Official Transcript of Proceedings

NUCLEAR REGULATORY COMMISSION

Title: Advisory Committee on Reactor Safeguards APR1400 Subcommittee Meeting

Docket Number: (n/a)

Location: Rockville, Maryland

Date: Friday, May 19, 2017

Work Order No.: NRC-3079

Pages 1-311

NEAL R. GROSS AND CO., INC. Court Reporters and Transcribers 1323 Rhode Island Avenue, N.W. Washington, D.C. 20005 (202) 234-4433

1	
2	
3 4	DISCLAIMER
5	
6	
7	UNITED STATES NUCLEAR REGULATORY COMMISSION'S
8	ADVISORY COMMITTEE ON REACTOR SAFEGUARDS
9	
10	
11	The contents of this transcript of the
12	proceeding of the United States Nuclear Regulatory
13	Commission Advisory Committee on Reactor Safeguards,
14	as reported herein, is a record of the discussions
15	recorded at the meeting.
16	
17	This transcript has not been reviewed,
18	corrected, and edited, and it may contain
19	inaccuracies.
20	
21	
22	
23	
	NEAL R. GROSS
	COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.
	(202) 234-4433 WASHINGTON, D.C. 20005-3701 www.nealrgross.com

1 UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION + + + + +ADVISORY COMMITTEE ON REACTOR SAFEGUARDS (ACRS) + + + + +APR1400 SUBCOMMITTEE + + + + +FRIDAY MAY 19, 2017 + + + + +ROCKVILLE, MARYLAND + + + + +The Subcommittee met at the Nuclear Regulatory Commission, Two White Flint North, Room T2B1, 11545 Rockville Pike, at 8:30 a.m., Ron Ballinger, Chairman, presiding. COMMITTEE MEMBERS: RON BALLINGER, Chair CHARLES H. BROWN, JR. MICHAEL CORRADINI (via telephone) JOSE A. MARCH-LEUBA DANA A. POWERS JOY REMPE

STEPHEN SCHULTZ

GORDON R. SKILLMAN

JOHN W. STETKAR

DESIGNATED FEDERAL OFFICIAL:

CHRISTOPHER BROWN

ALSO PRESENT:

DOUGLAS BARBER, Consultant

DAVE CARAHER, ISL

WOOCHONG CHOU, KHNP

SUNG JU CHO

TIM DRZEWIECKI, NRO

JIM GILMER, NRO

SYED HAIDER, NRO

MICHELLE HART, NRO

RAUL HERNANDEZ, NRO

JAEHOON JEONG

UNG SOO KIM

YOUGGUN KIM, KHNP and KEPCO

DONGSU LEE, KHNP and KEPCO

ROBERT LEE*, Westinghouse

KAEYEOL LEW

SHANLAI LU, NRO

ANDY OH, KHNP

DAN PRELEWICZ, NRO

JIM SERVACIOUS, Consultant

ROB SISK, WEC

JOE STAUDENMEIER, NRO JOHN

STECKEL, NRO

CARL THURSTON, NRO

CHRIS VAN WERT, NRO PETER

YARSKY, RES

Maitri Banerjee, ACRS Staff*

* Over telephone

AGENDA

Opening Remarks5
Staff Opening Remarks6
KHNP Opening Remarks6
DCD Chapter 15: Overview Section 15.0-15.56
DCD Chapter 15: Section 15.6 - 15.848
SER Chapter 15: Overview Section 15.0 - 15.2168
SER Chapter 15: Section 15.3 - 15.5187
SER Chapter 15: Section 15.6 - 15.8239
Public Comments
Committee Discussion
Adjourn

	5
1	P-R-O-C-E-E-D-I-N-G-S
2	(8:30 a.m.)
3	CHAIR BALLINGER: Our recorder is not here
4	so the recordings are being made by Theron in the booth,
5	which means that when you speak, you really need to,
6	including me, need to be cognizant of pushing the little
7	button to make the green light come on. Because
8	otherwise he won't hear you.
9	All right. We have additional people
10	present here that weren't here yesterday. Not the
11	least of which is Joy Rempe.
12	And we have multiple people on the phone.
13	The public line is open and it's muted. Contractors,
14	there are two contractors that are on the line, I hope.
15	Are they there?
16	Jim Servacious or Doug Barber? Well,
17	they're supposed to be there. And Mike, Member
18	Corradini is on the line. And he's the only one that
19	will remain un-muted. Everybody else should be on
20	mute. Maitri is also on the line and her phone should
21	be muted.
22	So that's the procedure for today. One
23	more thing, be sure to disable all the noise making
24	machines that are in the room.
25	And I think we can pick up from yesterday.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	6
1	Does anybody, you want to make any comment?
2	MEMBER WARD: Yes. This is Bill Ward
3	talking. I just wanted to thank you for yesterday. I
4	understand it went pretty well.
5	And I hope that today is another successful
6	day. Only three more after this to get through Phase
7	3. And we're looking forward to getting through this
8	rapidly today. Thank you.
9	CHAIR BALLINGER: Let's hope today we
10	don't pull a Brett Favre, go long.
11	MEMBER WARD: No, not today.
12	CHAIR BALLINGER: Okay. So with that being
13	said, the floor is yours.
14	MR. SISK: Thank you. Rob Sisk,
15	Westinghouse. I have no opening comments, so I'm going
16	to turn it over immediately to Mr. Ung Soo Kim to lead
17	us through the Chapter 15.
18	MR. U. KIM: Yes.
19	MR. SISK: Okay, thank you.
20	MEMBER STETKAR: It's probably good, when
21	you speak, to identify yourself, because on the
22	recording we do not have the benefit of our reporter
23	knowing who is speaking. So just until the reporter
24	gets here, just identify yourself when you start to
25	speak. And that was John Stetkar saying that.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	7
1	MR. U. KIM: Okay. Good morning
2	everyone. I am Ung Soo Kim. I am working in safety
3	analysis department at KEPCO E&C.
4	This presentation is for the DCD Chapter
5	15, Non-LOCA and the LOCA analysis for APR1400 design.
6	Next.
7	(Off microphone comments.)
8	MR. U. KIM: Okay. The contents are
9	provided on this slide. Especially, the summary of the
10	radiological consequences will be presented in Chapter
11	15A.
12	Here we see on overview of the section with
13	the DCD Chapter 15. Today four people will present
14	this chapter.
15	First, I present Non-LOCA analysis from
16	Section 15.1 to 15.6. Then Dr. Chon Woochong will
17	present LOCA analysis, Subsection 15.6.5.
18	Then Mr. Kim Youggun will present about
19	long-term cooling.
20	Finally, remaining sections for
21	radiological consequence will be presented by Mr. Lee
22	Dongsu.
23	The following documents are submitted for
24	DCD Chapter 15.
25	Now, I'm going to talk about Section 15.1,
	NEAL R. GROSS

(202) 234-4433

	8
1	increase in heat removal by the secondary system. This
2	section handles four anticipated operational
3	occurrences and one postulated accident, as in this
4	slide.
5	Among four AOOs, the inadvertent opening
6	of a steam generator relief or a safety valve is
7	quantitatively analyzed as the limiting AOO. Also,
8	the postulated accident steamline break is analyzed.
9	In this slide, the red mark part indicates
10	quantitatively analyzed events. And will be
11	explained.
12	Inadvertent opening of a steam generator
13	relief or safety valve. Due to the opening of a steam
14	generator relief valve, the main steam flow increased,
15	but by no more than 11 percent of nominal full-power
16	steam flow rate.
17	This makes a decrease in core inlet
18	temperature and consequently resulting in core power
19	increase, by temperature feedback effect. So in this
20	event, DNBR decreased and the major concerned parameter
21	is the minimum DNBR.
22	In this analysis, as a single failure
23	reactor trip override mode of FWCS, failure is assumed.
24	Because this makes feedwater not decreased after the
25	reactor trip and sustains cooldown by feedwater.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	9
1	MEMBER MARCH-LEUBA: Give me a second.
2	This is Jose March-Leuba. I see in the figure there
3	is a scram at about, what, 1,500 seconds after. So
4	there is no automatic scram for this system? For this
5	scenario.
6	MR. U. KIM: Pardon?
7	MEMBER MARCH-LEUBA: Is there an
8	automatic reactor scram for this scenario? Or is it
9	manual? Why is it
10	MR. U. KIM: It's manual. Manual reactor
11	trip.
12	MEMBER MARCH-LEUBA: It's manual?
13	MR. U. KIM: Yes.
14	MEMBER MARCH-LEUBA: So the high power is
15	never reached?
16	MR. U. KIM: Never reached.
17	MEMBER MARCH-LEUBA: What is the
18	high-power scram?
19	MR. U. KIM: Reactor power trip. About
20	116 percent.
21	MEMBER MARCH-LEUBA: Sixteen.
22	MR. U. KIM: Yes.
23	MEMBER MARCH-LEUBA: So the power is less
24	than 116?
25	MR. U. KIM: Yes.
	NEAL R. GROSS

```
(202) 234-4433
```

	10
1	PARTICIPANT: So, the 11 percent
2	increase, that's because of a restrictor in the steam
3	generator outlet line, is that it?
4	MR. U. KIM: The general percent is the
5	general climate of the
6	MR. JEONG: Oh, okay.
7	MR. U. KIM: installed in the
8	steamline.
9	Next, steamline break. What steamline
10	break result in, excessive RCS cooldown and makes the
11	core reactivity to increase. Degradation in the fuel
12	cladding performance may occur from this event.
13	So SLB analysis case are chosen, in two
14	aspects. That is, to maximize potential to post-trip
15	return power, and the second is, to maximize potential
16	for degradation in fuel cladding performance.
17	For SLB analysis, main steam isolator
18	valve or safety injector pump failure are considered
19	as a single failure.
20	From the analysis result, it is confirmed
21	that post-trip return power does not occur. And the
22	minimum DNBR remains above the fuel design limit.
23	Now, I'm going to talk about the Section
24	15.2, decrease in heat removal by the secondary system.
25	As you see, there are a total of seven AOOs and the one
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	11
1	post-trip accident, in this section. Among
2	MEMBER MARCH-LEUBA: Sorry, can you go
3	back to Slide 8? Okay. I'm looking at the reactivity.
4	Jose March-Leuba.
5	I'm looking at the left plot, the
6	reactivity.
7	MR. U. KIM: Reactivity, yes.
8	MEMBER MARCH-LEUBA: So I see that you
9	inserted roles instantly, I mean, within probably ten
10	seconds, and then you have a reactivity of minus nine.
11	But then later, as it's cooling down and you essentially
12	get to see, you follow the total line? I mean, do you
13	not go re-criticality, but you are very close?
14	I mean, you say that post-trip RTP does not
15	occur?
16	MR. U. KIM: Yes. Does not occur.
17	MEMBER MARCH-LEUBA: But, with
18	uncertainties
19	MR. U. KIM: Yes.
20	MEMBER MARCH-LEUBA: if you put a
21	little bit, it may have occurred.
22	MR. U. KIM: Yes, it is uncertain.
23	MEMBER MARCH-LEUBA: Is this a full scram?
24	I mean, is it an assumed failure of the rods?
25	MR. U. KIM: Full scram.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	12
1	MEMBER MARCH-LEUBA: Full scram?
2	MR. U. KIM: Yes.
3	MEMBER MARCH-LEUBA: So really, to keep
4	the reactor shutdown, you need boron, otherwise you
5	will have gone, without the boron, you will have not
6	maintained shutdown conditions?
7	MR. U. KIM: Boron is injected by safety
8	injection. In this figure, this line is boron
9	injection by safety injection system.
10	MEMBER MARCH-LEUBA: But the boron safety
11	injection is the one that keeps you from going by
12	critical, is correct?
13	MR. U. KIM: Yes, subcritical for
14	maintaining.
15	MEMBER MARCH-LEUBA: Okay, thank you.
16	CHAIR BALLINGER: Are we sure we have a
17	clear answer on that?
18	MEMBER MARCH-LEUBA: I think I understand
19	it.
20	MR. U. KIM: Okay, I will continue. For
21	the Section 15.2.
22	Among all AOOs in this section, the loss
23	of condenser vacuum is most limiting. And
24	quantitatively analyzed, and other AOOs, are bounded
25	by this LOCV event.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	13
1	Though postulated accident in this
2	section, feedwater line break, is also analyzed too.
3	Loss of condenser vacuum. When a LOCV
4	occurs, an immediate feedwater termination and turbine
5	trip, making a complete reduction in steam flow,
6	conservatively assumed to occur.
7	Therefore, abrupt reduction in heat
8	transfer from the RCS to secondary system occurs. This
9	fast decrease in RCA cooldown rapidly pressurizes the
10	RCS. So system peak pressure is concerned in this
11	event.
12	The analysis results show that the RCS and
13	main steam system pressure increased. But they are
14	below acceptance criteria.
15	Next, the feedwater line break. A
16	feedwater line break makes rapid depletion of affected
17	steam generator liquid mass.
18	This reduce heat transfer capability
19	between the RCS and the secondary system. So rapid RCS
20	heat up and pressurization occurs. And the system peak
21	pressure is major concerned parameter.
22	In analysis, the break size of the
23	feedwater line is determined by sensitivity analysis,
24	in order to get limiting one.
25	Through the analysis, we identified that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	14
1	the RCS and main steam system pressure increase. But
2	they are below acceptance criteria.
3	Next, the Section 15.3. DCD Section 15.3
4	consist of one AOO and two postulated accidents. Flow
5	controller malfunction is categorized as a BWR event.
6	So it is not applicable in the APR1400.
7	Loss of forced reactor coolant flow. A
8	complete loses of forced reactor coolant flow event is
9	more limiting than any partial loss of forced reactor
10	coolant flow. Because the reactor trip, the reactor
11	will trip at the same time for both cases.
12	As a result of simultaneous loss of
13	electrical power to all RCPs, a complete loss of forced
14	reactor coolant flow event occurs. A reduction of
15	coolant flow causes an increase in core average
16	temperature, system pressure and decreasing in margin
17	to DNB.
18	Turbine trip and loss of feedwater are
19	assumed to occur at the same time with this event. And
20	the most adverse combinations of initial condition for
21	each aspect are determined by the parametric studies.
22	NRC approved of the computer codes, COAST,
23	HERMITE, CETOP and CESEC-III are used for event
24	analysis. As a result of the analysis, it is confirmed
25	that all event acceptance criteria were satisfied.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	15
1	Reactor coolant pump rotor seizure and
2	reactor coolant pump shaft break. This event can be
3	caused by the mechanical failure of the RCP. Or RCP
4	shaft break.
5	This event has similar system behavior.
6	And the flow coastdown for the RCP locked rotor event
7	is faster than the coastdown for the shaft to break.
8	Therefore, the RCP locked rotor event is most limiting
9	than RCP shaft break.
10	A reduction of coolant flow causes an
11	increase in core average temperature, system pressure
12	and decrease in margin to DNB.
13	Loss of feedwater flow and remaining RCP
14	flow coastdown are assumed to occur at the same time
15	with the loss of offsite power occurrence.
16	Most adverse combinations of initial
17	conditions for each aspect are determined by the
18	parametric studies. As a result, it was confirmed that
19	all event acceptance criteria were satisfied.
20	The DCD section is Chapter, DCD Section
21	15.4, consists of six AOOs and one PA. As shown in this
22	slide.
23	Subsection 15.4.5 is categorized as a BWR
24	event. So it is not applicable for APR1400 design.
25	Uncontrolled CEA withdrawal from a
	NEAL R. GROSS

(202) 234-4433

	16
1	subcritical or low-power startup condition.
2	Uncontrolled withdraw of a CEA is assumed to occur as
3	a result of single failure in the control element drive
4	mechanism, CEDM control system, reactor regulating
5	system or as a result of operator error.
6	The withdrawal of CEAs from subcritical or
7	low-power conditions add to the reactivity to the
8	reactor core. Causing the core power level and the
9	core heat flux to increase, with the corresponding
10	increase in the reactor coolant temperatures and
11	reactor coolant system pressure.
12	0.001 percent of rated power is chosen as
13	initial power level. Which is high logarithmic power
14	reactor trip bypass set point.
15	To maximize the reactivity insertion rate,
16	the maximum CEA withdrawal rate and maximum
17	differential control CEA bank worth are assumed, for
18	this analysis. And the most limiting initial
19	conditions are selected.
20	As a result of analysis, it is confirmed
21	that all event acceptance criteria were satisfied.
22	MEMBER MARCH-LEUBA: This is Jose again.
23	I have a couple of questions on this. First, you assume
24	the maximum reactivity injection rate for the rod that
25	has more weight, more worth, or do you run the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	17
1	calculation with multiple rods and see which one is
2	worse?
3	MR. U. KIM: Mr. Chon, can you answer this
4	question?
5	MR. OH: Yes. This is Andy Oh from the
6	KNHP Washington Office. Member Jose, could you
7	question again?
8	MEMBER MARCH-LEUBA: When you perform
9	this calculation, do you assume a particular rate of
10	reactivity injection or do you inject multiple rods and
11	see which one is worse?
12	Do you perform a full 3-D calculation,
13	injecting this rod, that rod, that rod and see which
14	one is worse, or do you figure out which one has more
15	worth, in terms of dollars, and inject that one only?
16	MR. JEONG: Okay. I am Jaehoon Jeong from
17	KEPCO Nuclear Fuel Company. And we selected the most
18	limiting reactivity insertion rate from the nuclear
19	rule.
20	MEMBER MARCH-LEUBA: So you only perform
21	one calculation for the most limiting rod, based on the
22	steady state rod worth?
23	MR. JEONG: Yes. Based on the
24	sensitivity study analysis.
25	MEMBER MARCH-LEUBA: Yes. Okay. And
	NEAL R. GROSS

(202) 234-4433

	18
1	now, following up. Select the most limiting initial
2	conditions.
3	The reactor has shutdown, how do you peak
4	initial conditions? I mean, how do you get the most
5	limiting ones?
6	MR. JEONG: We selected the ten to the
7	minus three percent power at the actual initial power
8	level. Because that power level is high level engine
9	power trip to the reactor bypass set point.
10	So for this event to occur below that
11	reactor power level
12	MEMBER MARCH-LEUBA: Yes.
13	MR. JEONG: then this event will
14	terminate by the high power reactor trip. So as you
15	know, the hydraulic reactor power trip set point is 0.05
16	percent power levels.
17	And then if this event were higher than
18	that engine power level, however, then that high
19	reactor power doesn't occur. So it cannot occur.
20	In that case, variable overpower trip will
21	be occurred to terminate this event. So variable
22	overpower trip set point is about 14 percent.
23	MEMBER MARCH-LEUBA: Fourteen percent?
24	MR. JEONG: Yes, 14 percent.
25	MEMBER STETKAR: I'm sorry, I've heard
	NEAL R. GROSS

(202) 234-4433

	19
1	that twice. This is John Stetkar. I've heard that
2	twice.
3	And in the tabulations, in both Chapter 7
4	and Chapter 15, the variable overpower set point trip
5	is 103.5 percent. So why are you using 114 or 16
6	percent or whatever you said?
7	MR. JEONG: Oh. In this analysis, the
8	variable or step, we assume the step variable overpower
9	trip. Yes.
10	MEMBER STETKAR: Okay. So you're not
11	using the variable overpower trip in this analysis,
12	you're only using the step?
13	MR. JEONG: Step. Yes.
14	MEMBER STETKAR: Okay.
15	MR. JEONG: Variable overpower trip
16	consists of step late and
17	MEMBER STETKAR: Plus a rate. Right.
18	MEMBER MARCH-LEUBA: Completely
19	different question. Twenty kilowatts per foot. The
20	last bullet.
21	Is that SAFDL, a specified acceptable fuel
22	design limit or
23	MR. JEONG: Yes. That is a melting limit.
24	MEMBER MARCH-LEUBA: Say again?
25	MR. JEONG: Fuel melting limit.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	20
1	Calculated by the fuel rod design group.
2	CHAIR BALLINGER: This is Ron Ballinger.
3	Is that accounting for burn-up dependent conductivity?
4	MR. JEONG: That definitely, fuel rod
5	design would consider about the burn-up dependent.
6	CHAIR BALLINGER: Okay.
7	MEMBER MARCH-LEUBA: Yes, because 20
8	kilowatt, this is Jose
9	CHAIR BALLINGER: That's pretty high.
10	MEMBER MARCH-LEUBA: 20 kilowatts per
11	feet is very high.
12	CHAIR BALLINGER: It's pretty high.
13	MEMBER MARCH-LEUBA: But typically, in
14	the reactors I'm more used to, which is BWS, we don't
15	have an LHGR limit for transients. It's more of a
16	steady state condition to prevent LOCA problems. Yes.
17	During the transients, you don't worry
18	about the LHGR. So this is an acceptable limit that
19	has been approved in the past.
20	I mean, what's the basis for this 20? I
21	mean, it's a very round number. I mean, it looks like
22	an arbitrary number.
23	MR. JEONG: Actually, this limit came from
24	the fuel design group. And they consider about the
25	burn-up dependent, the burn-up dependent in this limit.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	21
1	When they set this limit.
2	And maybe, as you want to proceed, maybe
3	the melting limit, LHR limit, maybe it decreased less
4	than the 20 kilowatts could hit. But they consider
5	about the peak power reduction over there.
6	So they concluded that the 20 kilowatts per
7	foot limit is acceptable to apply the
8	CHAIR BALLINGER: This is Ron Ballinger
9	again. I'm still questioning whether 20 kilowatts per
10	foot is the right number, when you account for burn-up
11	dependent conductivity decrease.
12	So it is a nice round number, just my gut
13	feeling, Steve Schultz might be able to say something,
14	but my gut feeling is that that's too high.
15	MEMBER SCHULTZ: We can talk to the staff
16	about this, this afternoon and see about their
17	evaluation associated with it, but to pick the number,
18	it ought to consider type of cycle as well as other
19	features. Because low-power condition can happen at
20	any time in cycle.
21	CHAIR BALLINGER: Yes.
22	MEMBER SCHULTZ: There will be a burn-up
23	effect on the overall result. The basis for selecting
24	20 kilowatts per foot ought to be better known.
25	MEMBER MARCH-LEUBA: And being so high, my
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	22
1	intuition tells me that you are going to hit the DNBR
2	limit, way before you hit the LHGR limit. So it's
3	probably relevant, but if we are using it, we need to
4	know why.
5	MR. U. KIM: I'll continue. Next is,
6	uncontrolled CEA withdrawal at power.
7	The cause of occurrence and transient
8	phenomenon are similar with former DCD Subsection
9	15.4.1. One hundred and two percent of core power is
10	assumed as an initial power level.
11	To maximize the reactivity insertion rate,
12	the maximum CEA withdrawal rate and maximum
13	differential control CEA bank worth are assumed. And
14	the most limiting initial conditions are selected.
15	As a result of analysis, it is confirmed
16	that all event acceptance criteria were satisfied.
17	Next is, CEA assembly misoperation.
18	Dropped CEA or CEA subgroup, statically misaligned the
19	CEA and single CEA withdrawal are included in this
20	event.
21	Four-finger single CEA drop is the most
22	limiting case. Regarding to the required thermal
23	margin, among these cases.
24	A single CEA drop result from an
25	interruption in the electrical power to the CEDM
	NEAL R. GROSS

(202) 234-4433

	23
1	housing code or single CEA.
2	The dropped power begins to increase
3	because of the negative MTC feedback effect. And
4	eventually returning to the initial power level.
5	The hot pin radial peaking factor starts
6	to increase, because of the dropped rod and xenon
7	redistribution effect.
8	One hundred and two percent of core power
9	is assumed for analysis as the initial power level.
10	Maximum radial peak distortion is considered and the
11	most limiting initial conditions are selected.
12	As a result of the analysis, it is
13	confirmed that all event acceptance criteria were
14	satisfied.
15	MEMBER MARCH-LEUBA: Wait. Jose again.
16	Radial peak distortion, did I hear you say that you
17	consider xenon transients for radial? How do you
18	distort the radial power?
19	MR. U. KIM: How about Mr. Jeong?
20	MR. JEONG: This is Jaehoon Jeong. We
21	also, not only consider the static distortion for both
22	of the xenon redistribution factor
23	MEMBER MARCH-LEUBA: So you
24	MR. JEONG: analysis.
25	MEMBER MARCH-LEUBA: assume a xenon
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	24
1	imbalance?
2	MR. JEONG: Right.
3	MEMBER MARCH-LEUBA: Okay. And that's,
4	again, the most conservative limiting initial
5	conditions comes along. I mean, you just put one that
6	is bounded by experience?
7	Because in principle, the xenon imbalance
8	is not bounded physically. You will have something
9	like this or like this. So it's based on operating
10	experience or what?
11	Or maybe you have a tech spec limit on
12	asymmetry?
13	MR. JEONG: This is Jaehoon Jeong KEPO.
14	Actually, the Non-LOCA analysis field casts the most
15	limiting transients from nuclear degeneration. And we
16	believe that the nuclear degeneration rate determines
17	the most limiting case.
18	MEMBER MARCH-LEUBA: Is there a technical
19	specification limit on power asymmetry?
20	MR. JEONG: Actually, I am not sure. I'd
21	be happy to check that.
22	MEMBER MARCH-LEUBA: Can you come back on
23	that?
24	MR. JEONG: Okay.
25	MEMBER MARCH-LEUBA: And I'm sure, since
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS

(202) 234-4433

	25
1	you're going to go ask questions, the peak linear
2	generation rate, the LHGR, how is that defined?
3	Is that the heat flux coming out of the
4	clad, is the power generation inside the pellet, it's
5	instantaneous or integrated?
6	You understand the question?
7	MR.JEONG: I understand. This is Jaehoon
8	Jeong. We calculate the linear heat generation rate
9	based on the actually LHGR limit times nuclear power.
10	MEMBER MARCH-LEUBA: Nuclear power?
11	MR. JEONG: Yes. We use nuclear power.
12	MEMBER MARCH-LEUBA: So you're assuming
13	the instantaneous nuclear power?
14	MR. JEONG: Yes.
15	MEMBER MARCH-LEUBA: Not the integrated
16	heat flux?
17	MR. JEONG: Not integrated peak power
18	being calculated.
19	MEMBER MARCH-LEUBA: Integrated peak
20	power. So that's very conservative for a fast
21	transient.
22	MR. JEONG: Right.
23	MEMBER MARCH-LEUBA: And this was Jose.
24	MR. U. KIM: Okay. I am Ung Soo Kim again.
25	The next event is startup of an inactive RCP.
	NEAL R. GROSS

(202) 234-4433

	26
1	The startup of an inactive RCP can result
2	in increase or decrease in core average temperature,
3	depending on the primary and the secondary side
4	temperature condition. And the coolant temperature
5	change can result in an increase in core reactivity.
6	The startup on inactive RCP, during power
7	operation, is not applicable. Because power operation
8	with an inactive RCP is not allowed by the tech spec.
9	So this event is analyzed in Mode 3 through
10	6. And this event is analyzed with respect to potential
11	loss of minimum required shutdown margin, by using
12	isothermal temperature coefficient and maximum
13	possible heat-up or cooldown temperature.
14	As a result of analysis, it was confirmed
15	that a return to critical core condition does not occur.
16	MEMBER MARCH-LEUBA: For this transient,
17	this is Jose again. For this transient, do we worry
18	about a inhomogeneous boron concentrations?
19	Like you have been shutting down the
20	reactor and putting boron in the vessel, but now my
21	cold-leg has lower boron, and I start the pump and I
22	flush the boron out. So temporarily, you can get an
23	increase in reactivity.
24	Is that a possibly scenario? A
25	inhomogeneous water concentration in the vessel.
	NEAL R. GROSS

(202) 234-4433

	27
1	There's more water in the vessel than in the cold-leg.
2	MR. CHO: I am Sung Ju. We use the
3	isothermal temperature coefficient. And this value
4	also came from the, calculated by the nuclear design
5	guide.
6	MEMBER MARCH-LEUBA: Yes, but do you
7	understand the question?
8	MR. CHO: Yes, I know.
9	MEMBER MARCH-LEUBA: You been pumping
10	boron
11	MR. CHO: Yes, yes. Yes, you know, you
12	asking about the inhomogeneous boron concentration.
13	MEMBER MARCH-LEUBA: Yes.
14	MR. CHO: If the boron concentration is
15	lower than the ICS and the boron, then there's possible
16	dilution a little bit in the core.
17	MEMBER MARCH-LEUBA: Yes.
18	MR. CHO: So it might be, add more positive
19	reactant in the core. That is your question, right?
20	MEMBER MARCH-LEUBA: Correct. Yes, that
21	is the question.
22	MR.CHO: But where it didn't need to be,
23	check the nuclear design guide to consider about the
24	case.
25	MEMBER MARCH-LEUBA: Yes. Maybe if the
	NEAL R. GROSS

