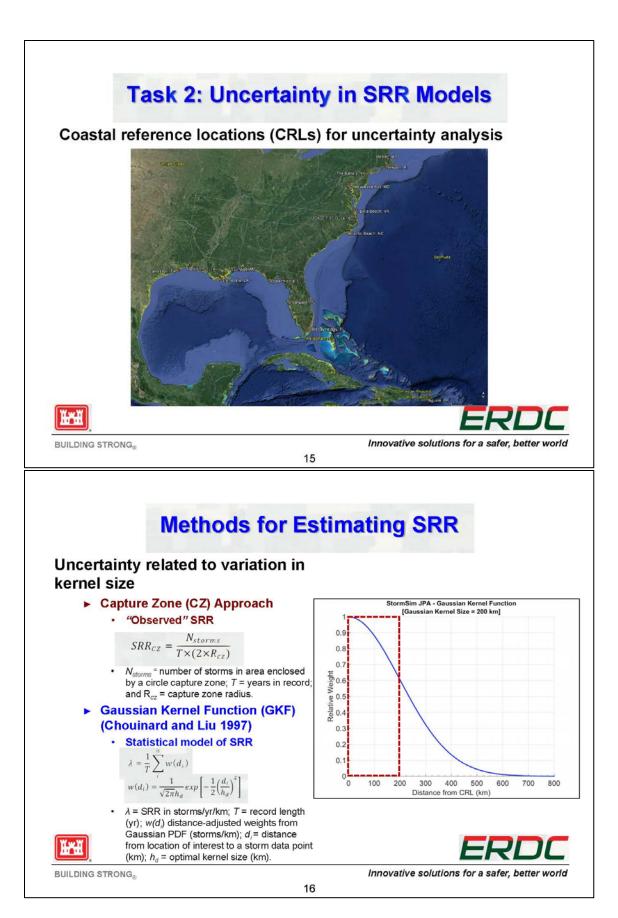


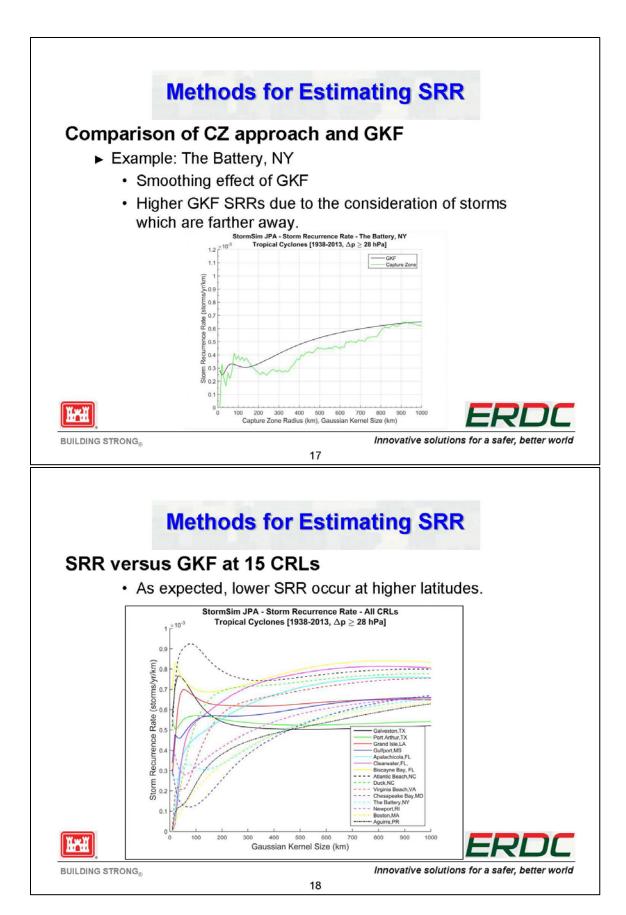

BUILDING STRONG_®

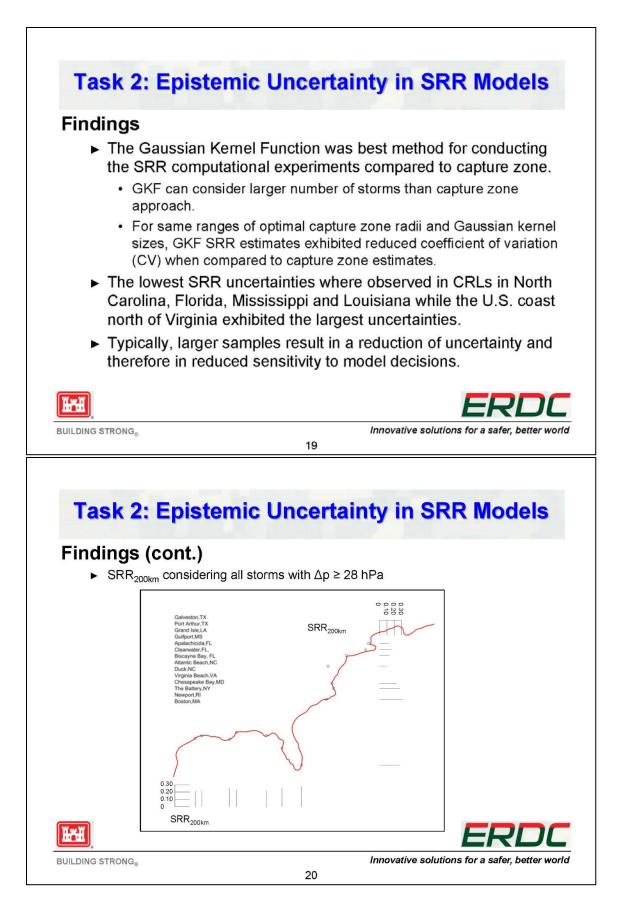
Innovative solutions for a safer, better world

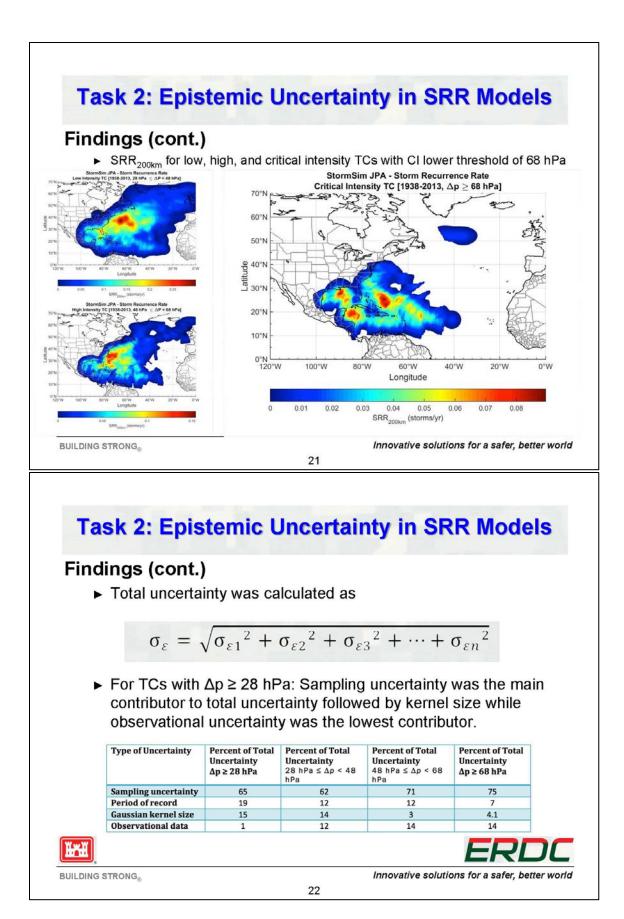


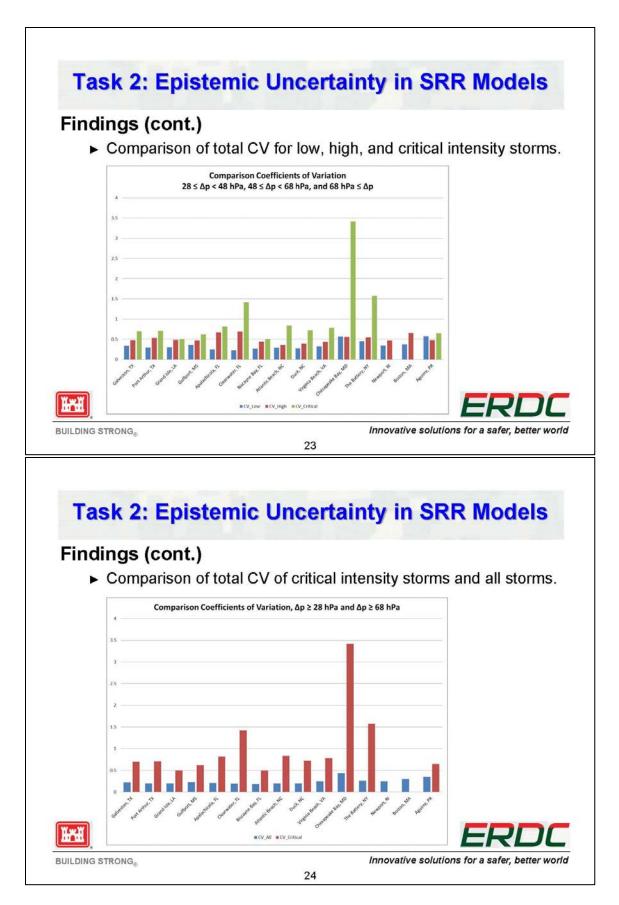

Investigate whether SRR estimates derived from multiple datasets or methods need to be propagated.

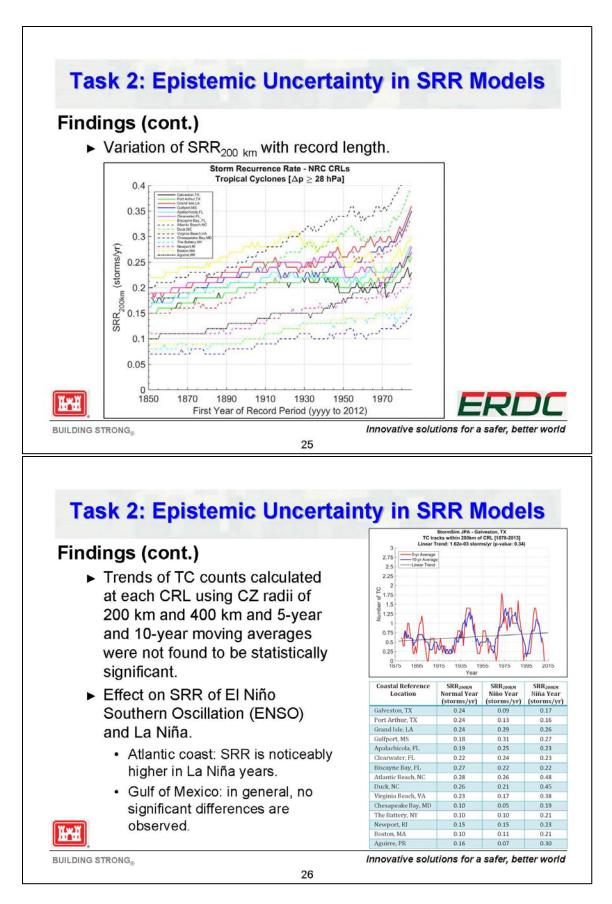

BUILDING STRONG®

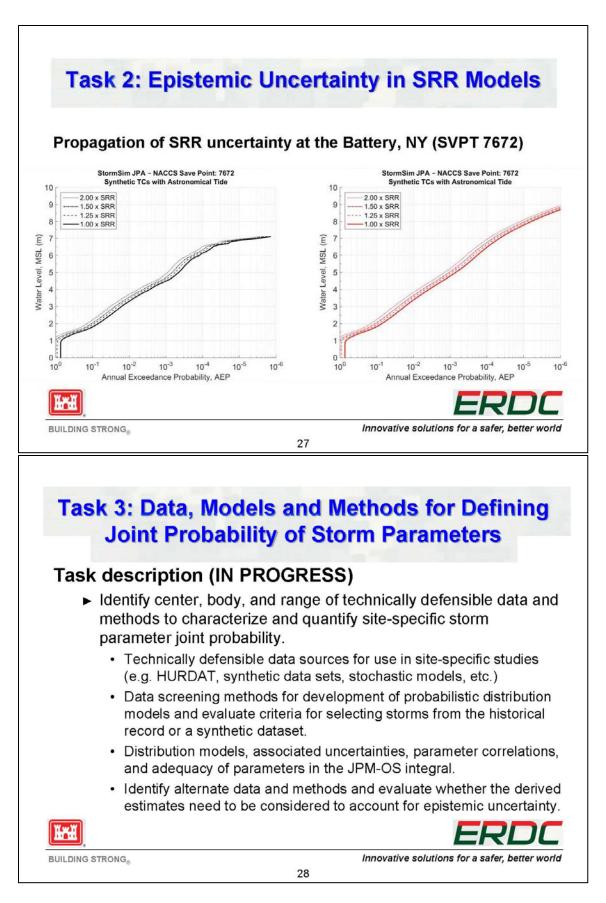

2

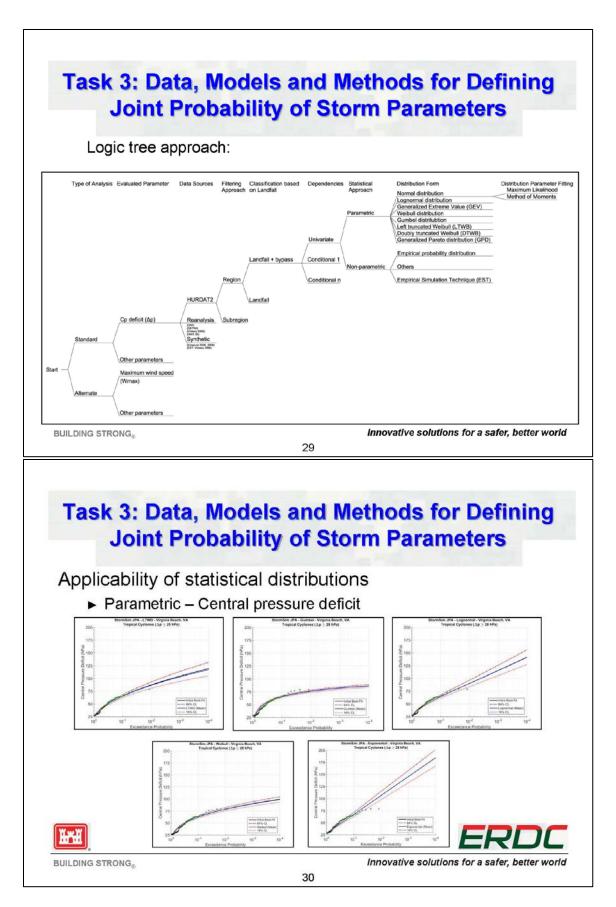

Innovative solutions for a safer, better world

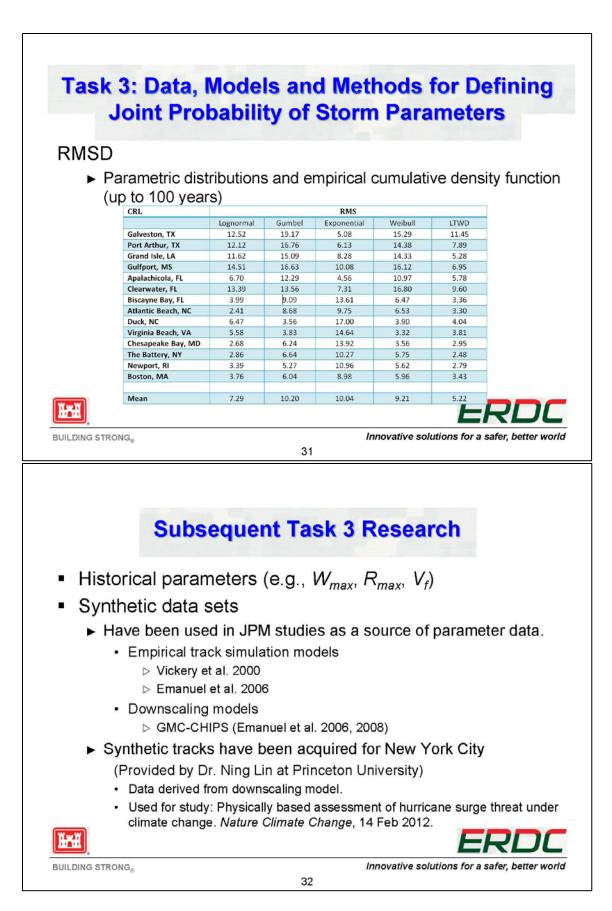


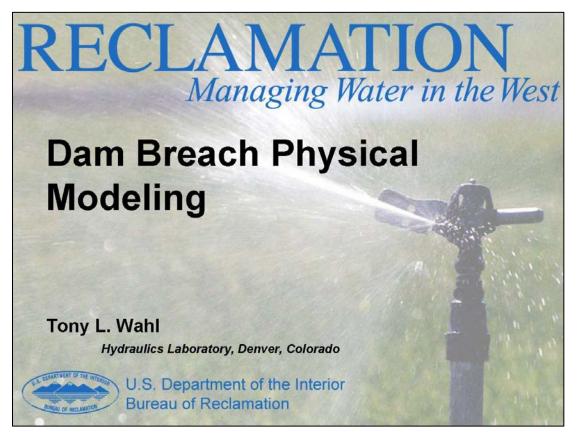


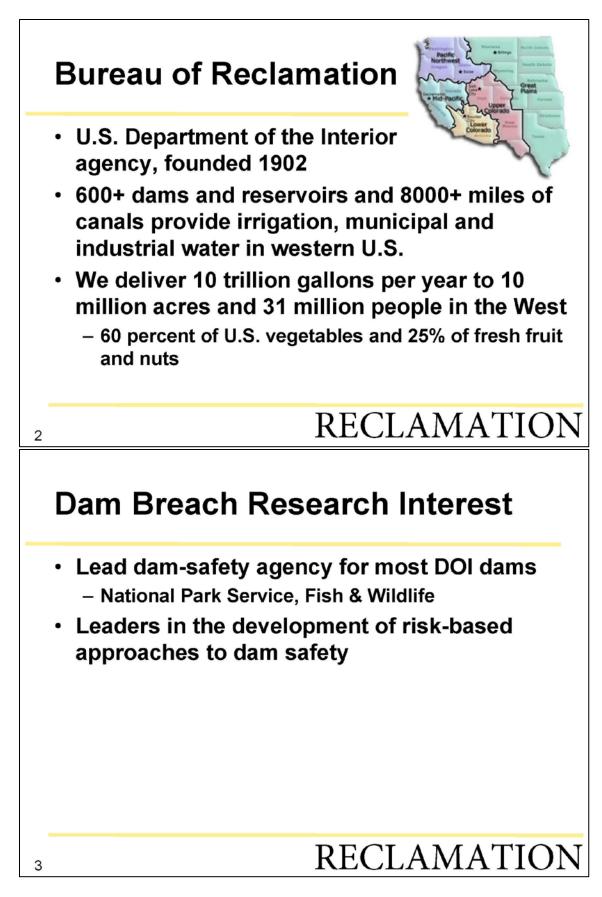


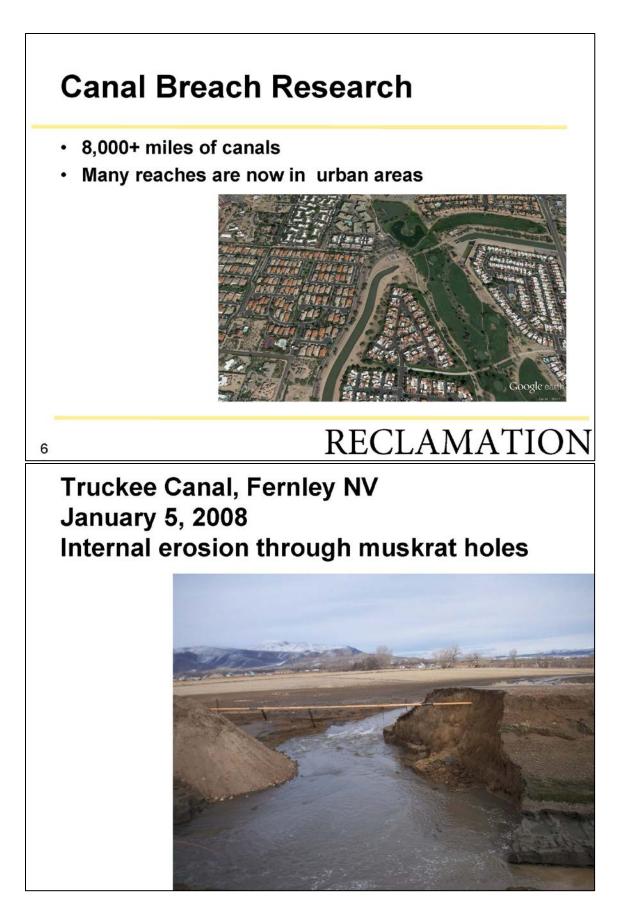












1.3.4.5 USBR Dam Breach Physical Modeling. Tony Wahl, USBR

Truckee Canal, Fernley NV - January 5, 2008

(The 9th known failure in this canal's operating history)

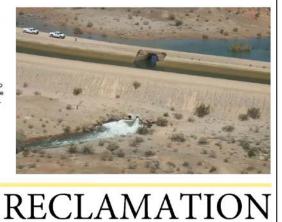
RECLAMATION

September 30, 2012 – CAP Canal near Bouse, AZ

CAP

Rupture in CAP puts water in desert Concrete-lining break could be fixed in three weeks, officials say

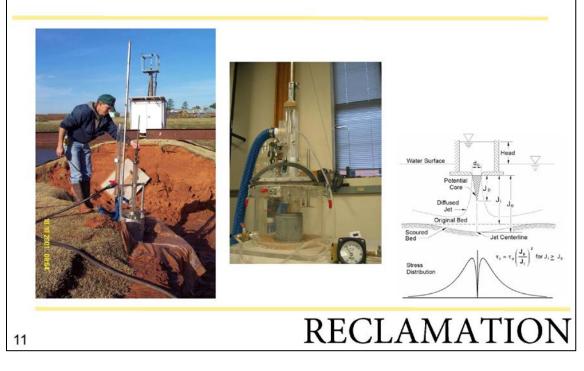
> OCTOBER 03, 2012 12:00 AM • TONY DAVIS ARIZONA DALY STAR

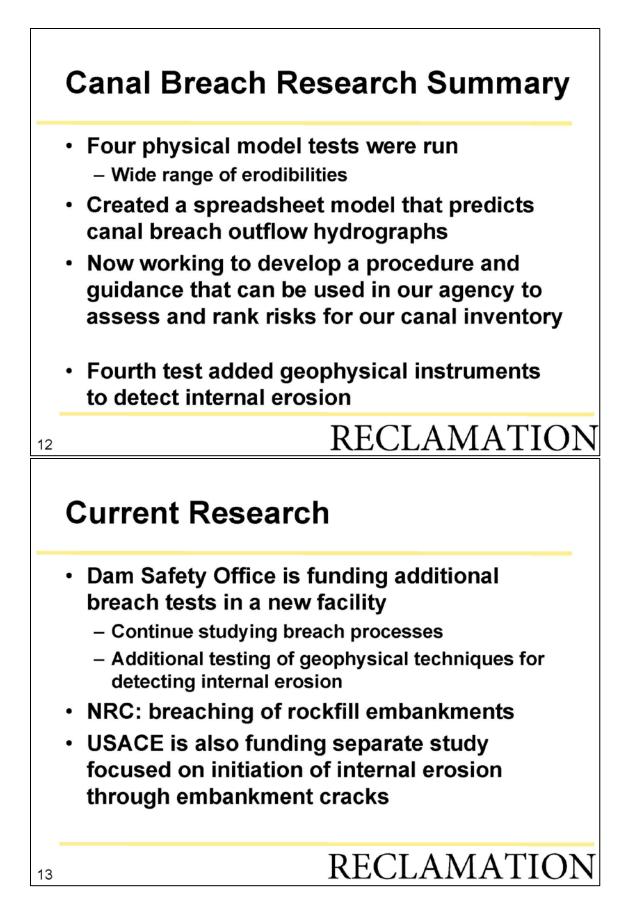

The Central Arizona Project, Tucson's main drinking water source, is shut down after the first break in its concrete canal in the project's 27-year existence.

The canal rupture, spanning nearly 500 square feet and discovered early Sunday, could be repaired in less than three weeks but might take


longer, depending on the cause, CAP officials said Tuesday.

The break allowed about 400 to 500 acre-feet, or 130 million to 160 million gallons, of Colorado River water to escape into a desert wash about 27 miles east of where the canal begins at Lake Havasu. The 336-mile-long CAP aqueduct ends at Pima Mine Road, 14 miles south of Tucson.


Internal erosion failure through uphill embankment...outflow restricted by culvert. Breach outflow into dry wash.



