

## UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

February 25, 1981

MEMORANDUM FOR: Harold R. Denton, Director Office of Nuclear Reactor Regulation

FROM: Robert B. Minogue, Director Office of Nuclear Regulatory Research

SUBJECT: RESEARCH INFORMATION LETTER - #115 INDEPENDENT ASSESSMENT OF TRAC-P1A COMPUTER CODE

## 1.0 INTRODUCTION

The Research Information Letter (RIL) No. 92 dated June 1980 described the TRAC-P1A computer code for detailed, best estimate analyses of PWR LOCA. Following the release of this code to the public in mid 1978, RES contracted with three national laboratories to undertake an independent assessment of TRAC-P1A capabilities. Results of their efforts are summarized herein. E

The TRAC-P1A code was superseded by the TRAC-PD2 code version when the latter was released to the public in October 1980. Hence, although this information letter describes strengths and weaknesses of the first version of TRAC code, the information here contained will be very valuable in determining whether substantial improvements were made in the subsequent code versions. Independent assessment of the new version (TRAC-PD2) was started in November 1980.

The overall assessment of TRAC will span three to four versions of that code as they are released to the public, starting with TRAC-PIA. Results of hundreds of the integral, separate effects, and basic tests will be utilized over the next 4 to 5 years to quantify the code accuracy. Each new version of TRAC will be subjected to independent assessment utilizing, primarily, new portions of the code assessment matrix, with few repetitions involving those test cases which were poorly predicted with the previous version. RES plans to issue a research information letter describing results of independent assessment of each version of TRAC and RELAP-5 code. The attempt will be made, in each code assessment RIL, to identify the projected code accuracy for LWR application. Reliability of that information will increase with each subsequent RIL as coverage of the assessment matrix increases. The overall code assessment matrix and assessment methodology are described in Reference 1.

## FEB 2 5 1981

## Harold R. Denton

## 2.0 SUMMARY OF RESULTS

The Brookhaven National Laboratory (BNL) provided the bulk of the assessment of TRAC-PIA physical models. As part of this effort, the BNL staff first surveyed the code documentation as well as FORTRAN listings to catalog all physical models, correlations, assumptions and data base. Next, they compared code results against measurements from about 33 "basic tests" selected to illustrate strengths and weaknesses of the adopted models. In some instances, BNL performed sensitivity studies to examine consequences of certain model changes.

2

In addition, Los Alamos Scientific Laboratory (LASL) staff also performed comparisons of TRAC-PIA results against measurements from several basic tests. Listings of all basic tests utilized in assessment of TRAC-PIA are shown in Table I. Also shown are the laboratory descriptions (where the comparison was made) and overall remarks concerning the code's strong and weak points observed in each comparison.

A listing of about 25 Separate Effects Tests utilized in the assessment of TRAC-PIA is shown in Table II. LASL was responsible for most of the comparisons made in this area.

The nine Integral Systems Tests used in TRAC-P1A assessment are listed in Table III. It can be seen that TRAC-P1A analysis of one of the LOFT tests (L2-3) was performed by both LASL and the Idaho National Engineering Laboratory (INEL). This duplication was undertaken to explore the code user's effect on calculation results. As long as the code user has the liberty to select nodalization (discretization) of the system geometry and several input options, he will impact the code results in some measure; we wished to know how much. One of the major goals in the development of advanced codes was to minimize the user impact.

Finally, INEL was asked to "walk" the code through several challenging PWR LOCA scenarios which the code should be able to handle. They are listed in Table IV.

The detailed description and discussion of all calculations listed in Tables I through IV are given in References 2 through 11.

#### 3.0 OBSERVATIONS

 TRAC-PIA can calculate a complete LOCA analysis. Instances of "water packing" have been encountered on various occasions, requiring restarts of calculational segments utilizing smaller time steps.