(202) 234-4433

	28
1	event I'm postulating is not possible, because when you
2	have an inhomogeneous water concentration, because
3	you're pumping a lot of water into the vessel, is right
4	after a shutdown where the pumps were running.
5	MR. CHO: Right. Yes.
6	MEMBER MARCH-LEUBA: And you only, if when
7	your pumps are off you already have inhomogeneous the
8	whole cycle, then it's not possible. But I would like
9	for you to verify that that's the case.
10	MR. CHO: Yes.
11	MR.U.KIM: Okay, it's Kim again. Next is
12	inadvertent decrease in boron concentration in the
13	reactor coolant system.
14	The inadvertent decrease in reactor
15	coolant boron concentration, may be caused by
16	malfunction of the CVCS or improper operator action.
17	This results in a positive reactivity addition to the
18	core.
19	The maximum dilution flow rate, minimum RCS
20	mixing volume, minimum shutdown margin, maximum
21	critical boron concentration and minimum inverse boron
22	worth are assumed for the conservative analysis.
23	As a result of the analysis, it was
24	confirmed that sufficient time, more than 30 minutes,
25	is a variable for the operator to take a corrective
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	29
1	action, prior to loss of minimum required shutdown
2	margin.
3	MEMBER MARCH-LEUBA: This is Jose again.
4	Sorry to ask so many questions, I'm just curious. I'm
5	not complaining, it's for my education.
6	This is a shutdown type of event, right?
7	You're not on power?
8	The addition of boron at power or at
9	zero-power?
10	MR. CHO: This is Sung Ju. We analyzed
11	from Mode 1 through Mode 6.
12	MEMBER MARCH-LEUBA: Oh, so you analyzed
13	both of them?
14	MR. CHO: Yes.
15	MEMBER MARCH-LEUBA: Okay. So while
16	you're at power, the operator will have an immediate
17	feedback because peak power will start to rate.
18	My question was going to be, if you're at
19	zero-power, and there is no feedback, what additional
20	clue the operator has in the control room, to take action
21	in 30 minutes?
22	MR. CHO: Operator can recognize this
23	event by the boron dilution system.
24	MEMBER MARCH-LEUBA: So it's accurate and
25	fast enough to do that? So there will be an alarm on
	NEAL R. GROSS

(202) 234-4433

	30
1	low water?
2	MR.CHO: Yes. We setup, it is separate by
3	analyzing this event to allow the alarm too enough
4	early.
5	MEMBER MARCH-LEUBA: And do you have an
6	idea, you probably don't know, at what time the alarm
7	comes? Does it come in two minutes, five minutes or in
8	three hours? I mean
9	MR. CHO: Oh, we, based on the operation
10	detection time and total dilution time, we can find the
11	minimum, how can I explain.
12	MEMBER MARCH-LEUBA: Let me rephrase that
13	question. Is this 30 minutes in operation after the
14	alarm occurs?
15	MR. CHO: Oh, right.
16	MEMBER MARCH-LEUBA: Okay.
17	MR. CHO: That's right. That's right,
18	around 30 minute.
19	MEMBER MARCH-LEUBA: Okay, thank you.
20	MR. U. KIM: Okay. Ung Soo Kim again. I
21	will continue. Inadvertent loading and operation of a
22	fuel assembly in an improper position.
23	The inadvertent loading and operation of a
24	fuel assembly in an improper position event is initiated
25	by the interchanging two fuel assembly, in a core.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	31
1	Depending on the enrichment difference between
2	interchanged fuel assemblies, the core power
3	distribution may be effected, either slightly or
4	enough, so that core performance would be degraded.
5	For analysis, spectrum of misloading is
6	considered. The ROCS code is used to calculate both
7	nominal expected radial power distribution, and the
8	radial power distribution resulting from misloading.
9	As a result of the analysis, peaking factor
10	from this event would not increase more than that
11	assumed in the CEA drop event. So the DNBR value for
12	this event is greater than the DNBR limit.
13	MEMBER STETKAR: This is, let me, this is
14	John Stetkar. Just for clarification. I'm trying to
15	do things real-time here.
16	You mentioned a boron dilution alarm.
17	Since this is a public meeting, I'd like some clarity
18	on what is the boron dilution monitoring system, since
19	it has an alarm.
20	MR. CHO: I'm Sung Ju. We have two
21	independent boron dilution alarm systems. A system
22	adapted for the alarm.
23	MEMBER STETKAR: What are those
24	independent boron dilution alarm systems?
25	In particular, I'm reading your technical
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	32
1	specifications, 3.3.14 under boron dilution alarms, and
2	it takes credit for startup neutron flux. I don't see
3	independent boron dilution alarm systems here. Is that
4	your boron dilution alarm?
5	MR. CHO: Yes.
6	MEMBER STETKAR: Okay. So it's the two
7	start up
8	MR. CHO: Systems.
9	MEMBER STETKAR: flux channels.
10	MEMBER MARCH-LEUBA: Okay, so it's a
11	MEMBER STETKAR: You get a high neutron,
12	you know, you have a startup
13	MEMBER MARCH-LEUBA: Okay. So this is a
14	neutronic
15	MEMBER STETKAR: It's a neutronic.
16	That's what I wanted to clarify that there is something
17	that it's real-time monitoring
18	MEMBER MARCH-LEUBA: Boron
19	MEMBER STETKAR: boron concentration.
20	MEMBER MARCH-LEUBA: I am not
21	MEMBER STETKAR: There are
22	MEMBER MARCH-LEUBA: PWR guy.
23	MEMBER STETKAR: There are other designs,
24	that I have seen, that have different methods for
25	detecting boron dilution. And I don't want to talk
	NEAL R. GROSS

(202) 234-4433

	33
1	about those because they're different designs.
2	As best as I can tell, this design is a
3	rather standard reliance on startup flux. Unless I'm
4	missing something. If I'm missing something, please
5	clarify it.
6	MR.OH: That's correct. That the startup
7	
8	MEMBER STETKAR: Andy, identify yourself,
9	just for the record.
10	MR. OH: Yes. This is Andy Oh, KNHP
11	Washington Office. And I think, Member Stetkar, your
12	understanding is correct.
13	MEMBER STETKAR: Okay.
14	MR. OH: That startup power, to have two
15	independent channels
16	MEMBER STETKAR: Right.
17	MR. OH: that generated boron dilution
18	alarm.
19	MEMBER STETKAR: That's fairly standard
20	for a lot of plant designs. I just wanted clarity on
21	the record so that we understood how the operators would
22	detect that condition.
23	MEMBER MARCH-LEUBA: Jose here. When you
24	are at power then, what is the alarm based on, just
25	high-power?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	34
1	MR. CHO: At power condition, yes.
2	Definitely there is some many other, our system can be
3	detected. One is high
4	MEMBER MARCH-LEUBA: And this is slow
5	enough that the operator will see it even before the
6	alarm happens. So I'm not really concerned about that
7	power, it's more the zero-power condition. Thank you.
8	MR. U. KIM: I'll continue. This is Kim
9	again. Spectrum of CEA assembly ejection.
10	A CEA ejection event is postulated to occur
11	as a result of a mechanical failure of the CEDM housing
12	or its associated nozzle. The CEA ejection adds
13	positive reactivity to the core, which results in a
14	rapid power increase for a short period of time.
15	This power excursion is terminated by the
16	combinations of delayed neutron and Doppler feedback
17	effect, and finally by the reactor trip.
18	For the conservative analysis, maximum
19	ejected rod worth, minimum effective delayed neutron
20	fraction and minimum Doppler coefficient, are assumed
21	for this analysis. NRC approved code STRIKIN-II, CETOP
22	and CESEC-III codes are used for this accident analysis.
23	As a result of the analysis, it is confirmed
24	that all event acceptance criteria were satisfied.
25	Now I'm going to talk about
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	35
1	MEMBER SCHULTZ: Excuse me, Steve Schultz.
2	Before we leave the control element assembly ejection,
3	this is probably the best place, or one place, to bring
4	up thermal conductivity degradation. Because there
5	has been an open item associated with that, related to
6	this event. But that topic comes up many times in
7	discussion.
8	My question, I know that you've been
9	working to address that here and you've provided some
10	results to demonstrate the change in margin to limits,
11	with taking into account thermal conductivity
12	degradation, but I have a larger question.
13	And that is, I notice you're identifying,
14	non-appropriately, that the codes that are being used
15	here are NRC approved codes. In the transient
16	evaluation.
17	Thermal conductivity degradation applies
18	to both the steady state codes, of course, and also
19	transient codes. And this has been an issue that's been
20	in the U.S. and international realm for quite some time.
21	Many years we've been talking about thermal
22	conductivity degradation, and it seems to me that as we
23	look to develop this new reactor design, an issue that
24	is this pronounced, in terms of affecting the fuel
25	performance over the course of its burn-up range, ought
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

36 to be addressed thoroughly. Not just in steady state evaluations by the fuel performance group, but by those that use thermal conductivity, the codes that use thermal conductivity, in their transient evaluations as well. 5 Now, what happened in the U.S. industry and 6 other industry, nuclear industry, is that considerations were given to thermal conductivity 9 degradation. And different analyses that had been done are considered, to see if there was an effect, how much the effect was, how much a reduction in margin there would be if the evaluation were done with this new tool,

this new calculation of thermal conductivity.

And all that was taken into account by the They had approved codes, they didn't modify those NRC. codes, they didn't re-approve the codes.

17 But it just seems to me that as we move 18 forward with a new application, for a reactor that's 19 going to be in operation for 60 years or 70 years hence, 20 an issue that's this distinct, and accepted as a burn-up 21 dependence and thermal conductivity that wasn't 22 understood 20 years ago, is understood, it ought to 23 really be addressed.

24 Not just in the steady state thermal 25 but also integrating that into performance, the

> **NEAL R. GROSS** COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

7

8

10

11

12

13

14

15

16

	37
1	transient evaluation. So we know that the, what the
2	real margin to limits are. Not just for one event, for
3	this particular one.
4	But how does it just assure that it is
5	incorporated in the effects associated with small break
6	LOCA, large break LOCA, other transient analyses.
7	Do you have, can you give me an appreciation
8	for kind of the modeling philosophy, both steady state
9	and transient, where you, are you embracing thermal
10	conductivity degradation or are you just kind of
11	addressing it the way it was done in the last five or
12	six years and calling it quits?
13	MR. JEONG: I am Jaehoon Jeong. NRC and
14	the KHNP have had a lot of discussions for TCD. And
15	actually, our trip performance code does not monitor the
16	TCD effects.
17	So we had discussions with the steps and we
18	almost conclude that we're going to add some penalties
19	considered TCD. So that penalty will be applied to all
20	safety emergencies, effected by TCD. Not only LOCA
21	emergencies, but (unintelligible).
22	We are (unintelligible) with TCD
23	(unintelligible) and we will revise our technical
24	reports and topical reports and TCDs.
25	MEMBER SCHULTZ: Do you have a longer-term
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	38
1	plan to address it in fuel performance and transient
2	analysis modeling, within the codes that you are in the
3	process of developing for analysis?
4	It bothers me that this, for a while it was
5	reasonable to say, well, we'll apply a penalty because
6	we didn't get it right.
7	MR. JEONG: Right.
8	MEMBER SCHULTZ: But we've been doing this
9	for the last ten years almost, and it's time to, when
10	you're coming up with a new design, new application, the
11	codes ought to be representative of our current state
12	of knowledge. And just to say, well, we'll apply
13	penalties that that will be it, I think it's
14	insufficient.
15	MR. JEONG: Jaehoon Jeong again. Yes, I
16	agree with you. And actually, we have a code, which TCD
17	model is applied. We have.
18	But when we submit this TCD, that code has
19	not been finished. But now we have finished. So next
20	time, maybe, we have a chance to revise our topical
21	report that we will now apply the code.
22	MEMBER SCHULTZ: Thank you for the
23	additional information.
24	CHAIR BALLINGER: Okay, this is Ron
25	Ballinger. Let me be clear on this.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	39
1	We're operating with DCD Revision 0, and
2	are you saying that your models now incorporate burn-up
3	dependent conductivity, and then in the future
4	modification of the DCD revision, that will be included?
5	MR. JEONG: I am Jaehoon Jeong. No. I
6	think that is a new code that currently we are applying
7	to Page 3B. That is (unintelligible) code approved by
8	NRC.
9	But we thought that it will take too long
10	time to revise, I mean to incorporate the TCD effect,
11	on that code. Instead of that, we developed a new code.
12	But in this, and currently, at this time,
13	we don't have any plan to use the new code, because it
14	will take too long time to license the new code.
15	Because the stats never been seen in that code.
16	MEMBER REMPE: But I think, I've heard
17	CHAIR BALLINGER: You have to tell us your
18	name.
19	MEMBER REMPE: This is Joy Rempe. But I
20	think what I heard you say, is that once you and the staff
21	agree on what the penalty will be, you're going to redo
22	all of the analyses, so we'll see all of the effects.
23	And that was the question I had too, because
24	I'm having trouble tracking all the different places
25	that we've been told, well, this will be effected by TCD.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	40
1	So we'll have to be looking at new plots to
2	compare the results sometime in the future here, right?
3	MEMBER STETKAR: Well, this is John
4	Stetkar, to be clear, sometime in the future should be
5	before the advisory committee on reactor safe guards,
6	(unintelligible) find a letter on the certified design,
7	for this APR1400. Not a decade from now.
8	MEMBER REMPE: So this is Joy again. And
9	so yes. But that would be, we're going through, I
10	always forget my tiers, but whatever tier we're going
11	through now and reviewing it, they're interim letters.
12	And so when we come back to review and write the final
13	letter, we're going to have to go through and look at
14	a lot of different plots. And that's what I was curious
15	about too.
16	CHAIR BALLINGER: Yes, this is Ron
17	Ballinger again. So on the record we're clear, this
18	will come up at the staff, I'm sure, that when we write
19	a final letter on the DCD, we will have had an
20	opportunity to review the revised calculations that are
21	impacted by burn-up dependent conductivity.
22	MR. SISK: This is Rob Sisk, let me kind of
23	maybe be clear. TCD penalty is being incorporated into
24	
25	CHAIR BALLINGER: Yes.
	NEAL R. GROSS

(202) 234-4433

	41
1	MR. SISK: the design.
2	CHAIR BALLINGER: Okay.
3	MR. SISK: It is an open item. We're
4	working with the staff to resolve the implementation of
5	the TCD penalty and to all the various, I don't want to
6	just say safety analyses, but throughout Chapter 4,
7	Chapter 6. Many different places where TCD has
8	potential ramifications.
9	So that is being completed, as we speak.
10	And it will be completed as a part of the Phase 5, as
11	we get to SER with no open items, those analyses will
12	be completed.
13	That is not a new topical report or a new
14	technical report. I guess a new DCD revision that will
15	be. It is a completion of the analyses to support the
16	DCD that's currently under review.
17	MEMBER REMPE: This is Joy again, and
18	although I'm hearing yes, and seeing shaking heads on
19	one side of the room saying, yes, you'll see updated
20	curves, I see Member Stetkar saying, no, we won't see
21	those plots. But what's the answer here, Member
22	Stetkar, will we see
23	MEMBER STETKAR: I don't know. This is
24	John Stetkar. I don't know what we're going to see. My
25	sense is that we're going to see some sort of ad hoc
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	42
1	penalty.
2	MEMBER REMPE: But I'd like to see the
3	calculations with that ad hoc penalty incorporated, for
4	places of interest.
5	MEMBER STETKAR: I don't know what we're
6	going to see.
7	MEMBER REMPE: But we can request that in
8	our letter? Okay, thank you.
9	MR. U. KIM: Okay.
10	MEMBER POWERS: This is Dana Powers. You
11	indicate that, for this analysis, the doses at the site
12	boundary are below the allowable criteria. Those are
13	the 10 CFR Part 100 criteria?
14	MR. U. KIM: How about 10 CFR?
15	MR. OH: This is Andy Oh, KNHP Washington
16	Office. Member Dana Power, could you ask it again?
17	MEMBER POWERS: Well, I am asking, he says
18	that the doses at the site boundary are below their
19	allowable criteria limits. I'm asking, or the first
20	question is, are those the 10 CFR Part 100 limits?
21	MR. OH: Part 100.
22	MEMBER POWERS: 0.5 gram at the site
23	boundary. For the first two hours of the event.
24	MR. LEE: My name is Dongsu Lee. In our
25	(unintelligible) analysis, as it relates to our value,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	43
1	is Victor 10 CFR 52.47, limitation. And it's SRP
2	15.0.3.
3	MEMBER POWERS: Forty-five gram at the
4	site boundary. Yes.
5	The question is, is that also, is it true
6	that the dose limits in the control room are below the
7	criteria?
8	MR. LEE: You're right. The TDC, I'm
9	Dongus Lee, (unintelligible) calculated the ability to,
10	based on the TDC 19. Yes.
11	MEMBER POWERS: Why at the site boundary,
12	why are the doses so low?
13	MR. LEE: Can you see show my presentation,
14	Page 80.
15	MR. OH: I think we have some special
16	session for discussing this item in a later part, can
17	you talk
18	MEMBER POWERS: That would be fine.
19	MR. OH: about it later?
20	MEMBER POWERS: If it's more convenient to
21	talk about it there. It's just that at this peak, fuel,
22	you're going to blow the fuel part in the affected
23	region.
24	And the question is, are they dosed as low
25	simply because a small amount of fuel is affected and
	NEAL R. GROSS

```
(202) 234-4433
```

	44
1	consequently your release is small or is it because of
2	natural and engineered processes that the release is
3	small so your dose at the site boundary small?
4	MR. LEE: Yes. In our presentation, it's
5	Page 71. Can you show that, our results?
6	And our CEA calculation at that time is that
7	we consider, we did not take any credit of the depletion
8	in the spray (unintelligible) that our result is shown
9	in the table.
10	MEMBER SCHULTZ: This is Steve Schultz.
11	Do you have any intermediate results regarding fuel
12	failure or the condition of the fuel that was
13	demonstrated by the limiting event?
14	MR. LEE: You mean the pure handling
15	accident?
16	MEMBER SCHULTZ: No, no, this is for the
17	control
18	MR. LEE: Oh
19	(Simultaneously speaking)
20	MR. LEE: CEA ejection we used at the ten
21	percent DNBR experience.
22	MEMBER MARCH-LEUBA: Can you repeat, this
23	is Jose, can you repeat?
24	MR. LEE: Ten percent. Ten percent of
25	MEMBER MARCH-LEUBA: Ten percent of the
	NEAL R. GROSS

(202) 234-4433

	45
1	fuel failed?
2	MR. LEE: Yes, failed.
3	MEMBER MARCH-LEUBA: Even though you had
4	use over criteria, less than 230 no fuel melt, but you
5	still assume that ten percent of the fuel failed anyway?
6	I mean, I think that the calculation says,
7	I will survive the rejection without fuel failures.
8	But then you assume ten percent failure just in case?
9	MR. LEE: Yes, right.
10	MEMBER MARCH-LEUBA: That's conservative.
11	MR. LEE: Yes.
12	MEMBER MARCH-LEUBA: While we're on that,
13	can we go back to the original slide? Since I have the
14	microphone and I don't have to identify myself.
15	I see here that the criteria has changed for
16	this event. Now we say no fuel melting instead of 25
17	kilowatts per foot. Is that because at 20 kilowatts per
18	foot was violated and you went to a more, less
19	restrictive criteria? Or is it because somebody else
20	did the calculation?
21	Do you understand the question? Okay, for
22	all of our events, AOOs, we assume we want to keep 20
23	kilowatts per foot of peak power.
24	Here we don't judge this event by that
25	criteria, we go a less restrictive criteria, which is
	NEAL R. GROSS

(202) 234-4433

	46
1	not fuel melting. Is there a reason for it?
2	MR. JEONG: Actually, we calculated a
3	kilowatt, this is Jaehoon Jeong, sorry. When we
4	calculate the kilowatts per foot for the AOO, in the
5	case, we use the nuclear power. So we apply the same
6	methodology in CEA ejection.
7	And nuclear power definitely is a little
8	high. So in that case we cannot mitigate the 20
9	kilowatts per foot.
10	MEMBER MARCH-LEUBA: So it is larger than,
11	greater than 20 kilowatts per foot?
12	MR. JEONG: Definitely.
13	MEMBER MARCH-LEUBA: So you went to this
14	less restrictive, more fuel dependent limit instead of
15	the
16	MR. JEONG: Right.
17	MR. U. KIM: Okay. I am Ung Soo Kim again.
18	I will continue. Now I am going to talk about DCD
19	Section 15.5, increase in reactor coolant inventory.
20	As you see, there are a total two AOOs in
21	this section. Between these two AOOs, the CVCS
22	malfunction, such as pressurizer level control system
23	malfunction, is most limiting and quantitatively
24	analyzed.
25	Chemical and volume control system
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	47
1	malfunction. The PLCS malfunction maximizes charging
2	flow and minimize the letdown flow, so the RCS inventory
3	is increased. And this increase in the RCS pressure
4	until the reactor trip occurs.
5	By the way, because this pressure transient
6	is due to RCS coolant inventory increase, not to thermal
7	expansion, there is no significant power and coolant
8	temperature transient, before reactor trip. The
9	analysis result shows that the system pressure remains
10	below acceptance criteria.
11	From now, I am going to talk about the
12	Section 15.6, decrease in reactor coolant inventory.
13	As non-LOCA event, there are one AOOs and the one
14	postulated accident in this section.
15	Pressure relief valve is handled, oh I'm
16	sorry, the evaluation of an inadvertent opening of a
17	pressurizer pressure relief valve is handled in
18	Subsection 15.6.5, presenting small break LOCA.
19	Letdown line break and steam generator tube
20	rupture are quantitatively analyzed in this section.
21	Failure of small lines carrying primary
22	coolant outside containment. The direct release of
23	reactor coolant may result from a break or a leak outside
24	the containment of a letdown line, instrument line or
25	a sampling line.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	48
1	And the double-ended break of the letdown
2	line outside the containment is selected for the
3	analysis in this section because it results in the
4	largest release among them. The reactor coolant
5	release also make RCS depressurization.
6	In analysis, it is conservatively assumed
7	that operator take action to terminate the primary
8	system fluid loss at 30 minutes after the event
9	initiation.
10	From the analysis result, it is confirmed
11	that the minimum DNBR remain above the fuel design limit
12	and radiological acceptance criteria are satisfied.
13	Next. Steam generator tube failure.
14	Steam generator tube rupture accident is penetration of
15	the barrier between the RCS and the secondary system.
16	This results in radiological release and RCS
17	depressurization.
18	So, radiological consequence and minimum
19	DNBR are majorly evaluated in this section.
20	For analysis, double-ended rupture over
21	steam generator U-tube, at full-power condition, is
22	assumed. And primary-to-secondary leakage and steam
23	generator release mass are used as input to dose
24	calculation.
25	Analysis results show that the minimum DNBR
	NEAL R. GROSS

(202) 234-4433

	49
1	remain above the fuel design limit and the radiological
2	acceptance criteria are satisfied.
3	From now, presentation for LOCA analysis go
4	on by Dr. Chon Woochong.
5	MEMBER POWERS: Can you come back? This
6	is Dana Powers again.
7	MR. U. KIM: Okay.
8	MEMBER POWERS: The release you get in this
9	is just contaminated coolant?
10	MR. U. KIM: Pardon?
11	MEMBER POWERS: The radiological release
12	you get here is just contaminated coolant?
13	MR. U. KIM: Just the fuel and iodine
14	concentration in the RCS.
15	MEMBER POWERS: Just what's in a coolant
16	that gets expelled?
17	MR. U. KIM: Hold on.
18	MEMBER POWERS: You're not damaging fuel
19	here with a U-tube rupture?
20	MR.SISK: This is Rob Sisk. Can you speak
21	up a little bit and restate your question?
22	MEMBER POWERS: What I'm asking is, what is
23	the radiological release here? I believe it just to be
24	contaminated coolant.
25	MR. U. KIM: Yes, contaminated coolant.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

50 MEMBER POWERS: What is the assumed 1 2 coolant concentration of radionuclides? 3 MR. LEE: My name is Dongsu Lee. When we 4 calculated the consequence on the SGTR, at the time we considered an iodine spike effect based on 5 the 6 (unintelligible) condition. 7 MEMBER POWERS: And what did you assume for 8 that spike? 9 MR. LEE: The PIS and the GIS. We 10 considered both. The results shown in the table, 11 previously I showed. 12 For instance, iodine spike and events 13 generated a spike, are constant. 14 MEMBER POWERS: I'm still unclear what you 15 assume for the spike. I assume you assume 500, but I 16 17 MR. LEE: Yes. 18 MEMBER POWERS: -- don't know that that's 19 the case. 20 MEMBER SKILLMAN: Wouldn't your 21 assumption be your maximum, I'm Dick Skillman, wouldn't 22 your assumption be your maximum dose equivalent iodine 23 permitted by your tech specs? 24 MR. LEE: Can I show the presentation? 25 MR. U. KIM: Which page?