9

Submerged Jet Test - Erodibility

New Dam Breach Test Facility

- 13-ft wide, 3-ft high embankment
- Inclined acrylic abutment
- Large tailbox to contain breach outflow
- Facility completed
 October 2014
- First test June 25, 2015

RECLAMATION

14

Test 1

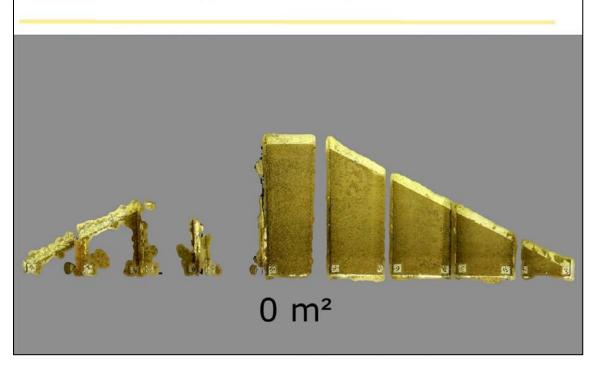
- Homogeneous silty sand, internal erosion triggered at mid-depth
- k_d =5.5 ft/hr/psf 10 cm³/(N-s) τ_c =0.0015 psf 0.07 Pa (Very

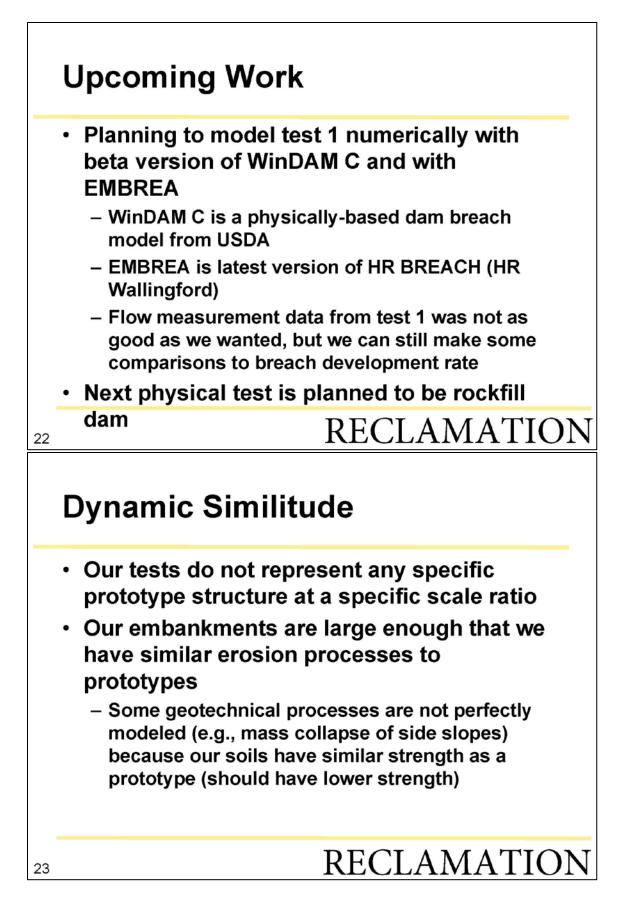
Test 1 – Downstream View

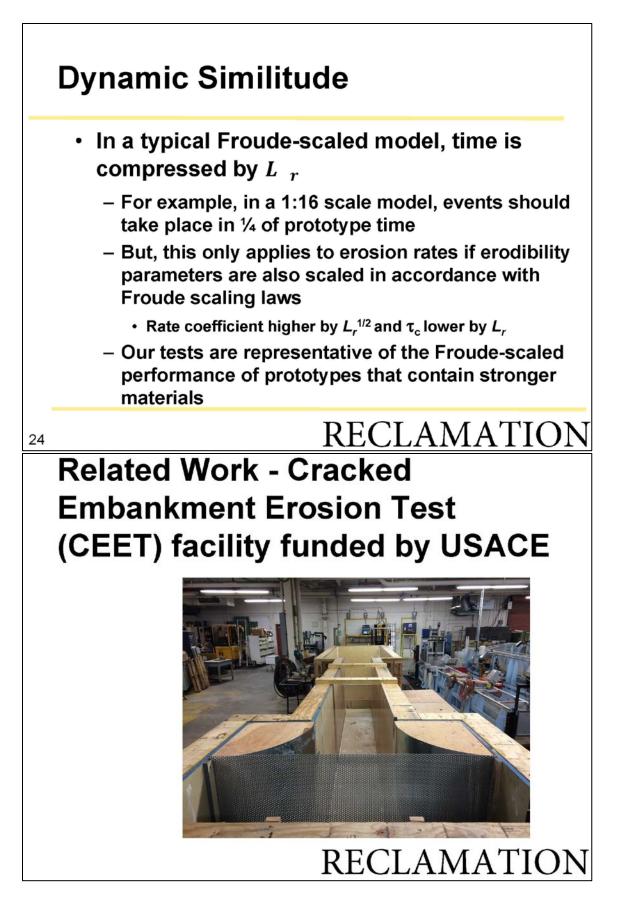

First Test

Objectives

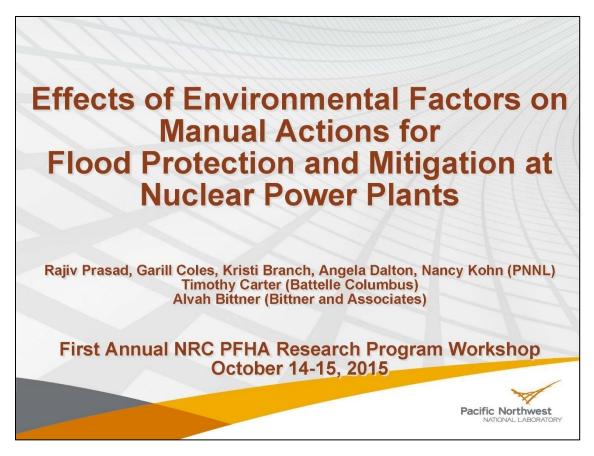
17

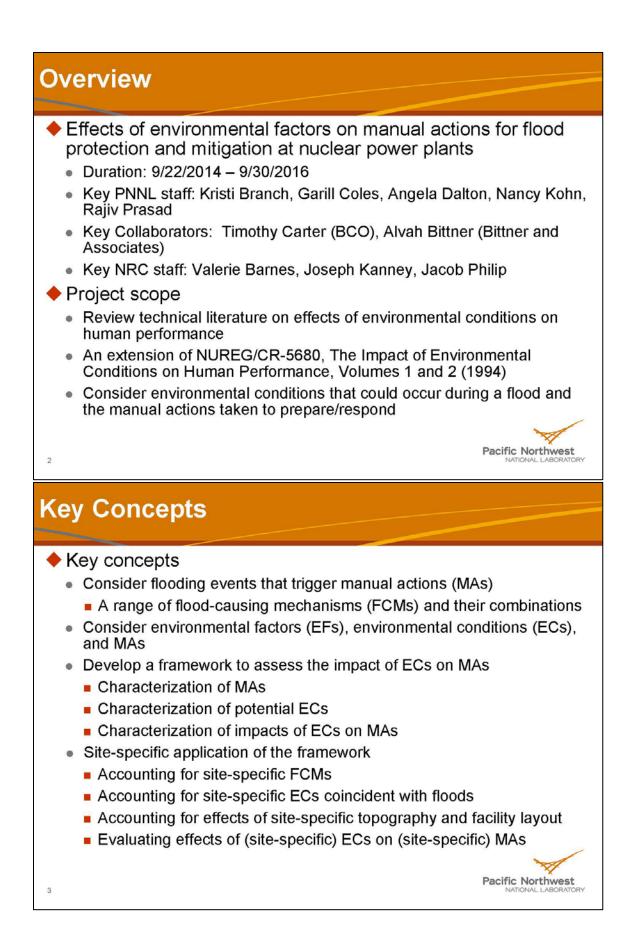

- Shakedown of new facility
- Test photogrammetry and geophysics techniques
- General success
 - Need to improve some flow and water level measurement issues
 - Photogrammetry worked well viewing through acrylic abutment
- Observations of flow dynamics in "pipe" entrance were very interesting

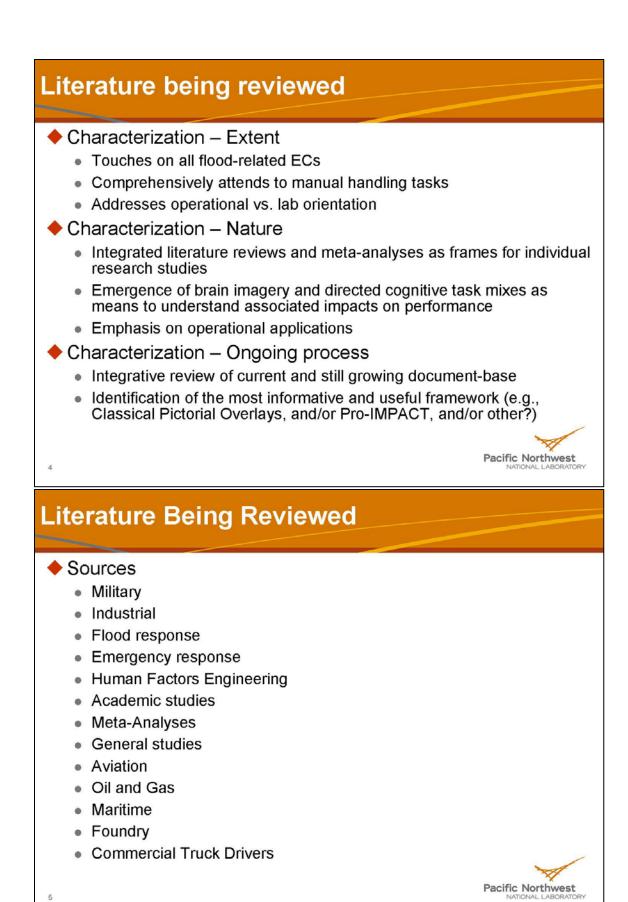

RECLAMATION



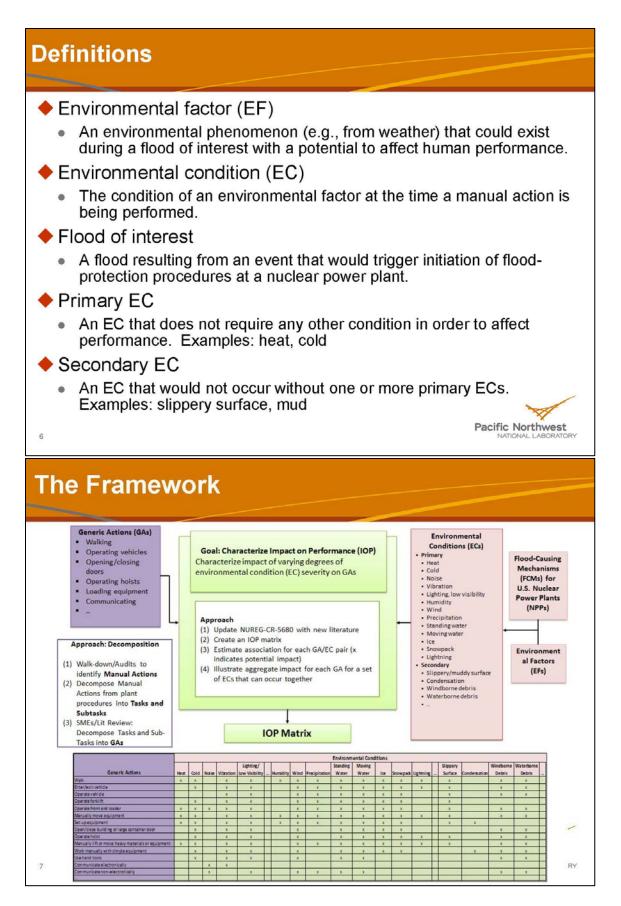
4-D Photogrammetry Model

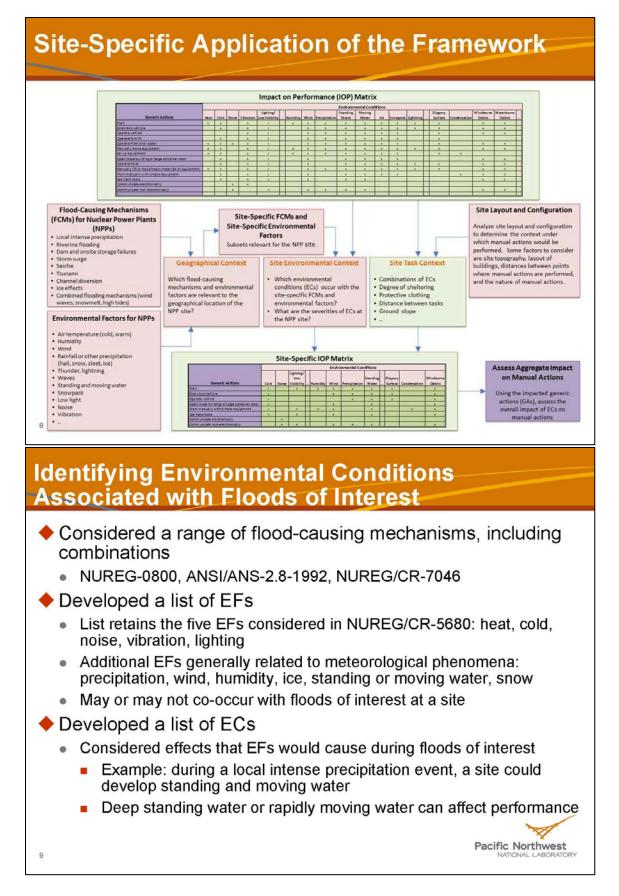




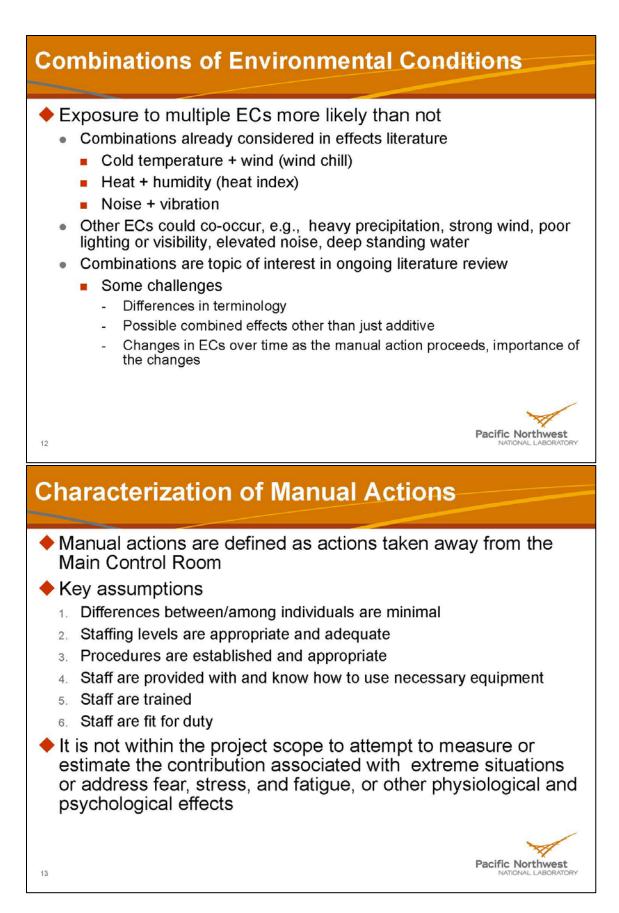

1.3.5 Day 2: Session V: Plant Response to Flooding Events

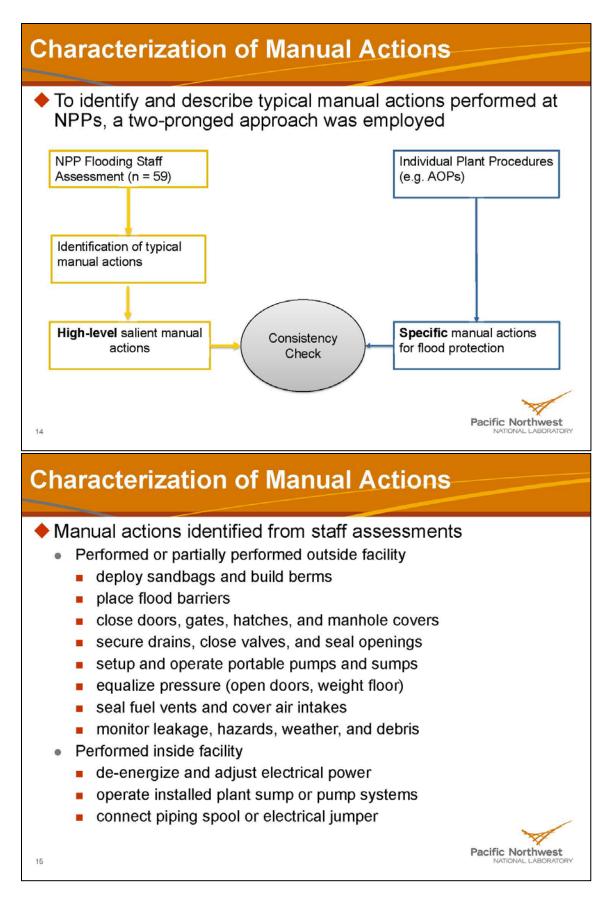
The final technical session switched from a focus on flooding hazard assessment to NRC-funded research related to evaluating risk from flooding hazards (i.e., reliability of flood protection features and nuclear power plant responses to flooding events). A team from PNNL, Battelle, and B&A presented its work to develop a framework for assessing the impacts of environmental conditions on manual actions for flood protection or mitigation. Researchers from Idaho National Laboratory (INL) discussed efforts to develop site-specific "flood hazard information digests" to support rapid assessment of risk significance for flooding events. Other INL researchers presented a dynamic probabilistic risk assessment framework to assess plant risk from flooding using a local intense precipitation event test case. Finally, NRC staff presented the outline of a proposed project to develop a protocol for assessing the reliability of nuclear power plant flood penetration seals.


1.3.5.1 Effects of Environmental Factors on Flood Protection and Mitigation Manual Actions. Rajiv Prasad, Garill Coles, Kristi Branch, Angela Dalton and Nancy Kohn, PNNL; Timothy Carter, BCO; and Alvah Bittner, B&A



1-222




Environmental Conditions

	Environmental Factors that Could	Environmental Conditions that
Flood-Causing Mechanisms	Co-Occur with Floods of Interest	Could Affect Manual Actions
		Primary Environmental Conditions
Local Intense Precipitation	Cold	Cold
Streams and Rivers	Heat	Heat
Dam or water-storage structure failure	Humidity	Relative Humidity
Storm surges and seiches	Precipitation (rain, sleet, hail, snow)	Precipitation Type and Intensity
Tsunamis	Wind	Wind Velocity
Ice dams or jams	Thunder	Noise Level
Channel diversion or migration	Lightning	Water Depth
	Standing water	Water Velocity
Conditions Contributing to	Moving water	Vibration Frequency and Intensity
Combinations of Flooding Mechanisms	Waves	Lighting Level / Low Visibility
Concurrent wind-induced wave activity	Outdoor light level	Presence of Ice
Antecedent or subsequent precipitation	Ice	Snow Depth
Snowpack	Snow	Presence of Lightning
Dam failure concurrent with riverine flood		Secondary Environmental Conditions
Earthquakes		Slippery/muddy surfaces
Concurrent high tides		Condensation
		Windborne debris
		Waterborne debris

Environmental Conditions

	Environmental Factors that Could	Environmental Conditions that
Flood-Causing Mechanisms	Co-Occur with Floods of Interest	Could Affect Manual Actions
		Primary Environmental Conditions
Local Intense Precipitation	Cold	Cold
Streams and Rivers	Heat	Heat
Dam or water-storage structure failure	Humidity	Relative Humidity
Storm surges and seiches	Precipitation (rain, sleet, hail, snow)	Precipitation Type and Intensity
Tsunamis	Wind	Wind Velocity
Ice dams or jams	Thunder	Noise Level
Channel diversion or migration	Lightning	Water Depth
	Standing water	Water Velocity
Conditions Contributing to	Moving water	Vibration Frequency and Intensity
Combinations of Flooding Mechanisms	Waves	Lighting Level / Low Visibility
Concurrent wind-induced wave activity	Outdoor light	Presence of Ice
Antecedent or subsequent precipitation	Ice	Snow Depth
Snowpack	Snow	Presence of Lightning
Dam failure concurrent with riverine flood		Secondary Environmental Conditions
Earthquakes		Slippery/muddy surfaces
Concurrent high tides		Condensation
		Windborne debris
		Waterborne debris

Characterization of Manual Actions

Manual actions identified from plant procedures

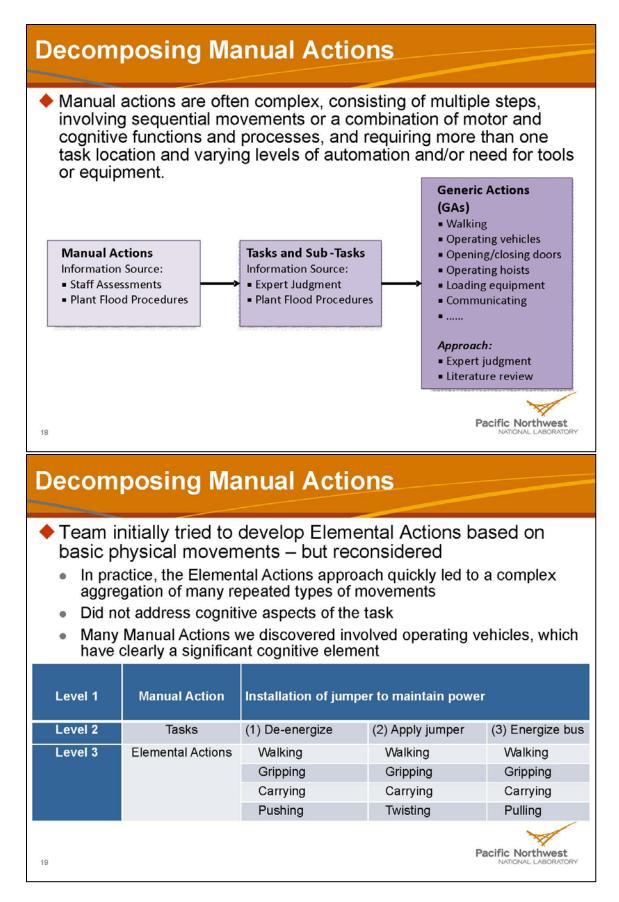
- construct a sandbag barrier, berm, or levee around structure
- plug or seal drains
- remove or relocate equipment (e.g., fire equipment, security equipment)
- stage diesel storage tanks or tankers
- monitor and clear debris from traveling screen at the intake structure
- bolt or weld steel plates over door openings
- bolt or weld steel plates over floor drains, penetrations, and hatches
- seal structural gaps

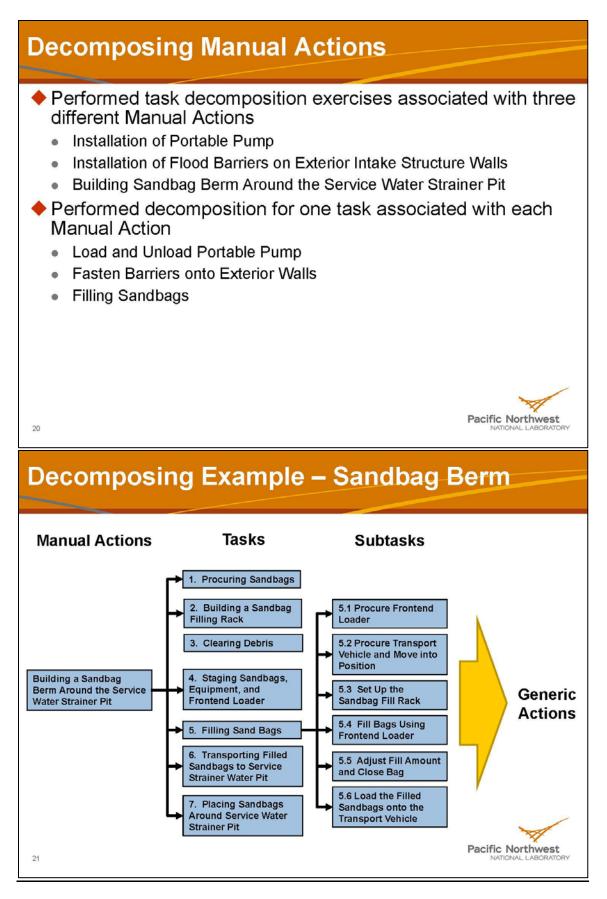
16

17

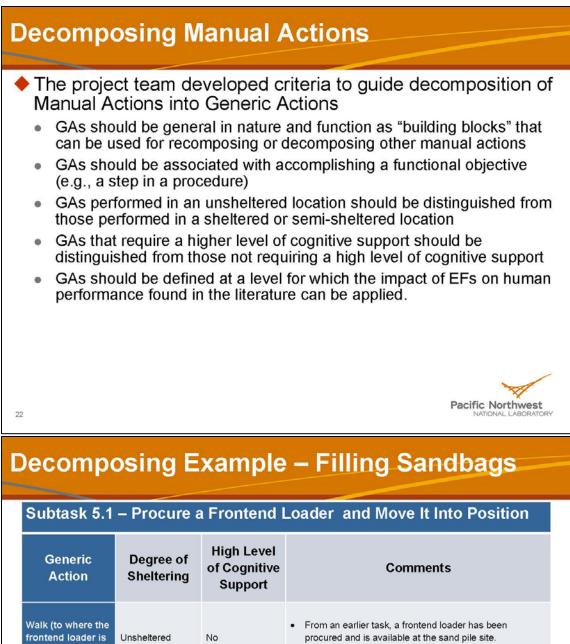
- relocate, install, and operate diesel pump
- relocate, install, and operate additional electric- or gas-driven sump pumps
- route sump pump discharge lines
- position or secure hatch cover

- monitor water level
- monitor intake screens for plugging
- fill the lube oil dump tank with water
- remove the drive motor and install a hand crank (e.g., traversing the rake)
- provide diesel fuel and gasoline to power pumps
- scarify or rip concrete and asphalt surfaces under levee
- seal all conduits
- plug manholes
- rent/obtain watercraft
- remove/block ventilation ducts
- cap discharge line an drain line
- secure two ladders
- install electrical jumpers


Decomposing Manual Actions


- Decomposition [of a manual action]
 - The analysis of a manual action into tasks, subtasks (if necessary), and generic actions for the purpose of assessing the impact of environmental conditions on human performance.
- Task [and subtasks]
 - One step of a manual action that has a distinct outcome or predetermined objective contributing to accomplishment of the manual action. A task generally requires both motor and cognitive abilities.
 - Cues were taken from literature (Annett 2013) about level of detail

Generic action (GA)


 An individual component of a task or subtask that can be evaluated for impact on human performance. GAs are general in nature and function as "building blocks" used to determine the impact of ECs on the overall Manual Action.

1-230

		Support	
Walk (to where the frontend loader is parked)	Unsheltered	No	 From an earlier task, a frontend loader has been procured and is available at the sand pile site. Literature available for this action.
Climb into frontend loader	Unsheltered	No	 The frontend loader was assumed not to have an enclosed cab (though some frontend loaders do have enclosed cabs). Literature available for this action.
Operate the frontend loader	Unsheltered	Yes	 Requires frontend loader operating experience. Requires fine motor skills. Weather could affect visibility, hearing, and skills required to operate the forklift. Literature available for this action.
 23			NATIONAL LABORATORY

Decomposing Example – Filling Sandbags

Subtask 5.2 – Procure Transport Vehicle And Move It Into Position

Generic Action	Degree of Sheltering	High Level of Cognitive Support	Comments
Walk (to the transport vehicle)	Unsheltered	No	 Transport vehicle located away from reactor building and equipment storage building. Literature available for this action.
Enter transport vehicle	Unsheltered	No	 Requires fine motor skills to unlock and open vehicle. Literature available for this action.
Operate the transport vehicle	Semi-sheltered	Yes	 Requires fine motor skills and a higher level of cognitive support. Considered semi-sheltered because though the operator will be in the truck cab weather could affect visibility and hearing. Literature available for this action.
Exit the transport vehicle	Semi-sheltered	No	Literature available for this action.

