

Protecting People and the Environment

CRITICAL HEAT FLUX DATA USED TO GENERATE THE 2006 GROENEVELD CRITICAL HEAT FLUX LOOKUP TABLES

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Library at <u>www.nrc.gov/reading-rm.html</u>. Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and Title 10, "Energy," in the *Code of Federal Regulations* may also be purchased from one of these two sources.

1. The Superintendent of Documents

U.S. Government Publishing Office Washington, DC 20402-0001 Internet: <u>bookstore.gpo.gov</u> Telephone: (202) 512-1800 Fax: (202) 512-2104

2. The National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312-0002 <u>www.ntis.gov</u> 1-800-553-6847 or, locally, (703) 605-6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission

Office of Administration Multimedia, Graphics, and Storage & Distribution Branch Washington, DC 20555-0001 E-mail: <u>distribution.resource@nrc.gov</u> Facsimile: (301) 415-2289

Some publications in the NUREG series that are posted at NRC's Web site address <u>www.nrc.gov/reading-rm/</u> <u>doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852-2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute

11 West 42nd Street New York, NY 10036-8002 www.ansi.org (212) 642-4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX),(4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Critical Heat Flux Data Used to Generate the 2006 Groeneveld Lookup Tables

Manuscript Completed: July 2016 Date Published: January 2019

Prepared by: D.C. Groeneveld

Thermalhydraulics Consultants, Inc. P.O. Box 1335 Deep River, Ontario, Canada K0J 1P0

Office of Nuclear Regulatory Research

ABSTRACT

This report contains a compilation of over 25,000 critical heat flux (CHF) data points obtained in water-cooled tubes that were used to derive the 2006 Groeneveld CHF lookup table. This compilation is based on 62 data sets that have been obtained during the past 60 years. This NUREG report describes the pertinent experimental details and possible concerns for these data sets. It also discusses the applicability and validity of the CHF lookup table to reactor conditions of interest and includes a graphical comparison of the ranges of conditions covered by these primary data and subsequently obtained supplementary data sets.

FOREWORD

The history of critical heat flux (CHF) is the history of its experimental data. There are few collections of those data from as wide a range of experiments as those given in the Groeneveld lookup tables, and there are likely few individuals who have had as much history as Dr. Groeneveld himself. The U.S. Nuclear Regulatory Commission (NRC) created this NUREG report for two purposes:

- 1) to define and capture the all-important data that comprise the Groeneveld lookup table, including detailed data from over 60 data sets that span over 65 years of data collection
- 2) to include many of Dr. Groeneveld's personal insights into the history, current state, and future of CHF prediction—information that does not appear in any textbook or journal article and is often known only by those who have tremendous experience in the field

I am grateful to the NRC and particularly to Andrew Ireland and the Office of Research for supporting this work and to Dr. Groeneveld for being willing to create it. It not only provides key information on very important data but also fills in much of the undocumented history of CHF.

Joshua S. Kaizer, Ph.D. Reactor Engineer Nuclear Reactor Regulation

TABLE OF CONTENTS

A	BSTRACT	iii
FC	DREWORD	v
LI	ST OF FIGURES	ix
LI	ST OF TABLES	ix
1	INTRODUCTION	1
2	CRITICAL HEAT FLUX MEASUREMENTS AND UNCERTAINTIES	3
	2.1 Early Flow Boiling Testing	3
	2.2 Critical Heat Flux Detection Methods	3
	2.3 Uncertainties in Critical Heat Flux	4
	2.4 Critical Heat Flux Reproducibility	5
3	EVOLUTION OF CRITICAL HEAT FLUX PREDICTION METHODS	7
	3.1 Empirical Critical Heat Flux Correlations	7
	3.2 Analytical Critical Heat Flux Models	7
	3.3 Critical Heat Flux Lookup Table Methods	8
4	DATABASE FOR THE 2006 CRITICAL HEAT FLUX LOOKUP TABLE	11
	4.1 Critical Heat Flux Data Compilations	11
	4.2 Electronic Database of Data Used To Derive the 2006 Critical Heat Flux Lookup Table	11
	4.3 Description of the Experimental Data Sets	20
5	DERIVATION OF THE 2006 CRITICAL HEAT FLUX LOOKUP TABLE	21
	5.1 Critical Heat Flux Data Selection Criteria	21
	5.2 Derivation of the Skeleton Table	21
	5.3 Derivation of the 2006 Critical Heat Flux Lookup Table	22
6	DISCUSSION	25
	6.1 Critical Heat Flux Data Coverage	25
	6.2 Reliability of the Critical Heat Flux Lookup Table Entries	28
	6.3 Additional Data Sets Not Used To Derive the 2006 Critical Heat Flux Lookup Table	28
	6.4 Application to Geometries Other Than Upflow in 8-Millimeter Tubes	28
7	CONCLUSIONS AND FINAL REMARKS	31
8	REFERENCES	33

APPENDIX A	SUMMARY DESCRIPTIONS OF CRITICAL HEAT FLUX EXPERIMENTAL DATA USED TO DERIVE THE 2006	
	CRITICAL HEAT FLUX LOOKUP TABLE	39
APPENDIX B	REFERENCES TO CRITICAL HEAT FLUX DATA SETS FOR WATER-COOLED TUBES	79
APPENDIX C	COMPLETE 2006 CRITICAL HEAT FLUX LOOKUP TABLE	95

LIST OF FIGURES

Figure 6-1	CHF Data Coverage on an L/D Versus D Map	.26
Figure 6-2	CHF Data Coverage on a Mass Flux Versus Pressure Map	.26
Figure 6-3	CHF Data Coverage on a Quality Versus Pressure Map	.27
Figure 6-4	CHF Data Coverage on a Quality Versus Mass Flux Map	.27
Figure A-1	Test-Section Details In Lowdermilk Et al. (1958)	.66

LIST OF TABLES

Table 4-1	Sample Page From The CHF Database (CD Spreadsheet "CHF Data for	
	2006 LUT.xls")	12
Table 4-3	Ranges of Conditions of Processed CHF Data Sets	13

1 INTRODUCTION

Various prediction methods for the critical heat flux (CHF) have been proposed during the past 70 years. The earliest prediction methods were primarily empirical. These crude empirical correlations lacked any physical basis and had a limited range of application. Subsequently, a large number of phenomenological equations or physical models for CHF were developed; many of these models were subsequently used in reactor safety analysis codes. Physical models and phenomenological equations, however, depend on the mechanisms controlling the CHF, which changes with flow regime. These changes necessitate the use of a combination of different models, equations, or correlations for predicting the CHF during typical reactor scenarios. Because of this and because of the proliferation of CHF equations and correlations (over 500 CHF correlations are currently available for water-cooled tubes only), a more universal CHF prediction methodology was required. Hence, lookup tables (LUTs) for predicting the CHF in water-cooled tubes were subsequently derived.

The CHF LUT can be thought of as a normalized CHF databank. Compared to other available prediction methods, the LUT approach has the following advantages:

- The approach has greater accuracy.
- It has a wider range of applicability.
- It can predict the correct asymptotic trend(s).
- It requires less computing time.
- It can be updated if additional data become available.

Although LUTs were initially developed for tubes and have been successfully used in subchannel codes, the greatest potential for their application is in predicting the consequences of postulated loss-of-coolant accidents. Applying the LUTs to transient heat transfer in bundles requires the use of adjustment factors to correct for geometry, flux shape, and possibly transient effects. Here the advantages of the LUT technique (wide range of application, greater accuracy, and more efficiency in computing) are particularly important to the user.

Section 2 of this report discusses the types of CHF experiments and CHF detection methods used during the past 70 years and various factors that could affect the uncertainty in the CHF measurements. Section 3 provides the background to CHF prediction methods in general and CHF LUTs specifically, while Section 4 describes the database for the 2006 CHF LUT and explains how the CHF data were obtained. Section 5 describes the methodology for deriving the CHF LUT.

Section 6 discusses the database coverage of the present and expanded database (data identified subsequent to the 2006 CHF LUT derivation) and describes some limitations in the CHF LUT and possible future improvements.

2 CRITICAL HEAT FLUX MEASUREMENTS AND UNCERTAINTIES

2.1 Early Flow Boiling Testing

Before the advent of nuclear reactors, the need for CHF measurements was not urgent because most boiling processes in which CHF was encountered were temperature controlled (e.g., heat exchanger tubes in fossil-fueled boilers). However, water-cooled nuclear reactors, which are limited in power by the CHF occurrence, are basically heat-flux-controlled systems. Hence, exceeding the CHF can have serious consequences, particularly for pressurized-water reactors. For this reason, most of the countries with an interest in nuclear energy became active in CHF measurements by the mid-1900s. In the United States, McAdams et al. (1949) and Jens and Lottes (1951) reported early flow boiling CHF measurements in simple geometries, such as electrically heated tubes, annuli, or rectangular channels (see also the early review of CHF studies by DeBortoli (1958)). CHF experimentation expanded greatly in the 1960s and 1970s in parallel with the worldwide construction of water-cooled nuclear reactors.

2.2 Critical Heat Flux Detection Methods

CHF is typically characterized by a noticeable increase in surface temperature in response to a small change in heat flux. This change in temperature can be very drastic (for example, under pressurized-water reactor conditions referred to as "fast dryout" (Groeneveld, 1986)), or this change can be gradual (for example, under boiling-water reactor conditions, referred to as "slow dryout"). Over the past 70 years, CHF experimenters have used many different CHF detection methods. The sections below summarize the four main methods.

Visual

Early CHF papers identified the CHF as the heat flux at which the test section "started to redden visually." Some early researchers (e.g., Hood and Isakoff, 1962) used this method. Although this method could work well for so-called "fast dryouts" or departure from nucleate boiling (DNB) at subcooled CHF conditions, the slow dryouts, which are typical under boiling-water reactor conditions, would result in only modest temperature excursions that do not result in a discoloration of the heated surface.

Physical Burnout

At high flows and high subcoolings, the CHF is typically very high, making it difficult to switch off the power at CHF before failure of the test section. Several investigators have reported that their CHF corresponded frequently to a physical burnout at the CHF occurrence (e.g., Hood and Isakoff, 1962; Pabisz and Bergles, 1996).

Change in Test-Section Resistance

The test-section material used in most CHF experiments is either Inconel or stainless steel. Inconel has a very low-temperature coefficient of resistance compared to stainless steel, which has a much higher value. The use of a stainless steel test section as one leg of a Wheatstone bridge allows detection of a CHF when the change in test-section resistance caused by a significant temperature excursion results in an imbalance in the Wheatstone bridge, triggering a power supply trip. Dell et al. (1969), Matzner et al. (1965), Hewitt et al. (1965), and others reported this CHF detection method.

Test-Section Thermocouples

The most common method for detecting CHF is the use of thermocouples attached to the downstream end of the heated length of the test section. This method is most effective for most types of CHF occurrences except for very fast temperature excursions, in which a method based on detecting a change in test-section resistance may be more effective. For very slow dryouts, this method may not always be reliable because of the absence of a noticeable dryout temperature excursion. Here, a more reliable method is based on monitoring the change in the slope of $\Delta T_w/\Delta q$ (Groeneveld, 1986).

In some cases, the CHF was actually a "byproduct" of a film boiling experiment in which detailed wall temperature distributions were measured; for any given heat flux, the CHF quality was either assumed to be the quality where the first rise in surface temperature was detected, or the CHF quality was defined as the average of the last pre-CHF quality and the (subsequent) first post-CHF quality. Examples of this type of CHF measurement are Era et al. (1966), Bennett et al. (1967), and Herkenrath et al. (1967); the latter two sources refer to CHF validation data sets.

2.3 Uncertainties in Critical Heat Flux

CHF is primarily a function of flow conditions and test-section geometry. Because the LUT is based only on CHF measurements obtained in a tubular geometry, this section does not discuss how noncircular geometries affect CHF. In CHF experiments, the CHF is a function of the following primary parameters: (1) pressure (either at the start of the heated length or at the CHF location), (2) inlet temperature, (3) mass flow, (4) diameter, and (5) heated length. Several experimenters (e.g., Lee and Obertelli, 1963; Lee, 1965) have shown that the primary parameters, heated length and inlet temperature, can be replaced by thermodynamic quality at the CHF location as long as the heated length is sufficiently long (e.g., the length-to-diameter (L/D) ratio is greater than 50) to remove any upstream history effects. Thus, for a given inside diameter, CHF becomes a function of the flow conditions at CHF (i.e., mass flux, pressure, and thermodynamic quality—the three parameters of the CHF LUT).

The following secondary parameters could affect the CHF:

• <u>Test-Section Orientation</u>. Although most CHF tests have been performed for upward flow in vertical test sections, some investigators have investigated the CHF behavior in horizontal flow and downflow (e.g., Wong et al., 1990). Based on an extensive analysis of CHF in horizontal tubes, Wong et al. (1990) has shown that the effects of a horizontal test-section orientation are not significant at high flow where flow stratification occurrence is suppressed. The boundaries of flow stratification can be estimated from flow regime maps, such as those proposed by Taitel and Dukler (1975).

- <u>Test-Section Material</u>. Test-section material, in general, has little effect on CHF during flow boiling. However, for low flows and conditions where CHF is the result of DNB, high-conducting test-section materials could suppress the occurrence of hot spots under bubbles and thus increase the CHF.
- <u>Type of Heating</u>. Most CHF experiments are performed on directly heated tubes (Joule heating), whereas the most typical application is indirect heating of a fuel sheath for which the heat source is nuclear heat. Leung et al. (1982) compared experimentally the CHF for direct and indirect heating and observed no significant effect.
- <u>Wall Thickness</u>. Several experimenters (e.g., Bergles, 1963; Bennett et al., 1965) investigated the wall thickness effect of CHF but found no discernible effect. Some effect could possibly be present for very thin walls that could limit the heat of hotspots during a DNB-type CHF.
- <u>Surface Roughness</u>. Most test sections had a very smooth surface finish (similar to a fuel sheath), and the impact of the very small surface roughness was not found to be significant. Even for cases with a machined surface roughness, the impact of roughness on CHF is generally small because the vapor generation rate at the surface usually determines the CHF occurrence. However, when the surface roughness becomes larger than the film thickness (in annular film dryout), premature film breakdown could reduce CHF.
- <u>Inlet/Outlet Throttling</u>. The majority of CHF experiments considered the flow free from fluctuations; however, restricting the flow at the outlet could cause an instability in flow and pressure and, therefore, could significantly reduce CHF, as observed by Lowdermilk (1958) and Mayinger et al. (1966). Kirillov (1997) also observed flow oscillations with a "soft" inlet (no throttling) as opposed to a "hard" inlet (with throttling) that generally suppressed the occurrence of flow oscillations.
- <u>Dissolved Gas Content in the Coolant</u>. Most CHF experiments used degassed water; however, some experiments have purposely used dissolved gas in the coolant to examine its effect on boiling heat transfer. Kirillov (1997) reported on Russian experiments in which reductions of up to 30 percent in CHF were observed for dissolved gas content of 4,000 normal cubic centimeters per kilogram.

2.4 Critical Heat Flux Reproducibility

In the late 1960s and 1970s, the concern was raised in Europe that significant differences in CHF could exist between measurements obtained at different heat transfer laboratories on nominally the same test section and for the same flow conditions. Therefore, two independent reproducibility exercises were performed, one in Western Europe in 1970 and one reported in the Union of Soviet Socialist Republics (U.S.S.R.) literature in 1984/1985. The objective of these reproducibility studies was to determine the variation in CHF measurements between various laboratories. About 8–10 laboratories participated in each of these two reproducibility studies. The sections titled, "CISE (1970)/Nilsson (1970) European CHF Reproducibility Exercise," and "Kirillov (1984, 1985) CHF Reproducibility Study," in Appendix I summarize these two reproducibility studies. In general, the agreement between the various European laboratories was within 10 percent except for two outliers that were later disgualified.

3 EVOLUTION OF CRITICAL HEAT FLUX PREDICTION METHODS

3.1 Empirical Critical Heat Flux Correlations

CHF prediction methods for flow boiling were reported as early as 1949 (McAdams, 1949). The interest in CHF initially grew slowly but expanded rapidly in the early 1960s as an improved knowledge of CHF was urgently needed to determine the power limits for the many reactors then under construction around the world. A book by Tong (1965) (the first book that covered flow boiling CHF) reviewed several of the early CHF prediction methods, most of which were purely empirical. In parallel, Clerici (1966) published a list of over 50 CHF correlations for water-cooled tubes. Since then, the number of published CHF correlations for water-cooled tubes has increased to well over 500. In contrast to pool boiling for which the early prediction methods are still in use, none of the early flow boiling CHF correlations for tubes carry much credibility today, partially because the pool boiling CHF equations had a physical basis, whereas the tube CHF correlations were virtually all empirical.

Most of the tube CHF correlations have essentially the form $CHF = f(P, G, X_{CHF}, D)$ or are in a

dimensionless form $\frac{CHF}{H_{fg}G} = f\left(\frac{\rho_f}{\rho_g}, G\frac{D^{0.5}}{(\sigma\rho_f)^{0.5}}, X_{CHF}, \frac{D}{D_{ref}}\right)$, although other dimensionless parameters may have been used as well. The choice of correlation parameters (*P*, *G*, *X*_{CHF}, *D*) is essentially correct, but the functional relationship between these parameters varies with flow conditions—hence, the large proliferation of correlations. The CHF equations of Katto (1992) and Lee and Mudawar (1988) deserve special mention because they (1) have a phenomenological basis, (2) are based on a large database, and (3) appear to have a wider range of validity.

3.2 Analytical Critical Heat Flux Models

The lack of a satisfactory CHF prediction technique using empirical correlations led to the development of analytical CHF models, starting in the late 1960s. These models, which were based on the physical mechanisms and satisfy the conservation equations, can be divided into two main groups:

- <u>Annular Film Dryout Models</u>. These models are based on a mass balance on the liquid film in annular flow and postulate that CHF corresponds to the depletion of the liquid film. Hewitt and co-workers (Hewitt and Hall-Taylor, 1970; Bennett et al., 1967) developed the original annular film dryout models in the 1960s. The models differ in the equations for droplet entrainment and deposition and interfacial friction and heat transfer. These models provide reasonable predictions of CHF for the annular flow at medium to high pressures and flows and void fractions exceeding 50 percent (Hewitt and Hall-Taylor, 1970).
- 2) <u>Bubbly Layer Models</u>. These models postulate that CHF occurs in the lower quality regime when the bubble layer covering the heated surface becomes so thick and saturated with bubbles that no liquid mixing between the near-wall layer and the cooler core liquid is possible. Tong (1965, 1968) and Tong and Hewitt (1972) proposed early versions of this model. This model and subsequent variations proposed by Weisman and Pei (1983) and Ying and Weisman (1986) appear to predict the CHF with reasonable accuracy under high-pressure, high-flow, and low-quality or subcooled conditions.

Although the analytical models have improved significantly and usually predict the correct asymptotic trends after suitable fine tuning, the evaluation process is complex and time consuming. In the 1970s and 1980s, developing CHF models was a popular academic pursuit and resulted in the more than 50 CHF models now available, each based on different assumptions of interfacial relationships. CHF models tend to be less accurate than empirical correlations over the range of the correlation's database. Weisman (1992) presented an excellent review of the analytical CHF models.

3.3 Critical Heat Flux Lookup Table Methods

Because of the proliferation in CHF correlations and models and the limited range of application of the models and correlations, the need for a more generalized CHF prediction technique is obvious. As a basis of the generalized technique, the common "local conditions hypothesis" was used (i.e., the assumption was that the CHF for a water-cooled tube and a fixed tube diameter is a unique function of local pressure (P), mass flux (G), and thermodynamic quality (X)). Doroshchuk et al. (1975) made an initial attempt to construct a standard table of CHF values for a given geometry using a limited database of 5,000 data points for water-cooled tubes. This table and all subsequent tables contain normalized CHF values for a vertical 8-millimeter (mm) water-cooled tube for various pressures, mass fluxes, and qualities. The Center for Nuclear Studies in Grenoble (France), the University of Ottawa (Canada), the Institute of Physics and Power Engineering (IPPE) (U.S.S.R.), and Atomic Energy of Canada Limited (AECL) (Canada) subsequently improved and expanded the CHF LUT using an ever-increasing CHF database.

In 1986, Groeneveld et al. published the "AECL-UO" table, which covers a much wider range of conditions than Doroshchuk's table. The databank on which the 1986 LUT was based contained 15,442 CHF data points taken from 12 separate data sets and the two data compilations of Thompson and MacBeth (1964) and Zenkevich (1974). Kirillov et al. (1989a, 1989b, 1991a, 1991b) improved the CHF table of Doroshchuk et al. by introducing a larger database, but the range of applications covered in their tables remained smaller than that of the AECL-UO table. Groeneveld and Kirillov used different databases and methodologies to derive their respective tables. A subsequent data exchange agreement between Groeneveld and Kirillov resulted in a combined CHF databank of more than 30,000 tube CHF data points (24,000 data points after removing duplicates), which was used to derive the 1995 CHF LUT. The 1995 CHF LUT has a wider range of validity and presents normalized CHF values for 21 pressures, 20 mass fluxes, and 23 critical qualities covering, respectively, ranges of 0.1 to 20 megapascals (MPa), 0 to 8 megagrams per square meter per second (zero flow refers to pool-boiling conditions), and -50 to 100 percent (negative gualities refer to subcooled conditions). The 1995 LUT also removed the sharp variations in CHF that were present at some of the boundaries between regions where experimental data were available and regions where correlations and extrapolations were used. A smoothing procedure developed by Huang and Cheng (1994), as described in Section 5.3, was used to suppress these sharp variations.

Between 1995 and 2006, 27 additional CHF data sets for vertical tubes with upward water flow that were not used for the development of the 1996 CHF LUT were acquired. Further enhancements were made to the CHF LUT and its database by AECL and the University of Ottawa, culminating in the 2006 CHF LUT as described in the *Nuclear Engineering and Design* article by Groeneveld et al. (2007) titled, "The 2006 CHF Look-Up Table." Appendix II-1 lists the CHF data sets used for developing the 2006 CHF LUT. Note that the space requirements of the

Nuclear Engineering and Design journal did not permit the inclusion of the complete CHF LUT; instead, the journal article presented a somewhat condensed version. Appendix III presents the complete CHF LUT.

The most recent CHF LUT method (Groeneveld et al., 2007) provides CHF values for water-cooled tubes at discrete values of pressure (P), mass flux (G), and thermodynamic quality (X), covering respectively the ranges of 0.1 to 20 MPa, 0 to 7,500 kilograms per square meter per second (kg m⁻² s⁻¹) (zero flow refers to pool-boiling conditions), and -50 to 100 percent (negative qualities refer to subcooled conditions). Linear interpolation between table values is used for determining CHF at in-between table conditions. Extrapolation is usually not necessary because the table covers a very wide range of conditions. Compared to other available prediction methods, the tabular approach has the following advantages:

- The approach has greater accuracy.
- It has a wider range of applicability.
- It can predict the correct asymptotic trend(s).
- It requires less computing time.
- It can be easily updated if additional data become available.

Section 5.0 summarizes the derivation of the LUT. Since the derivation of the 2006 CHF LUT, additional data sets have become available. Sections II-2 and II-3 of Appendix II provide references to these additional data sets. These additional data sets can be used to update the CHF LUT or to independently validate the CHF LUT.

4 DATABASE FOR THE 2006 CRITICAL HEAT FLUX LOOKUP TABLE

4.1 Critical Heat Flux Data Compilations

DeBortoli (as reported by Firstenberg et al. (1960)) created the first CHF data compilation for tube data. Subsequently, many CHF data compilations have been assembled, either for tube CHF data or for tube and more complex geometries (e.g., annuli or bundles). Seventeen CHF data compilations for tubes were identified; Section II-4 of Appendix II includes references to these data sets.

Many of these compilations give sources for the CHF data used to derive the CHF LUTs. To eliminate possible errors in transcribing data, we always attempted to locate the original source of the data instead of relying on the (sometimes questionable) accuracy of the CHF compilations done by others.

Two of the compilations (European Reproducibility Study 1970 and U.S.S.R. Reproducibility Study 1984) represent the results of two separate CHF reproducibility studies. Eight to 10 laboratories participated in each of these two reproducibility studies. The Appendix I sections titled, "Kirillov (1984, 1985) CHF Reproducibility Study," and "CISE (1970)/Nilsson (1970) European CHF Reproducibility Exercise," summarize these two reproducibility studies.

4.2 <u>Electronic Database of Data Used To Derive the 2006 Critical Heat Flux</u> <u>Lookup Table</u>

The 25,000 experimental data points used to derive the 2016 CHF LUT were tabulated in an electronic database (Compact Disc (CD) Spreadsheet "CHF Data for 2006 LUT.xls"). The first page of this database (Table 4-1) provides an overview of the flow parameters for each CHF point. Section 4.3 summarizes each data set.

Table 4-2 summarizes the range of conditions of each processed CHF data set and includes supplementary data that have been processed subsequent to the 2006 CHF LUT derivation with the data set name presented in italics. Section II-2 of Appendix II provides the references to these data sets. In addition, Section II-3 of Appendix II contains references to additional data sets that have not yet been processed.

Data	D	L	Р	G	X _{chf}	DH _{in}	CHF	Tin	Reference
-	m	m	kPa	kg m ⁻² s ⁻¹	-	kJ/kg	kW m⁻²	°C	
25	0.004	0.396	100	77.5	0.84	317	442	23.94	Lowdermilk, 1958
26	0.004	0.396	100	142.7	0.79	317	757	23.94	Lowdermilk, 1958
27	0.004	0.396	100	203.9	0.7	317	978	23.94	Lowdermilk, 1958
28	0.004	0.396	100	271.8	0.73	317	1,325	23.94	Lowdermilk, 1958
29	0.004	0.396	100	421.3	0.62	317	1,798	23.94	Lowdermilk, 1958
30	0.004	0.396	100	543.6	0.58	317	2,239	23.94	Lowdermilk, 1958
31	0.004	0.396	100	679.5	0.55	317	2,712	23.94	Lowdermilk, 1958
32	0.004	0.396	100	978.5	0.5	317	3,564	23.94	Lowdermilk, 1958
33	0.004	0.396	100	1,372.7	0.45	317	4,573	23.94	Lowdermilk, 1958
34	0.004	0.396	100	1,644.5	0.42	317	5,236	23.94	Lowdermilk, 1958
35	0.004	0.594	100	77.5	0.88	324	300	22.27	Lowdermilk, 1958
36	0.004	0.594	100	135.9	0.81	324	505	22.27	Lowdermilk, 1958
37	0.004	0.594	100	203.9	0.75	324	694	22.27	Lowdermilk, 1958
38	0.004	0.594	100	258.2	0.71	331	852	20.6	Lowdermilk, 1958
39	0.004	0.594	100	407.7	0.63	331	1,199	20.6	Lowdermilk, 1958
40	0.004	0.594	100	543.6	0.6	331	1,514	20.6	Lowdermilk, 1958
41	0.004	0.594	100	693.1	0.58	331	1,892	20.6	Lowdermilk, 1958
42	0.004	0.594	100	992.1	0.56	331	2,618	20.6	Lowdermilk, 1958
43	0.004	0.792	100	78.8	0.74	331	196	20.6	Lowdermilk, 1958
44	0.004	0.792	100	135.9	0.76	331	347	20.6	Lowdermilk, 1958
45	0.004	0.792	100	217.5	0.72	331	536	20.6	Lowdermilk, 1958

Table 4-1Sample Page from the CHF Database (CD Spreadsheet "CHF Data for 2006
LUT.xls")

Table 4-2	Ranges of Conditions of Processed CHF Data Sets
-----------	---

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
Alekseev (1964)	70	10.00	1.000	9,800	216	-0.866	57	134	139.77
data from Kirillov (1992)		10.01	4.966	19,610	7,566	0.944	1,398	4,949	357.93
Alessandrini et al.	753	15.2	0.80	4,795	1,080	-0.04	-1,110	206	185
(1963)		24.9	2.46	5,148	4,140	0.75	365	3,689	265
Babarin et al.	163	12.0	0.96	284	50	0.466	37.6	190	15
(1969)			1.80	310	500	1.091	495	2,300	124
Babcock and	39	8.00	0.61	413	2,946	-0.187	202	4,876	19
Hood (1962)		22.5		6,890	11,452	-0.05	639	10,546	177
Baek (2001)	56	6.00	0.18	101	497	-0.091	254	2,041	5.9
· · ·		10.0	0.40	3,618	2,032	0.099	935	7,413	40.2
Bailey (1977)	110	15.0	3.77	1,350	49	0.45	-178	84	93
			5.37	7,080	1,383	0.99	473	1,134	286
Bailey and Lee (1969)	158	9.30	3.05	6,895	958	0.069	54	344	199
(1909)				18,340	4,242	0.727	604	2,221	347
Becker et al. (1963)	2,659	3.94	0.100	216	100	-0.069	-50	278	25.42
AE-114	2,000	20.10	3.750	8,973	3,183	1.054	1,640	7,477	20.72
Becker (1965)	1 226	3.93	0.216	1,128	159.5	-0.005	-16	503	63.32
AE-RTL-778	1,326	37.47	3.750	9,905	5,586	0.993	2,711	6,620	288.71
Becker (1970)	116	2.40	0.500	3,050	93.3	0.207	371	1,026	51.75
TPM-RL-1260	110	36.03	1.880	7,100	2,725	0.903	1,065	5,130	113.22
Becker et al. (1971)	1,455	10.00	1.000	3,000	156	-0.866	26	135	124.75
KTH-NEL-14		10.01	4.966	20,000	8,111	1.061	1,414	5,476	358.65

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²	°C
Bennett et al. (1965)	201	9.22	1.524	6,612	623.8	0.026	21	589.6	157.67
AERE-R 5055		12.62	5.563	7,481	5,844.4	0.948	691	3,299.7	279.45
Bergelson (1980)	328	8.00	0.241	170	1,927	-0.295	96	3,511	28.94
data from Kirillov (1992)	020	8.00	0.400	3,080	7,078	0.090	853	14,571	169.20
Bergles (1963)	447	0.62	0.011	140	1,518.7	-0.137	25	4,957.1	3.10
ASME 63-WA- 182	117	6.21	0.155	586	24,272.4	0.111	534	44,713	116.55
Bertoletti et al.	386	4.90	0.050	4,881	1,051	-0.083	-28	198.7	112.97
(1964)		15.20	2.675	9,876	3,948.8	0.774	769	7,502.8	302.14
Biancone et al.	245	10.2	0.78	7,914	465	-0.25	45	742	48
(1965)		17.1	1.32	14,396	3,167	0.662	1,355	6,649	326
Borodin and Macdonald (1983) CRNL-2538	Restricted	l distribution				<u> </u>			
Burck and Hufschmidt	143	10.0	0.35	1,100	917	-0.246	532	4,500	16.7
(1965)	143	10.0	0.55	3,090	3,756	0.087	939	12,200	60.8
Campolunghi	218	12.0	15.6	254	1,111	0.296	19.6	155	205
(1973)	210	12.0	20.5	9,660	2,545	0.772	740	479	260
Celata et al.	60	6.00	0.10	398	2,019	-0.517	350	7,428	29
(1992a) set 1		8.00	0.15	5,120	10,046	-0.106	1,018	29,514	81
Celata et al.	78	2.50	0.20	107	2,166	-0.091	345	5,347	19
(1992b) set 2		5.00	0.40	2,181	32,637	0.287	790	42,777	55
Celata		0.10	0.002	90	917	0.007	88	4,000	3.44
and Mariani (1993)	88	22.50	0.610	6,890	90,000	0.923	1,023	228,000	245.78

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature		
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C		
Celata et al. (1993)	78	2.50	0.10	578 2,714	11,240 40,000	-0.357 -0.104	387 844	12,113 60,579	30 70.5		
Cheng et al. (1983a)	150	12.60	0.370 0.740	101 687	50 400	0.187 1.227	42 210	331.2 2,115	70.00 154.61		
Cheng et al. (1983b)	132	4.80	0.19 0.38	100 700	300 750	0.082 0.765	42 214	889 2,131	49.6 145		
Dell et al. (1969) AERE-M 2216	82	6.17	0.914 5.512	6,895	14,328.9 4,135.8	0.144 0.779	79 365	492.7 3,340.4	217.13 270.09		
Doerffer (1999)	Proprietar	Proprietary data									
Doerffer et al. (1997)	Proprietary data										
Era et al. (1966)	163	5.98	1.602 4.800	6,777 7,049	1,105 3,014.9	0.374 0.952	-1,211 565	109.2 1,960.9	181.13 509.30		
Griffel (1965) NYO-187-7	397	6.22 37.46	0.610 1.972	3,448 10,343	637.3 18,577.2	-0.209 0.592	45 1,209	1,400.6 8,107.3	87.68 287.07		
Groeneveld (1985)	Proprietar	y data		I	I			L	l		
Hassid et al. (1967) CISE-R-236	191	24.90 25.10	1.590 2.391	2,942 6,090	369.3 3,857.5	-0.035 0.838	1,427 3,433	1,430.9 3,444.1	153.89 267.66		
Hewitt et al. (1965) AERE-R 4864.	442	9.30	0.229 3.048	101 208	90.9 301	0.160 1.083	-41 383	144 4,013	13.71 119.39		
Hood (1962)	61	6.30 25.4	0.61	414 8,412	2,156 11,390	-0.25 -0.05	204 1,113	5,741 11,830	-20 243		

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
Hood and Isakoff		8.00	0.60	6,895	664	0.001	66	3,186	7.5
(1962)	24	22.2	1.10		2,726	0.484	1,224	4,637	272
Inasaka et al.	8	6.00	0.10	104	6,520	-0.09	250	7,280	39
(1991)	0		0.10	114	11,364	-0.07	266	11,200	41
Inasaka and	20	2.00	0.10	290	4,300	-0.188	266	7,300	25
Nariai (1989)	29	3.00	0.10	1,050	29,900	-0.051	626	44,500	78
lofri (1002)	49	15.8	2.44	317	1,439	-0.021	223	1,795	19
Jafri (1993)	49	15.8	2.44	1,060	8,102	0.28	667	5,691	129
Jens and Lottes (1951) Subcooling CHF data	48	5.74	0.625	3,448	1,301.8	-0.464	279	2,965.3	70.52
				13,790	10,603.9	-0.015	1,310	11,924.4	285.05
Judd and Wilson (1966)	49	44.00	4.000	6,861	673.9	0.016	33	593.1	207.11
BAW-3238-9		11.30	1.829	13,859	3,428	0.776	730	2,668.8	323.84
		6.00	0.30	104	21	0.397	0.8	130	20
Kim et al. (2000)	502	12.0	1.77	951	277	1.251	634	1,598	156
Kirillov et al.	0.470	7.71	0.990	6,370	494	-0.494	7	110	79.41
(1984)	2,470	8.09	6.000	18,040	4,154	0.981	1,537	7,700	350.90
1(040	1.00	0.04	404.0	4.1	-0.147	0	185	6.7
Kureta (1997)	913	6.00	0.68	101.3	19,130	1.664	391	158,100	100
Ladislau (1978)				420	884	-0.051	104	1,860	28.04
(see Kirillov database (1992))	136	4.00	0.200	1,000	5,504	-0.009	638	4,631	149.56
			1.73	6,828	2,020	0.002	75.5	1,307	161
Lee (1965)	38	9.50	3.05	7,024	5,720	0.433	577	3,873	271