FEB 2 5 1981

÷

- (2) The code is capable of performing multidimensional analysis of the reactor vessel thermal hydraulics. The results are intuitively correct. Quantification of accuracy of the multidimensional analysis will be made in the future (and with a future version of TRAC) when the required measurements from 2D/3D experiments become available. The code predicted the observed asymmetric refill through the LOFT downcomer. While BNL had difficulties in attempting to calculate the 2D test performed at the Rensselaer Polytechnic Institute (RPI), Sandia staff successfully predicted the jet expansion in the HDR test series.
- (3) The six field equation treatment of the vessel hydraulics allows for consideration of the thermal and mechanical nonequillibrium. The physical models dealing with the interfacial transport of mass, momentum, and energy are strongly dependent on the flow regime "map." The latter is based on empirical observations pertinent to steady flows in vertically oriented pipes. While these simplifications appear to be adequate for the bubbly and the dispersed droplets flow regimes, current experience indicates that more sophisticated criteria are needed for the intermediate flow regimes. Such criteria may have to be specialized to different regions of the reactor vessel, to depict global phenomena.
- (4) Further improvements are warranted in the models for nonequilibrium vapor generation and condensation, for liquid droplets entrainment and deposition, and for interfacial shear. Modeling of shear between the fluid and the wetted walls and, in particular, between the fluid and the embedded fuel rods, also needs improvement. Better empirical data base is needed to generate an improved model for two-phase flow resistance offered by rod arrays when flows are not purely axial.
- (5) Fuel rod quenching treatment in TRAC-PIA is superior to the reflood model in the most recent RELAP code version. Nevertheless, a need for a more mechanistic treatment of the quench front propagation was identified. These improvements were implemented in TRAC-PD2. In addition, treatment of the critical heat flux in TRAC-PIA does not differentiate between the departure from nucleate boiling (DNB) and the burnout or dryout.
- (6) Heat conduction within solids, other than the fuel rods, is calculated with a lumped parameter model. Finer radial or lateral discretization is necessary to handle hot wall effects which play an important role in the small-scale test facilities.

3

(7) A one-dimensional, five-field equation drift flux model, with full thermal non-equillibrium, is used in solving the transient two-phase flow within system components residing outside the reactor vessel. This includes piping, pressurizer, steam generator, ECC accumulator, and valves.

The difference between the vapor and the liquid velocities is prescribed through a constitutive relationship which is a function of the local flow regime.

Inadequate empirical knowledge exists for specification of this so called relative velocity for situations in which the vapor and the liquid flow in opposite directions. Such situations arise in certain small-break scenarios within the U-tube steam generator primary tubing and within the hot leg. The code does\_\_\_\_\_\_ not adequately handle the flow regimes in horizontal piping when the fluid velocities are low enough to cause phase separation.

Inability to handle phase separation in horizontal pipes and countercurrent flow in one-dimensional flow paths greatly limits the code ability to handle those small-break LOCA scenarios where these processes play an important role.

(8) Treatment of the steam generator (S.G.) secondary side needs refinement in handling the liquid separation, its downflow and thermal mixing with the upcoming feed flow. More accurate tracking of the S.G. liquid level is also needed, and the ability to model the relief and the isolation valves.

Improvements are also required in the treatment of heat exchange between the primary and the secondary sides in the presence of vapor condensation.

(9) The critical flow through (pipe) breaks and through relief valves is handled in a mechanistic manner. This, however, requires very detailed spatial discretization near the break. Fully implicit numerical solution technique is employed for these regions to avoid the use of very small time steps. While this procedure appears adequate for analyses of large and intermediate break sizes, it still presents a calculational burden which has a detrimental effect on the code running time for very small-break sizes. The code was not able to predict accurately the critical flow of highly subcooled liquid in some of the Marviken experiments. The BNL sensitivity studies indicate that the main cause is the mass exchange model which appears to exaggerate the local vapor production rate. BNL also recommends introduction of the nucleation delay model. (10) The code also suffers from inadequate mass conservation. While its effect is not important in large-break LOCA analyses, it becomes very detrimental in small-break LOCA analyses.

Some numerical diffusion was also observed, as in every other code that employs the Eulerian fram of reference (e.g., RELAP5, COBRA, etc.).

(11) Improvements are needed in describing the fuel behavior-clad ballooning, gap conductance, thermal conductivity in fuel pellets, etc.

#### CONCLUSION:

The TRAC-PIA code has shown a capability to address many and diverse transients involving both single and two-phase fluids. This was the first code capable of multidimensional treatment of the reactor vessel, within the context of the integral system analysis.