Decomposing Example – Filling Sandbags

Subtask 5.3 – Set Up The Sandbag Fill Rack

Generic Action	Degree of Sheltering	High Level of Cognitive Support	Comments
Move equipment into position (i.e., set the fill rack into position)	Unsheltered	No	 Requires two operators to move the rack. The primary motions would be gripping and lifting. Literature available for this action.
Set up equipment (i.e., hang the sandbags on to the fill rack)	Unsheltered	No	Literature available for this action.

Decomposing Example – Filling Sandbags

Subtask 5.4 – Fill Bags Using Frontend Loader

Generic Action	Degree of Sheltering	High Level of Cognitive Support	Comments
Operate the frontend loader (i.e., drive the frontend loader to the sand pile)	Unsheltered	Yes	 The task involves driving the frontend loader and requires frontend loader operating experience. Requires fine motor skills. Weather could affect visibility, hearing, and skills required to operate the frontend loader. Literature available for this action.
Operate the frontend loader (i.e., scoop sand into bucket)	Unsheltered	Yes	 The task involves operating the frontend loader controls to scoop a bucket of sand and requires frontend loader operating experience. Requires frontend loader operating experience. Requires fine motor skills. Weather could affect visibility, hearing, and skills required to operate the forklift. Blowing sand could be an issue. Literature available for this action.
Operate the frontend loader (i.e., drive the frontend loader to the fill rack)	Unsheltered	Yes	 Requires fine motor skills. Weather could affect visibility, hearing, and skills required to operate the frontend loader. Literature available for this action.

Decomposing Example – Filling Sandbags

Generic Action	Degree of Sheltering	High Level of Cognitive Support	Comments
Use of hand tools (i.e., adjust amount of sand n sandbags) to appropriate amount	Unsheltered	No	 This task involves use of hand tools to level out or adjust the amount of sand in the sandbags. Literature available for this action.
Manual work with simple equipment (i.e., take sandbags off of the fill rack)	Unsheltered	No	 This task involves manually gripping, lifting, carrying, and moving filled sandbags off of the fill rack. Literature available for this action.
Manual work with simple equipment (i.e., tie off the sandbags)	Unsheltered	No	 This task involves manually using the tie strings at the top of the sandbag to tie off the bag. Requires fine motor skills. Literature available for this action.

Decomposing Example – Filling Sandbags

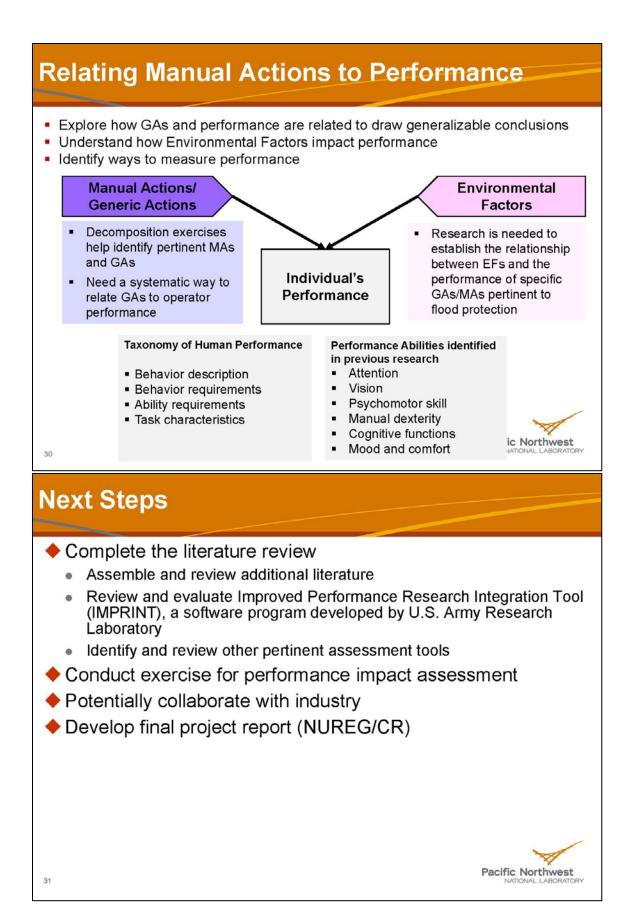
Subtask 5.6 – Load The Filled Sandbags On The Transport Vehicle

Generic Action	Degree of Sheltering	High Level of Cognitive Support	Comments
Manually load material (i.e., sandbags) onto transport vehicle	Unsheltered	No	 Involves gripping, lifting, and carrying sandbags to load onto the transport vehicle. Literature available for this action.

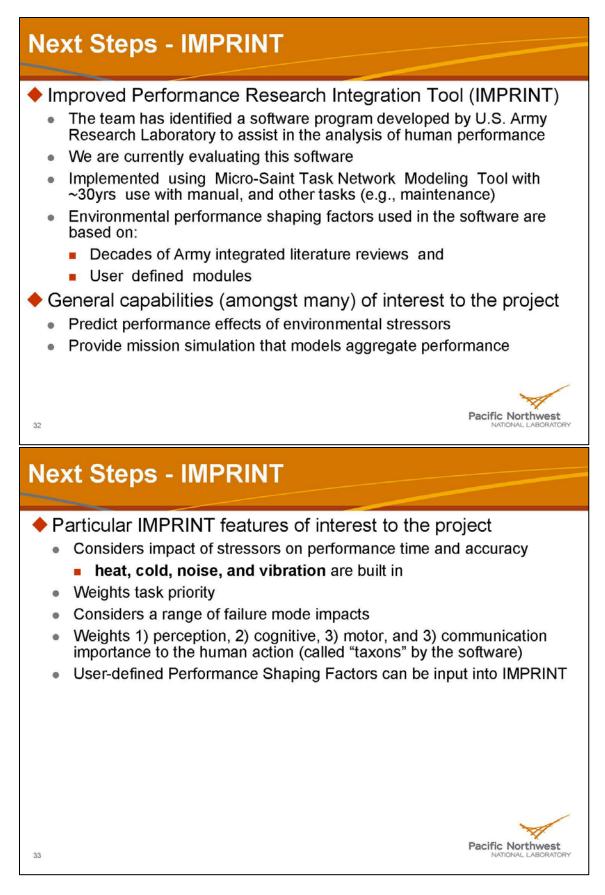
Decomposing Manual Actions

Generic Actions based on the limited decomposition exercises

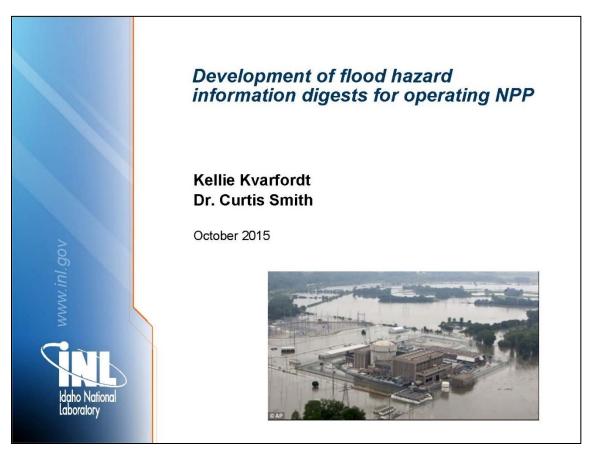
walk

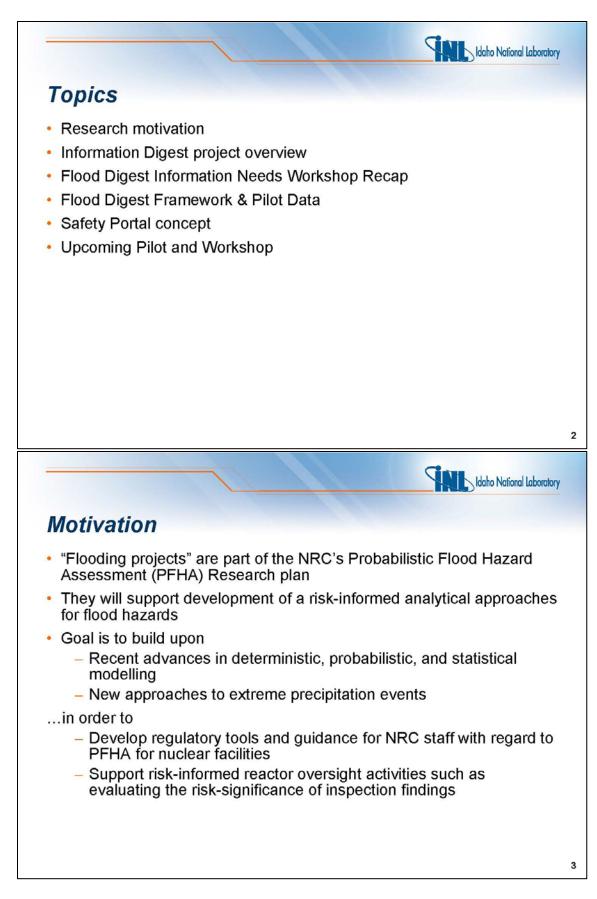

28

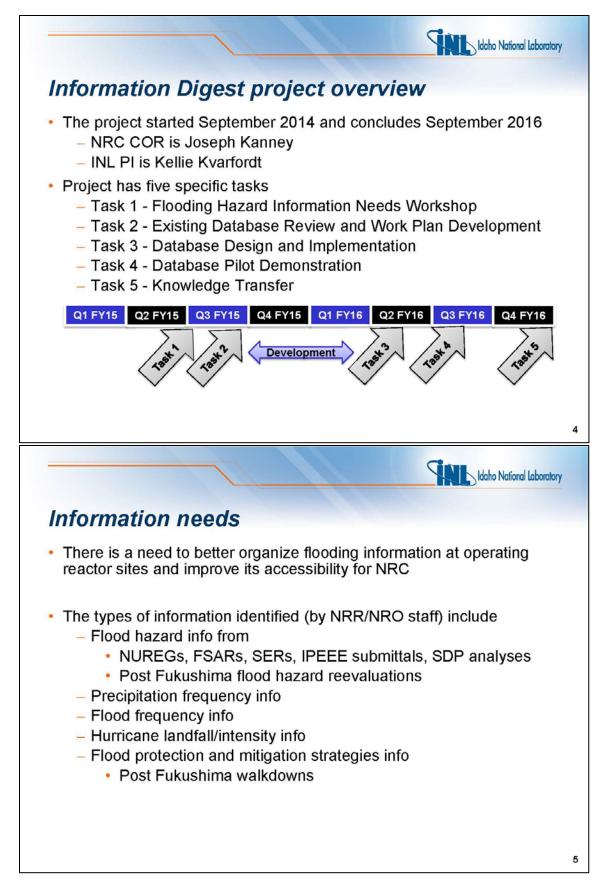
29

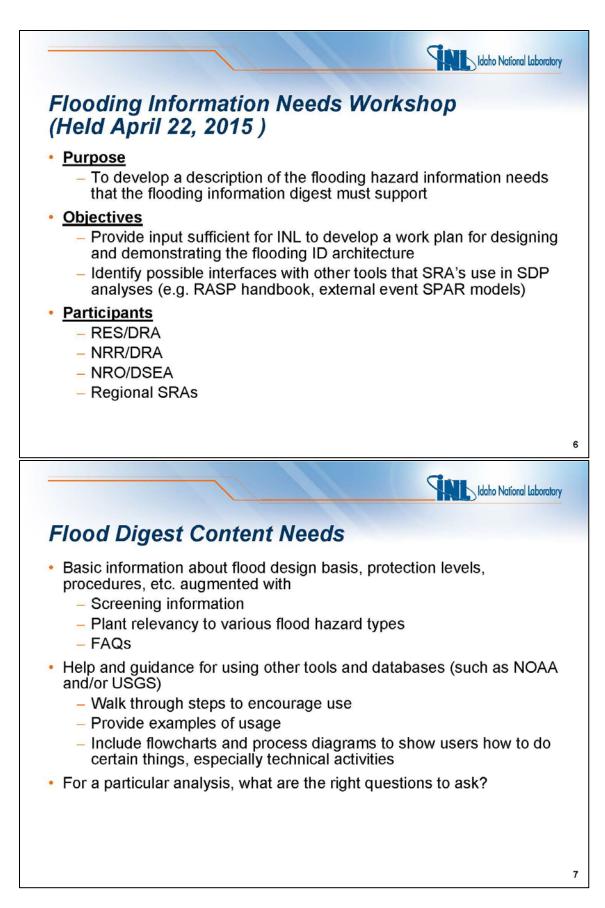

- enter or exit vehicles (transport vehicles, and light and heavy equipment)
- operate a transport vehicle
- operate forklift
- operate frontend loader
- manually move equipment
- setup equipment

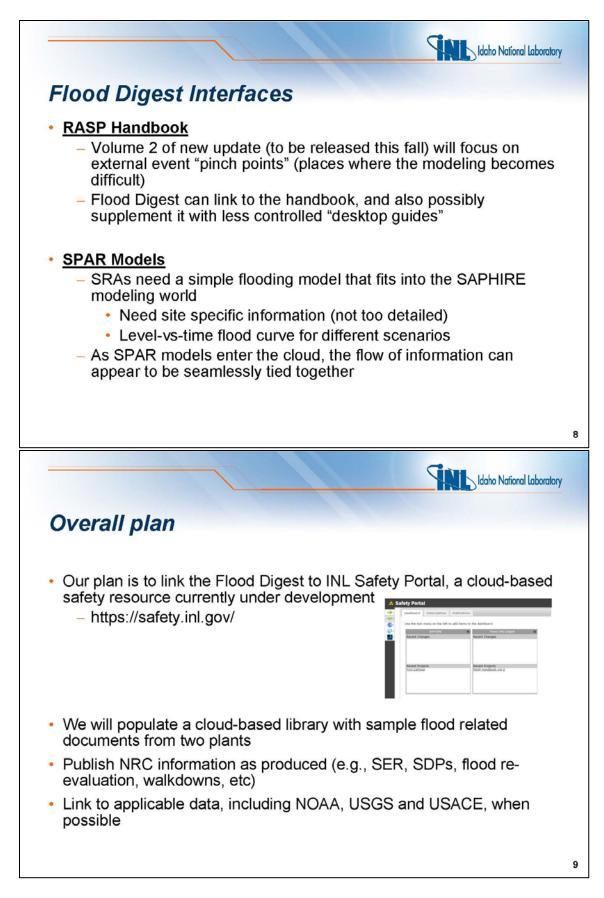
- open building or large container door
- operate powered hoist
- manually lift and move heavy materials or equipment
- work manually with simple equipment
- use hand tools
- communicate electronically
- communicate non-electronically

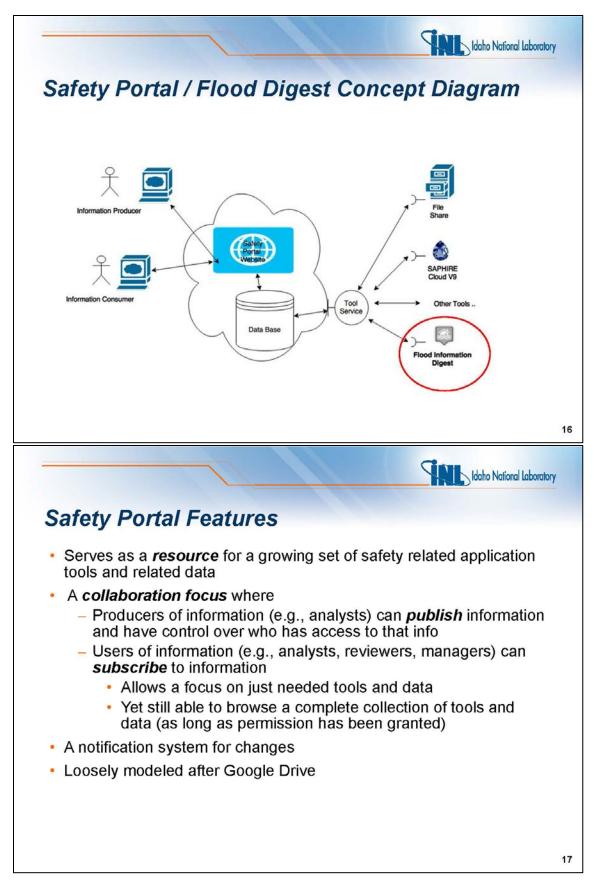

1-235

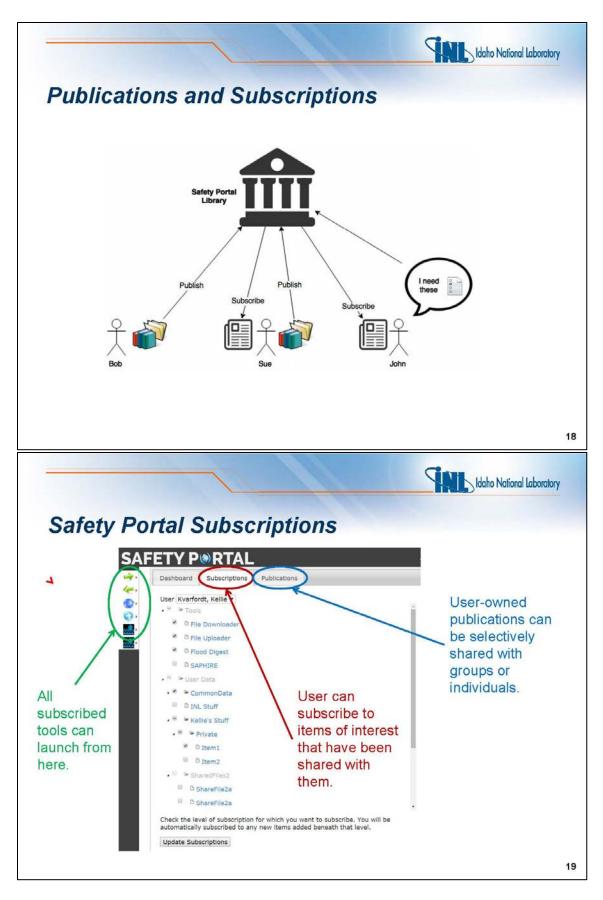


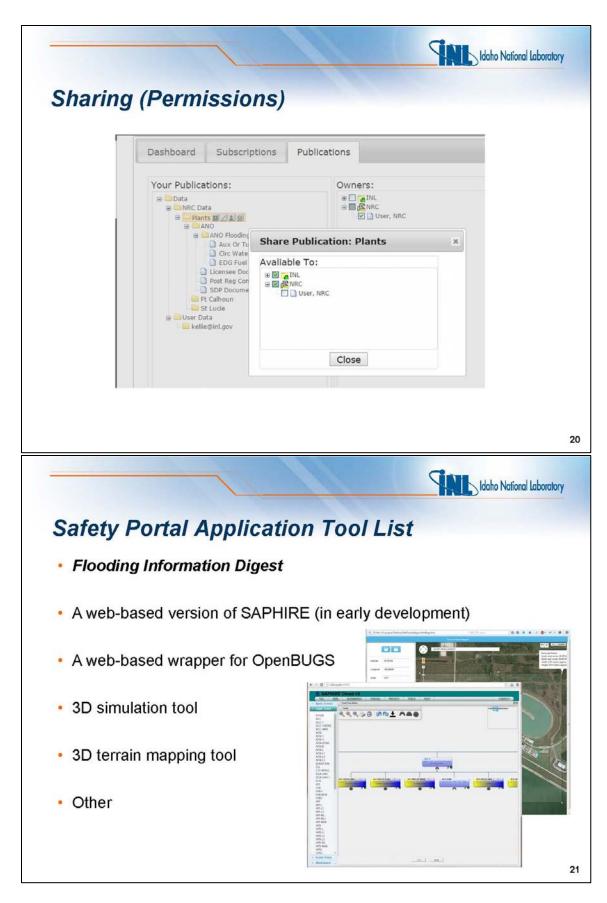


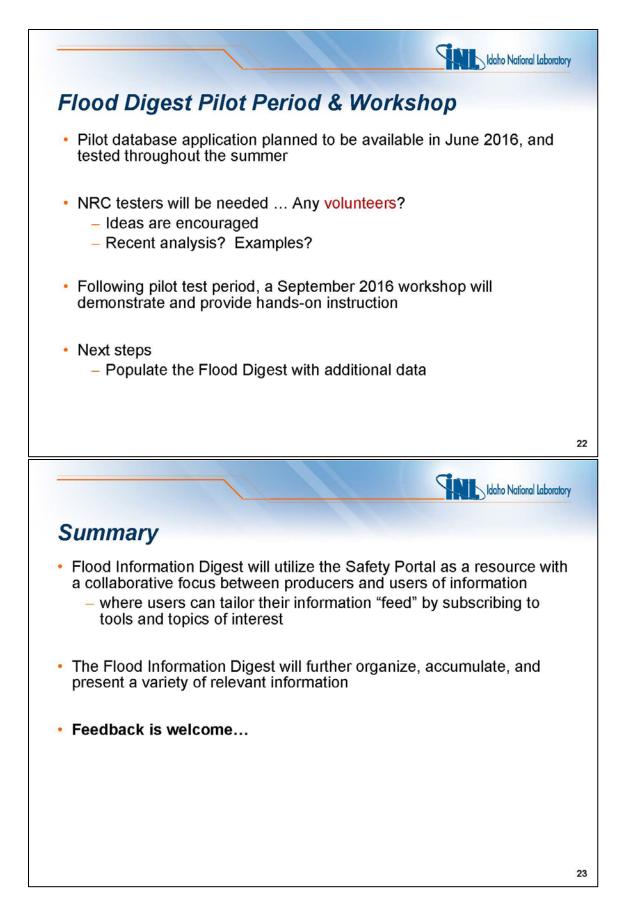



1.3.5.2 Flooding Information Digests. Kellie Kvarfordt and Curtis Smith, INL

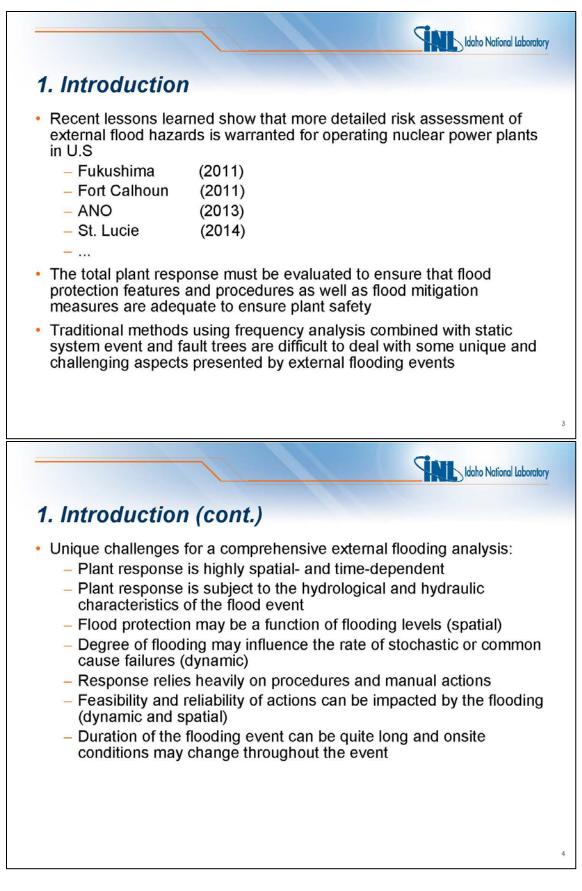


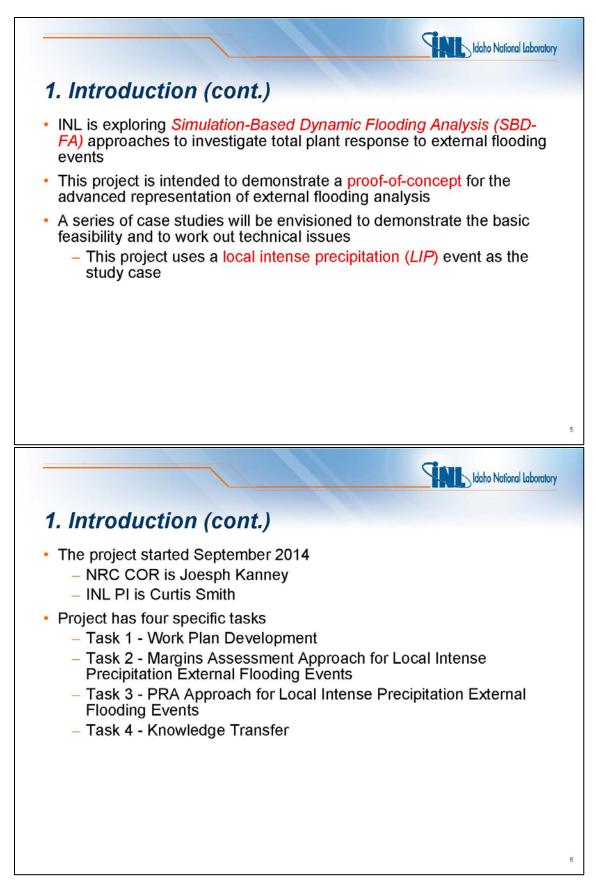


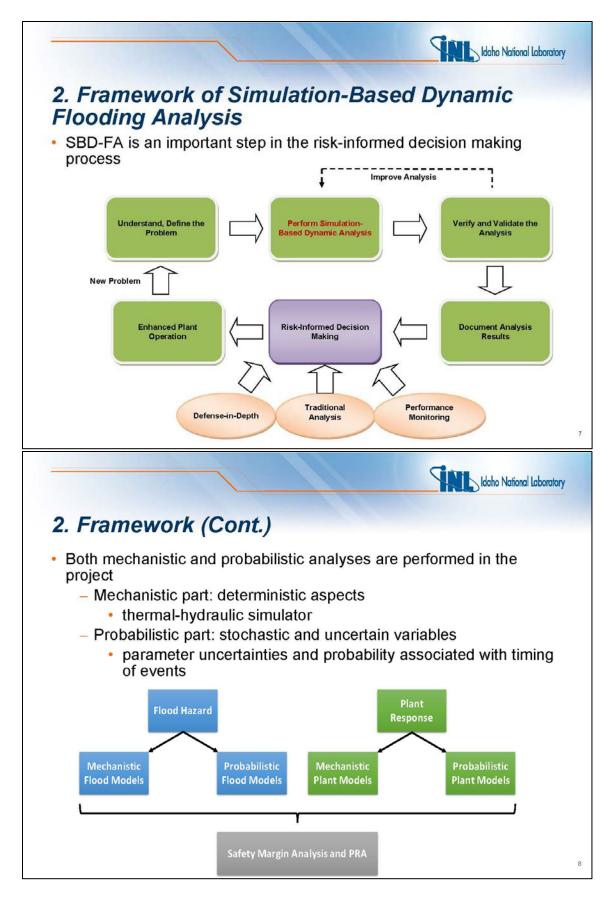

		NPP Alpha	Unit 2		
		LOOP 24.1%	In the contribution to the original of the ori	An Arabian Cranting C	<image/> <section-header><section-header><text><text><text><text><text></text></text></text></text></text></section-header></section-header>
informat	hboard will pro on for a facility down into mo	y as well	as prov	ide a w	ay to drill-
informat	on for a facility down into mo	y as well	as prov	ide a w	yay to drill-
informat MSFHI L	on for a facility down into mo Data	y as well	as prov	ide a w	Vay to drill-
informat	on for a facility down into mo	y as well ore deta	as prov	ide a w	Vay to drill-
informat	Data Entry For rry, Units 1, 2, & 3 560.0 Comments: FHRR also report site grade as 560 critical elevation -related info (SI No	y as well ore deta	AS prov led infor	ide a work of the mation	Vay to drill-
informat MSFHIC Hazard Information Site: Browns Fe SiteGrad(SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteG	Con for a facility down into me Data Entry For rry, Units 1, 2, & 3 560.0 Comments: FHRR also report site grade as 560 critical elevation -related info (SI contains SRI? No	y as well ore deta	AS prov led infor	ide a work of the mation	Vay to drill-
informat MSFHIC Hazard Information Site: Browns Fe SiteGrad(SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteGrad) SiteGrad(SiteGrad) SiteG	Data Data Entry For Try, Units 1, 2, & 3 560.0 Comments: FHRR also report site grade as 560 critical alevation -related info (S) No contains SRI? No a Table 1 (y as well ore deta	AS prov led infor	ide a work of the mation	Vay to drill-