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	51
1	MR. LEE: Presentation, Page Number 68.
2	66, sorry. 66. Yes, the source term of the primary
3	coolant and lubricants in iodines are assumed to exist
4	with a tech spec LCO.
5	MEMBER SKILLMAN: Yes.
6	MR. LEE: Their number.
7	MEMBER SKILLMAN: That's the bottom. I'd
8	marry your dose equivalents iodines with .1 microcuries
9	per cc. That's your tech spec limit, and that would be
10	entrance position for this accident.
11	MR. LEE: Right.
12	MEMBER POWERS: Thank you.
13	MEMBER SCHULTZ: Steven Schultz. What
14	Member Powers is asking is with regard to the iodine
15	spike concentration and what is it. Is this the
16	pre-accident iodine
17	MR. LEE: Yes, that the
18	MEMBER SCHULTZ: and the
19	event-generated iodine spike value.
20	MR. LEE: For the PIS, that we modified at
21	the 60 times for the (unintelligible) and GIS case,
22	event-generated iodine case at the time
23	(unintelligible) Based on the appearance rate as we
24	(unintelligible) three times for that. Yes,
25	(unintelligible).
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	52
1	MEMBER SCHULTZ: Is it 335 is
2	MR. LEE: I will check, again. I'm not
3	sure that number, it really confused me.
4	MEMBER SCHULTZ: Thank you. I appreciate
5	you checking.
6	MR.U.KIM: Okay, Ung Soo Kim again. From
7	now, the presentation for LOCA will be conducted by Dr.
8	Woochong Chon.
9	MR. CHON: Good morning. My name is
10	Woochong Chon. You may remember green streetlight.
11	Last time I explained the green streetlight is good
12	signal for our projects.
13	In Korea, the different time difference
14	between Korea and United State is 13 hours. So right
15	now Korea is 10:41 p.m.
16	Yes, that kind of a big-time difference can
17	make a more good progress in this project. During the
18	day time, in Korea, my colleagues are working hard in
19	Korea, and during the Korea nighttime, some of the
20	engineers can work in the United States. So we are
21	using 24 hours a day.
22	(Laughter)
23	MR. CHON: We can make big progress. And
24	I hope this meeting is also, here, a part of good
25	progress today.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	53
1	MEMBER POWERS: Well, where does the
2	Korean barbecue fit into this?
3	MR. CHON: The best Korean barbecue name is
4	(unintelligible) I recommend that one.
5	Okay, I will start about the Subsection
6	15.6.5, LOCA resulting from spectrum of postulated
7	piping breaks. It's kind of a real subsection in
8	Chapter 15, but it includes large break LOCA, small
9	break LOCA and post LOCA long-term cooling part.
10	And after that, the post LOCA long-term
11	cooling downstream effect will be presented by another
12	time.
13	In large break LOCA, the topical report
14	realistic evaluation (unintelligible) for large break
15	LOCA of APR1400, is under the review.
16	The CAREM, code accuracy based realistic
17	evaluation model, is used for large break LOCA analysis.
18	The revision of topical report in DCD
19	Section 15.6.5, large break LOCA, are going to reflect
20	the thermal conductivity degradation.
21	And large break LOCA is applying BE
22	methodology, and small break LOCA is applying Appendix
23	K. And small break LOCA and long-term cooling analysis
24	results will be compound, is compound, the satisfaction
25	of acceptance criteria.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	54
1	Okay, next slide explains about the
2	acceptance criteria for ECCS for light water nuclear
3	power reactor. It is 10 CFR 50.46.
4	This section refers Reg Guide 1.157, which
5	is the BE calculation of ECCS performance. And also,
6	Reg Guide 1.206 and NUREG-0800 and 1230. And finally,
7	the NUREG-5249, which is CSAU, are applied to LOCA
8	analysis.
9	Okay, this slide explains about brief
10	description of large break LOCA. APR1400 safety
11	injection system consists of four mechanically
12	independent trains.
13	With four direct vessel injections, as
14	shown in this figure. The injection diagonal, four DVI
15	nozzle locations.
16	And one safety injection pump and one
17	safety injection tank are installed in each train. So
18	we have four SI tank and four SI pumps.
19	Both SIP and SIT flows are injected into the
20	upper annulus through the DVI nozzle, as shown in this
21	figure. DVI nozzle location is indicated in green.
22	MEMBER MARCH-LEUBA: While you have the
23	figure, this is Jose. While you have the figure, later
24	on the loop seal clearing, we're going to be concerned
25	about bypass flows between the upper plenum and the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	55
1	downcomer. Can you point in there where they are?
2	There is a seal, metal seal, on the top
3	upper plenum that we were told, that is assumed,
4	(unintelligible) with three percent bypass flow, but is
5	expected to be less than one. Can you point where it
6	is in the figure, right there?
7	MR. CHON: It's not clear in this figure,
8	but there is some gap between the top upper plenum,
9	downcomer region.
10	MEMBER MARCH-LEUBA: Okay.
11	MR. CHON: There is a bypass region from
12	the downcomer to the upper head.
13	MEMBER MARCH-LEUBA: And you're expected
14	to be doing normal operation to be one percent leak flow?
15	Or what do you expect the leak flow to be?
16	We were told in a different presentation
17	that it was assumed to be three percent, but very
18	conservative.
19	MR. CHON: Right. Yes. That's what I
20	would assume. But in design spec, can you check
21	MR. JEONG: Okay, I am Jaehoon Jeong. The
22	upper head bypass flow rate is about .5 percent.
23	MEMBER MARCH-LEUBA: 0.5 percent? Still
24	pretty large.
25	MR. JEONG: Yes, a little bit large.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	56
1	MEMBER MARCH-LEUBA: Yes. And do we have
2	any experimental relevance for that is that based on
3	tolerances for manufacturing?
4	Because, this becomes critical when you
5	assume the loop seal clears, or does not clear.
6	MR. JEONG: Actually, as I remember, we
7	don't have experimental data for the bypass. But we
8	assume the total bypass be about three percent.
9	MR. CHON: Right.
10	MR. JEONG: Including operator bypass.
11	MEMBER MARCH-LEUBA: Oh, so they all the
12	bypass flow?
13	MR. JEONG: All bypass flow rate.
14	MEMBER MARCH-LEUBA: What about
15	MR. JEONG: But the upper bypass will be
16	about .5 percent.
17	MEMBER MARCH-LEUBA: Yes. And what are
18	the other bypass?
19	MR. JEONG: I'm sorry, this is Jaehoon
20	Jeong. The other bypass is, I mean core bypass flow
21	rate will be three percent.
22	MEMBER MARCH-LEUBA: Yes.
23	MR. JEONG: This one is (unintelligible).
24	MEMBER MARCH-LEUBA: Oh, you're talking
25	core bypass, correct?
	NEAL R. GROSS

```
(202) 234-4433
```

	57
1	MR. JEONG: Yes.
2	MEMBER MARCH-LEUBA: That is not upper
3	plenum to downcomer?
4	MR. JEONG: No.
5	MEMBER MARCH-LEUBA: This is bypass in the
6	core. Okay.
7	MR. JEONG: Right.
8	MEMBER MARCH-LEUBA: Thank you.
9	MR. CHON: Okay, this is Woochong Chon
10	again. I will continue the next slide.
11	I think this figure is already shown in the
12	topical report for fluidic device. The Rev 10 side
13	figure shows the fluidic device installed inside of
14	safety injection tank. SI tank injection fluid is one
15	of the important factor in large break LOCA analysis.
16	Fluidic device makes a high flow rate and
17	low flow rate. Two different flow rates. The duties
18	of fluidic device in safety injection tank, are
19	described in separate topical report of fluidic device
20	design, which is approved by NRC couple months ago.
21	The right-hand side graph shows the
22	schematic SIT mass flow rate, applied to large break
23	LOCA analysis. With high flow and low flow region.
24	And next slide describes about the large
25	break LOCA cold, and methodology. RELAP5/Mod 3.3K
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	58
1	calculate the thermal hydraulics part and
2	CONTEMPT4/Mod5, calculate the containment back
3	pressure calculation.
4	Those two-code exchange mass and energy and
5	pressure, as a boundary conditions.
6	MEMBER REMPE: This is Joy Rempe. And I
7	had a question that you don't have to answer now, but
8	this setup with CONTEMPT and RELAP is how I assume you're
9	taking credit for CAP, right? I mean, you use that back
10	pressure to show that things are going to be okay.
11	When, and maybe I missed it, but when I was
12	looking through the material for this, I never saw just
13	a solid statement saying, we have to take credit for how
14	many PSIG, for what duration of time.
15	And could I have some numbers to understand
16	how much CAP credit is taken, at some point, in our
17	interactions? If not today, later.
18	And maybe I missed it, maybe it is somewhere
19	in Chapter 15, but I didn't see it anywhere explicitly
20	stated.
21	MR. CHON: CAP?
22	MEMBER REMPE: Containment accident
23	pressure. How much are you relying on the pressure in
24	the containment? Am I saying this clear enough, what
25	I am trying to ask for?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	59
1	(Off microphone comment)
2	MEMBER REMPE: Okay, thank you. I just
3	couldn't get a feel from what I was reading.
4	MR. CHON: Okay.
5	MEMBER REMPE: Thank you.
6	MR. CHON: Okay. The large break, this is
7	Woochong Chon again. And the large break LOCA
8	methodology, CAREM, is developed based on CSAU, which
9	is NUREG-5249.
10	The uncertainties quantified by
11	non-parametric statistics and 181 sample,
12	(unintelligible) sampling calculations, are performed.
13	CAREM introduced experimental data
14	covering process for confirmation of uncertainty
15	parameters and their ranges and distributions.
16	Okay, this slide shows large break LOCA
17	scenario specifications for APR1400. The X axis is
18	time after break, and Y axis is water level. The solid
19	black line is core water level, and red dot line is
20	downcomer water level.
21	So, the CAREM divided by four stages of
22	scenario. First one is blowdown and refill, early
23	report and rate report.
24	The first part does decrease over pressure,
25	is ended at this time. Which is, blowdown is ending.
	NEAL R. GROSS

(202) 234-4433

	60
1	And the refill is start until water level
2	is reached, the core water level is reached, to the
3	bottom of active core, at this region.
4	And then only the flood region is started,
5	until SI injection is terminated. After that, rate
6	report period will be continued.
7	MEMBER MARCH-LEUBA: This is Jose. Just a
8	question. Is the black line, the core level, is that
9	the collapse water level or is it two-phase water level?
10	Is there any voids?
11	MR. CHON: This collects the water level.
12	MEMBER MARCH-LEUBA: Okay. So that and
13	why is the downcomer level so much higher than the core
14	level? Why doesn't the flow drop? I mean, this is
15	natural circulation with very little flow, if any.
16	MR. CHON: This difference?
17	MEMBER MARCH-LEUBA: Yes. Why the
18	difference in the elevation?
19	MR. CHON: The core pressure is much higher
20	than downcomer part.
21	MEMBER MARCH-LEUBA: So that's because the
22	loop seals are closed?
23	MEMBER CORRADINI: No, this is, if the loop
24	seals are clear, the whole thing blows down.
25	MEMBER MARCH-LEUBA: Okay, so why is the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	61
1	downcomer elevation six meters higher than the core?
2	MR. CHON: Okay.
3	MEMBER MARCH-LEUBA: Mike, you need to
4	identify yourself.
5	MEMBER CORRADINI: I'm sorry, Corradini.
6	There's no water left in the system after 20 seconds.
7	MR. CHON: I'm talking about the 150
8	seconds.
9	MR. JEONG: I am Jaehoon Jeong. During
10	that period the core is still, has not been clenched
11	(phonetic) at that time. And that means that a lot of
12	boiling occurs during the cool. So the core pressure
13	is a bit higher compared to the downcomer pressure,
14	okay. The high core pressure prevents the reflooding.
15	MEMBER MARCH-LEUBA: Okay. I'll, maybe
16	I'll ask the staff in their complementaries if they will
17	use these results.
18	MEMBER CORRADINI: So can I, this is
19	Corradini, may I just make sure we're clear? So in the
20	Time Region 3 the difference in elevation is about six
21	meters, is that correct, between the downcomer and the
22	core?
23	MR. CHON: Yes, it is.
24	MEMBER CORRADINI: So that's about .4
25	bars. So that's not a very large amount of pressure.
	NEAL R. GROSS

(202) 234-4433

	62
1	And if I have any sort of boiling I essentially will,
2	the flow of the SIPs go out the break preferentially then
3	going up through the core.
4	So I'm basically leaking fluid as soon as
5	I fill the downcomer. And so then the rest of it is just
6	driven by essentially what it can flow through to, to
7	make up for the boiling process. So I assume that .4
8	bars is the pressure drop going through the core just
9	because of boiling.
10	MR. CHON: If you see this figure the
11	active core height is 3.81 meters. So that level is
12	around here. So core is not covered. So still a lot
13	of boiling occurred in the active core.
14	It create higher pressure. So that core
15	levels differences came from the boiling from the active
16	core.
17	MEMBER MARCH-LEUBA: Mike, this is Jose.
18	Maybe you can help me here. But if the water level in
19	the core is at three meters meaning there is no mass flow
20	rate going out of the core, there is very little mass
21	flow rate coming into the core it's just only sufficient
22	to compensate for what they were boiling off.
23	And I don't see how you can have any
24	pressures up there caused by friction.
25	MEMBER CORRADINI: Well I don't think it's
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	63
1	the pressure drop so much as that you, your only place
2	for the steam to go is to go through the generators and
3	then out the break. So you've got a delta p, of about
4	.4 bars.
5	MEMBER MARCH-LEUBA: What I think is
6	happening here is that the pressure in the upper plenum
7	is increasing, as the downcomer. And that happens when
8	you have the loop seals closed.
9	But maybe the pressure loop is not the cause
10	is the steam that caused the hot leg, okay. I'll ask
11	the staff. Maybe they have some better, maybe they have
12	looked at this.
13	MEMBER CORRADINI: I'm not sure, I guess
14	the way to ask your question is you think the loop seals
15	are refilled and I don't think they are. I think you've
16	lost inventory. It's all going out the break.
17	But maybe in the process of going out the
18	break you filled a couple of loop seals. That's what
19	you're asking?
20	MEMBER MARCH-LEUBA: What I'm asking is I
21	cannot conceive that the pressure drop across the core
22	be a half a bar if there is no mass flow going through
23	the core. There is no velocity. It's just pool
24	boiling.
25	MEMBER CORRADINI: Yes, but you're
	NEAL R. GROSS

(202) 234-4433

	64
1	essentially at a few percent power so you can do the
2	calculation. There are about 3,400 megawatts so that's
3	something like 68 megawatts.
4	So that's something like about 30 or 40
5	kilograms a second of boiling. So that's a fairly
6	substantial boiling rate by decay heat.
7	MEMBER MARCH-LEUBA: Okay. We'll do our
8	numbers off line.
9	MR. CHON: Okay. This is Woochong Chon
10	again. I move on to next slide. This right hand side
11	figure shows the CAREM diagram. CAREM consists of
12	three elements important that are effectively seen as
13	CSAU.
14	However, Step 9 is the big, the major
15	difference between CSAU and CAREM. Step 9 checks
16	experimental data covering using the uncertainty
17	parameters determined in Step 8.
18	If this Step 8 is, fails and if the data
19	covering stages failed then Step 8 repeats until the
20	covering is satisfied. Non-parametric statistics is
21	used in experimental data covering as well as in plant
22	calculations and detailed information is given in this
23	red parenthesis (phonetic).
24	MEMBER MARCH-LEUBA: I am confused. What
25	do you iterate on? You say if experimental uncertain
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	65
1	parameters don't cover the result analysis, the
2	results?
3	MR. CHON: In Step 8 we performed SET and
4	IET cast conversion here. And then in Step 9 we checked
5	all the CAREM calculation results cover experimental
6	data or not.
7	So if it's not covered then go back to Step
8	8 and change certain parameters or
9	MEMBER MARCH-LEUBA: Do you perform more
10	experimental data or
11	MR. CHON: No, we put APR1400 we performed
12	some special experiments. But for this case we apply
13	the current experimental datas, not specific ones.
14	MEMBER MARCH-LEUBA: On this iteration
15	what do you adjust on every step?
16	MR. CHON: We have total 29 uncertainty
17	parameter ranges. We have adjusted the ranges or if
18	there is data covering we also modify the model. It is
19	a little bit different really because of its direction
20	to cover experimental data. Those details are
21	discussed in topical report.
22	MEMBER STETKAR: That's what I wanted to
23	clarify. You have submitted this methodology as a
24	topical report for the staff to review. Is that
25	correct?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	66
1	MR. CHON: Yes.
2	MEMBER STETKAR: We haven't seen it. Well
3	we have a copy of the REVO, the topical report. We'll
4	ask the staff about the review because some of these
5	details I suspect are in that topical report and are
6	probably better to discuss, you know, when we see it.
7	MEMBER CORRADINI: Yes, this is Corradini.
8	I think if that was John I think the topical which is
9	a very small 800 pages.
10	MEMBER STETKAR: 847 I think if my count
11	MEMBER CORRADINI: I stopped reading.
12	But I think staff actually has a couple of open items
13	that they're going to come to if I, I pre-read some of
14	the staff stuff on this.
15	MEMBER STETKAR: Yes. We may as a
16	Subcommittee, and it's up to the Subcommittee and the
17	staff, want to have a separate briefing on that since
18	it is a topical report. If it were a technical report
19	it would be under the purview of this chapter, but not
20	necessarily.
21	MR. CHON: Okay. This is Woochong Chon
22	again. Let's move on to the next slide. This slide
23	shows the noding diagram which is applied in the CAREM
24	methodology. The active core is modeled with two
25	hydraulic channels and 20 axial nodes. And that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	67
1	MEMBER CORRADINI: So this is Corradini.
2	Just to be sure, I think I know the answer but I want
3	to make sure, when you say two channels so you have a
4	hot channel and an average channel?
5	MR. CHON: That's correct.
6	MEMBER CORRADINI: Okay, thank you.
7	MR. CHON: And also the outcome is modeled
8	with six radial channels and ten axial nodes. And steam
9	generator, we have two steam generator models here and
10	one pressurizer model here. And two groups each aside
11	intact loop and broken loop, two groups are modeled.
12	And as I said before, currently we are
13	working on the revision of large break LOCA part with
14	applying thermal conductivity degradation. But I
15	briefly explained the general large break LOCA here.
16	One hundred percent double-ended
17	guillotine break in pump discharge rate is selected as
18	a limiting case. Once inside they show us the water
19	level versus time. These figures pretty much show same
20	as what I show in the scenario part.
21	The upper part is downcomer. There are six
22	downcomer channels, so six lines are in here and one
23	solid line is core level.
24	MEMBER CORRADINI: This is Corradini.
25	Just so I understand, can you explain the logic of the
	NEAL R. GROSS

(202) 234-4433

	68
1	six downcomer channels because I assumed there was four
2	because you have four potential cold legs. But why six?
3	Can you explain that please?
4	MR. CHON: We have four cold legs and two
5	hot legs. So each leg is located in one channel.
6	MEMBER CORRADINI: But I thought you said
7	six downcomer channels.
8	MR. CHON: Right. Six downcomer
9	channels. Four cold legs are connected with four
10	channels and two hot legs are connected to another two
11	channels. So a total of six channels.
12	MEMBER CORRADINI: All right. I think I
13	understand. Thank you.
14	MR. CHON: No problem. And right hand
15	figure graph shows the PCT obtained from 181 simple
16	random sampling calculations. Actually this case is
17	124 cases.
18	After discussion with NRC staff we
19	increased the sample, random sampling calculations up
20	to 181. So there's a blowdown peak and reflood and
21	quenching has occurred. Okay, next slide explains
22	about large break LOCA licensing PCT.
23	It is combination, summation of 95/95
24	Simple Random Sampling PCT plus delta PCT for bias
25	calculation, plus another delta PCT for time step and
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	69
1	consideration. That is 10 celsius.
2	MEMBER CORRADINI: This is Corradini.
3	How did you get to the 10 Celsius? Is that in the
4	methodology document somewhere?
5	MR.CHON: Yes. That, let me ask that part
6	to one of the colleagues.
7	MEMBER CORRADINI: That's all right. If
8	it's in the methodology document I'll go back and look.
9	I just wanted to know where to look for it.
10	MR. CHON: Yes, it's in the methodology
11	topical report.
12	MEMBER CORRADINI: Okay, thank you.
13	MR. CHON: No problem. And finally the
14	acceptance criteria including PCT, clad oxidation and
15	hydrogen generation will be compound for APR1400 design
16	through the final division calculations.
17	Now I'm going to move to small-break LOCA.
18	This slide shows about the CENPD conservative
19	evaluation model for small-break LOCA analysis. The
20	details of the CENPD methodology is described in
21	CENPD-137P and Supplement 1.
22	This CENPD methodology consists of
23	multi-code system with CEFLASH-4AS for blowdown
24	hydraulics and COMPERC-II refill/reflood hydraulics,
25	STRIKIN-II hydraulic calculations during blowdown and
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	70
1	PARCH EM hot rod calculation during pool building
2	period. Those multi-code system with CENPD
3	methodology is used in System80+ CESSAR, this document
4	in SBLOCA analysis.
5	And APR1400 design is the same as System80+
6	design in terms of loop arrangement and safety injection
7	system design. This slide shows the small-break LOCA
8	modeling diagram with CEFLASH-4AS.
9	CEFLASH-4AS is used for, it has just a one
10	volume of core including upper plenum, core and lower
11	plenum. And it has two downcomer nodes. And there is
12	a two steam generator part and the intact loop cold legs
13	and pumps suction legs are combined with one loop.
14	Broken loop part has two loops design.
15	That is the DVI line break location in 28. Next slide
16	shows the small break LOCA analysis initial conditions.
17	According to the conservative methodology
18	the initial power is 102 percent of normal operation
19	power. Loop and worst single failure of ECCS are
20	selected.
21	Fifteen DVI line break and 17 cold leg break
22	analysis were performed. One break at the top of the
23	pressurizer was analyzed and also one rupture of in-core
24	instrument tube was evaluated.
25	Next slide shows small break LOCA result.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	71
1	The red solid line with circle symbol is the DVI line
2	break result. And red dot line or symbol is pump
3	discharge leg result. The DVI line break result has 15
4	cases and pump discharge leg has 17 cases.
5	As you can see in this figure, the peak
6	cladding temperature, the highest peak cladding
7	temperature is occurred at the DVI line break with a
8	break size of 0.1364, 50 squared.
9	MEMBER CORRADINI: So this is Corradini.
10	May I ask a question? I want to make sure I understand.
11	What's happening to the right of your peak that you get
12	essentially a decrease immediately in peak clad
13	temperature and then it stays almost like a, gets to a
14	plateau and then decreases again?
15	Where in this is the accumulator? Is this
16	because of timing of the SIP discharge that you get this
17	unusual, I'm trying to understand that shape?
18	MR. CHON: For the DVI line break?
19	MEMBER CORRADINI: Well to the right of the
20	DVI line break on your graph that the DVI line break is
21	labeled at about 125 square centimeters. And then you
22	have three points to the right which, the first point
23	decreases significantly then the next two are about the
24	same then it decreases significantly again.
25	Is this because of the timing of the SIP
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	72
1	discharge?
2	MR. CHON: No, that's because of
3	methodology, procedure. Yes, we used different code
4	for small break size and larger break size the
5	assumption of the core level is assumed much lower.
6	Let me explain this perhaps from my
7	colleagues. I will, Mr. Lew, can you explain detail
8	about that?
9	MR. LEW: This is Kaeyeol Lew from KEPCO
10	Fuel Company. So the code has two kinds of, somewhat
11	hydro (phonetic) calculation core. One is the
12	CEFLASH-4AS. The other one is COMPOC2 code.
13	So COMPOC2 code, after SIP injection COMPOC
14	code collapse. So COMPOC2 codes makes core level lower
15	than the real level. So
16	MEMBER CORRADINI: So let me, can I just
17	repeat it back to you so I understand. So you've
18	actually changed the computer analysis technique after
19	we get to the right of the peak to a different code
20	methodology?
21	MR. LEW: Yes, right.
22	MEMBER CORRADINI: Okay. And then what I
23	think you said was that the two phase level is computed
24	differently in the different methodologies.
25	MR. LEW: Yes, right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

	73
1	MEMBER CORRADINI: Okay. Can you remind
2	me what the two methodologies are for the two phase
3	level?
4	MR. CHON: This is Woochong Chon. Not two
5	methodologies. Just, it's very difficult to explain
6	without figures. But the water level is redefined when
7	we change different, move to the different core
8	calculation.
9	MEMBER CORRADINI: Redefined meaning you
10	actually change the elevation?
11	MR. CHON: Make light, make lower
12	elevation of the water level conservatively. So that's
13	the reason why the PCT is increased again.
14	MEMBER CORRADINI: Okay, all right.
15	MR. CHON: It's kind of a method to make a
16	definition of the water level between two codes.
17	MEMBER CORRADINI: All right. For the
18	moment, thank you. I think I get it, kind of. Thank
19	you.
20	MR. CHON: No problem. Thank you. And I
21	will move to next slide. This slide show us about the
22	issue of loop seal clearing and reformation.
23	Background is given in here at the bottom.
24	Loop seal reformation due to ECCS injection
25	during the long-term cooling phase of a LOCA can cause
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	74
1	suppression of two phase mixture level in the reactor
2	core. If this level drops below the top of the active
3	fuel, cladding heat and oxidation can occur.
4	The difference between top of the core and
5	top of the horizontal pipe of loop seal is about two
6	feet. APR1400 has deep loop seal design but shallow
7	loop seal design. The loop seal reformation
8	calculation for several break sizes were performed
9	using CENPD small break LOCA methodology.
10	MEMBER REMPE: So this is Joy. And I know
11	the staff and KHNP had a lot of discussion about what
12	confidence you have in your ability to predict loop seal
13	formation and clearing.
14	And apparently one of the responses back
15	was that you had data from Semiscale. And I guess the
16	staff got that discussion. But I was curious how
17	prototypic that data is for your geometry.
18	And I think that adds more to what Jose was
19	mentioning earlier. So could you elaborate on why you
20	have confidence in your methodology based on the
21	Semiscale data?
22	I know, I'm not fully aware of everything
23	on Semiscale. But is it more for a Westinghouse
24	geometry or is it applicable to your geometry?
25	MR. CHON: This is Woochong Chon again.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	75
1	First of all in geometry part we have about 2.3 feet
2	difference between the top of loop seal and top of active
3	core.
4	That, if core, so if loop seal is filled
5	with water that means the active core will be covered
6	at this level, right. But that's assuming that
7	collapsed the level.
8	Generally in core the void fraction is over
9	30 percent. But even though if we assume 20 percent of
10	void fraction in core that mixture level will be covered
11	over top of active core. That means core is not
12	uncovered.
13	MEMBER REMPE: Okay. Is this documented
14	if I go back to the RAI in sufficient detail that I can
15	have more details?
16	MR. LEW: Yes, yes.
17	MEMBER REMPE: Okay. I'll look into it.
18	Thank you.
19	MEMBER CORRADINI: So, yes, this is
20	Corradini. To follow Dr. Rempe's question I want to
21	make sure in this calculation for loop seal clearing
22	what did you define as the point of clearing, at the
23	bottom of the piping of the loop seal, at the top of the
24	piping?
25	And also to get back to Dr. March-Leuba's
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	76
1	question, the assumption is a three percent bypass flow?
2	I want to make sure I understand the assumptions in
3	computing loop seal clearing.
4	MEMBER MARCH-LEUBA: Mike, this is Jose.
5	We, the three percent is called bypass flow. So it goes
6	around the floor.
7	MEMBER CORRADINI: I understand that. I
8	just want to make sure what they used in their
9	calculations.
10	MEMBER MARCH-LEUBA: Yes, the relevant one
11	is the 0.5 percent from the upper plenum to the
12	downcomer.
13	MEMBER CORRADINI: Okay, excuse me, 0.5
14	percent, okay. And then for the loop seal clearing did
15	you, when did you do it, when you got to the bottom
16	elevation of the pipe, to the top, halfway? What was
17	the assumption?
18	MR. LEW: This is Kaeyeol Lew from KEPCO
19	Fuel Company. Sample method would assume the bottom
20	elevation. So the loop seal pipe bottom elevation is
21	assumed, was assumed.
22	MEMBER CORRADINI: Okay, okay, thank you.
23	MEMBER MARCH-LEUBA: Yes, but I don't
24	really understand this logic at all. Can you go back
25	to the slide with the loop seal or you want to say
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	77
1	something? Go ahead and I'll wait.
2	MR. CHON: This is Woochong Chon again.
3	Same CENPD methodology if you see the Slide 39 there's
4	the loop seal figure and right hand side it is Node
5	Number 21 and 11. The junction is five.
6	This junction is located, we assume in
7	CENPD methodology, the junction is located at the bottom
8	of loop seal. So that's, that assumption is also very
9	conservative. We have space to the top of the loop seal
10	part. That's the part of our assumption.
11	MEMBER CORRADINI: Can you, do you mind
12	just to repeat that again please? This is Corradini.
13	Can you just repeat that please?
14	MEMBER MARCH-LEUBA: Tell him the slide
15	number you are saying?
16	MR. CHON: Slide 39?
17	MEMBER MARCH-LEUBA: Yes, if you see the
18	Slide 39.
19	MEMBER CORRADINI: Yes.
20	MEMBER MARCH-LEUBA: Right hand side there
21	is a loop seal Node Number 21 and 11.
22	MEMBER CORRADINI: Okay.
23	MEMBER MARCH-LEUBA: And those loop seal
24	nodes is connected by Junction 5.
25	MEMBER CORRADINI: Yes, sir.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	78
1	MEMBER MARCH-LEUBA: That junction
2	location is assumed at the bottom of loop seal.
3	MEMBER CORRADINI: Right, as you had
4	explained at the beginning. But you are saying that
5	the, when you define bottom you're defining it by the
6	location of the junction?
7	MEMBER MARCH-LEUBA: Yes, the location of
8	the junction.
9	MEMBER CORRADINI: Okay, thank you. I got
10	it.
11	MEMBER SCHULTZ: Steven Shultz. So when
12	you say that it's conservative to locate, to model it
13	this way, have you done the sensitivity to see how
14	conservative? That is have you relocated that junction
15	to an elevation that is at the middle or the top of the
16	loop seal pipe and found out how conservative it is?
17	We always talk about conservatism. And I
18	think it's fair to do that if in fact we run the
19	calculation and demonstrate that there's a change in the
20	temperature or there's a change in the system
21	performance.
22	This is, small break LOCA the experience
23	shows that you need to run the calculation to determine
24	whether your assumption of conservatism is correct.
25	MR. CHON: Most case we perform
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	79
1	sensitivity study. But if physically it is clear then
2	we don't. In this case if, the issue is if loop seal
3	is filled by water then the core pressure have no place
4	to release.
5	So if we assume at the bottom connection of
6	loop seal node that means water is filled at the bottom
7	and loop seal is not cleared, filled. But in actual
8	case even though water is in the bottom of pipeline but
9	we have still steam pass in the upper pipe region.
10	MEMBER CORRADINI: So I think Dr. Shultz,
11	this is Corradini, I think Dr. Shultz is asking can you
12	give us a reference where those sensitivities are? Are
13	they in the LOCA methodology document? I don't think
14	I know where to look.
15	MR. CHON: This case we didn't perform the
16	sensitivity study for the location of junction in loop
17	seal because it is pretty much clear.
18	MEMBER CORRADINI: Okay, thank you.
19	MR. CHON: No problem, thank you. And
20	this slide, the next slide which is Page 43. This slide
21	show us about analysis result in loop seal clearing and
22	reformation.
23	The loop seal reformation shows slight core
24	uncovery intermittently. And the PCT caused by loop
25	seal reformation remains below 800 Fahrenheit.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	80
1	CHAIR BALLINGER: Okay. This is Ron
2	Ballinger. I've been searching for a convenient place
3	to take a break. And so I'd like to take a break now
4	until 20 minutes of the hour.
5	(Whereupon, the above-entitled matter went off the record at 10:25 a.m. and
6	resumed at 10:40 a.m.)
7	CHAIR BALLINGER: Okay. We're back in
8	session. Member March-Leuba would like to make some
9	kind of statement.
10	MEMBER MARCH-LEUBA: Yes, we've been
11	talking off line. Could you please go to Slide 33?
12	Okay. So we've been talking about the red line which
13	is the downcomer water level and the black line which
14	is the core collapse water level.
15	We found out during the discussions either
16	they both have different reference. So the zero, if
17	both of them were a zero they would not agree.
18	The black line is reference to the bottom
19	of the core, the core plate whereas the red line is
20	referenced somewhere to the bottom. It's not the true
21	bottom of the vessel but it's the bottom of the skirt.
22	I'm not sure how to call it. So they have an offset and
23	will always have an offset, correct?
24	MR. CHON: This is Woochong Chon. Yes.
25	This is Woochong Chon again. That's called fuel skirt.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	81
1	So active core bottom level is this level. So black
2	line is based on this level.
3	But red dotted line is downcomer level is
4	based on the fuel skirt location. It is lower than
5	active core bottom.
6	MEMBER MARCH-LEUBA: By a few meters,
7	right?
8	MR. CHON: Yes. That height is, I need to
9	check the design data but is around two to three meters.
10	MEMBER CORRADINI: This is Corradini.
11	Now I'm even more confused. What slide are you on?
12	MEMBER MARCH-LEUBA: 33.
13	MEMBER CORRADINI: Well can we go to the
14	one where, that was the demonstration calculation, can
15	we got to 30, now I don't remember. Just before we
16	started talking about spectrum of postulated. It was
17	large break LOCA results.
18	MEMBER STETKAR: You want the picture,
19	Mike, 30? Is that the one?
20	MEMBER CORRADINI: Well I'm looking at the
21	one where there's two figures on the slide. It's
22	labeled Number 37 on mine which has
23	CHAIR BALLINGER: Mike, I just sent you the
24	latest, the version so we get convergence. If you want
25	to, yes.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	82
1	MEMBER CORRADINI: Okay, all right.
2	MEMBER MARCH-LEUBA: It is 36. In our
3	screen it is 36. We have it on the screen.
4	MEMBER CORRADINI: Okay, all right. Let
5	me get to it, sorry, excuse me. Yes, so 36. So the
6	datums are different?
7	MEMBER MARCH-LEUBA: Yes, the reference
8	zero, in this case the green line is two or three meters
9	lower than the black line. So you always have an offset
10	of within two, three, four meters because one is
11	reference to the bottom of the downcomer skirt or what
12	you want to call it.
13	The other one is referenced to the core
14	plate which makes it, maybe the question is why are we
15	plotting them like that?
16	MEMBER REMPE: Well especially if it's two
17	or three meters why at, what is it ten seconds or
18	something you get to where that they would be lower than
19	the other. So we ought to understand.
20	MEMBER MARCH-LEUBA: Well, yes. I would
21	love to have this figure in a Korean fashion.
22	CHAIR BALLINGER: I guess my question is
23	and I would have to go back and look at the
24	documentation, are these the figures that are out of the
25	DCD?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	83
1	MR. CHON: Yes. This came from DCD.
2	CHAIR BALLINGER: So in response to Member
3	Rempe's comments, we need to get these fixed or somehow
4	get some kind of
5	MEMBER REMPE: An understanding.
6	CHAIR BALLINGER: well some figure
7	caption or something that says, can we put that on the
8	record? We probably ought to try to get the slides
9	fixed as well because sooner or later we're going to have
10	to go back and look at these things.
11	MR. CHON: Let's go back to Slide 44.
12	Okay. This is Woochong Chon again. I will present
13	about the post-LOCA boron dilution analysis. This
14	slide shows about the issue of the post-LOCA boron
15	dilution analysis.
16	Background given here. Following a LOCA a
17	slug of water can be formed in the loop seal by the
18	condensed steam in steam generator tubes. The slug
19	enters the vessel through a cold leg and then travels
20	along the downcomer.
21	Again, the slug moves into the lower plenum
22	and it turns upward to enter the core. During this
23	period it may cause reactivity excursion if the water
24	slug is not sufficiently mixed with the borated water
25	in the RCS.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	84
1	And also we tested that the core should not
2	reach recriticality when the boron dilution accident
3	occurs. There is simple figures given in the next
4	slide.
5	If condensed the water is accumulated in
6	the loop seal and core cold leg part, that is the lined
7	part will be unborated water. So in analysis result the
8	two cases were studied.
9	First case is restart of one RCP and next
10	to one is start of natural circulation. The mixing
11	evaluation shows that the downcomer and lower plenum
12	water mixes well with water from the loop seal.
13	KHNP has demonstrated that most of the
14	result of one RCP and the initiation of natural
15	circulation will not cause core recriticality.
16	MEMBER MARCH-LEUBA: Are we talking normal
17	recording mode? Do I have to say my name?
18	CHAIR BALLINGER: I think we're in normal
19	recording mode.
20	MEMBER MARCH-LEUBA: This remixing, I'm
21	more familiar with BWR where the mixing of boron with
22	water that is nonborated is a problem and it becomes
23	stagnated. So do you have any experimental evidence of
24	that cold distilled water, unborated water will mix with
25	hot borated water? Will it go up to the bottom on a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	85
1	stagnator and slowly rise into the core?
2	MR. CHON: Let me ask my colleague.
3	MR. LEW: This is Kaeyeol Lew from KEPCO
4	Fuel Company. So there was some misunderstanding that
5	you said. So borated water has lower density, high
6	enthalpy and then unborated water has high density,
7	lower enthalpy. So
8	MEMBER MARCH-LEUBA: So let me repeat that
9	again and see if you understand. The clean water, the
10	boron doesn't add that much weight to the water. It's
11	the temperature that matters.
12	So the clean water is cold. The borated
13	water is hot. So I can see how you can have sentiment
14	in the bottom.
15	MR. CHON: No, it's, this is Woochong Chon.
16	That's a positive. The unborated water is condensed
17	from the steam generator. So it's hot water.
18	MEMBER MARCH-LEUBA: But it's not hotter
19	than the core. It's colder than the core. It's not 20
20	degrees. But it's colder than the core.
21	MR. CHON: Do you have any data the
22	temperature difference between the core water and the
23	loop seal water temperature differences?
24	MR. LEW: So ECCS water has lower so loop
25	seal water, loop seal water.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

```
(202) 234-4433
```