In the course of a rather extensive independent assessment of the publicly released version of that code, many weak points were indentified and communicated to the code developers. The development of the new version of TRAC (TRAC-PD2) has greatly benefited from these findings, and attempts were made to remove as many of the identified weaknesses as possible. We are told that TRAC-PD2 is a much more reliable, economical, and accurate code as compared to its predecessor. Validity of these claims will be carefully examined in the course of TRAC-PD2 assessment currently underway.

Information on the predictive capabilities of the TRAC-PIA code reported in this Research Information Letter provides a reference for gauging the progress made with future versions of TRAC. Figure 1 illustrates the uncertainty in the TRAC-PIA prediction of the peak clad temperature (PCT) for the integral systems tests addressed in this assessment, as a function of the test facility scale. Extrapolation to full scale provides a very rough guidance regarding the uncertainty in the prediction of PCT for LOCA in PWR plants. Reliability of this type of information will improve as more cases are addressed in the assessment of future code versions.

TRAC-PlA represents the first version of an advanced systems code. "Teething" problems were, therefore, fully expected and so is their removal, as the maturation process sets in.

5

FEB 2 5 1981

Nevertheless, the TRAC code was found to be not only adequate but also essential for the large break LOCA analyses for PWR's, primarily due to strong multidimensional effects observed in some of the cases listed in Table IV. At the same time, and for the reasons given under items (7) through (10) in the preceding section, the TRAC-PIA code is not recommended for application to analysis of the small break LOCA, or for other transients of long duration. For large break PWR LOCA best estimate analysis TRAC-PIA is definitely superior to RELAP-4/MOD 7.

6

Bassell

Robert B. Minogue, Director Office of Nuclear Regulatory Research

Enclosures:

- 1. Table I-Basic Tests
- 2. Table II-Separate Effects Tests
- 3. Table III-Integral Systems Tests
- 4. Table IV-PWR LOCA Analyses
- 5. Figure 1-Diff. Betw. the Pred. and the Meas. Peak Clad Temp. as Func. of Test Facil. Scale
- 6. References

FEB 2 5 1981

Harold R. Denton

Nevertheless, the TRAC code was found to be not only adequate but also essential for the large break LOCA analyses for PWR's, primarily due to strong multidimensional effects observed in some of the cases listed in Table IV. At the same time, and for the reasons given under items (7) through (10) in the preceding section, the TRAC-PIA code is not recommended for application to analysis of the small break LOCA, or for other transients of long duration. For large break PWR LOCA best estimate analysis TRAC-PIA is definitely superior to RELAP-4/MOD 7.

ORIGINAL SIGNED BY: O. E. BASSETT Robert B. Minogue, Director Office of Nuclear Regulatory Research Enclosures: 1. Table I-Basic Tests 2. Table II-Separate Effects Tests 3. Table III-Integral Systems Tests 4. Table IV-PWR LOCA Analyses

5. Figure 1-Diff. Betw. the Pred. and the Meas. Peak Clad Temp. as Func. of Test Facil. Scale

6. References

RECORD NOTE: Walt Jensen (NRR) indicated that he has no objections to issuance of this RIL - February 3, 1981.

## \*SEE PREVIOUS CONCURRENCES

| OFFICE  | WRSR:ADB*        | WRSR:ADB* | WRSR*                | RSR*    | RES*     | RES*      | RES*      |
|---------|------------------|-----------|----------------------|---------|----------|-----------|-----------|
| SURNAME | SFabic:md        | FOdar     | CJohnson/            | LShao   | JLarkins | RBMinogue | OEBassett |
|         | 12/30/8 <u>0</u> | 12/31/80  | HSullivan<br>1/12/81 | 1/21/81 | 2/18/81  | / /81     | / /81     |

Nevertheless, the TRAC code was found to be not only adequate but also essential for the large break LOCA analyses for PWR's, primarily due to strong multidimensional effects observed in some of the cases listed in Table IV. At the same time, and for the reasons given under items (7) through (10) in the preceding section, the TRAC-PIA code is not recommended for application to analysis of the small break LOCA, or for other transients of long duration. For large break PWR LOCA best estimate analysis TRAC-PIA is definitely superior to RELAP-4/MOD 7.