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature		
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C		
Lee (1966)	435	14.10	0.635	8,237	332.2	-0.110	60	870.7	259.80		
AEEW-R479	435	44.70	1.524	12,579	3,410.3	0.780	451	3,738.2	318.09		
Leung et al. (1989)	66	5.45	2.511	5,030	1,167.6	0.210	6	656.2	227.85		
(1909)				9,710	9,938.3	0.578	316	3,058.3	305.33		
Leung et al. (1990)	Restricted distribution										
Lowdermilk et al.	470	4.00	0.119	100	27.2	0.030	317	167	20.91		
(1958)	470	4.80	0.991	100	4,865.5	1.236	331	9,525	24.24		
Matzner et al.	99	10.20	2.438	6,893	1,193.3	0.008	48	643.5	65.61		
(1965)		10.20	4.877	0,093	9,559.8	0.693	1,183	4,041	275.82		
Mayinger et al.	128	7.00	0.560	1,925	2,233	0.098	-239	924	233.28		
(1966)	.20	7.00	0.980	10,244	3,734	0.405	314	5,618	310.09		
Mudawar and	174	0.40	0.004	250	5,000	-1.778	254	9,400	18		
Bowers (1999)	174	2.50	0.031	17,240	134,000	-0.062	1,579	276,000	70		
Nariai et al.	93	1.00	0.009	100	6,710	-0.134	149.5	4647	15.4		
(1987)	30	3.00	0.101	100	20,910	0.007	353	69,990	64		
Nariai et al.	7	6.00	0.10	196	7,700	-0.24	306	12,110	33		
(1991)	,	0.00	0.10	1,470	9,952	-0.096	618	17,230	53		
Nariai CHF data set from Celata	14	6.0	0.100	100	4,590	-0.2595	31	8,500	38.3		
(2001)	14	0.0	0.100	1,500	8,690	0.0577	281	22,100	44.7		
Nguyen and Yin	56	12.60	2.438	6,645	929.6	0.216	52	677	225.06		
(1975)	50	12.00	4.877	8,401	3,838.4	0.738	413	2,023.7	276.81		
Olekhnovitch	479	8.00	0.75	507	977	0.046	4	523	47		
(1997)	517	0.00	3.50	4,036	6,122	0.761	498	5,550	244		

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
Ornatskii (1963)	69	2.00	0.04	17,732	5,000	-2.41	175	5,579	-21
Omatskii (1963)	09	2.00	0.04	20,265	30,000	-0.054	1,811	70,314	335
Ornatskii and	222	2.00	0.04	1,013	5,000	-0.654	72	6,392	2.25
Kichigin (1961)		2.00	0.04	7,599	30,000	-0.002	1,176	70,895	263.8
	169			7,599	5000	-1.23	79	8,136	0.88
Ornatskii and Kichigin (1962)		2.00	0.04	15,199	30000	-0.026	1,566	72.058	331
				-,			,	,	
Ornatskii and	109	0.50	0.014	1,013	20,000	-0.572	321	39,542	-20
Viniarskii (1965)			0.014	7,194	90,000	-0.107	1,942	224,459	195
Pabisz and	10	4.40	0.11	627	2,417	-0.196	567	7,370	15.3
Bergles (1996)	10	6.20	0.154	1,284	4,994	-0.133	698	13,880	46
Peterlongo et al.	349	15.1	1.62	4933	1,010	-0.02	-90	895	27
(1964)	0-0	15.2	4.02	6,551	4,020	0.608	1,038	4,115	281
Ruan (1994)	41	9.00	0.40	106	12	0.469	15	139.4	40
Nuari (1994)		9.00	0.40	707	207	0.966	279	1,955	153
Rudzinski (1999)			<u> </u>	<u> </u>			<u> </u>	<u> </u>	
MR1-A Data	Restricted	l distribution							
(Private Communication)									
Shan (2005)	24	8.00	1.00	13,337	572	-0.022	97	819.5	198
Shan (2003)	24	0.00	1.00	14,808	4,137	0.422	692	4,511	328
Shlykov et al.	60	3.60	0.10	76.5	12,865	-0.167	149	12,800	3
(1970)	00	3.00	0.10	386	25,494	-0.022	508	30,300	98
Smolin et al.	200	3.84	0.776	7,840	498	-0.132	5	230	140.35
(1962)	369	10.80	4.000	19,610	7,556	0.795	1,329	5,652	350.39

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature	
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C	
Smolin et al. (1979) data from Kirillov (1992)	2,987	3.84 16.00	0.690 6.050	2,940 17,710	490 7,672	-0.136 0.789	4 1,362	245 5,626	72.72 351.65	
Snoek (1988) (CRNL-4231)	Proprietary data									
Soderquist (1994)	1,463	8.00 8.10	1.00 6.00	970 20,120	243 6,086	-0.169 1.336	35 693	94 3,879	112 355	
Stein (2004)	383	9.00	0.13 0.45	1,090 7,140	24 304.5	-0.002 1	215 1,245	237.5 4,700.5	134 272	
Swenson et al. (1962)	25	10.4 10.5	1.75 1.80	13,790	679 1,765	0.178 0.502	44 564	587 1,063	231 329	
Tain (1994)	55	8.00	1.75	6,849 10,127	2,401 7,832	0.028 0.378	27 455	1,341 4,358	191 299	
Tong (1964)	266	6.22 12.90	0.380 3.660	5,171 13,790	678 14,002	0.002 0.502	5 1,060	587 6,139	263.94 330.85	
Vandervort (1992)	210	0.30 2.70	0.002 0.066	131 2,277	8,438 41,810	-0.276 -0.018	169 759	18,700 123,800	6.4 85	
Waters et al. (1965)	37	11.2	0.61 3.65	6,895 10,342	6,578 9,548	-0.033 0.322	-322 1,050	2,017 5,389	87 313	
Weber and Johannsen (1990)	55	9.70	0.043	110 1,200	10.8 301	0.072 1.53	4.2 577	1,495 7,572	65 175	
Whittle and Forgan (1967)	59	6.45	0.4064 0.6096	117.2 172.4	1,643.5 9,137	-0.0311 -0.0088	290 171	660 3,480	35 75	

Source of CHF Data	Number of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
Reference	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
Williams and Baus (1980)	129	9.50	1.84	2,758 15,169	324 4,663	-0.025 0.929	140 1,223	388 4,073	90 315
Yildiz (1997)	385	6.00 8.00	0.17 0.31	90 721	48.5 411	0.001 0.914	-4.26 1,057	533 4,381	31 158
Yin et al. (1988)	287	13.40	3.658	1,028 21,197	1,938.9 2,081.6	0.075 0.431	0 493	583.3 1,863.7	128.42 358.41
Zenkevich (1969) data from Kirillov (1992)	5,595	3.99 15.10	0.250 6.000	5,880 19,610	498 9,876	-1.652 0.964	2 1,644	136 14,760	76.01 361.79
Zenkevich (1971) data from Kirillov (1992)	392	7.80 8.05	7.000 20.000	6,860 17,650	1,008 2,783	0.262 0.876	18 1,549	47 1,283	81.96 352.22
Zenkevich et al. (1974) data different from the others	823	4.80 12.60	1.000 6.000	5,890 19,620	497.2 6,694.4	-0.221 0.969	5 1,381	230 4,740	96.70 358.24
Zenkevich et al. (1964)	63	6.8 10.0	0.10 0.39	3,924 9,810	550 6,444	-0.02 0.693	131 279	4,910 9,710	211 286

4.3 <u>Description of the Experimental Data Sets</u>

Appendix I summarizes the pertinent experimental details of the many data sets used to derive the 2006 CHF LUT. This appendix generally specifies the method of CHF detection. If a method is not specified, CHF detection by thermocouples is the most likely method.

5 DERIVATION OF THE 2006 CRITICAL HEAT FLUX LOOKUP TABLE

5.1 <u>Critical Heat Flux Data Selection Criteria</u>

Not all CHF data points were used for the derivation of the CHF LUTs. The CHF data selection criteria used for screening the CHF database have evolved from the relatively simple check for duplicates and heat balance inconsistencies used during the 1986 CHF LUT derivation to the more sophisticated approach used in the 2006 CHF LUT derivation process. The most recent CHF data selection criteria are as follows:

- acceptable values for diameter (3 < D < 25 mm), L/D ratio (L/D > 50 for $X_{cr} > 0$, L/D > 25 for $X_{cr} < 0$), pressure (100 ≤ P ≤ 21,000 kilopascal (kPa)), mass flux (0 ≤ G < 8,000 kg m⁻² s⁻¹), and quality ($X_{cr} < 1.0$)
- data that must satisfy the heat balance (i.e., reported power should be approximately equal to [flow]*[enthalpy rise])
- identification of outliers using the slice method (Durmayaz et al., 2004)
 - The "slice" method was introduced to examine all the data behind each set of flow conditions in the LUT. For each nominal LUT pressure slice, $\frac{(P_{i-1}+P_i)}{2} < P < \frac{(P_{i+1}+P_i)}{2}$, and for each nominal mass flux, $\frac{(G_{j-1}+G_j)}{2} < G < \frac{(G_{j+1}+G_j)}{2}$, a CHF versus critical quality plot was created. Data that did not obviously agree with the bulk of the data and the previous CHF LUT were labeled as "outliers" and were excluded in the CHF LUT derivation process. A similar slice approach was used for the CHF versus pressure (P) and CHF versus mass flux (G) plots.
- identification of duplicate data using the slice method (i.e., more than one author may have reported the same data sets)
- removal of data sets that display a significant scatter and generally disagree with the bulk of the data
 - These "bad" data sets may result from "soft" inlet conditions that can give rise to flow instabilities or a poorly performed experiment (e.g., large uncertainties in instrumentation).

5.2 Derivation of the Skeleton Table

The derivation of the CHF LUT requires a skeleton table to provide the initial estimate of the CHF LUT values. The skeleton CHF values are used for evaluating the slopes of CHF versus P, G, or X. The slopes are used for extrapolating selected CHF measurements to the surrounding LUT values of pressure (P), mass flux (G), and thermodynamic quality (X) as described by Groeneveld et al. (1996). The skeleton table also provides the default CHF values under conditions where no experimental data are available.

The skeleton table is primarily based on the 1995 CHF LUT but with corrections to the subcooled region. These corrections were necessary because the skeleton table for the 1995 CHF LUT was partially based on the Katto (1992) equation, which was subsequently found to contain discontinuities or trend reversals at certain conditions.

Values in the skeleton table for $G = 0 \text{ kg m}^{-2} \text{ s}^{-1}$ and X < 0 are predicted using the Zuber (1959) correlation with the correction factor derived by Ivey and Morris (1962). The skeleton table values for G > 300 kg m⁻² s⁻¹ and X < 0 are either maintained or replaced with the predicted values by the Hall and Mudawar (2000) equation, based on a visual observation of the plots produced by slicing the LUT and the data trends.

Generally, for 0 < G < 300 kg m⁻² s⁻¹ and X < 0, the skeleton table values are established using a linear interpolation between those at zero flow and 500 kg m⁻² s⁻¹ to provide a smooth transition.

Compared to the 1995 LUT, three additional pressures (2, 4, and 21 MPa) and one mass flux (750 kg m⁻² s⁻¹) were added to the 2006 LUT. The skeleton CHF values for conditions involving pressures at 2 and 4 MPa and a mass flux of 750 kg m⁻² s⁻¹ were obtained from linear interpolation. The skeleton table CHF values for 21 MPa were interpolated using the CHF versus pressure trend of the Zuber pool-boiling CHF equation, which was found to approximately agree with CHF versus pressure trends for flow boiling at very high pressures.

5.3 Derivation of the 2006 Critical Heat Flux Lookup Table

The primary building blocks for the CHF LUT are the screened database and the skeleton table. The steps described below were taken during the LUT derivation process.

The 1995 CHF LUT, which was modified as described in the previous section, was used as the skeleton table. The effect of tube diameter on CHF is accounted for by using the diameter correction factor, $\frac{CHF_D}{CHF_{D=8mm}} = \left(\frac{D}{8}\right)^{-0.5}$, for the range of 3 < D < 25 mm. Outside this range, the diameter effect appears to be absent (Wong, 1994).

For each set of LUT conditions (each combination of P_x , G_y , and X_z), all experimental data falling within the range $P_{x-1} < P_{exp} < P_{x+1}$, $G_{y-1} < G_{exp} < G_{y+1}$, and $X_{z-1} < X_{exp} < X_{z+1}$ were selected. Each experimental CHF point was corrected for the differences in pressure ($P_{exp} - P_x$), mass flux ($G_{exp} - G_y$), and quality ($X_{exp} - X_z$), using the slopes of the skeleton table and given an appropriate weight as described by Groeneveld et al. (1986, 2007). The weighted, averaged CHF value for all corrected data surrounding each table entry was used to replace the skeleton CHF value.

The updated CHF LUT is not smooth and displays an irregular variation (without any physical basis) in the three parametric ranges: pressure (P), mass flux (G), and quality (X). These fluctuations are attributed to data scatter, systematic differences between different data sets, and possible effects of second-order parameters such as heated length, surface conditions, and flow instability. Sharp variations in CHF were also observed at some of the boundaries between regions where experimental data are available and regions where correlations and extrapolations were used. Before finalizing the LUT, a smoothing procedure developed by Huang and Cheng (1994) was applied. The principle of the smoothing method is to fit three polynomials to six table entries in each parametric direction. The three polynomials intersect each other at the table entry, where the CHF value is then adjusted. This method significantly improved the smoothness of the LUT. A third-order polynomial was initially used for the

smoothing of the 1995 CHF LUT. However, the 2006 analysis showed that a first-order polynomial results in a smoother table with no significant loss in prediction accuracy.

Applying the smoothing process to the table entries under all conditions suppressed the discontinuity at the boundaries of the limiting quality region (LQR), as described by Groeneveld et al. (2007), resulting in a nonrepresentative trend to the experimental data. To maintain the physical trend of the table entries at the LQR, an intermediate table was created that maintained the more abrupt changes at the boundaries of the LQR, extrapolated to the nearest LUT qualities. Some smoothing was subsequently needed to avoid a fluctuation in CHF with pressure and mass flux.

6 DISCUSSION

6.1 Critical Heat Flux Data Coverage

The tabulation of experimental CHF data is based on the primary CHF parameters (i.e., those parameters used in correlating the CHF, such as pressure (P), mass flux (G), quality at CHF (X_{CHF}), and diameter (D). Because the quality at CHF is a calculated parameter, it is sometimes replaced with heated length (L) and inlet subcooling (ΔH_{in}) or inlet temperature. Figures 6-1 through 6-4 show the primary conditions for which water CHF data were available at the time of the 2006 CHF LUT derivation. These figures show CHF data coverage on L/D versus D, mass flux (G) versus pressure (P), quality (X) versus pressure (P), and quality (X) versus mass flux (G) maps, respectively. Superimposed on this are the supplementary data taken from 27 references processed after the 2006 CHF LUT. Appendix II-2 provides the references to these data sets.¹ Note that the supplementary data fill in some, but not all, gaps in the data. Despite the large database (over 40,000 data points), noticeable gaps still exist in flow conditions and geometry where CHF data are not available. The primary conditions for which data are scarce or missing include (1) high flows and high qualities, (2) low flows and low qualities, and (3) pressure ranges of 0.2 to 0.5 MPa. The reasons for the scarcity of CHF data under the above conditions are as follows:

- <u>High Flow/High Quality</u>. Obtaining CHF data at high flows and high qualities is very difficult because it requires the use of a complex two-phase inlet setup. Additional heat balance calculations across a preheater or mixer are necessary to obtain the test-section inlet enthalpy and inlet quality. The method used to introduce the two-phase mixture into the test section can also affect the CHF. Using a very long test section would be an alternative approach, but it is complex and expensive and would result in a very large pressure drop. Note that, at low pressures and high flows, this has occasionally resulted in critical flow conditions, which provide an upper flow limit (Tain, 1995).
- <u>Low Flow/Subcooled CHF</u>. At low pressures, negative qualities of less than -0.20 are impossible to obtain because they would result in water temperatures less than 0 degrees Celsius (C). In addition, the CHF is very high under these conditions, and this would result in a very large axial quality gradient (dX/dZ) (i.e., obtaining low-flow/low-quality CHF data would require very short test sections, whereby the entrance effects could affect the CHF). In addition, at highly subcooled conditions, the CHF can occur so fast that, in some tests, each CHF occurrence resulted in a physical test-section failure because of burnout.
- <u>Low Pressures</u>. Experiments at low pressure, especially for higher qualities and lower flow, could cause flow instability and, therefore, could lower the CHF.

Another possible reason for the scarcity in data for some of these conditions is lack of interest since heat transfer equipment may not operate under these conditions.

¹ Appendix II also contains references to additional data sets that have not yet been processed and, therefore, are not shown in Figures 6-1 through 6-4.

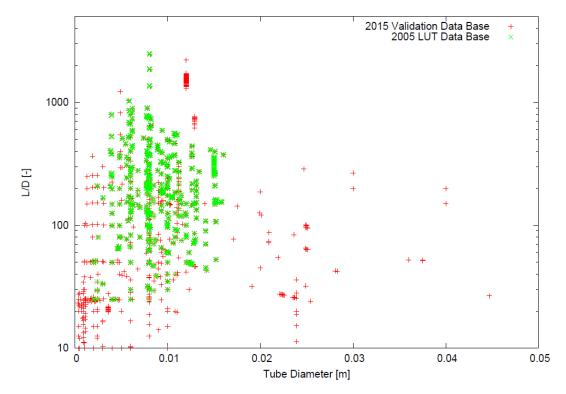


Figure 6-1 CHF Data Coverage on an L/D Versus D Map

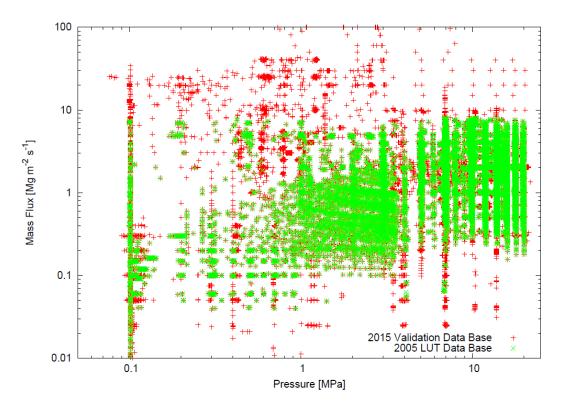
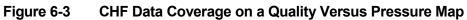



Figure 6-2 CHF Data Coverage on a Mass Flux Versus Pressure Map

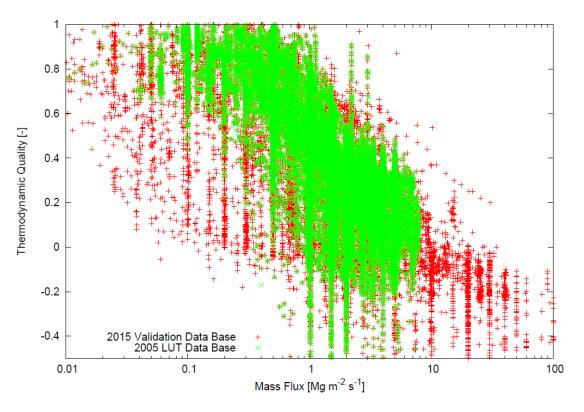


Figure 6-4 CHF Data Coverage on a Quality Versus Mass Flux Map

6.2 <u>Reliability of the Critical Heat Flux Lookup Table Entries</u>

Appendix III shows the complete CHF LUT. In the condensed CHF LUT (as reported in Groeneveld et al. (2007)), four levels of shading were applied to highlight regions of uncertainty. The uncolored entries represent areas that were derived directly from the experimental data and, hence, have the least uncertainty. The light gray regions represent calculated values based on selected prediction methods that provide reasonable predictions under neighboring conditions where experimental data are available. The uncertainty in this region depends on the level of extrapolation from data-based regions. The uncertainty is expected to be small at conditions slightly beyond the range of data, but it becomes larger as the extrapolation is further beyond this range. The medium gray regions represent conditions for which CHF values were often impossible to obtain, including (1) conditions for which critical flow may exist, (2) coolant enthalpies, where the bulk of the liquid starts to become solid (T_{bulk} < 0.01 degree C), and (3) G = 0, where the concept of flow quality becomes imaginary. Those regions are included only to improve interpolation accuracy of other regions. Extrapolation into the medium gray region should be avoided. Finally, the dark gray entries represent the LQR, where rapid changes in CHF versus quality curve can be observed. Note that the LQR does not occur at all pressures and mass fluxes. The shading coding can be extrapolated to the complete CHF LUT in Appendix III for conditions where no shading was shown (e.g., P = 4, 8, 9, and 11 MPa).

6.3 <u>Additional Data Sets Not Used To Derive the 2006 Critical Heat Flux</u> <u>Lookup Table</u>

Besides the above data sets, the literature includes a number of additional CHF data sets for upward water flow in vertical tubes. The current CHF database does not yet include these data sets. These data sets need to be transcribed from the reports and compiled into a database. Section II-3 of Appendix II includes references to these additional data sets.

6.4 Application to Geometries Other Than Upflow in 8-Millimeter Tubes

The LUT was based solely on CHF data obtained in directly heated tubes within the diameter range of 3 to 25 mm. The CHF values measured in tubes having diameters other than 8 mm (CHF_D) were normalized to an equivalent CHF value in an 8-mm tube (CHF₈) using the relationship $CHF_8 = CHF_D \left(\frac{D}{8}\right)^n$. In the derivation of the LUT, various values of the exponent n were used; the optimum value was found to be close to n = 0.5, and this value was used for the derivation of the 2006 CHF LUT.

When applying the LUT to subcooled conditions, Tanase et al. (2009) found a slight improvement in prediction accuracy when they used a value of n = 0.33. Mishima et al. (1985, 1987) noted that, for flooding-type CHF (low-flow and low-pressure conditions), the CHF increases with an increase in diameter; therefore, they recommended a negative exponent, n = -0.2 to -0.3, for those specific conditions.

Various investigators have applied the CHF LUT to bundle geometries. When applying the LUT in a subchannel code, the common practice has been to correct the CHF LUT by using the equivalent diameter in the above equation. This practice ignores the possible effect of having a convex surface instead of a concave surface. Doerffer et al. (1994, 1997) compared the CHF in internally heated and bilateral heated annuli and concluded that the CHF on the inner rod in annuli (after correcting for the equivalent diameter effect) is lower than it is in tubes, especially

at higher qualities, whereas the reduction in CHF is least or nonexistent at subcooled conditions. They proposed correction factors that depend on geometry and flow conditions.

Rod-spacing devices, such as grids or endplates and spacers in Canadian deuterium uranium (CANDU) reactors, are known to enhance CHF. The spacer effect decays exponentially

downstream from the rod-spacing device according to $CHF = CHF_0 \left(1 + a e^{-b\frac{L}{D}}\right)$, where CHF₀ is

the undisturbed CHF, L/D is the nondimensional distance from an upstream spacing device, and the constant *a* depends on the flow blockage of the spacing device (Groeneveld et al., 1999, 2001). Groeneveld et al. (1996, 1999) made some interim recommendations based on data from CANDU-type bundles, but their application to mixing vane grids is questionable. In general, the CHF enhancement aspects for the various mixing vane designs is proprietary information that fuel vendors generally do not release. Groeneveld et al. (1999) have also recommended various bundle-CHF correction factors that can be used in conjunction with the CHF LUT to predict the CHF in new bundle geometries for which CHF data are not yet available.

7 CONCLUSIONS AND FINAL REMARKS

- Because of the proliferation in CHF correlations (greater than 500) and CHF models (greater than 50) and because of the limited range of applicability of the models and correlations, an urgent need for a more generalized CHF prediction technique is obvious. The CHF LUT was developed in response to this need.
- The CHF LUT is basically a normalized databank. Compared to other available prediction methods, the LUT approach has the following advantages: (1) it has greater accuracy, (2) it has a wider range of application, (3) it can predict the correct asymptotic trend(s), (4) it requires less computing time, and (5) it can be easily updated if additional data become available.
- Despite the large database (over 40,000 data points), noticeable gaps still exist in the database at flow conditions for which CHF data are not available. The primary conditions under which data are scarce or missing are (1) high flows and high qualities, (2) low flows and low qualities, and (3) pressure ranges of 0.2 to 0.5 MPa.
- The uncertainty in the regions where data are scarce or nonexistent depends on the level of extrapolation from data-based regions. The uncertainty is expected to be small at conditions slightly beyond the range of data, but it becomes larger as the extrapolation is further beyond this range.
- Since the derivation of the 2006 CHF LUT, additional data sets have become available. Sections II-2 and II-3 of Appendix II provide references to the additional data sets. These additional data sets can be used to update the CHF LUT or to independently validate the CHF LUT.
- The CHF LUT was derived based on data from 62 data sets obtained during the past 65 years. Some data lack sufficient information to assess the uncertainty of the data. The ideal (but expensive) approach for removing the uncertainty in the database is to perform an extensive CHF experimentation by a reputable thermal-hydraulic laboratory covering all attainable² conditions of the CHF LUT.

² Some conditions correspond to critical flow; estimated CHF values were included in the LUT only to facilitate extrapolation from adjacent CHF conditions.

8 **REFERENCES**

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1965), "Measurements of Burnout Heat Flux in Uniformly Heated Round Tubes at 1,000 psia," AERE-R 5055, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1967), "Heat Transfer to Steam-Water Mixtures Flowing in Uniformly Heated Tubes in Which the Critical Heat Flux Has Been Exceeded," AERE-R 5373, Atomic Energy Research Establishment, Harwell, United Kingdom.

Bergles, A.E. (1963), "Subcooled Burnout in Tubes of Small Diameter," American Society of Mechanical Engineers Winter Annual Meeting, Philadelphia, PA, November 17–22, 1963, Paper No. 63-WA-182.

Clerici, G.C., S. Garriba, R. Sala, and A. Tozzi (1966), "Catalogue of Burnout Correlations for Forced Convection in the Quality Region," USAEC Rep. EURAEC-1729, United States-Euratom Joint Research and Development Program, Washington, DC.

DeBortoli, R.A., S.J. Green, B.W. LeTourneau, M. Troy, and A. Weiss (1958), "Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressures above 500 psia," WAPD-188, Westinghouse Atomic Power Division, Westinghouse Electric Corporation, Pittsburgh, PA, October 1958.

Dell, F.R., G.F. Hewitt, R.K.F. Keeys, and R.A. Stinchcombe (1969), "Burnout Heat Flux Measurements in a Long Tube," AERE-M 2216, Atomic Energy Research Establishment, Harwell, United Kingdom, June 1969, 16 pages.

Doerffer, S., D.C. Groeneveld, S.C. Cheng, and K.F. Rudzinski (1994), "A Comparison of Critical Heat Flux in Tubes and Annuli," *Nuclear Engineering and Design* 149:167–175.

Doerffer, S., D.C. Groeneveld and S.C. Cheng (1997), "A Comparison of Critical Heat Flux in Tubes and Bilaterally Heated Annuli," *Nuclear Engineering and Design* 177:105–120.

Doroshchuk, V.E., I.L. Levitan, and F.P. Lantzman (1975), "Investigation into Burnout in Uniformly Heated Tubes," 75-WA/HT-22, American Society of Mechanical Engineers, New York, NY.

Durmayaz, A., D.C. Groeneveld, and S.C. Cheng (2004), "Assessment of Critical-Heat-Flux Look-Up Tables, Experimental Data and Selected Correlations," in the Proceedings of the 6th International Conference on Simulation Methods in Nuclear Engineering, October 12–15, 2004, Montreal, Quebec, Canada.

Era, A., G.P. Gaspari, A. Hassid, A. Milani, and R. Zavattarelli (1966), "Heat Transfer Data in the Liquid Deficient Region for Steam-Water Mixtures at 70 kg/cm² Flowing in Tubular and Annular Conditions," CISE-R-184, Centro Informazioni Studi Esperienze (CISE), Milan, Italy, June 1966, 108 pages.

Firstenberg, H., S. Preiser, K. Goldmann, G. Rabinowitz, and L. LoBianco (1960), "Compilation of Experimental Forced-Convection, Quality Burnout Data with Calculated Reynolds Numbers," NDA-2131-16, U.S. Atomic Energy Commission, Washington, DC, June 1960, 60 pages.

Groeneveld, D.C. (1986), "The Onset of Dry Sheath Condition—A New Definition of Dryout," *Nuclear Engineering and Design* 92:135–140.

Groeneveld, D.C., S.C. Cheng, and T. Doan (1986). "1986 AECL-UO Critical Heat Flux Lookup Table," *Heat Transfer Engineering* 7:46–62.

Groeneveld, D.C., L.K.H. Leung, P.L. Kirillov, V.P. Bobkov, I.P. Smogalov, V.N. Vinogradov, X.C. Huang, and E. Royer (1996), "The 1995 Look-Up Table for Critical Heat Flux in Tubes," *Nuclear Engineering and Design* 163:1–23.

Groeneveld, D.C., L.K.H. Leung, P.L. Kirillov, F.D. Auria, N. Aksan, A. Badulescu, W.-P. Baek, M.K. Chung, and J. Cleveland (1999), "A General Critical Heat Flux Prediction Method for Advanced Water-Cooled Reactors," in the Proceedings of the 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CA, October 3–8, 1999.

Groeneveld, D.C., I.L. Pioro, Y. Guo, S.C. Cheng, Yu.V. Antoshko, and A.Z. Vasic (2001), "Experimental and Analytical Study of the Effect of Flow Obstacles on the Critical Heat Flux," in the Proceedings of the 4th World Congress on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Thessalonika, Greece.

Groeneveld, D.C., J.Q. Shan, A.Z. Vasic, L.K.H. Leung, A. Durmayaz, J. Yang, S.C. Cheng, and A. Tanase (2007), "The 2006 CHF Look-Up Table," *Nuclear Engineering and Design* 237: 1909–1922.

Hall, D.D., and I. Mudawar (2000), "Critical Heat Flux (CHF) for Water Flow in Tubes—I. Compilation and Assessment of World CHF Data," *International Journal of Heat and Mass Transfer* 43(14):2573–2604, July 2000.

Herkenrath, H., P. Mörk-Mörkenstein, U. Jung, and F.J. Weckermann (1967), "Warmeubergung an Wasser bei Erzwungener Stromung in Druckbereich von 140 bis 250 bar," EUR-3658d, European Atomic Energy Community (EURATOM).

Hewitt, G.F., and N.S. Hall-Taylor (1970), "Annular Two-Phase Flow," Pergamon Press, Oxford, United Kingdom.

Hewitt, G.F., H.A. Kearsey, P.M.C. Lacey, and D.J. Pulling (1965), "Burnout and Film Flow in the Evaporation of Water in Tubes," AERE-R 4864, Atomic Energy Research Establishment, Harwell, United Kingdom, March 1965, 58 pages.

Hood, J.J., and L. Isakoff (1962), "Heavy Water Moderated Power Reactors," DP-755, E.I. du Pont de Nemours and Company, Wilmington, DE, July 1962, 38 pages.

Huang, X.C., and S.C. Cheng (1994), "Simple Method for Smoothing Multidimensional Experimental Data with Application to the CHF and Post Dryout Look-Up Tables," *Numerical Heat Transfer, Part B* 26(4,):425-438, December 1994.

Ivey, H.J., and D.J. Morris (1962), "On the Relevance of the Vapour-Liquid-Exchange Mechanism for Subcooled Boiling Heat Transfer at High Pressures," AEEW-R 137, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Katto, Y. (1992), "A Prediction Model of Subcooled Water Flow Boiling CHF for Pressure in the Range 0.1–20 MPa," *International Journal of Heat and Mass Transfer* 35(5):1115–1123.

Kirillov, P.L. (1997), "1995 Look-Up Table for Calculating the Critical Heat Flux," addendum and comments, *Thermal Engineering* 44(10):841–850.

Kirillov, P.L., V.P. Bobkov, E.A. Boltenko, I.B. Katan, I.P. Smogalev, and V.N. Vinogradov (1991a), "New CHF Table for Water in Round Tubes," IPPE-2225, Institute of Physics and Power Engineering, Obninsk, Russia.

Kirillov, P.L., V.P. Bobkov, E.A. Boltenko, V.N. Vinogradov, I.B. Katan and I.P. Smogalev, (1991b), "Lookup Tables of Critical Heat Fluxes," *Atomnaya Energiya* 71:18–28 (in Russian).

Kirillov, P.L., V.P. Bobkov, E.A. Boltenko, V.N. Vinogradov, A.A. Ivashkevitch, I.B. Katan, and I.P. Smogalev (1989a), "A Method of the Development of Standard CHF Data for Tubes with Uniform Heat Flux," F.E. Dzerzhinskii, All-Union Heat Engineering Institute, FEI-2030, Obninsk, Russia (in Russian).

Kirillov, P.L., V.P. Bobkov, V.N. Vinogradov, V.S. Donisov, A.A. Ivashkevitch, I.B. Katan, E.I. Paniutchev, I.P. Smogalev, and O.B. Sal'nikova (1989b), "On Standard Critical Heat Flux Data for 10 mm ID Tubes," in the Proceedings of the 4th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, Volume 1, pp. 103–108, Karlsruhe, Germany.

Lee, D.H. (1965), "An Experimental Investigation of Forced Convection Burnout in High-Pressure Water. Part III: Long Tubes with Uniform and Nonuniform Heat Flux," AEEW-R 355, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Lee, C.H., and I. Mudawar (1988), "A Mechanistic Critical Heat Flux Model for Subcooled Flow Boiling Based on Local Bulk Flow Conditions," *International Journal of Multiphase Flow* 14:711–728.