	86
1	MEMBER MARCH-LEUBA: ECCS correct. ECCS
2	is cold water, is heavy.
3	MR. LEW: Yes. So high density slug of
4	unborated water so cannot be penetrated. So colder
5	water, so we assume so for mixing loop seal water and
6	it's hot water we used conservative assumption.
7	MR. CHON: This is Woochong Chon again.
8	The lower plenum water is not the, came from the core
9	mainly injected from the SI system. So that water is
10	colder than the condensed water.
11	MEMBER MARCH-LEUBA: Okay. So let me be
12	the devil's advocate. The new loop seal clean water
13	bypasses the core water in the bottom of the vessel and
14	never picks up the boron which is what happens.
15	And there are experimental data that tells
16	you that the cold borated water settles in the bottom
17	and nothing goes into the core. When you reach a
18	certain core flow, which according to four to eight
19	percent core flow part of the cold borated water is at
20	the bottom of the vessel and nothing goes into the core.
21	That's why ATWS and BWR becomes a problem
22	and you have to raise the water level and do other
23	things.
24	MR. CHON: Some part is like condense the
25	high temperature water basically cannot pass through
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	87
1	the downcomer because it is high temperature. And the
2	lower plenum water is low temperature. So there is no,
3	you know, the unborated water cannot penetrate in the
4	lower plenum part.
5	MEMBER MARCH-LEUBA: They never mix it
6	into the vessel.
7	MR. CHON: Physically. But we assume that
8	water can penetrate to the lower plenum part and
9	calculate.
10	MEMBER MARCH-LEUBA: Okay, thank you.
11	MR. CHON: That's very conservative
12	assumption. Okay. The next slide the basic function
13	of, now let's move on to the long-term cooling,
14	post-LOCA long-term cooling.
15	CHAIR BALLINGER: Before we get on this I
16	need to make sure that we're clear. On long-term
17	cooling we have to write a letter specific to long-term
18	cooling. And that means that we've spoken with the
19	staff and others that we need to have a presentation from
20	both the staff and KHNP on the same day in the same
21	meeting.
22	And so we need to be careful of what we're
23	saying here because I'm sure you're going to need to give
24	this presentation again, if I'm not mistaken.
25	MR. CHON: Okay.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	88
1	MEMBER CORRADINI: Ron, this is Corradini.
2	I think staff is going to address that later today
3	according to what I've read.
4	CHAIR BALLINGER: Well there may be some
5	new information here.
6	MR. LU: Yes. Let me make a comment on
7	this one. We do have a, do understand that the ECCS
8	Subcommittee and that the full Committee needs to write
9	a letter specifically responding to SRM regarding
10	long-term cooling.
11	And that as a reality here specifically for
12	a long-term cooling plan and then the really major issue
13	of the downstream effects and also the strainer, the
14	NPSH issue. So basically we're talking about GSI-191,
15	right.
16	So a handful of GSI-191 has already been
17	presented to the Subcommittee as part of Chapter 6. And
18	NPSH margin analysis, the strainer, you know, pressure
19	drop across the strainer, that part has already been
20	covered by the staff.
21	So today we're also going to cover that
22	simply because that's part of the Chapter 15. We do
23	want to cover that part as our presentation there. So
24	we also understand that if you go through this
25	presentation and you still have specific questions
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	89
1	related to long-term cooling and the related GSI-191 we
2	can definitely support any additional discussion if you
3	do want to have that one.
4	My understanding is that in October we plan
5	to talk about largely LOCA topical and we also have fuel
6	topical report, fuel seismic issue and thermal
7	conductivity degradation. Those are really high, from
8	our perspective, significant safety issues.
9	And regarding GSI-191 as of today after we
10	go through with our presentation and then right now I
11	think we are going to have a summary matter. And then
12	you can see how much you need to dive into more and then
13	we can definitely support any additional requests for
14	that communication.
15	CHAIR BALLINGER: Okay. We will have to
16	do this offline I guess.
17	MR. CHON: Yes. We have, this is Woochong
18	Chon again. We have two post-LOCA long-term cooling
19	presentations today. I will present the post-LOCA
20	long-term cooling in DCD Chapter 15.6.5. After my
21	presentation Mr. Kim will present about post-LOCA
22	long-term cooling and in-vessel downstream effect, the
23	GSI-191.
24	So two long-term cooling presentations
25	will be filed. In Slide 46 the basic function of
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	90
1	long-term cooling is to maintain the core at safe
2	temperature level while avoiding the precipitation of
3	boric acid in RCS.
4	In the long term operator action is needed
5	to provide reasonable assurance that the core cooling
6	is maintained until the plant is brought to a cold
7	shutdown condition. There is behavioral difference
8	between large and small break LOCAs in the long term.
9	The large break are adequately cooled by
10	the safety injection flow because this flow is large due
11	to the low RCS pressure. However, the large breaks use
12	simultaneous hot leg and direct vessel injection to
13	flush boric acid from the vessel.
14	In small break, the RCS will remain at high
15	pressure and the safety injection flow rate will be too
16	low for effective cooling. Thus small break requiring
17	cooling of RCS by the steam generator until shutdown
18	cooling can be initiated.
19	Next slide shows the long-term cooling
20	evaluation model. The evaluation model is based on the
21	CENPD-254-P-A which is approved version of methodology.
22	The long-term cooling calculation are
23	performed by using four long-term cooling codes which
24	is CELDA, a long-term depressurization and refill of RCS
25	and NATFLOW, CEPAC and BORON. NRC approved interim
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	91
1	method was adopted for APR1400 calculation.
2	The interim method provided resolution of
3	issues to CENPD-254. Next slide shows that applying
4	mixing volume change in APR1400. Limiting mixing
5	volume in boron participation analysis is changed from
6	top of the hot leg to the bottom of the hot leg.
7	In the original case of mixing volume the
8	boric acid to precipitate until 3.2 hours. When the
9	mixing volume decreased to the bottom of the hot leg then
10	boric acid would be predicted to precipitate at 2.3
11	hours.
12	So we have more conservative initial
13	conditions. Next slide shows post-LOCA long-term
14	cooling result. Three results about the boron
15	precipitation.
16	First one is no core flush. If you see the
17	right hand side of the figure the temperatures boric
18	acid concentrations. The right line is no core flush.
19	The straight line at the middle is solubility limit.
20	So with no core flush there is boron
21	precipitation will be occurring in this region. With
22	core flush when the operator initiates simultaneous
23	injection about two hours at this point there is no boric
24	acid precipitation occurs with simultaneous injection
25	core flush.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	92
1	The 30 gpm flush the margin provided for the
2	prevention of boric acid precipitation by the core
3	flushing flow of 30 gpm. It is actual value.
4	Next slide shows the post-LOCA long-term
5	cooling result, another result. The right hand side it
6	shows the break area from the small break area to the
7	big, larger break area. And right part is RCS pressure.
8	With applying larger break LOCA long-term
9	cooling methodology we use simultaneous injection from
10	3.7 square centimeter break area. And for the small
11	break LOCA long-term cooling method we applying from
12	34.4 square centimeter, smaller than that size of break.
13	So we have overlap region here. The
14	overlap in break area for either the larger break or
15	small break procedures can be used as illustrated in
16	this right hand side figure.
17	And the results demonstrate that the break
18	as large as 34.4 square centimeter are able to use
19	shutdown cooling system for the long-term cooling and
20	flushing of the core. The long-term cooling analysis
21	itemized that the larger break procedures can flush the
22	core for break area down to 3.7 square centimeter.
23	Therefore, the plant can be secured for all
24	break sizes. That is the end of Chapter 15 post-LOCA
25	long-term cooling analysis. Now Mr. Kim will present
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	93
1	the evaluation of in-vessel downstream effect.
2	MR. Y. KIM: Good morning. My name is
3	Youggun Kim from KEPCO E&C. I would like to introduce
4	the evaluation of the in-vessel downstream effect for
5	a APR1400. There is one part of the evaluation of the
6	GSI-191 issue.
7	Going through we'll start with the
8	origination. APR1400 according to the guidance of NEI
9	04-07 actually it's a hot leg line selected as the
10	limiting case of the break location.
11	The generated debris would be RMI,
12	reflective metallic insulation coatings laid into the
13	raised concrete and aluminum inside the containment.
14	And for conservatism, APR1400 assumes that all
15	generated coatings and all debris are transported to the
16	sump strainer in the IRWST.
17	In the strainer bypass testing fibrous
18	debris at the strainer is established as 6.8 kilogram
19	of the latent fiber. Testing concluded only fibrous
20	debris since adding particulates may reduce the amount
21	of the fibrous debris due to clogging at the strainer.
22	And the filter bag is used to collect the
23	debris by passing it through the strainer. And bypass
24	through fibrous mass is 1.67 kilogram through the four
25	sump strainers.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	94
1	MEMBER MARCH-LEUBA: So the 15 pound, the
2	first bullet that's through one of the strainers or
3	through four strainers?
4	MR. Y. KIM: It is the whole latent debris
5	mass.
6	MEMBER MARCH-LEUBA: On all four?
7	MR. Y. KIM: Yes, all four.
8	MEMBER MARCH-LEUBA: Okay. So roughly
9	20, 25, 20 percent of the fiber goes through the
10	strainer? I mean, 368 divided by 15?
11	MR. Y. KIM: That's right. And the
12	fibrous debris mass per fuel assembly considering the
13	241 fuel assemblies in the core is calculated 26.93
14	gram, all fuel assembly. That is the result.
15	This is the result of the 6.93 gram is on
16	equal for the in-vessel fuel assembly test. This is
17	flow rate for the core at the time according to the LOCA
18	scenario for the in-vessel downstream evaluation
19	representative of LOCA scenario as selected as their hot
20	leg break, cold leak break and the cold leak break if
21	the hot leg switched over.
22	In the event of the hot leg break all the
23	safety injection water go to the reactor core and the
24	flow rate is equal to the full safety injection flow
25	rate. That is the 4,940 gpm.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

In the test, in the in-vessel housing fuel 1 2 assembly test one fuel assembly was used so the flow rate per fuel assembly is calculated by dividing the total 3 4 flow rate, dividing total flow rate by the total fuel 5 assembly of 241 and the flow rate per fuel assembly is 6 20.5 gpm. 7 In the event of a cold leg break the flow 8 rate to the core is equal to the boil-off rate at the 9 The maximum boil-off rate has calculated at moment. 10 the equation's start time over the 700 second and the 11 flow rate cold fuel assembly is 3.65 gpm. 12 At the time of two hour of the cold leg break 13 operators test simultaneous operation of the hot leg

injection and the direct vessel injection because of the, because two safety injection pumps are for hot leg. And so the flow rate to the core is half of the total injected, safety injection flow rate.

18 This is the test to measure the pressure 19 We'll call it plus seven. This simulates the drop. 20 APR1400 fuel assembly. The schematic drawing and the 21 photo of the test loop are given here.

22 The description for this test loop are on 23 the next slide. The test facility is composed of four 24 main parts. Test the column, the leaching tank. The 25 circulation system and the control and monitoring

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

14

15

16

17

96	
----	--

system.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The test column has half, full length of plus seven fuel assembly. Pressure drop, pressure drops are measured at five points. Bottom -- for mid grid, bottom grid, for mid grid and top grid and top measure and full length. At the leaching tank, a heater and a chiller are used to control the water temperature and a stirrer is installed to prevent debris settling. А recirculation pump and flow meter are installed

The temperature are measured at four points bottom and top of the tester column are the lower part of the leaching tank. Account for the parameter water flow rate and the water temperature using monitoring system and flow rate. Temperature and pressure are recorded.

downstream of the tank and the flow rate is adjustable.

This slide I already explained so I'll skip this slide. The table on this slide summarizes the different types and amount of fuel assembly for the in-vessel test, fuel assembly test.

The in-vessel fuel assembly test is for measuring the pressure drop of the fuel assembly when the excess water with bypass debris flows into the fuel assembly during the long-term core cooling operation.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	97
1	For the fibrous debris although the fibrous
2	debris is 6.93 gram per fuel assembly, in actual test
3	the 15 gram was applied for conservatism. And all other
4	debris such as coating, particle and chemical compounds
5	is assumed to bypass the sump strainer and comes to the
6	core.
7	For hot leg breaker condition we have
8	tested five conditions, five tests to evaluate. The
9	particle to fiber ratio ranged from .5 to 10. The
10	limiting result, I'll call that the particle to fiber
11	ratio equals one.
12	At the time zero you can see the sequence
13	of the tests in the right hand side of the graph. At
14	the time zero or the particle were added at this point.
15	And then 9 grams and 6 grams of fiber was
16	inserted with 25 minute interval this part. After two
17	hours the fiber chemical compound was added. And after
18	that differential pressure is increased considerably
19	and then additional compound, chemical compound was
20	inserted but it did not make the differential pressure
21	increase.
22	The additional pressure of the pressure
23	drop was 9.4 kilopascal. And therefore the test result
24	criteria was 42.7 kilopascal with absorption margin.
25	MEMBER SKILLMAN: What was added at two and
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

98 a half or three hours please? 1 2 MR. Y. KIM: The basis of the interval you 3 mean? MEMBER SKILLMAN: No. At three hours --4 MR. Y. KIM: At three hours --5 6 MEMBER SKILLMAN: -- you added some 7 material that caused that differential pressure to 8 increase --9 MR. Y. KIM: Yes, right. 10 MEMBER SKILLMAN: -- so rapidly. What was 11 the material that you added? 12 The chemical compound MR. Υ. KIM: aluminum hydroxide. 13 14 MEMBER SKILLMAN: I understand. Thank 15 you, thank you. 16 MEMBER MARCH-LEUBA: And the pressure drop 17 you are reporting is across the complete fuel, just what 18 pressure drop? 19 MR. Y. KIM: The pressure drop is a total 20 length pressure drop. 21 MEMBER MARCH-LEUBA: Total length of the 22 23 MR. Y. KIM: From bottom to top. 24 MEMBER MARCH-LEUBA: I'll ask you at the 25 end of this. But maybe you can say now. Have you

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

99 already strained it or say, yes, 15 grams is not 1 2 sufficient to build up be of any relevance on the 3 strainer? 4 MR. Y. KIM: Well the 15 gram is just 5 applied to the test for conservatism. Actual, the bypass fiber --6 7 MEMBER MARCH-LEUBA: I'm asking about the 8 NPSH for the ECCS. 9 MR. Y. KIM: For NPSH test we used fiber, 10 all the latent fiber debris. It is 15 pounds, 6.8 11 kilogram. 12 MEMBER And it MARCH-LEUBA: was 13 satisfactory? 14 MR. Y. KIM: It was satisfactory. And the 15 rest is the code break. The seven tests that had been 16 run to evaluate the cold leg break condition. Particle 17 to fiber ratio ranged from one to 16. The latter figure 18 shows the pressure drop with the changing particle to 19 fiber ratio. 20 The maximum pressure drop, I'll call that 21 particle to fiber ratio, equals 50. At the time zero 22 all the particles were added and then nine grams of fiber 23 and 16 grams of fiber was inserted into the, in two hour 24 interval. 25 After four hours all chemical compounds was

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	100
1	added. After that the differential pressure increased
2	considerably and the maximum pressure drop was 3.85
3	kilopascal.
4	For the test result shows that the
5	absorption margin to maintain the core flow during a
6	post-LOCA condition and from that acceptance criteria.
7	So all the in-vessel fuel assembly testing results shows
8	that there are sufficient margin.
9	This is the in-vessel test result, the fuel
10	assembly test. And the
11	MEMBER MARCH-LEUBA: Can you elaborate a
12	little bit about the acceptance criteria, how it was
13	determined?
14	MR. Y. KIM: Yes. This is the calculation
15	result based on the WK-16793 (phonetic). The WK report
16	is presenting the methodology how to calculate the
17	acceptance criteria. These results are based on that
18	methodology.
19	MEMBER MARCH-LEUBA: Okay, thank you.
20	MEMBER SCHULTZ: Excuse me, Steve Shultz.
21	In the, each of these two cases you ran several tests.
22	MR. Y. KIM: Yes.
23	MEMBER SCHULTZ: In the tests that you're
24	not showing here what was the variation in input
25	parameter and how did the results change from test to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	101
1	test? You're showing a limiting result in each of these
2	two slides for the cold leg and the hot leg.
3	I'm just wondering what the variation was
4	in the other tests that were run in terms of the results.
5	What did you vary in the input parameter and what was
6	the difference in result?
7	MR. Y. KIM: Yes. Actually the variation
8	is on the particle to fiber ratio. And we differed the
9	ratio as shown in this graph. So the same test, this
10	result. The maximum pressure drop is the point of this
11	graph.
12	And finally found that the p:f ratio in the
13	p:f ratio is 15 and this is the limiting case of the cold
14	leg break.
15	MEMBER SCHULTZ: So the change was, seems
16	more dramatic in the hot leg break in the low range of
17	particle to fiber ratio and in the cold leg break across
18	the spectrum of particle to fiber ratio there is some
19	change but not dramatic. Is that a good summary, a fair
20	summary?
21	MR. Y. KIM: Well I think that detailed
22	information is actually describing
23	MEMBER SCHULTZ: I'll take a look at that.
24	MR. Y. KIM: I'm sorry about that.
25	MEMBER SCHULTZ: But, thank you.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	102
1	MEMBER MARCH-LEUBA: So when you changed
2	the particle to fiber ratio do you keep the total mass
3	as 15? So you're reducing the amount of fiber for the
4	higher.
5	MR. Y. KIM: Yes, yes.
6	MEMBER MARCH-LEUBA: So the sum of the two
7	is 15. So you're reducing fiber then adding particles
8	as you move to the right?
9	MR. Y. KIM: Well we used the total fiber
10	mass to 15 gram and in the range of the zero to 15 it
11	made the difference.
12	MEMBER MARCH-LEUBA: So in that figure on
13	the left that is in Slide 56 when it says two do you have
14	15 grams of fiber and 30 grams of particle?
15	MR. Y. KIM: That's right, that's right.
16	MEMBER MARCH-LEUBA: And then at six you
17	have 15 grams of fiber and 100
18	MR. Y. KIM: That's right.
19	MEMBER MARCH-LEUBA: Okay. So you
20	increase, you keep the same fiber and you increase the
21	particles and the pressure level goes down?
22	MR. Y. KIM: That's right.
23	MEMBER MARCH-LEUBA: After cleaning the
24	filter?
25	MR. Y. KIM: Yes. That was the test
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	103
1	result. And the WK Report shows the examples about
2	the p:f ratio changes and the result and it shows the
3	same range. So we believe that this test has the same
4	result with the chemical.
5	MEMBER MARCH-LEUBA: I don't argue with
6	experimental results. But this one is
7	counterintuitive.
8	MR. Y. KIM: But I can explain why the
9	MEMBER MARCH-LEUBA: And I haven't been
10	following GS-191 like other members, whatever.
11	MEMBER SCHULTZ: The other question is,
12	you know, the dramatic change occurs when you add the
13	chemical. So did you, was the addition of the chemical
14	varied in the tests or was it the same amount that you
15	described in the chart each time?
16	MR. Y. KIM: Well in the cold leg break
17	condition we used the water, the chemical compound in
18	this table.
19	MEMBER SCHULTZ: Yes.
20	MR. Y. KIM: In this table.
21	MEMBER SCHULTZ: And for the hot leg?
22	MR. Y. KIM: For the hot leg first we input,
23	we divided the total amount of chemical with two or
24	three. But first we inserted the chemical compound
25	there was the pressure drop increase.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	104
1	But after more chemical compounds it does
2	not make any pressure drop higher.
3	MEMBER SCHULTZ: There's no difference
4	after
5	MR. Y. KIM: Yes, so
6	MEMBER SCHULTZ: a certain number?
7	MR. Y. KIM: in this case we don't have
8	to put more in the compound.
9	MEMBER SCHULTZ: Thank you.
10	MEMBER CORRADINI: This is Corradini.
11	Just so I make sure I understand your answer to Dr.
12	Shultz, so 70 is an upper bound on the amount of
13	chemicals you added even though you added them
14	differently between the cold and the hot leg
15	experiments. Is that correct?
16	MR. Y. KIM: Yes, the chemical compound,
17	the total chemical compound for the hot leg condition
18	and cold leg was the same.
19	MEMBER CORRADINI: Okay. And you saw no
20	reason to have it phased addition after you saw the
21	results for the cold leg or for the hot leg, excuse me?
22	Okay, thank you.
23	MEMBER SKILLMAN: Let me pursue this a
24	little further. If I look at the cold leg chemical
25	addition I see 35 liters. And if I look at the hot leg
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	105
1	I would see 70 liters.
2	MEMBER CORRADINI: I think they added it
3	twice, Dick.
4	MEMBER SKILLMAN: That's what I'm asking.
5	You have two pink carrots. I'm sorry, there's just one.
6	I see it. I withdraw my question. I understand.
7	Thank you, okay.
8	MEMBER REMPE: Before we switch to a new
9	topic can I circle back on something I mentioned earlier
10	please, Mr. Chairman?
11	CHAIR BALLINGER: You always are, never
12	mind. Circle back if you will.
13	MEMBER REMPE: Okay. I looked up the
14	response to Question Number 15.06.05-19 about the use
15	of the Semiscale facility and the special version of the
16	code that KHNP used to predict loop seal clearing.
17	And in more recent times we have used CFD
18	analyses against smaller scale facilities and then
19	taken some parameters to try and simulate that with
20	other codes. I did not see that in this response.
21	All I saw was we tuned it. We matched
22	Semiscale and then we used it. And that's what I was
23	trying to get to is what gives us confidence that because
24	you can match Semiscale that it's appropriate for the
25	APR1400?
ļ	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	106
1	Is there something else that I should be
2	looking at? Am I misunderstanding what I'm reading in
3	this RAI?
4	MR. OH: This is Andy Oh, KEPCO. This,
5	could you speak to that again. What's the RAI number
6	and what's that about?
7	MEMBER REMPE: In the draft SE that the
8	staff provided when they brought up this issue about the
9	applicability or to the code based on whatever, for the
10	APR1400 they cited RAI to question Number 15.06.05-19.
11	And I'll ask the staff when they come up too why they're
12	confident.
13	But I didn't see it in their write up. They
14	just said, yes, they had benchmarked it against
15	Semiscale. And so I was curious because of some other
16	activities I've been reviewing of what gave them
17	confidence.
18	And so in more recent times we've seen
19	people use CFD analyses for a Westinghouse prototype
20	thing and then apply it to a CE with that confidence in
21	their ability to predict what the CFD type of code what
22	was going on in the Westinghouse geometry then they
23	turned and used it for the CE geometry.
24	And so what I'm asking is why do you feel
25	like being able to without using any CFD match
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	107
1	Semiscale, which maybe it is prototypic for the APR1400,
2	I'm not familiar with that design. But what gives you
3	confidence that a code that you can match to the
4	Semiscale facility can be used for the APR1400?
5	And I don't see that in this RAI response. And
6	so I was curious if there's something else. And you
7	don't have to answer it now. I do plan to ask the staff
8	and maybe they've got the answer.
9	MR. LU: Yes, we do.
10	MEMBER REMPE: Well then we'll count on the
11	staff to help me feel better. Okay, so thank you.
12	MR. Y. KIM: I am Youggun Kim and from the
13	next slide Mr. Dongsu Lee will go on with the
14	presentation.
15	MR. LEE: My name is Dongsu Lee working in
16	radiation protection team at KEPCO E&C. We can start
17	my presentation I would like to correct the information
18	I provide you on CA injection dose calculation.
19	For this event a ten percent high value of
20	the power model built in the reactor coolant was used
21	for application of aerosol equation effect. And that
22	there's a spray it was not considered whether the CA was
23	calculation.
24	The second information for the event
25	generation, generated iodine spiking there are
	NEAL R. GROSS

(202) 234-4433

	108
1	concurrent iodine spiking factor over 300.35 was
2	considered tube rupture. Those calculation to
3	compliance with the Regulatory Guide 1.183. So 300.35
4	was considered.
5	And I would like to start Chapter 15 at
6	Section 15.7. In this section GWMS leak or failure
7	events are described in Section 11.3.3. And LWMS leak
8	or failure events has been deleted. And postulated
9	radioactive release due to liquid-containing tank
10	failure has been added to Section 11.2.3.
11	In the postulated fuel handling accident a
12	fuel assembly is assumed to be dropped and damaged
13	during fuel handling. The accident takes place in the
14	containment or in the spent fuel pool inside the fuel
15	handling area of the auxiliary building.