> Robert B. Minogue Office of Nuclear Regulatory Research

Enclosures: See next page

RECORD NOTE: Walt Jensen (NRR) indicated that he has no objections to issuance of this RIL - February 3, 1981.

## **\*SEE PREVIOUS CONCURRENCES**

|         |           |           |                        | OPV       |          | * USGPO: 1980-329-824 |           |
|---------|-----------|-----------|------------------------|-----------|----------|-----------------------|-----------|
| ·       |           |           |                        |           |          |                       |           |
|         | 12/30/81  | 12/31/81  | 1/12/81                | 1/21/81   | 2/18/81  | 7/24/81               | 2-1204/81 |
| SURNAME | SFabic:md | F. Odar   | CJohnson/<br>HSullivan | LShao     | JLankins | RBMinogue             | OEBassett |
| OFFICE  | WRSR:ADB* | WRSR:ADB* | WRSR*                  | RSR*      | RES      | RESOSB                | REST      |
|         |           |           |                        | · · · · · | NO       |                       |           |

۰Λ

(11) Improvements are needed in describing the fuel behavior; clad ballooning, gap conductance, thermal conductivity in fuel pellets, etc.

## CONCLUSION

The TRAC-PIA code has shown a capability to address many and diverse transients involving both single and two-phase fluids. This was the first code capable of multi-dimensional treatment of the reactor vessel, within the context of the integral system analysis.

In the course of a rather extensive independent assessment of the publicly released version of that code, many weak points were indentified and communicated to the code developers. The development of the new version of TRAC (TRAC-PD2) has greatly benefited from these findings and attempts were made to remove as many of the identified weaknesses as possible. We are told that TRAC-PD2 is a much more reliable, economical, and accurate code as compared to its predecessor. Validity of these claims will be carefully examined in the course of TRAC-PD2 assessment currently underway.

Information on the predictive capabilities of the TRAC-PIA code reported in this Research Information Letter provides a reference for gauging the progress made with future versions of TRAC. Figure 1 illustrates the uncertainty in the TRAC-PIA prediction of the peak clad temperature (PCT) for the integral systems tests addressed in this assessment, as a function of the test facility scale. Extrapolation to full-scale provides a very rough guidance regarding the uncertainty in the prediction of PCT for LOCA in PWR plants. Reliability of this type of information will improve as more cases are addressed in the assessment of future code versions.

TRAC-PIA represents the first version of an advanced systems code. "Teething" problems were, therefore, fully expected and so is their removal, as the maturation process sets in.

Nevertheless, the TRAC code was found to be not only adequate but also essential for the large-break LOCA analyses for PWRs, primarily due to strong multi-dimensional effects observed in some of the cases listed in Table IV. At the same time, and for the reasons given under items (7) through (10) in the preceding section, the TRAC-PIA code is not recommended for application to analysis of the small-break LOCA, or for other transients of long duration.

> Robert B. Minogue, Director Office of Nuclear Regulatory Research

> > 0

RES

**OEBassett** 

/81

Enclosures: See next page

|           | WRSR: ADB | WRSR:ADB   | WRSR ,                 | RSR T    |   | · RES    | RES       |
|-----------|-----------|------------|------------------------|----------|---|----------|-----------|
| SURNAME 🍽 | SFabic:md | FOdar F.O. | CJohnson/<br>HSullivan | LShao    |   | JLarkins | RBMinogue |
| DATE ►    | 12/30/80  | 12/31/80   | 1/2/ \2/80             | 1/2/2/18 | 0 | 1/2/ /80 | 1/2/ /80  |