Lee, D.H., and J.D. Obertelli (1963), "An Experimental Investigation of Forced Convection Boiling in High Pressure Water," AEEW-R 213, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Leung, A., S. Banerjee, and D.C. Groeneveld (1982), "Investigation of the Effects of Heater Characteristics on CHF Performance of a Long Vertical Annulus in High Pressure Water," in the Proceedings of the 7th International Heat Transfer Conference, Volume 4, pp. 303–308, Munich, Germany.

Lowdermilk, W.H., C.D. Lanzo, and B.L. Siegel (1958), "Investigation of Boiling Burnout and Flow Stability for Water Flowing in Tubes," NACA-TN-4382, National Advisory Committee for Aeronautics (NACA), Cleveland, OH, September 1958.

Matzner B., E.O. Moeck, J.E. Casterline, and G.A. Wikhammer (1965), "Critical Heat Flux in Long Tubes at 1,000 psi with and without Swirl Promoters," 65-WA/HT-30, AECL-2446, Proceedings of the American Society of Mechanical Engineers, New York, NY, 16 pages.

Mayinger F., O. Schad, and E. Weiss (1966), "Untersuchung der kritischen Heizflachenbelastung (Burnout) bei sieden dem Wasser, Investigation into the Critical Heat Flux in Boiling," Report No. 09.03.01, Maschinenfabrik Augsburg-Nurnberg AG, Munich, Germany, May 1966.

McAdams, W.H., C.S. Minden, R. Carl, D.M. Picornell, and J.E. Dew (1949), "Heat Transfer at High Rates to Water with Surface Boiling," *Journal of Industrial and Engineering Chemistry* 41:1945–1953.

Mishima, K., et al. (1985), "Boiling Burnout and Instability for Water Flowing in Round Tubes under Atmospheric Pressure," *International Journal of Heat and Mass Transfer* 28(6): 1115–1129.

Mishima, K., et al. (1987), "Effect of Channel Geometry on Critical Heat Flux for Low Pressure Water," *International Journal of Heat and Mass Transfer* 30(6):1169–1182.

Tain, R.M., D.C. Groeneveld, and S.C. Cheng (1995), "Limitations of the Fluid-to-Fluid Scaling Techniques for Critical Heat Flux in Flow Boiling," *International Journal of Heat and Mass Transfer* 38:2195–2208.

Taitel, Y., and A.E. Dukler (1975), "A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas/Liquid Flow," 750WA/HT829, American Society of Mechanical Engineers, New York, NY, and *also AIChE Journal* 22.

Tanase, A., et al. (2009), "Diameter Effect on the Critical Heat Flux," *Nuclear Engineering and Design* 239:289–294

Thompson, B., and R.V. MacBeth (1964), "Boiling Water Heat Transfer Burnout in Uniformly Heated Round Tubes: A Compilation of World Data with Accurate Correlations," AEEW-R 359, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Tong, L.S. (1965), "Boiling Heat Transfer and Two-Phase Flow," John Wiley & Sons, New York, NY.

Tong, L.S. (1968), "Boundary-Layer Analysis of the Flow Boiling Crisis," *International Journal of Heat and Mass Transfer* 11:1208–1211.

Tong, L.S., and G.F. Hewitt (1972), "Overall View Point of Flow Boiling CHF Mechanisms," 72-HT-54, American Society of Mechanical Engineers, New York, NY.

Weisman, J. (1992), "The Current Status of Theoretically Based Approaches to the Prediction of the Critical Heat Flux in Flow Boiling," *Nuclear Technology* 99:1–21, July 1992.

Weisman, J., and B.S. Pei, (1983), "Prediction of Critical Heat Flux in Flow Boiling at Low Qualities," *International Journal of Heat and Mass Transfer* 26:1463–1477.

Wong, Y.L., D.C. Groeneveld, and S.C. Cheng (1990), "CHF Predictions in Horizontal Tubes," *International Journal of Multiphase Flow* 16:123–138.

Wong, W. (1994), "Effect of Diameter on the Critical Heat Flux," Master of Applied Science Thesis, Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada. Ying, S.H., and J. Weisman (1986), "Prediction of the CHF in Flow Boiling at Intermediate Qualities," *International Journal of Heat and Mass Transfer* 29(11):1639–1648.

Zenkevich, A. (1974), "Analysis and Generalization of Experimental Data on Heat Transfer Crisis Associated with Forced Convection of Cooling Water in Tubes," AECL-Tr-Misc.-304, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.

Zuber, N. (1959), "Hydrodynamic Aspects of Boiling Heat Transfer," Ph.D. Thesis, AECU-4439, Research Laboratory, Los Angeles and Ramo-Wooldridge, University of California Los Angeles, California.

APPENDIX A

SUMMARY DESCRIPTIONS OF CRITICAL HEAT FLUX EXPERIMENTAL DATA USED TO DERIVE THE 2006 CRITICAL HEAT FLUX LOOKUP TABLE

Alekseev et al. (1964)

The original reference is in Russian and did not contain the numerical data, but the data plots were of good enough quality for extraction using graphical digitization techniques. However, the data used for the lookup table (LUT) derivation were taken from Kirillov's database (1,064 data points were labeled as "Alekseev 1964"), which was in digital form and was transferred to the University of Ottawa (UofO) in 1991. Kirillov presumably obtained the Alekseev et al. data directly from Alekseev. The table below lists the ranges of conditions of the data set.

No. of Data Points	a Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
1,064	10.00 10.01	1.000 4.966	9,800 19,610	216 7,566	-0.866 0.944	57 1,398	134 4,949	139.77 357.93

REFERENCE:

Alekseev, G.V., B.A. Zenkevich, O.L. Peskov, N.D. Sergeev, and V.I. Subbotin (1964), "Burn-Out Heat Fluxes under Forced Water Flow," in the Proceedings of the 3rd United Nations International Conference on the Peaceful Uses of Atomic Energy, A/CONF.28/P/327a, International Atomic Energy Agency, Vienna, Austria, pp. 295–304.

Alessandrini et al. (1963)

Alessandrini et al. (1963) obtained data for upward flow of steam-water mixtures in vertical tubes. The data set contained 753 data points of which 161 were used to derive the 2006 LUT. The two test sections (G1 and G2) were made from seamless American Iron and Steel Institute (AISI) Type 321 (G1) or 304 (G2) stainless steel tubing. The heated length varied from 0.796–2.456 meters with a uniform heat flux distribution. The inlet quality varied from 0.208 to 0.677. The following effects were also investigated:

- the effect of the heated length (L) or of the length-to-diameter (L/D) ratio on the CHF
- the influence of a mixer at the inlet of the test section and a steam separator at the outlet of the test section on the critical heat flux (CHF)
- the effect of an intermediate nonheated section between two heated sections

The table below lists the ranges of conditions that the CHF test covered.

Tube Diameter	Tube Length	Heated Length	Pressure	Mass Flux	Local Quality	Heat Flux	Inlet Temperature
mm	m	m	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
15.2 (G2) 24.9 (G1)	2.917 (G1) 2.916 (G2)	0.796 2.456	4,874 5,099	1,080 3,990	-0.05 0.74	214 3,662	186 266

REFERENCE:

Alessandrini, A., G. Peterlongo, and R. Ravetta (1963), "Large Scale Experiments on Heat Transfer and Hydrodynamics with Steam-Water Mixtures: Critical Heat Flux and Pressure Drop Measurements in Round Vertical Tubes at the Pressure of 51 kg/cm² abs.," CISE-R-86, Centro Informazioni Studi Esperienze (CISE), Milan, Italy.

Babarin et al. (1969)

The Babarin et al. (1969) CHF data set for upward flow in a smooth tube contained 163 data points. The test section was a vertical, uniformly heated stainless steel tube with a 12-millimeter (mm) inner diameter (ID) and a heated length varying from 0.96 to 1.8 m. The quality was calculated from a heat balance. Because the CHF equals zero at the maximum critical quality of 1.0 and this data set has 49 CHF data points with quality greater than 1, the accuracy of the complete data set is in question. The table below lists the ranges of conditions covered by the CHF test.

Tube Diameter	Tube Length	Pressure	Mass Flux	Heat Flux	Thermodynamic Quality	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	kW m⁻²	-	°C
12	0.96 1.8	290 304	50 500	190 2,300	0.4665 1.0903	15 124

REFERENCE:

Babarin, V.P., R.I. Sevast'yanov, and I.T. Alad'yev (1969), "A Special Hydrodynamic Effect on the Boiling Crisis in Tubes," Heat Transfer—Soviet Research 1(4):34–41, July 1969.

Babcock and Hood (1962)

The Babcock and Hood 1962 data are virtually the same as the Hood (1962) data although Hood (1962) has approximately 50 percent more data, which is not surprising because the source is also the same. The slight differences (within a few percentage points) are probably the result of the different unit conversions and properties used. The table below lists the test conditions.

Number of data points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
39	8.00 22.5	0.61	413 6,890	2,946 11,452	-0.187 -0.05	202 639	4,876 10,546	19 177

REFERENCES:

Hood, J.J. (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. du Pont de Nemours and Company, Wilmington, DE, April 1962, 53 pages.

Babcock, D.F., and R.R. Hood (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. Dupont de Nemours and Company, Wilmington, DE.

Baek (2001)

An electronic copy of this data set was obtained in private communication with the author, W.-P. Baek, from the Korean Advanced Institute of Science and Technology (KAIST). This data set is sometimes referred to as "Baik (2001)." Details of the experiment are not known except that the CHF corresponds to a sharp wall temperature rise of about 100 degrees Kelvin above the saturation temperature. This data set contains 63 data points of which 34 were used for the LUT derivation. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Heat Flux	Critical Quality	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	kW m ⁻²	-	°C
6.0 10.0	0.180 0.480	30.0 80.0	101.0 3,618.0	299.0 2,032.0	1,222.0 7,412.8	-0.109 0.099	5.9 40.2

REFERENCE:

Baek, W.-P. (2001), KAIST, Korea. Data obtained through private communication with D.C. Groeneveld.

Bailey (1977)

The vertical test section was made from a 15-mm-ID (18-mm outside diameter) Inconel tube and had a uniformly heated length of 5.4 meters. The test section was instrumented with 58 thermocouples attached to the tube in diametrically opposed pairs, generally every 76 mm. The experiments were performed by measuring the CHF occurrence at the outlet and by subsequently increasing the power such that the CHF spread upstream and post-CHF temperatures could be measured. The report contains tables of CHF data. The table below lists ranges of flow parameters.

Tube Diameter	Pressure	Mass Flux	Heat Flux	Thermodynamic Quality	Surface Temperature
mm	kPa	kg m ⁻² s ⁻¹	kW m ⁻²	-	°C
15	1,370 6,990	49 668	84 799	0.78 1.21	200 697

The post-CHF temperatures can be extracted from Figures 8–17 (Bailey, 1977) in which the wall temperature is plotted as a function of thermodynamic quality.

REFERENCE:

Bailey, N.A. (1977), "Dryout and Post Dryout Heat Transfer at Low Flow in a Single Tube Test Section," AEEW-R 1068, United Kingdom Atomic Energy Authority, Harwell, United Kingdom (United Kingdom).

Bailey and Lee (1969)

This CHF data set contains 158 data points. The test section consisted of a vertical tube through which the water flowed upwards. The tube was made from commercial stainless steel-grade AISI 316. Inlet and outlet bulk temperatures were measured with chromel-alumel thermocouples. For greater accuracy, Chromel/Constantan thermocouples were used for the wall temperature measurement. The table below lists the ranges of flow parameters.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
158	9.30	3.05	6,895 18,340	958 4,242	0.069 0.727	54 604	344 2,221	199 347

REFERENCE:

Bailey, N.A., and D.H. Lee (1969), "An Experimental and Analytical Study of Boiling Water at 2,000 to 2,600 psi. Part I: Dryout and Post-Dryout Heat Transfer," AEEW-R 659, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Becker et al. (1963)

This experiment obtained 809 burnout measurements covering the conditions listed in the table below.

Tube Diameter	Heated Length	Pressure	Mass Flux	Steam Quality	Heat Flux	Inlet Subcooling
mm	mm	kg cm-2	kg m ⁻² s ⁻¹	-	W cm ⁻²	°C
$\begin{array}{c} 10.04 \\ (except \mbox{ for } L_{h} = 600 \mbox{ mm} \\ \mbox{where the ID} = 9.9 \mbox{ mm}) \end{array}$		5.3 37.3	100 1,890	0.20 0.95	50 515	56 212

In the graphically presented results, the burnout steam quality (X) was plotted against the pressure with the surface heat flux as parameter. This report did not tabulate any data. After cross-checking the data, it was found that Table 1.2 in AE-177 (Becker et al., 1965) also contains the data (i.e., Report AE-177 contains a compilation of all Swedish tube CHF data up to 1965).

The test section was made of stainless steel tube and was 2,800 mm long with a 10.04-mm ID. During the first test series, the copper power clamps were placed in such a way that the heated length was 2,500 mm. Afterwards, the lower power clamp was moved upwards in steps of 250 mm so that heated lengths of 2,250, 2,000, 1,750, 1,500, 1,250, and 1,000 mm were obtained. In addition, the report includes runs performed with a test section having a 9.96-mm ID and 600-mm heated length.

To protect the test section, a burnout detector was used to switch off the power supply when excessive temperatures occurred in the last 100-mm length of the test section. The excessive temperature often occurred suddenly, indicating that burnout conditions had been reached. Burnout always occurred just below the upper power clamp.

REFERENCES:

Becker, K.M., P. Persson, L. Nilsson, and O. Eriksson (1963), "Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts," AE-114 (Part 2), Aktiebolaget Atomenergi, Stockholm, Sweden.

Becker, K.M., O. Hernborg, M. Bode, and O. Eriksson (1965), "Burnout Data for Flow of Boiling Water in Vertical Round Ducts, Annuli and Rod Clusters," AE-177, Aktiebolaget Atomenergi, Stockholm, Sweden.

Becker (1965)

AE-177 (Becker et al., 1965) and AE-178 (Becker, 1965) basically compile all Swedish CHF data up to 1965.

Table I of AE-177 contains the tables of the burnout data obtained in Sweden by Becker for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Stockholm, Sweden. The data are a compilation of Swedish CHF data obtained in tubes, annuli, and three- and seven-rod clusters.

Table I in AE-177 contains 3,473 round tube data points, including the tube CHF data of Becker et al. (1963), as follows:

- Table I.1 in AE-177 contains 571 data points that are also found in CD Spreadsheet "CHF Data for 2006 LUT.xls" (#901–1459).
- Table I.2 in AE-177 contains about 1,787 data points. The first 162 data points are also found in CD Spreadsheet "CHF Data for 2006 LUT.xls" (#1490–1649). Runs 163–971 are the same data from AE-114 (Becker et al., 1963) and are found in CD Spreadsheet "CHF Data for 2006 LUT.xls" #1650-2458. For run numbers greater than 971, the data are again found in CD Spreadsheet "CHF Data for 2006 LUT.xls", while some of the runs are duplicated in Table 1.2 in AE-178.

- The 273 CHF data points in Table 1.3 in AE-177 are also found in CD Spreadsheet "CHF Data for 2006 LUT.xls" while some of the data are duplicated in Table 1.3 in AE-178. All data in CD Spreadsheet "CHF Data for 2006 LUT.xls" were used to derive the 2006 CHF LUT.
- Table I.4 in AE-177 contains 811 CHF data points that also appear in Table 1.4 in AE-178, but Table 1.4 in AE-177 contains an additional 32 data points obtained in a 20.02-mm tube. The first 665 runs are also in the CD Spreadsheet "CHF Data for 2006 LUT.xls" (#5005–5664).

The tables in AE-178 include the following:

- Table I in AE-178 comprises Table 1.2 (P = 2.7–31), Table 1.3 (P = 41), and Table 1.4 (P > 41 kilograms per square meter (kg/m2)). Table I.2 contains about 460 Swedish CHF data points, Table I.3 contains about 28 data points, and Table I.4 contains about 770 CHF data points (in total, about 1,258 data points). In Table 1.4 of AE-178, runs 1–665 were the same as CD Spreadsheet "CHF Data for 2006 LUT.xls" runs (#5005–5664). However, runs 666–861 of Table I.4 obtained in 19.93- and 24.95-mm tubes could not be located in the CD Spreadsheet "CHF Data for 2006 LUT.xls" database because the tube diameter greater than 16 mm was possibly outside the range of interest of the CHF LUT.
- Table II in AE-178 contains about 400 tube CHF data points labeled as "Columbia University Ref. 7," which refers to the following report:
 - Babcock, D.F. (coordinator), "Heavy Water Moderated Power Reactors,"
 Progress Reports May–June 1963 and January–February 1964, Atomic Energy
 Commission Research and Development Reports DP-855 and DP-895,
 Savannah River Laboratory, Aiken, South Carolina.
- These data were obtained in tubes with IDs ranging from 6.22 to 37.47 mm and pressures ranging from 52.7 to 105.7 kilograms per square centimeter (kg/cm²). These data apparently were not used for the 2006 CHF LUT derivation.
- Table III of AE-178 contains 626 CHF tube measurements labeled as "Winfrith Data Ref. 13," which refers to the following reference:
 - Lee, D.H., and J.D. Obertelli (1963), "An Experimental Investigation of Forced Convection Boiling in High Pressure Water," AEEW-R 213, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.
- The Table III data were obtained in tubes with IDs ranging from 5.59 to 11.46 mm and pressures ranging from 40 to 135 kg/cm². The original Lee and Obertelli reference is contained in the supplementary CHF database in Section 6.3, but these data were not used for the 2006 CHF LUT derivation.

The table below lists test conditions taken from AE-178. The 811 CHF measurements were obtained in a tube with an ID of 9.98 mm. Reference is also made to the earlier 488 measurements by Becker in tubes at pressures of 2.7, 10, 20, and 30 kg/cm², which appear in Table 1.2 in AE-178.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	К	kW m ⁻²
811	9.98	1–3.5	4,100– 10,100	222–3,477	0.01–0.98	56–240	510–4,340
?	3.93– 24.97	1–2.5	3,100–7,100	220–5,450	0–0.96	53–230	1,000–5,700

The processed data appear to be confusing. Runs 1–843 of the processed data correspond to the data of Table I.4 in both AE-177 and AE-178. However, the authors have been unable to find the source of the data for runs 1001–1500. These data appear in the CD Spreadsheet "CHF Data for 2006 LUT.xls" file (#5666–6049).

REFERENCES:

Becker, K.M. (1965), "An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts," AE-178, Aktiebolaget Atomenergi, Stockholm, Sweden.

Becker, K.M., O. Hernborg, M. Bode, and O. Eriksson (1965), "Burnout Data for Flow of Boiling Water in Vertical Round Ducts, Annuli and Rod Clusters," AE-177, Aktiebolaget Atomenergi, Stockholm, Sweden.

Becker (1970)

The purpose of this experiment was to investigate the CHF at conditions not covered by Becker's previous experiments (i.e., in tubes with an ID of 2.40, 3.00, and 36.05 mm at pressures of 30, 50, and 70 bar). The small diameter tubes had a heated length of 500 mm, and the heated length of the large diameter tube was 1,880 mm. Because of limitations on the available power supply, only low-flow (95–428 kilograms per square meter per second (kg m⁻² s⁻¹) CHF measurements were possible for the large diameter tube. The mass flux range for the small diameter tube was 290 to 2,725 kg m⁻² s⁻¹. The report tabulated the CHF measurements. Of the 113 CHF measurements obtained in the 2.4- and 3.0-mm tubes, 69 were included in the CD Spreadsheet "CHF Data for 2006 LUT.xls" data file (#13142–13211) and were used in the 2006 LUT derivation. The 47 CHF measurements obtained for the tube with an ID of 36.03 mm were not used in the derivation of the 2006 LUT because the diameter was too large.

Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
2.40 36.05	0.500 1.880	3,050 7,100	93.3 2,725	0.207 0.903	371 1,065	1,026 5,130	51.75 113.22

REFERENCE:

Becker, K.M. (1970), "Burnout Measurements in Vertical Round Tubes, Effect of Diameter," TPM-RL-1260, Aktiebolaget Atomenergi, Teknisk PM, Stockholm, Sweden, December 1970, 16 pages.

Becker et al. (1971)

This report contains a large amount of data (1,650 data points) obtained in 10-mm-ID tubes with a heated length of 1, 2, 3, and 4.966 meters (Becker et al., 1971). This database contains 90 CHF data points obtained in a 10-mm-ID tube having a 2-meter heated length with pressures of 3-, 5-, 7-, and 9 megapascals (MPa). These data points, also reported by Nilsson (1970), were used as part of the European CHF reproducibility exercise (CISE, 1970). The database used to derive the LUT (see CD Spreadsheet "CHF Data for 2006 LUT.xls") contains 1,435 data points (Data #13240–14674 from Becker et al. (1971)) obtained in about 10-mm-ID tubes.

Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
10.00 10.01	1.000 4.966	3,000 20,000	156 8,111	-0.866 1.061	26 1,414	135 5,476	124.75 358.65

REFERENCES:

Becker, K.M., G. Strand, D. Djursing, O. Eklind, K. Lindberg, and C. Österdahl (1971), "Round Tube Burnout Data for Flow of Boiling Water at Pressures Between 30 and 200 bar," KTH-NEL-14, Royal Institute of Technology, Stockholm, Sweden.

Nilsson, L. (1970), "Repeatability Tests of Critical Heat Flux Data for 1970 Meeting of the European Two-Phase Flow Group, Comparison of Results by Becker's Burnout Correlation," AE-TPM-RL-1229, Aktiebolaget Atomenergi, Stockholm, Sweden, June 1970, 24 pages.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," CISE Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970.

Bennett et al. (1965)

Bennet et al. (1965) performed the CHF experiments in the United Kingdom Atomic Energy Authority's Harwell high-pressure loop using stainless steel tubular test sections. Most tests were performed inside 0.497-inch tubes, but tests using a limited test matrix were also performed in tubes with a nominal 3/8-inch bore. The latter tests investigated the effect of wall thickness by varying the thickness from 0.036 inch to 0.082 inch. The effect was negligible.

ſ	No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
ſ	number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
	201	9.22 12.62	1.524 5.563	6,612 7,481	623.8 5,844.4	0.026 0.948	21 691	589.6 3,299.7	157.67 279.45

REFERENCE:

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1965), "Measurements of Burnout Heat Flux in Uniformly Heated Round Tubes at 1,000 psia," AERE-R 5055, United Kingdom Atomic Energy Authority, Harwell, UK.

Bergelson (1980)

The data set labeled as "Bergelson" was used for the 2006 LUT derivation and was part of the data compilation transferred to UofO by Kirillov. The paper labeled as "Bergelson (1980)" does not contain these data; instead, it contains only subcooled CHF data obtained under forced convective conditions in several fluids, including a few water data, in graphical form. The table below lists the ranges of CHF test conditions.

No. of Data Points	a Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg-1	kW m ⁻²	°C
328	8.00	0.241 0.400	170 3,080	1,927 7,078	-0.295 0.090	96 853	3,511 14,571	28.94 169.20

REFERENCE:

No reference.

Bergles (1963)

Bergles performed subcooled CHF tests at the Massachusetts Institute of Technology test facility using small-diameter tubing (stainless steel) at low pressure with variable wall thickness (0.006 to 0.036 inch) and short heated lengths. The effect of wall thickness was found to be insignificant. The CHF decreased with increasing diameter. The table below lists the ranges of flow conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
117	0.62 6.21	0.011 0.155	140 586	1,518.7 24,272.4	-0.137 0.111	25 534	4,957.1 44,713	3.10 116.55

The data were extracted from Figures 3–8 (Bergles, 1963) using graphical digitization techniques. This introduces additional errors. Only seven data points were used for the 2006 LUT derivation.

REFERENCE:

Bergles, A.E. (1963), "Subcooled Burnout in Tubes of Small Diameter," 63-WA-182, American Society of Mechanical Engineers Winter Annual Meeting, Philadelphia, PA, November 17–22, 1963.

Borodin and Macdonald (1983) and Leung (1982)

These two references refer to the same data set, which was measured by Borodin and MacDonald (1983) at Atomic Energy of Canada Limited (AECL) in Chalk River, Ontario, Canada, but analyzed by Leung (1982). Because of the restricted distribution of this data, the test parameters and CHF data are not included here.

REFERENCES:

Borodin, A. (1983), AECL Internal Report CRNL-2538. Restricted Distribution.

Leung, A. (1982), "A study of the CHF Performance of Light and Heavy Water in Long Vertical Tubes," AECL Power Projects Report AI-1024, Sheridan Park, Canada. Restricted Distribution.

Burck and Hufschmidt (1965)

CHF measurements were obtained for subcooled water in directly heated 10-mm-ID tubes. The tube material was not specified (likely stainless steel). The authors refer to a special burnout detector, which was described elsewhere (i.e., the reference is not available). The table below lists the ranges of flow conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
143	10.0	0.35	1,100 3,090	917 3,756	-0.246 0.087	532 939	4,500 12,200	16.7 60.8

REFERENCE:

Burck, E., and W. Hufschmidt (1965), "Measurement of the Critical Heat-Flux-Density of Subcooled Water in Tubes at Forced Flow," EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, Translated by J.B. Hopkinson, July 1969, LIB/TRANS 210, 40 pages.

Celata et al. (1992a)

This data set is referred to as "Celata et al. (1992a)" in Table 4-2 of this report. Tests were performed in 6- and 8-mm-ID tubes having a wall thickness of 0.25 mm and very short heated

lengths (10 to 15 centimeters (cm)). Because of the high subcooling, the CHF was very high, which physically damaged the test section when CHF conditions were reached. The table below lists the ranges of flow conditions.

No. of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
60	6.00 8.00	0.10 0.15	398 5,120	2,019 10,046	-0.517 -0.106	350 1,018	7,428 29,514	29 81

REFERENCE:

Celata, G.P., M. Cumo, and A. Mariani (1992a), "CHF in Highly Subcooled Flow Boiling with and without Turbulence Promoters," Meeting of the European Two-Phase Flow Group, Paper C1, Stockholm, Sweden, June 1–3, 1992, 14 pages.

Celata et al. (1992b)

This data set is referred to as "Celata et al. (1992b)" in Table 4-2 of this report. Tests were performed in 2.5- and 5-mm-ID tubes made of Type 304 stainless steel and short (20- to 40-cm) heated lengths. Because of the high subcooling, the CHF was very high, which physically damaged the test section when CHF conditions were reached. The table below lists the range of flow conditions.

No. of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
78	2.50 5.00	0.20 0.40	107 2,181	2,166 32,637	-0.091 0.287	345 790	5,347 42,777	19 55

REFERENCE:

Celata, G.P., M. Cumo, and A. Mariani (1992b), "Subcooled Water Flow Boiling CHF with Very High Heat Fluxes," Revue Générale de Thermique 31(362):106–114.

Celata and Mariani (1993)

The Celata and Mariani (1993) database contains 1,887 CHF data points from 23 references that had been scanned and digitized in the 1990s; 1,357 of these data points were obtained in round tubes and were tabulated separately. This database was transferred to UofO by G.P. Celata (see Celata (1993) below).

The data are from (1) Reference 2 of Celata and Mariani (1993), which is also referred to as "Celata et al. (1993)" (see the *International Journal of Heat and Mass Transfer* article referenced below) and (2) Reference 4 of Celata and Mariani (1993), which is an unpublished report from the Italian National Agency for New Technologies and Sustainable Economic Development (ENEA) and therefore not available.

REFERENCES:

Celata, G.P., and A. Mariani (1992), "A Data Set of Critical Heat Flux in Water Subcooled Flow Boiling," Addendum to the Specialists' Workshop on the Thermal Hydraulics of High Heat Flux Components in Fusion Reactors, ENEA, Casaccia, Rome, Italy, September 9–12, 1992.

Celata, G.P., M. Cumo, and A. Mariani (1993), "Burnout in Highly Subcooled Flow Boiling in Small Diameter Tubes," International Journal of Heat and Mass Transfer 36:1269–1285.

Celata, G.P. (1993), Personal communication letter between G.P. Celata and Professor S.C. Cheng, University of Ottawa, Ottawa, Ontario, Canada, April 22, 1993.

Celata et al. (1993)

These CHF experiments were designed in support of fusion reactors that require very high heat flux removal rates (up to 60 megawatts per square meter) from the diverters. The experiments were performed in small diameter stainless steel (2.5-mm-ID) tubes with a wall thickness of 0.25 mm and a heated length of 100 mm. It is unclear whether Celata et al. (1993) used these data for the LUT derivation. The table below lists the ranges of test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
78	2.50	0.10	578 2,714	11,240 40,000	-0.357 -0.104	387 844	12,113 60,579	30 70.5

REFERENCE:

Celata, G.P., M. Cumo, and A. Mariani (1993), "Burnout in Highly Subcooled Water Flow Boiling in Small Diameter Tubes," International Journal of Heat and Mass Transfer 36(5):1269–1285.

Cheng et al. (1983a, 1983b)

The original references for these two data sets are no longer available. Cheng and his students performed CHF tests on the low-pressure UofO test facility. The table below lists the ranges of test conditions.

No. of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
150	12.60	0.370 0.740	101 687	50 400	0.187 1.227	42 210	331.2 2,115
132	4.80	0.19 0.38	100 700	300 750	0.082 0.765	42 214	889 2,131

REFERENCES:

Cheng, S.C., K.T. Poon, P. Lau, K.T. Heng, T. Doan, and C.Y. Chan (1983a), "CHF Experiments and Construction of CHF Table," University of Ottawa, Ottawa, Ontario, Canada, AECL Contract, 1st Progress Report, July 1982–March 1983.

Cheng, S.C., K.T. Poon, T. Doan, S.K. Chin, and Y.M. Koo (1983b), "CHF Experiments and Construction of CHF Table," University of Ottawa, Ottawa, Ontario, Canada, AECL Contract, Contract Report No. 2, December 1983.

CISE (1970)/Nilsson (1970) European CHF Reproducibility Exercise

Because of concerns that CHF measurements could vary significantly between different laboratories even though the test equipment and the test conditions were nominally identical, the European Two-Phase Group decided to perform a so-called "CHF reproducibility" exercise. The objective of this reproducibility exercise was to determine the variation in CHF measurements between various laboratories. CISE (1970) and Nilsson (1970) reported the results of this exercise. The very large CISE report contains individual chapters written by each of the participating laboratories. Nilsson's report (1970) also contains all individual data sets (i.e., a total of 594 CHF measurements were taken by the participating laboratories) and describes the analysis of the data.

The following organizations/laboratories participated in the exercise:

- AB Atomenergi (AE), Nyköping, Sweden
- Allgemeine Elektricitäts-Gesellschaft AG, Telefunken, Frankfurt am Main, Germany
- Commissariat à l'Energie Atomique, Paris, France
- CISE, Milan, Italy
- EUR, Ispra, Italy
- Maschinenfabrik Augsburg-Nurnberg AG, Munich, Germany
- Società Ricerche Impianti Nucleari (Sorin), Italy
- United Kingdom Atomic Energy Authority, Harwell, United Kingdom

The table below lists the nominal test conditions.

Tube Diameter	Heating Length	Pressure	Mass Flux	Inlet Subcooling
mm	m	MPa	kg m ⁻² s ⁻¹	kJ kg⁻¹
10	2	3, 5, 7, and 9	260 6,000	15 3,235

The above ranges of conditions were the maximum ranges; the ranges of conditions were different for the various laboratories.

The discrepancy in CHF values was expected to be within 10 percent; however, the discrepancy initially exceeded 30 percent. After careful examination of the two outliers (the other laboratories were within 10 percent), two laboratories found inconsistencies in their measurement approach and hardware (which may have given rise to flow instabilities), and one laboratory withdrew its results.

REFERENCES:

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Date—Presentation of Experimental Results," Meeting of the European Two-Phase Group, June 9–11, 1970, Milan, Italy.

Nilsson, L. (1970), "Repeatability Tests of Critical Heat Flux Data for [the] 1970 Meeting of the European Two-phase Flow Group, Comparison of Results by Becker's Burnout Correlation," AE-TPM-RL-1229, Aktiebolaget Atomenergi, Stockholm, Sweden, 23 pages.

Dell et al. (1969)

Burnout heat flux measurements were reported for water flowing upward in a 0.243-inch ID stainless steel tube. Tube lengths of up to 217 inches were used, which gave an L/D ratio higher than that used in previous experiments. CHF occurrence was detected by a Wheatstone bridge at the end of the heated length where CHF occurred first (i.e., because stainless steel has a fairly high temperature coefficient of resistivity, it is suitable for use as a part of the Wheatstone circuit). CHF values were obtained for mass velocities of 1x10⁶, 2x10⁶, and 3x10⁶ pounds per hour per square foot with an outlet pressure of 1,000 pounds per square inch, absolute (psia).

	of Data oints	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
nur	mber	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²
8	82	6.17	0.914 5.512	6,895	14,328.9 4,135.8	0.144 0.779	79 365	492.7 3,340.4

REFERENCE:

Dell, F.R., G.F. Hewitt, R.K.F. Keeys, and R.A. Stinchcombe (1969), "Burnout Heat Flux Measurements in a Long Tube," AERE-M 2216, Atomic Energy Research Establishment, Harwell, United Kingdom, June 1969, 16 pages.

Doerffer (1999)

This proprietary data set belongs to AECL. The electronic copy of this data set was obtained through private communication with the author. An AECL unpublished report contains details of the experiment. Because the data set is proprietary, the test parameters and CHF data are not included here.

REFERENCE:

Personal communication with D.C. Groeneveld (original reference: Doerffer, S. (1999), "Effect of Flow Orientation on CHF in Smooth Tubes," AECL unpublished report).

Doerffer et al. (1997)

This proprietary data set belongs to AECL. The electronic copy of this data set was obtained through private communication with the author. An AECL unpublished report contains details of the experiment. However, a recent paper by Doerffer and Groeneveld (1999) describes the same data set. Because the data set is proprietary, the test parameters and CHF data are not included here.

REFERENCES:

Doerffer, S., K.F. Rudzinski, and D.C. Groeneveld (1997), "Fluid-to-Fluid Modelling of CHF Enhancement in a Tube," AECL unpublished report RC-1922, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.

Doerffer, S., and D.C. Groeneveld (1999), "Fluid-to-Fluid Modelling of CHF Enhancement in a Tube," in the Proceedings of the 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-9), San Francisco, CA, October 3–8, 1999.