Let's move on to the next page. The ATWS is defined as AOO followed by the failure of the reactor trip portion of the protection system. According to 10 CFR 50.62, it is required to reduce risk from ATWS events for light-water-cooled nuclear power plants.

For ATWS, diverse protection system is installed in the APR1400. The DPS helps the PPS to address 10 CFR 50.62 requirements for reduction of risk from ATWS events.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

The DPS design includes a reactor trip and

(202) 234-4433

16

17

18

19

20

25

	109
1	auxiliary feedwater actuation. The DPS reactor trip
2	provides a simple and diverse mechanism to
3	significantly decrease risk from the ATWS events.
4	And the DPS auxiliary feedwater actuation
5	provides additional assurance that ATWS events could be
6	mitigated. The DPS functions are explained in detail
7	in the Subsection 7.8.2.
8	From this slide I am going to talk about
9	Radiological Consequence Analysis. This presentation
10	consists of five parts as shown this. Let's move on to
11	next page.
12	This slide shows the design targets and the
13	design features for the dose analysis of DBA accidents.
14	For the EAB and LPZ dose targets are taken from 10 CFR
15	52.47 and according to the SRP those limitations can be
16	used for each DBA case.
17	And based on the GDC the limitation on the
18	MCR worker is taken. To minimize accident release
19	following systems are used. Safety injection system,
20	auxiliary feedwater system, containment spray system is
21	used.
22	These four kinds of actuation signals
23	initiate the corresponding emergency systems. And
24	limitation of leakage containment is lined by steel.
25	And lastly MCR operators are protected by two designs
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	110
1	selective air intakes and positive pressure in MCR.
2	Let's move on to next page.
3	MEMBER POWERS: What is your unfiltered
4	leakage in to the main control room?
5	MR. LEE: 100 CRF we used.
6	MEMBER SCHULTZ: So in terms of that value
7	where did it come from? Is it, I understand it was a
8	different value at one point in your analyses and you
9	had used 300 in some of the earlier work that you had
10	done. And that was modified to 100.
11	I'm curious to know where each of those
12	numbers were derived.
13	MR. LEE: Based on that our domestic areas
14	the unfiltered indication is 225 cfm. So our 100 cfm
15	has some conductivity. So as an engineering judgment
16	we decided that 100 is the outcome. And from the 300
17	to the 100 at the time we changed to that number based
18	on that our consequence analysis.
19	MEMBER SCHULTZ: Okay, so the, when you say
20	the values that you are familiar with are 25 cfm where,
21	are those derived from testing at other facilities?
22	MR. LEE: Yes, right, testing at the other
23	DC applicant numbers was bounded by our numbers 100 cfm.
24	MEMBER SCHULTZ: But those others were
25	from facility testing?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	111
1	MR. LEE: Yes, right.
2	MEMBER SCHULTZ: And those tests
3	environments were the systems pressurized? Was there
4	a pressurization system within the control room?
5	MR. LEE: At the TSP, yes.
6	MEMBER SCHULTZ: Okay, so that's, so the
7	testing environment applies to the design of the
8	APR1400?
9	MR. LEE: In our, within that the number is
10	the testing should be satisfied.
11	MEMBER SCHULTZ: Right. Thank you.
12	MEMBER STETKAR: Before you go on we have
13	not reviewed Chapter 7 of the DCD yet. And on Slide 59
14	I think you said that your, the reverse protection
15	system initiates reactor trip and auxiliary feedwater.
16	It does not provide a diverse signal to trip
17	the main turbine or does it? I'm trying to read parts
18	of Chapter 7 in real time here and I don't see it.
19	MR. OH: This is Andy Oh, KHNP Washington
20	office. DPS system is basically generated the turbine.
21	However, for APR1400 we have the RPCS system with our
22	prediction and compass system.
23	So when the RP, the power is over 75 percent
24	and RPCS is available cases that the telemetry function
25	is disabled. But the RPCS is disabled at that telemetry
	NEAL R. GROSS

(202) 234-4433

	112
1	case function is enabled. So basically DPS has some
2	telemetry function.
3	MEMBER STETKAR: It does somehow?
4	MR. OH: It does, yes.
5	MEMBER STETKAR: Okay. We'll look at that
6	when we get to Chapter 7. Thanks, Andy.
7	MR. LEE: Okay. Let's go one, there.
8	This slide shows the analysis method for accident dose
9	calculation. For the LOCA melted core source term is
10	assumed and the detailed assumption and the parameters
11	are presented in the slide of 15A.3.
12	For the Non-LOCA events damaged the fuel
13	and the mass release data based on the thermal hydraulic
14	analysis I used and the detailed assumption and
15	parameters are presented in Slide 15A.4. Based on the
16	Alternative Source Term and dose criteria of Total
17	Effective Dose Equivalent, radiological consequence
18	analysis are performed.
19	And lastly RADTRAD code and the
20	conservative atmospheric dispersion factors presented
21	in Chapter 2 were used. These approaches are
22	consistent with Reg Guide 1.183. Let's move on to the
23	next page.
24	This slide shows the detailed assumption
25	and the parameters for LOCA. For the LOCA, core fission
	NEAL R. GROSS

(202) 234-4433

	113
1	product inventory which developed based on the 102
2	percent rated power and the 56.4 GWD/MTU burnup.
3	For the containment building conditions,
4	the sprayed region is 75 percent of the total
5	containment net free volume. Two volumes of unsprayed
6	region per hour was used for air mixing rate.
7	It is assumed that the elemental and the
8	particulate iodines are removed by CS containment spray
9	system based on the model described in the SRP. And the
10	ten percentile values of the PowerS Model built into the
11	RADTRAD code was used for application of the aerosol
12	deposition effect.
13	Let's move on to the next page. It is
14	assumed that the containment purge is isolated at five
15	second after LOCA onset. And for the ESF system leakage
16	was assumed with two times of the design leakage. The
17	ACU filtering is assumed.
18	In the post-LCOA condition, the pH of IRWST
19	was, is evaluated to provide reasonable assurance that
20	the minimum pH values can be maintained above a seven
21	for 30 days in LOCA condition. The following materials
22	are considered and the conservative radiation
23	conditions are used. Let's move on to the next page.
24	MEMBER POWERS: What did you use for your
25	dose in the water?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	114
1	MR. LEE: When the LOCA conditions we used
2	to measure the core radiation conditions, the gamma and
3	the beta ray energy in the containment building at
4	highest level we used.
5	MEMBER POWERS: And what did that dose run,
6	dose rate?
7	MR. LEE: The number?
8	MEMBER POWERS: Yes, roughly.
9	MR. LEE: Four or five, ten to five gray.
10	MEMBER POWERS: Gray, I have to translate
11	that, decent.
12	MR. LEE: But it comes up with your number.
13	Okay. Let's move on to the next page. This schematic
14	diagram shows the radioactivity transport model for
15	LOCA.
16	Following a LOCA event, radioactivity is
17	released from the fuel into containment and released
18	into the environment through the containment low-volume
19	purge and the containment leakage. Once the ESFs are
20	actuated, radioactivity in the IRWST solution can be
21	released to the environment from ESF equipment into the
22	auxiliary building.
23	A reduction of the airborne radioactivity
24	by containment spray is, natural depositions are
25	credited. Let's move on to the next page.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	115
1	MEMBER SCHULTZ: What type of testing do
2	you have to, that's demonstrated the capability for this
3	design's containment spray, the containment spray
4	system? Have you done testing? Is it similar to other
5	design containment spray systems that are in place?
6	MR. LEE: Containment, according to the,
7	I'm sorry.
8	MEMBER SCHULTZ: I'm sorry, other systems
9	that have been designed and tested. Is this a new
10	containment spray design based upon experience or is it
11	the same based upon experience?
12	MR. LEE: As far as I know the spray system
13	should be, meet the requirement of the 90 percent area
14	of the containment. That is according to NC 56.5. So
15	in our DCD as far as I know that is it.
16	We tested that, the area of the spray
17	nozzle. But at the time that we used it the minimum
18	sprayed area, yes. So even though we used it the
19	minimum spray area the area can satisfy that
20	requirement.
21	MEMBER SCHULTZ: But you have done testing
22	to demonstrate you've got, that if the spray is demanded
23	you're going to, you will in fact have coverage like you
24	expect?
25	MR. LEE: And there's some kinds of nozzles
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	116
1	and we tested the area. And the smallest area we used
2	to how much covered the section of that area, the
3	containment area. So anyway that, yes.
4	MEMBER SCHULTZ: And the sprayed and
5	unsprayed region that you're showing here is it in the
6	way it's modeled or in the way it is physically?
7	MR. LEE: Yes, we calculate based on the
8	physical structure design and this requirement is also
9	is NRC requirements. So we
10	MEMBER SCHULTZ: This is a simple diagram.
11	But in fact you do, this spray is not going to get down
12	into the lower containment area as shown on the diagram.
13	MR. LEE: The spray, 25 percent of the
14	volume is that there is unsprayed region and we cannot
15	credit that spray in this area. So we can credit that
16	the mixing from the sprayed and unsprayed area. That
17	is a direct authority that we can use the two types of
18	sprayed area volumes for our we can use that.
19	MEMBER SCHULTZ: Okay, thank you.
20	MR.LEE: Let's move on to next page. From
21	now let me introduce the dose calculation for non-LOCA
22	cases. For the source term of the primary coolant,
23	noble gas and iodines are assumed to exist with the Tech
24	Spec LCO.
25	And secondary coolant is as well considered
	NEAL R. GROSS

(202) 234-4433

	117
1	the Tech Spec conditions. And specifically for the
2	iodine source terms two kinds of spike effects were
3	considered to comprise with Reg Guide 1.183.
4	For the events which experience fuel
5	cladding damage, it is assume that the fission product
6	in gap are released to the primary coolant. The release
7	fractions are used in conjunction with the core fission
8	product inventory with the maximum core radial peaking
9	factor of 1.8. The gap inventories are determined
10	based on the Reg Guide 1.183.
11	Next page. For the steam generator leak
12	rate, 0.3 gallons per minute is assumed for one steam
13	generator.
14	For the non-LOCA cases the fuel cladding
15	damage rate determined based on the thermal hydraulic
16	analyses are used as follows. And DF of iodine in the
17	steam generator can be determined based on the covered
18	or uncovered tube condition by secondary coolant.
19	Let's move on to next page. As an example
20	for non-LOCA cases, let me introduce the CEA ejection
21	dose calculation. Radiological consequences for the
22	CEA ejection events are calculated for two release
23	cases.
24	First one is the containment release.
25	Second one is release through the secondary system.
	NEAL R. GROSS

(202) 234-4433

	118
1	This slide shows the containment leaked.
2	For the containment leakage it is assumed
3	that all activities in the gap of the failed fuels are
4	instantaneously mixed throughout the containment air.
5	And those are available for leak to the environment.
6	Reduction in airborne radioactivity in the
7	containment by the containment spray system or by the
8	natural deposition within containment can be credited.
9	And next page.
10	And this slide shows that the release
11	through the secondary system. For the release through
12	the secondary system, activity release from the
13	secondary system is considered.
14	Since the tube design leakage in the steam
15	generator considered the activities consist of the
16	initial primary activity and the failed fuel gap
17	activity and the initial activity of the secondary side.
18	The appropriate partitioning coefficient, flashing
19	fraction and the fuel failure rate are considered for
20	dose calculation.
21	Last page is that as it shows the results.
22	Doses to the public at the EAB/LPZ for all DBA are well
23	within dose limits of 10 CFR 52.47. And MCR
24	habitability is ensured for all DBAs by complying the
25	criteria in the GDC 19.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	119
1	MEMBER POWERS: I understand how you get
2	your doses at the site boundary. How do you disperse
3	the radioactivity around the main control room?
4	MR. LEE: We calculate on site chi/Q based
5	on the
6	MEMBER POWERS: You actually used the
7	chi/Q for the site itself?
8	MR. LEE: Yes, so we
9	MEMBER POWERS: Doesn't that kind of do
10	violence to the assumptions in the chi/Q?
11	MR. LEE: No.
12	MEMBER POWERS: I mean, chi/Q is assuming
13	a Gaussian plume. But locally to the plant there can't
14	possibly, I mean it's just not going to be a Gaussian.
15	There's all the wake effects of the building and things
16	like. How accurate is that assumption?
17	MR. LEE: We used ARCON-96 code that is,
18	the Guide 1.194 as far as I remember we used that. And
19	also is that we picked that, picked the collect the
20	radiological data from the U.S. site. So we compare
21	each site and so we picked the six site of the
22	conservative cases.
23	And then we compared that. So we select
24	the one. But at the time, to envelop the most kinds of
25	U.S. sites, the sufficient margin was applied. That is
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	120
1	50 percent.
2	So we believe that this methodological data
3	this chi/Q can be very conductive chi/Q based on that
4	conductive material data in USA. And also provided
5	that the 50 percent of margin.
6	MEMBER POWERS: Well you slapped a lot of
7	conservatism on there. I can't argue with that. But
8	I mean the reality is that the flows around a plant
9	itself are really very complicated.
10	MR. LEE: Yes, right.
11	MEMBER POWERS: And where the inlets are
12	and your leakage into your main, the unfiltered leakage
13	into your main control room that become important here.
14	Technically your main control room is going to be your
15	site boundary limiting typically.
16	It's the main control room that's limiting.
17	Incidentally I did a back-of-the-envelope calculation
18	on your steam generator tube rupture and I came up with
19	almost exactly your numbers.
20	MEMBER SCHULTZ: Another question on the
21	control room. You've taken a, I guess I would call it
22	you've got your system that allows automatic selection
23	
24	MR. LEE: Yes, right.
25	MEMBER SCHULTZ: of the ventilation
	NEAL R. GROSS

(202) 234-4433

	121
1	intakes. And it's the first time I've seen it applied,
2	designed and applied. And you've taken some
3	conservatism.
4	I know that the Reg Guide allows a value of,
5	you know, a factor of ten I think for a dual system with
6	selectability. Did, as you've evaluated that
7	yourself, did you also come up with that you should have
8	a factor of ten or do you think it should be higher than
9	that?
10	Again it's the first time I've seen it
11	applied in an automatic mode. And so I'd be interested
12	in your perspective as you've evaluated it. Do you
13	think a factor of ten is fair? I know you've taken
14	something less for conservatism. But could you speak
15	to that for a moment?
16	MR.LEE: Yes. I don't have any idea about
17	the real testing about the selection. But in our
18	methodological consequence analysis at the time it's
19	that we can, as you mentioned that we can use the
20	reduction factor of ten in case that is from the release
21	point that the MCL intake should be different window
22	trajection and also they have the auto selection
23	function.
24	At the time that we can use a ten reduction
25	factor. But as you mentioned, that is that we have, we
	NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. (202) 234-4433 WASHINGTON, D.C. 20005-3701 (202) 234-4433

	122
1	would like to have some conservatism so we use that
2	factor of eight not ten. So we have like 20 percent of
3	the margin.
4	MEMBER SCHULTZ: But some of my question
5	goes to, as Member Powers indicated, the chi/Q for the
6	control room you get two intakes. But, you know,
7	they're not separated, I presume by much, are they in
8	the design?
9	You're automatically going back and forth
10	depending on the level of activity sensed. So again,
11	did you evaluate it and determine, yes, a factor or ten
12	is appropriate or a factor or eight is appropriate?
13	MR. LEE: Yes. Based on our RAI that we
14	did calculate the auto selection, the reopen, the
15	function at one hour, each one hours select open and
16	reopen and we can measure the levels. And at the time
17	if that, same at the time close to that direction.
18	But if that wind direction was changing at
19	the time I think that the intake point will, should be
20	changing.
21	MEMBER SCHULTZ: Yes, so you've thought
22	about it, you've evaluated it and you feel that you ought
23	to have credit for a factor of eight?
24	MR. LEE: Pardon me.
25	MEMBER SCHULTZ: You feel you ought to have
	NEAL R. GROSS

(202) 234-4433

	123
1	credit, given the system and its design, you feel you
2	ought to have credit for a factor of eight and you feel
3	that's conservative, a factor of ten could have been
4	justified?
5	MR. LEE: So in our estimation in our
6	methodological analysis at the time we used eight. So
7	we have it at 20 percent.
8	MEMBER SCHULTZ: Yes.
9	MR. LEE: At the time we considered it
10	reopened at the time eight percent of dose increasing.
11	But we did it at the hour margins. So those rates cannot
12	be changing.
13	MEMBER SCHULTZ: Okay, thank you.
14	MEMBER STETKAR: I think just for the
15	record I believe, Steve, that the intakes are widely
16	separated, aren't they. One, in fact they're on
17	opposite ends of the building.
18	MEMBER SCHULTZ: No. I understand but in
19	terms, Member Powers brings up a good point in terms of
20	the chi/Q evaluation and
21	MEMBER STETKAR: Sure, sure that's
22	MEMBER SCHULTZ: there's a little
23	fuzziness there.
24	MEMBER STETKAR: But in terms of
25	MEMBER SCHULTZ: That's all I meant.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

124 STETKAR: 1 MEMBER In terms of the 2 separation we're not talking about, you know, ten meters 3 apart. 4 MEMBER SCHULTZ: Right. 5 MEMBER STETKAR: We're talking about a large distance apart. 6 7 MEMBER SCHULTZ: Right. Either side of 8 the facility, yes. 9 MEMBER STETKAR: Yes. 10 MEMBER SCHULTZ: Definitely, I understand 11 that. Otherwise you wouldn't get anything near a 12 factor of eight. That's pretty large. But what I'm going back to is when the Reg Guide was developed. 13 14 There was a lot of discussion about 15 allowances for credit for the different types of system. 16 But because no one had that system available at the time 17 there was limited technical discussion about exactly 18 what justified the factor of ten. So what I was looking for is that you have 19 20 considered it, you think it's appropriate for your 21 design and you said that's how you determined. Thank 22 you. 23 MR. LEE: Yes. 24 MEMBER REMPE: So if on the doses, do you 25 ever have to consider, this is the unfiltered release **NEAL R. GROSS**

> COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	125
1	is, the dose that's shown here for the control room,
2	right? And do you ever consider that you've released
3	radioactivity to the environment and you have to rely
4	on the HEPAs and is there any challenge to the HEPAs?
5	MR. LEE: And challenge to the
6	MEMBER REMPE: If they degrade is what I'm
7	trying to say. Is there any, I mean is there enough
8	radiation released? Are you relying, how much are
9	relying on the HEPA filters in the analysis, none
10	because of the type of analysis you're doing?
11	MR. LEE: As far as I understand your
12	question you want to know about any challenges to
13	satisfy the dose criteria for the EAB or LPZ?
14	MEMBER REMPE: No, actually I'm still
15	focused on the main control room dose. And that is from
16	the unfiltered release, right?
17	MR. LEE: No, no. That is from the
18	MEMBER REMPE: The filtered release.
19	MR. LEE: In the LOCA for example, in the
20	LOCA coolant accident, a loss of coolant accident at the
21	time we have to consider it, and also direct. And many
22	things should be considered to make that, this dose
23	rate.
24	MEMBER REMPE: Okay, so when you calculate
25	this how much do you rely on the filters? How much of
	NEAL R. GROSS

(202) 234-4433

	126
1	a decontamination factor do you rely on the HEPA filters
2	is what I'm trying to get to?
3	MR. LEE: In the MCR?
4	MEMBER REMPE: Yes.
5	MR. LEE: Ninety-nine percent. But I
6	would have to check that.
7	MEMBER REMPE: Okay. So then pick one of
8	these. If there's a dose of estimated of 2 rem or
9	something then at that how much is coming, what would
10	happen if the HEPA filters did not function, if they
11	degraded, which would the dose increase is the question
12	I have in my mind? What contribution is it to that whole
13	dose for the main control room?
14	MR. LEE: Usually the filter, there are
15	activities that build up inside the computer at the time
16	the filter has a shine to the MCR worker. So we
17	considered is that the filter it takes to shine.
18	MEMBER REMPE: Okay. So how much is the
19	contribution of shine from the filter? Is it a large
20	fraction?
21	MR. LEE: Can I check the DCD?
22	MEMBER REMPE: Just a rough idea. Is it a
23	large contribution to the main control room dose?
24	MEMBER POWERS: Typically they're
25	MEMBER REMPE: No, it's not, okay. Dana
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	127
1	has assured me that it isn't. So you don't worry about
2	degradation?
3	MR. LEE: The total dose rate is at the
4	millisievert, 46.9 millisievert total dose. But in
5	that total dose I think the shine is at 12.9.
6	MEMBER REMPE: Okay.
7	MR. LEE: And so the design with the filter
8	is located office door of the MCR. So the shining is
9	a little bit higher than the other plants.
10	MEMBER REMPE: Okay. And if it, would it
11	ever degrade? I don't know enough about how they
12	operate that you would be concerned that it could
13	increase.
14	MEMBER POWERS: Typically particulate is
15	not a biggie. Your big dose is coming, as he says, you
16	get a certain component from shine. But most of it
17	comes from the noble gases on the iodine.
18	MEMBER REMPE: Okay.
19	MEMBER POWERS: Particulate, just because
20	of the way the source term is arranged it's not huge for
21	this 24 hour period. Now you get into the longer terms
22	and it's a problem. But the HEPAs usually have a
23	roughing filter in front of them and so they don't
24	overload.
25	MR. LEE: Thank you, sir.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	128
1	MEMBER REMPE: Thank you too.
2	MR. LEE: I would like to provide you a
3	summary. APR1400 Transient and Accident Analyses of
4	Chapter 15 demonstrate to comply with the requirements
5	of the federal regulations and NRC regulatory
6	documents.
7	There are 12 open items in total for Chapter
8	15 as described in next slides. These are the open
9	items. Thank you for your attention.
10	MR. CHO: This is Sung Ju Cho. May I add
11	some explanation about the SI RCP? In Tech Specs to one
12	RCP or one shut down coolant pump for share in operating
13	shutdown condition. And also allow operation without
14	any RCP running for up to one hour.
15	So we assume that this event occur during
16	this period over time because to maximize the primary
17	to secondary site temperature difference maximized to
18	maximize the primary and secondary site temperature
19	difference. And also in Tech Spec, boron dilution
20	operation is not allowed during this condition.
21	So we assumed the homogeneous boron
22	concentration inside the ICS during SI event. So this
23	is my explanation.
24	MEMBER MARCH-LEUBA: Okay, thank you.
25	MR. CHO: You're welcome.
	NEAL R. GROSS

	129
1	CHAIR BALLINGER: Any other questions from
2	the Members? We're a half hour behind but we should
3	probably be able to make that up. So we are in recess
4	until 1:00 p.m.
5	(Whereupon, the above-entitled matter went off the record at 12:01 p.m. and
6	resumed at 1:00 p.m.)
7	CHAIR BALLINGER: We're back in session
8	and the floor is the Staff's.
9	MR. STECKEL: Thank you very much. Thank
10	you. My name is Jim Steckel. I am currently the
11	Chapter PM for Chapter 15, and I've worked with the group
12	that's presenting today since inception of the review.
13	Before we begin further, I would like to be
14	assured that two contractor staff that we have that will
15	be calling in as part of the presentation, that they are
16	on the phone. Mr. Jim Servacious, are you there?
17	MR. SERVACIOUS: Yes, I'm here.
18	MR. STECKEL: And Doug Barber, are you
19	there?
20	MR. BARBER: Yes, I'm here.
21	MR. STECKEL: Great. Thank you very much.
22	We'll let you know when you're needed. I am moving to
23	Slide number 2. These are the reviewers that have
24	worked on this chapter for the SER. And you can see our
25	consultants at the bottom.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	130
1	We have two contractor support personnel
2	here today that will be part of the review in person,
3	and of course the two who are on the phone right now.
4	Here are sections we will present and the
5	presenter names. And if there are no questions or other
6	comments, I think we can begin. I'm going to turn it
7	over to Mr. Shanlai Lu.
8	MR. LU: Great. Shanlai Lu from staff,
9	reactor system, and good afternoon. As Jim mentioned
10	that we had a lot of reviewer and then consultants as
11	part of our team. And as a result probably today you're
12	going to hear about 17 people presenting plus two on the
13	phone.
14	So the one of the major difference between
15	this design certification comparing with any other
16	large reactor design certification is we have much
17	shorter schedule. So therefore, that early on and that
18	during the Phase I and Phase II, we put a lot of, we have
19	a burst of resource spending.
20	So that's reason and this chapter becomes
21	one of the most heavily chapter by mostly applicant
22	and the staff. So before we get into the details
23	section by section, I want to use two slides to give you
24	staff's perspective about this design certification and
25	also the approach we took to tackle specifically for the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	131
1	reactor system part of Chapter 15.
2	Okay, all right. So back to one and a half
3	year before the DCD was documented it was docketed. And
4	we had a QA inspection about to check that and see what
5	does the application looks like.
6	And the Staff's first impression was oh,
7	okay. It's called an APR1400, it's a design similar to
8	the previously approved reactor design. It's actually
9	a design evolved from System 80+ which was certified 23
10	years ago.
11	So it's really, by itself it's a mature
12	design in terms of System 80+, for example, Palo Verde,
13	the System 80 has been running. And then in addition,
14	the KHNP has already completed construction of core unit
15	three which is also the APR1400 and which has already
16	been in, you know, operation.
17	So throughout this review, and it's further
18	confirmed that we found we found that many system
19	designs are either similar or even identical to those
20	I would say System 80+. And the DCAD application is
21	also similar to that of say System 80+ itself.
22	So however, give the credit to the KHMP,
23	they did add more safety margins. We already covered
24	for example accumulator and then additional ECCS
25	trainings, and then the reactor vessel injection there.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	132
1	So that's our perspective throughout the,
2	during the past almost three and a half year review. So
3	next slide. Okay. So let me talk about high level.
4	What's the approach we took?
5	Okay, based on this initial assessment of
6	what exactly this declassification is about, we decided
7	to focus on the change that we have mandated or we're
8	required to cover every single sections, every single
9	design features.
10	But our focus of the resources is on the,
11	has been on the changes that are implemented into the
12	APR1400 design. And then we decided to also, because
13	after 1995 we identified a lot of generic safety issues.
14	And then so we decided to also spend
15	resources on the in-depth review on those safety issues
16	identified after 1995. And then of course we have to
17	then again provide overall coverage with the assistance
18	of Staff confirmatory analysis on select areas. We
19	needed to cover every area.
20	But we also asked our, assistance from
21	Office of Research to perform confirmatory analysis on
22	select areas like the, for example yesterday 9.1.1 was
23	we were doing the criticality analysis based on the
24	Staff's in-house calculation and the additional
25	analysis performed by Oak Ridge.
	NEAL R. GROSS

(202) 234-4433

So for today's presentation you are going to see three steps for confirmatory analysis by Office of Research. And then we, as part of the review we decided that since we have such shorter schedule comparing with any other previous design review, so we decided to identify the potential issues as early as possible.