TABLE I - BASIC TESTS

• 7

|    | TEST CASE                                                                  | Contractor<br>Performing | Summary                                                                | of Findings                                                                              |
|----|----------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|    | TEST CASE                                                                  | Analysis                 | Code Strengths                                                         | Code Weaknesses                                                                          |
| Ι. | Critical & Subcritical<br>Flows                                            |                          |                                                                        |                                                                                          |
| ,  | A. Moby-Dick (Steady-State,<br>Air-Water, Critical<br>Flow)                | BNL                      |                                                                        |                                                                                          |
|    | <pre>l. Zero Quality   (subcritical)</pre>                                 |                          | Pressure drop                                                          | Flow rate is sensitive to friction factor option.                                        |
|    | <ol> <li>Low-intermediate<br/>Qualities (5 test<br/>conditions)</li> </ol> |                          | Pressure drop - Void fraction                                          | Not a smooth steady-state and flow.                                                      |
|    | 3. High Quality                                                            |                          |                                                                        | No convergence to a steady-state.                                                        |
|    | B. Moby-Dick (Steady-State,<br>Steam-Water, critical<br>flow)              | BNL                      |                                                                        | No convergence to a steady-rate.                                                         |
| •  | C. KFK - IRE<br>(Steady-State, critical<br>flow)                           | BNL                      |                                                                        |                                                                                          |
|    | <pre>1. Cold Water    (subcritical)</pre>                                  |                          | Accurate pressure drop and flow rate with homogeneous friction option. |                                                                                          |
|    | 2. Air-Water                                                               |                          |                                                                        | Agreement of pressure flow rate and vapor fraction, with test data is below expectation. |
|    | 3. Steam-Water                                                             |                          | Vapor fraction calculation is good.                                    | Prediction of pressure and flow rate below expectation.                                  |
|    |                                                                            |                          |                                                                        |                                                                                          |

Table I - Page 2

| TEST | T CASE                                                                                                       | Contractor<br>Performing | Summary of Findings                                                                                |                                                                                        |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|--|
|      |                                                                                                              | Analysis                 | Code Strengths                                                                                     | Code Weaknesses                                                                        |  |  |  |
|      | BNL Nozzle Tests<br>(Steady-State)<br>1 run subcritical<br>3 runs critical                                   | BNL                      | Good agreement of pressure, voi<br>friction and flow rates with th<br>measured at high flow rates. |                                                                                        |  |  |  |
|      | Canon Test<br>(transient, blowdown)<br>(4 test conditions)                                                   | BNL                      | Good prediction of pressure uni<br>20 ms.                                                          | til Overprediction of vapor fraction.<br>Poor predictions of pressures<br>after 20 ms. |  |  |  |
|      | Super Canon Test<br>(transient, blowdown)<br>(4 test conditions)                                             | BNL                      | Reasonable prediction of vapor<br>fraction.                                                        | Poor prediction of pressure during the entire transient.                               |  |  |  |
|      | Edwards Test<br>(transient, blowdown)                                                                        | LASL                     | Reasonable predictions of pres<br>and temperature.                                                 | ssure Required additive friction factor.                                               |  |  |  |
|      | CISE TEST<br>(transient, blowdown<br>with area changes, wall<br>heat transfer, and<br>gravitational effects) | LASL                     |                                                                                                    |                                                                                        |  |  |  |
|      | 1. Unheated                                                                                                  |                          | Good prediction of pressure, temperature and mass inventory.                                       | ,                                                                                      |  |  |  |
| :    | 2. Heated                                                                                                    |                          |                                                                                                    | Prediction of pressure and temperatures below expectation.                             |  |  |  |
| •    |                                                                                                              |                          |                                                                                                    |                                                                                        |  |  |  |
|      |                                                                                                              |                          | · · · · · · · · · · · · · · · · · · ·                                                              |                                                                                        |  |  |  |

Table I - Page 3

| TEST CASE   |                            | CASE                                                      | Contractor<br>Performing | Summary of Findings |                                                                                                              |  |  |
|-------------|----------------------------|-----------------------------------------------------------|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------|--|--|
|             |                            |                                                           | Analysis                 | Code Strengths      | Code Weaknesses                                                                                              |  |  |
| <u>1</u> 1. |                            | ter-Current Flow<br>University of Houston                 | BNL                      | Co                  | nstitutive relationships do not                                                                              |  |  |
|             |                            |                                                           |                          | f1                  | rmit calculation of counter-current<br>ow in a pipe component in churn-<br>rbulent and annular flow regimes. |  |  |
|             | B. [                       | Dartmouth                                                 | LASL                     | to                  | me comment as above. Possibly de<br>inappropriate nodalization of the<br>per plenum.                         |  |  |
| III.        | Mult <sup>.</sup><br>State | i-dimensional Steady-<br>e Tests                          |                          |                     |                                                                                                              |  |  |
|             |                            | RPI, 2-D Phase<br>Separation Tests<br>(8 test conditions) | BNL                      | st                  | de either failed to converge or<br>opped, stating indefinite or<br>erflow conditions.                        |  |  |
|             |                            | FRIGG Rod Bundle<br>Test                                  | BNL                      | Со                  | de failed to converge.                                                                                       |  |  |
|             |                            | · · · · · · · · · · · · · · · · · · ·                     |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     | · · · · · · · · · · · · · · · · · · ·                                                                        |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          | · · ·               |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     | · · · ·                                                                                                      |  |  |
|             |                            |                                                           |                          |                     | 1                                                                                                            |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           |                          |                     |                                                                                                              |  |  |
|             |                            |                                                           | 1                        |                     | · · · · · · · · · · · · · · · · · · ·                                                                        |  |  |