Era et al. (1966)

CHF data were extracted from this post-dryout experiment. The accuracy of the results depends on the axial spacing of the thermocouples (20 cm in this experiment) and, therefore, is slightly below that of regular CHF tests. The tests were performed using an 8-mm-ID stainless steel tube with a heated length of 4.8 m. The wall thickness was 1.5 mm. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heating Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
163	5.98	1.602 4.800	6,777 7,049	1,105 3,014.9	0.374 0.952	-1,211 565	109.2 1,960.9

REFERENCE:

Era, A., G.P. Gaspari, A. Hassid, A. Milani, and R. Zavattarelli (1966), "Heat Transfer Data in the Liquid Deficient Region for Steam-Water Mixtures at 70 kg/cm² Flowing in Tubular and Annular Conditions," CISE-R-184, Centro Informazioni Studi Esperienze, Milan, Italy, June 1966, 108 pages.

Griffel (1965)

This thesis contains a large amount of CHF data obtained in different diameter tubes. All tubes were made of Type 304 stainless steel. The flow was vertically upwards. These data were used in the derivation of the CHF LUT. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
397	6.22 37.46	0.610 1.972	3,448 10,343	637.3 18,577.2	-0.209 0.592	45 1,209	1,400.6 8,107.3

REFERENCE:

Griffel, J. (1965), "Forced Convection Boiling Burnout for Water in Uniformly Heated Tubular Test Sections," Doctor of Engineering Science Thesis, Columbia University, New York, NY.

Groeneveld (1985)

Groeneveld (1985) contains a proprietary data set.

REFERENCE:

Groeneveld, D.C. (1985), AECL internal unpublished report, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.

Hewitt et al. (1965)

CHF experiments were performed in directly heated stainless steel tubes with vertical flow upwards. Burnout detector trip wires were attached to the exit end of the test section and were connected to a Wheatstone-type bridge, which detected any difference in electrical resistance (resulting from change in tube temperature) between parts of the test section immediately adjacent to the downstream end and the parts just below that. Any imbalance in the bridge actuated the circuit breaker and cut off the electrical power supply. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
442	9.30	0.229 3.048	101 208	90.9 301	0.160 1.083	-41 383	144 4,013

REFERENCE:

Hewitt, G.F., H.A. Kearsey, P.M.C. Lacey, and D.J. Pulling (1965), "Burnout and Film Flow in the Evaporation of Water in Tubes," AERE-R 4864, Atomic Energy Research Establishment, Harwell, United Kingdom, March 1965, 58 pages.

Hood (1962)

These tests were likely obtained using a similar visual burnout detection as described by Hood and Isakoff (1962) (see the section titled, "Hood and Isakoff (1962)," below). The flow was downwards, which probably would not have affected the results because the flow was quite high. The Babcock and Hood (1962) data are virtually the same as the Hood (1962) data although Hood (1962) has about 50 percent more data. This is not surprising because the source is also the same. The slight differences (within a few percentage points) is probably the result of the different unit conversions and properties used. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
45	8, 12.5, 22.2	0.61	414 8,412	2,156 11,390	-0.25 -0.05	204 1,113	5,741 11,830

REFERENCES:

Hood, J.J. (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. du Pont de Nemours and Company, Wilmington, DE, April 1962, 53 pages.

Babcock, D.F., and R.R. Hood (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. Dupont de Nemours and Company, Wilmington, DE.

Hood and Isakoff (1962)

Stainless steel tubing was used in these CHF tests with upward flow. In most cases, the burnout occurred within 1/2 inch (and never more than 7/8 inch) from the downstream end of the heated part of the tube. Burnout was detected primarily by the **melting of the tube wall** or **observation of an incandescent spot** on the outside of the tube wall. In some tests, burnout was detected by the change in electrical resistance of the last inch of the heated length. The change in resistance was observed with a null-balance circuit (Wheatstone bridge), which was calibrated during the tests in which the melting of the tube wall occurred.

Only about 50 percent of the measurements were used for the LUT derivation; it is unclear why all the 22.2-mm data and some of the other diameter data were excluded. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
24	8.00 22.2	0.60 1.10	6,895	664 2,726	0.001 0.484	66 1,224	3,186 4,637

REFERENCE:

Hood, J.J., and L. Isakoff (1962), "Heavy Water Moderated Power Reactors," DP-755, E.I. du Pont de Nemours and Company, Wilmington, DE, July 1962, 38 pages.

Inasaka and Nariai (1989)

These high-heat flux burnout tests were performed in a 3-mm tube at highly subcooled conditions. The flow was up to 30 megagrams per square meter per second. No CHF detectors were used. The power was increased gradually, and CHF was recorded when the test section melted. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²
29	3.00	0.10	290 1,050	4,300 29,900	-0.188 -0.051	266 626	7,300 44,500

REFERENCE:

Inasaka, F., and H. Nariai (1989), "Critical Heat Flux of Subcooled Flow Boiling with Water," in the Proceedings of the 4th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-4), Karlsruhe, Germany, October 10–13, 1989, Volume 1, pp. 115–120.

Jafri (1993)

The data were obtained from Jafri's doctoral thesis (1993). The data set contains 21 data points for upflow and about 30 data points for downflow. All experimental data refer to the vertical orientation using pure water as a test fluid. The material of test section was Inconel 625 with a wall thickness of 1.65 mm. Eight data points have two phases at the test-section inlet, and the same data points have dryout quality greater than 1; they have been rejected. The table below lists the range of parameters for this data set.

Tube Diameter	Heated Length	L/D Ratio	Pressure	Mass Flux	Local Quality	Inlet Temperature	Heat Flux
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	°C	kW m ⁻²
15.7	2.440	155.414	362 1,060	1,439 7,830	0.0947 1	74.4 265	1,800 5,620

REFERENCE:

Jafri, T.M. (1993), "Analysis of Critical Heat Flux for Vertical Round Tubes," Ph.D. Thesis, Columbia University, New York, NY, 164 pages.

Jens and Lottes (1951)

Jens and Lottes (1951) reported on some very early CHF experiments that were performed in tubes. Table II-V in the report contains the data obtained either at the University of California, Los Angeles (UCLA) (see references below), or at Purdue University by Weatherhead (1950). The analysis did not use the Weatherhead data. The table below lists the ranges covered by the UCLA experiment.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
48	5.74	0.625	3,448 13,790	1,301.8 10,603.9	-0.464 -0.015	279 1310	2,965.3 11,924.4	70.52 285.05

It is not clear which reference below refers to the UCLA report (Boelter (1949), Gunther (1951), or McAdams et al. (1948)).

REFERENCES:

Jens, W.H., and P.A. Lottes (1951), "Analysis of Heat Transfer Burnout, Pressure Drop and Density Data for High-Pressure Water," ANL-4627, Argonne National Laboratory, Lemont, IL, May 1, 1951, 73 pages.

Boelter, L.M.K., et al. (1949), "Boiling Studies," U.S. Atomic Energy Commission Research Contract No. AT-11-1-Gen-9, Progress Report No. 1, U.S. Atomic Energy Commission, Washington, DC, August 1949. Gunther, F.C. (1951), "Photographic Study of Surface-Boiling Heat Transfer to Water with Forced Convection," Transactions of the American Society of Mechanical Engineers, Vol. 73, No. 2, pp. 115-123

McAdams, W.H., J.N. Addonas, and W.E. Kennel (1948), "Heat Transfer at High Rates to Water with Surface Boiling," ANL-4268, reproduced by Argonne National Laboratory, Lemont, IL, December 1948.

Weatherhead, R. (1950), Thesis in Mechanical Engineering, Purdue University, West Lafayette, IN.

Judd and Wilson (1966)

These experiments were performed as part of a series of tests to examine the effect of axial flux shape. This section reports the uniform axial flux distribution (AFD) data. Thermocouples were attached every 1 inch along the downstream part of the test section. The material of the test section was not specified. The table below lists the ranges of conditions covered by the experiment.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
49	11.30	1.829	6,861 13,859	673.9 3,428	0.016 0.776	33 730	593.1 2,668.8	207.11 323.84

REFERENCE:

Judd, D.F., and R.H. Wilson (1966), "Burnout for Flow Inside Round Tubes with Nonuniform Heat Fluxes," BAW-3238-9, Babcock & Wilcox Company, Lynchburg, VA, May 1966, 123 pages.

Kim et al. (2000)

This data set contains 512 CHF data points; however, the author mentions 513 data points. The test sections were made of vertical Inconel 625 tubes through which the subcooled water flowed upwards. Three K-type thermocouples were brazed to the outer surface of the test section to detect CHF. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Critical Quality	Heat Flux	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	kW m⁻²	°C
6.0 12.0	0.300 1.770	41.7 295.0	104.0 951.0	20.0 277.0	0.323 1.251	120.0 1,598.0	20.5 156.3

REFERENCE:

Kim, H.C., W.-P. Baek, and S.H. Chang (2000), "Critical Heat Flux of Water in Vertical Round Tubes at Low Pressure and Low Flow Conditions," Nuclear Engineering and Design 199:49–73.

Kirillov (1984, 1985) CHF Reproducibility Study

Kirillov et al. (1984) compared the results of a unique collaborative CHF experimental investigation performed at 10 different laboratories in the Union of Soviet Socialist Republics (U.S.S.R.). The objective of this collaboration was to compare the CHF obtained in various experimental test facilities at the same nominal conditions.

All CHF experiments were performed in tubes of Kh18N10T steel (i.e., stainless steel consisting of 18-percent chrome and 10-percent nickel) with an ID of 8 mm and a wall thickness of 2 mm. The tube lengths were 1, 3, and 6 meters. All 10 participating laboratories used tubes produced from the same batch. The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
2,470	7.71 8.09	0.990 6.000	6,370 18,040	494 4,154	-0.494 0.981	7 1,537	110 7,700	79.41 350.90

This CHF reproducibility exercise was performed during 1981–1983 and yielded about 2,500 experimental values of the CHF power. No precise references for the various laboratories and their results were given. Kirillov et al. (1984, 1985) referred to them as follows:

- VTI
- F.E. Dzerzhinskii, All-Union Heat Engineering Institute (FEI)
- I. Polzunov, Central Boiler-Turbine Institute (TsKTI)
- V. Kurchatov, Institute of Atomic Energy (IAE)
- Institute of Engineering Thermophysics of the Academy of Sciences of the Ukrainian SSR (ITTF)
- Special Design Office (SDO) "Gidropress"
- NIKIET
- Scientific-Production Union (SPU) "Energiya"
- Kiev Polytechnical Institute (KPI), Ukraine
- Elektrogorsk Research Station (ENIS)

The results show that the spread in CHF power was 16 to 32 percent for the 1-meter heated length and 10 percent for the 3-meter heated length. The spread in CHF on a CHF versus critical quality plot was significantly higher. Additional details of this reproducibility exercise appear in Kirillov (1997). Note that Kirillov and coworkers at the Institute of Physics and Power Engineering (IPPE) in Obninsk originally compiled a CHF database of over 14,000 data points from primarily U.S.S.R. sources (the "IPPE" database). These data were transferred to UofO around 1992.

The original Kirillov database, which Kirillov transferred to Groeneveld in the early 1990s, consisted of six data sets identified by the original experimenter. The reproducibility exercise data reported here were a subset of the original 14,000 data points from IPPE and were labeled as "Kirillov et al., 1984."

REFERENCES:

Kirillov, P.L., O.L. Peskov, and N.P. Serdun (1985), "Control Experiment on Critical Heat Transfer during Water Flow in Pipes," Soviet Atomic Energy 57:858–860, Translation from original article by Kirillov et al. in Atomnaya Energiya 57(6):422–423, December 1984.

Kirillov, P.L. (1997), Addendum and comments to the paper titled, "1995 Look-Up Table for Calculating Critical Heat Flux in Tubes," Thermal Engineering 44(10):841–850.

Kirillov Database (1992)

Kirillov and coworkers at the IPPE in Obninsk, Russia, compiled a CHF database of over 14,000 data points from primarily U.S.S.R. sources. These data were transferred to UofO around 1992. Subsequently, Groeneveld and Kirillov combined their databases, which expanded the total number of data points beyond 29,000. The combined database is referred as the "the AECL-UO-IPPE CHF database," which became the basis of the 1996 CHF LUT (Groeneveld et al., 1995).

The database that Kirillov transferred to Groeneveld consisted of six data sets that the original experimenter identified. The table below lists the original experimenters and the number of data points in each subset of Kirillov's database.

Experimenter	Number of Data Points
Alekseev et al. (1964)	1,108
Zenkevich (1969)	5,641
Zenkevich et al. (1971)	392
Ladislau (1978)	136
Smolin et al. (1979)	3,009
Bergelson (1980)	336
Kirillov et al. (1984)	2,470

Some data originating from the U.S.S.R. were already covered in the AECL-UO database and were removed from the Kirillov database. The subset labeled as "Kirillov et al., 1984" contains 2,470 data points that were actually obtained by other experimenters (names unknown) as their contribution to the reproducibility exercise described by Kirillov et al. (1984) and Kirillov (1997) and reported above under the section "Kirillov (1984, 1985) CHF Reproducibility Study."

REFERENCES:

Groeneveld, D.C., L.K.H. Leung, P.L. Kirillov, V.P. Bobov, I.P. Smogalev, V.N. Vinogradov, X.C. Huang, and E. Royer (1996), "The 1995 Look-Up Table for Critical Heat Flux in Tubes," Nuclear Engineering and Design 163:1–23.

Kirillov, P.L., O.L. Peskov, and N.P. Serdun (1985), "Control Experiment on Critical Heat Transfer during Water Flow in Pipes," Soviet Atomic Energy 57:858-860, Translation from original article by Kirillov et al. in Atomnaya Energiya 57(6):422–423, December 1984

Kureta (1997)

These data were extracted from Kureta's doctoral thesis (1997). The data set contains 949 data points with tubes of a small diameter under low-pressure conditions. All experimental data were obtained in a vertical test section with upflow using pure water as a test fluid. Atmospheric pressure is the exit pressure of the test sections. Details on the material of the test section or the method of CHF detection are not available. The table below lists the ranges of conditions covered by the data set.

Tube Diameter	Heated Length	L/D ratio	Pressure	Mass Flux	Local Quality	Heat Flux	Inlet Temperature
mm	mm	-	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
1.0 6.0	4.0 680.0	1.0 113.3	101.3	0 19,130	-0.147 > 1.0	35.3 158,100	6.7 100.0

Note that the L/D ratio is sometimes 1, which seems experimentally very difficult to achieve. The CHF screening tests for acceptable CHF data reject very low L/D data.

REFERENCE:

Kureta, M. (1997), "A Data Set of Critical Heat Flux for Flow-Boiling of Water in Small-Diameter Tubes under Low-Pressure Conditions," Kyoto University, Kyoto, Japan, Ph.D. Thesis, Appendix A, 44 pages.

Lee (1965)

Lee (1965) experimentally investigated the effect of AFD, wall thickness, heated length, and tube diameter in his experiments. Lee's tube diameters varied from 0.364 to 0.464 inch, the wall thickness varied from 0.034 to 0.080 inch, and the heated length varied from 34 to 144 inches. Appendix II of Lee's report summarizes the tube diameter and heated length results as follows: 165 tube CHF points are tabulated, all for pressures around 1,000 psia (about 7 MPa). The quality ranges from 0.007 to 0.447, and the mass flux ranges from 1.468x10⁶ to 3.017x10⁶ pounds per hour per square foot.

Lee compared his results to those of Lee and Obertelli (1963) and Kearsey (1964). Appendix IV contains eight data points obtained by Lee and Obertelli (1963) under conditions similar to Lee's 1965 study; these data points are part of the dataset described separately under Lee and Obertellli (1963). Appendix V of Lee's report contains 52 CHF data points obtained from Kearsey (1964), which were also obtained under similar conditions. The reproducibility of the data is quite good, generally within 3 percent. Kearsey's data were not used for development of the 2006 CHF LUT.

Finally, Appendix VI of Lee's report tabulated his (1963) CHF data (87 CHF data points), designed to investigate the wall thickness effect. The effect varies from no effect for the longer length of 68 inches to possibly an 8-percent higher CHF for the thicker wall and for the shorter heated length (34 inches).

Only 37 CHF data points from Lee (1965) were used in the development of the 2006 CHF LUT, while 242 CHF measurements were obtained. The remainder can be used for future LUT updates or for validation of the 2006 CHF LUT. The table below lists the ranges of the Lee (1965) data used for LUT derivation.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
37	9.50	1.73 3.05	6,828 7,024	2,020 5,720	0.002 0.433	75.5 577	1,307 3,873	161 271

REFERENCES:

Lee, D.H. (1965), "An Experimental Investigation of Forced Convection Burnout in High-Pressure Water. Part III: Long Tubes with Uniform and Nonuniform Heat Flux," AEEW-R355, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Lee, D.H., and J.D. Obertelli (1963), "An Experimental Investigation of Forced Convection Boiling in High Pressure Water," AEEW-R213, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Kearsey, H.A. (1964), Private communication with Lee, D.H.

Lee (1966)

Lee (1966) performed several tests with larger diameter tubes (0.554, 0.862, 1.11, and 1.76 inches) at high pressures. The experimental technique was similar to that used by Lee (1965); the test section was equipped with thermocouples acting as CHF detectors. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
435	14.10 44.70	0.635 1.524	8,237 12,579	332.2 3,410.3	-0.110 0.780	60 451	870.7 3,738.2	259.80 318.09

REFERENCE:

Lee, D.H. (1966), "An Experimental Investigation of Forced Convection Burnout in High-Pressure Water. Part IV: Large Diameter Tubes at about 1,600 P.S.I.," AEEW-R479, Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset, United Kingdom, November 1966, 70 pages.

Lee, D.H. (1965), "An Experimental Investigation of Forced Convection Burnout in High-Pressure Water. Part III: Long Tubes with Uniform and Nonuniform Heat Flux," AEEW-R355, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Leung (1989)

Leung (1989) obtained these data as part of his doctoral thesis research. He did not report them in his thesis (Leung, 1994), but the thesis refers to these CHF tests, and the geometry of his thesis experiments corresponds exactly to this geometry. The table below lists the range of test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
66	5.45	2.511	5,030 9,710	1,167.6 9,938.3	0.210 0.578	6 316	656.2 3,058.3	227.85 305.33

REFERENCE:

Leung, L.K.H. (1994), "A Model for Predicting the Pressure Gradient along a Heated Channel during Flow Boiling," Ph.D. Thesis, Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada.

Leung et al. (1990)

The Leung et al. (1990) data were used to derive the 2006 CHF LUT. Because of the restricted distribution of this data, the test parameters and CHF data are not included here.

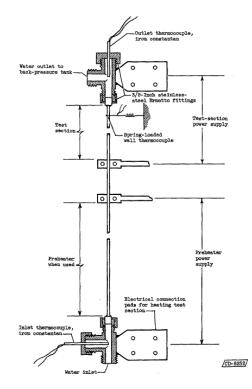
It is suspected that the data for this experiment came from the following reference, which has a restricted distribution.

REFERENCE:

Leung, L.K.H., S.T. Yin, and J. Martin (1990), "Measurements of Critical Heat Flux, Post-Dryout Pressure Drops and Wall Temperature in Tubes," COG-90-32 (also ARD-TD-227), Restricted Distribution.

Lowdermilk et al. (1958)

The purpose of this CHF experiment was to investigate the effects of flow-system characteristics on flow stability and burnout. An open-cycle or once-through flow system was chosen, and the flow was restricted upstream from the test section and discharged into a compressible volume at the exit of the test section. With this system, flow stability and burnout can be defined by determining the pressure drop across the flow restriction in addition to usual burnout variables, such as flow rate, pressure, temperature, and tube geometry.


The test sections were made of Type 347 stainless steel. Figure A-1 shows the test-section schematic with the power clamp location. The table below lists the dimensions of the test section.

Inside Diameter (mm)	Heated Length/Diameter Ratio	Unheated Length/Diameter Ratio	Wall Thickness (mm)	Wall Thickness/Inside Diameter Ratio
1.30	50, 100, 150, 200, 250	7.3	0.84	0.65
1.30	250	7.3	1.88	1.45
1.93	50, 100, 150, 200, 250	4.9	1.02	0.53
2.44	50, 100, 150, 200, 250	3.9	1.45	0.59
3.12	25, 50, 100, 150, 200, 250	3.0	1.65	0.53
3.96	25, 50, 100, 150, 200, 250	2.4	1.22	0.31
4.76	25, 50, 100, 150, 200, 250	2.0	2.37	0.50

The test sections were polished before their installation. For the majority of the runs conducted, the heated length of the test section was varied by using the 250 L/D (length-diameter) sections and by clamping the inlet electric power supply cable at the desired location along the tube length, as shown in Figure A-1. In the experimental runs using a preheater, the preheater power supply cables were connected across the length of the tube that was not being heated by the main power supply, as shown in Figure A-1.

The data shown in Tables I and II in Lowdermilk et al. (1958) should not be used in future LUT derivations/validations because, respectively, they correspond to the effect of a compressible volume and the effect of a flow restriction at the inlet—both of which were found to have a strong effect on CHF. The maximum values of the burnout heat flux were obtained for a stable flow by restricting the flow upstream from the test section. The minimum pressure drop across the restriction required to stabilize the flow increased from 5 to 100 pounds per square inch (psi) when the inlet flow velocity was increased from 0.5 to 40 feet per second.

In addition, a compressible volume introduced in the flow system between the flow restriction and the inlet of the test section resulted in unsteady flow during burnout. The flow fluctuations increased, and the burnout heat flux decreased with an increase in the compressible volume.

Figure A-1 Test section Details in Lowdermilk et al. (1958)

The table below lists the range of test conditions suitable for LUT derivation.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
470	4.00 4.80	0.119 0.991	100	27.2 4,865.5	0.030 1.236	317 331	167 9,525	20.91 24.24

For the 2006 LUT derivation, only 112 CHF data points were used—the data with small diameters (D < 4 mm) and short lengths (L/D < 50) were excluded.

Lowdermilk, W.H., C.D. Lanzo, and B.L. Siegel (1958), "Investigation of Boiling Burnout and Flow Stability for Water Flowing in Tubes," NACA-TN-4382, National Advisory Committee for Aeronautics (NACA), Cleveland, OH, September 1958, 52 pages.

Matzner et al. (1965)

Matzner et al. (1965) performed CHF experiments at Columbia University on an Inconel tube with vertical upflow. The test section was equipped with thermocouples at the downstream end to detect CHF occurrence. As extra protection, the test section was also used as one leg of a Wheatstone bridge—an imbalance in the bridge circuit was indicative of CHF occurrence. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
99	10.20	2.438 4.877	6,893	1,193.3 9,559.8	0.008 0.693	48 1,183	643.5 4,041	65.61 275.82

REFERENCE:

Matzner, B., E.O. Moeck, J.E. Casterline, and G.A. Wikhammer (1965), "Critical Heat Flux in Long Tubes at 1,000 psi with and without Swirl Promoters," Paper 65-WA/HT-30, AECL-2446, Proceedings of the American Society of Mechanical Engineers, 16 pages.

Mayinger et al. (1966)

The purpose of this CHF experiment was to study the effects of upstream history and the inlet conditions, as well as the L/D ratio of the test channel. The tests were made at pressures of 70 to 140 kilogram-force per square centimeter using internally cooled tubes with diameters varying from 0.7 to 1.5 cm. The conditions at the test channel inlets covered mass flows between 100 and 350 grams per square centimeter per second using either a subcooled inlet or two-phase inlet (up to 20 percent).

The two types of burnout observed are completely different in their physical appearance. One type is characterized by the occurrence of fluctuations in the pressure and mass flow shortly before film boiling starts; this was designated as "pulsating burnout." The other type shows a hydrodynamically completely stable behavior until film boiling suddenly occurs. Pulsating burnout (observed only at subcooled boiling conditions) was found to lead to critical heat flux levels 20 to 50 percent below those obtained with hydrodynamically stable flow. An even greater influence on the CHF was obtained by a reduction of the L/D ratio. With very short test sections with an L/D ratio of 5 to 10, the critical heat flux is 4 to 5 times the value obtained with long test channels with an L/D ratio of 80 to 100. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
128	7.00	0.560 0.980	1,925 10,244	2,233 3,734	0.098 0.405	-239 314	924 5,618	233.28 310.09

Mayinger, F., O. Schad, and E. Weiss (1966), "Untersuchung der kritischen Heizflachenbelastung (Burnout) bei sieden dem Wasser (Translation: Investigation into the Critical Heat Flux in Boiling)," 09.03.01, Maschinenfabrik Augsburg-Nurnberg AG, Munich, Germany, May 1966, 265 pages.

Nariai et al. (1987)

The Nariai et al. (1987) data were obtained in small diameter tubes (1, 2, and 3 mm) under high flow and at near-atmospheric pressure. This paper does not report the data, which were obtained separately. Only seven data points were used for the 2006 CHF LUT derivation. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
93	1.00 3.00	0.009 0.101	100	6,710 20,910	-0.134 0.007	149.5 353	4,647 69,990	15.4 64

REFERENCE:

Nariai, H., F. Inasaka, and T. Shimura (1987), "Critical Heat Flux of Subcooled Flow Boiling in Narrow Tubes," in the Proceedings of the 1987 American Society of Mechanical Engineers/Japan Society of Mechanical Engineers Thermal Engineering Joint Conference, Honolulu, HI, March 22–27, 1987, P.J. Marto and I. Tanasawa (Eds.), American Society of Mechanical Engineers, New York, NY, Volume 5, pp. 455–462.

Nariai CHF Data Set from Celata (2001)

The data were contained in 2001 from a personal communication from G.P. Celata to UofO. Celata had received data directly from Nariai. This data set contains 14 data points. Details of the experiment are not known. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Critical Quality	Heat Flux	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
6.0	0.100	16.6	100.0 1,500.0	4,590.0 8,690.0	-0.2596 0.0577	8,500.0 22,100.0	38.3 44.7

Personal communication between G.P. Celata and Professor S.C. Cheng, University of Ottawa, Ottawa, Ontario, Canada, April 22, 1993.

Nguyen and Yin (1975)

CHF tests were performed in an Inconel 600 tube with an ID of 0.496 inch. Measurements were obtained with the test section in both the vertical and horizontal positions (this paper reports only the vertical tube CHF data). CHF was detected using Type K thermocouples. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
56	12.60	2.438 4.877	6,645 8,401	929.6 3,838.4	0.216 0.738	52 413	677 2,023.7	225.06 276.81

REFERENCE:

Nguyen, D.M., and S.T. Yin (1975), "An Experimental Investigation of Water Critical Heat Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes," Technical Memorandum CWTM-013-HT, Westinghouse Canada Limited, Toronto, Canada, December 1975, 39 pages.

Olekhnovitch (1997)

The electronic copy of this data set was obtained from private communications between D.C. Groeneveld and A. Olekhnovitch. Olekhnovitch et al. (1999) and Olekhnovitch (1997) later described details of the experiment for the same data set. This data set contains 479 data points. The test sections consisted of vertical, uniformly heated tubes through which the water flowed vertically upwards. The Inconel 600 tubes had a wall thickness of either 1 mm or 2 mm. To detect the dryout occurrence, 30 chromel-alumel thermocouples were spot welded on the surface of the tube. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Critical Quality	Heat Flux	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
8.0	0.750 3.500	93.8 437.5	507.0 4,036.0	977.0 6,122.0	0.0460 0.7610	523.0 5,550.0	47.2 244.5

REFERENCES:

Olekhnovitch, A. (1997), "Etude de Flux de Chaleur Critique a des Pressions Faibles," Universite de Montreal, Montreal, Quebec, Canada, Ph.D. Thesis, October 1997, 599 pages.

Olekhnovitch, A., A. Teyssedou, A. Tapucu, P. Champagne, and D.C. Groeneveld (1999), "Critical Heat Flux in Vertical Tube at Low and Medium Pressures. Part I: Experimental Results." Nuclear Engineering and Design 193:73–89

Olekhnovitch, A., A. Teyssedou, and P. Tye (1999), "Critical Heat Flux in Vertical Tube at Low and Medium Pressures. Part II: New Data Presentation." Nuclear Engineering and Design 193:91–103.

Pabisz and Bergles (1996)

Pabisz and Bergles (1996) investigated the effect of additives on CHF. The data reported here are the 10 reference tests that measured the CHF in a directly heated tube; six of these tests were used as a database for the derivation of the 2006 CHF LUT. The tubes were made of stainless steel, and CHF was defined as the heat flux where actual burnout (i.e., tube failure) occurred. The table below lists the ranges of conditions covered by the CHF experiments.

Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
4.40 6.20	0.11 0.154	627 1,284	2,417 4,994	-0.196 -0.133	567 698	7,370 13,880	15.3 46

Pabisz, R.A., Jr., and A.E. Bergles (1996), "Enhancement of Critical Heat Flux in Subcooled Flow Boiling of Water by Use of a Volatile Additive," in the Proceedings of the American Society of Mechanical Engineers Heat Transfer Division (HTD), Presented at the 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996, HTD-Volume 334, Volume 3, pp. 305–312.

Peterlongo et al. (1964)

Peterlongo et al. (1964) obtained data for upward flow of steam-water mixtures in round vertical tubes. The data set contains 351 data points without obstacles and additional data points with internal obstacles. The test sections were seamless AISI Type 304 stainless steel tubes with a length of 4.996 meters. CHF was detected by nickel-nickel/chrome thermocouples attached to the heated tube. For subcooled or low-quality conditions, CHF was of the departure from nucleate boiling type, characterized by a sharp increase in temperature for a small increase in heat flux. However, for higher qualities, the CHF was more of a slow dryout type. Here, the wall temperature rise was plotted against heat flux (i.e., the boiling curve), and CHF was defined as a sharp decrease in the slope of a heat flux versus wall temperature plot. The table below lists the ranges of test conditions covered by the tests.

Tube Diameter	Tube Length	Heated Length	Pressure	Mass Flux	Local Quality	Heat Flux	Inlet Temperature
mm	m	m	kPa	kg m ⁻² s ⁻¹	-	kW m⁻²	°C
15.1 15.2	4.996	1.6 4.116	4,982 6,551	1,080 3,910	-0.023 0.608	895 4,115	26.15 280.47

REFERENCE:

Peterlongo, G., R. Ravetta, B. Riva, L. Rubiera, and F.A. Tacconi (1964), "Large Scale Experiments on Heat Transfer and Hydrodynamics with Steam—Water Mixtures: Further Critical Power and Pressure Drop Measurements in Round Vertical Tubes with and without Internal Obstacles," R-122, Centro Informazioni Studi Esperienze (CISE), Segrate, Milan, Italy.

Rudzinski et al. (1999)

This experiment was performed as part of an investigation to examine the effect of flow, pressure, and heat flux transients on CHF. Only the reference steady-state tests are reported here. Because of the restricted distribution of this data, the test parameters and CHF data are not included here.

Rudzinski, K.F., D.C. Groeneveld, and S. Doerffer (1999), "Analysis of the Flow Transient CHF and Rewetting Data Obtained in an 8 mm Tube," FFC-FCT-65, COG-96-510, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, February 1999, 142 pages. Restricted Distribution.

Shan (2005)

Shan (2005) was assisting in the UofO LUT development work before 2005. He identified some CHF tube data that were labeled as "Col-U" (Columbia University). This data set was based on both 8-mm and 15.82-mm-ID tube test sections. No source for these data could be found. The table below lists the ranges of conditions covered by the CHF experiments used in the derivation of the 2006 LUT.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Heat Flux
Number	Mm	m	kPa	kg m ⁻² s ⁻¹	-	kW m⁻²
24	8.00 15.82	1.00 2.4384	317 14,808	572 8,015	-0.022 0.422	819.5 5,691

Smolin et al. (1962)

The Smolin et al. (1962) reference for these data does not seem to correspond to the experimental data because it refers to 8-mm data that were obtained only at P = 150 atmospheres. The 1962 experiment was performed in a 2.6-meter-long heated test section where the flow was slowly reduced for a fixed heat flux until a temperature rise of about 10 to 15 degrees Kelvin was detected by the thermocouples welded to the test-section wall near the downstream end of the heated length. (See also the reference to Smolin's work in Zenkevich (1974)). The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	Mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
369	3.84 10.80	0.776 4.000	7,840 19,610	498 7,556	-0.132 0.795	5 1,329	230 5,652	140.35 350.39

REFERENCES:

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1962), "On the Heat Transfer Crisis in Steam-Generating Pipes," Soviet Journal of Atomic Energy 13:968–972, Translation from Atomnaya Energiya 13(4):360–364.

Groeneveld, D.C., L.K.H. Leung, P.L. Kirillov, V.P. Bobov, I.P. Smogalev, V.N. Vinogradov, X.C. Huang, and E. Royer (1996), "The 1995 Look-Up Table for Critical Heat Flux in Tubes," Nuclear Engineering and Design 163:1–23.

Smolin (1979)

The Smolin (1979) data came from the database transferred by Kirillov to UofO around 1992 and described above under the section titled, "Kirillov Database (1992)." No documentation was provided. Smolin's experiment may have been similar to an earlier experiment by Smolin, as reported in Smolin (1962). The table below lists the test conditions.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
2,987	3.84 16.00	0.690 6.050	2,940 17,710	490 7,672	-0.136 0.789	4 1,362	245 5,626	72.72 351.65

REFERENCE:

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1962), "On the Heat Transfer Crisis in Steam-Generating Pipes," Soviet Journal of Atomic Energy 13:968–972, Translation from Atomnaya Energiya 13(4):360–364.

Snoek (1988)

The Snoek (1988) experiment was designed to investigate the effect of subchannel shape on CHF. The original report is proprietary to AECL and not available to the public, so the test parameters and CHF data are not included here.

REFERENCE:

Snoek, C.W. (1988), "Comparison of the Critical Heat Flux in Interconnected Subchannels of Different Geometry," Internal Report CRNL-4231, CANDEV-88-23, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, December 1988.