For example, some of the issues were identified even during the before the submittal. We told them hey, solve this problem GSI-191. And the thermal conductivity degradation and a few seismic.

They paid up and then did take time for both sides to converge the specific solutions and the approaches. And then I think with that effort, we should be able to finish this declassification on time.

All right, and we conducted quite a number of audits and on-site inspections, so we are going to talk about that one too. And then with those on-site inspections and audits, we can zoom in and focus on our RAIS. So we issue less number of RAIs comparing with any other design certification, at least from that perspective.

But it has been focused on, based on the audit inspection and the confirmatory analysis. So that's the overall approach in the review and the Staff

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

	134
1	perspective. Any particular questions for these first
2	two slides, summaries?
3	Okay, so stepping into the details of 15.0
4	section, it's the title is Transient Accident Analysis.
5	And the first part is about classification of the
6	events. And as it is, because the similarity to the
7	existing design and System 80+ and then so there is
8	really not a whole lot of change there.
9	And then the Staff concluded that there was
10	no additional issues, or any issues related to the
11	classification. And plant characteristics, initial
12	condition assumed in the active analysis which was
13	spread into the different sections. And as part of
14	summary 15.0 we found it's acceptable.
15	Trip system, engineered safety feature
16	systems and analytical limit and DNA times the same
17	thing, was carried out by each specific sections too.
18	The component failures, non-safety related
19	system, operator actions considered in a safety
20	analysis, especially the single filler, has been
21	considered throughout by different scenario, different
22	event.
23	Loss of offsite power and long term core
24	cooling methodology for determining uncertainties and
25	the thermal conductivity degradation. Those are the
	NEAL R. GROSS

(202) 234-4433

	135
1	parts we did have some issues, so that's really I want
2	to talk about it, even as part of it point zero.
3	So Staff finding in the, except the two open
4	items we identify at this point, and that the entire
5	section of 15.0 satisfied the relevant three
6	requirements. So next page, we're going to talk about
7	the two open items here.
8	Okay, fuel pellet thermal conductivity
9	degradation, and we talked about that already. And I
10	think it was first presented by our 4.2 in the, we
11	identified as an RAI. And I think I do agree with Dr.
12	Schultz' comments.
13	And then for new reactors, you've got me.
14	So it's not a new phenomenon. We Staff and the industry
15	knew that for a long time. Why still, you know, takes
16	that long to fix it and then why the fuel reactors, I
17	think that's really good comments there.
18	And you know, in addition to that actually
19	the Staff identified this issue as part of Regulation
20	15.46. It's required. So when we identify this issue
21	back to it, it's not came from KHNP because they just
22	pulled it from the Westinghouse exporters Phase 3D
23	methodology and it's part of technology transfer of
24	three 80+ to them.
25	So it has been done there for a long time.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	136
1	And then so based on what we learned at this point is
2	okay, we actually initially identified this issue not
3	from a Westinghouse or KHNP, from another fuel vendor.
4	And we found this is the industry wide
5	issue. Not only that one, and our Staff approved that
6	too. So we research the issue during the initial QA
7	inspection and identified this issue. So KHNP actually
8	did a thorough evaluation to figure out what's scope out
9	or what is the impact.
10	So their initial submittal on the docket
11	identified the fuel center line temperature increased
12	by 550 degrees Fahrenheit for certain burn level at hot
13	spot. So that's just temperature is so large, and
14	difference so large and then missed by Phase 3 B code.
15	So we really, you know, decided to pay
16	attention to this issue. And then the issue has been
17	on its path to be resolved. So we had a lot of
18	iterations, and you're going to hear from the Staff.
19	One of the reasons we also identified this
20	issue in addition to 4.2 is because of as the TCD does
21	have the impact on the initial condition, the central
22	line temperature stored under, it has the impact on
23	specific transient.
24	So when we identified this issue broadly at
25	right at the beginning of 15.0, hopefully that any
	NEAL R. GROSS

(202) 234-4433

	137
1	sections of transient would be also, we don't have to
2	repeat the same open item, although you may see the SER
3	mention about a particular open item.
4	So we can talk about that one in detail, you
5	know, section by section and then why it's a still open
6	item. But their actual resolution we plan to talk to
7	you guys in December timeframe.
8	Okay, so if you have specific questions,
9	hold on that one. We did have this one. We have not
10	converged with the applicant yet.
11	All right, another open item we identified
12	as part of the 15.0 is a boron dilution during a LOCA
13	long-term cooling phase. And this is the standard GSI
14	185 issue. And this is required by 1.206, the
15	regulatory guide for all the new reactors, they need to
16	address this.
17	So they did address this, but we were
18	looking into the next tier of information. There was
19	no analysis performed. So we identified this issue as
20	an RAI and then became an open item because at the time
21	we finished SER this, the information had not been
22	submitted.
23	But right now we are going to give you a
24	preview of how we, and the issue is being resolved.
25	Actually, KHMP have already presented and I think this
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	138
1	issue by itself is technically speaking it's no longer
2	an issue. But the documentation from the logistics
3	perspective, we have not put in to SER.
4	Okay, so those are two open items related
5	to 15.0. Any questions about this, comments? Then we
6	are getting to the 15.0.2. Although this may be like
7	a standard section. But this section actually covers
8	the review of transient accident analysis methods.
9	The entire Chapter 15 used a lot of computer
10	codes. A lot of them have been approved as part of the
11	SEA system 80+, and it totals 17 of them. So that's the
12	reason we spent quite a lot of resources, and then our
13	consultant, Mr. Jim Servacious is on the phone. He
14	actually did a lot of digging.
15	And then part of our review was to check
16	although it's approved, we have the limitations on each
17	specific computer code, what's the application range of
18	the parameter whether it's applicable to this design.
19	So that's the part to go through that part takes a lot
20	of time.
21	And then Jim did his job. And the
22	methodology wise then includes a non-LOCA safety
23	analysis method, a large LOCA, what we wanted to mention
24	about it is we are going to have a one day presentation
25	on large LOCA topic in December I think. So are not going
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	139
1	to talk about that one in detail.
2	So our LOCA, large LOCA side of DCD
3	presentation is going to be one slide because really we
4	are going to talk about it in December in details.
5	Small LOCA evaluation methodology, we also
6	reviewed that one and it's applicable, the current
7	license and basis of the methodology is applicable to
8	APR1400. Post LOCA long term cooling evaluation
9	including in-vessel downstream effects and we found
10	overall it's the, you know, the plan is acceptable
11	except that we have issues of boron precipitation, boron
12	dilution, and then the resolution of GSM 191 has not been
13	completed yet, although technically we don't see a
14	problem.
15	So that's the reason we have reviewed
16	applicability of this system responses, original
17	approval, limitations, and the because all those
18	codes have been made and they were developed, you know,
19	40, 30, at least 30 or 40 years ago.
20	So they were running on different QA
21	system, the computer system back then. So we launched
22	a specific inspection audit to check the QA record and
23	to check to see whether the Windows, latest Windows
24	version still worked. So we dive into that part, too.
25	All right, next slide.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

140
That's quick, all right. So we launched
quite extensive audits to check the calculation reports
and the QA records. And we did ask quite a few RAIs,
and so far all of the RAIs at this point have been
resolved.
The examples are provided here. HERMITE,
radioactive term and then limiting pressure, RCOS code
benchmark. I remember we talked about the ENDIVE4 with
ENDIVE, compared with ENDIVE7 and why, how the issue was
really, you know, we issued RAI and they came back with
how they really resolved those issue by doing the
benchmark against actually plant data.
So that's the part that we did ask the
question. It's not something we let it go with
different ENDIVE cross section library. But we found
later that the cross section library has been used, even
right now. The older version has been used by the
current plant operating fleet too.
But with the benchmark, we found that it's
acceptable for ROCS codes to be applied into APR1400.
For COAST, the code friction and form loss coefficients,
CRORO III sala adam anthalan dafaattaa

CESEC-III cold-edge enthalpy definition, we were just

trying to understand some of documentation back to 20

or 30 years ago was not clear. Our consultant wants to

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

know what's exactly the definition there.

(202) 234-4433

	141
1	Okay, STRIKIN-II, fuel temperature during
2	steam line break event. So we also asked questions.
3	So of those issues, we identified, we also identified
4	REIS related to RELAP5/MOD3 to large LOCA. Those are
5	application issue related to the use of the topic,
6	approve the topic, oh, and the topical report to be
7	approved.
8	MEMBER CORRADINI: May I ask a question?
9	MR. STECKEL: Yes.
10	MEMBER CORRADINI: This is Corradini. So
11	I don't understand the last sentence where it says the
12	concluded is pending review. So what we're looking at
13	here today, our initial calculations on a methodology
14	that you're still evaluating?
15	MR. STECKEL: That's correct. And as it
16	is right now, because of the TCD issue and also the
17	resolution of the REIs related to the large LOCA topic,
18	KHNP is running another round of final set of the
19	analysis.
20	MEMBER CORRADINI: So let me just ask a
21	question. So it sounds like we're putting the cart
22	before the horse. Are we going to see now a whole
23	different set of quantitative numbers that we're going
24	to have to look at again?
25	MR. STECKEL: That's correct. That's the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	142
1	reason why I'm saying that conclusion is pending on the
2	review of large LOCA topic. That's also the reason
3	today we do not plan to give you a final conclusion of
4	Staff's review on large LOCA analysis.
5	However, we do want to show you the
6	confirmatory analysis we've performed to support the
7	development of the REIs we had related to the large LOCA
8	analysis. But you are correct that I think that as it
9	is right now, if you look at SER or DCD, the numbers are
10	subject to change.
11	MEMBER CORRADINI: Okay. So then let me
12	ask the question differently. In all I've looked ahead
13	of it, and I see a lot of the TRACE, what we'll call
14	confirmatory or audit calculations.
15	MR. STECKEL: Right, right.
16	MEMBER CORRADINI: Which all indicate much
17	lower values. Much is maybe, I won't put a qualifier.
18	Lower values on peak line temperature and associated
19	figures of merit. So it's not your intention to try to
20	understand why this is different, it's a matter of just
21	making sure that you see a bounding number at this point
22	and then approve their methodology to do a final set of
23	numbers?
24	MR. STECKEL: That's correct. And not
25	only that one. When we ran our initial phase of the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	143
1	trace confirmatory analysis at that time, it was
2	weighted, that particular one we just want to make sure
3	we have almost identical physical properties as a real
4	RELAP5 input, whatever the use so that we can have a head
5	on, an apple-to-apple comparison.
6	But however, after we identify the PCT
7	issue and then we actually as part of the TRACE analysis,
8	it's as part of the I think the backup slide. You can
9	see there's a, we actually did the additional analysis
10	to cover the TRACE analysis with the TCD addressed too.
11	So that one, the PCT goes up much higher.
12	However, even as it is right now with
13	whatever we calculated, even we performed, we try to use
14	the TRACE to perform the bounding analysis to try to
15	bound the TCD with that, and the PCT still way below
16	2,200. So it's really an issue of how it will be clearly
17	stated and documented for Staff to approve.
18	MEMBER CORRADINI: Okay, thank you.
19	MR. STECKEL: Okay. Next slide. Any
20	question for 15.0.2, and Jim is on the phone. And he
21	generated all those REIs and reviewed this. If
22	nothing, then we'll turn to Michelle.
23	MS. HART: Good afternoon. I'm Michelle
24	Hart, I'm with the Radiation Protection and Accident
25	Consequences Branch, and I'll be talking about
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	144
1	radiological consequences of design basis accidents.
2	HNP put that at the end of the presentation,
3	we put it at the beginning.
4	MEMBER POWERS: Because it's the business
5	end.
6	MS. HART: For whatever reason we put it
7	here. So in SRP 15.0.3 is where we have the facts on
8	doing these analyses. As Shanlai had said, this design
9	is very similar to the designs we already have. So
10	there's no real differences between the types of design
11	basis accidents they'll look at.
12	And so I did review the source terms,
13	transport and release of fission products. Core
14	isotopic inventory I did do a confirmatory analysis to
15	see if I believed the core inventory that they gave me.
16	I also looked at the coolant activity
17	concentrations including the conversion to tech spec,
18	dose equivalents. I had some help from somebody in the
19	chemical branch on the post accident containment water
20	chemistry management or the pH control in the water in
21	the containment.
22	And then I also looked at the evaluation of
23	fission product removal. We did talk about that some
24	in the ACRS meeting for Chapter 6. And then of course
25	we're evaluating the offsite doses at the EAB and the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	145
1	LPZ and also in the control room, and the TSC
2	radiological habitability. Next slide, please.
3	So the applicable guidance is given in the
4	SRP 15.0.3 and also in Reg guide 1.183 which is also
5	sometimes called the alternative source term. I did
6	perform independent confirmatory analysis for all the
7	design basis accidents that helped me develop if there
8	were any RAIs, and like I said, for the core isotopic
9	inventory.
10	Right now the version of the SER that you
11	have has confirmatory items based on the REIs that I had
12	asked. I cannot make any final final conclusions until
13	it shows up in the design certification document
14	revision. I have preliminarily reviewed the revision
15	to the design certification document and all of those
16	confirmatory items go away except for the steam
17	generator two rupture.
18	So those problems resolved. I do find that
19	the offsite dose results are within the regulatory dose
20	criteria for all the design basis accidents, and
21	therefore it's acceptable. So those are resolved.
22	The control room in TSC results are less
23	than five rem, however there is an open item, 15.0.3-1
24	which remains unresolved. So I cannot make a final
25	finding on control room and TSC habitability until that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	146
1	open item is resolved. And I will talk about that on
2	the next slide.
3	But what it was is one of my colleagues was
4	asking some questions about the radiation monitors and
5	the intakes for Chapter 14 for ITAAC. And we discovered
6	in their response to that question that the control
7	logic automatically reopens the intakes on a periodic
8	basis during the event to redetermine which intake has
9	the lower radioactivity, and then close that other
10	intake so that you always have the lower contaminated
11	intake open.
12	It's not something that I had ever seen
13	before, and it wasn't really described in the other
14	sections of the DCD, so I wasn't really expecting it.
15	So I had some questions about whether the design basis
16	dose analyses did cover for this small period of time
17	when both intakes were open.
18	So that RAI question, it's in Chapter 14,
19	14.0.3.08-14 sub-question 6.b remains under review.
20	But we have had discussions with the applicant and it
21	looks like they're on track to get the response
22	satisfactorily to where resolved.
23	The question under, they have provided some
24	scoping type analyses to show that there is sufficient
25	margin in their current analysis as it stands to account
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	147
1	for this reopening of the intakes. It's just a matter
2	of the thing that we're still talking about is the COL
3	items, the COL applicant will have to make sure
4	MEMBER MARCH-LEUBA: Just out of
5	curiosity, this reaching of the intakes, is it once a
6	minute, once an hour, once a week?
7	MS. HART: Well, okay, so that was the
8	question that we had because it was unclear to us. And
9	what the original COL item was is that the COL applicant
10	would choose those times, both the intervals and the
11	amount of time that the intakes are open.
12	And I said well we need to understand what
13	you, the designer, think is an appropriate thing so that
14	
15	(Simultaneous speaking.)
16	MEMBER MARCH-LEUBA: What are you built in
17	the analysis.
18	MS. HART: Right. And so the COL item
19	would be you, the COL applicant, still pick this, but
20	if it's outside the bounds of what would be covered by
21	the dose analysis, you may have to re-do your dose
22	analysis.
23	So their scoping analysis, or their
24	sensitivity analysis assumed that it would be open on
25	an hourly basis for a minute at a time. Now both the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	148
1	intakes are open, you know, does it really increase the
2	amount of radioactivity? I mean, it's still being
3	drawn through the filters.
4	There's some, you know, it's not really
5	clear that it would have much of an effect on the dose
6	analysis, but I think it was just mainly it was unclear
7	what the assumption should be and how the system would
8	really be operating, what the basic assumption for the
9	design was.
10	So we're trying to clarify that we don't
11	have the final resolution, we don't have the final RAI
12	response. So we're just waiting on that.
13	MEMBER SCHULTZ: It's good to have it
14	addressed because as I mentioned earlier, the reg guide
15	was developed and it had particular parameters that were
16	allowable if one had different types of intake systems.
17	MS. HART: Right.
18	MEMBER SCHULTZ: But because this one in
19	particular hadn't, wasn't available at the time the
20	discussions were held, there wasn't a lot of attention
21	paid to how it would be implemented.
22	MS. HART: Right, and I was involved with
23	that. So yes, I remember that. I think we were
24	expecting that a system like this, because a system like
25	this has been discussed in SRP 6.4 for quite some time.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	149
1	It's theoretically possible that somebody out there
2	could have one and I'm just not aware of it.
3	I think the thought was is that it would
4	automatically isolate and then you would just stay with
5	the configuration for the rest of the event. And so
6	this idea that you would check periodically to make sure
7	you were still at the lower intake concentration was not
8	something that I think any of us thought of.
9	MEMBER SCHULTZ: I think original it was,
10	it would be implemented automatically and then that gave
11	particular tread.
12	MS. HART: Right.
13	MEMBER SCHULTZ: But the switching back
14	and forth, I agree, is something that needs attention
15	to provide some reassurance.
16	MS. HART: Right. And so, yes, we're just
17	trying to make sure that we have a box around what the
18	COL applicant needs to consider when they make those
19	choices.
20	MEMBER MARCH-LEUBA: Right, but just a
21	Member's opinion, don't be too hard on them because I'm
22	looking at it from the dirty side, one minute an hour
23	versus I've been there from the dirty side all the time,
24	it's a penalty I'm willing to take.
25	MS. HART: Right. And I think it's clear
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	150
1	that they did have a reduction. They took some of the
2	credit for that margin that instead of taking a factor
3	of ten for the automatic isolation, they took a factor
4	of eight.
5	So that, you know, is 20 percent of margin
6	over top of what we would allow normally. So it's well
7	covered by that. So I'm not as concerned about that.
8	I think it's just making sure that the COL applicant
9	knows what's going on and know what they need to do.
10	MEMBER SCHULTZ: Michelle, other aspects
11	of the control room dose calculation, the question came
12	up related to the chi/q. You said that you had reviewed
13	those. Did you do any audit calculations related to
14	that?
15	MS. HART: I am not the atmospheric
16	disbursion analyst. We did have, we did evaluate of
17	course the control room chi/q's and had determined that
18	they had followed the guidance that, you know, is out
19	there.
20	I did not do any particular sensitivities
21	or anything like that around chi/q's. I think the, you
22	know, we'll see the real answer when the COL applicant
23	comes in and uses their real chi/q's to compare. These
24	are kind of site parameters for lack of a better term.
25	So you just want them to be as reasonable
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	151
1	as possible. They don't have to be specifically, you
2	know, really, really correct or anything like that
3	because we do have that opportunity when you actually
4	have a site. But those must be the answer.
5	So they did have chi/q's for the intake and
6	also for the unfiltered in-leakage. And the unfiltered
7	in-leakage is, you know, 100 CFM total and the intake
8	rate is I guess like 3,700 CFM. So a lot more is coming
9	in through the intake. And the intake is filtered, and
10	there's also a resurface filter.
11	MEMBER SCHULTZ: Thank you.
12	MS. HART: Are there any more questions?
13	Well since there are about 17 of us, I have been told
14	I need to get out of the way. I'll still be here,
15	though.
16	MR. DRZEWIECKI: I am Tim Drzewieki. I'm
17	in the Systems Branch of the NRO. I reviewed 15.1. And
18	so this involved four vents that were AOOs, among
19	postulated accident, and steam line break.
20	So the vent which is highlighted, which is
21	the inadvertent opening of the steam generator ADV, this
22	was identified as elevating AOO. These were evaluated
23	using CESEC in order to get the NSSS response, and then
24	CETOP-D using the KCE1 CHF correlation in order to
25	evaluate thermal margin.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	152
1	Staff did their own calculations in order
2	to, well first evaluate all the parameters as well as
3	trace calculations in order to support a finding that
4	they had identified the remaining event. Next slide,
5	please.
6	MEMBER MARCH-LEUBA: Not so fast. This
7	question is probably higher than your pay grade, but I
8	personally am so used to working with SAFDLs, specified
9	acceptable fuel design limit, that I'm not sure where
10	they come from. What we've seen is that the applicant
11	is using this 20 kilowatt per foot LHDR SAFDL. How does
12	that get reviewed, approved, accepted?
13	MR. DRZEWIECKI: Well, I do know where
14	that's at. And okay, so where that value resides now
15	is that they have a TCD tech port which they had
16	evaluated the impact of thermal connectivity
17	degradation on several aspects of their DCD.
18	And in there, that was where they came up
19	with a value of I guess it's 20. So that value I believe
20	
21	MEMBER MARCH-LEUBA: Based on center line
22	temperature melt?
23	MR. DRZEWIECKI: Yes, that's right.
24	MEMBER MARCH-LEUBA: Okay, so 20 is a
25	surrogate for center line temperature melt?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	153
1	MR. DRZEWIECKI: Yes, yes.
2	MEMBER MARCH-LEUBA: Because that's what I
3	thought I've heard from people that 20 would melt the
4	core. And indeed it does.
5	MR. DRZEWIECKI: Yes.
6	MEMBER MARCH-LEUBA: And is there a
7	process, maybe it's more is there a process for
8	accepting that?
9	MR. LU: Yes. I think as it is right now,
10	20 kilowatts per foot, the number at this point staff
11	has not taken a position yet. It's open, it's still
12	remain to be part, an open item as a part of a few topical
13	approval review. And so we are still not there yet.
14	MEMBER MARCH-LEUBA: But the field topical
15	will have an SER resist 20?
16	MR. LU: Yes.
17	MEMBER MARCH-LEUBA: Okay.
18	MR.LU: Right. And then see whether it's
19	
20	(Simultaneous speaking.)
21	MEMBER MARCH-LEUBA: Is that like a
22	setpoint or something like that?
23	MR. LU: The reason they are using 20, I
24	think they are using them as they are somewhat design,
25	you know, they lean on that power density based on core
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	154
1	lines less than 20 kilowatts per foot, they're fine
2	simply because they think that based on that number that
3	it satisfy SAFDL actually.
4	MEMBER MARCH-LEUBA: And just, this would
5	be a SAFDL for transient power? I mean, you have a 20
6	kilowatt per foot in a steady state? It won't be this
7	close from it in a steady state? Will it apply only for
8	transients?
9	MR. LU: Right, right.
10	MEMBER MARCH-LEUBA: Peak power.
11	MR.LU: Oh, of course, of course. I don't
12	think that they are trying to design a core with 20
13	kilowatts per foot steady state power. They're far,
14	far below that one, right? My understanding, right?
15	It's like less than 13 kilowatts per foot.
16	MEMBER MARCH-LEUBA: Twelve, thirteen is
17	normal.
18	MR. LU: Right. But for example the rod
19	ejection case, they may have higher. That's one of the
20	reasons that when the TCD, when we're talking about the
21	rod ejection case, that particular part still has,
22	remain to be an open item.
23	We are still working with them because they
24	have not provided to us what's exact the final analysis
25	based on TCD, what's the center line temperature will
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	155
1	be.
2	MEMBER MARCH-LEUBA: Since you mentioned
3	the control rod ejection, I'll save you time later
4	MR. LU: Yes, that would be a confirmed
5	analysis.
6	MEMBER MARCH-LEUBA: They mention 230
7	calories per gram. Am I mistaking that with high rise
8	formation that there is a limit that is a function of
9	burn up?
10	MR. LU: That's right, yes.
11	MEMBER MARCH-LEUBA: Or this doesn't
12	apply.
13	MR. DRZEWIECKI: Well, okay, so a value
14	still applies in terms of the fuel disbursal. Okay, but
15	in terms of if you get a fuel failure, that's a much lower
16	limit. That's burn up dependent.
17	MEMBER MARCH-LEUBA: They're applying it
18	correctly?
19	MR. DRZEWIECKI: Yes.
20	MEMBER MARCH-LEUBA: They just put a
21	simple number in the slide? I mean, in the slide they
22	just said 230. They didn't say anything else.
23	MR. DRZEWIECKI: Two thirty, yes, that's
24	right. Actually they were below, I believe, 60 which
25	would be a high burn up limit.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	156
1	MEMBER MARCH-LEUBA: Okay, thank you.
2	MEMBER SKILLMAN: Tim, I've got a
3	question. The limiting event here is the either main
4	steam safety valve or relief valve lifting. What
5	consideration was given to a relief valve on your first
6	or third stage feedwater heater, your high pressure
7	feedwater heater where you get not only a great amount
8	of heat removal from secondary due to the loss of the
9	steam, but you also get a temperature reduction from
10	your design for your final feedwater temperature.
11	As a consequence, the feedwater is cooler
12	going into the tube bundle, and as a consequence, the
13	moderator temperature coefficient, you can be adding
14	reactivity.
15	So my question is is this really the
16	limiting condition, or could there be a feedwater heater
17	relief valve failure that could result in a slightly
18	different and perhaps more serious transient?
19	MR. DRZEWIECKI: Well, I can say that this
20	event, 15.1.4 was not the one that had the most amount
21	of over cooling. It was the one they had identified as
22	giving the least amount of thermal margin.
23	15.1.1, actually that was the event that
24	resulted in the largest amount of reactivity insertion.
25	However, it was enough of a reactivity insertion to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	157
1	actually cause a trip of the reactor.
2	And so this event, there was a rise to about
3	113 percent and it just stayed there. So when it got
4	to manual trip, that was when they saw it eliminated the
5	DNBR.
6	However, I believe our incinerator, as you
7	described, would result in likely more reactivity
8	insertion. However, I believe that could be bounded by
9	the 15.1.1 event which has shown to be less limiting in
10	terms of DNBR.
11	MEMBER SKILLMAN: Thank you.
12	MR. DRZEWIECKI: Sure. Okay, next slide.
13	MEMBER MARCH-LEUBA: So just on 15.1.1,
14	you postulate a drop in fuel temperature. You're going
15	to assume once you do it's a failure, right?
16	MR. DRZEWIECKI: Yes.
17	(Simultaneous speaking.)
18	MEMBER MARCH-LEUBA: They always
19	overestimate how much the temperature drops.
20	MR. DRZEWIECKI: Yes. They had assumed
21	that it would drop by about 100 F, and we had calculated
22	that if you lost one train it would probably be more,
23	you know, about 50 degrees or something like that,
24	40-some degrees. That was our calculation by hand.
25	Yes, it was bounding.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	158
1	MEMBER SKILLMAN: Thank you.
2	MR. DRZEWIECKI: Sure. Okay, so in
3	evaluating these events, there's a table on the staff's
4	MSER which we tried to go through find all the inputs,
5	trips, all of that, find the value for that and state
6	what the basis is for that value, why it's conservative.
7	The applicant did assume a bounding relief
8	capacity for this valve that would bound the opening of
9	any valve on the secondary side. They ran this with and
10	without a LOOP or loss of offsite power, but the one that
11	was bounding should have a LOOP.
12	And of course there was a feedwater cutback
13	trip, but that was not taken credit for. There was only
14	credit taken for operator action in order to cause a trip
15	of 30 minutes into this event. And the results showed
16	that they didn't violate SAFDLs, they didn't violate any
17	of the pressure limits.
18	Okay, next slide. So now we're on the
19	steamline break. They had two separate calculations.
20	One was to maximize the amount of other activity
21	insertion, and you would get post trip. And then a
22	second calculation or series of calculations in order
23	to try to minimize the amount of thermal margin that they
24	had.
25	They used CESEC again. Again, they used a
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	159
1	cold edge temperature for the feedback. And what this
2	is, this is a way in order to calculate the effective
3	moderator temperature such that you get a bounding low
4	value for the feedback, or low value, the temperature
5	used in the feedback such to get a bounding positive
6	value for the reactivity insertion.
7	And of course they used CETOP-D for the
8	thermal margin. And again, there's a table in the
9	Staff's SCR in order to look at all of the inputs and
10	the basis for those values.
11	MEMBER MARCH-LEUBA: And in this event,
12	what's the consequence of the return to power, other
13	than we've scared the operators to death in the control
14	room, you return power to two percent, five percent
15	power?
16	MR. DRZEWIECKI: Well, it would be
17	short-term if it did happen. If it did not happen, this
18	event, what happens eventually is that safety injection
19	is going to put the boron into the core, and that's going
20	to shut you down.
21	So usually what happens is what I've seen
22	at other plants, you know, like at Palo Verde, there
23	could be a rise in power up to maybe even a size, you
24	know, ten percent.
25	Now for them, they would have to use a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	160
1	separate code in order to calculate that because the
2	pressures are so low that they're outside the range of
3	the KCE 1CHF correlation. That's where that H-RISE
4	code would come into play. But for them, but I didn't
5	see that for any of their calculations.
6	MEMBER MARCH-LEUBA: Well, the primaries
7	are still at full pressure, no? Is the primary
8	MR. DRZEWIECKI: It's going to drop. It's
9	going to drop, I believe the pressure drops because of
10	the overcooling on the shrinkage on the primary side,
11	pressure drops, like, 1,600 psia, maybe even less than
12	that.
13	MEMBER MARCH-LEUBA: And I guess just,
14	like, KC01?
15	MR. DRZEWIECKI: Yes, that's out of the
16	range of KC01.
17	MEMBER CORRADINI: So this is Corradini. I
18	guess I had a question just so I understand what you
19	meant. So pressure would fall and I would be at modest
20	power. So why would I be worried about CHF? Is it just
21	simply that the correlation is not in its applicable
22	range?
23	MR. DRZEWIECKI: So okay, yes. So you're
24	worried about CHF if the power comes back. So if it
25	cooled down to the point, you know, where you're
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	161
1	critical again, then you want to make sure that your
2	power is so low such that you don't violate CHF.
3	MEMBER CORRADINI: Right, but
4	MR. DRZEWIECKI: Now for them yes?
5	MEMBER CORRADINI: But if I just might, let
6	me just make sure I've got this qualitatively. But at
7	these pressures, as pressure goes down, CHF rises. As
8	it cools down, CHF rises. So and I'm at partial power.
9	And we say it's as much as ten percent of full power.
10	So I would be, the CHF ratio would be much larger under
11	these conditions.
12	MR. DRZEWIECKI: Okay, all right. So it
13	depends on the correlation. Now for this correlation
14	and for these flow rates actually, if you lower the
15	pressure in the system, you're going to get a larger
16	critical, I'm sorry, you're going to get a lower
17	critical heat flux. So it's adverse to your thermal
18	margin.
19	MEMBER CORRADINI: Okay, all right. I
20	guess I want to think about that because I thought, so
21	is the flow decreasing significantly?
22	MR. DRZEWIECKI: Yes. Yes it is.
23	Especially if you have a LOOP, or loss of outside power
24	because your pumps are going to trip.
25	MEMBER CORRADINI: Okay, all right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	162
1	Thank you very much.
2	MR. DRZEWIECKI: Sure. Okay, so where was
3	I? Okay, so there are two trips that are credited for
4	this event. That depends if you have a LOOP or not. So
5	if you don't have a loss of offsite power, then you take
6	credit for the variable of over power trip.
7	If you do have a loss of offsite power, that
8	causes the RCPs to be lost, and then take credit to the
9	low flow trip. They take the single failure of diesel
10	generator which then results in the loss of two trains
11	of safety injection, and that's conservative because
12	that is credited for keeping you shut down.
13	So if you have less safety injection, it's
14	more challenging from the return to power standpoint.
15	And then again, there's credit taken of
16	operator action of 30 minutes in. The results of this
17	is that there was no post trip return to power, it stayed
18	shut down. We also checked pressure temperature limits
19	because this was a rapid cooldown, those were not
20	violated, and they didn't violate SAFDLs.
21	MEMBER MARCH-LEUBA: Can you describe to
22	me in 15 seconds what the variable of a power trip is?
23	MR. DRZEWIECKI: Yes. And this is
24	described probably better in the SC. But what it has
25	to do is that you have a trip based on your current power
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	163
1	level. So if you are at a lower power, you will have
2	a lower trip. Now
3	MEMBER MARCH-LEUBA: So this is delta over
4	the initial? The simplified way?
5	MR. DRZEWIECKI: Yes, yes. Now in terms
6	of how it's treated in the safety analysis, it's really
7	just at a fixed value. Now the way it's done in safety
8	analysis is that, because if you're at full power, it's
9	really just a set value.
10	So the nominal value is actually 109.6, but
11	there's uncertainty on that. And that band goes down
12	to -6.1 or the 103.5, and it will go as high as 6.9 or
13	the 116.5. And that's why you see different values used
14	in different analyses pending on what's conservative.
15	MEMBER MARCH-LEUBA: Thank you.
16	MR. DRZEWIECKI: Yes.
17	MR. HERNANDEZ: Yes, good afternoon. My
18	name is Raul Hernandez, and I'll be presenting the
19	decreasing heat removal by the secondary side. The
20	Staff evaluated this seven events in order to understand
21	the progression had identified which is the most
22	limiting of them.
23	The analysis of this event must confirm
24	that the primary, the RCS and the main steam pressure
25	remain below 110 percent. And the fuel cladding
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	164
1	integrity is maintained.
2	The Staff found that the most limited event
3	is the loss of condenser vacuum, like the applicant
4	stated in their design. Also, the Staff found that the
5	applicant used conservative assumptions in order to
6	demonstrate that the RCS and the main steam pressure
7	remains below 110.
8	Also, the DNBR remains above the minimum
9	DNBR limit, ensuring fuel Cladding integrity.
10	MEMBER MARCH-LEUBA: Raul, this 110
11	percent, shouldn't that be linked to some ASME service
12	level, is it linked to a service level?
13	MR. DRZEWIECKI: It is. It's actually
14	service level B, upset conditions.
15	MEMBER MARCH-LEUBA: Okay.
16	MR. HERNANDEZ: Any other questions in
17	this section? Okay. For the feedwater pipe break, the
18	Staff evaluated the feed line break event following the
19	guidance of SRP 15.2.8.
20	The Staff evaluated the applicant
21	description of the event and agreed that the most
22	limiting event would be a large break between the
23	feedwater line check valve and the steam generator.
24	The Staff found that using that approved
25	methodology which we already discussed in section 1502,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	165
1	and using conservative assumptions, the applicant
2	report will yield conservative results.
3	The applicant report analysis demonstrate
4	that the NBR remains above the minimum value and ensures
5	fuel cladding integrity, and also shows that the RCS and
6	the main steam pressure remain below 120.
7	MEMBER MARCH-LEUBA: Okay, 110 or 120?
8	MR. HERNANDEZ: In this case it's 120.
9	MEMBER MARCH-LEUBA: Which is service
10	level B and a half.
11	MR. DRZEWIECKI: It doesn't correspond to
12	ASME service levels, I'll tell you that.
13	(Simultaneous speaking.)
14	MR. THURSTON: Yes, the feedwater line
15	break even is a postulated accident. So it's 120
16	percent.
17	MEMBER MARCH-LEUBA: Your name?
18	MR. THURSTON: Carl Thurston, Reactor
19	Assistance Branch.
20	MEMBER MARCH-LEUBA: Can you say again?
21	Can you repeat that again?
22	MR. THURSTON: Yes. The feedwater line
23	break is a postulated accident.
24	MEMBER MARCH-LEUBA: So that's
25	(Simultaneous speaking.)
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	166
1	MR. THURSTON: So it's 120 percent of the
2	design pressure versus 110 percent for AOOs.
3	MEMBER MARCH-LEUBA: Okay, thank you.
4	MR. HERNANDEZ: A preview of this section.
5	Other question? That's it for this section.
6	MR. LU: 15.0 to 15.2.
7	MR. HERNANDEZ: Yes.
8	MR. LU: So we have next group coming in to
9	talk about 15.3 and then 15.4.
10	MR. VAN WERT: Thank you and good
11	afternoon. My name is Chris Van Wert and I'm with
12	Reactors Systems Branch from the NRO. And I'm going to
13	be presenting the Staff's review of the APR1400 analysis
14	of the loss of force flow accidents.
15	So the Staff's review of the APR1400
16	evaluation model confirmed that the analyses were based
17	on approved codes, that the codes were appropriate for
18	the APR1400 design, and that the inputs that were used
19	were appropriate in bounding of the plant conditions.
20	To assist the staff in this review, the
21	Office of Research performed TRACE/PARCS confirmatory
22	calculations, and very shortly, Dr. Yarsky will present
23	the results of the confirmatory runs. But first you
24	have to listen to me present the regulatory findings.
25	So as part of the review, the Staff made the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