•

# TABLE II - SEPARATE EFFECTS TESTS

| *******       | TEST CASE                                                                                                                                 | Contractor<br>Performing | Summary of Findings                                                                            |                                                                                                                                                                           |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| . <del></del> |                                                                                                                                           | Analysis                 | Code Strengths                                                                                 | Code Weaknesses                                                                                                                                                           |  |  |  |
| I.            | Marviken Tests<br>(Full-scale Vessel Blow-<br>down)<br>(16 test conditions)                                                               | BNL & LASL               | Reasonably successful predictions<br>of critical flow rates for<br>saturated inlet conditions• | Underprediction of critical flow rates<br>for subcooled inlet conditions.<br>This becomes more pronounced for<br>nozzles with small length-to-<br>diameter ratio.         |  |  |  |
| II.           | Battelle-Frankfurt<br>(Int. Std. Problem-<br>Top Blowdown)                                                                                | BNL & LAŞL               |                                                                                                | Prediction of critical flow rate for<br>steam and two-phase steam-water wer<br>not as good as expected. Possible<br>experimental errors. Numerical<br>diffusion observed. |  |  |  |
| III.          | Semiscal 1-1/2 loop<br>Isothermal Blowdown<br>(Test 1011, Std. Prob. 2)                                                                   | LASL                     | Hot leg break flow rate, system<br>pressure and temperatures are<br>well predicted.            | Prediction of cold leg break flow rate below expectation.                                                                                                                 |  |  |  |
| IV.           | Semiscale Mod-l Heated<br>Loop Blowdown<br>(Test S-02-8)                                                                                  | LASL                     | Reasonable predictions of pressure,<br>break flow rates and loop mass<br>flow rates.           | Premature CHF.                                                                                                                                                            |  |  |  |
| ۷.            | Crease Counter-Current<br>Flow Test<br>(Counter-current flow,<br>ECC bypass and penetration,<br>4 subcases run)                           | LASL                     | Good predictions of ECC bypass and<br>penetration using the vessel<br>module.                  |                                                                                                                                                                           |  |  |  |
| VI.           | FLECHT Reflood Tests<br>(forced-bottom-flooding,<br>reflood heat transfer,<br>quenching and liquid<br>entrainment)<br>(3 test conditions) | LASL                     | Good predictions of clad<br>temperatures for high flooding<br>rate.                            | Poor prediction of turnaround time,<br>quench time and quench temperatures<br>for low flooding rates.                                                                     |  |  |  |
|               |                                                                                                                                           |                          |                                                                                                |                                                                                                                                                                           |  |  |  |