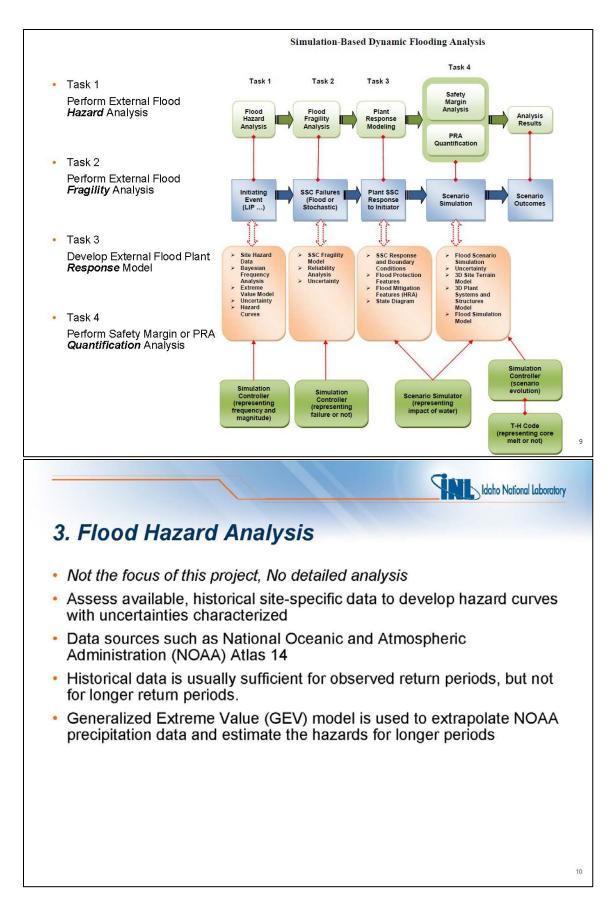

	Design Basis Hazard Information	
	DB LIP DB River DB Dams DB Surge DB Seiche Tsunami DB Ice DB Channel DB includes LIP? Included in DB - Hazard Information Provided	
	Design Basis LIP Hazard Informati	
	Field requested when there are results being reported (1) from multiple scenarios for a single mechanism (e.g., UP scenarios A and B), or (2) at different ste locations	
	Flood Height and Waves/Runup	
	datur ft msl Comments: stillwater_elev \$78.0 Ref. FHRR Section (*) waverunup_elev Ref. Does not exceed the switchyard elevation of \$78.0 ft. Numerical values only Ref. Image: Comment of \$78.0 ft.	
	Collection of Minere	
	Other Associated Effects Other Associated Effects in D no Comments:	
	hydrodynamic load Ref.	
	debris Ref:	
	sediment loading	
	sediment deposition Ref Next DB UP ID 19	
	erosior Ref: Previous DB LIP SiteID 76 Concurrent conditions Ref: Scenario Automatically Assigned	
	other facto	
	Idaho Nati	onal Laboratory
	Idaho Nati	onal Laboratory
MOGU		onal Laboratory
MSFHI	Reevaluation Info	onal Laborator
MSFHI	Reevaluation Info Revaluated Hazard Information	onal Laboratory
MSFHI	Reevaluation Info Revaluated Hazard Information R2.1 LIP R2.1 Rover R2.1 Dams. R2.1 Surge. R2.1 Seicher. R2.1 Tsunami R2.1 Ke. R2.1 Channel LIP in M. Yes PM tracking Review Complete	onal Laboratory
MSFHI	Reevaluated Hazard Information R2.1 LUP R2.1 Rover R2.10 Storge R2.1 Seicher R2.1 Tsunami R2.1 (ce R2.1 Channel LUP in NV Yes Assoc. Effects OK for use in MSA: It/hto	onal Laboratory
MSFHI	Revealuated Hazard Information Revealuated Hazard Information R2.1 LP R2.1 Rover, R2.1 Damis R2.1 Surge, R2.1 Seiche R2.1 Tsunami, R2.1 Ice R2.1 Channel LIP in IX- Yes Assoc. Effects OK for use in M5A: INto Duration OK for use in M5A: INto With Answerning Yes' in advec2 paronsport (7) means Mat ASC o OC with assoc effects and duration for All scenarios (for this meety sc	onal Laboratory
MSFHI	Reevaluation Info Revaluated Hazard Information R2.1 LIP R2.1 River: R2.1 Surge: R2.1 Seiche: R2.1 Tsunam: R2.1 Ice: R2.1 Channel LIP in IA3 Yes Assoc. Effects OK for use in MSA. IA6 PM tracking Duration OK for use in MSA. IA6 PM OK Diration OK for use in MSA. IA7 Yes PM tracking Review Complete Diration OK for use in MSA. IA7 Yes	onal Laboratory
MSFHI	Revealuated Hazard Information Scenario Lin LA *fad response date date with any republic terms republic terms *********************************	onal Laboratory
MSFHI	Recevaluated Information UP in NA Yes Market State PM tracking Duration OK for use in MSA. (NA*) Yes Duration OK for use in MSA. (NA*) Yes Scenario MA Yes Scenario MA Yes Index Scenario MA Yes	onal Laboratory
MSFHI	Production Production Revealuated Hazard Information PM tracking R2.1 LIP R2.1 Source R2.1 Source R2.1 Section R2.1 Science R2.1 Channel LIP in K3 Ves Duration OK for use in MSA/IAP* Ves Victories Victories Unation OK for use in MSA/IAP* Ves Victories Victories Scienario In K4 *feed resource three store in the scienario in MA* * scienario descriptio (1) Switchyard Ves * scienario (e.g., IP) Sciensing A	onal Laboratory
MSFHI	Beevaluated Hazard Information The set of the	onal Laboratory
MSFHI	Receivaluated Hazard Information Revealuated Hazard Information VI UP 82.1 Rover 82.1 Dams 82.1 Science 82.1 Science 82.1 Channel UP in UV es VI IP in UV es	onal Laborator
MSFHI	Received Information Viewaluated Hazard Information Viewaluated Hight and Waves (Romp) Viewaluated Hight foret Provided V	onal Laboratory
MSFHI	Scenario descriptio [] Switchyard Yes "riski negorane state and the formation of the scenario state of the second state of th	onal Laboratory
MSFHI	Beenato descriptio[] Swithyard Scenario III Seealantee descriptio[] Swithyard Seealantee de	onal Laboratory
MSFHI	Schwarzen und information Pin NJ: es: Pin	onal Laboratory
MSFHI	Scenario Info Scenario Info <td< td=""><td>onal Laborator</td></td<>	onal Laborator
MSFHI	Securated Hazard Information Pin RA Review Complete Stores: Check Complete Diratation C6 for uses InfSA: 11/No Complete Diratation C6 for uses InfSA: 12/No Complete Scenario InfSA: 12/No Test Aspectation E0 Diratation C6 for uses InfSA: 12/No Complete Diratation C6 for uses InfSA: 12/No Comments Diratation C6 for uses InfSA: 12/No Comments: Diratation C6 for use InfSA: 12/No Comments: Diratation C6 for use InfSA: 12/No Comments: Diratation C6 in diradiation Net Provided Comments: Diratation C6 in diradiation Net Providee InfSA: 12/No Dirate associated effects applicit [Yes Comments:	onal Laborator

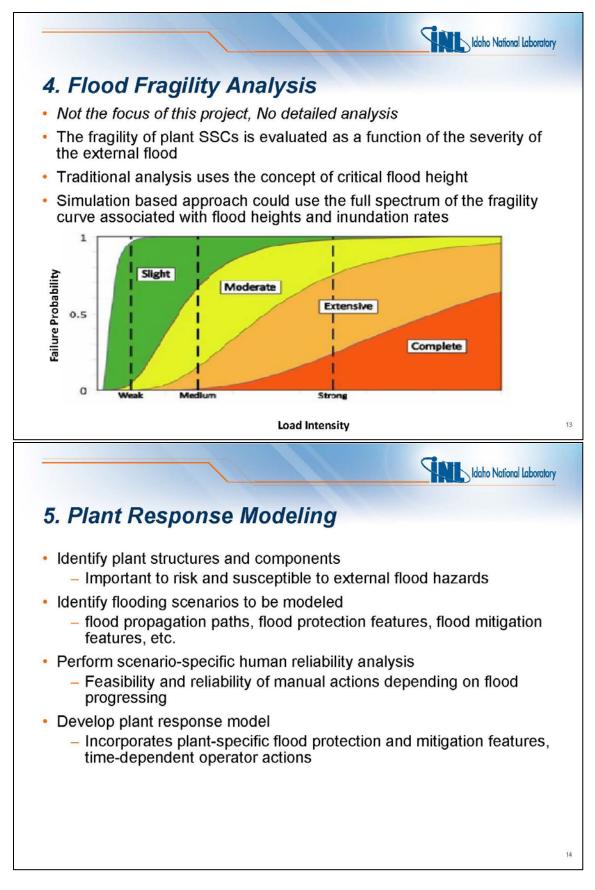
SDP Pilot Documents	Example
 ANO Flooding Pictures Aux Or Turbine Building (60+ images) Circ Water (2 images) EDG Fuel Oil Vault (20+ images) External Pictures (10+ images) Intake SW Building (8 images) PASS Room (7 images) Turbine Building (15 images) Licensee Documents 32-9207377-000_PMF Hydraulics.pdf 32-922517-000_Flood Frequency.pdf LRE_Report_PRECIP_FINAL_20141019.pdf N20090601102857588_ANO_Flood_Elevation_Map.pdf N20090601102904916_ANO_All-Hazards_Data.pdf N20090611152304290_A-2001_Site_Layout.pdf U1 Revised Flooding Report.pdf U2 Revised Flooding Report.pdf 	rev2.pdf Unit 1 Declar for Sumplying MEW add
* Pilot data provided by Fernando Ferr	ante from an SDP analysis
	,
	,
	Idaho National Laborator
Integrate Flood Diges	t into Safety Portal
	Idaho National Laborator
Integrate Flood Diges SAFETY P®RTAL	t into Safety Portal
Integrate Flood Digest SAFETY P RTAL Use a local account to log in.	t into Safety Portal
Integrate Flood Digest SAFETY P RTAL Use a local account to log in.	t into Safety Portal
Integrate Flood Digest SAFETY P RTAL Use a local account to log in.	t into Safety Portal
Integrate Flood Digest SAFETY P RTAL Use a local account to log in. Email Password	t into Safety Portal
Integrate Flood Digest	t into Safety Portal
Integrate Flood Digest	t into Safety Portal

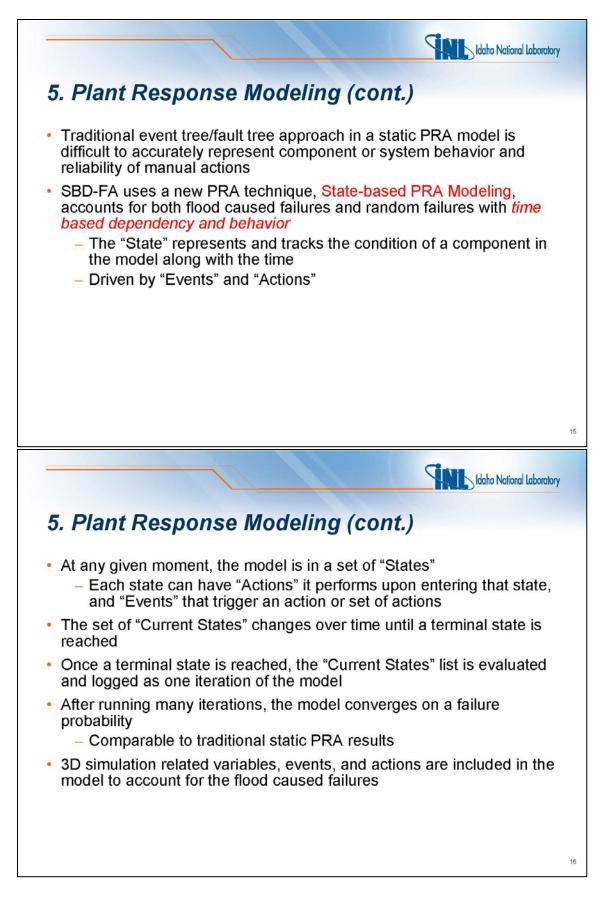


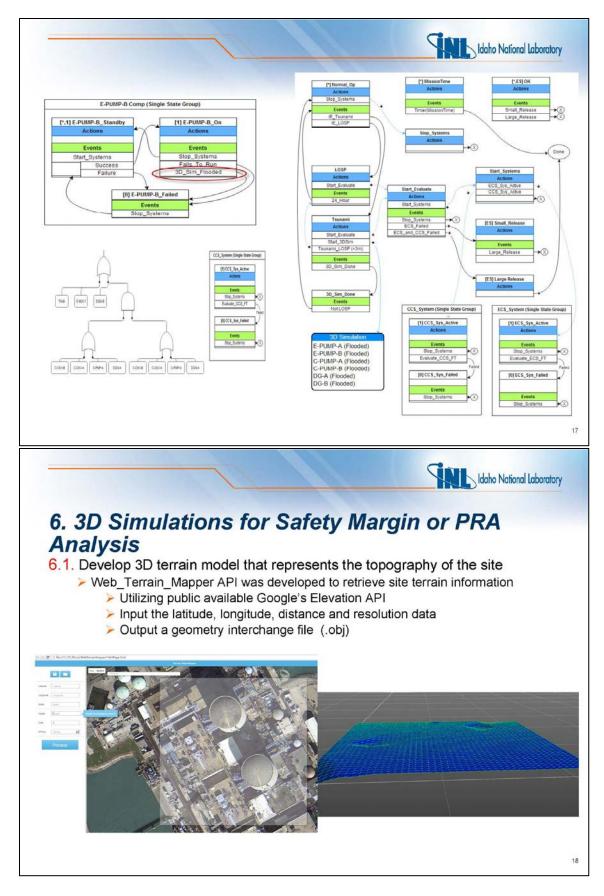


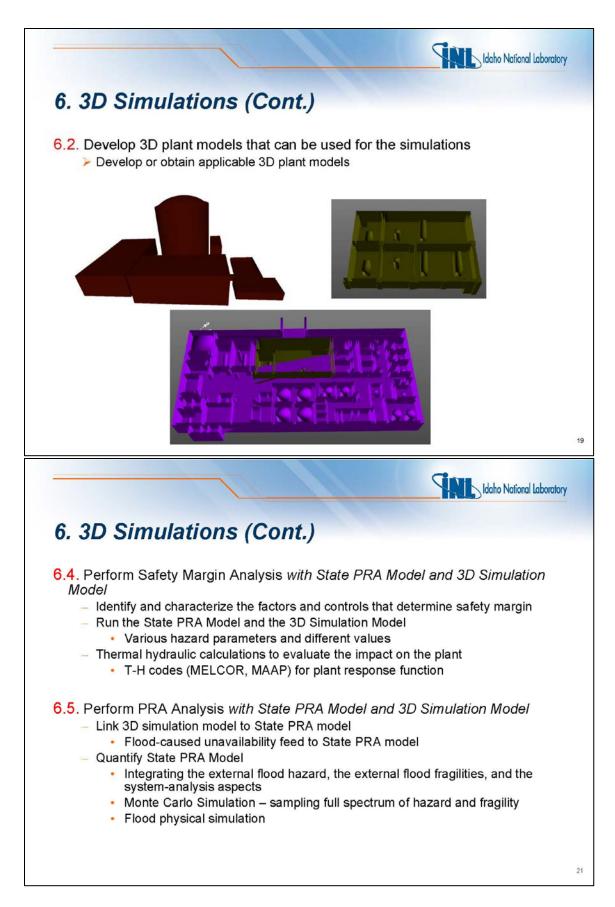


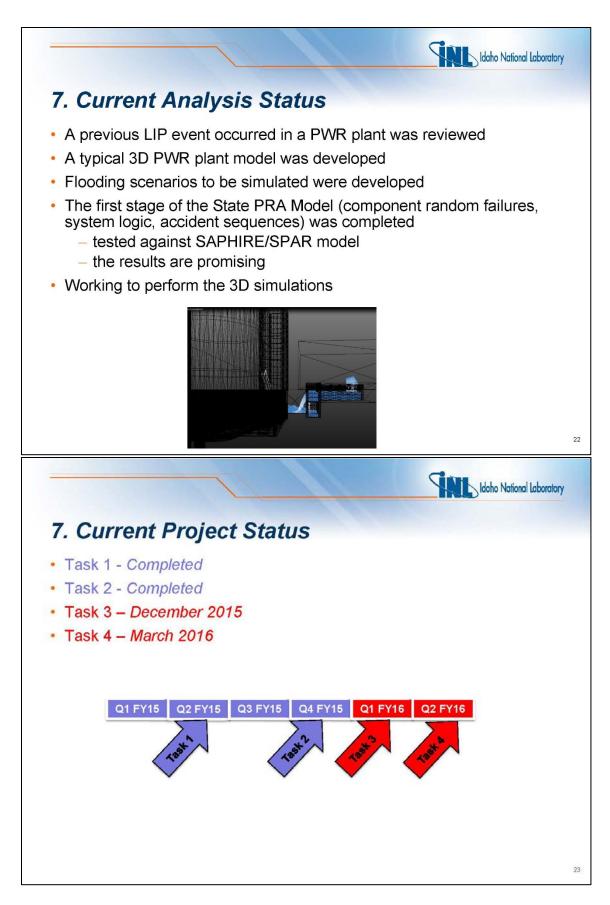

1.3.5.3 Framework for Modeling Total Plant Response to Flooding Events. Zhegang Ma and Curtis Smith, INL

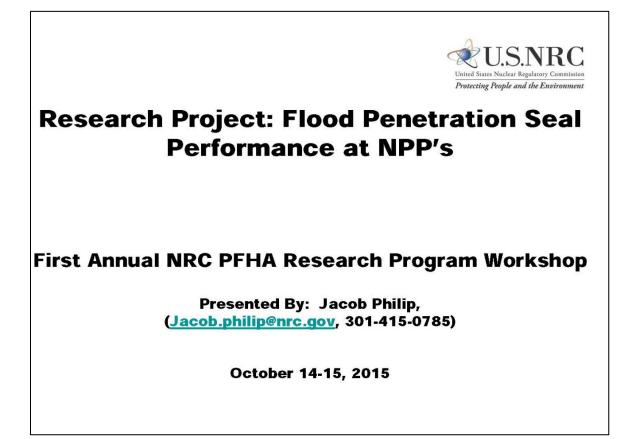


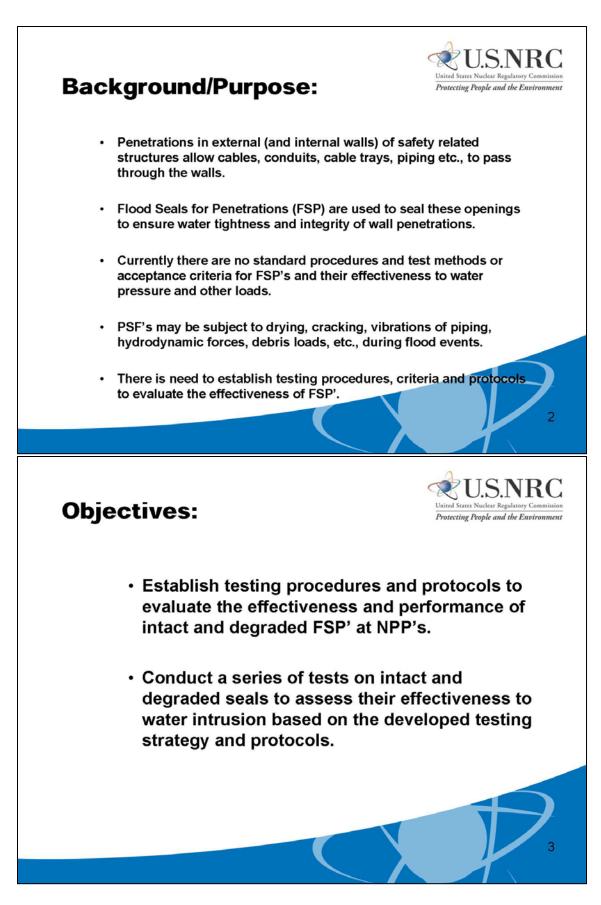







					nnual Excee	dance Proba	hility (1/years	6)		
Precipitation Amoun (inches)		1/2	1/5	1/10	1/25	1/50	1/100	1/200	1/500	1/100
NOAA Data	Mean	4.40	6.03	7.38	9.33	10.90	12.60	14.40	17.00	19.00
	5%	3.66	5.00	6.09	7.49	8.56	9.55	10.50	11.90	12.90
	95%	5.31	7.29	8.96	11.90	14.10	16.70	19.60	23.70	26.8
	Mean	4.29	6.12	7.47	9.36	10.90	12.55	14.34	16.93	19.08
GEV	5%	4.12	6.02	7.39	9.27	10.80	12.46	14.25	16.83	18.93
Calculated	95%	4.45	6.22	7.56	9.45	10.99	12.65	14.43	17.04	19.2
	Difference on Mean	-2.6%	1.5%	1.2%	0.3%	0.0%	-0.4%	-0.4%	-0.4%	0.4%
	on Amount thes)		2.007.04		nnual Excee				2.007.0c	
jun)		5.00E-04	2.00E-04	1.00E-04	5.00E-05	2.00E-05	1.00E-05	5.00E-06	2.00E-06	1.00E
NOAA	Mean 59/					NA				
Data	5% 95%					NA				
	Mean	21.41	24.80	27.60	30.65	35.07	38.74	42.71	48.49	53.2
GEV Calculated	5%	21.15	24.34	26.95	29.74	33.75	37.03	40.55	45.60	49.7
	95%	21.68	25.26	28.27	31.57	36.41	40.48	44.94	51.49	57.0
	Difference on Mean					NA				
			1						JIdaho N	
	od H						r short	ter retu ertainty		





1.3.5.4 Performance of Penetration Seals. Jacob Philip, NRC

1.4 Summary

This report transmits the agenda and slides from presentations given at the 1st Annual NRC Probabilistic Flood Hazard Assessment Research Workshop held at NRC Headquarters in Rockville, MD, on October 14–15, 2015. Participants in this workshop included NRC technical staff and management, NRC contractors, and staff from other Federal agencies.

The NRC had the following objectives for the workshop:

- Inform NRO and NRR management and staff on the progress of the PFHA Research Program.
- Solicit feedback from NRO and NRR management and staff on current and proposed research activities.
- Allow RES contractors to do the following:
 - Interact with NRO and NRR staff to get a better understanding of NRO and NRR needs and priorities.
 - Interact with each other to gain a better understanding of how the participants' individual project(s) fit into the larger program.
- Inform partner Federal agencies on NRC PFHA research activities.

The 2-day workshop began with an overview of the RES PFHA Research Program, followed by presentations by NRO and NRR staff to give user office perspectives on research needs and priorities as to flood hazard assessment and analysis of risks from flooding. The balance of the workshop consisted of five technical sessions, during which the NRC staff and contractors gave presentations that described the individual research projects in the PFHA Research Program.

The five technical sessions covered the following topics:

- (1) program overview
- (2) climate
- (3) precipitation
- (4) riverine and coastal flooding processes
- (5) plant response to flooding events

The workshop included substantial discussion after each presentation and during an open discussion session at the conclusion of the workshop. The NRC met its overall workshop objectives of soliciting feedback from user office staff and management, promoting interaction and collaboration between projects, and informing partner Federal agencies.