following regulatory findings for the loss of force flow 1 2 event. As mentioned in the previous slide, we found 3 that the codes and methods were appropriate and that the 4 inputs were appropriate, and that the analyses resulting from the use of these codes and methods 5 demonstrated that no SAFDLs were violated, therefore 6 7 demonstrating compliance to GSE 10. 8 The analysis further demonstrated that the 9 RCS and the auxiliaries were not breached, therefore 10 demonstrating compliance with GDC 15, and that the loss 11 of offsite power on startup of BDGs demonstrated 12 compliance of GDC 17. 13 And reactivity changes are reliably 14 controlled, so SAFDLs are not exceeded, thereby 15 demonstrating compliance with GDC 26. So without 16 further ado, I'll turn it over to Dr. Yarsky here. 17 DR. YARSKY: Thank you. Good afternoon, 18 I'm Dr. Yarsky from the Office of Research and I'll be 19 presenting -- am I on? Sorry about that. I'll be 20 presenting the results of our TRACE/PARCS confirmatory 21 analysis for the loss of flow event. 22 The loss of flow event was selected for 23 confirmatory analysis because it is the event that 24 produces the change in minimum DNBR. 25 Before you get MEMBER REMPE: Excuse me.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

167

	168
1	into the results, could you talk a little bit about how
2	you got the model to be similar to the APR1400 and the
3	MELCOR calculations that were done for Chapter 19?
4	There had been some issues where erroneous
5	geometry inputs, et cetera, were assumed at first and
6	had to, did you start with the System 80 or how did you
7	generate this model?
8	DR. YARSKY: I'm not able to talk about the
9	MELCOR model, but I can talk about the TRACE/PARCS
10	model.
11	MEMBER REMPE: But I want to know, yes.
12	DR. YARSKY: So the model that we're using
13	for these calculations was evolved from the model that
14	we developed to do confirmatory analysis for LOCA, which
15	I believe as a starting point relied on the system 80+
16	and then incorporated information that we got from the
17	applicant's own analysis.
18	So using the input doc that the applicant
19	used to develop their models is a source of information
20	for developing our TRACE systems model.
21	We can get into some detail about it, but
22	something that's really interesting and more relevant
23	to where we get to the part where we talk about rod
24	ejection is that our TRACE/PARCS model is really
25	interesting for APR1400 because we are doing a true 3-D
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	169
1	calculation and that we're representing the core not
2	only in three dimensions with our PARCS neutronics code,
3	but we're also simulating each node and fuel assembly
4	within the core with explicit Cartesian vessel
5	component.
6	So there is that evolution on top of the
7	LOCA model, and then we put a lot of detail into the core
8	modeling to support the application to the rod ejection
9	analysis.
10	MEMBER REMPE: Okay, thank you.
11	MEMBER MARCH-LEUBA: So the TRACE model is
12	a 241 channel?
13	DR. YARSKY: The TRACE model is 241
14	assemblies, and then that's divided up axially. Yes.
15	So the vessel component where we have a radio mode for
16	every assembly in the core.
17	The TRACE vessel model includes a radial
18	node like one for each assembly in the core, so 241
19	radial
20	MEMBER MARCH-LEUBA: And not only in the
21	bypass, or what's it modeling?
22	DR. YARSKY: The
23	MEMBER MARCH-LEUBA: The vessel model
24	DR. YARSKY: The bypass I believe is
25	modeled with six types. I'll double check that.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	170
1	MEMBER MARCH-LEUBA: We can talk offline.
2	DR. YARSKY: Yes, the Cartesian vessel
3	representing the core only represents the core, and we
4	don't have a Cartesian vessel component representing
5	the bypass. The bypass is represented with pipe
6	MEMBER MARCH-LEUBA: Okay.
7	MEMBER CORRADINI: So, this is Corradini.
8	Peter, or I should say Dr. Yarsky, so you've got to this
9	level of detail because you want us to use the same model
10	for the rod ejection, was that the point of this?
11	DR. YARSKY: Yes, yes. So we're using the
12	same model for AOO as we are using for rod ejection.
13	MEMBER CORRADINI: Okay. So you got to
14	this level of detail for that where you actually needed
15	this level of detail for the rod ejection?
16	DR. YARSKY: Well, also one of our models
17	to be able to simulate the feature of the APR1400 that
18	allows a trip based on a sensed DNBR through the CPC,
19	and a 3D model allows us to have that kind of capability.
20	MEMBER CORRADINI: Can you explain that
21	again? I'm sorry. Can you go slower?
22	DR. YARSKY: Okay, this may be a bit too
23	much detail because we don't actually use this feature.
24	But in the APR1400, the CPC has a feature that allows
25	for a trip based on DNBR.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	171
1	So the process computer essentially
2	evaluates a transient DNBR, and there's a feature of
3	APR1400 that can initiate a reactor trip based on that
4	DNBR evaluation.
5	MEMBER CORRADINI: Oh, okay. So
6	DR. YARSKY: So when we developed the
7	model, we wanted to have the capability in the
8	TRACE/PARCS model to simulate that behavior if we needed
9	to do a confirmatory analysis of that feature.
10	However, that ended up not being required for this
11	project.
12	MEMBER CORRADINI: Okay, all right. I
13	think I get it now. And the last thing, since this is
14	a Cartesian model on a bundle by bundle basis, what is
15	the coupling in the transverse direction between the
16	bundles? Is the coupling like a COBRA TF momentum
17	coupling?
18	DR. YARSKY: No, it's not that detailed.
19	We're just using the TRACE vessel component. So it's
20	essentially like a loss factor in the transverse
21	direction.
22	MEMBER CORRADINI: So like a
23	DR. YARSKY: So similar to what's done for
24	a multi-sector TRACE vessel model.
25	MEMBER CORRADINI: Okay, all right.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	172
1	DR. YARSKY: So don't equate it to, like,
2	a detailed sub-channel model.
3	MEMBER CORRADINI: Okay, okay, that's
4	fine. I just didn't know what it was. Thank you very
5	much.
6	DR. YARSKY: No problem. So for the loss
7	of flow event, I wanted to step through the sequence of
8	events before getting into our results. The event is
9	initiated by a loss of outside power. The loss of
10	outside power will cause the simultaneous trip of all
11	the reactor coolant pumps, the turbine, and the reactor.
12	The reason why this is the limiting event
13	from a DNBR perspective is the poolant flow decreases
14	because of the coast-on of the RCPs. Eventually the
15	DNBR margin is restored because the power decrease
16	following the trip and the primary side reaches a
17	natural circulation condition.
18	The RCS temperature initially increases
19	because the loss of flow limits the transfer of heat from
20	the primary to secondary side. However, once the
21	auxiliary feedwater system is operating and the main
22	steam safety valves are able to relieve secondary side
23	pressure, the temperature will come down.
24	So if we go to the next slide, I'll present
25	a series of figures comparing the TRACE/PARCS
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	173
1	calculations to the results of the DCD for the loss of
2	flow transient.
3	This first figure compares the relative
4	core flow rates. For all of these figures, I tried as
5	best as possible to put them on the same scale. So even
6	though the units are different, the figures are sized
7	so that it's pretty much one-to-one for the scale.
8	What you see here is, you know, essentially
9	the relative core flow rate transient is dictated by the
10	inertia of the pumps which is sort of an input to the
11	analysis. So these match pretty much one-for-one.
12	If we go to the next slide, this presents
13	results of the relative core nuclear power. These are
14	very similar. The primary difference here is that the
15	TRACE/PARCS calculation shows a more rapid decrease in
16	the power compared to the DCD calculation.
17	This is attributed to two facts. The first
18	is that the reactor trip is a little bit earlier by about
19	a quarter of a second in the TRACE/PARCS calculation.
20	This is due to in the DCD analysis, the reactor doesn't
21	trip until the RPS is actuated based on low RCP speed.
22	However, in the TRACE calculation, we
23	initiate the trip based on LOOP, but then delay it by
24	the RPS delay time. So because of that slight
25	difference on assumptions, the DCD being conservative,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	174
1	there's a difference of about a quarter of a second in
2	the trip timing.
3	Additionally, TRACE/PARCS predicts a
4	stronger negative reactivity insertion from the
5	shutdown bank of control rods relative to what's assumed
6	in the DCD analysis which results in TRACE showing a more
7	rapid decrease in the power.
8	If we go to the next slide, we also compared
9	the RCS temperature qualitatively. The responses are
10	very similar except TRACE shows that the temperature is
11	reduced a little faster. Oscillations in the
12	temperature response are more long term. So after
13	about two minutes or so, the oscillations seem to have
14	a slightly higher magnitude in the DCD calculation.
15	This is really due to differences in
16	secondary side pressure. So these temperature
17	differences are related to the PARCS secondary side
18	pressure changes in response to the MSSVs lifting and
19	resetting to relieve secondary side pressure.
20	If we go to the next slide, this is where
21	we compare the reactivity predicted by TRACE/PARCS to
22	the DCD. As I noted earlier, TRACE and PARCS predict
23	a stronger negative reactivity insertion of about 9.6
24	percent delta K by K compared to 8 percent delta K by
25	K assumed in the DCD analysis.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	175
1	So the stronger negative reactivity
2	insertion is one of the reasons why the nuclear power
3	decreases more rapidly in the TRACE/PARCS calculations.
4	If we go to the next slide
5	MEMBER MARCH-LEUBA: Now, is the
6	TRACE/PARC reactivity compare favorably with the steady
7	state shutdown margin calculation?
8	DR. YARSKY: This eight percent value is a
9	value that's an analysis value in the DCD. When we
10	performed our confirmatory calculations in the nuclear
11	design, which I think have already been presented
12	PARTICIPANT: That's right.
13	DR. YARSKY: I think the values of the
14	shutdown margin are comparable. What we're showing
15	here is in the 3D calculations we can't really specify
16	the external reactivity applied by the control rods. We
17	can only essentially, like, insert the rods and then
18	PARCS internally evaluates their worth.
19	MEMBER MARCH-LEUBA: Correct.
20	DR. YARSKY: So in this calculation, we
21	actually excluded all rods except for rods assigned to
22	a shutdown bank.
23	MEMBER MARCH-LEUBA: So that was the
24	question. Do you have the most reactive rod out, or in?
25	DR. YARSKY: This also has the highest
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	176
1	worth rod stuck out. So this is a N-1.
2	MEMBER MARCH-LEUBA: You're comparing
3	apples to apples?
4	DR. YARSKY: Yes. So it's shutdown rods
5	minus the strongest worth rod. We'll talk about this
6	a little bit more when we get to the rod ejection. But
7	because we're doing the 3D evaluation, we can't, we
8	don't have the flexibility to pick the worst combination
9	of reactivity factors.
10	So we selected a point in cycle that was the
11	most limiting point in cycle. But this point in cycle
12	also has with just the shutdown bank with the N-1 worst
13	rod stuck out, still has a stronger amount of total
14	negative reactivity insertion compared to the
15	assumptions made in the Chapter 15 analysis.
16	So this is indicating a conservatism in
17	their analysis. But I mean, they're kind of close.
18	It's just the TRACE is predicting more reactivity
19	insertion.
20	MEMBER MARCH-LEUBA: Yes, theirs is
21	probably more situation dependent because you picked
22	(Simultaneous speaking.)
23	DR. YARSKY: I think it's more realistic
24	compared to developing a conservative assumption for
25	the Chapter 15 analysis and the DCD. So this slide
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	177
1	here, like I said earlier with the RCS temperature, this
2	is really tied to what's happening on the secondary side
3	in terms of pressure.
4	TRACE/PARCS predicts similar to the DCD
5	this pressure oscillation. However, we predict a
6	slightly lower pressure and a more frequent lifting and
7	resetting of the MSSVs. We attribute this just to
8	differences in the input assumptions to MSSV lift and
9	reset pressures, and initial pressure on the steam
10	generator. However, the qualitative behavior is very
11	similar, and they're pretty close.
12	If we go to the next slide, in this instance
13	I wasn't able to put the slides on the same scale, and
14	I want to stress that they're not on the same scale. In
15	TRACE/PARCS, like I've eluded to earlier, we have the
16	capability of evaluating something like a DNBR.
17	This minimum DNBR is based on evaluating
18	critical heat flux derived from the KCE1 CHF
19	correlation, processing that through a control system
20	and then developing an assembly specific DNBR.
21	However, this is based on assembly wise
22	thermohydraulic conditions. So we don't' want to say
23	it's exactly comparable to DNBR. However, we think
24	that this approach allows us to compare the trend or the
25	delta and DNBR over the transient.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	178
1	(Simultaneous speaking.)
2	MEMBER MARCH-LEUBA: Go ahead, Mike.
3	MEMBER CORRADINI: No, I'm sorry. I
4	didn't mean to interrupt you, Jose. If you want, go
5	ahead.
6	MEMBER MARCH-LEUBA: Okay. The
7	applicability, you put KC1 to TRACE or was it the post
8	processing?
9	DR. YARSKY: What we have is a control
10	system in our TRACE model that allows us to calculate
11	the critical heat flux according to the KCE1 CHF
12	correlation. So it's being done by a control system.
13	And then based on
14	MEMBER MARCH-LEUBA: Did you develop a
15	proprietary version of TRACE
16	DR. YARSKY: No.
17	MEMBER MARCH-LEUBA: No, good.
18	PARTICIPANT: It's the input.
19	MEMBER MARCH-LEUBA: It's an input then
20	that you can take away and
21	DR. YARSKY: Yes, so the control system can
22	be removed from the deck, and the correlation is not
23	implemented in TRACE.
24	MEMBER MARCH-LEUBA: Good.
25	DR. YARSKY: Okay, so but I want to just
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	179
1	kind of sort of put this small caveat on it is we're not
2	doing a sub-channel calculation, even though we have
3	this great detail in the corner able to get assembly by
4	assembly flows and temperatures. We're still not
5	evaluating at the sub-channel level.
6	So we think that this gives a good
7	indication of the trends in mDMBR, but I wouldn't say
8	that's the value of the mDMBR even though we're using
9	the applicant's correlation and control system.
10	MEMBER MARCH-LEUBA: Because with that
11	(Simultaneous speaking.)
12	MEMBER MARCH-LEUBA: Sorry. Your turn.
13	Go for it.
14	MEMBER CORRADINI: Okay. So I think, I
15	just wanted to, I'm not sure where Jose, but he got two
16	of my three questions. So I'm kind of curious about,
17	though, the general shape because TRACE is imbedded CHF
18	correlation in the lookup table.
19	I would expect the lookup table, using that
20	to get the same qualitative shape of this. Is that a
21	fair statement?
22	DR. YARSKY: Yes, I think that is a fair
23	statement.
24	MEMBER CORRADINI: Okay, and then the
25	second part of my question would be you said
	NEAL R. GROSS

(202) 234-4433

	180
1	sub-channel, but you're modeling each bundle. So
2	you're looking at this on a bundle by bundle basis?
3	That's what I didn't understand, I'm sorry.
4	DR. YARSKY: Yes, so we are not using a
5	sub-channel method. And because we are not using a
6	sub-channel method, even though I have a figure labeled
7	mDNBR, I want to stress that that's not the predicted
8	mDNBR. This is a figure where we're evaluating the CHF
9	correlation according to assembly wide parameters as
10	opposed to how it should be, or how it's intended to be
11	used which is on a sub-channel basis.
12	MEMBER CORRADINI: Okay.
13	DR. YARSKY: Because of that, the absolute
14	value of the mDNBR, I don't feel is accurate. However,
15	we feel that it provides valuable information in terms
16	of the trend, or the change in mDNBR over the transient.
17	MEMBER CORRADINI: Okay, thanks. Thank
18	you very much.
19	MEMBER MARCH-LEUBA: So at a minimum did
20	you use peaking factors for this CHF?
21	DR. YARSKY: Yes. So what we have is in
22	the assembly heat structures representing the core fuel
23	assemblies. We have a supplemental heat rod with a high
24	peaking factor that bounds the peaking factors
25	presented in Chapter 4.3 of the DCD.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	181
1	MEMBER MARCH-LEUBA: So you used the peak
2	power but the average flow?
3	DR. YARSKY: Right. It's, we think that
4	it can indicate trends, but because we don't get to the
5	sub-channel level, I don't want to say that our value
6	represents the actual mDNBR.
7	MEMBER MARCH-LEUBA: And another thing to
8	consider, if I remember correctly. CTOP is a
9	sub-channel model but is very simplified. And it is
10	made to overpredict what TORC does which is the real
11	sib-channel model. I mean, if you were doing it right,
12	CTOP would be conservative because it overestimates,
13	right?
14	DR. YARSKY: I'll let Tim answer that.
15	I'm familiar with
16	(Simultaneous speaking.)
17	DR. YARSKY: I'm not familiar with what the
18	applicant did.
19	MR. DRZEWIECKI: Yes, that is right in the
20	sense that it's not accurate to say that, you know, if
21	you're familiar with VIPER or COBRA, it's unaccurate to
22	say that CTOP is like a VIPER or a COBRA. TORC is more
23	like VIPER or COBRA, and then they have a simplified
24	model which actually works inside the CPC as well, which
25	is C top D. And it's a simplified model. It runs
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	182
1	faster but it is tuned so that you get a result which
2	is conservative versus TORC.
3	DR. YARSKY: Yes, so if we I just wanted
4	to say here what we show in the TRACE/PARCS calculation
5	is that the initial mDNBR transient is very similar
6	showing about a 0.1 decrease in mDNBR for the first about
7	one and a half seconds.
8	That's when in the TRACE/PARCS calculation
9	we predict the mDNBR transient turning around and mDNBR
10	increasing. In the DCD analysis, the mDNBR continues
11	to decrease until reaching its minimum of about four
12	seconds.
13	We can go to the next slide. So found in
14	our confirmatory analysis is that the TRACE/PARCS
15	calculation and the DCD analyses compare very favorably
16	in terms of the major trends and the overall system
17	behavior. We notice some small differences in RCS
18	temperature and steam generator pressure, but we think
19	these are relatively minor.
20	With our confirmatory analyses, we've
21	shown that the assumptions made for the reactivity
22	insertion from the shutdown banks is conservative
23	relative to a more realistic prediction of the
24	reactivity insertion with shutdown banks.
25	We also in our confirmatory analysis have
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

183 shown a milder mDNBR transient compared to 1 the applicant's calculations indicating that there is some 2 3 conservatism on how they evaluate the mDNBR during the 4 transient. 5 And lastly, we think that their analysis seems to reasonably predict the system behavior and to 6 7 conservatively predict the thermal margins. And 8 that's all I have on the confirmatory analysis. 9 CHAIR BALLINGER: Okay, we're within three 10 minutes of a scheduled break, so I would like to take 11 that. So come back say at 2:27. We're in recess. 12 (Whereupon, the above-entitled matter went off the record at 2:12 p.m. and resumed at 2:27 p.m.) 13 14 MEMBER STETKAR: Okay, we're back in 15 session, as promised. You've got to hit the button and There you go. 16 make it green. 17 MR. VAN WELT: I told myself I was going to 18 remember that. 19 Again, this is Chris Van Welt. And I will 20 be presenting now the staff's evaluation of the APR1400 21 analysis of reactor form pump malfunctions. There are 22 two events that are contained in this overall section. 23 The first one is reactor cooler pump seizure, which is 24 the limiting event. And the second one if the reactor 25 cooling pump shaft breaks.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

184 And, okay, again kind of similar to 15.3.1 1 2 for the loss of forced flow. The evaluation model as presented here consists of the proof codes. The staff 3 4 confirmed that they were appropriate for this design. And we also looked at the inputs as presented in DCE 5 Table 15.3.3-2, and also in methodology CENPD-138 -- or 6 7 183-A, and confirmed that these assumptions were 8 appropriate for this analysis. 9 And although it says on the slide here 10 regulatory findings for loss of force flow, that was 11 supposed regulatory findings for RCP to be 12 malfunctions. And, again, similar as the last section, 13 14 since we found that the closer methods and inputs for 15 all are appropriate and we found them to be acceptable, 16 the analyses, the resulting analyses demonstrated that 17 loss of offsite power, at least to automatic -- which 18 demonstrates compliance with GDC-17. 19 GDC-27, the compliance with GDC-27 is 20 demonstrated by showing that the operator can achieve 21 full check during the event. 22 And compliance with GDC-31 is demonstrated 23 by making the RCS pressure within 110 percent of the 24 design pressure. 25 Because of fuel failures from this possible