Soderquist (1994)

The electronic copy of this large data set was obtained directly from the author, B. Soderquist, from the Department of Nuclear Reactor Engineering, Royal Institute of Technology, Stockholm, Sweden, and was also made available at an anonymous FTP site. The electronic version contains 1,485 data points. Subsequently, a printed copy of the data and experimental details were received as well. It refers to 1,485 data points that were obtained although the printed copy only contains 1,410 data points. Data points 1411–1485 are missing from the printed version; however, because the first 1,410 data points are the same as in the electronic copy, it is believed that the data points 1411–1485 were obtained in the same manner. The data set also contains 110 CHF data points with quality greater than 1, an obvious impossibility. These X > 1.0 data were all obtained at low flows (G ~ 250 kg m⁻² s⁻¹). This suggests that the low-flow data may not be reliable, even though the author quotes errors of 1 percent in pressure, 0.8 percent in mass flux, and 0.5 percent in power. The heat balances for the single-phase flow were within 1 percent. The table below lists the ranges of parameters.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Critical Quality	Heat Flux	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	kW m⁻²	°C
7.98 8.11	1.000 6.000	123.3 751.9	970.0 20,120.0	243.0 6,085.0	-0.169 1.00	50.0 3,879.0	118.3 356.9

The test-section material was stainless steel. Because stainless steel has a high-temperature coefficient of resistance compared to Inconel, the true heat flux at the downstream end will be higher than the reported average heat flux.

REFERENCE:

Soderquist, B. (1994), "Swedish CHF Data," Department of Nuclear Reactor Engineering, Royal Institute of Technology, Stockholm, Sweden, Personal communication with D.C. Groeneveld (received from Soderquist in March 1994).

Swenson et al. (1962)

Swenson et al. (1962) obtained the data. The data set contains 25 data points with uniform heat flux distribution and other data points with three nonuniform axial heat flux distributions. The test sections were seamless AISI Type 304 stainless steel tubes with a length of 2.9464 meters (116 inches) and an ID that varied from 10.44 to 11.33 mm (0.411 to 0.446 inch). The tubes are installed vertically with the flow upward. The intermediate 1.8288-meter (72-inch) length was heated electrically. The table below lists the ranges of conditions covered by the data set.

Tube Diameter	Heated Length	Pressure	Mass Flux	Local Quality	Heat Flux	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
10.44 10.54	1.8288	13,790	678.7 1,764.7	0.178 0.502	586.83 1,063.24	231.4 329.4

REFERENCE:

Swenson, H.S., J.R. Carver, and C.R. Kakarala (1962), "The Influence of Axial Heat-Flux Distribution on the Departure from Nuclear Boiling in a Water-Cooled Tube," Paper No. 62-WA-297, American Society of Mechanical Engineers, New York, NY, 15 pages.

Tian (1994)

The reference or documentation could not be located. The data are from a private communication.

Tong (1964)

No documentation could be found for this set of data. The table below lists the ranges of conditions covered by the CHF data set.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²	°C
266	6.22 12.90	0.380 3.660	5,171 13,790	678 14,002	0.002 0.502	5 1,060	587 6,139	263.94 330.85

REFERENCE:

No reference.

Waters et al. (1965)

This data set contains 38 data points. The test section consisted of a vertical, uniformly heated Inconel tube with a 4.8-mm wall thickness through which the water flowed upwards. The 20 thermocouples spot welded to the outer surface of the tube at 30.5-cm axial intervals were used as burnout detectors. This experiment showed that the initial CHF occurrence with a uniform AFD can occur at upstream locations, especially at high flows. The dryout quality, the inlet temperature, and the inlet subcooling enthalpy have been calculated by the enthalpies given in the papers. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	Pressure	Mass Flux	Inlet Quality	Heat Flux	Inlet Temperature
mm	m	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
11.2	3.658	6,894.76 10,342.14	6,645.53 9,547.86	-0.0335 0.3218	2,016.92 5,388.95	86.93 313.48

REFERENCE:

Waters, E.D., J.K. Anderson, W.L. Thorne, and J.M. Batch (1965), "Experimental Observations of Upstream Boiling Burnout," Chemical Engineering Progress Symposium Series 61(57):230–237.

Whittle and Forgan (1967)

This data set contains 59 data points. The vertical test sections consisted of a rectangular channel and a single, uniformly heated round tube through which subcooled water flowed upwards. The distinctiveness of this test procedure was that, for a fixed power, the flow rate was reduced from a maximum value while the test-section pressure drop was monitored carefully. The flow rate that corresponded to the minimal pressure drop is related to the CHF occurrence. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	Pressure	Mass Flux	Inlet Quality	Heat Flux	Inlet Temperature
mm	М	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
6.45	0.4064 0.6096	117.2 172.4	1,643.5 9,137	-0.03105 -0.00879	660 3,480	35 75

The reference to this data set may be in the following article:

Whittle, R.H., and R. Forgan (1967), "A Correlation for the Minima in the Pressure Drop versus Flow-Rate Curves for Subcooled Water Flowing in Narrow Heated Channels," Nuclear Engineering and Design 6:89–99.

Williams and Baus (1980) (CHF data set from the Zummo database)

The electronic copy of this data set was extracted from the Zummo CHF database. The database was obtained in personal communication between G. Zummo, K. Mishima, and Y. Guo, and D.C. Groeneveld. The original paper by Williams and Baus (1980) became available later and confirms the validity of the data. This data set contains 129 data points. All experimental data are for a vertical tube with upflow using water as a test fluid. The test section was made of Type 304 stainless steel. The table below lists the ranges of parameters for this data set.

Tube Diameter	Heated Length	L _h /D ratio	Pressure	Mass Flux	Local Quality	Heat Flux	Inlet Temperature
mm	m	-	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
9.5	1.840	193.6842	2,758 15,169	324 4,662	-0.025 0.929	388 4,073	90 315

REFERENCE:

Williams, C.L., and S.G. Baus (1980) "Critical Heat Flux Experiments in a Circular Tube with Heavy Water and Light Water," WAPD-TM-1462, Bettis Atomic Power Laboratory, West Mifflin, PA, May 1980.

Yin et al. (1988)

Yin et al. (1988) performed CHF tests in a 13.4-mm-ID tube (with a wall thickness of 1.24 mm) made of Inconel 600 using only one nominal mass flux of 2,030 kg m⁻² s⁻¹. The test section was equipped with multiple chromel-alumel thermocouples that served as dryout detectors. The table below lists the ranges of conditions covered by the CHF experiments.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m ⁻²	°C
287	13.40	3.658	1,028 21,197	1,938.9 2,081.6	0.075 0.431	0 493	583.3 1,863.7	128.42 358.41

Yin, S.T., T.-J. Liu, Y.-D. Huang, and R.M. Tain (1988), "Measurements of Critical Heat Flux in Forced Flow at Pressures Up to the Vicinity of the Critical Point of Water," in the Proceedings of the 1988 National Heat Transfer Conference, Houston, TX, July 24–27, 1988, Volume 2, pp. 501–506.

Zenkevich (1971)

The data were attributed to Kirillov's database (see the section "Kirillov Database (1992)") that was transferred to the UofO in the early 1990s). The 392 CHF were used for the 2006 LUT derivation. Details of the test section and the method of CHF detection are not available. The table below lists the ranges of conditions covered by the CHF data set.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	Mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²	°C
392	7.80 8.05	7.000 20.000	6,860 17,650	1,008 2,783	0.262 0.876	18 1,549	47 1,283	81.96 352.22

REFERENCE:

There is no direct reference; the only indirect reference is from Kirillov's 1992 CHF database.

Zenkevich, Peskov, and Subbotin (1964) CHF Data Set

This data set contains 67 points. The test section consisted of tubes of 1Cr18Ni9Ti stainless steel with uniformly heated walls 0.75 to 1.5 mm thick. The table below lists the ranges of flow parameters.

Tube Diameter	Heated Length	Pressure	Mass Flux	Inlet Quality	Heat Flux	Inlet Temperature
Mm	mm	kPa	kg m ⁻² s ⁻¹	-	kW m ⁻²	°C
6.8, 8, and 10	100 666	3,924 9,810	550 6,444.5	-0.01971 0.66008	5,000 9,710	211.02 286.39

Only one point was used for the 2006 CHF LUT derivation.

Zenkevich, B.A., O.L. Peskov, and N.D. Subbotin (1964), "A Study of Critical Heat Flux Densities for Tubular Fuel Elements at Atomic Power Stations," Teploenergetika (in Russian) 11(6):20–22, Thermal Engineering (English translation) 11(6):23–25.

Zenkevich CHF data (1969)

A reference for these data could not be found. They were included in the data compilation of Kirillov that was transferred to the UofO in the early 1990s (see the section "Kirillov Database (1992)"). Details of the test section and the method of CHF detection are not available. The table below lists the ranges of conditions covered by this CHF data set.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux
number	mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²
5,595	3.99 15.10	0.250 6.000	5,880 19,610	498 9,876	-1.652 0.964	2 1,644	136 14,760

Zenkevich (1974)

The translation of Zenkevich (1974) is a very large report (over 400 pages) and contains about 7,000 CHF data points, many of which were obtained in uniformly heated tubes; the author obtained about 650 of these data points. This valuable resource provides an excellent summary of data obtained in the U.S.S.R. and elsewhere. The translation also includes additional data sets obtained by seven different authors. With the exception of the Smolin et al. (1962, 1964, 1965) data, these additional data were known and have already been tabulated. The odd-numbered tables between Tables 16 and 35 contain CHF data obtained in tubes but with a nonuniform AFD and should be ignored. Table 1 provides the ranges of conditions covered by 31 pre-1974 CHF data known by Zenkevich, some of which had a two-phase inlet. The table below lists the ranges of conditions covered by Zenkevich's tabulation of the CHF data points, which were obtained in uniformly heated tubes and used for the 2006 LUT derivation.

No. of Data Points	Tube Diameter	Heated Length	Pressure	Mass Flux	Critical Quality	Inlet Subcooling	Heat Flux	Inlet Temperature
number	Mm	m	kPa	kg m ⁻² s ⁻¹	-	kJ kg⁻¹	kW m⁻²	°C
823	4.80 12.60	1.000 6.000	5,890 19,620	497.2 6,694.4	-0.221 0.969	5 1,381	230 4,740	96.70 358.24

A difference exists between the number of data points in the report attributed to Zenkevich (about 650) and the number of data points attributed to Zenkevich in the database used to derive the 2006 LUT (823).

Zenkevich, A., O.L. Peskov, G.A. Petrishcheva, N.D. Sergeev, and V.I. Subbotin. (1974), "Analysis and Generalization of Experimental Data on Heat Transfer Crisis Associated with Forced Convection of Cooling Water in Tubes," AECL-Tr-Misc.-304, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1962), "Heat-Transfer Crisis in a Steam-Generating Tube," Atomnaya Energiya 14(4):360–364.

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1964), "Experimental Investigation of Heat-Transfer Crisis," Atomnaya Energiya 16(5):417–423.

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1965), Trudy (Proceedings) of the NPO Tsentralny kotloturbinny institut (TsKTI), No. 58.

APPENDIX B

REFERENCES TO CRITICAL HEAT FLUX DATA SETS FOR WATER-COOLED TUBES

B-1 <u>References to Critical Heat Flux Data Sets Used To Derive the 2006 Critical</u> <u>Heat Flux Lookup Table</u>

Alekseev, G.V., B.A. Zenkevich, O.L. Peskov, O.V. Remizov, N.D. Sergeev, and V.I. Subbotin (1964), "Kriticheskie Teplovie Potoki pri Vhyzdennom Techenii Vodi" (in Russian), "Burn-Out Heat Fluxes under Forced Water Flow," A/CONF.28/P/327a, 3rd United Nations International Conference on the Peaceful Uses of Atomic Energy, International Atomic Energy Agency, Vienna, Austria, pp. 295–304.

Alessandrini, A., G. Peterlongo, and R. Ravetta (1963), "Large Scale Experiments on Heat Transfer and Hydrodynamics with Steam-Water Mixtures: Critical Heat Flux and Pressure Drop Measurements in Round Vertical Tubes at the Pressure of 51 kg/cm2 abs.," CISE-R-86, Centro Informazioni Studi Esperienze (CISE), Milan, Italy, United States/European Atomic Energy Community Joint Research and Development Program, EURAEC-951, December 1963, 66 pages.

Babarin, V.P., R.I. Sevast'yanov, and I.T. Alad'yev (1969), "A Special Hydrodynamic Effect on the Boiling Crisis in Tubes," *Heat Transfer—Soviet Research* 1(4):34–41, July 1969.

Babcock, D.F., and R.R. Hood (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. Dupont de Nemours and Company, Wilmington, DE.

Baek, W.-P. (2001), Korean Advanced Institute of Science and Technology, Yusong-gu, Taejon, Korea, Personal communication through e-mail with D.C. Groeneveld, April 20, 2001.

Bailey, N.A., and D.H. Lee (1969), "An Experimental and Analytical Study of Boiling Water at 2,000 to 2,600 psi, Part I: Dryout and Post-Dryout Heat Transfer," AEEW-R 659, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Bailey, N.A. (1977), "Dryout and Post-Dryout Heat Transfer at Low Flow in a Single Tube Test Section," AEEW-R 1068, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Becker, K.M. (1970), December, "Burnout Measurements in Vertical Round Tubes, Effect of Diameter," TPM-RL-1260, Aktiebolaget Atomenergi, Teknisk PM, Stockholm, Sweden, December 1970, 16 pages.

Becker, K.M., P. Persson, L. Nilsson, and O. Eriksson (1963), "Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts (Part 2)," AE-114, Aktiebolaget Atomenergi, Stockholm, Sweden, December 1970, 34 pages.

Becker, K.M., O. Hernborg, M. Bode, and O. Eriksson (1965), "Burnout Data for Flow of Boiling Water in Vertical Round Ducts, Annuli and Rod Clusters," AE-177, Aktiebolaget Atomenergi, Stockholm, Sweden.

Becker, K.M., G. Strand, D. Djursing, D. Eklind, K. Lindberg, and C. Österdahl (1971), "Round Tube Burnout Data for Flow of Boiling Water at Pressures Between 30 and 200 bar," KTH-NEL-14, Royal Institute of Technology, Stockholm, Sweden, 41 pages.

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1965), "Measurements of Burnout Heat Flux in Uniformly Heated Round Tubes at 1,000 psia," AERE-R 5055, Atomic Energy Research Establishment, Harwell, Berkshire, United Kingdom, November 1965, 28 pages.

Bergelson, B.R., (1980), "Burnout under Conditions of Subcooled Boiling and Force Convection," *Thermal Engineering* 27m(1m):48–50, Translated from *Teploenergetika* 27(1): 58–61.

Bergles, A.E. (1963), "Subcooled Burnout in Tubes of Small Diameter," Paper No. 63-WA-182, American Society of Mechanical Engineers (ASME) Winter Annual Meeting, Philadelphia, PA, November 17–22, 1963.

Borodin, A.S., and I.P.L. Macdonald (1983), "Separate Measurements of Light Water (H_2O) and Heavy Water (D_2O) Flow Boiling Critical Heat Flux in a Vertical Cylindrical Tube Geometry," CRNL-2538, Atomic Energy of Canada Limited (AECL), Chalk River, Ontario, Canada, June 1983, 284 pages.

Burck, E., and W. Hufschmidt (1965), "Measurement of the Critical Heat-Flux-Density of Subcooled Water in Tubes at Forced Flow," EUR 2432.d, Australian Atomic Energy Commission, Research Establishment, Sydney, Australia, Translated by J.B. Hopkinson, July 1969, LIB/TRANS 210, 40 pages.

Celata, G.P., M. Cumo, and A. Mariani (1992a), "CHF in Highly Subcooled Flow Boiling with and without Turbulence Promoters," Paper C1, European Two-Phase Flow Group Meeting, Stockholm, Sweden, June 1–3, 1992, 14 pages.

Celata G.P., M. Cumo, and A. Mariani (1992b), "Subcooled Water Flow Boiling CHF with Very High Heat Fluxes," *Revue Générale de Thermique* 31(362):106–114.

Celata, G.P., and A. Mariani (1993), G.P. Celata transferred Celata and Mariani's database to the University of Ottawa (see also the personal communication letter between Celata and Professor S.C. Cheng of the University of Ottawa, Ottawa, Canada, April 22, 1993).

Celata, G.P., M. Cumo, and A. Mariani (1993), "Burnout in Highly Subcooled Water Flow Boiling in Small Diameter Tubes," *International Journal of Heat and Mass Transfer* 36(5):1269–1285.

Cheng, S.C., K.T. Poon, P. Lau, K.T. Heng, T. Doan, and C.Y. Chan (1983), "CHF Experiments and Construction of CHF Table," University of Ottawa, Ottawa, Canada, AECL Contract, 1st Progress Report, July 1982–March 1983.

Cheng, S.C., K.T. Poon, T. Doan, S.K. Chin, and Y.M. Koo (1983), "CHF Experiments and Construction of CHF Table," Report No. 2, University of Ottawa, Ottawa, Canada, AECL Contract, December 1983.

Dell, F.R., G.F. Hewitt, R.K.F. Keeys, and R.A. Stinchcombe (1969), "Burnout Heat Flux Measurements in a Long Tube," AERE-M 2216, Atomic Energy Research Establishment, Harwell, United Kingdom, June 1969, 16 pages.

Doerffer, S. (1997), AECL, Chalk River, Ontario, Canada, personal communication with D.C. Groeneveld; Rudzinski, K.F., D.C. Groeneveld, and S. Doerffer (1999), "Analysis of the Flow Transient CHF and Rewetting Data Obtained in an 8-mm Tube," FFC-FCT-65, COG-96-510, AECL, Chalk River, Ontario, Canada, February 1999, 142 pages.

Doerffer, S. (1999), "Effect of Flow Orientation on CHF in Smooth Tubes," AECL unpublished report, personal communication with D.C. Groeneveld.

Era, A., G.P. Gaspari, A. Hassid, A. Milani, and R. Zavattarelli (1966), "Heat Transfer Data in the Liquid Deficient Region for Steam-Water Mixtures at 70 kg/cm² Flowing in Tubular and Annular Conditions," CISE-R-184, CISE, Milan, Italy, June 1966, 108 pages.

Griffel, J. (1965), "Forced Convection Boiling Burnout for Water in Uniformly Heated Tubular Test Sections," NYO-187-7, U.S. Atomic Energy Commission, Washington, DC, 191 pages.

Groeneveld, D.C. (1985), AECL internal unpublished report.

Hewitt, G.F., H.A. Kearsey, P.M.C. Lacey, and D.J. Pulling (1965), "Burnout and Film Flow in the Evaporation of Water in Tubes," AERE-R 4864, Atomic Energy Research Establishment, Harwell, United Kingdom, March 1965, 58 pages.

Hood, J.J., and L. Isakoff (1962), "Heavy Water Moderated Power Reactors," DP-755, E.I. du Pont de Nemours and Company, Wilmington, DE, July 1962, 38 pages.

Hood, J.J. (1962), "Heavy Water Moderated Power Reactors," DP-725, E.I. du Pont de Nemours and Company, Wilmington, DE, April 1962, 53 pages.

Inasaka, F., and H. Nariai (1989), "Critical Heat Flux of Subcooled Flow Boiling with Water," in the Proceedings of the 4th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-4)," Karlsruhe, Germany, October 10–13, 1989, U. Muller, K. Rehme, K. Rust, and G. Braun (Eds.), Volume 1, pp. 115–120, October 1989.

Jafri, T.M. (1993), "Analysis of Critical Heat Flux for Vertical Round Tubes," Ph.D. Thesis, Columbia University, New York, NY, 164 pages.

Jens, W.H., and P.A. Lottes (1951), "Analysis of Heat Transfer Burnout, Pressure Drop and Density Data for High-Pressure Water," ANL-4627, Argonne National Laboratory, Lemont, IL, May 1, 1951, 73 pages.

Judd, D.F., and R.H. Wilson (1966), "Burnout for Flow Inside Round Tubes with Nonuniform Heat Fluxes," BAW-3238-9, Babcock & Wilcox Company, Lynchburg, VA, May 1966, 123 pages.

Kim, H.C., W.-P. Baek, and S.H. Chang (2000), "Critical Heat Flux of Water in Vertical Round Tubes at Low Pressure and Low Flow Conditions," *Nuclear Engineering and Design* 199:49–73.

Kirillov, P.L., O.L. Peskov, and N.P. Serdun (1985), "Control Experiment on Critical Heat Transfer during Water Flow in Pipes," *Soviet Atomic Energy* 57:858–860, Translated from *Atomnaya Energiya* 57(6):422–423, December 1984.

Kureta, M. (1997), "A Data Set of Critical Heat Flux for Flow-Boiling of Water in Small-Diameter Tubes under Low-Pressure Conditions," Ph.D. Thesis, Kyoto University, Kyoto, Japan, Appendix A, 44 pages.

Lee, D.H. (1965), "An Experimental Investigation of Forced Convection Burnout in High-Pressure Water. Part III: Long Tubes with Uniform and Nonuniform Heat Flux," AEEW-R 355, United Kingdom Atomic Energy Authority, Harwell, United Kingdom.

Lee, D.H. (1966), "An Experimental Investigation of Forced Convection Burnout in High Pressure Water. Part IV: Large Diameter Tubes at about 1,600 P.S.I.," AEEW-R 479, Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset, United Kingdom, 70 pages.

Leung, L.K.H., et al. (1989). This data set was obtained by Leung as part of his Ph.D. Thesis research. He did not report the data set in his thesis; however, the thesis describes the experimental setup (Leung, L.K.H. (1994), "A Model for Predicting the Pressure Gradient along a Heated Channel during Flow Boiling," Ph.D. Thesis, Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada).

Leung, L.K.H., S.T. Yin, and J. Martin (1990), "Measurements of Critical Heat Flux, Post-Dryout Pressure Drops and Wall Temperature in Tubes," COG-90-32 (also ARD-TD-227) AECL proprietary report.

Lowdermilk, W.H., C.D. Lanzo, and B.L. Siegel (1958), "Investigation of Boiling Burnout and Flow Stability for Water Flowing in Tubes," NACA-TN-4382, National Advisory Committee for Aeronautics (NACA), Cleveland, OH, September 1958, 52 pages.

Matzner, B., E.O. Moeck, J.E. Casterline, and G.A. Wikhammer (1965), "Critical Heat Flux in Long Tubes at 1,000 psi with and without Swirl Promoters," ASME Proceedings, Paper No. 65-WA/HT-30, AECL-2446, 16 pages.

Mayinger F., O. Schad, and E. Weiss (1966), "Untersuchung der kritischen Heizflachenbelastung (Burnout) bei siedendem Wasser, Investigation into the Critical Heat Flux in Boiling," Report No. 09.03.01, Maschinenfabrik Augsburg-Nurnberg AG, Munich, Germany, May 1966, 265 pages.

Nariai H., F. Inasaka, and T. Shimura (1987), "Critical Heat Flux of Subcooled Flow Boiling in Narrow Tube," in the Proceedings of the 1987 ASME/Japan Society of Mechanical Engineers (JSME) Thermal Engineering Joint Conference, Honolulu, HI, March 22–27, 1987, Volume 5, March 1987, pp. 455–462.

Nguyen, D.M., and S.T. Yin (1975), "An Experimental Investigation of Water Critical Heat Flux in a Tubular Channel in Both Horizontal and Vertical Attitudes," Technical Memorandum CWTM-013-HT, Westinghouse Canada Limited, Toronto, Canada, December 1975, 39 pages.

Olekhnovitch, A. (1997), "Etude de Flux de Chaleur Critique a des Pressions Faibles," Ph.D. Thesis, Universite de Montreal, Montreal, Quebec, Canada, October 1997, 599 pages.

Pabisz, R.A., Jr., and A.E. Bergles (1996), "Enhancement of Critical Heat Flux in Subcooled Flow Boiling of Water by Use of a Volatile Additive," in the Proceedings of the ASME Heat Transfer Division (HTD): Presented at the 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996, HTD-Volume 334, Volume 3, pp. 305–312.

Peterlongo, G., R. Ravetta, B. Riva, L. Rubiera, and T.A. Tacconi (1964), "Large Scale Experiments on Heat Transfer and Hydrodynamics with Steam—Water Mixtures: Further Critical Power and Pressure Drop Measurements in Round Vertical Tubes with and without Internal Obstacles," R-122, CISE, Segrate, Milan, Italy.

Rudzinski, K.F., reference unknown.

Shan, J.Q. (2005), reference unknown. While working at the University of Ottawa, J.Q. Shan identified some critical heat flux (CHF) tube data that were labeled as "Col-U" (Columbia University).

Smolin, V.N., V.K. Polyakov, and V.I. Esikov (1962), "On the Heat Transfer Crisis in Steam-Generating Pipes," *Soviet Journal of Atomic Energy* 13:968–972, Translation from *Atomnaya Energiya* 13(4):360–364.

Smolin, V.N., et al. (1979), reference unknown. The Smolin (1979) data set was contained in a database that Kirillov transferred to the University of Ottawa around 1992; the section titled, "Kirillov Database (1992)," in Appendix I of this report describes the database.

Snoek, C.W. (1988), "Comparison of the Critical Heat Flux in Interconnected Subchannels of Different Geometry," CRNL-4231, CANDEV-88-23, AECL, Chalk River, Ontario, Canada, 90 pages.

Soderquist, B. (1994), "Swedish Tube CHF Data," personal communication with D.C. Groeneveld, the Department of Nuclear Reactor Engineering, Royal Institute of Technology, Stockholm, Sweden, March 1994, 19 pages.

Swenson, H.S., J.R. Carver, and C.R. Kakarala (1962), "The Influence of Axial Heat-Flux Distribution on the Departure from Nuclear Boiling in a Water-Cooled Tube," ASME Proceedings, Paper No. 62-WA-297, 15 pages.

Tain, R.-M. (1994), "An Investigation of CHF Fluid-to-Fluid Scaling and Multi-Fluid Prediction Techniques," Ph.D. Thesis, University of Ottawa, Ottawa, Ontario, Canada, December 1994, 406 pages.

Tong, L.S. (1964), reference unknown.

Waters, E.D., J.K. Anderson, W.L. Thorne, and J.M. Batch (1965), "Experimental Observations of Upstream Boiling Burnout," *Chemical Engineering Progress Symposium Series* 61(57): 230–237.

Williams, C.L., and S.G. Baus (1980), "Critical Heat Flux Experiments in a Circular Tube with Heavy Water and Light Water," WAPD-TM-1462, Bettis Atomic Power Laboratory, West Mifflin, PA, May 1980, 69 pages.

Yin, S.T., T.-J. Liu, Y.-D. Huang, and R.M. Tain (1988), "Measurements of Critical Heat Flux in Forced Flow at Pressures Up to the Vicinity of the Critical Point of Water," in the Proceedings of the 1988 National Heat Transfer Conference, Houston, TX, July 24–27, 1988, Volume 2, pp. 501–506.

Zenkevich, A., et al. (1969), reference unknown. The only indirect reference to the Zenkevich data set is from Kirillov's 1992 CHF database transferred to the University of Ottawa in the early 1990s (see a description of the database in the section "Kirillov Database (1992)," in Appendix I of this report).

Zenkevich, A., et al. (1971), reference unknown. The only indirect reference to the Zenkevich data set is from Kirillov's 1992 CHF database transferred to the University of Ottawa in the early 1990s (see a description of the database in the section "Kirillov Database (1992)," in Appendix I of this report).

Zenkevich, B.A., O.L. Peskov, and N.D. Subbotin (1964), "A Study of Critical Heat Flux Densities for Tubular Fuel Elements at Atomic Power Stations," *Teploenergetika* (in Russian) 11(6):20–22; *Thermal Engineering* (English translation) 11(6):23–25.

Zenkevich, A., O.L. Peskov, G.A. Petrishcheva, N.D. Sergeev, and V.I. Subbotin (1974), "Analysis and Generalization of Experimental Data on Heat Transfer Crisis Associated with Forced Convection of Cooling Water in Tubes," Institute of Physics and Power Engineering, Obninsk, Russia (1969); AECL-Tr-Misc.-304, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, English translation by G. Phillips (1974), 440 pages.

B-2 References to Supplementary Critical Heat Flux Data Sets That Were Processed But Not Used To Derive the 2006 Critical Heat Flux Lookup Table

Becker, K.M. (1966), "Some Remarks on Correlating the Harwell Round Tube Burnout Data," AE-RTL-855, Atomenergi, Studsvik, Sweden, May 1966, 16 pages.

Becker, K.M., and C.H. Ling (1970), "Burnout Measurements in a Round Tube of 7,100 mm Heated Length," KTH-NEL-13, Royal Institute of Technology, Stockholm, Sweden, Laboratory of Nuclear Engineering, June 1970, 17 pages.

Belyakov, I.I. (1976), "Issledovanie uhudsheniya Teploobmena v Vertikalnih Trubah" (in Russian), "Investigation of Post Dryout in Vertical Tubes," Report No. 053501/0-9119, Centralnii Nauchno-Issledovatelskii i Proektno-Konstruktorskii Kotlotyrbinnyii Institut, Central Boiler-Turbine Institute, Leningrad, Russia, 126 pages.

Bergles, A.E., J.P. Roos, and J.G. Bourne (1968), "Final Summary Report, Investigation of Boiling Flow Regimes and Critical Heat Flux," NYO-3304-13, Dynatech Corporation, Contract to U.S. Atomic Energy Commission, Washington, DC, July 1968, 77 pages.

Bertoletti, S., C. Lombardi, and M. Silvestri (1964), "Heat Transfer to Steam-Water Mixtures," CISE, Milan, Italy, Report CISE R-78, January 1964, 90 pages.

Biancone, F., A. Campanile, G. Galimi, and M. Goffi (1965), "Forced Convection Burnout and Hydrodynamic Instability Experiments for Water at High Pressure. Part I: Presentation of Data

for Round Tubes with Uniform and Nonuniform Power Distribution," EUR-2490.e, European Atomic Energy Community.

Campolunhi, F., M. Cumo, G. Ferrari, and R. Loe (1973), "An Experimental Study on Heat Transfer in Long Sub-Critical Once-Through Steam Generators," International Meeting on Reactor Heat Transfer, Karlsruhe, F.R., Germany, October 9, 1973, M.D. Donne (Ed.), Gesellschaft for Kernforschung mbH, Karlsruhe, Germany, Paper No. 8/9, pp. 373–401.

Ceresa, I., A. Era, G. Greco, and F. Lucchini (1974), "Dryout with Steam-Water Mixtures at 500 bars in Uniformly Heated Round Ducts," CISE-R-359, CISE, Segrate, Milan, Italy, November 1974.

Clark, J.A., and W.M. Rohsenow (1952), "Local Boiling Heat Transfer to Water at Low Reynolds Number and High Pressures," DIC-6627, Massachusetts Institute of Technology, Cambridge, MA, July 1952.

Cumo, M., G. Palazzi, and G.C. Urbani (1979), "On the Limiting Critical Quality and the 'Deposition Controlled' Burn-Out," Comitato Nazionale Energia Nucleare, Rome, Italy, 1979 Meeting of the European Two-Phase Flow Group, Ispra, Italy, June 5–7, 1979, Paper No. C3, 20 pages.

DeBortoli, R.A., and R. Nasnovi (1957), "Burnout Data for 0.186 Inch Inside Diameter by 12 Inches Long Round Nickel Tube," WAPD-TH-308, Westinghouse Atomic Power Division, Westinghouse Electric Corporation, Pittsburgh, PA, 14 pages.

Eicheldinger, C. (1962), "PM Research and Development Program, 5th Quarterly Progress Report," MND-MD-2560-2, Martin Marietta Nuclear Division, Martin Marietta Corporation, Raleigh, NC, June 1962, 176 pages.

Epstein, H.M., J.W. Chastain, and S.L. Fawcett (1956), "Heat Transfer and Burnout to Water at High Subcritical Pressures," BMI-1116, Battelle Memorial Institute, Columbus, OH, July 1956, 26 pages.

Fiori, M.P., and A.E. Bergles (1968), "Model of Critical Heat Flux in Subcooled Flow Boiling," Report No. 70281-56, Massachusetts Institute of Technology, Cambridge, MA, September 1968, 158 pages.

Hassid, A., A. Milani, R. Ravetta, and L. Rubiera (1967), "Heat Transfer Crisis with Steam-Water Mixtures in Round Conduits: Reproducibility Tests with Different Experimental Facilities," CISE-R-236, CISE, Milan, Italy, November 1967, 77 pages.

Hunt, T.W., H.S. Jacket, J.D. Roarty, and J.E. Zerbe (1955), "An Investigation of Subcooled and Quality Burnout in Circular Channels," WAPD-LSR(IM)-1, Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh, PA, January 1955, 45 pages.

Inasaka et al. (1991), reference unknown. These data may have been included in the database transferred by Celata to the University of Ottawa (personal communication letter between Celata and Professor S.C. Cheng, University of Ottawa, Ottawa, Ontario, Canada, April 22, 1993).

Isakoff, L., and H.F. Measley (1962), "Heavy Water Moderated Power Reactors," DP-795, E.I. du Pont de Nemours and Company, Wilmington, DE, November 1962, 39 pages.

Kinoshita, H., H. Nariai, and T. Yoshida (1998), "Critical Heat Flux in Subcooled Flow Boiling with Water in a Tube with Axially Nonuniform Heating," *Heat Transfer—Japanese Research* 27(2):169–178.

Lee, D.H., and J.D. Obertelli (1963), "An Experimental Investigation of Forced Convection Burnout in High Pressure Water. Part I: Round Tubes with Uniform Flux Distribution," AEEW-R 213, Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset, United Kingdom, 81 pages.

Lee, D.H. (1965), "An Experimental Investigation of Forced Convection Burnout in High Pressure Water. Part III: Long Tubes with Uniform and Non-Uniform Axial Heating," AEEW-R 355, Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset, United Kingdom, March 1965, 66 pages.

Little, R.B., and R. Trenberth (1966), AEEW-M 623, "A Pilot Experimental Investigation into Burnout with Subcooled Water Flowing inside a Tube at High Velocity," Atomic Energy Research Establishment, Winfrith, Dorchester, Dorset, United Kingdom, March 1966, 13 pages.

McGill, H.L., and W.L. Sibbitt (1951), "Heat Transfer and Pressure Drop of Water Flowing in a Small Tube," ANL-4603, Argonne National Laboratory, Lemont, IL, Part 1, February 1951, 58 pages.

Mudawar, I., and M.B. Bowers (1999), "Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling—I: CHF Data and Parametric Effects for Small Diameter Tubes," *International Journal of Heat and Mass Transfer* 42:1405–1428.

Nariai, H., F. Inasaka, W. Fijisaki, and H. Ishiguro (1991), "Critical Heat Flux of Subcooled Flow Boiling in Tubes with Internal Twisted Tape," in the 7th Proceedings of Nuclear Thermal Hydraulics: American Nuclear Society 1991 Winter Meeting, American Nuclear Society, La Grange Park, IL, November 1991, pp. 38–46.