These proceedings include the following:

- Section 2.2: Workshop Agenda
- Section 2.3: Proceedings
- Section 2.4: Summary
- Section 2.5: Workshop Participants

1.5 Workshop Participants

U.S. Nuclear Regulatory Commission (U.S. NRC)

Brandon Hartle Barbara Hayes Joseph Kanney Michelle Kichline Cheng Yuan Louise Lund Mark McBride Asimios Malliakos Jeff Mitman Thomas Nicholson Marie Pohida	Malcom Patterson Jacob Philip Kevin Quinlan Mehdi Reisi Fard Mohamed Shams Warren Sharp Nebiyu Tiruneh Juan Uribe Thomas Weaver Sunil Weerakkody Elena Yegorova
Federal Energy Regulatory Commission (FERC) Ken Fearon Paul Shannon U.S. Bureau of Reclamation (USBR) Joseph Wright David Keeney Tony Wahl	U.S. Geological Survey (USGS) Timothy Cohn William Asquith National Weather Service (NWS) Sanja Perica Michael St. Laurent
Pacific Northwest National Laboratory (PNNL) Garill Coles Ruby Leung Philip Meyer Rajiv Prasad	University of California at Davis (UC) Kei Ishida Levent Kavvas Mathieu Mure-Ravaud
Coppersmith Consulting, Inc. (CCI) Kevin Coppersmith	Fire Risk Management, Inc. (FRM) William (Mark) Cummings
	Barbara Hayes Joseph Kanney Michelle Kichline Cheng Yuan Louise Lund Mark McBride Asimios Malliakos Jeff Mitman Thomas Nicholson Marie Pohida Federal Energy Regulatory Commission (FERC) Ken Fearon Paul Shannon U.S. Bureau of Reclamation (USBR) Joseph Wright David Keeney Tony Wahl Pacific Northwest National Laboratory (PNNL) Garill Coles Ruby Leung Philip Meyer Rajiv Prasad

5 SUMMARY AND CONCLUSIONS

5.1 Summary

This report has presented agendas, presentations and discussion summaries for the first four NRC Annual PFHA Research Workshops (2015-2019). These proceedings include presentation abstracts and slides and a summary of the question and answer sessions. The first workshop was limited to NRC technical staff and management, NRC contractors, and staff from other Federal agencies. The three workshops that followed were meetings attended by members of the public; NRC technical staff, management, and contractors; and staff from other Federal agencies. Public attendees over the course of the workshops included industry groups, industry members, consultants, independent laboratories, academic institutions, and the press. Members of the public were invited to speak at the workshops. The fourth workshop included more invited speakers from the public than from the NRC and the NRC's contractors.

The proceedings for the second through fourth workshops include all presentation abstracts and slides and submitted posters and panelists' slides. Workshop organizers took notes and audio recorded the question and answer sessions following each talk, during group panels, and during end of day question and answer session. Responses are not reproduced here verbatim and were generally from the presenter or co authors. Descriptions of the panel discussions identify the speaker when possible. Questions were taken orally from attendees, on question cards, and over the telephone.

5.2 Conclusions

As reflected in these proceedings PFHA is a very active area of research at NRC and its international counterparts, as well as other Federal agencies, industry and academia. Readers of this report will have been exposed to current technical issues, research efforts, and accomplishments in this area within the NRC and the wider research community.

The NRC projects discussed in these proceedings represent the main efforts in the first phase (technical-basis phase) of NRC's PFHA Research Program. This technical-basis phase is nearly complete, and the NRC has initiated a second phase (pilot project phase) that is a syntheses of various technical basis results and lessons learned to demonstrate development of realistic flood hazard curves for several key flooding phenomena scenarios (site-scale, riverine and coastal flooding). The third phase (development of selected guidance documents) is an area of active discussion between RES and NRC User Offices. NRC staff looks forward to further public engagement regarding the second and third phases of the PFHA research program in future PFHA Research Workshops.

ACKNOWLEDGEMENTS

These workshops were planned and executed by an organizing committee in the U.S. Nuclear Regulatory Commission's (NRC's) Office of Nuclear Regulatory Research (RES), Division of Risk Analysis, Fire and External Hazards Analysis Branch, and with the assistance of many NRC staff.

Organizing Committees

1st Workshop, October 14-15, 2015: Joseph Kanney and William Ott.

<u>2nd Workshop, January 23–25, 2017</u>: Co-Chairs: Meredith Carr, Joseph Kanney; *Members:* Thomas Aird, Thomas Nicholson, MarkHenry Salley; *Workshop Facilitator:* Kenneth Hamburger

<u>3rd Workshop, December 4–5, 2017</u>: Chair: Joseph Kanney, Members: Thomas Aird, Meredith Carr, Thomas Nicholson, MarkHenry Salley; Workshop Facilitator: Kenneth Hamburger

<u>4th Workshop, April 30–May 2, 2019</u>: Co-Chairs: Meredith Carr, Elena Yegorova; Members: Joseph Kanney, Thomas Aird, Mark Fuhrmann, MarkHenry Salley; Workshop Facilitator: Kenneth Hamburger

Many NRC support offices contributed to all of the workshops and these proceedings. The organizing committee would like to highlight the efforts of the RES administrative staff; the RES Program Management, Policy Development and Analysis Branch; and the audiovisual, security, print shop, and editorial staff. The organizers appreciated office and division direction and support from Jennene Littlejohn, William Ott, MarkHenry Salley, Mark Thaggard, Michael Cheok, Richard Correia, Mike Weber, and Ray Furstenau. Michelle Bensi, Mehdi Reisi-Fard, Christopher Cook, and Andrew Campbell provided guidance and support from the NRC Office of New Reactors and the Office of Nuclear Reactor Regulation. The organizers thank the Electric Power Research Institute (EPRI) for assisting with planning, contributions, and organizing several speakers. EPRI personnel who participated in the organization of the workshops include John Weglian, Hasan Charkas, and Marko Randelovic.

During the workshops, Tammie Rivera assisted with planning and organized the registration area during the conference. David Stroup and Don Algama assisted with room organization. Notes were studiously scribed by Mark Fuhrmann, David Stroup, Nebiyu Tiruneh, Michelle Bensi, Hosung Ahn, Gabriel Taylor, Brad Harvey, Kevin Quinlan, Steve Breithaupt, Mike Lee, Jeff Wood, and organizing committee members. The organizers appreciate the assistance during the conference of audiovisual, security, and other support staff. The organizers thank the panelists, the technical presenters, and poster presenters for their contributions; Thomas Aird and Mark Fuhrmann for performing a colleague review of this document; and the Probabilistic Flood Hazard Assessment Research Group for transcript reviews.

<u>Members of the Probabilistic Flood Hazard Assessment Research Group</u>: MarkHenry Salley (Branch Chief), Joseph Kanney (Technical Lead), Thomas Aird, Meredith Carr, Mark Fuhrmann, Jacob Philip, Elena Yegorova, and Thomas Nicholson (Senior Technical Advisor)

APPENDIX A: SUBJECT INDEX

17B, Bulletin, 1-48, 1-178, 1-189, 2-36, 2-187, 2-200, 4-215, 4-262, 4-265 17C, Bulletin, 2-36, 2-187, 2-194, 2-244, 3-121, 3-332, 4-163, 4-208, 4-214, 4-220, 4-230, 4-232, 4-236, 4-252, 4-257, 4-261, 4-265, 4-289 2D, 1-34, 3-385, 4-314 model, 1-183, 1-186, 2-52, 2-211, 2-362, 2-367, 2-377, 3-367, 4-202, 4-313, 4-326 CASC2D, 1-151 HEC-RAS. See HEC-RAS TELEMAC, 4-203, 4-206, 4-328 3D, 4-314 coastal, 4-123 model, 1-252, 1-261, 2-288, 2-295, 2-302, 2-306, 2-393, 3-22, 3-25, 3-199, 3-378, 4-24, 4-126, 4-291 terrain mapping, 1-252 accumulated cyclone energy, ACE, 4-372 ADCIRC, 1-196, 2-78, 2-334, 2-379, 2-403, 4-57, 4-94 AEP, xxxvii, 1-12, 1-17, 1-36, 1-50, 1-54, 1-69, 1-149, 1-166, 1-191, 1-198, 2-22, 2-43, 2-54, 2-154, 2-187, 2-201, 2-204, 2-219, 2-225, 2-270, 2-307, 2-340, 3-15, 3-21, 3-74, 3-97, 3-116, 3-117, 3-132, 3-135, 3-138, 3-337, 3-355, 4-15, 4-60, 4-74, 4-94, 4-120, 4-127, 4-132, 4-194, 4-209, 4-214, 4-253, 4-286, 4-381 drainage area based estimate, 1-69 low AEP, 2-187, 3-117, 3-135 neutral, 1-185 return periods, 1-51 very low AEP, 1-166, 2-187, 3-117, 4-158 AEP4. See distribution: Asymmetric Exponential Power aleatory uncertainty. See uncertainty, aleatory American Nuclear Society. See ANS AMM. See Multi-decadal:Atlantic Meridional Mode AMO. See Multi-decadal: Atlantic Multi-Decadal Oscillation AMS. See annual maximum series ANalysis Of VAriance, ANOVA, 4-201 annual exceedance probability. See AEP

annual maximum series, 1-72, 1-165, 2-155, 2-201, 2-373, 3-75 searching, 4-149 ANS, 3-377, 4-442, 4-452, 4-461, 4-471 areal reduction factor. See ARF ARF, 1-84, 2-374, 2-383, 2-417, 3-224, 3-401, 4-18, 4-120, 4-133, 4-142, 4-144, 4-149, 4-152, 4-162 averaging, temporal and spatial, 4-148 dynamic scaling model, 4-151 methods, 4-147 empirical, 4-151 test cases, 4-147 arid, 1-61, 2-217, 2-223, 3-163, 3-200, 4-132 semi-, 4-131 ARR. See rainfall-runoff: model: Austrailian Rainfall and Runoff Model ASME, American Society of Mechanical Engineers, 4-442 associated effects, 1-12, 1-31, 1-34, 2-43, 3-15, 4-15, 4-31 atmospheric conditions. 1-90 dispersion, 2-16 environment, 2-71 instability, 4-377 interactions, 4-98 moisture, 3-28, 4-125, 4-346, 4-353 parameters, 2-81, 3-111 patterns, 2-85 processes, 3-310 rivers, 1-56, 1-59, 1-162 stability, 4-163 variables, 4-122 at-site, 1-84, 1-180, 2-31, 2-152, 2-155, 2-160, 2-163, 2-188, 2-206, 2-209, 3-70, 3-75, 3-79, 3-84, 3-132, 3-139, 3-310, 3-315, 4-125, 4-137, 4-208, 4-214, 4-264 Austrailian Rainfall and Runoff Model. See rainfall-runoff: model: Austrailian Rainfall and Runoff Model autocorrelation, 3-126 BATEA. See error: Bayesian Total Error Analysis Rayesian, 2-151, 2-162, 2-165, 2-313, 2-400, 2-402, 3-70, 3-88, 3-93, 3-140, 3-304, 4-163, 4-220, 4-223, 4-229, 4-257, 4-294

analysis, 1-171, 4-308 approach, 1-167, 2-168, 2-308, 4-257, 4-366 BHM, 1-86, 1-175, 2-338, 2-345, 3-304 estimation, 1-156 framework, 1-161, 1-163, 2-321, 2-369, 2-400, 4-257 gridded, 3-90 hazard curve combination, 4-220 inference, 2-338, 2-342, 2-347, 3-70, 3-78, 3-93, 3-304, 3-313, 3-387, 4-223 maximum likelihood, 1-186 model, 2-321, 2-345, 2-353, 2-402, 3-307, 3-326 posterior distribution, 1-161, 1-163, 1-171, 2-163, 2-321, 2-338, 2-342, 3-78, 3-79, 3-88, 3-93, 4-223 prior distribution, 1-161, 1-171, 2-163, 3-78 Quadrature, 1-196, 2-68, 4-69 regional, 2-163, 3-79 Bayesian Hierarchical Model. See Bayesian:BHM best practice, 1-15, 1-151, 2-34, 2-45, 2-248, 2-259, 2-405, 3-17, 3-22, 3-25, 3-242, 3-246, 3-301, 3-361, 4-18, 4-24, 4-254, 4-318 Blayais, 2-9, 2-266, 3-27, 3-240, 4-390, 4-472 bootstrap 1000 year simulation, 3-359 resampling, 4-64 boundary condition, 1-90, 1-95, 1-196, 2-102, 2-113, 2-150, 2-312, 2-320, 2-326, 2-354, 2-366, 2-413, 3-43, 3-47, 3-68, 4-30, 4-39, 4-203, 4-266, 4-271, 4-298 bounding, 2-323, 2-337, 3-28, 4-457, 4-470, 4-478 analyses, 2-268, 2-322, 3-28, 4-470 assessments, 3-370 assumptions, 2-322 estimates, 2-37 tests, 2-268 BQ. See Bayesian: Quadrature breach, dam/levee, 1-21, 1-148, 1-209, 1-214, 1-220, 2-34, 2-322, 2-325, 2-329, 3-267, 3-268, 3-314, 4-198, 4-204, 4-262, 4-312, 4-404, 4-405, 4-425 computational model, 4-415, 4-417 development, 3-267 initiation, 3-198 location, 4-262, 4-313

mass wasting, 4-419 models, 3-301, 4-425 tests, 3-269, 4-406 Bulletin 17B. See 17B, Bulletin Bulletin 17C. See 17C, Bulletin calibration, 1-89, 1-90, 1-101, 1-123, 1-158, 1-161, 1-177, 2-207, 2-312, 2-317, 3-67, 3-70, 3-144, 3-146, 3-202, 4-25, 4-75, 4-105, 4-217, 4-227, 4-313, 4-332, 4-369 CAPE, 1-60, 1-139, 2-96, 2-381, 4-136, 4-144, 4-161, 4-218 CASC2D. See 2D:model CASC2D CDB. See current design basis: CDF, 1-152, 1-164, 4-66 center, body, and range, 1-136, 1-207, 2-354, 2-359, 3-94, 3-314, 3-320, 4-266, 4-313 CFHA. See flood hazard:flood hazard assessment:comprehensive CFHA. See coastal flood hazard assessment CFSR. See reanalysis:Climate Forecast System Reanalysis CHS. See Coastal Hazard System Clausius-Clapeyron, 1-58, 2-89, 4-353, 4-384 cliff-edge effects, 1-12, 1-31, 2-43, 3-15, 3-373, 3-382, 4-15, 4-474 climate, 1-51, 1-54, 1-98, 1-151, 1-196, 1-209, 1-267, 2-16, 2-77, 2-88, 2-223, 2-372, 2-402, 3-29, 3-81, 3-120, 3-133, 3-136, 3-179, 3-189, 3-208, 4-11, 4-105, 4-113, 4-119, 4-125, 4-132, 4-137, 4-335, 4-354, 4-369, 4-379, 4-380, 4-383 anomalies, 1-61, 3-196 hydroclimatic extremes, 4-335 index, 2-338, 2-345, 3-304, 3-310, 3-313 mean precipitation projections, 4-341 mean precipitation trends, 4-339 models, 1-58, 1-63, 1-95, 2-97, 2-100, 2-112 downscaling, 4-341 patterns, 1-56, 2-88, 3-29, 3-192 predictions, 1-96 projections, 1-22, 1-51, 1-55, 1-96, 2-48, 2-89, 2-112, 2-373, 3-19, 3-30, 3-47, 3-67, 3-162, 4-335, 4-356, 4-369 precipitation, 4-344 regional, 1-74, 1-123 scenarios, 4-341 science, 1-22, 1-52, 2-90, 2-405, 3-193, 4-

381

temperature changes, 3-32 trends, 4-335 variability, 2-100, 4-137, 4-225, 4-371, 4-377 climate change, 1-22, 1-51, 1-63, 1-95, 1-162, 1-188, 2-48, 2-77, 2-88, 2-98, 2-102, 2-114, 2-168, 2-199, 2-307, 2-366, 3-19, 3-29, 3-35, 3-38, 3-115, 3-195, 3-398, 4-20, 4-30, 4-33, 4-98, 4-260, 4-355, 4-364, 4-370, 4-378, 4-380, 4-383, 4-454 high temperature event frequency increase, 2-94 hydrologic implacts, 2-99 mean changes, 2-99 precipitation changes, 2-91 scenarios, 2-93 streamflow change, 2-98 coastal, 1-148, 1-267, 4-34, 4-93, 4-317 CSTORM, 2-379 StormSim. 2-379 coastal flood hazard assessment, 1-194 Coastal Hazard System, 2-379, 3-328 coincident and correlated flooding, 2-40, 3-10, 3-15, 3-395, 3-403, 4-15, 4-19, 4-318, 4-448 coincident events, 1-12, 2-43, 2-332, 3-15, 4-15. 4-86 combined effects, 1-12, 1-30, 2-43, 4-432, 4-440 combined events, 1-25, 1-31, 1-37, 1-133, 2-89, 2-356, 2-419, 3-318, 3-380, 3-386, 4-95, 4-440, 4-451, 4-454, 4-456, 4-477 combined processes, 1-25 compound event framework, 4-320 concurrent hazards, 1-228, 2-276, 3-374, 3-377 correlated hazards, 2-52, 2-410, 3-26 confidence interval, 1-72, 1-157, 3-15, 3-139, 4-14, 4-199, 4-214 confidence limits, 1-178, 1-194, 1-199, 2-36, 2-196, 3-94, 3-108, 4-57, 4-69, 4-232, 4-253 NOAA Atlas 14, 2-373 convective potential energy. See CAPE correlation spatial and temporal, 2-340, 3-307 cumulative distribution function. See CDF current design basis, 1-10, 1-23, 1-247, 2-21, 2-42, 2-202, 2-255, 3-12, 3-154, 4-381, 4-480

design basis flood, 4-454 event, 3-245 return period, 3-352 flood walkdown, 2-254 dam, 1-210, 2-201, 2-244, 2-307, 2-329, 2-338, 2-400, 3-15, 3-136, 3-149, 3-194, 3-197, 3-267, 3-314, 3-338, 3-405, 4-14, 4-130, 4-208, 4-224, 4-228, 4-253, 4-257, 4-278, 4-281, 4-312, 4-404, 4-425, 4-451, 4-476 assessments, 4-196 breach. See breach, dam/levee case study, 1-65, 1-74, 2-348, 2-378, 3-143, 3-333, 3-336, 3-355, 3-358, 4-125, 4-213, 4-218, 4-238, 4-298, 4-329 computational model, 4-405 embankment. See embankment dam erosion. See erosion: dam failure, 1-6, 1-11, 1-37, 1-172, 1-227, 2-12, 2-34, 2-52, 2-276, 2-288, 2-322, 2-325, 2-329, 2-340, 2-353, 2-409, 3-22, 3-26, 3-136, 3-197, 3-217, 3-266, 3-353, 3-371, 3-374, 3-378, 3-388, 3-395, 4-14, 4-228, 4-295, 4-318, 4-322, 4-455, 4-476 failure analysis, 4-324 models, 1-159, 3-191 operations, 2-384 Oroville, 3-339, 3-361, 3-389, 4-258 overtopping, 3-277, 3-303, 3-367, 4-330, 4-333, 4-407 physical model, 1-209, 1-216, 3-268, 4-405 potential failure modes, 2-340 regulation, 1-155, 1-188, 4-289 releases, 2-97, 3-37, 4-287, 4-318, 4-363 risk, 1-24, 2-378, 2-416, 3-138, 3-197, 3-369, 3-400, 4-20, 4-287, 4-320, 4-334 risk assessment, 4-321 safety, 1-151, 1-211, 2-203, 2-400, 2-404, 3-135, 3-202, 3-331, 3-353, 4-114, 4-124, 4-130, 4-158, 4-161, 4-163, 4-209, 4-217, 4-224, 4-227, 4-229, 4-231, 4-279, 4-323, 4-369 system of reservoirs, 3-334 system response, 3-354 data collection, 4-458 regional information, 1-154 transposition, 4-123

data, models and methods, 1-136, 1-197, 1-207, 2-53, 2-57, 2-62, 3-94, 3-96, 3-99, 3-104, 3-320, 4-57, 4-59, 4-268 model choice, 3-312 model selection, 3-312 DDF. See depth-duration-frequency decision-making, 1-23, 1-32, 1-36, 2-30, 2-246, 2-271, 2-395, 3-136, 3-248, 3-337, 3-400, 4-31, 4-34, 4-117, 4-129, 4-243, 4-276, 4-465, 4-476 dendrochronology, 2-220, 2-222, 3-124, 3-190, 4-229 botanical information, 4-216 tree ring estimate, 3-123 tree rings, 3-124, 3-183 deposits, 2-216, 2-244, 3-116, 3-182, 3-188, 3-190, 3-212, 3-234, 4-241, 4-243, 4-259 alluvial, 2-245 bluff, 3-187 boulder-sheltered, 2-239, 3-188, 4-250 cave, 2-220, 2-222, 2-240, 3-187, 4-229 flood, 2-223, 2-225, 2-227, 2-241, 2-242, 2-245, 3-163, 3-171, 3-173, 3-185, 3-190, 3-196, 3-200, 3-213, 4-238, 4-243 paleoflood characterization, 4-239 slackwater, 2-220, 3-124, 3-186, 3-362, 4-229, 4-230 surge, 4-259 terrace, 2-220, 2-245, 3-124, 3-183, 3-184 depth-duration-frequency, 2-372, 4-330 deterministic, 1-30, 1-35, 1-149, 1-151, 1-257, 2-8, 2-38, 2-71, 2-83, 2-179, 2-205, 2-260, 2-286, 2-323, 2-337, 2-408, 2-410, 3-10, 3-22, 3-28, 3-103, 3-140, 3-246, 3-259, 3-262, 3-374, 3-391, 3-393, 3-395, 4-13, 4-27, 4-31, 4-56, 4-122, 4-126, 4-130, 4-158, 4-175, 4-293, 4-383, 4-386, 4-454, 4-475, 4-477, 4-481 analysis, 2-179, 2-246, 2-322, 2-337, 3-390, 4-85, 4-382 approaches, 1-6, 1-28, 1-73, 2-26, 2-50, 2-154, 2-322, 2-337, 2-409, 3-24, 4-24, 4-199, 4-470 criteria, 2-168, 2-400 focused evaluations, 2-21 Hydrometerological Reports, HMR, 1-185 increasing realism, 2-332 methods, xxxviii, 1-29, 2-25, 2-202, 4-472 model, 1-151, 1-243, 2-88, 3-29, 3-304, 4-330, 4-355, 4-382

distribution, 1-71, 1-153, 2-151, 2-179, 2-187, 2-245, 2-270, 2-307, 2-369, 3-70, 3-96, 3-143, 3-315, 4-81, 4-125, 4-159, 4-163, 4-256, 4-260, 4-275, 4-315 Asymmetric Exponential Power (AEP4), 2-193, 2-197, 2-200 empirical, 4-64 exponential, 1-165, 1-208, 2-63, 2-207 extreme value, 2-151, 2-155, 3-70, 3-74 flood frequency, 2-207, 2-246, 3-117, 3-126, 4-208 full, 2-205 Gamma, 2-63, 2-347 generalized 'skew' normal (GNO), 1-80, 1-83, 2-159, 2-187, 2-193, 2-200, 2-373, 3-77 generalized extreme value (GEV), 1-80, 1-83, 1-175, 1-207, 1-258, 2-63, 2-159, 2-163, 2-174, 2-179, 2-187, 2-193, 2-197, 2-200, 2-207, 2-318, 2-346, 2-373, 3-70, 3-77, 4-111, 4-119, 4-149, 4-157, 4-224, 4-261, 4-343, 4-360 generalized logistic (GLO), 1-83, 1-84, 2-159, 2-193, 2-197, 2-373, 3-77 generalized Pareto (GPA or GPD), 1-83, 1-155, 1-196, 1-207, 2-63, 2-159, 2-187, 2-193, 2-197, 3-77, 4-224 GNO (generalized 'skew' normal), 2-197 Gumbel, 1-155, 1-196, 1-207, 2-63, 2-346, 4-205, 4-328 Kappa (KAP), 2-174, 2-177, 2-193, 2-200, 2-373, 3-358, 4-218, 4-307, 4-332 log Pearson Type III (LP-III), 1-155, 1-178, 2-36, 2-187, 2-194, 2-199, 4-208, 4-214, 4-257, 4-261 lognormal, 1-155, 1-207, 2-63, 2-66, 2-207, 3-100, 4-229 lognormal 3, 2-200 low frequency tails, 2-65 marginal, 4-60, 4-70 multiple, 2-53, 2-187, 2-403, 3-117, 4-257 mutltivariate Gaussian, 3-102 normal, 1-207, 2-63, 2-171, 4-49, 4-52, 4-69, 4-205, 4-229 parameters, 2-179, 2-188 Pearson Type III (PE3), 1-83, 2-159, 2-193, 2-197, 2-373, 3-77, 4-224 Poisson, 1-165, 1-198 posterior. See Bayesian: posterior distribution precipitation. See precipitation: distribution

prior. See Bayesian: prior distribution probability, 3-99, 4-89 quantiles, 2-155 tails, 2-207 temporal, 1-160, 2-179, 4-121, 4-290 triangle, 4-205, 4-208, 4-229, 4-328 type, 3-101 uniform, 4-205, 4-208, 4-257, 4-328 Wakeby (WAK), 1-83, 2-159, 2-193, 2-197, 2-373, 3-77 Weibull (WEI), 1-155, 1-196, 1-207, 2-63, 2-69, 2-187, 2-193, 2-197, 2-200, 3-100, 3-103, 4-328 Weibull plotting position, 4-64 Weibull type, 4-68 EC. See Environmental Conditions EHCOE. See External Hazard Center of Expertise EHID. See Hazard Information Digest EMA. See expected moments algorithm embankment dam, 1-21, 1-148, 1-209, 2-47, 3-19, 3-267, 3-269, 3-272, 3-276, 3-336, 4-19, 4-424 erosion. See erosion: embankment rockfill, 1-216, 3-273, 4-330, 4-404 zoned rockfill, 3-274 ensemble, 1-85, 1-124, 1-144, 2-100, 2-152, 2-161, 3-81, 3-86, 4-41, 4-52, 4-56, 4-97, 4-114, 4-117, 4-123, 4-381 approaches, 4-123 Global Ensemble Forecasting System, GEFS, 4-35, 4-56 gridded precipitation, 2-152, 2-160, 3-71, 3-81, 3-86, 3-89 models, 4-55, 4-56 real-time, 4-49 storm surge, 4-34, 4-35, 4-36 ENSO. See Multi-decadal: El Niño-Southern Oscillation Environmental Conditions, 1-21, 1-224, 2-271, 3-248 impact quantification, 3-257 impacts on performance, 2-280 insights, 3-256 literature, 2-278, 3-252, 3-257 method limitations, 2-284 multiple, simultaneously occuring, 3-257 performance demands, 2-275, 3-251 proof-of-concept, 2-273, 2-281, 3-251 standing and moving water, 2-279