TABLE III - INTEGRAL SYSTEMS TESTS

1

| TEST CASE                                                               | Contractor             | Summary of Findings                                                                                                                                                                                 |                                                                                                                                                                                                                                           |  |  |  |
|-------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| TEST CASE                                                               | Performing<br>Analysis | Code Strengths Code Weaknesses                                                                                                                                                                      |                                                                                                                                                                                                                                           |  |  |  |
| <pre>I. Semiscale Mod-3   (Large Break LOCA Test,    Test S-07-6)</pre> | LASL                   | Reasonable agreement with test<br>data during the blowdown.                                                                                                                                         | Poor agreement during refill and<br>and reflood, due to combination of<br>code weakness in calculating down-<br>comer penetration, reflood heat<br>transfer, liquid entrainment and<br>uncertainties in downcomer metal<br>heat transfer. |  |  |  |
| II. Semiscale Mod-1<br>(Large Break LOCA Test,<br>Test S-04-6)          | INEL                   | Adequate prediction of clad<br>temperature when CHF was calculated<br>correctly.                                                                                                                    | Prediction of mass flows including<br>break flow rates, pressures,<br>densities, and fluid temperatures<br>below expectation. Poor prediction<br>of refill.                                                                               |  |  |  |
| II. LOBI A1-04<br>(Blind, pre-test prediction,<br>virgin test facility) | LASL                   | Accurate prediction of peak clad<br>temperature. Accurate predictions<br>of CHF at different elevations.                                                                                            | Prediction of pressures, fluid<br>temperatures and mass flow rates<br>below expectation.                                                                                                                                                  |  |  |  |
| IV. LOFT L1-4<br>(Isothermal blowdown with<br>delayed ECC injection)    | LASL                   | Good predictions of mass flow<br>rates, fluid temperatures,<br>densities, pressures and vessel<br>liquid mass. Good representation<br>of integral effects during the<br>blowdown and refill phases. |                                                                                                                                                                                                                                           |  |  |  |
| LOFT L1-5<br>(Isothermal blowdown)                                      | LASL                   | Good predictions of system pressure and densities.                                                                                                                                                  | Calculated liquid inventory in the core is lower than that in the test.                                                                                                                                                                   |  |  |  |
| LOFT L2-2<br>(Large break LOCA Test,<br>50% power)                      | LASL                   | Good prediction of system pressure,<br>temperatures, ECC behavior and<br>cladding temperatures at peripheral<br>rods including rewet behavior.                                                      | Poor agreement in calculating rewet<br>in high powered region. However,<br>there is uncertainty in measurement<br>of clad temperatures due to fin                                                                                         |  |  |  |
|                                                                         |                        |                                                                                                                                                                                                     |                                                                                                                                                                                                                                           |  |  |  |

Table III - Page 2

| TEST CASE                                           | Contractor<br>Performing | Summary of Findings                                                                                                                                     |                                                                                                                                                                                                                                                      |  |  |  |
|-----------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                     | Analysis                 | Code Strengths                                                                                                                                          | Code Weaknesses                                                                                                                                                                                                                                      |  |  |  |
| LOFT L2-2 (continued)                               | )                        |                                                                                                                                                         | effects which could also be<br>responsible for overprediction of<br>peak clad temperature in high<br>powered region. Underprediction of<br>critical flow in subcooled inlet<br>conditions.                                                           |  |  |  |
| LOFT L2-3<br>(Large break LOCA Test,<br>75% power)  | LASL                     | Reasonable prediction of system<br>pressure, temperatures, ECC<br>behavior and cladding temperatures<br>at peripheral rods including rewet<br>behavior. | Same weaknesses as in L2-2                                                                                                                                                                                                                           |  |  |  |
| LOFT L2-3<br>(Large Break LOCA Test,<br>75% power)  | INEL                     | Reasonably good agreement with<br>experimental data early in the<br>transient.                                                                          | Failed to predict positive core inlet<br>flow early during the LOCA and<br>consequently failed to predict rewet.<br>Predictions of break flow rates,<br>pressures, pressure differentials,<br>densities, and clad temperatures<br>below expectation. |  |  |  |
| LOFT L3-0<br>(Isothermal blowdown<br>through PORV)  | LASL                     |                                                                                                                                                         | Inaccurate calculation of mass<br>conservation. Accuracy of predictions<br>of all parameters also suffered from<br>uncertainties in internal vessel<br>leakage (downcomer to upper plenum)<br>and in additive system leakage beyond<br>flow.         |  |  |  |
| LOFT L3-1<br>(Small Break LOCA Test,<br>100% power) | LASL                     | •                                                                                                                                                       | Same weaknesses as in L3-0                                                                                                                                                                                                                           |  |  |  |
|                                                     |                          |                                                                                                                                                         |                                                                                                                                                                                                                                                      |  |  |  |