Nilsson, L. (1970), "Repeatability Tests of Critical Heat Flux Data for 1970 Meeting of the European Two-Phase Flow Group, Comparison of Results by Becker's Burnout Correlation," AE-TPM-RL-1229, Aktiebolaget Atomenergi, Stockholm, Sweden, June 1970, 24 pages.

Ornatskii, A.P., and A.M. Kichigin (1961), "Issledovanie Zavisimosti Kriticheskoi Teplovoi Nagruzki ot Vesovoi Skorosti, Nedogreva i Davleniya" (in Russian), *Teploenergetika* 8(2):75–79.

Ornatskii A.P., and A.M. Kichigin (1962), "Kriticheskii Teplovie Nagrzki pri Kipenii Nedogrretoi Vodi v Trubah Malogo Diametra v Oblasti Visokih Davlenii" (in Russian), *Teploenergetika* 9(6)44–47.

Ornatskii A.P., and Vinyarskii (1965), "Heat Transfer Crisis in a Forced Flow of Underheated Water in Small-Bore Tubes," *Teplofizika Visokikh Temperatur (in Russian)* 3:444–451; *High Temperature (English translation)* 3:400–406.

Ornatskii, A.P. (1963), "Kriticheskie Teplovie Nagruzki i Teplootdacha pri Vinyzdennom Dvizenii Vodi v Trubah v oblasti Sverhvsokih Davlenii (175–220 atm)" (in Russian), "Critical Heat Loads and Heat Transfer for a Forced Flow of Water in Tubes in the Region of Super High Pressures (175–220 atm)," *Teploenergetika* 10(3):66–69.

Peskov, O.L., V.I. Subbotin, B.A. Zenkevich, N.D. Sergeev (1961), "The critical heat Fux for the Flow of steam-water mixtures through pipes", in: S.S. Kutateladze (Ed.), Voprosy Teplootdachi i Gidravliki Dvukhfaznykh Sred, Gosénergoizdat, Moscow, Russia, 1961. *Problems of Heat Transfer and Hydraulics of Two-Phase Media*, Pergamon Press, Oxford, UK, 1969, pp. 48-62.

Reynolds, J.M. (1957), "Burnout in Forced Convection Nucleate Boiling of Water," DSR 7-7673, Massachusetts Institute of Technology, Cambridge, MA, July 1957.

Ruan, S. (1994), "Experimentelle Untersuchung der kritischen Warmestromdichte von aufwarts und abwarts stromendem Wasser in einem senkrechten Kreisrohr bei niedrigen Druken und niedrigen Massenstromdichten," Fortschritt Berichte VDI, Reihe 3: Verfahrenstechnik, No. 351, 147 pages.

Shlykov, Yu.P., A.D., Leongardt, and A.P. Potapov (1970), "Burnout When Boiling with Subcooled Water Flowing in Tubes at High Velocities and Low Pressures," *Thermal Engineering (English translation)* 17(3):91–93, from *Teploenergetika (in Russian)* 17(3):63–65.

Stein, M. (2004), "Systematische Untersuchung der kritischen Warmestromdichte beim Stromungssieden von Wasser in lotrechten Kreisrohren mit und ohne poroseer Beschichtung," Ph.D. Thesis, Techischen Universitat Berlin, Berlin, Germany, April 2004, 245 pages.

Tramontini, V.N., M.L. Greenfield, G.C. Wong, R.P. Lipkis, H.I. Leon, R.K. Breeze, and G.S. Arbuthnot (1951), "Final Report on Studies in Boiling Heat Transfer," COO-24, University of California, Los Angeles, CA, March 1951, 498 pages.

Vandervort, C.L. (1992), "The Ultimate Limits of Forced Convective Subcooled Boiling Heat Transfer," Ph.D. Theses, Faculty of Rensselaer Polytechnic Institute, Troy, NY, May 1992, 321 pages.

Weatherhead, R.J. (1963), "Nucleate Boiling Characteristics and the Critical Heat Flux Occurrence in Subcooled Axial-Flow Water Systems," ANL-6675, Argonne National Laboratory, Lemont, IL, March 1963.

Weatherhead, R.J. (1963), "Heat Transfer, Flow Instability, and the Critical Heat Flux for Water in a Small Tube at 200 psia," ANL-6715, Argonne National Laboratory, Lemont, IL, June 1963.

Weber, P., and K. Johannsen (1990), "Study of Critical Heat Flux Condition at Convective Boiling of Water: Temperature and Power Controlled Experiments," in the Proceedings of the 9th International Heat Transfer Conference, Jerusalem, Israel, G. Hetsroni (ed.), Hemisphere Publication Corporation, New York, NY, Volume 2, pp. 63–68.

Yildiz, S. (1997), "Experimentelle Untersuchung der kritischen Warmestromdichte im Ubergang von DNB- zum Dryout-Mechanismus in glatten and poros beschichteten Rohren bei niedrigen Drucken und Massenstromdichten," Ph.D. Thesis, Technischen Universitat Berlin, Berlin, Germany, 166 pages.

Zou, L. (2003), "Experimental Study of Dryout of Upward Flow in Vertical Circular Tube" (in Chinese), Ph.D. Thesis, China Nuclear Engineering Research Institute, August 2003, 57 pages.

B-3 References to Additional Data Sets Not Yet Processed

Alad'ev, I.T., L.D. Dodonov, and V.S. Udalov (1959), "Burn-Out Heat Flux for Flow of Water in Pipes," *Soviet Journal of Atomic Energy* 6(1):42–45, January 1959.

Becker, K.M., and G. Hernborg (1964), "Measurements of Burnout Conditions for Flow of Boiling Water at Low Pressures," AE-R4-346 RPL-753, Aktiebolaget Atomenergi, Stockholm, Sweden, September 1964, 21 pages.

Becker, K.M. (1965), "An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts," AE-178, Aktiebolaget Atomenergi, Stockholm, Sweden, 163 pages.

Becker, K.M., G. Hernborg, M. Bode, and O. Eriksson (1965), "Burnout Data for Flow of Boiling Water in Vertical Round Ducts, Annuli and Rod Clusters," AE-177, Aktiebolaget Atomenerg, Stockholm, Sweden, 116 pages.

Becker, K.M., C.H. Ling, S. Hedberg, and G. Strand (1983), "An Experimental Investigation of Post Dryout Heat Transfer," KTH-NEL-33, Royal Institute of Technology, Department of Nuclear Reactor Engineering, Stockholm, Sweden, May 1983, 631 pages.

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1965), "Experiments on Burnout in Uniformly Heated Round Tubes at 1,000 psia with Steam-Water Mixtures at the Tube Inlet," AERE-R 5072, Atomic Energy Research Establishment, Harwell, Berkshire, United Kingdom, November 1965, 32 pages.

Bennett, A.W., G.F. Hewitt, H.A. Kearsey, and R.K.F. Keeys (1967), "Heat Transfer to Steam-Water Mixtures Flowing in Uniformly Heated Tubes in Which the Critical Heat Flux Has Been Exceeded," AERE-R 5373, Atomic Energy Research Establishment, Harwell, Berkshire, United Kingdom.

Bergles, A.E. (1962), "Force-Convection Surface-Boiling Heat Transfer and Burnout in Tubes of Small Diameter," Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, May 1962, 153 pages.

Bernath, L. (1960), "A Theory of Local-Boiling Burnout and Its Application on Existing Data," Chemical Engineering Progress Symposium Series, *Heat Transfer—Storrs* 56(30):95–116.

Bertoletti, S., G.P. Gaspari, C. Lombardi, and Z. Zavattarelli (1963), "Critical Heat Flux Data for Fully Developed Flow of Steam-Water Mixtures in Round Vertical Tubes with Non-Uniform Axial Power Distribution," Report No. R-74, CISE, Segrate, Milan, Italy, April 1963, 30 pages.

Biancone, F., A. Campanile, G. Galimi, and M. Goffi (1965), "Forced Convection Burnout and Hydrodynamic Instability Experiments for Water at High Pressure. Part I: Presentation of Data for Round Tubes with Uniform and Non-Uniform Power Distribution," EUR 2490.e, European Atomic Energy Community (EURATOM), 102 pages.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 8, AB Atomenergi, Studsvik, Sweden, pp. 101–110, data from Report No. AE-RI 700504.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 9, Delahousse, A., Center for Nuclear Studies, Grenoble, France, pp. 111–126.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 10, G.P. Gaspari and M. Protti, CISE, Segrate, Milan, Italy, pp. 127–164.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 11, A. Bahr, H. Herkenrath, and P. Mork-Morkenstein, CCR EURATOM, Ispra, Italy, pp. 165–178.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 12, K.M. Becker, Royal Institute of Technology, Stockholm, Sweden, pp. 179–184.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 13, SORIN, Sluggia, Italy, pp. 185–194.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970, Chapter 14, United Kingdom Atomic Energy Authority, Winfrith, United Kingdom, pp. 195–199.

Casterline, J.E., and B. Matzner (1964), "Topical Report #1 Task XVI of Contract at(30-3)-187, USAEC/AECL Cooperative Program on Heavy Water Moderated Power Reactors," Columbia University, New York, NY, July 1964, 59 pages.

Celata, G.P., M. Cumo, and A. Mariani (1992), "Subcooled Water Flow Boiling CHF with Very High Heat Fluxes," *Revue Générale de Thermique* 31(362):106–114, February 1992.

De Bortoli, R.A., et al. (1958), "Forced Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressure above 500 psia," WAPD-188, Westinghouse Electric Corp. Bettis Plant, Pittsburgh, PA.

Doroshchuk, V.E., and F.P. Frid (1961), "The Critical Heat Flux for Water Flowing through Round Tubes," in *Problems of Heat Transfer and Hydraulics of Two-Phase Media*, S.S. Kutateladze (ed.) (in Russian), Chapter 4, pp. 38–47, Translated into English by O.M. Blunn, J.G. Collier (ed.).

Doroshchuk, V.E., and F.P. Lantsman (1963), "Vliyanie Diametra Kanala na Kriticheskie Teplovie Nagruzki" (in Russian), "Effect of Channel Diameter on Critical Heat Loads," *Teploenergetika* 10(8):73–76.

Doroshchuk, V.E., and F.P. Lantsman (1964), "Effect of Pressure and Mass Flow Rate on Burnout Heat Fluxes in a Water and Steam-Water Mixture Flow in Tubes," *International Journal of Heat and Mass Transfer* 7:187–190.

Dougherty, T., C. Maciuca, E.V. McAssey, Jr., D.G. Reddy, and B.W. Yang (1992), "Columbia University Flow Instability Experimental Program, Volume 7, Single Tube Tests, Critical Heat Flux Test Program (U)," WSRC-TR-93-688, Westinghouse Savannah River Company, Aiken, SC; CU-HTRF-T8, Columbia University, New York, NY, September 1992, 112 pages.

Gambill, W.R., R.D. Bundy, and R.W. Wansbrough (1961), "Heat Transfer, Burnout, and Pressure Drop for Water in Swirl Flow through Tubes with Internal Twisted Tapes," Symposium Series, *Chemical Engineering Progress* 57(32):127–137.

Greisen, D.A., D.C. Rousar, and W.R. Thompson (1999), "Critical Heat Flux Limits for High Velocity, High Subcooling Water Flows," *Journal of Thermophysics and Heat Transfer* 13(3):321–327, September 1999.

Hassid, A., G.C. Manzoni, R. Ravetta, and L. Rubiera (1966), "Heat Transfer Crisis with Steam-Water Mixtures: An Experimental Study on the Increase Critical Power with Local Swirl Promoters in Round Tubes," CISE-R-169, CISE, Milan, Italy, May 1966.

Hassid, A., A. Milani, R. Revetta, and L. Rubiera (1968), "Heat Transfer Crisis with Steam-Water Mixtures in Round Conditions: Reproducibility Tests with Different Experimental Facilities," EUR 3920.e, European Atomic Energy Community (EURATOM).

Hata, K., et al. (2005), reference unknown.

Hood, R.R., L. Isakoff, and D.F. Babcock (coordinator) (1963), "Heavy Water Moderated Power Reactors," Progress Report May–June 1963, DP-855, E.I. du Pont de Nemours and Company, Wilmington, DE, August 1963, 46 pages.

Hood, R.R., D.F. Babcock (coordinator) (1964), "Heavy Water Moderated Power Reactors," Progress Report January–February 1964, DP-895, E.I. du Pont de Nemours and Company, Wilmington, DE, March 1964, 34 pages.

Inasaka, F., and H. Nariai (1992), "Critical Heat Flux of Subcooled Flow Boiling for Water in Uniformly Heated Straight Tubes," *Fusion Engineering and Design* 19:329–337.

Inasaka, F. (1993), "Critical Heat Flux of Subcooled Flow Boiling in Water under Uniform Heating Conditions," *Papers of Ship Research Institute* 30(4):1–69.

Jens, W.H., and P.A. Lottes (1952), "Two-Phase Pressure Drop and Burnout Using Water Flowing in Round and Rectangular Channels," ANL-4915, Argonne National Laboratory, Lemont, IL, October 1952, 44 pages. Kabata, Y., R. Nakajima, and K. Shioda (1996), "Enhancement of Critical Heat Flux for Subcooled Flow Boiling of Water in Tubes with a Twisted Tape and with a Helically Coiled Wire," Conference Series, International Conference on Nuclear Engineering, Volume 1, Part B, pp. 639–646.

Kon'kov, A.S. (1966), "Experimental Study of the Conditions under Which Heat Exchange Deteriorates When a Steam-Water Mixture Flows in Heated Tubes," *Thermal Engineering* 13(12):77–82, Translation from *Teploenergetika* 13(12):53–57.

Kutateladze, S.S. (1959), "Kriticheskie Teplovie Potoki pri Techenii Smachivaoi shei Zidkosti s Yadrom, Nedogretim do Temperaturi Nasisheniya" (in Russian), "Critical Heat Flux in the Flow of a Wetting Liquid with the Core Heated to Saturation Temperature," Nauchnie Dokladi Visshei Shkoli, Energetika, No. 2, pp. 229–239.

Lee, Y.H., and S.H. Chang (2003), "The Effect of Vibration on Critical Heat Flux in a Vertical Round Tube," *Journal of Nuclear Science and Technology* 40(10):734–743, October 2003.

Leung, A. (1982), "A Study of the CHF Performance of Light and Heavy Water in Long Vertical Tubes," AI-1024, Atomic Energy of Canada Limited, Thermalhydraulics Branch, Chalk River, Ontario, Canada, April 1982, 69 pages.

Lowdermilk, W.H., and W.F. Weiland (1954), "Some Measurements of Boiling Burn-Out," NACA-RM-E54K10, NACA, Cleveland, OH, November 1954, 18 pages.

Mayersak, J., S.D. Raezer, and E.A. Bunt (1964), "Confirmation of Gambill-Green Straight Flow Burnout Heat Flux Equation at High Flow Velocity," Transactions of the ASME (Series C), *Journal of Heat Transfer* 86:297–198.

Mishima, K. (1984), "Boiling Burnout at Low Flow Rate and Low Pressure Conditions," Research Reactor Institute, Kyoto University, Kyoto, Japan, 336 pages.

Nariai, H., F. Inasaka, W. Fijisaki, and H. Ishiguro (1991), "Critical Heat Flux of Subcooled Flow Boiling in Tubes with Internal Twisted Tape," in the 7th Proceedings of Nuclear Thermal Hydraulics: American Nuclear Society 1991 Winter Meeting, American Nuclear Society, La Grange Park, IL, November 1991, pp. 38–46.

Nariai, H., F. Inasaka, and T. Shimura (1987), "Critical Heat Flux of Subcooled Flow Boiling in Narrow Tube," in the Proceedings of the 1987 ASME/JSME Thermal Engineering Joint Conference, Honolulu, HI, March 22–27, 1987, Volume 5, pp. 455–462.

Pabisz, R.A., and A.E. Bergles, (1996), "Enhancement of Critical Heat Flux in Subcooled Flow Boiling of Water by Use of a Volatile Additive," in the Proceedings of the ASME Heat Transfer Division (HTD): Presented at the 1996 International Mechanical Engineering Congress and Exposition, Atlanta, GA, November 17–22, 1996, HTD-Volume 334, Volume 3, pp. 305–312.

Pasint, D., and R.H. Pai (1966), "Empirical Correlation of Factors Influencing Departure from Nucleate Boiling in Steam-Water Mixtures Flowing in Vertical Round Tubes," Transactions of the ASME *Journal of Heat Transfer*, 88(4):367-373, November 1966.

Povarnin, P.I., and S.T. Semenov (1959), "Issledovanie Krizisa Kipeniya Vodi, Nedogretoi do Temperaturi Nasisheniya pri Dvizenii ee s Bolshoi Skorostiyo v Trubah" (in Russian), *Teploenergetika* 6(4):72–79.

Povarnin, P.I., and S.T. Semenov (1960), "Issledovanie Krizisa Kipeniya pri Techenii Nedogretoi Vodi v Trubkah Malih Dimetrov pri Visokih Davleniyah" (in Russian), *Teploenergetika* 7(1): 79–85.

Rickard, C.L. (1954), "Boiling Burnout Newsletter No. 1," BNL-2097, Brookhaven National Laboratory, Upton, NY, December 1954, 8 pages.

Rousar, D.C., and N.E. VanHuff (1966), "Heat Transfer Characteristics of 98% H₂O₂ at High Pressure and High Velocity," Contract AF04 (611)-10785, Final Report AFRPL-TR-66-263, Aerojet, Sacramento, CA, August 1966, 246 pages.

Rudzinski, K.F., D.C. Groeneveld, and S. Doerffer (1999), "Analysis of the Flow Transient CHF and Rewetting Data Obtained in an 8 mm Tube," FFC-FCT-65 COG-96-510, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, February 1999, 142 pages.

Smolin, V.N., V.I. Esikov, and S.V. Shpanskii (1970), "Departure from Nucleate Boiling in Channels with Heat Flux Peaking," UDC 621.1.016.4, *Thermal Engineering* 17(5):95–98, Original in Russian in *Teploenergetika* 17(5):66-69.

Smolin, V.N., S.V. Shpanskii, V.I., Esikov, and T.K. Sedova (1977), "Method of Calculating Burnout in Tubular Fuel Rods When Cooled by Water and Water-Steam Mixture," *Teploenergetika* 24(12):30–35.

Stein, M. (2004), "Systematische Untersuchung der kritischen Warmestromdichte beim Stromungssieden von Wasser in lotrechten Kreisrohren mit und ohne poroseer Beschichtung," Ph.D. Thesis, Techischen Universitat Berlin, Berlin, Germany, April 2004, 229 pages.

Sudo, Y. (1996), "Critical Heat Flux under Conditions of High Subcooling and High Velocity at Atmospheric Pressure," Transactions of the JSME (Series B), Volume 62, No. 601, Paper No. 96-0100, pp. 3376–3382, September 1996.

Sursock, J.P. (1973), "Un Modele D'Assechement en Ecoulement Double-Phase," Note CEA-N-1665, Commissariat a l'Energie Atomique, Paris, France, October 1973, 44 pages.

Swenson, H.S., J.R. Carver, and G. Szoeke (1962), "The Effects of Nucleate Boiling Versus Film Boiling on Heat Transfer in Power Boiling Tubes," Transactions of the ASME, *Journal of Engineering for Power* 84(4):365–371, October 1962.

Vijayarangan, B.R., S. Jayanti, and A.R. Balakrishnan (2005), "Studies on Critical Heat Flux in Flow Boiling at Near Critical Pressures," *International Journal of Heat and Mass Transfer* 49:259–268.

Watson, G.B., R.A. Lee, and M. Wiener (1974), "Critical Heat Flux in Inclined and Vertical Smooth and Ribbed Tubes," in the Proceedings of the 5th International Heat Transfer Conference, Tokyo, Japan, September 3–4, 1974, Volume 4, Paper B6.8, pp. 275–279.

Weber, P. (1990), "Experimentelle Untersuchungen zur Ubergangssieden von stromenden Wasser unter erhohten Druck," Fortschritt Berichte VDI, Reihe 3: Verfahrenstechnik, No. 226, 179 pages.

Whittle, R.H., and R. Forgan (1967), "A Correlation for the Minima in the Pressure Drop versus Flow-Rate Curves for Sub-Cooled Water Flowing in Narrow Heated Channels," *Nuclear Engineering and Design*, Volume 6, Issue 1, 1967, Pages 89-99.

Wurtz, J. (1978), "An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 bar," Report No. 372, Riso National Laboratory, Roskilde, Denmark, 146 pages.

Zenkevich, B.A. (1964), "O Vlijnii Skorosti Techenija Nedogretoi Vodi na Kriticheskoie Teplovie Potoki" (in Russian), "On the Effect of Subcooled Water Flow Velocity on Burnout Heat Fluxes," *Inzenerno-Fizicheskii Zurnal* 7(7):43–46.

Zenkevich, B.A., and V.I. Subbotin (1957), "Critical Heat Loadings in Forced Flow of Water Heated Below Boiling," Letters to the Editor, The Soviet Journal of Atomic Energy, 1958, Volume 3, Number 2, pp. 915–919.

B-4 References to Critical Heat Flux Data Compilations

Bernath, L. (1960), "A Theory of Local-Boiling Burnout and Its Application on Existing Data," Chemical Engineering Progress Symposium Series, *Heat Transfer—Storrs* 56(30):95–116.

Biasi, L., G.C. Clerici, S. Garribba, R. Sale, and A. Tozzi (1967), "Studies on Burnout Part 3—A New Correlation for Round Ducts and Uniform Heating and Its Comparison with World Data," *Energia Nucleare*14(9):530–537, September 1967.

Celata, G.P., and A. Mariani (1992), "A Data Set of Critical Heat Flux in Water Subcooled Flow Boiling," Addendum to Specialists' Workshop on the Thermal-Hydraulics of High Heat Flux Components in Fusion Reactors, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia, Rome, Italy, September 9–12, 1992, and a personal communication to Professor S.C. Cheng, University of Ottawa, Ottawa, Ontario, Canada, April 22, 1993.

Chen, Y., K. Bi, M. Zhao, C. Yang, and K. Du (2015), "Critical Heat Flux with Subcooled Flowing Water in Tubes for Pressures from Atmosphere to Near Critical Point," in the Proceedings of the 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), Chicago, IL.

CISE (1970), "Exercise on Reproducibility of Critical Heat Flux Data, Presentation of Experimental Results," Meeting of the European Two-Phase Flow Group, Segrate, Milan, Italy, June 8–11, 1970.

Cizek, J. (1993), "CHF Data Bank—the 3rd Generation," SVUSS-93-05001, Prague, Czech Republic.

Firstenberg, H., S. Preiser, K. Goldmann, G. Rabinowitz, and L. LoBianco (1960), "Compilation of Experimental Forced-Convection, Quality Burnout Data with Calculated Reynolds Numbers," NDA-2131-16, U.S. Atomic Energy Commission, Washington, DC, June 1960, 60 pages.

Hall, D.D., and I. Mudawar (2000), "Critical Heat Flux (CHF) for Water Flow in Tubes—I. Compilation and Assessment of World CHF Data," *International Journal of Heat and Mass Transfer* 43(14):257–2604, July 2000.

Herkenrath, H., and P. Mörk-Mörkenstein (1969), "Die Warmeubergangskrise von Wasser bei erzwungener Stromung under hohen Drucken" (in German), *Atomkernenergie* 14(3):163–170.

Inasaka, F. (1993), "Critical Heat Flux of Subcooled Flow Boiling in Water under Uniform Heating Conditions," *Papers of Ship Research Institute* 30(4):1–69.

Kirillov, P.L. (1992). This database was transferred by Kirillov to the University of Ottawa around 1992 and is described in Appendix I in the section titled, "Kirillov Database (1992)."

Kirillov, P.L., O.L. Peskov, and N.P. Serdun (1985), "Control Experiment on Critical Heat Transfer during Water Flow in Pipes," *Soviet Atomic Energy* 57(6):858–860, Translation from original article by Kirillov et al. (1984) in *Atomnaya Energiya* 57(6):422–423, December 1984

Liu, W., H. Nariai, and F. Inasaka (2000), "Prediction of Critical Heat Flux for Subcooled Flow Boiling," *International Journal of Heat and Mass Transfer* 43:3371–3390.

Pei, B.-S. (1981), "Prediction of Critical Heat Flux in Flow Boiling at Low Qualities," Ph.D. Thesis, University of Cincinnati, Cincinnati, OH.

Saint-Hilaire, S.V. (2011), "Developpement d'une Correlation Predisant l'Apparition du FCC dans un Tube Vertical Chauffe Uniformement en Convection Forcee Avec un Écoulement Ascendant d'Eau," Master of Applied Science Thesis, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada, August 2011, 94 pages.

Shim, W.J., and J. Park (2003), "Analysis of a Generalized CHF Model in Vertical Round Tubes with Uniform Heat Flux," *Journal of Industrial and Engineering Chemistry* 9:607–613.

Thompson, B., and R.V. MacBeth (1964), "Boiling Water Heat Transfer Burnout in Uniformly Heated Round Tubes: A Compilation of World Data with Accurate Correlations," AEEW-R 356, Atomic Energy Research Establishment, Winfrith, Dorchester, United Kingdom, 137 pages.

Tong, L.S., et al. (1964), reference unknown. No documentation could be found for this data set.

Vandervort, C.L. (1992), "The Ultimate Limits of Forced Convective Subcooled Boiling Heat Transfer," Ph.D. Thesis, Faculty of Rensselaer Polytechnic Institute, Troy, NY, May 1992, 321 pages.

APPENDIX C

COMPLETE 2006 CRITICAL HEAT FLUX LOOKUP TABLE

The following pages contain the complete 2006 critical heat flux (CHF) lookup table, which gives the CHF in kilowatts per square meter. Section 6.2 describes the table shading that characterizes the CHF uncertainty.

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	55	204	359	366	295	206	105	51	39	22	20	28	38	61	81	101	121	142	162	180	196	67	207	394	419	297	207	112	57	41	23	21	29	39	59	80
	0.80	96	239	459	517	450	243	172	126	87	46	55	75	96	129	167	206	244	282	319	347	371	125	274	502	572	452	253	184	130	88	47	56	76	97	126	165
	0.70	110	277	600	675	605	415	322	210	105	120	159	210	248	289	347	409	468	523	576	615	651	131	362	691	722	616	440	334	210	118	132	161	226	264	304	358
	0.60	114	347	200	1031	1071	595	503	302	247	290	302	402	475	585	647	729	807	878	943	1000	1054	135	372	902	1193	1112	656	523	308	254	292	304	410	499	600	665
	0.50	123	387	715	1041	1193	1280	1165	815	595	485	532	670	823	969	1030	1118	1204	1281	1349	1414	1473	141	389	1033	1403	1504	1300	1173	813	599	488	534	675	850	998	1061
	0.45	133	419	745	1085	1212	1400	1359	1005	805	708	665	817	1030	1185	1247	1334	1418	1493	1559	1622	1679	148	457	1057	1446	1520	1447	1369	1016	822	732	681	820	1050	1228	1289
	0.40	142	443	758	_	1260	1495	1550		1105	956	846	891	1160	1405	1498	1595	1651	1719	1780	1838	1890	165	499	1065	1480		1598			1108	981	852	895	No.	1423	1542
	0.35	152	475	789	-	1282	1510	1715	-	1696	1148	940	1158	1470	1718	1779	1848	1908	1965	2013	2060	2103	180	516	1127	1513	_	_	1		1803	1168	945	1170	Sec. 17	and a start	1843
	0.30	165	531	811	1159	-	1563	1930	_	2549	2458	1829	1729	1850	1972		2128	2170	Carlos Carlos	2247	2285	2320		599	1183	1576		_			2672	2521	1868				2139
	0.25	188	553	847	1172	-	1591	1980	-	2720	-	2369	2311	2282	2304		2406	2447	2477	2501	-	2553	2	709	1262	1614		_	÷	_	2894			Contraction of the		Section 1	2449
×	0.20	223	587	885	-		1606	2000	-	_	_	2706	2557	2504	2541	2629	2680	2681	2694	2724	2751	2778	-	871	1373	1657		-	-		3232						2739
	0.15	284	641	1013	-	-	1649	2070		-	-	2968	2769	2736	2769	2890	2954 :	2921	2918	2958	2996	3031	420	1052		1862	-	_		_	3410	3444		-			3048
-	0.10	415	784	1275	_	1808	1970	2349	2917	3402	3599	3389	3196	3119	3287	3410	3465	3580	3620	3668	3699	3780	606	1315	1869	2263	-	-	_	_	3490	3681	3502 3	_	Section 1	SCHOOL I	3655
	0.05	637	1011	558				2653	3166 2	3556	3852 3	3976	4106	4228	4272 3	4342	4389	4423	4491	4513	4585	4689	883	1587	2150	2617	22 - 12			000	3759 :	3951	4081	4195 3			4369
	0.00	1142	1570 1	2103		2685 2	2780 2	3012 2		-	4047	4182 3	4384 4	4709 4	5013 4	5113 4	5175 4	5241 4	5295 4	5370 4		5392 4	1374	2071	2638 2	3011 2		-	-	-	4462 3	4519 3	4551 4	4681 4	-	-	6052 4
	-0.05 (1990 1	2420 1	2942 2	10000	10000	_	3533 3	3741 3	_	4502 4	4826 4	5113 4	10.10	6267 5	6748 5	6867 5	6919 5	_	7062 5	-	7313 5	2483 1	2847 2		3429 3	3563 3	-	_		5171 4	5245 4					7103 6
	5200	157	100000		1	12000	10 C C C C C C C C C C C C C C C C C C C	10.000	5358 3	10000							8940 6			-		1000-116	4			4107 3			4572 3		.90		7393 5			8517 6	_
	-0.15 -	4086 3	4236 3		5009 3	5348 3		5971 4	6603 5	7059 6	7506 6	8063 7	1	10 mm		9592 8	10084 8		0748 5	1091 1	1538 1	2085 1	4106 3	564 3	Transmist I	5320 4	-		225 month		8179 6			and the second second			9705 8
	-0.20	4802 4	5035 4	610 J	-	1	7496 5	8232 5	9100 6	9141 7	9503 7	9779 8	10156 8	10512 8	10945 5	11185 5	11929 1	13026 10396	4371 1	5045 1	5822 1	6599 1		5304 4	_	6085 5			Distance.		10134 8	10477 8	0840 8	10948 8			
	-0.30	6302 4	6326 5	4 4	1000	12	11641 7	13255 8	15465 9	17143 5	8346 9	19383 9	21068 1	22722 1	23890 1	24979 1	25791 1	26637 1	34244 27480 14371 10748	35224 28165 15045 11091	8604 1	9089 1	6206 4	6287 5	6499 5	7805 6	9193 6				16367 1	18013 1	19028 10840 8691	20427 1	21520 11006	22599 11137	23700 11600
	-0.40	7252 6	-	3		10946 9	14405 1	16278 1:	19225 1:	21321 1	23599 18346	25465 19	27043 2	28471 2:	29774 2:	30988 24	32141 2	33222 20	1244 2	5224 20	5075 28	5803 29	7043 6	7058 6		9094 7	-		15378 1:	18208 14	20257 10	22280 18	23975 19	25440 20	26771 2		29133 2:
	-0.50 -	8111 7	8317 7	Part Sold		12882 10	16982 14	19441 10	22781 19	25268 2	28026 2:	30294 2	32227 2	33928 28	35406 29	36808 30	38232 3;	39525 33	40727 34	41950 3	43448 36075 28604 15822 11538 10726	4338 3(8027 7	8153 7	8418 7	10397 9		16084 1:	17866 1	21559 18	23993 20	26215 2:	27747 2:	29254 2	30763 2(32150 2	33465 29
σ	kg/m²/s -				300 1			1000 1						4000 3:			5500 3.			7000 4							500 1						3000 2				5000 3
-	1				-					_	-	in the second	_	-						-			_					_					-		-	-	
٩	kРа	101	10	100	101	100	100	100	100	100	10	100	10	100	10	10	10	100	10	100	100	101	30	30	30(30(30(30(30(30(30	30	30	30(300	30	30