Environmental Factors, 1-19, 1-21, 1-223, 1-238, 2-31, 2-47, 2-271, 2-276, 2-415, 3-19, 3-250, 3-398, 4-20, 4-441 epistemic uncertainty. See uncertainty, epistemic erosion, 1-11, 1-153, 1-222, 2-245, 3-15, 3-261, 4-14, 4-81, 4-96, 4-230, 4-330, 4-334, 4-404, 4-417 dam, 3-271, 3-284, 3-292, 3-302, 3-303, 4-407, 4-414, 4-424 embankment, 1-19, 1-21, 2-47, 3-19, 3-277, 3-292, 3-301, 4-19, 4-407 rockfill, 1-209, 4-404, 4-424 zoned, 3-267, 4-422, 4-424 zoned rockfill, 3-267, 4-404 equations, 4-420 erodibility parameters, 3-273, 3-303, 4-404, 4-415, 4-422 headcut, 3-267, 4-414, 4-416, 4-418 internal, 1-213, 3-136, 3-267, 3-272, 3-290, 3-292, 3-300, 3-302, 3-303, 4-416 parameters, 1-221, 3-285 processes, 1-21, 1-148, 1-221, 3-270, 4-407, 4-425 rates, 1-221, 3-267, 3-285, 4-404, 4-415 resistance, 3-267, 3-270, 4-407, 4-417 spillway, 3-136, 3-343, 4-211 surface, 2-330, 3-267, 3-284, 4-414, 4-416, 4-418, 4-422, 4-424 tests, 1-209, 1-215, 1-217, 3-267, 3-286, 4-404, 4-405 error, 1-35, 1-125, 1-166, 1-195, 2-56, 2-200, 2-317, 3-67, 3-105, 4-34, 4-41, 4-57, 4-76, 4-87, 4-90, 4-95, 4-102, 4-228, 4-262, 4-468 Bayesian Total Error Analysis, BATEA, 1-161 bounds, 3-116, 3-117 defined space, 4-35 distribution, 2-56, 4-49 epistemic uncertainty, 3-94 estimation, 4-108 forecasting, 4-35 instrument characteristic, 4-102 mean absolute, 4-62 mean square, 3-130 measurement, 1-161, 1-164, 4-262 model, 1-162, 2-193, 2-403, 4-57, 4-69, 4-79 operator, 2-284, 3-247, 3-257 quantification, 2-189, 4-59

random, 4-105, 4-107 relative, 3-48 root mean square, RMSE, 4-151, 4-306 sampling, 1-71, 2-192, 3-332, 4-79 seal installation, 2-267 simulation, 1-197, 2-57, 2-102, 3-42, 3-67, 3-97, 3-105 space, 4-35, 4-52 term, 2-53, 2-57, 2-73, 3-94, 3-96, 4-57, 4-60, 4-228 unbiased, 3-97, 4-60 undefined space, 4-35 EVA. See extreme value analysis evapotranspiration, 3-40 event tree, 1-22, 1-46, 1-260, 2-28, 2-288, 2-297, 2-300, 2-401, 2-405, 2-417, 3-301, 3-303, 3-389, 4-324, 4-440 analysis, 4-313, 4-477 EVT. See extreme value theory ex-control room actions, 4-474, 4-475 expected moments algorithm, 1-156, 1-186, 1-188, 2-187, 2-194, 2-199, 2-207, 2-212, 2-214, 3-117, 3-122, 3-139, 3-141, 3-149, 4-208, 4-214, 4-252, 4-257 expert elicitation, 1-135, 2-338, 2-343, 2-347, 3-326, 4-220, 4-226, 4-229, 4-313 external flood, 2-247, 2-259, 2-288, 3-22, 3-198, 4-385, 4-429 equipment list, 3-262, 3-264, 4-435 operator actions list, 3-262, 3-264 human action feasibility, 3-264 warning time, 3-264 risks, 3-260 scenarios, 3-132, 3-261 external flood hazard, 2-290, 4-455 frequency, 2-79 model validation, 2-394 external flooding PRA. See XFPRA External Hazard Center of Expertise, 2-15 extratropical cyclone, 1-11, 1-17, 1-18, 1-58, 1-91, 1-196, 2-77, 2-89, 2-97, 4-55, 4-98, 4-346, 4-355 reduced winter frequency, 4-362 extreme event, 4-290 extreme events, xxxvii, 1-56, 2-30, 2-88, 2-101, 2-168, 2-201, 2-307, 2-400, 3-29, 3-42, 3-140, 3-181, 3-193, 3-304, 3-313, 3-371, 4-281, 4-315, 4-349, 4-381, 4-475 external events, 4-29 meteorology, 4-352

extreme precipitation, 1-58, 1-90, 1-100, 2-88, 2-89, 2-104, 2-105, 2-153, 2-167, 3-33, 3-35, 3-40, 3-45, 3-70, 3-398, 4-101, 4-110, 4-347, 4-354 change, 2-91 classification, 1-92, 2-105, 3-44 climate projections, 4-342 climate trends, 4-339 Colorado/New Mexico study, 4-144, 4-159, 4-383 event, 1-91 increases, 2-94 spatial coherence, 4-337 temporal coherence, 4-337 variability, 4-337 extreme storm data, 3-334 extreme storm database, 2-377 increase, 4-359 frequency, 4-364 intensity, 4-364 model, 1-65, 2-153, 3-72 advances, 2-341 risk, 4-337 extreme value analysis, 1-194, 3-328 extreme value theory, 3-304, 3-313, 4-114, 4-151 fault tree, 1-46, 1-260, 4-324 FHRR. See Near Term Task Force: Flooding Hazard Re-Evaluations FLEX, 2-24, 2-288, 2-304, 3-199, 3-248, 3-258, 3-263, 4-314, 4-381, 4-440 flood, 2-415, 3-31 causing mechanisms, 4-318 complex event, 4-449 depths, 1-34 design criteria, 3-352 duration, 1-31, 1-34, 1-255, 2-30, 2-291 dynamic modeling, 1-255, 2-291, 2-304 elevations, 1-51 event, 1-253, 2-289 extreme events, 1-172, 2-207, 4-466 gates, 4-473 hazard, 1-12, 1-153, 2-44, 3-16, 4-15 diverse, 4-447 increase, 4-364 mechanisms, 1-31, 1-132, 2-309, 2-325, 2-356, 4-432 mitigation, 2-30 operating experience, 4-11 organizational procedure, 3-245 response, 3-245

risk, 1-177 riverine, 1-6, 1-16, 1-133, 1-148, 1-150, 1-168, 1-175, 1-267, 2-46, 2-202, 2-227, 2-288, 2-338, 2-353, 2-355, 3-15, 3-18, 3-22, 3-27, 3-115, 3-198, 3-246, 3-314, 4-11, 4-14, 4-24, 4-31, 4-164, 4-197, 4-228, 4-255, 4-265, 4-295, 4-311, 4-455 routing, 1-11 runoff-induced riverine, 4-318 SDP example, 1-43 simulation, 2-52 situation, 4-202 sources, 4-456 sparse data, 4-30 stage, 4-480 warning time, 1-34, 2-30 flood events Blayais, 4-465 Cruas, 4-466 Dresden, 4-466 Hinkley Point, 4-466 St. Lucie, 4-466 flood frequency, 2-30, 3-118, 3-398, 4-252, 4-330, 4-473 analysis, 1-13, 1-148, 1-150, 1-153, 1-172, 1-176, 1-180, 2-45, 2-81, 2-187, 2-190, 2-202, 2-227, 2-244, 3-17, 3-116, 3-119, 3-126, 3-129, 3-135, 3-137, 3-142, 3-163, 3-199, 3-234, 3-325, 4-18, 4-246, 4-265, 4-474 gridded, 3-92 methods, 1-13, 2-45, 3-17 benchmark, 4-33 curve, 3-112, 3-355, 4-176, 4-253 extrapolation, 2-218 extrapolation, 3-139 limits, 2-170 methods, 1-191 flood hazard, 1-10, 1-27, 1-30, 2-16, 2-42, 2-43, 2-182, 2-309, 3-12, 3-151, 3-371, 4-14, 4-327, 4-473 curves, 4-266 combining, 4-219 family of, 2-54, 3-108, 3-380, 4-71, 4-267, 4-475 dynamics, 3-385 flood hazard analysis, 3-354 case study, 4-191 riverine pilot, 2-50 flood hazard assessment, 1-29, 3-328, 3-336, 4-318

comprehensive, CFHA, 1-152 influencing parameters, 4-202 probabilistic analysis, 1-30 re-evaluated, 1-248 riverine, 2-307 scenarios, 4-458 static vs. dynamic, 3-368 Flood Hazard Re-Evaluations. See Near Term Task Force: Flooding Hazard Re-Evaluations flood mitigation, 4-20, 4-472 actions, 3-379 approaches, 4-449 fragility, 3-381 proceduralized response, 3-245 procedures, 4-473, 4-475 strategies, 2-254 flood protection, 1-255, 2-51, 2-248, 2-250, 2-291, 3-22, 3-25, 3-242, 4-21, 4-24, 4-33, 4-472 barrier fragility, 2-52, 2-410, 3-26, 3-395 criteria, 2-250 failure modes, 3-374 features, 2-250, 3-245, 3-262, 3-265, 4-27, 4-435 fragility, 3-377, 3-379 inspection, 2-250 maintenance, 2-254 oversight, 3-246 reliability, 1-37 survey, 2-257 testing methods, 2-250 training, 2-254 work control, 3-245 flood protection and mitigation, 1-11, 1-21, 2-21, 2-43, 2-180, 2-271, 2-415, 3-13, 3-16, 3-150, 3-250, 4-11, 4-14 training, 3-245 flood seals, 1-19, 1-44, 1-223, 1-265, 2-19, 2-47, 2-247, 2-251, 2-260, 2-265, 3-19, 3-235, 3-240, 4-20, 4-384, 4-392, 4-393, 4-402, 4-403, 4-426, 4-473 characeristic types and uses, 1-266, 2-262, 3-237, 4-386, 4-394, 4-397 condition, 4-387, 4-435 critical height, 4-435 failure mode, 4-387 fragility, 3-381 historic testing, 2-251 impact assessment, 4-387

performance, 1-19, 2-47, 2-261, 3-19, 3-235, 4-393 ranking process, 4-388 risk significance, 4-386 tests, 1-20, 1-265, 2-262, 3-236, 4-394 criteria development, 2-251 plan, 2-264, 3-238, 4-395 procedure, 1-265, 3-239, 4-396 results, 4-400, 4-401 series, 4-397 Focused Evaluations. See Fukushima Near Term Task Force: Focused Evaluations FPM. See flood protection and mitigation fragility, 1-11, 3-13, 4-14 analysis, 1-259 curve, 4-324 flood barrier. See flood protection: barrier fragility framework NARSIS, 4-327 simulation based dynamic flood anlaysis (SBDFA), 1-253, 1-256, 2-292 **TVA Probabilistic Flood Hazard** Assessment, 2-320, 2-404, 4-277 scenarios, 4-282 Fukushima Near Term Task Force, 1-9, 1-23, 1-27, 1-32, 2-17, 2-20, 3-263, 4-11, 4-386 Flooding Hazard Re-Evaluations, 1-23, 4-440, 4-471, 4-480 Fukushima Flooding Reports, 4-471 re-evaluated flooding hazard, 4-480 Focused Evaluations, 3-263, 4-471 Integrated Assessment, 2-21, 3-263, 4-386 Mitigating Strategies Assessments, 3-263, 4-440, 4-475 post Fukushima process, 4-472 Recommendation 2.1, 4-480 Recommendation 2.3, 4-435, 4-479 Gaussian, 2-67 Gaussian process metamodeling, 3-102, 4-59.4-61 local correction, 4-61 uncertainty, 4-61 GCM. See Global Climate Model, See Global Climate Model GEFS. See ensemble: Global Ensemble Forecasting System GEV. See distribution:generalized extreme value

GLO. See distribution:generalized logistic Global Climate Model, 1-128, 1-162, 2-53, 2-55, 2-63, 2-67, 2-71, 2-77, 2-96, 2-99, 2-403, 3-41, 3-47, 3-94, 3-100, 3-103, 4-99, 4-114, 4-163, 4-260, 4-360 downscaling, 2-55, 3-102 model forcing, 2-71 Global Precipitation Measurement, GPM, 4-100, 4-117 global regression model, 4-61 global sensitivity analysis, 4-198, 4-327 case studies, 4-202 simple case, 4-205 GNO. See distribution:generalized 'skew' normal goodness-of-fit, 2-102, 2-187, 2-194 tests, 1-71 GPA. See distribution: generalized Pareto GPD. See distribution:generalized Pareto GPM. See Gaussian process metamodeling Great Lakes, 3-31 water levels, 4-366 decreases, 4-368 lowered, 3-40 GSA. See global sensitivity analysis hazard analysis, 3-349, 4-450 assessment, 3-22 hydrologic, 3-136, 3-195, 4-115 identification, 2-82 probabilistic approach, 4-471 quantification, 2-315 hazard curves, 1-11, 1-51, 1-164, 2-43, 2-68, 2-84, 2-218, 3-13, 3-100, 3-104, 3-332, 4-14, 4-90, 4-474, 4-477 comparison, 4-281 full, 1-12, 2-43, 3-15, 4-15 full range, 2-30 integration, 4-60, 4-70 MCI, 2-70 MCLC, 2-69 weight and combine methods, 4-210 Hazard Information Digest External, 3-149, 3-399 Flood, 1-13, 1-223, 1-241, 2-45, 2-180, 2-181, 2-186, 2-413, 3-17, 3-149, 3-161, 4-18 flood beta, 2-183, 3-152 flood workshop, 1-252, 2-183, 3-152 Natural, 3-151 population, 2-183, 3-152

hazardous convective weather, 1-57, 1-60, 3-31, 3-36, 3-40, 4-368 NDSEV, 3-35 NDSEV increase, 4-361 severe weather, 4-30 monitoring, 3-245 HCW. See hazardous convective weather headcut. See erosion: headcut HEC, 3-195, 3-201 -FIA, 4-261 -HMS, 2-376, 3-202, 4-166, 4-263 MCMC optimization, 2-376 -LifeSim, 4-261 -MetVue, 2-377 models, 4-312 -RAS, 4-166, 4-207, 4-230, 4-244 -RAS 2D hydraulics, 2-377 -ResSim, 4-166, 4-258 -SSP, 4-262 -SSP, flood frequency curves, 3-334 -WAT, 2-378, 4-161, 4-165, 4-166, 4-256, 4-261, 4-263, 4-313, 4-316 FRA, 4-196 hydrologic sampler, 4-191 MCRAM runs, 2-378 HEC-RAS, 4-191, 4-236 historical data, 1-96, 3-117, 3-120, 3-122, 3-131, 4-30, 4-215, 4-269 flood information, 1-154 floods, 1-187 intervals, 3-131 observations, 1-55, 3-80 peak, 1-155, 3-123 perception thresholds, 3-131 records, 2-62, 3-21, 3-183 records extrapolation, 2-80 spatial patterns, 4-141 streamflow, 1-183 water levels, 2-50, 3-24, 3-113 homogeneous region, HR, 1-71, 1-77, 2-151, 2-155, 2-159, 2-167, 3-70, 3-75, 3-83 human factors, 3-388, 4-471 HRA, 2-30, 4-475 HRA/HF, 1-24 human actions, 2-19, 3-385, 4-446, 4-473 Human Error Probabilities, 2-280 human errors, 2-293 human performance, 2-273, 3-251 human reliability, 4-474 operator actions, 4-474

organizational behavior, 3-379, 3-382, 3-385, 4-473 organizational response, 4-473, 4-479 humidity, 1-53, 4-358 HURDAT, 1-207 hurricane, 1-57, 1-95, 2-51, 2-53, 2-77, 2-81, 2-89, 2-105, 2-407, 3-26, 3-37, 3-43, 3-111, 3-247, 3-393, 4-25, 4-34, 4-35, 4-73, 4-98, 4-113, 4-259, 4-326, 4-370, 4-380, 4-480 2017 season, 4-371 Andrew, 4-474 Category, 4-41, 4-98 Florence, 4-481 Frances, 1-101 Harvey, 3-180, 3-329, 3-361, 3-367, 3-391, 4-95, 4-114, 4-124, 4-160, 4-259 Ike, 4-56 Isaac, 3-53, 3-69 Katrina, 1-194, 2-53, 4-263 Maria, 4-211 Sandy, 4-259 hydraulic, 2-226, 2-266, 2-288, 2-307, 2-354, 2-400, 3-198, 3-199, 3-234, 3-315, 4-144, 4-170, 4-230, 4-254, 4-257, 4-262, 4-326 detailed channel, 1-11 models, 1-133, 1-158, 1-186, 2-311, 2-420, 3-195, 4-60, 4-70, 4-198, 4-326 dependent inputs, 4-326 hydraulic hazard analysis, 2-324 hydrologic loading, 4-232 models, 1-63, 1-133, 1-158, 2-311, 2-376, 4-123, 4-282, 4-331, 4-381 risk, 1-15, 2-46, 3-18, 4-329 routing, 2-387 runoff units (HRU's), 3-143 simplified model, 3-337 simulation, 4-279 hydrologic hazard, 2-378, 3-331, 4-211 analysis, 3-334, 4-115 analysis, HHA, 1-85, 2-207, 3-136, 4-114, 4-125 curve, 1-15, 1-170, 2-45, 2-204, 2-340, 3-17, 4-130, 4-219, 4-329 stage frequency curve, 4-213 Hydrologic Unit Code, HUC, 4-149 watershed searching, 4-150 hydrology, 2-151, 2-202, 2-226, 2-307, 2-338, 2-354, 2-369, 2-400, 2-411, 3-70,

3-135, 3-195, 3-304, 3-315, 3-325, 3-366, 3-387, 4-114, 4-122, 4-127, 4-144, 4-161, 4-170, 4-211, 4-229, 4-244, 4-276, 4-313, 4-381 initial condition, 1-90, 1-95, 2-104, 3-44 Integrated Assessments. See Fukushima Near Term Task Force: Integrated Assessment internal flooding, 3-25, 4-386 scenarios, 3-25 inundation mapping, 3-367, 3-368 dyanamic, 3-368 modeling, 4-176 period of. 3-261 river flood anlysis, 4-327 JPM, joint probability method, 1-35, 1-195, 1-199, 1-209, 2-34, 2-53, 2-56, 2-74, 2-77, 3-94, 3-99, 3-112, 4-25, 4-57, 4-64, 4-73, 4-77, 4-88, 4-228, 4-318 integral, 1-199, 2-56, 3-97, 4-60 parameter choice, 2-62 storm parameters, 1-197, 1-207, 2-57, 3-97, 3-100, 4-68, 4-76 surge response function, 4-78 JPM-OS, joint probability method, with optimal sampling, 1-194, 1-196, 2-53, 2-55, 2-73, 2-77, 3-94, 3-102, 4-81 hybrid methodlogy, 2-68 KAP. See distribution:Kappa kernel function, 2-56, 3-99, 4-68 Epanechnikov, EKF, 2-58, 2-65, 3-98 Gaussian, GKF, 1-200, 1-202, 2-58, 2-60, 3-98, 4-99 normal, 2-65 triangular, 2-65 uniform, UKF, 2-60, 2-65, 3-98 land use, 1-24, 2-420 urbanization, 2-98 land-atmosphere interactions, 1-57 levee breach. See breach, dam/levee likelihood, 3-78 functions, 1-166 LIP. See local intense precipitation L-moment ratio, 2-194, 3-77 diagram, 2-174 local intense precipitation, 1-6, 1-17, 1-22, 1-34, 1-54, 1-64, 1-76, 1-88, 1-100, 1-130, 1-133, 1-144, 1-223, 1-255, 2-34, 2-47, 2-50, 2-97, 2-101, 2-103, 2-168, 2-175,

2-287, 2-291, 2-297, 2-322, 2-326, 2-337, 2-341, 2-353, 2-370, 2-421, 3-19, 3-22, 3-42, 3-47, 3-198, 3-246, 3-314, 3-315, 4-19, 4-24, 4-264, 4-295, 4-311, 4-455 analysis, 4-480 framework, 1-17, 2-46, 2-104, 3-18 screening, 3-369 severe storm, 1-90, 3-46, 4-361 numerical simulation, 1-90, 1-95 logic tree, 2-56, 2-63, 2-85, 2-369, 3-94, 3-97, 3-107, 3-114, 4-57, 4-81, 4-86, 4-93 branch weights, 4-91 LP-III. See distribution:log Pearson Type III manual actions, 1-21, 1-31, 2-272, 2-415, 3-245, 3-250, 3-398, 4-449, 4-473 decomposing, 2-275 modeling time, 3-257 reasonable simulation timeline, 3-246 timeline example, 3-256 maximum likelihood, 1-156 Bayesian, 1-186 estimation, 1-70, 2-404 MCMC. See Monte Carlo:Markov Chain MCS. See mesoscale convective system MEC. See mesoscale storm with embedded convection mesoscale convective system, 1-18, 1-57, 1-59, 1-64, 1-91, 1-97, 1-100, 1-111, 1-123, 2-101, 2-104, 2-112, 2-150, 3-29, 3-31, 3-33, 3-42, 3-47, 3-49, 3-52, 3-67, 4-133, 4-355 intense rainfall increase, 4-361 precipitation increase, 3-40, 4-368 rainfall, 4-360 reduced speed, 4-361 simulations, 2-144 mesoscale storm with embedded convection, 2-381, 3-357, 4-128, 4-135, 4-142, 4-159, 4-161, 4-218 Meta-models, 4-61, 4-206 Meta-Gaussian Distribution, 4-59, 4-64, 4-69 example, 4-67 meteorological inputs, 4-132 model, 1-133, 1-158, 2-311 MGD. See Meta-models:Meta-Gaussian Distribution mid-latitude cyclone, 2-382, 4-120, 4-128, 4-133

Midwest, 4-357, 4-368 floods, 4-363 intense snowpack, 4-363 Region, 3-31 MLC. See mid-latitude cyclone model, 1-90 alternative conceptual, 4-470 averaging, 2-352 dependence, 3-310 improved, 1-12, 2-44, 3-16, 4-15 nested domain, 3-53 nested grids, 4-55 numerical modeling, 1-97, 4-327 nested domain, 1-101 parameter estimation. 2-313 parameters, 4-176 selection, 2-346 warm-up, 2-385 moisture maximization, 3-45 saturation deficit. 1-61 saturation specific humiity profile, 1-58 sources, 1-76 water vapor, 1-61, 4-347 Monte Carlo, 1-163, 1-185, 2-77, 2-187, 2-286, 2-411, 3-23, 3-79, 3-93, 3-94, 3-199, 4-57, 4-162, 4-175, 4-257, 4-330 analysis, 3-21, 3-111 Integration, 2-70, 3-103 Life-Cycle Simulation, 2-69, 3-103, 4-64 Markov Chain, 1-161, 1-171, 2-402 sampling, 4-201 simulation, 2-55, 2-74, 2-81, 2-85, 3-102, 3-111, 3-113, 3-328, 4-59 MSA. See Fukushima Near Term Task Force: Mitigating Strategies Assessments Multi-decadal Atlantic Meridional Mode (AMM), 4-370, 4-373, 4-376, 4-379 Atlantic Multi-Decadal Oscillation (AMO), 4-373 El Niño-Southern Oscillation (ENSO), 1-206, 4-370, 4-373, 4-376, 4-379 North Atlantic Oscillation (NAO), 4-370, 4-374, 4-376, 4-379 Pacific Decadal Oscillation (PDO), 4-354 persistence, 4-113, 4-354 multivariate Gaussian copula, 3-104, 4-59 MVGC. See multivariate Gaussian copula

NACCS. See North Atlantic Coast Comprehensive Study NAO. See Multi-decadal:North Atlantic Oscillation National Climate Assessment, 4th, 3-42, 4-335 NCA4. See National Climate Assessment, 4th NEB. See non-exceeedence bound NEUTRINO, 4-291, 4-297, 4-314, See also smoothed particle hydrodynamics, SPH NOAA Atlas 14, 1-72, 1-185, 2-158, 2-168, 2-171, 2-179, 2-181, 2-201, 3-87, 4-127, 4-144 future needs. 2-372 gridded, 1-73 tests, 2-373 non-exceedance bound, 4-229, 4-230, 4-236, 4-238 nonstatitionarity/nonstationary, 1-37, 1-155, 1-162, 1-177, 1-188, 1-191, 3-117, 3-133, 3-315, 4-264 change points, 3-125, 3-127 model, 2-373 processes, 1-12, 1-55, 2-44, 3-16, 4-15 trends, 3-125, 3-128 North Atlantic Coast Comprehensive Study, 1-196, 2-53, 3-102, 4-94, 4-99 numerical weather models, 1-18, 1-89, 1-95, 2-104, 3-44, 3-103, 4-55 regional, 2-104, 3-45 observations, 1-71 based, 3-81 data, 1-95 record, 3-121 satellite combination algorithms, 4-105, 4-108, 4-112 combinations, 4-104 mutli-satellite issues, 4-108 operating experience, 1-31, 4-447, 4-473 data sources, 4-465 operational event, 4-464 chronology review, 4-466 orographic precipitation. See precipitation, orographic paleoflood, 1-24, 1-154, 1-181, 2-87, 2-216, 2-217, 2-225, 2-369, 2-400, 2-407, 2-416, 3-21, 3-26, 3-116, 3-117, 3-136, 3-140, 3-163, 3-179, 3-181, 3-195, 3-207,