## TABLE IV - PWR LOCA ANLAYSES

|   |     | ·                                                                             |                                                                         |
|---|-----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|   | LOC | A Scenario                                                                    | Qualitative Assessment of Code Performance and of Results               |
|   | 1.  | Large Cold Leg Break<br>(200%)                                                | Satisfactory and reasonable.                                            |
|   | 2.  | Intermediate Cold Leg<br>Break (0.25m-diameter)                               | Satisfactory and reasonable.                                            |
| · | 3.  | Small Cold Leg Break<br>(0.10m-diameter)                                      | Results not reasonable.                                                 |
|   | 4.  | Large Cold Leg Break<br>with rupture of steam<br>generator tube(s)            | Satisfactory and reasonable. Important 3-D effects observed in results. |
|   |     | (Two cases, one with<br>small and the other<br>with large number of<br>tubes) |                                                                         |
|   | 5.  | Large Hot Leg Break<br>(200%)                                                 | Satisfactory and reasonable.                                            |
|   | 6.  | Large Hot Leg Break<br>with rupture of 16 steam<br>generator tubes            | Satisfactory and reasonable.                                            |
|   |     |                                                                               |                                                                         |
|   |     | :                                                                             |                                                                         |
|   |     |                                                                               |                                                                         |
|   | ,   |                                                                               |                                                                         |
|   |     |                                                                               |                                                                         |
|   |     |                                                                               |                                                                         |

| Semi-L<br>4 Cycles x                        |            |                  |                                                       |                  | 12-184          |
|---------------------------------------------|------------|------------------|-------------------------------------------------------|------------------|-----------------|
| Semi-Logarithmic<br>Cycles x 10 to the inch |            | 5 6 7 8 9 H 2 3  | Difference Between the Pred                           | ticted and the   |                 |
| . <b>+200</b> -                             | PCT        |                  | Measured Peak Clad Temperat<br>of Test Facility Scale | ture as Function |                 |
| +100 -                                      | (PCT - PCT | scale            |                                                       |                  |                 |
|                                             |            | Semiscale        |                                                       |                  |                 |
| 0 -                                         |            |                  |                                                       |                  |                 |
| -100                                        |            |                  |                                                       |                  | 11 Scale PWR    |
| -200                                        |            |                  |                                                       |                  |                 |
|                                             |            |                  |                                                       |                  |                 |
|                                             |            | Volumetric       | Scale                                                 |                  |                 |
|                                             | <u></u>    | 10 <sup>-3</sup> | 10 <sup>-2</sup>                                      | 10 <sup>-7</sup> | 10 <sup>0</sup> |

## REFERENCES

- S. Fabic and P. S. Andersen, "Plans For Assessment of Best Estimate LWR Systems Codes," NUREG-0676, January 1981.
- 2. P. Saha et al., "Annual Report On TRAC Independent Assessment at BNL," BNL-NUREG-27580, January 1980.
- 3. U.S. Rohatgi, P. Saha, "Constitutive Relations in TRAC-PIA," BNL-NUREG-51258 NUREG/CR-1651, August 1980.
- 4. S.V. Lekach, "Calculation of the CANON Experiment Using the TRAC Code," BNL-NUREG-28290, August 1980.
- 5. T. Knight, "TRAC-PIA Assessment 1979," LA-8477-MS, NUREG/CR-1652 (to be issued, copy available in Branch).
- 6. A.C. Peterson, "TRAC-PIA Independent Assessment\_Summary\_Report," EGG-CAAP-5147, April 1980.
- 7. P.D. Wheatley, "Comparison of TRAC-PIA Calculations With LOFT L2-3 Experimental Results," EGG-CAAP-5072, December 1979.
- 8. P.N. Demmie, "An Analysis of Semiscale MOD-1 LOCE S-04-6 Using the TRAC-PIA Computer Program," EGG-CAAP-5181, June 1980.
- 9. J.R. Larson, "Calculations of a Large Cold Leg Break With Steam Generator Tube Ruptures In a PWR Using the TRAC-P1A Computer Program," EGG-CAAP-5189, June 1980.
- P.D. Wheatley, M.A. Bolander, "TRAC-PIA Calculations for a 200%, 0.25m-Diameter, and 0.10m-Diameter Cold Leg Break In a Pressurized Water Reactor," EGG-CAAP-5190, June 1980.
- 11. M.A. Bolander, "TRAC-PIA Calculations for a 200% Hot Leg Break and a 200% Hot Leg Break Simultaneous With a Rupture of 16 Steam Generator Tubes In a Pressurized Water Reactor," EGG-CAAP-5191, June 1980.