Γ	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	100	121	142	150	166	181	105	235	417	449	300	209	119	65	43	24	22	30	39	54	70	86	103	121	139	153	166	145	282	501	514	377	213	128	75	46	26
	0.80	206	244	268	303	331	356	137	282	523	592	476	274	186	134	89	48	58	77	98	124	153	186	220	254	288	315	342	193	369	708	815	649	322	189	138	06	49
	0.70	418	476	532	586	627	664	156	395	711	749	676	503	362	215	132	145	163	229	271	315	368	423	478	534	588	631	672	220	522	1078	1302	1067	623	391	218	155	149
	0.60	748	828	902	970	1029	1083	157	407	940	1255	1177	684	540	310	260	296	306	420	532	612	693	772	850	927	997	1060	1120	231	586	1280	1727	1564	832	636	315	268	300
	0.50	1153	1241	1320	1391	1456	1514	159	465	1109	1464	1506	1307	1179	833	603	492	560	681	870	1003	1085	1178	1263	1342	1416	1480	1540	254	706	1541	2594	3445	3102	1199	843	624	521
	0.45	1377	1462	1543	1611	1673	1728	163	495	1116	1503	1534	1469	1399	1056	832	780	698	825	1060	1240	1310	1401	1482	1560	1632	1695	1751	269	723	1652	2766	3537	3291	2620	1238	873	823
	0.40	1636	1708	1783	1844	1898	1946	188	556	1122	1545	1630	1615	1599	1382	1115	1009	862	899	1180	1437	1551	1651	1728	1797	1864	1918	1967	291	770	1700	2871	3579	3473	3148	1601	1122	1012
	0.35	1881	1942	2004	2037	2095	2126	209	684	1188	1611	1651	1699	1927	2123	1850	1176	948	1201	1540	1776	1858	1927	1985	2029	2077	2127	2177	318	933	1798	2993	3678	3810	3708	3049	1957	1197
	0.30	2200	2247	2288	2327	2361	2395	245	775	1229	1647	1711	1740	2251	2774	2795	2647	1905	1856	2090	2204	2230	2259	2287	2319	2361	2398	2442	377	1068	1949	3172	3790	3851	3896	3655	3330	2927
	0.25	2501	2543	2578	2605	2625	2649	308	852	1316	1826	1933	1982	2613	3149	3169	3017	2761	2723	2692	2663	2639	2637	2652	2666	2682	2697	2734	492	1179	2087	3276	3938	3997	3998	3704	3596	3566
×	0.20	2776	2773	2783	2812	2839	2867	404	958	1399	2028	2253	2379	2885	3278	3578	3478	3216	3066	2991	2958	2907	2896	2913	2935	2939	2947	3069	678	1351	2216	3372	3953	4083	4099	4057	3992	3811
	0.15	3070	3104	3123	3155	3221	3228	557	1119	1704	2243	2462	2680	3109	3491	3693	3759	3690	_	3355	3257	3186	3175	3180	3246	3294	1000	3389	940	1607	2380	3471	3980	4162	4177		4407	4338
	0.10	3720	3685	3705	3772	3784	3892	798	1344	1988	2537	2811	2994	3304	3594	3772	3863	3955	3992	4029	4098	4132	4141	4190	4230	4307	4370	4485	1320	1966	2549	3685	3995	4200	4351	4610	4704	4794
	0.05	4427	4481	4571	4650	4702	4760	1129	1731	2270	2835	3157	3442	3684	4048	4215	4435	4595	4757	4922	5083	5162	5291	5399	5481	5588	5700	5794	1820	2473	3069	3901	4063	4228	4616	5246	5480	5633
	0.00	6122	6323	6440		6500	6544	1607	2170	2754	3165	3339	3630	3870	4711	5017	5151	5168	5384	5858	6212	6399	6209	6332	6496	6828	_	6896	2159	2702	3609	4013	4124	4337	4736		6373	6583
	10 - 20	7281	7398	7446		7689	7784	1	2989	3317	1 2	1000	3855	4062	5248			6194		6955		7321	10 A			8027	_	8256		3412	_	4140	4259	4378	4804		6830	2090
	oʻ	9115	9276	10024	10532	16123 12062 10765		33			4193								8154		8968	9208	9306	9598	9948	10333	16185 12686 10753		35		46	47		4896	4978	60	_	8318
		10147	10870	11330	11759	12062	16757 12891	4136	25 - 52		5491		-	6145	_	8310			9008	9267	11429 9919	11913 10245	12695 10581	14018 11114	11567	15581 12151	12686	17016 13200	-			1.000	-	-	-			9794
		12512	13522	14708	15513	16123	16757	-	31 10	-	6235	-	-	8057	9365	_	10751	11002	11141	11201	11429	11913	12695	14018	14945	15581	16185	17016	-				1.000			9481	10539	11001
		24325	25169	25960	26558	27283	27900	5910	-	-	(c	9073		12051	13972	15591	17081	18273	19186	20019	20508	21190		23302	24141	24952	25663	26712	-	1			8703	10033	11114	13366	14921	16332
	-0.40	30223	2 31241	32198	38099 33093	38989 34027	39744 34510	6834	7004	_	8983	12694 10885	15186 12992	17460 14778	3 17191	19293	25104 20961	22486	28248 23838	29719 25071	31075 26215	32376 27279	33684 28306	34756 29261	35781 30153	36804 30962	38036 31979	39197 33017	Constanting of the local division of the loc	6956	7702	8830	3 10478	5 12510	17023 14042	20026 16859	22495 18764	24717 20601
		34919	36122	37231	38095	38985	39744	7743	7983	8478	10280	12694	15186	17460	20438	22719	25104	26621	28248	29715	31075	32376	33684	34756	35781	36804	38036	39197	7347	7700	8581	10093	12148	14675	17023	20026	22495	24717
σ	kg/m²/s	5500	6000	6500	2000	7500	8000	0	50	100	300	500	750	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	2000	7500	8000	0	50	100	300	500	750	1000	1500	2000	2500
٩	kPa	300	300	300	300	300	300	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	24	33	40	51	64	78	95	112	129	140	150	170	373	594	690	609	229	174	97	60	29	27	36	40	47	56	67	80	95	110	118	123	178	429	672	893	956
	0.80	59	80	101	122	146	173	204	236	269	291	312	232	658	1123	1252	1109	700	359	163	97	53	59	83	104	119	134	153	177	205	233	247	259	247	704	1264	1630	1604
	0.70	168	247	300	331	372	427	477	530	583	630	668	317	845	_	2266	_	1194	597	288	196	157	172	254	318	340	380	412	452	499	551	599	633	350	1105		_	2645
	0.60	313	431	545	629	703	781	856	935	1008	1074	1136	323	924	1996	2998		1948	1260	512	418	313	331	442	606	653	712	781	848	928	1006	1073	1134	396	1219		-	3589
	0.50	583	690	890	1030	1109	1200	1280	1362		1512	1573	361	1069	2313	3276	3695	an seilt.	2751	897		556		-	966	1062	1131	1212	1287	1371		1530	1595	443	1333	0	Sec. 25	3742
	0.45	701	121030			1337 1	1428 1			1670 1	1736 1	1794 1	380	1089 1	2393 2	3375 3	-	4033		1903		958	10 contra		1147		1346 1	-	1516 1			1767 1	1827 1	482	1361 1		1.000	3967
	0.40	895	_			1562 1	1664 1	1746 1	182	1909 1	1968 1	2021 1	438	1209 1	2487 2	3475 3	3929 3	4396 4	4196 3	2926	1357 1	1237		-	1318 1			1647 1	1742 1	1842 1	2	2013 1	2077 1	539	State 1	-	(* 3) (() () ()	4150 3
	0.35 (277		1620 1	1805 1	1874 1	1938 1	2006 1	1000	2122 1	2219 1	2272 2	491	1331 1	2599 2	3563 3	4076 3	4478 4	4792 4	4389 2	3026 1	1613 1	1185 1		1642 1	1	1803 1	1897 1	1992 1	2094 1	2	2286 2	2363 2	615	13	1	3971 3	4259 4
	0.30 (2007	_	100		2357 1	2358 1	2372 2	100	2445 2	2480 2	2547 2	587	1447 1	2801 2	3725 3	4197 4	4590 4	4961 4	4524 4	3824 3	3328 1	2570 1	-	2367 1		_		2391 1	1.1.1		2581 2	2696 2	741	1693 1	3171 3	4218 3	4432 4
	0.25 0	3325 2		1010101			2887 2				2897 2	2917 2	745 4	1613 1	2933 2	4026 3	4373 4	4700 4	4992 4	-	-	-		-	-	-	_	-	1000		1000	2983 2	3098 2	929			11 miles	4767 4
×	0.20 0	3718 3	_				3272 2		3194 2	-	3251 2	3301 2	_	1834 1	3072 2	4362 4	_	-	5083 4	4871 4	4595 4	4552 3	-	_	3868 3	_	-	-				3322 2	3403 3			S (2)		5061 4
	0.15 0	4244 3	A COMPANY	A CONTRACTOR		3722 3	3694 3	3548 3		1	3628 3	3674 3	1302 §	2160 1	3326 3	-		-	5197 5	5141 4	4996 4	4856 4	1.000	-	4485 3	-	-	-	-	-		3844 3	3886 3	1551 1		-	7.000	5439 5
	0.10 0	4871 4	_	200	4571 3	4492 3	4590 3	4616 3	1.000	4676 3	4694 3	4822 3	1704 1	2552 2	3657 3	4908 4		5338 5	5417 5	_	5406 4	5302 4	-		4951 4	_	4789 4	-	1.123	_	200	5027 3	5167 3	1979 1	10000			5959 5
	0.05 0	371 4	5714 4		5778 4		6006 4	6024 4	6151 4	_		6294 4	2165 1	3005 2	4071 3	5220 4		5696 5		6095 5	6199 5	5976 5	5860 5	_	5878 4	_		-	6065 4	6099 4	2	6198 5	6292 5	2431 1	3325 2	1. 18		6453 5
	0.00 0	6673 5(1.000	-	_	6934 5(6744 6(-	-	6875 6	-	6995 62	2594 2	3450 3(4757 4(5659 52		6097 5(6185 5	6660 6(7261 6	7196 59			7103 58	-	-	-	6987 60	6933 6(7041 6	7070 62	2943 24		5121 4		6649 6
	-0.05 0	7195 6(_	_	-		7551 6	-	7866 6.	_	8228 69	8426 69	3173 2	3982 3,	5241 4		6260 60	-	6371 6	7342 60	8305 7:	8116 7			7542 7	_	-	Cones.		7927 6	-	8396 7(8676 7(3447 29	-	5525 5		6950 6(
	-	8496 7	1					-	5			11049 8	3713 3	-	_					7670 7:		_	1		8752 7:	1 3	6 3			9812 7	2		10940 8	2	10000	1	15 32	7073 6
	-0.15 -0	10209 8		_		_	_	11388 94	11882 9	12338 10	803 10	534 11	4189 3	_	5946 5	6722 6	_	7076 6		-	9584 8			10169 80		_	_	_	11244 9:		12253 10	12704 10	13306 10	4213 30	1	112000	_	7188 7(
	-0.20 -0	11532 10	11516 10		11226 99	12193 10358	122 10	14247 11	14949 11	15247 12	170 12	157 13		5351 49	6207 59	7108 6.	_	7868 70	7982 7	9416 8.	513 9	161 10	602 10	11317 10	802 98	857 93	811 10	769 10	576 11	14138 11	14625 12	15499 12		4593 4;	5303 49	Contract of	-	7426 7
	-0.30 -0	17370 11	18245 11	18990 11	19791 11	20592 12	21588 13122 10898	22490 14	23127 14	23637 15	24195 16170 12803	017 17	5413 4(7040 62	_	8430 75		10583 79	12233 94	13588 10513	14933 11161 10279	15816 11602	16526 11	22765 16902 10802	17644 10857	18164 11811 10290	18832 12769 10862	19986 13576	20946 14	563 14	22130 15	22628 16442	3 - 3	-	10 Col	35 - 57 10	8018 74
		22053 17	23473 18	24586 18	25743 19	26863 20	27872 21	28814 22	29678 23	30478 23	31065 24	712 25	_	6756 60	7820 70	Concer.		11557 95	13171 10	15537 12		098 14	20509 15	21723 16	765 16	23920 17	24767 18	25866 18	26751 19	27592 20	28383 21	29010 22	29609 22	-	-			9149 8(
	-0.50 -0.	26264 22	27894 23	29406 24	30773 25	31994 26	33271 27	34314 28	35402 29	36417 30	37289 31	38003 31712		7497 67	8767 78	9784 85	11464 96	13730 11:	16027 13	18947 15:	21106 17297	23353 19098	25197 20	26816 21	328 22	29717 23	638 24	32102 25	33085 26	34156 27:	35131 28:	35897 29	36663 29	22		17200001142		10708 91
									Í		-									Ĩ				S 8	× 8	S												
U	×	3000		_					6500		7500			50		300			-	-	-	_	_	-	-		5000	_	_	6500			8000		_		_	500
٩	kPa	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	3000	3000	3000	3000	3000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	382	270	139	82	39	32	39	41	47	54	63	75	89	104	112	119	180	438	736	951	1063	499	342	192	120	47	37	40	42	47	52	60	70	83	97	105	112
	0.80	930	587	256	115	63	63	92	110	119	131	147	168	194	223	239	253	254	684	1390	1710	1802	1312	660	337	160	85	70	98	111	119	128	141	160	183	210	225	239
	0.70	1951	1146	656	279	169	179	268	334	355	382	400	434	479	531	574	605	364	1192			2600	2337	1603	643	346	180	185	289	335	355	369	391	421	459	507	539	570
	-	3069	2405	755	499	342	348	458	625	668	717	781	839	917	666	1067	1129		1311	2756	_	3335	3124		984	597	397	386	503	620	666	710	764	817	888	964	1031	1094
	0.50	10		2756	938	657	578	717	1004	1079	1142	1215	1282	1364	1457	1531		502	-	-		3788	3766	100.000	2641	au i		551	724	977	1071	1133	1201	1266	1345	1432	Control 1	1572
	0.45	4271		3030	1739	978	774	859	1175		1329	1429	-	1598	1696	1775		554			3655	3913	4031	3783	Contraction of the	2001	7997		902	1136	1201		1401	1483	1579			1818
	0.40	4477	-	3622	2612	1819	1188	1107	1338	2008	1498	1606	a de la composición de la comp	1835	1.40	2034	2105	621	1535	1.00000	3843	4094	4249			1.2.11	2018	1355	1161	1304	1368	1423	1547	1678	1815			2096
	0.35	4591		4281	3448	2900	2289	1684		1680	1740	1828		2068		2326	2418	711	1652	3169	4134	4359	4503	_	_		2894		1	1519		20 33	1732	1865	2030		_	2429
	0.30	4677	4928	4699	3782	3547	3152	2745	-	-	2314	2318	-	2439	2535		2801	850	1804	3236	4381	4526	4653			-	3222		2682	2372	2265		2201	2223	2364		2001120	2822
		4988		4998	4342		3698	3567	3404	_	3095		1.0000000	2974	2974	10000	3160	-	2000	3351	4567	4764	4885		_	-		-	41.1		2961	-	_	_	101923		20250	3178
×		5287	_	5170	4738	-	4355	4230		-	3624	3593	1		3398	_	3428	-		-	-	5074	5226		-	-	4199	_			3468	8	3380	-	_		_	3408
		5644	_	5546	5192	-	4839	4646	-	4299	4141	3993	-		Contractor of		3882	-	2595			5456	5608		-	-	-	-	-	-	-	-	-		1000		Sec. Sec.	3772
	_	6159	100000	6030	5718	5432	5187	5023	_	-	4583	4509	-				4902	-	2998	-	_	5916	6042	Conception of the	_	-	5046	-	-	4394	4235	-	_		Second Second			4388
	0.05	3553 (6517 (6337 3	6085	5771	5567	-	5452	5395	5297	-					-	3417	4591	_	6468	6548 (-	_	_	-	-	-	4995		-	4839	4827	4919			5171
	0.00	3753 (125	7186 (7373 (7221 (6860	6681	-	A DESCRIPTION OF	6596	6632	6695	6714	6762 4		6939	3130			6577 (6774 (6854 (STATE OF	-			1000	5838 3	5582	5679	5713	5839	6023	-	6202	and the second	6604
	-0.05	7010 6	-	_		-	7642 (10000000	-	7328 6		Succession of	-		8486 6			4373 3			6952 (9 2669	2079 (-	-	1000	24	-	1.02	-	-	-	-	7788 6		and a second	8778 (
	-	5		1000	8626 4			Part of the	10000			100		11.1			10989 8		1					7226	2	1 3	1	1 1 2	-	1	8133 (1	8792		1	1	422	986
	-	7444	_	_		_	_	6066	9773	9920	0005	0644 8	1082		1 and 1	12357 1	12944 1		4956 4		1220-121	7021 (7434						9185	_		_	_	_	_	12235 1	12609 10
		1000		9127	_	0901	1208 1	10936	0471	0512	1621 1	2402 1	3154 1	3660 1	14216 1		15335 1	4548	_	107400	10040000	7150	7458		8532		_	_		10021	10323	11245	12085 1	2684 1	3170 1	3719 1		14557 1
		5.		11355	12632 10069	17244 13569 10901	14553 11208 10022	5027 1	5544 1	5956 1	6371 1	7231 1	8048 1	18858 13660 11303	19488 1	20150 1	20708 1	5128	1	6657		7652	8338	9133	10403		2361	3218	17946 13878 10050	14581 1	15016 1	15551 1	16222 1	21996 17079 12684 10801	17646 13170	18225 13719 11824	8769 1	19220 1
	_		12105	14038 1	15630 1	7244 1	8551 1	19619 15027	0591	21487 1	2290 1	23183 1	24039 1		25478 1	6191 2		5752		7253		8504	9835	11165	2792 1	14234 1	5660 1	6899	7946	18859 1	19744 1	20551	21303 1	21996 1	22656 1	23318 1	23946 18769	24554 1
		12850 1	14637 1	17032 1	18967 1	21002	22678 18551	24225 1	25515 2	26660 2	27501 22290 16371 11621 1	28809 23183 17231 12402 10644	29772 2	30660 24751	31524 2	32450 2	33419 2	6381	6880		9066	9985	11731	13263 1	15443	17246 1	19139 15660 12361	20712 16899 13218 9948	22036 1	23156 1	24287 1	25296 2	26166 2	27009 2	27791 2	28558 2		30161
υ	10	750 1			2000 1						5000 2			6500 3				0						1000 1						4000 2		6	1				7500 2	
٩.	kPa k	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	3000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	191	385	753	989	1104	814	379	200	130	51	41	42	44	46	51	57	67	78	91	98	105	200	365	781	934	989	829	391	203	133	56	42	44	45	46	49	54
	0.80	257	608	1460	1670	1880	1519	069	393	188	66	73	103	111	117	124	135	152	172	197	211	225	264	552	1340	1534	1695	1513	269	366	195	104	75	100	107	111	115	125
	0.70	366	1160	2202	2511	2490	2380	1683	592	354	195	179	290	320	346	362	379	405	437	482	512	543	376	1050	1959	2238	2306	2150	1071	454	308	190	173	257	300	312	321	340
	0.60	456	1330	2575	2890	3085	2760	2476	914	638	447	405	513	593	649	695	743	793	855	926	990	1052	481	1217	2380	2681	2825	2492	2271	802	590	410	362	479	534	580	618	667
	0.50	561	1387	2837	3255	3517	3330	2974	2290	1182	651	533	706	922	1046	1112	1176	1240	1314	1396	1466	1533	596	1375	-		3133	2988	2582	2058	998	600	484	595	821	941	1023	1088
	0.45	619	1493	(N) (A)	3502	3686	3574	3281	A PROPERTY.	1979	955	708	910	1060	1128	1224		1449		1639	1716	1783	659	-	1	1.000	-	3287	-	2420	1743	882	580	766	948	1030	1128	1242
	0.40	694	-		3662	3882	3851	3496	2941	2412	1915	1429	1164	1188	1245	1329	1000	1598	1783	1893	1988	2068	741			14 million (* 14 million) 14 million (* 14 million)	-	_	Sam.	-	-		1283	991	1082	1144	1243	1391
	0.35	795	_	_	3938	4140	4160	3883	3357	2909	2689	2283	_	1402	1424	1455	1628	1747	1947	2136	2250	2409	849	1734	_			3836		2945	2660	2303	2015	_	1363		1405	1519
	0.30	944			4302	4339	4350	4194	3795	3257	2876		-	2274	2065	2024	-	2057	-	_	2603	2817	1000	1888		1	_	-		-	-	ALC: NO.	R00011	_		-		1884
	0.25	1154		-	4502	4637	4675	4545	4167	-	-	-	-	2745	2672	-		2696	2771		2944	3178	1212	200	15	5. 31 25 - 31	4384	-		3681	-			_			_	2375
×	0.20	1417		-	4709	4866	4906	4796	4438	<u> </u>	_			-	3023		-	3079	_	_	-	3362	1467			_	_	4544		4054		_	_	_			_	2613
	0.15	1808	17. C.		4980	5196	5213	5182	4875		4017	-		3367	3305	-	-	3314	_	3386	3444		1852	10000		1000	-	4896	-	4480			_	-	-			2820
	0.10	2242			5395	5594	5749	5726	5375	4836	4445	_		3584	3522	3487		3507	3523	3553	3786	4010	2275	Sec. 5	1	23 - 34 22 - 34	() () ()	5330	5293	4993	-	_	1	_			-	3104
	0.05	2677		_	5915		6126	6028	5710	_	4880	4718	_	4200	4130	4103	-	4008	4183	4373	4572	_	2709	3453		_	_	_		5374	_		4310	_	_			3760
	0.00	3277		10000	6207	6460	6491	6568	6470	-	5661	-	5026	4783	4905	5030	-	5430	-	5781	6006	6217	3320		-	and a second	1000	6148	-	6155	-		-	-	4528			4925
	-0.05	3666			6401	100000	6666	6834	7024	-	6712	_	-	6295	6323	6486	-	7328	_	_	_		in a		100 C	101 - 201 201 - 201	1. 2.	1. D		6838			_	_			1.20	6431
	-	3976		5703						7408						_	8548	_			10298	1.000							6596				_	_		7473		
	-0.15	CONTRACT.		-		6746		7095	7597	7889	7972	8180	8306	8683	9063	_			0892	1608	1914 1	2316 1		4826				6497			_	7537			8398			9565
	-0.20	1	5138		6709	6839	7085	7447	8115	8530	8887	9231	9768	9991	10137	10880	11569 1	15958 12239 10650	16511 12734 10892	16907 13189 11608	17360 13563 11914	17865 13912 12316	4421	5013	5827	6321	6459	6692	7011	7670	_					9932		11029
	-	-	5573	-			_	8466	_	10401	11308	12150	2894	13569	14114 1	14525 1	15309 1	5958 1	6511 1	6907 1	7360 1	7865 1		5386						-						13217	13717 1	14305 1
		-	6028	-		100	9042	10204	1668	12936 1	14268 1	5433 1	6374 1	17217 1	18016 1	18766 1	19456 1	20103 1	0718 1	1312 1	21982 1		5279					8407		10809		13238 1	14290 1	15146 1	15944 1	16677 1	17381 1	18023 1
			6547 (12213 1	14030 1	15633 1	17335 1	18794 15433	19936 16374	20949 1	21962 1		23661 1	24391 2	25098 20718	25860 21312	26597 2		5731 5			7916	8442	9850 8	1155	12900 1		15946 1	17244 1	18285 1	9244 1	20189 1	21078 1	21815 1
σ	kg/m²/s		50							2000 1												8000 2		_	_	_			1000 1			2500 1					5000 2	
٩	kPa kg	-		_	5000	_	-		-	5000 2	_	_		_	_		_		-	_	_		\rightarrow	6000			_	_	_			6000 2	_		-		6000	

Γ	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	63	73	85	91	97	209	325	768	869	869	742	341	191	134	58	43	44	44	45	47	52	60	69	80	86	91	218	289	630	799	727	437	257	174	124	56	42
	0.80	141	160	182	195	208	267	473	1205	1408	1547	1400	506	318	197	103	22	96	66	102	106	115	131	149	170	182	193	268	425	266	1291	1203	743	360	236	177	98	75
	0.70	366	398	440	471	502	389	1010	1673	1994	1985	1904	767	372	267	177	157	224	255	266	277	298	327	360	401	433	463	403	935	1430	1765	1702	1472	558	284	226	160	140
	0.60	719	780	847	913	978	525	1151	2123	2286	2482	2312	2085	599	483	342	307	388	444	487	526	576	637	702	171	838	904	553	1117	1679	2061	2051	1832	1695	504	401	300	272
	0.50	1154	1221	1294	1367	1442	621	1366	2486	2738	2905	2770	2432	1591	793	521	429	531	681	779	854	933	1018	1103	1182	1264	1345	651	1357	2240	2440	2540	2440	2156	847	615	449	374
	0.45	1353	1451	1534	1614	1692	692	1477	2651	3028	3221	3118	2713	2264	1406	813	493	631	789	867	950	1065	1184	1303	1393	1504	1592	713	1454	2417	2738	2903	2726	2308	1653	1019	644	447
	0.40	1533	1691	1796	1895	1986	778	1588	2850		282	3327	2884	2490	1919	1487	951	851	957	1006	1052	1217	1339	1515	1615	1776	1893	-	100	2646	2915	3062	2926	2573	2089	1644	1033	801
	0.35	1641	1864	2051	2171	2366	891	1712	2906	3417	3602	3464	3112	2698	2353	1941	1685	1357	1251	1239	1279	1397	1476	1688	-	1911 - J	2282	902	-	-	3104	3212	3082	2823	2328	1937	1482	1308
	0.30	1923	2134	31111119	-	2754	1036	1859	3034	3611			3447	2991	2566	2211	2111	1798	1710	-			1697	-	2094	Concession of the local division of the loca	2605	1		Constant of	1	3386	1.2	-		2162	1816	1741
	0.25	-	2500	-	2773	3099	1243	2042	3142	3764		-	3723	_	-	-		-	2104	_	_		-	_	-	Sec	2927	-		-	Same a		-	-				1966
×	0.20	_	2810		2991	3221	1479	2264	3290	4070		4131	3935	3612	3174	2867	-	-	_	-	-	-	-		-	-	3063	-		-	3700	3848	_	_				2236
	0.15		2977		3162	3437	-	2624	3499			4538	4399	4039	3552	3207	-	-	2616	2472	-	14.44	-	_	-		3120	-	2	3337	4023	4253	4266	-	3737			2539
	0.10	-	3221	-	3413	3658	2256	2986	3776	4752	5.036	4987	4920	4561	4020	3639		3127	2855	2650	2611	2688	_		-	_		6	1000	3642	4429	4637	4721	4662	4281			3013
	0.05	_	3880	_	4210	4408		3399	4271	5182		5430	5366	5059	4570	4178	<u> </u>	-	_	_	3409	3405	-	_	-	-	_	-		4092	4849	-	-		4761			3690
	0.00	-	5256		-	5800	3322	3998	4849	5495		5776	5864	5729	5327	4977	-	4518	4226	_	4350	4649	-		4949	-	5163		3832	4621	5148		5400	-	5346			4484
	-	-	7447	-		8425	245	4306	5095		_	5895	6162	-	6187	5895	-		5593		_		_		7309	_	7792		_		5341	ALC: NOT US	5534	_	5834		_	5471
	-	50		9828			Contraction of the	4520	1.000	1000					1.1					7208		_	1.	9156			959	1000		1000	States -	5527	1	0 13		6312	_	
	_	3	10703	11390	11680	11986		4698								7382			_	_	_					11244		-				-	-	See	_	-		6986
	-0.20	11804	12290 10703	2669	3004	3464	4323	4863		_	_			Contractor	7557	-	_	_		9619	0084	0563	11354	1951	12260	12539	2917		_			-						7662
	-0.30	14956	15518	15984 12669 11390	6410	16796 13464 11986	-	_	5871	_		12	7390	8460	9172	9774		11223	11868	12439 9619	12870 10084	13579 10563	14047	14610	15013	15385	15794 12917	4507	1 mar 1 m	-	5931	-	-	-	-			9659
	-0.40	18634 1		9755 1		20784		_	6301						11209	12245	13214	14072					17309 1	17855 1	18357					_	6328	-	-	-				
	-0.50	22445	23077	23777 19755	24445 20282	25032 2	-	-	_	_	_	9129	10186	11920 10072	13294	-	15871	16889	17783 14824	18619 15498	19434 16132	20138 16733	20703	21284	21889	22505 18841		5168		_	-	_			10928	12236 10357	13416	14520 12118
σ		0009			7500			-			500		-						4000					6500				0			-	500	-					3000
۵.	kPa k	_	_	6000		6000	2000		_	2000		_	_		_	7000		-		7000		_	_	2000	-	2000	_	8000	8000	8000	8000	8000	8000	8000			8000	-

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	42	42	43	45	49	56	66	76	81	86	218	286	540	669	591	307	160	114	82	47	37	40	40	41	43	47	54	63	72	78	82	205	281	467	505	431	238
	0.80	88	90	93	97	107	122	140	160	172	183	260	397	787	1100	1002	452	184	144	101	78	60	79	83	86	91	100	115	133	153	164	175	244	386	668	915	806	347
	0.70	185	211	226	241	266	297	334	374	406	436	410	870	1170	1408	1413	1026	292	179	128	125	116	149	173	192	215	244	278	317	356	387	416	404	758	666	1267	1203	713
	0.60	329	369	416	465	519	585	653	720	785	849	575	1074	1438	1829	1740	1452	1282	354	214	203	196	275	326	366	425	484	552	619	684	746	808	582	1018	1293	1707	1528	1080
	0.50	473	564	622	732	825	927	1023	1103	1185	1266	665	1302	1845	2200	2090	1809	1647	596	377	335	293	407	511	556	636	752	871	968	1047	1126	1207	677	1250	1620	1922	1830	1455
	0.45	530	652	736	817	967	1101	1219	1309	1407	1503	724	1436	2061	2405	2385	2104	1850	1224	497	427	390	462	585	675	753	897	1023	1150	1232	1318	1435	734	1402	1840	2250	2147	1760
	0.40	202	792	867	926	1110	1237	1435	1543	1662	1792	803	1512	2323	2589	2612	2429	2099	1616	1017	682	598	603	743	827	898	1008	1135	1354	1445	1544	1711	809	1501	2059	2398	2386	2071
	0.35	1109	966	1156	1229	1365	1404	1600	1759	1912	2181	908	1617	2576	2797	2869	2690	2367	1963	1494	1135	934	914	938	1088	1158	1311	1369	1550	1661	1799	2056	910	1583	2354	2635	2640	2443
	0.30	1509	1466	1481	1492	1564	1625	1824	1984	2155	2520	1043	1738	2682	2905	2971	2841	2588	2151	1799	1487	1376	1308	1325	1376	1433	1507	1567	1737	1905	2050	2445	1041	1678	2505	2803	2804	2640
	0.25	1824	1769	1787	1796	1897	1931	2103	2227	2361	2750	1223	1888	2830	3103	3211	3068	2897	2514	2088	1797	1642	1572	1559	1587	1619	1701	1767	1910	2133	2270	2705	1208	1824	2654	2994	3005	2879
×	0.20	2084	1991	1968	1968	2033	2114	2218	2302	2402	2900	1400	2053	2949	3292	3393	3294	3186	2855	2385	2097	1893	1802	1757	1714	1791	1902	1965	2102	2175	2300	2835	1365	1984	2830	3136	3206	3093
	0.15	2384	2235	2103	2106	2184	2246	2336	2456	2500	3020	1717	2304	3137	3621	3770	3680	3610	3317	2789	2480	2213	2067	1974	1929	1957	2002	2078	2201	2305	2400	2984	1664	2217	2970	3361	3461	3404
	0.10	2841	2569	2400	2364	2344	2436	2466	2529	2614	3100	2086	2620	3426	4013	4213	4212	4158	3800	3354	2919	2657	2514	2304	2194	2142	2172	2266	2364	2412	2450	3071	2018	2514	3259	3777	3920	3879
	0.05	3524	3286	3057	3031	2967	3022	3030	3157	3235	3522	2561	3083	3903	4499	4678	4629	4517	4243	3789	3537	3311	3222	3040	3004	2943	2963	2977	3006	3101	3180	3566	2501	2977	3699	4197	4328	4263
	0.00	4332	4104	3901	4028	4358	4571	4580	4597	4670	4890	3203	3714	4384	4830	4930	4867	4821	4672	4416	4240	4097	4040	3987	3869	3965	4188	4325	4421	4465	4540	4784	3122	3586	4158	4523	4583	4501
	-0.05	5404	5344	5285	5284	5811	6240	6580	6069	6993	7195	3530	4010	Constantin Constanting	4997	5082	5079	5135	5193	5143	5130	5076	5023	5009	5000	5022	5689	5988	6284	6433	6460	6581	3426	3857	4371		4744	4761
	-0.10	6655	6847	6993	7157	7674	8362	8727	8971	9193	9590	3751	4215	4755	5082	5166	5183	5304	5550	5689	5901	5992	6248	6476	6727	7074	7517	7919	8318	8553	8751	9031	3627	4042	4507	4777	4837	4842
	-0.15	_	-	-		N.12550	9487	10064	10440	10674	10862									6194				7431		8078				2.V		10222						5035
	-0.20	8187	8720	9247	9652	10192	10912	11430	11762	11934	12269						5569		6447		7139		8021	_			9804		10901	11180		11631	3896	4302	4812	5036	5059	5233
	-0.30	10368	10980		12049	12558 10192	13123	13576	14000	14378	14750	4324		_		_	_	_	7538	8165	8710	9277	9916	10490		11466	11926	12440				13931	4128	4542	5083	5329	5441	5740
	-		13667	14296			15967	16465	16929	17393	17841			_	6076	6232				9729	10690	11492	12211	12857	13449	13997		15017		-		16735	4375	-		_		6426
	-0.50		16311	17066	17776	18408 15439	18958	19522	20052	20630	21184	4897		10	_	- 375	_		10300	11475	12645	13639	14478	15253	15951 13449	16595 13997	17199 14521	17728	18263		19275	19759	4624	See. Co	5711	6240	6422	7259
υ	10	3500			5000					7500			50	100	300	500	750			2000				4000							7500		0	50	100	300	500	750
٩.	kPa	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	0006	10000	10000	10000	10000	10000	10000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	105	51	46	39	32	38	39	40	42	45	52	60	20	75	80	169	272	373	402	299	158	83	43	40	32	28	36	37	39	41	44	50	58	68	73	78	141
	0.80	108	59	50	54	50	75	76	81	87	96	111	129	147	159	170	232	383	555	639	587	265	93	54	40	47	47	69	72	77	84	93	108	125	143	155	165	225
	0.70	156	79	65	80	98	131	153	174	200	231	267	305	343	373	402	399	602	869	066	943	501	125	60	50	99	83	114	138	161	188	220	258	297	334	363	392	397
	0.60	356	176	125	140	176	254	299	342	395	453	526	595	658	719	781	586	935	1113	1400	1280	853	210	122	78	113	156	239	269	312	359	418	501	574	637	698	762	588
	-	1183	295	183	182	232	365	445	513	575	681	816	923	1004	1084	1174	688	1156	1405		1720	1165	200	232	100	139	205	311	388	442	493	593	745	873	966	1056	1159	694
	-	1465	378	247	288	337	406		611		822	-	5 6		1270	1403	741	_	1593		-	1341	1014			187	1	_	469	571	200		893	1051	_		1388	745
		1783	203	393	342	396			763		964			1394	1491	1665	812	1421	1797	2186 2	2167	-	1360		_				614	0.000	_	929		1257			1632	814
	0.35 (1054	738	675	775	881			1261	18-11	1500 1	1618 1	1740 1	2006 1	_	1541 1	2153 1		-	2090 1	1734 1			390				926		1172	1297 1			_	1990 1	606
	0.30 (2280 1	<u>`</u>	1391 1	177	866	1076	1153		1314 1	1478 1		-	1850 1	2000 1	2347 2	1034	-	H. Car		2572 2	2317 2	2072 1		1150	Care.	833		1033	1141		1403 1	1505 1	1652 1			2251 1	1026
	_	2595 2	_	-	1469 1	1354	1314 1	1251 1	_	_	1638 1	_	-	-	-	2700 2	1191 1	-	-		2786 2	2577 2			an en el			-	-	1246 1		-	_	1794 1			2606 2	173 1
×	0.20 (2886 2	_	2020 1	_	1580 1	1526 1	1521 1	-		1763 1	-	-	-	<u> </u>	2800 2	1349 1	-			3004 2	2833 2	_	_				1 10	1340 1	1434 1		1651 1	_	_			2705 2	1334 1
	0.15 0	3295 2			2188 1		1809 1	1704 1			_	-	-	1	1000	2981 2	1634 1	-			3236 3	3099 2	-					1.11	Sama I		-	1790 1	-	2028 1			2912 2	1606 1
		3793 3	_		_	2432 1	2277 1	2079 1	-	_	2106 1	-	2297 2	2339 2	-	3056 2	1975 1	255		-	3604 3	3487 3		-		-	-	-	_		-	2064 1	_	2247 2		-	2991 2	1936 1
	0.05 0	4149 3			3282 2	3116 2	2998 2	10	-	-	2942 2		-	-	-	3587 3	2449 1		101220			3883 3				-			-	2799 1	_	_		_			-	2391 1
	0 00.0	4439 4		4131 3.	-	3893 3	3862 2	3813 2	-	3928 2	4119 29	-	1	4397 30	24 - 25 17 - 17	4626 3:		-	3916 33		4152 4	4149 3	-	-			-	1			-	4029 2	_	4220 30		1000	4441 33	2914 2:
	-0.05 0	4762 44		4762 4	_	4822 38	4842 38	-	4885 3.		-	-	_	-	-	6263 4(3687 34	4110 33		4224 4	-	4296 4(-	4381 38	-	-		_	-	_	-	5384 4:			5608 4	3163 29
	-	4985 4		_	_	5789 48			_	_	_	1200	7925 59		1. 20		-	1	4244 4			-	_	_	1000		5436 44	1		6015 4		6799 5	3				-	3322 3
	-	5179 49			S. (2-1)		6887 6(7344 6	-	-	8723 7(Same	-	9587 84	3611 34		morel		4627 44	4672 44		5181 47					_	6869 6(-			-			_	3433 3;
		5478 5		_			—		8450 7:		9422 82			10292 92	10529 94	10706 95	3717 36	1000	4548 44		4814 46	_	5056 47			6391 58		_	1000	-	-	_		_				3525 34
		-		-			9261 77	_		-		11553 97	11890 10082	12284 10	12656 10	12988 10	3918 37		1	5036 47		5382 48	1000	6566 55	_	_	_	-	2	9511 78	-	10293 87	10646 90	11056 92	100 100 0 000	11897 99	In the second se	3698 35
	-		8185 70	_	9833 82	10561 87	11191 92	11788 97	12363 10	776 10	13257 11	13799 11:	14162 11	14598 12	15027 12	15428 12		_			5486 50	_	6662 57	-	14	(C) (C)	Section 11	Second Se	10902 91	11397 95	11786 98	12195 10	12812 10	13041 11	13511 11	1000	14351 12	3883 36
		8156 70				12449 10:	13181 11		14555 12:	15087 12	15617 13:	16191 13	16692 14			18123 15	4348 41	_	_	_	5992 54	6744 60		_				12131 10:	12779 10		13843 11	14320 12	14952 12	15435 13	15841 13	16264 13	16754 14:	4070 38
_																						-	A COMPANY OF															40
σ	×		1500						4500		5500			_	7500	_			100			_	1000	_			_	_	_	4500		_	_				8000	0
۵.	kPa	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	10000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	11000	12000