3-325, 3-393, 4-18, 4-208, 4-228, 4-244, 4-253, 4-259, 4-290 analytical framework, 4-233 analytical techniques, 4-242 benchmark, 4-252 case study, 4-234, 4-236 data, 1-181, 1-186, 2-51, 2-81, 2-206, 2-219, 3-113, 3-117, 3-120, 3-123, 3-141, 3-179, 3-333, 3-394, 4-30, 4-215, 4-221, 4-246, 4-269 database, 3-208, 3-213 deposits. See deposits event, 3-139 hydrology, 2-229, 3-164, 4-247 ice jams, 4-235 indicators, 3-181 interpretation, 3-394 reconnaissance, 2-235, 3-168, 4-233, 4-237 record length, 4-247 screening, 4-242 studies, 3-333 humid environment, 2-228, 3-163 suitability, 2-235, 3-167, 3-394 terrace, 4-236, 4-242 viability, 4-234 partial-duration series, 1-165, 2-201, 2-373 PCHA. See Probabilistic Coastal Hazard Assessment PDF. See probability density function PDO. See Multi-decadal:Pacific Decadal Oscillation PDS. See partial-duration series PFA. See precipitation frequency: analysis PFHA, 1-257, 2-79, 2-218, 3-307, 3-353, 4-10, 4-453, 4-477 case study, 2-380 combining hazards, 4-207 documentation, 4-460 framework, xxxviii, 1-12, 1-16, 1-148, 1-157, 1-163, 1-166, 1-175, 2-44, 2-46, 2-307, 2-311, 2-322, 2-338, 2-345, 2-353, 2-401, 3-16, 3-18, 3-304, 3-359, 3-398, 4-11, 4-15, 4-19, 4-455 aleatory, 1-163 peer review, 2-87 regional analysis, 2-342, 2-348 riverine, 1-16, 2-46, 2-308, 2-312, 2-413, 3-18 site-specific, 2-309 hierarchical approach, 4-458

high level requirements, 4-459 paleoflood based, 4-289 results, 4-459 river, 4-207 statistical model, 2-84 team, 4-458 PFSS historic water levels, 2-81, 3-111 pilot studies, 3-70, 3-386, 3-404, 4-11, 4-16, 4-22, 4-312, 4-440 pilot studies, 2-418 plant response, 1-255, 2-20, 2-289, 2-291, 3-261, 3-398, 4-20 model, 1-260, 3-377 proof of concept, 1-255 scenarios, 1-260 simulation, 1-22 state-based PRA, 1-260 total, 1-253, 2-304, 2-415 PMF, 1-150, 2-25, 2-80, 2-202, 2-205, 2-400, 3-21, 3-141, 3-149, 3-266, 3-355, 3-390, 4-230, 4-454, 4-474 PMP, 1-50, 1-56, 1-66, 1-69, 1-73, 2-25, 2-153, 2-168, 2-169, 2-179, 2-405, 3-69, 3-149, 3-391, 4-114, 4-117, 4-120, 4-158, 4-160, 4-383 State SSPMP Studies, 3-338 traditional manual approaches, 2-104 PRA, 1-11, 1-42, 1-256, 2-24, 2-28, 2-43, 2-79, 2-168, 2-179, 2-202, 2-216, 2-268, 2-287, 2-289, 2-337, 2-370, 2-401, 2-417, 2-421, 3-1, 3-13, 3-21, 3-25, 3-199, 3-259, 3-266, 3-315, 3-365, 3-368, 3-386, 3-390, 3-396, 3-405, 4-14, 4-264, 4-312, 4-323, 4-385, 4-391, 4-403, 4-429, 4-461, 4-462, 4-463, 4-469, 4-471, 4-474 bounding analysis, 4-468 dams, 1-24 dynamic, 1-22 external flood. See XFPRA initiating event frequency, 1-47, 2-79 inputs, 1-132 insights, 4-476 internal flooding, 3-262, 4-440 LOOP, 4-469, 4-474 peer review, 4-461 performance-based approach, 4-451 plant fragility curve, 4-476 quantitative insights, 4-464

recovery times, 4-469 risk information, 4-464 insights, 4-478 safety challenge indications, 4-465 Standard, 3-377 precipitation, 1-11, 1-53, 1-64, 1-160, 1-267, 2-88, 2-168, 2-179, 2-181, 2-201, 2-226, 2-260, 2-270, 2-288, 2-307, 2-353, 2-369, 2-381, 2-402, 3-15, 3-27, 3-31, 3-38, 3-40, 3-42, 3-52, 3-56, 3-67, 3-115, 3-134, 3-136, 3-150, 3-162, 3-198, 3-248, 4-11, 4-14, 4-56, 4-100, 4-113, 4-127, 4-144, 4-158, 4-210, 4-218, 4-228, 4-315, 4-326, 4-335, 4-353, 4-359, 4-380 classification, 2-105, 3-45 cool season, 3-307 distribution, 3-363, 4-114 duration, 2-155, 2-179, 3-74 field area ratio, 3-48 gridded, 2-161, 3-81 historical analysis, 1-19 increases, 3-40, 4-359, 4-364, 4-368 instrumentation, 4-102 modeling framework, 3-46 near-record spring, 3-37 numerical modeling, 1-17 patterns, 4-120, 4-140 point, 2-382, 2-417, 3-359, 4-18, 4-101, 4-146 processes, 1-90 quantile, 3-74 regional models, 4-117 seasonality, 1-72, 2-171, 2-382, 3-32 simulation, 1-89, 2-103, 3-48 warm season, 2-340, 3-33, 3-38 precipitation data, 3-156, 4-147 fields, 1-125 gage, 1-79, 2-156, 3-83, 4-117 geo0IR, 4-102 Liveneh, 3-308, 4-119, 4-143 microwave imagers, 4-102 observed, 1-96, 1-181, 2-154, 3-48, 3-140 regional, 1-181 satellite, 4-101, 4-104, 4-112 precipitation frequency, 1-19, 1-64, 1-185, 2-151, 2-154, 2-168, 2-181, 2-211, 2-270, 2-372, 3-70, 3-72, 3-81, 3-150, 3-198, 3-224, 4-119, 4-127, 4-132, 4-141, 4-144,

4-146, 4-158, 4-161, 4-218, 4-228, 4-282, 4-290, 4-312, 4-315 analysis, 1-66, 1-73, 1-175, 3-74, 4-128, 4-138 curve, 3-75 estimates, 4-144 exceedance, 2-95 large watershed, 3-359 regional analysis, 4-133 relationship, 1-67, 1-85, 1-87, 3-73, 4-129 precipitation, orographic linear model, 1-86 methodology, 1-66 regions, 1-17, 1-65, 2-153, 2-156, 2-167, 2-414, 3-72, 3-398, 4-18 pressure setup, 4-36, 4-37 Probabilistic Coastal Hazard Assessment, 3-328 Probabilistic Flood Hazard Assessment. See PFHA Probabilistic Risk Assessment, See PRA probabilistic safety assessments, 4-472, 4-474 probabilistic seismic hazard assessment, 1-30, 2-58, 3-94, 4-57, 4-59, 4-477 probabilistic storm surge hazard assessment, 2-53, 2-78, 4-81 probability density function, 1-57, 1-133, 1-152, 1-163, 1-164, 1-201, 2-79, 2-85, 3-113, 4-205, 4-207, 4-316 probable maximum flood. See PMF probable maximum precipitationrecipitation. See PMP PSHA. See probabilistic seismic hazard assessment PSSHA. See probabilistic storm surge hazard assessment rainfall. See precipitation/rainfall rainfall-runoff, 4-210 methods, 1-15, 2-46, 3-18 model, 1-11, 1-152, 1-157, 1-183, 2-211, 2-384, 2-386, 2-398, 3-15, 3-143, 4-14, 4-134, 4-217 Austrailian Rainfall and Runoff Model, 1-70, 1-73, 1-150, 1-185, 2-212 SEFM, 1-151, 2-213, 2-216, 3-23, 3-28, 3-149, 4-276, 4-316, 4-329 stochastic, 1-151 stochastic, HEC-WAT, 3-334 VIC, 4-119, 4-369

reanalysis, 2-56, 2-151, 4-114, 4-122, 4-125, 4-143, 4-160, 4-269 Climate Forecast System Reanalysis (CFSR), 1-95, 2-102, 2-113, 2-150, 3-47, 4-118 PRISM, 4-117, 4-163, 4-370 Stage IV, 1-96, 1-100, 2-113 record length effective, 3-126 equivalent independent, ERIL, 2-175 equivalent, ERL, 4-159, 4-221, 4-230 historical, 2-66 period of record, 2-53, 2-151, 2-373, 3-70, 3-83, 3-136, 4-113 regional growth curve, RGC, 1-77, 1-80, 1-84, 2-151, 2-155, 2-166, 3-75, 3-85, 3-89, 3-91 uncertainty, 1-82 regional L-moments method, 1-71, 1-73, 1-87, 1-185, 2-151, 2-154, 2-159, 2-161, 2-165, 2-167, 2-174, 2-179, 2-187, 2-201, 2-404, 3-70, 3-72, 3-77, 3-85, 3-93, 3-143, 3-387, 4-127, 4-332 regional precipitation frequency analysis, 2-151, 2-154, 2-167, 3-70, 3-71, 3-72, 3-75, 3-93, 3-144, 3-334, 4-218 reservoir, 4-170 operational simulation, 4-279 rule-based model, 4-281 system, 4-287 RFA. See regional precipitation frequency analysis RIDM. See Risk-Informed Decision-Making risk, 1-39, 1-50, 2-20, 2-154, 2-340, 2-380, 3-21, 3-138, 4-166 analysis, 1-51, 1-177, 2-203, 2-205, 2-401, 3-136, 3-149, 3-197, 3-217, 3-361, 4-175, 4-462 assessment, 4-92, 4-196, 4-233, 4-473 computational analysis, 3-378 qualitative information, 3-385 risk informed, 1-6, 1-10, 1-29, 1-40, 1-149, 2-42, 2-182, 2-392, 3-12, 3-151, 3-202, 4-10, 4-14, 4-129, 4-322, 4-451 approaches, 2-26 oversight, 2-28 use of paleoflood data, 2-51 Risk-Informed Decision-Making, 1-151, 2-24, 2-246, 2-288, 3-135, 3-198, 3-332, 3-337, 4-127, 4-210, 4-229, 4-279, 4-323, 4-330

screening, 4-124, 4-233, 4-268, 4-471, 4-473, 4-477 external flood hazard, 4-31 Farmer, 1967, 4-477 flood, 4-456 hazard, 2-82 methods, 4-328 non-conservative, 4-477 Probabilistic Flood Hazard Assessment, 3-369 SDP, 1-10, 1-41, 1-51, 1-248, 2-28, 2-42, 2-180, 3-12, 3-116, 3-149, 3-325 floods, 2-30 Seals, 1-44 sea level rise, 1-53, 2-89, 2-97, 4-86, 4-92, 4-355, 4-381 nuisance tidal floods, 2-93 projections, 2-100 SLR, 1-57 sea surface temperature, SST, 4-370, 4-373 anomalies, 4-374, 4-377, 4-378 SEFM. See rainfall-runoff:model:SEFM seiche, 1-6, 2-52, 2-409, 3-395, 4-318, 4-455 seismic, 1-6, 4-451 self-organizing maps, SOM, 1-77, 2-151, 2-157, 2-167, 3-70, 3-83, 3-93 Senior Seismic Hazard Assessment Committee. See SSHAC sensitivity, 4-76 analysis, 4-326 analysis ranking, 4-200 quantification, 4-476 to hazard, 4-476 SHAC-F, 1-16, 1-64, 1-130, 2-46, 2-353, 3-18, 3-314, 3-325, 3-388, 4-264, 4-290, 4-311 Alternative Models, 1-142, 4-266 coastal, 2-419, 3-403, 4-19 framework, 1-132, 1-133 highly site specific, 3-319 key roles, 2-360 Levels, 4-268, 4-269, 4-271 LIDAR data, 4-271 LIP, 1-138, 1-142, 4-19 LIP Project Structure Workflow, 3-318 participatory peer review, 4-266 project structure, 2-360 LIP, 2-363 riverine, 2-367, 3-323 redefined levels, 3-322, 3-324 riverine, 2-366, 4-19

site-specific, 3-324 Work Plan, 1-135 significance determination process. See SDP skew at-site, 4-214 regional, 4-214 SLOSH, Sea Lake and Overland Surges from Hurricanes, 4-38 smoothed particle hydrodynamics, SPH, 1-263, 3-25, 3-378, 4-291, 4-296, See also NEUTRINO validation, 4-306 snowmelt, 1-133, 2-340, 3-307, 4-217 energy balance, 2-376 extreme snowfall, 1-60 flood, 1-183 rain on snow, 2-97 site, 3-308 snow water equivalent, SWE, 3-306, 4-224, 4-332 snowpack increased, 3-37 VIC, snow algrorithm, 3-308 soil moisture, 3-40 reduction, 1-57 space for time, 1-77, 2-207 spillway. See erosion: spillway SRR, 1-196, 1-202, 2-57, 2-59, 3-96, 4-60, 4-70, 4-86 models, 2-58, 3-98, 3-99 rate models, 2-60 sensitivity, 4-88 variability, 2-59 SSCs, xxxviii, 1-152, 1-260, 1-265, 2-288, 2-307, 2-309, 2-353, 3-198, 3-262, 3-264, 4-264, 4-429, 4-435, 4-440, 4-445 flood significant components, FSC, 4-387 fragility, 3-371, 3-381, 4-32 safety, 4-472 SSHAC, 1-30, 1-64, 1-132, 2-85, 2-354, 3-317, 4-93, 4-229, 4-264, 4-274, 4-313 Project Workflow, 3-321 state-of-practice, 1-176, 4-61, 4-321, 4-444, 4-447 statistical approaches, 1-179, 4-320 copula-based methods, 4-320 extreme value analysis, 4-320 statistical models, 4-268, 4-269 streamflow based, 1-15, 2-46, 3-18 stochastic, 1-185, 1-257, 3-143 flood modeling, 4-129, 4-132 model, 3-100, 4-458

approach, 3-332 inputs, 4-119 storm parameters, 4-74 simulation, 3-103, 3-328, 4-279, 4-281, 4-320 storm generation, 4-140 storm template, 3-145 storm transposition, SST, 4-120 weather generation, 3-334 Stochastic Event-Based Rainfall-Runoff Model. See rainfall-runoff:model:SEFM storm local scale, 4-133 maximization, 4-120 parameters, 4-41 patterns, 3-144, 3-364, 4-120, 4-257, 4-276, 4-286, 4-332 precipitation templates, 2-383 seasonality, 4-134, 4-331 synoptic scale, 4-133 storm recurrence rate. See SRR storm surge, 1-6, 1-17, 1-35, 1-57, 1-192, 1-193, 2-34, 2-47, 2-53, 2-78, 2-87, 2-97, 2-259, 2-288, 2-322, 2-337, 2-369, 2-411, 3-19, 3-22, 3-24, 3-26, 3-29, 3-94, 3-109, 3-110, 3-112, 3-115, 3-198, 3-229, 3-328, 3-361, 3-364, 3-396, 4-25, 4-30, 4-34, 4-35, 4-57, 4-70, 4-73, 4-81, 4-93, 4-228, 4-259, 4-295, 4-311, 4-317, 4-355, 4-382, 4-451, 4-455 case study, 2-84 data partition, 4-70 deterministic, 2-331 wind-generated wave and runup, 2-333 hazard, 2-54, 2-55, 4-84 hurricane driven, 3-394 model, 1-194, 4-75 numerical surge simulation, 3-105 PCHA Studies, 2-379 probabilistic approaches, 2-50 Probabilistic Flood Hazard Assessment, 2-407, 3-393, 4-24 probabilistic model, 3-97, 4-60 P-Surge model, 4-53 tidal height, 3-111 total water level, 2-86 uncertainty, 3-398, 4-19 storm transposition, 2-81, 2-377, 3-21, 3-47, 3-54, 3-357, 4-133, 4-281 storm typing, 2-381, 3-334, 3-356, 4-119, 4-133, 4-138, 4-217, 4-282, 4-286

large winter frontal storms, MLC, 3-357 scaling and placement, 3-359 seperation, 3-359 summer thunderstorm complexes, MEC, 3-357 tropical storm remants TSR, 3-357, 4-134 stratified sampling, 4-282 stratiform leading, 1-93, 1-94 parallel, 1-93, 1-94 trailing, 1-93, 1-94 stratigraphy, 3-163, 3-183, 3-199, 3-200, 3-234, 4-18, 4-250 analysis. 2-227 record, 4-251 streamflow data, 3-157 gage regional data, 1-181 historical, 3-38 Structured Hazard Assessment Committee Process for Flooding. See SHAC-F structures, systems, and components. See SSCs synoptic storms, 1-91, 2-105, 3-45 synthetic datasets, 2-62, 4-269 storm, 2-67, 2-81, 2-386, 3-21, 3-96, 3-102, 4-60, 4-62, 4-70, 4-78, 4-279, 4-282 storm simulations sets, 2-73 storms, 2-57 systematic data gage record, 1-177, 2-206, 3-119, 3-123, 3-130, 3-183, 4-252 TC. See tropical cyclone TELEMAC. See 2D:model:TELEMAC temperature, 1-53 change, 2-91 high, 1-57 profiles, 4-122 trends, 4-357 **Tennessee River** Valley, 2-153, 2-156, 3-83, 3-182 Watershed, 4-246 TRMM, Tropical Rainfall Measuring Mission, 4-100, 4-111 tropical cyclone, 1-11, 1-17, 1-64, 1-67, 1-91, 1-100, 1-123, 1-194, 1-198, 1-204, 2-53, 2-55, 2-59, 2-71, 2-89, 2-95, 2-101, 2-105, 2-112, 3-15, 3-29, 3-42, 3-47, 3-53,

3-67, 3-99, 3-101, 3-193, 4-14, 4-35, 4-51, 4-57, 4-61, 4-68, 4-73, 4-98, 4-125, 4-138, 4-346, 4-355, 4-370, 4-380 parameters, 2-65 P-Surge, 4-49 variable cross track, 4-51 tropical storm remnant, 3-357 TSR, 2-382, 4-127 tsunami, 1-6, 2-52, 2-409, 2-420, 3-395, 4-318, 4-455 model, 1-25 uncertainty, 1-36, 1-72, 1-125, 1-148, 1-167, 1-178, 1-187, 1-197, 2-30, 2-53, 2-74, 2-78, 2-87, 2-152, 2-165, 2-177, 2-179, 2-187. 2-219. 2-270. 2-320. 2-338. 2-340. 2-377, 2-400, 2-403, 3-21, 3-29, 3-40, 3-67, 3-71, 3-90, 3-94, 3-105, 3-119, 3-126, 3-136, 3-138, 3-149, 3-163, 3-194, 3-202, 3-246, 3-304, 3-315, 3-326, 3-334, 3-389, 4-30, 4-34, 4-35, 4-57, 4-81, 4-88, 4-95, 4-114, 4-163, 4-196, 4-197, 4-207, 4-228, 4-244, 4-254, 4-256, 4-264, 4-275, 4-282, 4-291, 4-313, 4-355, 4-381, 4-426, 4-450, 4-462, 4-477 analytical, 4-242 Bayesian, 1-86 bounds, 1-89 discretized, 4-64 distribution choice, 2-187, 2-193, 2-197, 3-70 full, 1-15, 2-45, 3-17 hazard curve evaluation, 2-317 hydrologic, 2-99, 3-338, 4-233 integration results, 2-76 joint probability analysist, 2-47, 3-19 knowledge, 2-356, 3-317, 4-175, 4-233 PRA, 3-373 reduced, 2-219, 3-357 SLR projections, 2-100 sources, 1-42 SRR, 2-60 storm surge, 1-17, 1-193, 2-47, 2-54, 3-19, 3-95, 4-58 temporal, 1-257 tolerance, 4-215 uncertainty analysis, 2-87, 4-326, 4-476 UA, 4-198 uncertainty characterization, 1-15, 2-46, 2-74, 2-81, 2-341, 3-18, 3-105, 4-233

uncertainty propagation, 1-83, 1-87, 1-193, 2-54, 2-58, 2-73, 2-398, 3-15, 3-95, 3-102, 3-106, 4-14, 4-58, 4-60, 4-200 uncertainty quantification, 1-161, 1-193, 1-200, 2-54, 2-189, 2-206, 2-420, 3-95, 4-30, 4-58, 4-60, 4-71, 4-206, 4-215, 4-298 input parameter, 4-201 river flood models, 3-404 sources, 4-205, 4-327 uncertainty, aleatory, 1-12, 1-42, 2-43, 2-57, 2-192, 2-313, 3-15, 3-96, 3-106, 4-15, 4-60, 4-79, 4-267, 4-268, 4-269, 4-271 natural variability, 4-86, 4-175 variability, 1-194, 2-54, 4-458 uncertainty, epistemic, 1-12, 1-42, 1-163, 1-194, 1-197, 1-202, 2-43, 2-54, 2-57, 2-62, 2-193, 2-313, 3-15, 3-93, 3-96, 3-98, 3-106, 4-15, 4-57, 4-71, 4-79, 4-81, 4-86, 4-92, 4-267, 4-458, 4-475 knowledge, 4-86 SRR models, 4-68 validation, 1-90, 1-95, 1-125, 2-312, 3-48, 4-62, 4-76, 4-293, 4-298 warming, 1-60, 4-337, 4-368 increased rates, 4-357 increased saturation water vapor, 4-346 surface, 3-34 warning, 2-259, 3-362, 4-35, 4-314, 4-479 time, 1-34, 1-153, 3-261, 3-371, 4-450 triggers and cues, 3-382, 4-473, 4-479 watershed, 1-157, 3-56 model, 1-158 Watershed Level Risk Analysis, 4-166 wave, 4-295 impacts, 4-299 physical modeling, 4-300 setup, 4-36 wind, 1-53 setup, 4-36 stress formulation, 4-76 tornado frequency increasing, 2-92 locations, 2-92 warning, 2-259 waves, 1-11 WRF, Weather Research and Forecasting model, 1-18, 1-85, 1-90, 1-95, 1-97, 1-185, 2-102, 2-114, 3-28, 3-42, 3-47, 3-52, 3-69, 4-160 parameterization, 1-123, 2-114, 3-47

XFEL. See external flood equipment list XFOAL. See external flood operator actions list XFPRA, 3-259, 3-370, 3-372, 3-377, 3-379, 3-384, 3-402, 4-429, 4-441, 4-475, 4-479 capability categories, 4-443 documentation, 4-438 flood event oriented review, 4-467 flood progression, 4-433 fragility, 4-30, 4-444, 4-445 guidance development, 4-27 hazard analysis, 4-444, 4-445 HRA, 3-265, 3-374 initial plant state, 3-379, 3-382 initiating event, 4-446 key flood parameters, 4-433 multiple end states, 3-382 operating experience, 3-371 period of inundation, 4-433 period of recession, 4-433 physical margin assessment, 4-435 pilots, 3-371 plant response, 3-373, 4-444 preferred equipment position, 3-264 propagation pathways, 4-433 requirements, 4-443 scenarios, 3-265, 3-373, 3-385, 4-433, 4-446. 4-464 screening, 4-445 sources, 4-433 uncertainty, 3-385 vulnerabilities, 3-265, 4-473 walkdown, 2-51, 3-26, 3-260, 3-393, 3-395, 4-26, 4-437, 4-440, 4-445, 4-475 walkdown guidance, 2-408, 3-259, 4-440 warning time, 4-433

APPENDIX B: INDEX OF CONTRIBUTORS

This index includes authors, co-authors, panelists, poster authors and self-identified participants from the audience who spoke in question and answer or panel discussions.

Adams, Lea, 4-162 Ahn, Hosung, 5-490 Aird, Thomas, 2-38, 2-407, 3-11, 3-195, 3-380, 4-12, 4-378, 4-419, 5-490 Al Kaibaf, Azin, 4-312 Allen, Blake, 4-323 Anderson, Victoria, 3-354, 3-370, 3-374 Andre, M.A., 4-287 Archfield, Stacey A., 4-206 Asquith, William, 2-184 Bacchi, Vito, 4-195, 4-320 Baecher, Gregory, 3-197, 3-213, 4-315 Bardet, Philippe M., 4-287, 4-306, 4-309 Barker, Bruce, 4-323 Bellini, Joe, 2-30 Bender, Chris, 4-91, 4-92, 4-94, 4-97 Bensi, Michelle, 1-24, 4-312, 4-435, 4-464, 4-465, 4-466, 4-469, 4-471, 4-473, 5-490 Bertrand, Nathalie, 4-195, 4-320 Bittner, Alvah, 1-220, 2-267, 3-240 Blackaby, Emily, 3-5, 3-195, 3-209 Bowles, David, 2-396, 3-40 Branch, Kristi, 1-220, 2-267, 3-240 Breithaupt, Steve, 3-346, 5-490 Bryce, Robert, 1-129, 2-349 Byrd, Aaron, 1-166 Caldwell, Jason, 4-112, 4-323 Campbell, Andrew, 2-12, 4-375, 4-422, 4-455, 4-470, 4-473, 5-490 Carney, Shaun, 3-346, 4-272, 4-306, 4-307, 4-308. 4-310 Carr, Meredith, 2-38, 2-407, 3-9, 3-11, 3-380, 4-9, 4-12, 4-162, 4-252, 4-311, 4-456, 4-472, 4-474, 5-490 Charkas, Hasan, 5-490 Cheok, Michael, 5-490 Cohn, Timothy, 1-174, 4-250 Coles, Garill, 1-220, 2-267, 3-240 Cook, Christopher, 1-24, 3-351, 3-374, 5-490 Coppersmith, Kevin, 1-129, 2-349, 3-304, 4-261 Correia, Richard, 1-5, 5-490

Craven, Owen, 3-5, 3-195, 3-209 Cummings, William (Mark), 2-256, 3-227, 4-386, 4-419, 4-420, 4-421, 4-422 Dalton, Angela, 1-220, 2-267, 3-240 Daoued, A. Ben, 4-315 Davis, Lisa, 3-5, 3-179, 3-195, 3-209 DeNeale, Scott, 3-197, 3-198, 3-213, 3-219, 4-111, 4-142, 4-312, 4-315, 4-320 Denis, Suzanne, 4-464, 4-467, 4-468, 4-469, 4-472, 4-473 Dib, Alain, 3-42 Dinh, N., 4-287 Dong, John, 4-323 DuLuc, Claire-Marie, 2-391, 4-195, 4-252, 4-253 Dunn, Christopher, 2-370, 2-398, 4-162 England, John, 2-370, 2-396, 2-400, 2-401, 3-68, 3-319, 3-347, 3-348, 3-349, 3-372, 3-373, 4-112, 4-156, 4-157, 4-159, 4-160, 4-161, 4-206, 4-252, 4-253, 4-254, 4-255, 4-256, 4-258, 4-259, 4-260, 4-307, 4-311, 4-363 Fearon, Kenneth, 3-322, 3-347, 3-372 Ferrante, Fernando, 3-315, 3-351, 3-370, 3-372 Fuhrmann, Mark, 2-38, 2-407, 3-11, 3-163, 3-375, 3-380, 4-12, 4-162, 4-252, 5-490 Furstenau, Raymond, 4-1, 4-9, 5-490 Gage, Matthew, 3-209 Gaudron, Jeremy, 4-464, 4-465, 4-467, 4-472 Gifford, Ian, 4-456, 4-464, 4-467 Godaire, Jeanne, 3-195, 3-205 Gonzalez, Victor M., 1-190, 2-50, 3-94, 3-198, 3-223, 3-316, 3-347, 3-348, 3-349, 3-350, 4-56, 4-91, 4-95, 4-97 Gupta, A., 4-287 Hall, Brian, 4-227 Hamburger, Kenneth, 5-490 Hamdi. Y, 4-315 Han, Kun-Yeun, 4-328

Harden, Tessa, 2-224, 3-163, 3-194, 3-199, 3-226, 4-242, 4-243, 4-252, 4-253, 4-255, 4-256, 4-258 Hartford, Des, 4-470 Hockaday, William, 3-5, 3-195, 3-209 Holman, Katie, 1-63, 2-148, 3-70 Huffman, George J., 4-98, 4-156, 4-158, 4-160. 4-161 Ishida, Kei, 1-86, 2-98 Jasim-Hanif, Sharon, 3-335, 3-348 Jawdy, Curt, 2-375, 2-396, 2-400, 4-272 Kanney, Joseph, 1-7, 2-38, 2-266, 2-367, 2-407, 3-11, 3-94, 3-193, 3-316, 3-348, 3-349. 3-369. 3-380. 4-12. 4-33. 4-91. 4-242, 4-256, 4-306, 4-307, 4-309, 4-310, 4-329, 4-363, 4-374, 4-421, 4-423, 4-455, 4-456, 4-464, 4-465, 4-473, 5-490 Kao, Shih-Chieh, 3-197, 3-198, 3-213, 3-219, 4-111, 4-142, 4-156, 4-157, 4-160, 4-312, 4-320 Kappel, Bill, 3-41, 3-69 Kavvas, M. Levent, 1-86, 2-98, 3-42, 3-69 Keeney, David, 1-63, 2-148, 3-70 Keith, Mackenzie, 3-163, 4-243 Kelson, Keith, 3-192, 4-208, 4-227, 4-252, 4-253, 4-255, 4-256, 4-257, 4-259 Kiang, Julie, 2-184, 3-116 Kim, Beomjin, 4-328 Kim, Minkyu, 4-328 Klinger, Ralph, 3-195, 3-205 Kohn, Nancy, 1-220 Kolars, Kelsey, 3-116 Kovach, Robin, 4-364 Kunkel, Kenneth, 4-329, 4-376, 4-378 Kvarfordt, Kellie, 1-238, 2-177, 3-149 Lehman, Will, 4-162, 4-252, 4-253, 4-254, 4-255, 4-257, 4-258, 4-260, 4-306, 4-307, 4-308, 4-309, 4-311 Leone, David, 4-80 Leung, Ruby, 1-50, 2-85, 3-29, 3-115, 4-349, 4-363, 4-374, 4-375 Lim, Young-Kwon, 4-364, 4-374 Lin, L., 4-287 Littlejohn, Jennene, 5-490 Lombardi, Rachel, 3-209 Ma, Zhegang, 1-250, 2-284, 3-199, 3-223, 3-360 Mahoney, Kelly, 3-68, 3-69 McCann, Marty, 3-40, 3-388 Melby, Jeffrey, 1-190, 2-50 Meyer, Philip, 1-129, 2-303, 4-261

Miller, Andrew, 4-423, 4-464, 4-467, 4-468, 4-469, 4-471, 4-472, 4-474 Miller, Gabriel, 3-339, 3-345, 3-346 Mitman, Jeffrey, 1-36 Mohammadi, Somaveh, 4-312 Molod, Andrea, 4-364 Montanari, N, 4-287 Mouhous-Voyneau, N., 4-315 Mure-Ravaud, Mathieu, 1-86, 2-98, 3-42 Muto, Matthew, 4-323 Nadal-Caraballo, Norberto, 1-190, 2-50, 2-370, 2-399, 3-94, 3-198, 3-223, 3-316, 4-56, 4-91, 4-94, 4-95, 4-96, 4-97 Nakoski, John, 4-1, 4-28 Neff. Keil. 2-199. 3-135 Nicholson, Thomas, 3-347, 3-349, 3-369, 4-261, 4-306, 5-490 Novembre, Nicole, 4-323 O'Connor, Jim, 2-224, 3-163, 4-242, 4-243 Ott, William, 1-5, 5-490 Pawson, Steven, 4-364 Pearce, Justin, 4-227 Perica, Sanja, 2-367, 2-399, 2-400 Pheulpin, Lucie, 4-195, 4-320 Philip, Jacob, 1-261, 2-38, 2-407, 3-11, 3-380, 4-12, 4-419, 4-421, 4-422, 5-490 Pimentel, Frances, 3-354 Prasad, Rajiv, 1-50, 1-129, 1-147, 1-220, 2-85, 2-303, 2-349, 2-365, 3-29, 3-192, 3-193, 3-240, 3-304, 3-315, 4-261, 4-306, 4-307, 4-349, 4-363 Prasad, Rajiv, 2-267 Prescott, Steven, 2-284, 3-194, 3-199, 3-223, 4-287 Quinlan, Kevin, 4-156, 4-162, 4-374, 4-377, 5-490 Ramos-Santiago, Efrain, 3-198, 3-223 Randelovic, Marko, 4-23, 4-72, 4-384, 4-386, 4-423, 5-490 Randelovic, Marko, 4-378 Rebour, Vincent, 2-391, 2-399, 4-195 Reisi-Fard, Mehdi, 2-22, 3-227, 5-490 Ryan. E., 4-287 Ryberg, Karen, 3-116, 3-192, 3-194 Salisbury, Michael, 4-72, 4-91, 4-96 Salley, MarkHenry, 5-490 Sampath, Ramprasad, 2-284, 3-199, 3-223, 4-287 Schaefer, Mel, 4-114, 4-117, 4-125, 4-156, 4-158, 4-159, 4-160, 4-161, 4-286

Schneider, Ray, 2-30, 3-350, 3-362, 3-371, 4-374, 4-375, 4-377, 4-378, 4-384, 4-385, 4-386, 4-419, 4-446, 4-464, 4-466, 4-469, 4-471, 4-472 Schubert, Sigfried, 4-364 Sergent, P., 4-315 Shaun Carney, 4-310 Siu, Nathan, 3-257, 3-367, 3-369, 3-370, 3-372, 4-456 Skahill, Brian, 1-166, 2-334, 2-396, 2-397, 2-399, 2-400, 3-195, 3-200, 3-295, 4-206 Smith, Brennan, 3-197, 3-213 Smith, Curtis, 1-238, 1-250, 2-177, 2-284, 2-387, 2-397, 2-398, 3-149, 3-199, 3-223 Stapleton, Daniel, 4-80 Stewart, Kevin, 4-315 Stewart, Lance, 3-5, 3-195, 3-209 Stinchcomb, Gary, 3-5, 3-179, 3-195, 3-209 Taflanidis, Alexandros, 4-56 Taylor, Arthur, 4-33, 4-91, 4-93, 4-95, 4-96, 4-97 Taylor, Scott, 2-267, 3-240 Thaggard, Mark, 5-490 SUMMARY AND CONCLUSIONS

Therrell, Matthew, 3-209 Tiruneh, Nebiyu, 3-116, 5-490 Vail, Lance, 1-50, 1-129, 2-85 Verdin, Andrew, 2-148, 3-70 Vuyovich, Carrie, 3-295 Wahl, Tony, 1-206, 3-258, 4-398, 4-419 Wang, Bin, 4-80, 4-91, 4-94, 4-96, 4-97 Wang, Zeechung (Gary), 4-456 Ward, Katie, 4-323 Watson, David, 3-197, 3-213, 4-111, 4-320 Weber, Mike, 2-1, 2-7, 3-1, 3-9, 5-490 Weglian, John, 2-46, 2-75, 2-165, 2-213, 2-243, 2-318, 2-402, 3-20, 3-109, 3-191, 3-192, 3-193, 3-234, 3-250, 3-295, 3-357, 3-369, 3-370, 3-373, 3-374, 3-375, 5-490 Wille, Kurt, 3-195, 3-205 Wright, Joseph, 1-174, 2-199, 3-135, 3-345, 3-346, 3-347, 3-372, 3-373 Yegorova, Elena, 2-38, 2-407, 3-11, 3-29, 3-380, 4-12, 4-98, 4-156, 5-490 Ziebell, David, 2-243, 3-234

APPENDIX C: INDEX OF PARTICIPATING AGENCIES AND ORGANIZATIONS

AECOM, 4-485, 4-486 Agricultural Research Service - USDA, xxxiv ARS, xxxi, xxxiv Alden Research Laboratory, 3-393, 4-480 Amec Foster Wheeler, 2-419, 3-392 American Polywater Corporation, 4-479, 4-484 Appendix R Solutions, Inc., 3-391 Applied Weather Associates, 3-41, 3-345, 3-394, 4-481, 4-482 Aterra Solutions, 2-3, 2-30, 2-419, 2-422, 3-391, 4-478, 4-483 Atkins, 2-420, 3-392, 4-2, 4-3, 4-72, 4-91, 4-479, 4-485 Battelle, Columbus, Ohio, 1-220, 2-5, 2-267, 3-6, 3-240, 3-395, 4-482 BCO, 1-4, 1-220 Baylor University, 3-5, 3-195, 3-209 BC Hydro, 4-481 Bechtel Corporation, 3-396, 3-397, 4-478, 4-482, 4-483, 4-485, 4-486 Bittner and Associates, 2-5, 2-267, 2-419, 3-6, 3-240 B&A, xii, 1-4, 1-220 Booz Allen Hamilton, 4-481 Brava Engineering, Inc., 4-6, 4-323 Canadian Nuclear Safety Commission, xiii, 3-394, 4-482 Center for Nuclear Waste Regulatory Analyses SwRI. 3-392. 3-398 Centroid PIC, 2-5, 2-284, 3-5, 3-199, 3-223, 4-5, 4-287 Cerema, 4-6 Coastal and Hydraulics Laboratory, xiii, 2-3, 2-6. 2-50. 2-334. 2-421. 2-423. 2-424. 3-4, 3-5, 3-94, 3-195, 3-198, 3-223, 3-393, 3-395, 3-397, 4-2, 4-3, 4-4, 4-56, 4-91, 4-206 Coppersmith Consulting, Inc, xii, 2-6, 2-349, 2-420, 3-6, 3-304, 3-392, 4-5, 4-261 CCI, xii, 1-3, 1-63, 1-129 Curtiss-Wright, 4-479 Defense Nuclear Facilities Safety Board, 2-420 DNFSB. 4-485 **DEHC** Ingenieros Consultores, 4-483 Department of Defense, 2-302

Department of Energy, xv, 2-6, 2-387, 3-7, 3-335, 3-394, 3-395, 4-483 DOE, x, xv, xvii, xxii, xxvi, 2-397, 2-398, 3-348, 4-306, 4-309, 4-454, 4-481 Department of Health and Human Services, 3-392 Department of Homeland Security, 3-394, 3-396 Dewberry, 2-424, 3-397, 4-480, 4-485, 4-486 Dominion Energy, 4-486 Duke Energy, 2-422, 2-424, 3-395, 3-398, 4-487 Electric Power Research Institute, iii, xvi, 2-1, 2-425, 3-393, 4-1, 4-479 EPRI, iii, xvi, xxi, xxxii, xxxvii, 2-1, 2-3, 2-4, 2-5, 2-6, 2-37, 2-46, 2-75, 2-165, 2-213, 2-223, 2-243, 2-318, 2-333, 2-402, 2-407, 2-421, 3-1, 3-3, 3-4, 3-6, 3-7, 3-20, 3-27, 3-28, 3-109, 3-115, 3-191, 3-193, 3-234, 3-238, 3-250, 3-257, 3-295, 3-315, 3-351, 3-357, 3-369, 3-370, 3-372, 3-374, 3-375, 3-392, 3-398, 4-2, 4-7, 4-8, 4-23, 4-72, 4-378, 4-379, 4-384, 4-423, 4-462, 4-484, 5-490 Électricité de France, xvi, xxxiii, 2-262, 3-232 EDF, xvi, 3-232, 3-233, 4-8, 4-226, 4-384, 4-385, 4-434, 4-464, 4-465, 4-477, 4-481 Enercon Services, Inc., 2-422, 4-480 Engineer Research and Development Center. xvi. 2-3. 2-6. 2-50. 2-334. 2-421. 2-423, 2-424, 3-5, 3-6, 3-7, 3-94, 3-195, 3-198, 3-200, 3-223, 3-295, 3-316, 3-393, 4-56 ERDC, xvi, 3-94, 4-56, 4-478, 4-480, 4-483. 4-484 Environment Canada and Climate Change, 4-483 Environmental Protection Agency, xvi, xxxii EPA, xvi, *4-260* Environmentalists Incorporated, 2-422, 2-424 Exelon, 4-477 Federal Emergency Management Agency, xvii. 2-50 FEMA, xvii, xxii, 2-50, 2-399, 3-349, 3-396, 4-91, 4-259, 4-260 Federal Energy Regulatory Commission, xvii, 2-420, 2-421, 2-422, 3-7, 3-322, 3-393

FERC, xvii, 2-424, 3-347, 3-393, 3-395, 4-122, 4-480, 4-483 Finland Radiation and Nuclear Safety Authority, xxxii STUK, xxxii Fire Risk Management, xviii, 2-5, 2-256, 2-420, 3-6, 3-227, 3-392 FRM, xviii First Energy Solutions, 4-478 Fisher Engineering, Inc., 4-7, 4-386, 4-419, 4-477, 4-479 Framatome, Inc., 4-485 French Nuclear Safety Authority, xii, 4-482 George Mason University, 4-480 George Washington University, 4-5, 4-287, 4-306, 4-477 Global Modeling and Assimilation Office, xix, 4-7, 4-364, 4-482 Global Research for Safety, xix GRS, xix, 4-29, 4-486 Goddard Space Flight Center, xix, 4-7, 4-364, 4-481, 4-482 Earth Sciences Division, 4-7, 4-364 GSFC, xix, 4-3, 4-7, 4-98, 4-156, 4-374 GZA GeoEnvironmental Inc., xix, 2-422, 2-423, 2-424, 3-394, 3-395, 3-398, 4-3, 4-80, 4-91, 4-92, 4-482, 4-486 HDR, 3-393 Hydrologic Engineering Center, xv, xx, 2-399, 2-420, 3-5, 3-195, 3-200, 4-4, 4-252 HEC, xviii, xx, 4-4, 4-5, 4-162, 4-208, 4-306, 4-482 HydroMetriks, 3-393 I&C Engineering Associates, 4-477 Idaho National Laboratory, xxi, 1-220, 2-4, 2-5, 2-6, 2-177, 2-284, 2-387, 2-422, 2-424, 3-4, 3-5, 3-7, 3-149, 3-199, 3-223, 3-360, 3-394, 3-395, 3-396, 3-397, 4-5, 4-287, 4-482, 4-484 INL, xxi, 1-4, 1-220, 1-238, 1-250, 2-177, 2-178, 2-284, 2-397, 2-398, 3-149, 3-150, 3-193, 3-198, 3-315, 4-384 Idaho State University, 4-5, 4-287 IIHR-Hydroscience & Engineering, 4-486 Institut de Radioprotection et de Sûreté Nucléaire, xxii, 2-6, 2-391, 2-420, 4-6, 4-315, 4-320 IRSN, xxii, xxviii, 2-6, 2-391, 2-397, 2-399, 2-420, 2-423, 4-4, 4-195, 4-252, 4-479, 4-484

Institute for Water Resources - USACE, xx, xxii, 4-4, 4-162 IWR, xxii, 4-4, 4-5, 4-252, 4-306, 4-482 Instituto de Ingeniería, UNAM, 4-479, 4-482 INTERA Inc., 4-479, 4-481 International Atomic Energy Agency, xxi IAEA, xxi Jensen Hughes, 2-422, 3-395, 4-8, 4-423, 4-464, 4-483 Korea Atomic Energy Research Institute, xxii, 3-392, 3-394, 4-6, 4-328, 4-482 KAERI, xxii Korean Institute of Nuclear Safety, 4-481 Kyungpook National University, 4-6, 4-328, 4-481. 4-482 Lawrence Berkeley National Laboratory, 3-391 Lynker Technologies, 4-487 Meteorological Development Lab, xxiv, 4-33 MDL, xxiv, 4-33, 4-480, 4-486 MetStat, Inc., xxxi, 2-419, 2-421, 2-423, 3-391, 3-395, 3-396, 4-6, 4-323, 4-477, 4-484, 4-487 MGS Engineering Consultants, 2-401, 2-424, 4-3, 4-6, 4-125, 4-156, 4-323, 4-477, 4-485 Michael Baker International, 2-424, 4-486 Murray State University, 3-4, 3-5, 3-179, 3-195, 3-196, 3-209, 3-397 National Aeronautics and Space Administration, xxv NASA, xviii, xix, xxv, 4-3, 4-7, 4-98, 4-156, 4-374, 4-481, 4-482 National Environmental Satellite, Data, and Information Service NESDIS, xxvi, 4-485 National Geospatial-Intelligence Agency, 3-394, 3-396 NGA, 3-392, 3-396 National Oceanic and Atmospheric Administration, xxvi, 2-6, 2-165, 2-367, 4-142 NOAA, xiv, xvi, xviii, xx, xxi, xxv, xxvi, xxvii, xxix, 2-165, 2-176, 2-178, 2-198, 2-399, 2-400, 2-401, 2-421, 2-423, 3-150, 3-348, 3-395, 3-396, 4-125, 4-142, 4-158, 4-311, 4-376, 4-480, 4-481, 4-483, 4-485, 4-486 National Weather Service, xiv, xv, xvii, xxvi, 2-6, 2-99, 2-367, 3-42, 3-239, 4-2, 4-3,

4-33, 4-91, 4-92, 4-472

NWS, xiii, xx, xxiv, xxv, xxvi, xxvii, xxxi, 2-99, 2-165, 2-256, 2-399, 2-400, 2-421, 2-423, 3-396, 4-2, 4-33, 4-34, 4-480, 4-481, 4-486 Natural Resources Conservation Service NRCS, xxvi, xxviii, xxxv, 3-393, 3-394 Naval Postgraduate School, 4-480 NIST, 3-395 North Carolina State University, 4-5, 4-7, 4-287, 4-329, 4-482 Nuclear Energy Agency, xxv, 4-1, 4-2, 4-28 NEA, xxv Nuclear Energy Institute, xxvi, 3-7 NEI, xxvi, 2-333, 3-354, 3-369, 3-370, 3-374, 3-391, 3-396, 4-464, 4-473, 4-484 NuScale Power, 4-487 Nuvia USA, 3-391 Oak Ridge National Laboratory, xxvii, 2-424, 3-5, 3-198, 3-219, 3-392, 3-394, 3-397, 3-398, 4-6, 4-312, 4-315, 4-320, 4-479, 4-482 ORNL, xxvii, 3-5, 3-197, 3-213, 4-3, 4-111, 4-142, 4-156, 4-160 Oklo Inc., 4-484 Oregon Water Science Center - USGS, 2-224, 2-421, 3-5, 3-199, 3-226 Pacific Northwest National Laboratory, xxviii, 2-4, 2-5, 2-6, 2-85, 2-267, 2-303, 2-349, 2-419, 2-420, 2-422, 2-423, 3-3, 3-6, 3-29, 3-240, 3-304, 3-395, 3-396, 4-5, 4-7, 4-261, 4-306, 4-349, 4-374, 4-478, 4-482, 4-484 PNNL, xxviii, 1-3, 1-4, 1-50, 1-63, 1-129, 1-147, 1-220, 3-192, 3-193, 3-240, 4-307 Parsons, 4-480, 4-485 Penn State University, 4-483 PG&E, 4-484 PRISM Climate Group at Oregon State University, xxviii RAC Engineers and Economists, LLC, 3-391 **River Engineering & Urban Drainage** Research Centre, 4-482 RTI International, 3-346, 3-391, 3-392, 4-5, 4-272, 4-306, 4-478 Sargent & Lundy, 2-423, 4-485 Schnabel Engineering, 4-480 Science Systems and Applications, Inc., 4-7, 4-364 Secretariat of Nuclear Regulation Authority, 4-481

SEPI, Inc., 4-487

Sorbonne University—Université de

Technologie de Compiègne, 4-6, 4-315

Southern California Edison, 4-6, 4-323 Southern Nuclear, 3-397, 4-485

Southwest Research Institute, 2-420, 2-425, 3-398, 4-479

Taylor Engineering, 2-419, 3-391, 4-3, 4-91, 4-478

Technical Services Center - USBR, 2-4, 2-148, 2-199, 2-423, 2-424, 2-425, 3-3, 3-4, 3-5, 3-70, 3-135, 3-195, 3-395

Tennessee Valley Authority, xxxiii, 2-6, 2-375, 2-419, 2-421, 2-422, 3-339, 3-391, 3-395, 3-397, 4-5, *4*-272, 4-478

TVA, xxxiii, 2-223, 2-316, 2-396, 2-400, 2-401, 3-191, 3-345, 3-346, 3-397, 4-5, 4-121, 4-125, 4-142, 4-156, 4-157, 4-159, 4-251, 4-252, 4-272, 4-286, 4-307, 4-308, 4-310

U.S. Army Corps of Engineers, xiii, xvi, xxxiv, 1-147, 2-3, 2-6, 2-420, 2-421, 2-422, 2-423, 2-424, 3-5, 3-6, 3-7, 3-195, 3-198, 3-200, 3-223, 3-295, 3-316, 3-319, 3-393, 4-2, 4-56, 4-113, 4-307, 4-482, 4-483, 4-484

COE, xiii, xxxiv

Corps, xiii, xxxiv, 2-50, 2-334, 2-370, 3-347, 3-348, 3-349, 3-372, 3-373, 4-91, 4-156, 4-159, 4-160, 4-259, 4-260, 4-307, 4-309, 4-311, 4-470, 4-482, 4-483, 4-484

Dam Safety Production Center, 4-208

Galveston District, 4-3, 4-112, 4-478

RMC, Risk Management Center, xxx, 2-420, 3-7, 3-319, 3-347, 3-348, 3-349, 3-393, 4-3, 4-4, 4-112, 4-156, 4-206, 4-208, 4-227, 4-252, 4-308, 4-479

Sacramento Dam Safety Protection Center, xv, 3-394, 4-4, 4-227, 4-252

- USACE, xiii, xvi, xvi, xx, xxii, xxv, xxx, xxxiii, xxxiv, 1-4, 1-147, 1-166, 1-190, 2-50, 2-199, 2-396, 2-397, 2-398, 2-399, 2-400, 2-401, 3-68, 3-347, 3-348, 3-349, 3-350, 3-372, 3-373, 3-397, 4-3, 4-4, 4-5, 4-91, 4-97, 4-112, 4-125, 4-156, 4-4, 4-5, 4-206, 4-208, 4-227, 4-228, 4-252, 4-306, 4-478, 4-479, 4-480, 4-482, 4-483, 4-484
- U.S. Bureau of Reclamation, xii, xvii, xxxii, xxxii, xxxiv, 1-3, 1-63, 2-4, 2-148, 2-199, 2-

421, 2-423, 2-424, 2-425, 3-3, 3-4, 3-5, 3-6, 3-70, 3-135, 3-136, 3-149, 3-192, 3-195, 3-205, 3-258, 3-345, 3-346, 3-347, 3-348, 3-350, 3-372, 3-373, 3-393, 3-394, 3-395, 3-397, 3-398, 4-7, 4-114, 4-117, 4-242, 4-254, 4-259, 4-363, 4-398, 4-419, 4-470, 4-483, 4-486 USBR, xvii, xxv, xxxii, xxxiv, 1-3, 1-4, 1-63, 1-147, 1-174, 1-206, 2-213, 2-241, 2-396, 2-400, 3-192, 3-398, 4-125 U.S. Department of Agriculture, xxxiv USDA, xxxi, xxxiv, xxxv, 3-393 U.S. Fish and Wildlife Service, xxxiv USFWS. xxxiv U.S. Geological Survey, xxxiv, 2-4, 2-178, 2-184, 2-419, 2-421, 2-423, 3-4, 3-5, 3-116, 3-117, 3-163, 3-199, 3-226, 3-391, 3-393, 3-394, 3-395, 3-396, 4-4, 4-206, 4-243, 4-252, 4-259, 4-477, 4-481, 4-482, 4-483 USGS, xxi, xxvii, xxviii, xxxiv, xxxv, 1-4, 1-147, 1-174, 2-5, 2-178, 2-184, 2-198, 2-224, 3-150, 3-162, 3-192, 3-194, 3-196, 3-348, 3-394, 4-242, 4-256, 4-258, 4-259 UNC Chapel Hill, 4-477 University of Alabama, 3-4, 3-5, 3-179, 3-190, 3-195, 3-196, 3-209, 3-392, 3-395 University of California U.C. Davis, xxi, 1-3, 1-63, 1-86, 2-4, 2-98, 2-422, 2-423, 3-3, 3-42, 3-392, 3-395 University of Costa Rica, 4-483 University of Maryland, xxxiv, 3-5, 3-197, 3-226, 3-391, 4-6, 4-8, 4-312, 4-315, 4-435, 4-464, 4-477, 4-478, 4-483 US Global Change Research Program, 4-477 Utah State University, 2-396, 3-391 Virginia Tech, 2-422 Weather & Water, Inc., 4-6, 4-323 WEST Consultants, 4-479 Western Universiity, 4-486 Westinghouse, 2-3, 2-30, 2-424, 3-7, 3-350, 3-362, 3-371, 3-397, 4-7, 4-8, 4-378, 4-419, 4-446, 4-464, 4-485 Wood, 2-149, 3-391, 5-490 World Meteorological Organization WMO, xxxv, 4-376 Zachry Nuclear Engineering, 4-484