Γ	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	242	301	316	205	131	76	36	31	27	26	35	36	38	40	43	49	57	99	72	76	124	209	237	249	170	87	56	33	28	26	30	34	35	36	38	42	48
	0.80	381	446	500	296	211	78	39	37	40	45	66	70	75	82	91	105	122	140	152	162	213	349	381	408	242	91	70	42	38	39	43	63	67	72	79	89	103
	0.70	667	772	840	423	251	118	41	50	59	81	109	131	154	183	214	252	290	326	355	384	397	621	680	602	351	157	110	47	51	60	79	109	127	150	177	208	246
	0.60	867	977	1250	1011	312	214	105	71	66	154	221	251	294	341	401	483	558	622	683	749	588	830	893	966	729	272	216	109	91	95	142	205	246	287	331	389	472
	0.50	1087	1290	1630	1474	686	310	205	77	119	195	294	361	418	465	564	721	852	945	1034	1142	969	1022	1155	1350	1183	718	280	188	103	118	189	283	359	408	453	554	706
	0.45	1200	1460	1830	1678	1180	920	315	110	139	245	329	454	539	573	704	868	1023	1126	1227	1370	743	1100	1283	1506	1353	980	200	211	119	132	218	338	448	532	570	708	868
	0.40	1357	1622	1940	1875	1396	1073	377	119	172	300	404	586	685	726	606	1065	1220	1342	1441	1606	809	1209	1429	1610	1458	1056	820	298	147	190	280	411	277	683	738	906	1060
	0.35	1498	1905	2108	2160	1798	1420	918	385	293	354	414	693	862	921	1105	1254	1447	1554	1676	1912	901	1397	1626	1780	1581	1325	975	576	409	294	351	425	969	825	893	1093	1247
	0.30	1565	2069	2285	2310	2039	1640	1096	911	753	689	772	923	1097	1154	1345	1472	1623	1730	1921	2168	1013	1446	1780	1917	1789	1561	1188	806	608	573	605	712	885	1025	1098	1315	1450
	0.25	1694	2257	2467	2500	2277	1905	1389	1109	971	889	922	1077	1174	1254	1469	1627	1811	1955	2077	2420	1154	1608	1965	2134	2008	1814	1400	1120	957	853	846	006	1002	1142	1211	1447	1638
×	0.20	1857	2500	2701	2724	2526	2291	1723	1410	1215	1101	1138	1244	1383	1431	1621	1781	1949	2093	2170	2527	1319	1794	2158	2301	2273	2094	1650	1383	1201	1032	1004	1100	1201	1331	1425	1633	1837
	0.15	2081	2711	2912	2951	2773	2516	2112	1816	1603	1492	1409	1456	1529	1637	1867	1986	2150	2217	2284	2737	1580	2007	2491	2601	2591	2364	1950	1722	1564	1447	1400	1409	1514	1606	1667	1927	2078
	0.10	2367	2878	3199	3240	3067	2878	2526	2300	2119	1985	1910	1904	1927	2010	2140	2229	2355	2432	2490	2827	1899	2290	2756	2900	2890	2690	2240	2003	1941	1911	1876	1902	1963	1994	2059	2326	2445
	0.05	2784	3267	3516	3555	3418	3243	2952	2830	2739	2690	2680	2680	2698	2772	2908	3060	3128	3192	3250	3398	2329	2681	3117	3249	3234	2983	2480	2381	2358	2349	2397	2505	2576	2606	2700	2908	3084
	0.00	3285	3645	3838	3819	3659	3447	3405	3375	3367	3364	3360	3326	3353	3478	3728	3885	3941	4011	_	Same	2797	3130	3406	3514	3475	3292	2793	2723	2855	2937	3006	3105	3155	3235	3302	3467	3560
	-0.05	3506	3844	3950	3988	3904	3855	3813	3841	3900	3949	4002	4061	4163	4418	4517	4603	4668	4731	-	_	3018	3331	3587	3682	3626	3426	3257	3180	3224	3326	3380	3512	3669	3903		4108	4148
	-0.10	3658	3983	4138	4131	4067	4100	4271	4417	4720	4923	5076	5226	5397	5903	6089	6225	6426	6605	6710	6904	3156	3468	3733	3831	3786	3736	3704	3775	3976	4206	4415	4612	4808	5021	5250	5407	5504
	-0.15	1000	_	4269		4310	4430			5407		5958				7005			7609		8033		-	-	3973		3987		-	4389	4771		_	5481		_		6418
	-0.20	3869	4290	4434	_	4528	-	5242	-	-	_	6675			7579	7831	8050	8249	8532	-		3330	3656				4148	_	-	4898	5323	5741	_	_	_	_		7049
		4061	4538	4741	4869	5072	-	_	-	_	7655	_		8797	9117	9431	9782	10061	100-001		11407	3479	3820	-	4392	4483	4738	5090	5592	5974	6470	6921	7115	7357	7528			8263
	100	4247	4806	5081	-	5596	6267	-	-	-	and the second		-	10442	10856	11071	11559	12051	12508	12908		3635	3972		Deneral		5178	-	100	7123	7756	8256	-	-	8806	_		10045
	-	4436	_	Contraction of the	_	6233	-	_	8959		10436			11695	12117	12466	13176	14034	14607	14975 12908	15432 13298	3793			4926				-		8606	-	9331		10084		10515	11438
σ	kg/m²/s			300	500	750	1000	1500			3000						0009					0	50			500	750	1000				3000						6000
٩.	-	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	12000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000	13000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	56	65	71	75	113	185	204	217	119	77	49	34	26	27	31	32	33	34	36	40	47	55	64	70	75	106	155	174	186	95	73	48	36	30	28	31	31
	0.80	120	138	149	160	202	310	342	347	192	79	67	43	41	42	47	61	65	70	76	87	101	118	136	148	159	188	253	274	279	148	88	61	45	46	49	56	60
	0.70	284	321	350	379	384	565	595	615	298	135	102	53	58	62	80	108	125	148	174	206	242	280	317	347	376	369	496	498	493	346	120	94	58	64	27	96	112
	0.60	546	610	673	739	585	790	811	842	319	265	224	119	93	102	146	200	245	287	329	390	468	539	603	666	733	577	710	705	684	408	255	237	123	102	111	171	213
	0.50	837	931	1021	1132	691	930	1023	1143	1017	502	295	138	108	119	201	281	365	421	465	572	209	834	924	1013	1116	681	840	908	940	652	449	320	128	120	143	234	300
	0.45	1018	1120	1219	1358	736	1035	1193	1308	1087	769	649	180	125	139	237	340	467	558	599	746	893	1034	1129	1216	1338	717	945	1046	1100	896	627	447	223	176	176	290	370
	0.40	1225	1332	1435	1589	799	1114	1262	1481	1273	885	745	196	176	213	275	420	590	676	746	940	1082	1241	1343	1433	1565	776	984	1158	1238	1044	741	536	287	218	259	380	453
	0.35	1441	1549	1659	1854	884	1230	1469	1651	1422	1131	854	555	419	312	318	491	722	835	916	1107	1253	1448	1556	1638	1803	855	1091	1294	1392	1148	882	721	549	447	378	464	558
	0.30	1619	1729	1870	2102	992	1363	1575	1756	1559	1332	1017	765	603	564	604	710	854	1005	1062	1298	1420	1609	1745	1836	2033	958	1232	1430	1578	1395	1093	881	705	664	627	670	724
	0.25	1850	1998	2100	2278	1129	1527	1791	1970	1825	1591	1244	971	879	831	865	927	1103	1207	1280	1475	1686	1908	2018	2120	2217	1091	1397	1590	1712	1580	1262	1030	908	873	889	925	1017
×	0.20	2103	2184	2240	2415	1296	1710	1961	2100	2089	1849	1466	1200	1121	1024	1082	1140	1307	1449	1510	1746	1986	2201	2261	2270	2342	1258	1557	1783	1864	1816	1483	1145	1053	1016	1067	1137	1238
	0.15	2206	2260	2310	2571	1544	1919	2280	2358	2373	2177	1731	1498	1444	1391	1396	1444	1603	1709	1745	1989	2209	2326	2339	2350	2508	1490	1828	2080	2094	2047	1895	1493	1347	1307	1358	1419	1530
	0.10	2496	2525	2540	2722	1848	2195	2586	2701	2641	2505	2051	1807	1751	1773	1831	1897	2029	2105	2161	2433	2575	2617	2682	2689	2806	1772	2086	2323	2379	2341	2191	1797	1620	1687	1759	1837	1926
	0.05	3159	3218	3260	3298	2242	2557	2909	2996	3001	2841	2399	2218	2221	2224	2333	2433	2511	2558	2692	3026	3170	3208	3202	3240	3276	2127	2418	2589	2658	2641	2403	2063	1924	1943	2102	2205	2332
	0.00	3624	3686	3716	3964	2654	2951	3206	3301	3249	3056	2693	2583	2686	2832	2894	2963	2992	3092	3214	3419	3463	3544	3605	3729	3809	2481	2744	2879	2924	2886	2673	2350	2232	2330	2535	2635	2716
	-0.05	4195	4210	4230	4489	2846	3129	3371	3448	3401	3241	3049	3003	3201	3295	3320	3417	3518	3789	3963	4043	4110	4129	4140	4159	4370	2646	2910	3086	3099	3039	2889	2691	2553	2787	3084	3207	3356
	-0.10	5602	5660	5711	5818	2965	3250	3500	3586	3545	3417	3378	3406	3628	4006	4236	4356	4498	4748	4912	4944	4956	4972	4993	5016	5214	2746	3012	3208	3247	3201	3087	2975	3025	3176	3665	3906	4162
	-0.15	6659	6726	6782	6826	3046	3338	3617	3727	3713	3666	3670	3798	3995	4465	4701	4884	5185	5344	5451	5505	5509	5553	5694	5700	5878	2814	3077	3330	3418	3396	3388	3420	3489	3709	4265	4551	4767
	-0.20	7274	7417	7523	7586	3113	3413	3721	3858	3876	3917	4089	4364	4496	4902	5394	5532	5706	5730	5732	5753	5864	5894	6008	6137	6231	2871	3140	3417	3529	3541	3652	3862	3998	4181	4723	5136	5310
	-0.30		8837	-		3240	3552	3897	4074	4184	4487	4980	5185	5394	5886	6139	6268	6488	6537	6594	6099	6738	6808			8108	2977	3256	3574	3740	3798	4119	4743	4956	5092	5540	5945	6149
		10449	11124	11712	12071	3372	3676	4060	4268	4404	4929	5588	6145	6465	6781	7031	7338	7457	7543		7760	8166		9448	10064		3087	3358	3711	3904	4017	4411	5293	5572	5872	6313	6642	6918
	-0.50	12282	13064	13697	14156	3505	3808	4244	4479	4680	5155	6001	6787	7188	7630	7824	8111	8329	8718	8768	9249	9831	10687	11414	12199		3199	3466	3868	4084	4264	4699	5650	6443	6987	7189	7479	7678
σ	kg/m²/s		7000			0	50	100	300	500	750	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500			7000			0	50	100	300	500	750	1000	1500	2000	2500	3000	3500
٩.	kPa	13000	13000	13000	13000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	14000	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000	15000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	32	33	35	40	46	55	64	69	75	92	145	166	164	90	69	45	33	28	28	29	29	30	31	33	39	46	54	63	69	74	68	128	139	144	90	66	40
	0.80	63	68	74	85	100	117	135	147	158	165	219	244	259	127	89	59	46	51	52	57	59	62	99	72	84	66	116	135	147	158	155	190	199	198	127	98	58
	0.70	129	150	174	206	241	278	314	344	374	317	391	418	463	286	150	90	67	84	93	113	123	138	155	182	207	246	278	314	344	373	287	343	353	360	250	149	85
	0.60	261	303	344	400	475	541	601	662	727	535	569	617	618	392	229	192	134	127	153	216	248	297	335	377	427	491	549	607	662	722	472	514	564	584	323	194	151
	0.50	376	457	510	605	723	841	926	1010	1108	640	750	846	859	598	432	325	168	172	211	300	353	453	525	567	666	764	854	933	1012	1098	590	678	703	708	553	408	333
	0.45	497	602	634	776	921	1048	1143	1220	1330	668	821	951	1019	793	578	455	231	203	265	380	435	607	674	731	870	981	1086	1167	1229	1321	633	740	814	858	694	527	457
	0.40	613	708	794	679	1117	1256	1359	1435	1551	739	882	1024	1129	926	694	530	364	244	347	481	541	710	808	890	1067	1180	1290	1376	1440	1538	701	794	877	907	769	599	527
	0.35	765	851	937	1160	1284	1473	1559	1625	1764	820	982	1153	1257	1052	780	665	522	502	531	655	717	886	988	1041	1265	1392	1524	1573	1618	1739	769	895	265	1043	905	657	591
	0.30	872	1023	1112	1324	1482	1640	1774	1820	1978	903	1132	1254	1451	1261	978	814	671	715	795	817	831	1030	1164	1220	1424	1600	1716	1801	1848	1938	867	1023	1095	1155	1027	798	733
	0.25	-	-	1383	1545	1764	1939	2052	2120	2186	1036	1271	1419	1562	1406	1113	952	879	918	1004	1101	1170	1325		-	1731	_	-	2068	2104	2160	990	1135	1188	1244		938	825
×	0.20	_	-	1583	-	2043	2210	2271	-	2356	1199	1460	1590	1718	1595	1280	1039	1005	1118		1269	1345	1560		_		_	-			2356	1138	1292	1318			1086	799
	0.15	1694	-	1860	2118	2297	2407	2437		2532	1411	1719	1818	1909	1909	1703	-	1226	1328		-	1614	-		2024	-		-	б	10 22	2610	1318	1443	1444	1439		1230	1136
	0.10	2068	-		2537	2684	2723	2775	_	2890	-	1962	2102	2206	2180	-	_	-	1623		1857	-	2157	-	_	_	_	-			2928	1537	1608	1624	_			1282
	0.05	-		-	12004	_	3158	3198		3235	1978		2331	2414	2417	2251	-	1.11	1921		2209	2311	-	-	_						3204	1796	1862	1887	1872			1562
	0.00	-	_	-	-	3402	3529	3608		-	-	i are Na	2551		2534	2387	2201	2111	2250	-	2611	2653			-	-	-		-		3663	2038	-	2055	1996			1750
		_	-	-	-	01112200	3962	-	-	-		111100	2716	-	_	_	_	_	_		-	-	3392		-	-	_	-	Sec. 1	-	3960		8.000	2232		-	_	1934
	1		17 T	4802		Second Sec	and the second	4902	_	_	2500	12	2804	-	8			_			_	_	11.	4352	_		1	3		4698		2220			1000	2271		
						_	_	_	5578	_	2556	1.000		199.00	_	3055	-	_	3449										_	5402	_	-	_					2430
		1000	5608		-	_	5905	_	6059	_	-	2837	_	_	_	3251	_	_	3777					5483						5947	12	2303		110000	_	-		
		2	1	6412		-	6740	_	7191		2691	12	-	_	12 m	-	_	_	4352		5429	_	-	6071	_	Second St.	-	1		7084	10	2374	_	-	-			2991
		7215	_	_	_	7930	8306			_	2780	_	_	-	_	3800	_		5019		_	-	_	_		_	_	100		1000	9241			2777	_	1111111		3285
	_	8160	-	Server and	101411	_	9919	10446	1128		2869	_	_	1	_	4113	4785		5808		6858		6. 19 Mart 1		_		-		10000	1	1000		_	1000000	100000			3784
σ	S			5000					7500 1		0								2000					4500				3		7500 1			50		300			1000
٩		15000	15000	15000	15000	15000	15000	15000	15000	15000	16000	16000	16000		16000	16000			16000		_	16000	16000	16000	16000	16000	16000	16000	16000	16000	16000	17000	17000	17000	17000	17000	17000	17000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	31	27	27	27	28	29	30	32	38	45	54	63	69	74	84	117	132	119	66	49	36	29	25	25	25	26	27	28	31	37	44	53	62	67	71	74	102
	0.80	51	53	54	56	60	63	66	72	84	66	116	134	146	157	138	177	185	175	142	90	56	53	51	52	55	59	61	64	72	84	66	116	133	143	152	122	156
	0.70	86	98	113	126	151	167	183	199	226	257	287	318	343	370	260	310	331	322	214	144	80	6	86	119	137	166	183	195	213	237	266	292	320	342	364	235	265
	0.60	141	156	203	253	332	397	426	442	483	536	577	619	664	716	434	474	521	527	297	169	137	151	162	226	287	384	453	482	489	539	585	611	640	670	711	395	407
	0.50	195	240	279	354	445	561	620	662	728	818	882	949	1017	1091	569	620	648	661	454	334	260	215	267	338	426	500	621	676	720	770	861	912	968	1022	1084	521	540
	0.45	269	285	347	437	499	653	720	780	931	1024	1121	1185	1241	1314	599	684	744	775	579	450	394	274	307	406	493	571	710	751	795	996	1063	1158	1208	1248	1304	562	602
	0.40	369	355	454	574	646	804	903	972	1120	1246	1346	1401	1443	1518	660	744	784	821	648	516	426	379	420	523	629	743	876	957	1009	1192	1300	1376	1415	1443	1501	617	653
	0.35	513	591	656	758	809	966	1056	1116	1333	1428	1543	1588	1616	1716	732	824	886	933	732	578	550	524	757	832	876	899	1029	1102	1186	1360	1465	1560	1594	1609	1698	682	726
	0.30	652	837	928	965	1002	1143	1249	1342	1561	1677	1791	1820	1880	1931	822	922	958	1009	826	680	670	681	956	1025	1094	1123	1216	1316	1388	1603	1727	1825	1840	1875	1923	769	820
	0.25	840	993	1059	1146	1232	1416	1543	1643	1826	1957	2069	2091	2109	2125	936	1042	1065	1076	938	794	749	794	1093	1149	1216	1243	1446	1565	1648	1861	1969	2073	2080	2095	2130	890	895
×	0.20	972	1148	1253	1316	1424	1632	1739	1844	2073	2226	2316	2341	2345	2375	1063	1138	1157	1149	1025	903	870	903	1222	1319	1352	1453	1639	1736	1796	2077	2216	2305	2308	2326	2356	971	991
	0.15	1164	1342	1450	1536	1647	1853	1985	2079	2313	2464	2558	2587	2601	2645	1218	1260	1278	1285	1113	1052	1018	1102	1351	1470	1516	1550	1738	1926	2083	2265	2421	2531	2536	2471	2602	1075	1093
	0.10	1356	1546	1676	1808	1907	2131	2252	2355	2639	2750	2834	2852	2811	2848	1402	1408	1405	1407	1196	1153	1145	1231	1469	1623	1728	1825	2004	2136	2245	2510	2696	2781	2794	2636	2771	1240	1212
	0.05	1593	1765	1945	2069	2179	2373	2495	2594	2858	3004	3065	3106	3110	3113	1617	1647	1653	1558	1350	1277	1279	1404	1640	1838	1945	2042	2241	2325	2414	2717	2856	2907	2921	2954	2958	1326	1331
	0.00	1793	2008	2215	2360	2481	2609	2697	2855	3137	3225	3287	3323	3383	3514	1809	1782	1733	1646	1447	1429	1448	1599	1844	2016	2167	2280	2383	2496	2606	2937	3002	3018	3061	3070	3110	1467	1414
					2792	2949	3095	3145	3299	3391	3504		3566		3723	1900		1847	1783		1607	1574	1847									3123	3140	3166	3216	3308	1518	1474
	-0.10	2362	2636	2983	3195	3384	3587	3792	3957	4107	4198	4308	4401	4423	4512	1955	1960	1944	1895	1775	1754	1728	2032	2287	2681	2831	2894	3059	3266	3492	3696	3757	3813	3893	3929	4009	1562	1538
	-0.15	2647	2972	3451	3698	3799	4017	4255	4496	4709	4845	4948	5056	5079	5100	1970	2002	2003	1952	1899	1892	1877	2206	2566	3095	3279	3381	3533	3748	3973	4157	4293	4337	4412	4486	4545	1586	1580
	-0.20	2873	3298	3873	4218	4355	4589	4758	4896	5060	5261	5394	5478	5538	5694	1999	2043	2084	2083	1998	1993	1971	2479	2811	3480	3736	3802	4007	4189	4297	4521	4662	4764	4835	4941	5107	1618	1642
	-0.30	3367	3735	4407	4860	5060	5350	5558	5689	5907	6121	6299	6491	6622	6826	2076	2209	2220	2230	2232	2247	2312	2858	3255	4036	4329	4457	4798	4925	5048	5205	5412	5570	5716	5901	6071	1752	1782
						5739		6328			7017		7594		8136									3648					5560	5688	5875	6118		_	6835	7075	1813	1931
	-0.50	4561	5015	5608	6124	6667	7157	7428	7652	7803	8089	8416	8742	9606	9357	2198	2377	2416	2566	2609	2878	3081	3760	4277	4845	5472	5983	6459	6562	6719	6820	7067	7342	7625	7930	8158	1874	2017
U	kg/m²/s	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	2000	7500	8000	0	50	100	300	500	750	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	2000	7500	8000	0	50
٩.	kРа	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	18000	19000	19000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	106	100	58	46	32	26	23	22	23	24	25	26	30	35	43	51	60	64	99	55	73	75	72	53	41	27	22	21	21	21	22	23	24	28	33	40	47
	0.80	165	159	121	85	53	46	46	48	52	56	59	63	70	83	97	114	130	138	145	94	118	137	131	06	75	49	42	44	46	50	54	57	61	68	79	94	109
	0.70	280	279	160	124	17	84	92	119	140	169	186	205	217	241	271	294	320	339	356	213	230	234	224	153	109	74	75	89	117	134	159	178	189	208	230	259	280
	0.60	439	419	279	189	133	140	166	228	295	391	461	493	501	551	597	626	657	679	707	347	345	343	288	204	170	126	130	152	228	290	367	439	457	476	521	576	607
	0.50	570	565	437	318	254	253	276	357	443	526	647	969	740	786	881	935	983	1033	1081	438	451	470	468	388	292	246	224	268	377	450	536	649	690	739	799	884	939
	0.45	636	619	510	410	338	298	362	445	556	601	754	812	838	975	1082	1171	1220	1254	1297	493	528	540	542	438	342	293	286	423	473	569	617	741	819	829	987	1080	1155
	0.40	667	667	558	471	422	420	591	678	696	795	923	978	1063	1207	1327	1392	1422	1453	1499	568	575	595	600	488	444	419	439	611	688	703	791	920	992	1081		-	1362
	0.35	753	745	646	576	545	633	857	902	913	976	1059	1128	1196	1364	1463	1544	1579	1596	1681	-	659	656		545		508	620	812	853	915	961	1086		1167		_	1514
	0.30	830	805	678	645	-	729	1056	2225	_	1188	1274	1354	1440	1615	1697	1787	1812	1853	1895	719	715			_			700			1033	-		· · · ·	-	-	1000	1721
	0.25 (19535	787	741		789	1151 1	_		-		1535 1	1627 1	1797 1		1995 1		2054 1	2094 1	-	780			680			12230		1105	1157 1	1190 1	1341 1		_			1893 1
×	0.20 (. 628	810	-	886	1221 1		_		1581 1	1674 1	1751 1	1957 1	2118 1	_		2268 2	2305 2	872	848	840		729 (_				1264 1		_	-			2024 1
	0.15 0	102 9	~	-	884 8	912 8	1056 8	1277 1	1332 1	-	-	1664 1	1781 1	1952 1	2137 1	2286 2	2392 2		2487 2	2528 2		-	914 8		761 7			-			1270 1				1716 1		-	2159 2
	0.10 0	204 1	~	_	948 8	1010 5	1158 1	1385 1	1489 1		1678 1	1850 1	1955 1		2280 2	_	_	2605 2	_	2704 2	-		974 5	945 5	_						1423 1	1510 1	4254	1154	1818 1			2247 2
	0.05 0	306 1:		1111 9	1071 5	1090 1	1242 1	1503 1:		_	1835 1	_	_		2471 2:	2630 24	-	—	-	2882 2	_	_	1028 5		835 7			_			1562 1	1658 1:		_	_	-	-	2469 2
	0.00 0.0	1402 13		1231 1	1179 10		1412 12	1695 15	-		2081 18	_	2295 2(2483 22	2657 24	2813 26			2907 28	3022 28	Protection Com		1072 1(8 679 8	_	965 8	-	_	1612 14	1702 15		2.000 C		_			2638 24
	-0.05 0.	1439 14	2	1299 12	1272 11	-	-	1880 16		_	_	_	2532 22	-	2809 26				3068 29	3226 30	1141 10	1123 10	1114 10	100	903 8			1318 11	_	_	1906 17	2011 18	-	Ner-	_		_	2812 26
	10	00				1429 13					2590 23									07 32	1179 11	63 11	41 11	80 10		968 9										2758 25		
	-0.15 -0.	1550 15	_	_			_		2643 23			2952 27			3469 31			3772 34		4063 36	1185 11	1172 11	1163 11	1110 10	975 9	-	_	_	_	2239 15	59 20	2400 21	43 22	00 24	2874 25	12 27	3175 29	3249 30
	-			_	-	_	_	_	2930 26	_	_	_	3449 31	_	_	3869 35	-	_	4235 39	4402 40	-	_	1188 11	_	1030 9				2088 15	_	_	2640 24	_	_				3515 32
				-	_	_	_	_	3295 29	_	_	3909 32	_	_	-	-	_	-	-	5150 44	-				1183 10		_	1889 16	_		1	3067 26	ie 11	-				-
	-			-	-	_	_	-	-		_	_	_	19 4221	-		-		28 5001	6006 51	-	P	1438 13	-	-		_	_	_	_	-	· · · · · · · · · · · · · · · · · · ·		_		_	10	57 4071
		C			12 2051				_	_		30 4435			_		_		28 5828		54 1497	_	_		1338	_	_	59 2183	_	_	_	-	-	_	5 x			24 4667
┝			2127			0 2466			0 4120			5180							-	0 6952			1706		1744		_	2459				0 4162		_	0 4517			5124
σ	Ϋ́,		300	500		1000			2500			-	-				_	_	7500			50	_	_	_	750		_	. —.		_	3500	_		5000	5500	6000	6500
٩.	kРа	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	19000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000	20000

	1.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.90	52	56	57	45	53	55	56	50	33	21	17	15	15	15	16	17	18	21	24	28	32	35	39	42
	0.80	123	128	130	84	66	102	97	70	57	42	36	35	36	39	42	45	49	54	61	70	78	85	91	96
	0.70	302	322	330	194	197	198	169	142	97	69	71	88	102	119	138	155	167	181	199	221	239	254	272	290
	0.60	639	679	669	309	303	300	278	180	115	111	117	150	214	286	343	389	421	451	492	544	579	601	640	667
	0.50	986	1028	1074	366	411	417	399	327	236	209	209	230	349	425	516	627	674	711	793	867	924	969	1003	1026
	0.45	1201	1244	1289	415	457	469	473	400	324	280	251	343	445	535	601	726	809	818	939	1038	1100	1163	1214	1260
	0.40	1404	1436	1484	440	501	527	510	459	418	375	404	526	623	681	773	891	973	1063	1184	1277	1334	1373	1403	1439
	0.35	1553	1588	1667	501	578	599	600	524	479	470	545	741	816	884	933	1027	1100	1160	1300	1379	1478	1523	1566	1622
	0.30	1757	1774	1850	570	650	668	699	556	515	533	675	812	006	958	993	1155	1274	1350	1482	1572	1652	1693	1737	1790
	0.25	1934	1964	2017	644	685	697	700	587	530	583	758	874	988	1053	1130	1256	1348	1457	1603	1695	1780	1835	1872	1902
×	0.20	2098	2128	2177	733	736	739	730	608	553	628	800	971	1109	1170	1215	1347	1500	1596	1726	1823	1903	1971	2033	2067
	0.15	2205	2282	2345	821	823	826	801	661	616	708	894	1101	1183	1193	1284	1428	1544	1660	1808	1884	1990	2050	2129	2170
	0.10	2333	2396	2484	904	900	894	857	727	652	765	943	1193	1260	1302	1397	1541	1624	1742	1880	1965	2056	2117	2216	2287
	0.05	2531	2599	2697	939	938	948	925	789	712	807	998	1225	1314	1457	1543	1654	1752	1834	1973	2073	2203	2294	2361	2410
	00.0	2731	2771	2843	1008	666	992	959	828	799	908	1115	1327	1426	1547	1672	1794	1906	2016	2165	2256	2355	2447	2496	2498
	-0.05	2878	2892	2951	1084	1062	1060	1037	878	006	992	1228	1395	1519	1644	1772	1924	2028	2172	2288	2379	2485	2529	2589	2598
	-0.10	3069	3093	3155	1147	1119	1111	1069	925	949	1045	1344	1490	1609	1706	1859	2004	2142	2256	2447	2544	2599	2658	2700	2740
	-0.15	3303	3336	3375	1184	1164	1124	1102	959	1007	1130	1422	1594	1733	1880	2012	2159	2289	2456	2608	2733	2801	2850	2880	2900
	-0.20	3536	3580	3625	1222	1194	1177	1114	981	1045	1211	1570	1711	1903	2068	2193	2356	2517	2646	2831	2917	2975	2985	3000	3030
	-0.30	4120	4165	4220	1324	1301	1270	1133	066	1153	1328	1764	1983	2223	2465	2590	2776	2896	3101	3229	3320	3378	3393	3394	3405
	-0.40	4730	4808	4925	1462	1456	1439	1314	1307	1411	1566	1991	2248	2554	2847	2953	3160	3270	3436	3603	3698	3784	4	3887	3970
	-0.50	5323	5538	5768	1584	1587	1589	1601	1617	1643	1787	2261	2689	2997	3238	3393	3482	3532	3660	3803	3955	4116	4275	4471	4689
σ	kg/m²/s	2000	7500	8000	0	50	100	300	500	750	1000	1500	2000	2500	3000	3500	4000	4500	5000	5500	6000	6500	7000	7500	8000
٩	kPa	20000	20000	20000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000	21000

NRC FORM 335 (12-2010) NRCMD 3.7 BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.) NUREG/KM-0011									
2. TITLE AND SUBTITLE	3. DATE REPO	ORT PUBLISHED								
Critical Heat Flux Data Used to Generate the 2006 Groeneveld Lookup Tables	MONTH January	YEAR 2019								
	4. FIN OR GRANT NUMBER NRC-HQ-60-15-C-0002									
5. AUTHOR(S)	6. TYPE OF REPORT									
D.C. Groeneveld	Technical									
	7. PERIOD COVERED (Inclusive Dates)									
 8. PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U. S. Nuclear Regula contractor, provide name and mailing address.) D.C. Groeneveld Thermalhydraulics Consultants Inc. PO Box 1335 Deep River. Ontario. Canada KOJ 1P0 9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above", if contractor, provide NRC Division Commission, and mailing address.) Division of Systems Analysis 	•									
Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001										
10. SUPPLEMENTARY NOTES										
11. ABSTRACT (200 words or less) This report contains a compilation of over 25,000 CHF data obtained in water-cooled tubes that were used to derive the 2006 Groeneveld CHF lookup table. This compilation is based on 62 data sets that have been obtained during the past 60 years. The pertinent experimental details and possible concerns for these data sets are described. The applicability and validity of the CHF look-up table to reactor conditions of interest is also discussed. A graphical comparison of the ranges of conditions covered by these primary data and subsequently obtained supplementary data sets is also included.										
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) CHF, Critical Heat Flux, Dryout, Groeneveld	14. SECURIT (This Page) u (This Report u	ILITY STATEMENT unlimited Y CLASSIFICATION nclassified nclassified R OF PAGES								

Federal Recycling Program

NUREG/KM-0011 January 2019

`

January 2019