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	185
1	accident are bounded by the assumed values and dose
2	consequence analysis that was presented previously by
3	Michelle.
4	If there are no further questions if
5	there are no questions, that will be the end for 15.3.
6	MEMBER MARCH-LEUBA: Just out of
7	curiosity, don't we have a SAFDL on DNBR which presents
8	the last I mean there won't be any failures for RCP
9	malfunctions; right?
10	MR. VAN WELT: Well, there is a SAFDL for
11	the operation well, yeah, 1.429.
12	MEMBER MARCH-LEUBA: So as long as, I mean
13	this is run as an AOO for every load.
14	MR. VAN WELT: Right.
15	MEMBER MARCH-LEUBA: And we don't expect
16	fuel failures. And, of course, you meet 10 CFR 100.
17	MR. VAN WELT: Right. Well, this one is a
18	postulated accident. And per the DC
19	MEMBER MARCH-LEUBA: Oh, this is a PA?
20	MR. VAN WELT: Yeah. This one is a PA.
21	There is let me confirm that this is a non-prop number
22	here. But there is a number presented in the analysis,
23	yes, less than 7 percent failures. And that's less than
24	the assumptions used in the dose consequence analysis.
25	MR. LU: Yeah. We did not conclude on all
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	186
1	of those numbers. You see the numbers from this slide
2	because they're non-proprietary.
3	MR. VAN WELT: Just to confirm, that was a
4	non-prop number that I just mentioned.
5	MR. LU: Oh, really? Oh, okay. All
6	right.
7	MR. VAN WELT: Just in case you were
8	curious.
9	Any further questions or?
10	MR. LU: Okay, I will cover 15.4.1 to
11	15.4.3
12	This section was these three sections
13	were reviewed by Matt Thomas. He is not here to give
14	the presentation. He was not here yesterday either.
15	Fortunately, we have our senior consultant Doug Barber
16	on the phone.
17	Doug, are you on the phone?
18	MR. BARBER: Yes, Shanlai, I am here.
19	MR. LU: Okay. All right. So Doug
20	provide the technical evaluation report to the staff and
21	then Matt finished this part of SER.
22	Okay. So these three subsections covered
23	uncontrolled CEAE withdrawal from subcritical or low
24	power startup condition; uncontrolled CEAE withdrawal
25	at power; control element assembly misoperation.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	187
1	All right, let's go to the next slide.
2	So, I think the staff and the consultant
3	reviewed the causes of those three particularly
4	possible events. And then we confirmed that the
5	applicant considered all the process of event and
6	consistent with typical large PWRs for all the scenarios
7	described within those three sections.
8	And the methodology, you know, were
9	reviewed by 15.0.2 and then they used the approved
10	methodology to analyze this one. For all three
11	subsections we did issue RAIs. And then at this point
12	it's closed, we are closed now.
13	And we find that the limiting event
14	progression and the sequels were identified and
15	analyzed. The conditions, under conditions core
16	parameters are adequate. Proper conservatisms were
17	applied.
18	The input assumptions under these three
19	subsections crossed all single failures, loss of power,
20	trip delays. And also staff found the consequence of
21	that's reading the SAFDL criteria. Those are the terms
22	right now. And system response are acceptable.
23	And DNBR, heat generation rate meets the
24	SRP acceptance criteria at the margins. That's what
25	staff found; right?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	188
1	RCS pressure design limits are met with
2	adequate margin, too.
3	Next slide.
4	So the results here is and the arguments
5	about and based on we actually audited once through the
6	electronic reading room and Doug and also Matt found
7	that the approved methods were properly used. And the
8	parameters and applicability were confirmed.
9	Except one item, still open item is related
10	to the PCB. And the analysis right now found in support
11	of those all three subsections and Matt considered the
12	thermal conductivity degradation.
13	And the KHNP is addressing this issue to
14	evaluate what's the impact on those, all the conclusions
15	of those subsections.
16	At this point what we observed is for all
17	the events described at 15.4, section 4.1 through 4.3,
18	SAFDLs are not exceeded using conservative assumptions
19	with considered uncertainties. And the general design
20	criteria is 10, 13, 17, 20, and 25 are met.
21	I think that's the subsections, three
22	subsections Matt was supposed to present. And Doug's
23	here if you guys have any questions about these three
24	sections. They're confirmed to analyze it down to in
25	support of those three sections. Presented this one
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	189
1	right after another two, one or two slides.
2	Any questions for now for Doug? Doug is on
3	the phone.
4	MEMBER MARCH-LEUBA: My brain works well
5	right after the break.
6	What I was asking Chris about was the flow
7	and SAFDLs.
8	MR. LU: Okay.
9	MEMBER MARCH-LEUBA: I didn't realize that
10	you were talking about also offsite power with loss of
11	flow. So what situations do you have that event under
12	LOOP, our generic loss of offsite power? Because when
13	you lose power you also lose flow.
14	MR. VAN WELT: Right. The question, well,
15	when you have the CEAs you get lower flow, get a trip.
16	And that leads to the turbo trip and then the assumption
17	of this is offsite power at that point from then on.
18	MEMBER MARCH-LEUBA: So if something is a
19	trip, causes a disturbance in this yard and
20	MR. VAN WELT: That's right.
21	MEMBER MARCH-LEUBA: So that's why that's
22	a bad, bad event.
23	MR. VAN WELT: Right.
24	MEMBER MARCH-LEUBA: Is the loss of
25	offsite power, not the loss of flow.
	NEAL R. GROSS

(202) 234-4433

	190
1	MR. VAN WELT: Right.
2	MEMBER MARCH-LEUBA: Thank you.
3	MR. LU: Okay. So if there's no other
4	questions for 15.4.1 to 15.4.3, then we'll move on to
5	the next slide.
6	Who's You are covering this one; right?
7	MR. DRZEWIECKI: Yes.
8	15.4.4. on the startup of inactive RCP.
9	This is so there's no real code calculations here,
10	just simple hand calculation. Industry had bounding
11	values through the ITCs or the actual thermal
12	temperature coefficients up to bounding values for
13	temperature difference between the primary and
14	secondary side with positive and negative. And they
15	would calculate, had the assumption if you started the
16	pump there would be a change in the temperature for the
17	primary side to the secondary side instantaneously.
18	Verified that with conductivity assertions
19	that you would get that you'd stay subcritical, that you
20	had, you know, a shutdown margin.
21	These calculations were only done in Modes
22	3 through 6 because in Modes 1 and 2 you have to have
23	all of your pumps running.
24	Any questions?
25	MEMBER SKILLMAN: Yes, I do.
	NEAL R. GROSS

(202) 234-4433

	191
1	What I find curious about this and of
2	course KHNP used the same words you used you can't
3	have, you can't be in Modes 1 and 2 with this condition.
4	Well, actually you can.
5	The way this tech spec is written, it's two
6	RC loops shall be operable in an operation with two
7	coolant pumps in each loop. I've got that, I've got
8	four pumps, I've got two loops.
9	But if I drop a pump for whatever reason
10	motor stops, I've got an electrical something this
11	tech spec doesn't preclude me from restarting that
12	motor. It tells me what the operability conditions are
13	supposed to be and it gives me six hours to be in Mode
14	3. So if I'm the shift supervisor I've got 360 minutes
15	to get back to Mode 3 in which I can do something.
16	So my question is, per the assumptions
17	could there be a situation where the reactor operator,
18	the panel operator says, I'm going to try to restart that
19	motor? He's got three pumps running. He's got one
20	loop running backwards, partially backwards, through
21	the cold leg loop.
22	MR. DRZEWIECKI: Yeah.
23	MEMBER SKILLMAN: So couldn't he actually,
24	or she, go ahead and try to restart a motor?
25	MR. DRZEWIECKI: I would expect that after
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	192
1	operating at full power and he lost a pump that you would
2	probably trip out.
3	MEMBER SKILLMAN: You'd probably go out in
4	flux flow.
5	MR. DRZEWIECKI: Yeah.
6	MEMBER SKILLMAN: I'd agree with that.
7	But supposed you didn't. Supposing you
8	were in startup and you're 35 percent power, you're
9	coming up slowly, you're escalating,
10	MR. DRZEWIECKI: Yeah.
11	MEMBER SKILLMAN: and you drop a pump,
12	for whatever reason?
13	MR. DRZEWIECKI: The statement that I can
14	say there is that you'd be outside the bounds of your
15	safety analysis. So you'd be in a condition that you
16	haven't analyzed yet. If they have sufficient, you
17	know, of analyses to show they could do that, it might
18	be all right.
19	But, but based on the analyses that they
20	presented here, Chapter 15, I couldn't, I couldn't state
21	
22	MEMBER SKILLMAN: Yeah, I can't either.
23	That's why I'm asking the question.
24	MR. DRZEWIECKI: Yeah.
25	MEMBER SKILLMAN: The strength of this
	NEAL R. GROSS

(202) 234-4433

	193
1	argument seems to rest on this tech spec 3.4.4.
2	MR. DRZEWIECKI: Yeah.
3	MEMBER SKILLMAN: But 3.4.4 does not
4	communicate don't start. It says, be in Mode 3 in six
5	hours. And I find that interesting because, as an
6	ex-operator, I could say I could start that motor.
7	Nothing prevents me from starting it.
8	MR.LU: Let me just, let me try to address
9	this one.
10	I was over the plant, too. And I looked
11	over one of the at Vermont Yankee actually.
12	MEMBER SKILLMAN: Operating what?
13	MR. LU: I was over Vermont Yankee and I
14	worked in support of the operation of the plant.
15	MEMBER SKILLMAN: Oh, okay.
16	MR. LU: During the startup one of our
17	reactor pump suddenly stops, that's a big event.
18	MEMBER SKILLMAN: Oh, absolutely.
19	MR. LU: It's so big I would say that it
20	would be unlikely for the operator to say, okay, let's
21	proceed and to start up and keep going and restart the
22	pump. There is something, you know, very unlikely.
23	But I think this information also
24	MEMBER SKILLMAN: I concur with you, with
25	your on-the-fly assessment.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	194
1	MR. LU: Right.
2	MEMBER SKILLMAN: But what I'm trying to
3	communicate is the strength of the argument rested on
4	this tech spec 3.4.4. And I'm saying 3.4.4 does not
5	stop me from starting an idle motor.
6	MR. LU: Okay.
7	MEMBER SKILLMAN: It drives me to be in
8	Mode 3 within six hours. Those are two different
9	things.
10	MR. LU: Okay, I got you.
11	MEMBER SKILLMAN: See what I'm saying?
12	MR. LU: We'll take a look at that one.
13	MR. DRZEWIECKI: Yeah, the one thing you
14	have to look at is that if I'm, you know, if I'm in Mode
15	1 or 2 and I lost a pump, I would expect that I'd get
16	a trip. But we need to verify that. Maybe add some of
17	that later to the SE to help strengthen the finding.
18	MEMBER SKILLMAN: Thank you. Thanks.
19	MEMBER STETKAR: According to the reactor
20	trip log, if any one of the four pumps have a speed less
21	than what the speed setpoint trips to
22	MEMBER MARCH-LEUBA: Any one?
23	MEMBER STETKAR: Any one of the four.
24	MEMBER SKILLMAN: Results in a trip.
25	MEMBER STETKAR: Reactor trip, yeah.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	195
1	MEMBER MARCH-LEUBA: I was noting there
2	that you are two, that has extended situational loops
3	and they were doing maintenance. And there was one that
4	was shut down. And the guy was supposed to go work on
5	that one and he went to work on the other one that was
6	working and he pulled the card from the working one. So
7	he says, Oh, crap, the moment he did it because he heard
8	No, it was not a trip. There was no trip and they
9	restarted the pump.
10	They did think that he was on an inspection
11	team which I was part of.
12	MR. LU: That's a good comment. We'll
13	take a look.
14	MEMBER MARCH-LEUBA: Thank you.
15	MR. THURSTON: Good afternoon. My name is
16	Carl Thurston. I'm going to present the staff's
17	evaluation of 15.4.6, inadvertent decrease in boron
18	concentration.
19	So we had two open items remaining. Item
20	1, questions our conservation dilution times used to
21	predict a complete mixing for Modes 4 and 5, with one
22	shutdown cooling pump in operation. The applicant has
23	provided mark-ups of tech spec LCL changes that include
24	locking off the pump, locking off boron sources of the
25	pump via a valve, valve closure.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	196
1	And we found their response to be
2	acceptable, acceptable for that, but they propose to
3	close is in a non-safety system. So we're in the
4	process of working with DNRAL to write a response for
5	them that we will send to KHNP.
6	So, next item
7	MEMBER SKILLMAN: And what are you going to
8	tell them to do?
9	MR. THURSTON: Well, we're going to advise
10	them that the non-safety sys the non-safety valve is
11	not going to be acceptable. So we will have to find
12	another mechanism to lock off
13	MEMBER SKILLMAN: Thank you.
14	MR. THURSTON: the boron sources.
15	MEMBER SKILLMAN: Thank you, Carl.
16	So the second open item, questions that CEA
17	withdrawal event which credits the VOP, variable
18	overpower trip, down to slow event like boric dilution.
19	So that RAI went out.
20	And we did get a response back from the
21	applicant in August. And the response, so they propose
22	to use a CPCS DNBR trip or other CPCS auxiliary trip like
23	cold temperature range or primary pressure range which
24	would protect the DNBR for the boron dilution event.
25	So the latest response that they sent us
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	197
1	seems to be acceptable, except the staff has not
2	finalized our, our evaluation. So, we're still
3	MEMBER MARCH-LEUBA: So the event here is
4	that you're slowly affecting your activity, so you're
5	slowly lifting the power?
6	MR. THURSTON: Right.
7	MEMBER MARCH-LEUBA: But you're on very
8	low power, but you are operating on very low power so
9	you're not, you're not tripping a high power.
10	MR. THURSTON: Right.
11	MEMBER MARCH-LEUBA: And the VOPT is
12	resetting this average as it moves, so it doesn't trip
13	either; right?
14	MR. THURSTON: That's what we're that's
15	our opinion. So they're proposing to use
16	MEMBER MARCH-LEUBA: So what were the
17	backups?
18	MR. THURSTON: Temperature range.
19	MEMBER MARCH-LEUBA: Why would that
20	change?
21	MR. THURSTON: Because you're heating up.
22	MEMBER MARCH-LEUBA: But you would heat a
23	scram? Will I mean is there simulation or
24	calculation that the scram will happen?
25	MR. THURSTON: Yeah, well, it should be a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	198
1	slow, a slow warm-up for the RCS that this trip will
2	MEMBER MARCH-LEUBA: All right.
3	MR. THURSTON: So we think that it's better
4	than VOP trip.
5	MEMBER MARCH-LEUBA: Okay.
6	MR. LU: I think that's the part I
7	mentioned yesterday as part of 9.3.4, the chemical and
8	the volume control system.
9	MEMBER SKILLMAN: CVCS.
10	MR. LU: Yes. If for this their final
11	resolution of the first open item, really the conclusion
12	becomes that the source valve needs to be isolated
13	during Mode 4 to 5. And the tech spec should be changed
14	and then corresponding that valve needs to be monitored,
15	controlled through the control room. So whether
16	there's going to be safety, safety grade of the valve
17	or not safety grade of the valve, so that the safety
18	needs are still pending. And that just captured what
19	we talked about yesterday.
20	So that's why we want to add a response
21	here.
22	The issue is not really comes from that we
23	have a problem already. It's really they analyze this
24	boron dilution, potential boron dilution event in Mode
25	4 and 5. And if the fresh water source is provided and
	NEAL R. GROSS

(202) 234-4433

	199
1	then there's potential to manage the contaminant.
2	And the analysis provided at this point was
3	based on the analysis of CFD. But we felt that maybe
4	the input may not be conservative. I mean that the
5	final results will be still acceptable or not, so but
6	we just changed the input. And then we found that to
7	get it to a very accurate or, you know, high confidence,
8	conservative result becomes difficult because of the
9	system itself. And we assume that the complete mixing
10	of the fresh water with the entire RCS loop before it
11	gets into the core. And that just becomes unrealistic.
12	And does not mean that you really turn on
13	the valve and then we have the boron dilution, may still
14	survive. But right now it's to have this issue
15	completely resolved within this time frame. And we
16	felt that maybe the way to go is just to isolate that
17	one. Secure that valve, there is no boron dilution
18	event. What you, you know, by test facts.
19	So, so that's where we are. It's an open
20	item at this point.
21	Okay? All right, thank you.
22	MR. THURSTON: Any questions?
23	MR. LU: Next item.
24	Okay, I will cover that one. You are the
25	lead and now you haven't covered anything.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	200
1	Okay, 15.4.7, inadvertent loading and
2	operation of a fuel assembly in an improper position.
3	And at this point the application has procedure
4	controls, including fuel assembly I.D. verification
5	process once the core is complete. That's part related
6	with the fuel loading.
7	The application surveillance plan, and
8	then we have the peaking factor occurred taking the
9	specification 3.2.2 every 31 EFPD. I don't know who's
10	Okay.
11	The piece on the technical misloading
12	peaking factor increase is bounded by the peaking
13	factor, increased from the CEA drop event analysis. So
14	at this point the applicant claimed that the DNBR limit
15	is not violated. And the staff at this point agreed
16	with this.
17	All right. So that's just one slide I
18	think somebody it's probably this one.
19	Now we go to the actual another confirmed
20	tree analysis.
21	MR. DRZEWIECKI: No. This is actually the
22	review of the CEA.
23	MR. LU: Okay. That's your section.
24	MR. DRZEWIECKI: Yes. CEA ejections,
25	there's actually three separate analyses here. Okay,
	NEAL R. GROSS

(202) 234-4433

	201
1	the peak RCS pressure, looking at the CHF and DNBR
2	analysis, did a technical issue at all looking the fuel
3	enthalpy.
4	This evaluation model is actually, it's a
5	methodology that dates back to 1976, the CE methodology.
6	Some things have changed, of course, because I think
7	they used a different tool back then. It was from PDQ,
8	now it's ROCS. But it's a combination of using the 3D
9	kinetics just to really get, or core design codes to get
10	your pre-and post-peaking factors as well as you
11	activity insertion. And then you would use your point
12	kinetics, your CESEC-III and your STRIKIN calculations.
13	So and then in order to calculate the number
14	of failed fuel pins that you get, it's not a simple case
15	of if you violate the SAFDL and you failed fuel. They
16	have, they have a method which goes back to the actual
17	loss of flow methodology for CE in which they determine
18	a response surface such that if your DNBR is a certain
19	value, then you have a certain probability of seeing
20	fuel, failed fuel. And they add that up by doing a pin
21	census.
22	MEMBER MARCH-LEUBA: Is it like the kind of
23	temperature limits? I mean you can violate DNBR for a
24	microsecond and it will never burn. So there has to be
25	some time involved; right?
	NEAL R. GROSS

(202) 234-4433

	202
1	MR. DRZEWIECKI: They don't include time.
2	It's really based on the uncertain the largest
3	driving factor here is the measured-to-predicted values
4	on the CHF correlation. So taking that you're taking
5	the values of, you know, other uncertainties associated
6	with CETOP and all the response circuits by running like
7	200 or 300 cases like that and trying to vary these
8	things, trying to determine that, you know, if my even
9	though my staff felt it was 1.29, if on that 1.29 that's
10	my, you know, mean value, or something like that for I
11	only have a certain probability of having a failure.
12	And that was found acceptable in part by
13	what you just said because it was, it was deemed to be
14	conservative back when they approved this in the early
15	'80s because of what they had learned. There's a
16	NUREG-0562 in which we took rods and had them NCHFed and
17	saw how long they had to be there in order to actually
18	get fuel failures.
19	So that's kind of the basis for the approval
20	then. And it's carried forward here.
21	Next slide, please.
22	So, again, staff created a series of tables
23	to go through and look at the parameters for these series
24	of calculations and to determine the basis for those.
25	They're suitably conservative.

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

They do take credit on the RPS trip on the variable overpower trip. But that trip also includes, it includes a set point of -- there's a penalty because, of course, if you eject your rod you power shape is going to shift. And so your detectors have to include a decalibration factor.

And so they calculated what the decalibration factor was going to be. And they took the response from the worst responding exploited piece.

We also considered a loss of offsite power and if operator action is taken at 30 minutes. The results they presented so far showed that all the field failures were associated with a violation of DNBR. There were no fuel failures so far that associated with a violation of fuel enthalpy limits. However, that's the one which is on, which is on the most sensitive connectivity degradation. And that's why it remains an open item.

19In terms of the peak pressure they showed20they stayed below I believe 120 percent, which was,21which is a limit for this event. And we don't expect22that to change as a result of connectivity degradation.23Any other questions on CEA ejection?24Okay, so Pete's going to talk about some of25the work that Russ has done to help us in this area.

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	204
1	MR. YARSKY: Thank you. I'll be
2	presenting work that was primarily done by Dr. Andrew
3	Bielen from the Office of Research who couldn't be here
4	today. Hopefully I can cover it competently.
5	The first slide here, I want to spend some
6	time talking about the methods that we used for our
7	confirmatory analysis for rod ejection. We touched on
8	these topics earlier during our discussion of the loss
9	of flow AOO. But they're more relevant here for the
10	analysis of rod ejection.
11	The first is, as I'm sure you're all
12	familiar with TRACE/PARCH is that PARCH allows us to do
13	a 3-dimensional kinetics calculation which is very
14	relevant to a rod ejection if it's the highly-localized
15	event. However, in this model we also have a detailed
16	3-D core thermohydraulics model using a
17	vessel-in-vessel capability in traits to model the
18	core, as we said, with 241 thermohydraulic channels,
19	also coupled to the 3-D PARCH calculation.
20	This is I would say the most realistic
21	picture of what occurs during a postulated rod ejection
22	accident because we have a significant amount of detail
23	and electronics modeling as well as our
24	thermohydraulics modeling.
25	If we go to the I also wanted to mention
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	205
1	here before we go to the next slide that we analyzed two
2	specific points in the cycle, in the beginning of cycle
3	and end of cycle. Because these were two potentially
4	limiting points based on the combination of delayed
5	neutron fraction and the feedback parameters.
6	So we go to the next slide.
7	Before getting to the results, I wanted to
8	take some time to do a quick comparison between what is
9	represented in the applicant's analysis versus what's
10	represented in the staff's analysis. The applicant's
11	method is based on a point kinetics representation.
12	And this methodology allows the applicant to bias a
13	number of parameters.
14	And to give just one example, for instance,
15	moderator temperature coefficient has its smallest
16	magnitude at the beginning of cycle. So that's you most
17	limiting point in cycle from the standpoint of moderator
18	temperature coefficient. However, delayed neutron
19	fraction tends to be smallest at end of cycle. So your
20	most limiting point in cycle from the standpoint of
21	delayed neutron fraction is end of cycle.
22	Using TRACE/PARCH, which is a realistic
23	methodology doesn't allow us to mix and match those
24	conditions. We can either analyze the beginning of
25	cycle or analyze the end of cycle, even though the
	NEAL R. GROSS

(202) 234-4433

particular parameters are not the minimum or maximum most conservative for overall.

The applicant, however, can mix and match. Take, for instance, the beginning of cycle moderator temperature coefficient and combine it with the end of cycle delayed neutron fraction. Using that kind of general approach for all of the kinetic feedback parameters on our point kinetics model allowed the applicant develop what looked at to we as а significantly conservative methodology for the evaluation of rod ejection.

And looking at these factors, items that are conservative relative to TRACE/PARCH for a more realistic confirmatory calculation include the input from the worth of the ejected rod, the reactivity feedback coefficients in terms of moderator temperature and Doppler feedback, as well as delayed neutron fraction.

The resulting power transient from the point kinetics calculation is then fed into a thermohydraulics analysis which, as Tim mentioned earlier, uses what's called these post-rod ejected peaking factors, which is another conservatism in the applicant's method.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

In TRACE/PARCH this is, again as I

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

25

	207
1	mentioned, a realistic 3-D calculation which means that
2	the ejected rod depends on the thermohydraulic
3	conditions and point in cycle where we actually eject
4	the rod in our simulation, and doesn't allow us to
5	combine sort of the worst case in terms of all of these
6	different variable reactivity feedback parameters.
7	So with that understanding, if we go to the
8	next slide I can talk about some of the conclusions from
9	our confirmatory analysis.
10	We found that the applicant's analysis
11	includes significant conservatism when compared to a
12	realistic analysis. We talked about this in terms of
13	the ejected rod worth, the delayed neutron fraction, and
14	the reactivity feedback parameters.
15	To list an example, for the hot zero power,
16	the applicant assumes an ejected rod worth of \$1.08,
17	which is over \$1.00 which can leave to a prompt
18	reactivity feedback and a significant increase in power
19	level.
20	However, using a TRACE/PARCH realistic
21	analyses at both beginning of cycle and end of cycle and
22	ejecting a population of potentially limiting rods
23	based on the power-dependent insertion limits, we found
24	that the maximum ejected worth using realistic
25	assumptions is about \$0.26. As a result of this,
	NEAL R. GROSS

(202) 234-4433

(202) 234-4433

	208
1	there's a significant difference between the staff's
2	confirmatory analysis and the applicant's reference
3	analysis where we showed tremendous margins.
4	Our TRACE/PARCH calculations show the
5	power increasing by a factor of three because of the low
6	reactivity insertion, compared to the applicant's
7	analysis showing the power increase back eight orders
8	of magnitude.
9	MEMBER MARCH-LEUBA: A factor of three
10	versus ten to the eighth?
11	MR. YARSKY: Yes. From zero power.
12	MEMBER MARCH-LEUBA: Sure. But still.
13	MR. YARSKY: Yeah. It's really a
14	different the analyses diverged significantly
15	because the applicant can force a reactivity insertion
16	over a dollar based on their method.
17	MEMBER MARCH-LEUBA: Yeah.
18	MR. YARSKY: So even in TRACE/PARCH,
19	trying to find the worst rod to be ejected at the
20	beginning of cycle or end of cycle, if we adhere to the
21	power-dependent insertion limits, there isn't a rod
22	that can be ejected that inserts a dollar of reactivity.
23	MEMBER MARCH-LEUBA: Okay, now this
24	philosophy, but we can do conservative calculations,
25	it's perfectly acceptable, if you know where did we do
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	209
1	the conservatism. But if the applicant believes that
2	the hot rod is worth 1.08 and you calculated .26, as we
3	usually say, one of the two is an error, and probably
4	both.
5	And being there by a factor of four, I can
6	see a ten to the eighth because it's critical.
7	MR. YARSKY: Right.
8	MEMBER MARCH-LEUBA: You're going from
9	critical and that is that.
10	But miscalculated overall by a factor of
11	four, that deserves a little scrutiny on the nuclear
12	numbers.
13	MR. YARSKY: Just to be clear, this isn't
14	that the applicant miscalculated the worth of the rod.
15	This, these parameters that go into essentially
16	parameters of their safety analysis, are generally
17	selected so that they're bounding of any potential
18	future cycle or core design. So what you can do is you
19	can say from my nuclear design calculations performed
20	in Chapter 4.3 for the initial core or the equilibrium
21	core, I may have this is a maximum ejected rod worth
22	based on those core designs. But go to Chapter 15 and
23	then increase that worth so that your safety analysis
24	has additional margin.
25	And what this would allow is for future
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	210
1	cycle designs. If the rod worth were slightly greater
2	than what's represented in 4.3, this safety analysis
3	would still be bounding.
4	MEMBER MARCH-LEUBA: But 400 percent
5	margin on your rod worth deserves calling the guys out
6	on 4.3, which are at the table anyway, and do that, make
7	sure that somebody's not messing up royally. 4 percent
8	on the rod worth is too much.
9	MR. DRZEWIECKI: One thing I wanted to add
10	is that for this evaluation, you know, over the \$1.00
11	reactivity insertion, they didn't calculate that they
12	only get \$1.00 reactivity insertion, it's that if you
13	don't insert \$1.00 and you're at hazard power, not much
14	happens. And so you boosted it up, you know, just
15	artificially in order to get a prompt pulse.
16	MEMBER MARCH-LEUBA: It is okay to do
17	conservative calculations when you say, hey, my results
18	were completely relevant and I can handle even 1.08.
19	But my best estimate was .26. But as long as they did
20	that, but if they calculate one way, then their nuclear
21	methods are suspect.
22	MR. YARSKY: No, the 1.08 is a conservative
23	bounding input assumption.
24	MEMBER MARCH-LEUBA: It's worthwhile to go
25	back to 4.3 and see what numbers they actually
	NEAL R. GROSS

(202) 234-4433

	211
1	calculate, to make sure. Because this is really I
2	mean, as you said, maybe the 1.08 is not a calculated
3	rod worth, but they run a sensitivity, 1.06, 1.07, 1.08.
4	At 1.08 they decide to stop.
5	MR. YARSKY: Yeah.
6	MR. DRZEWIECKI: So, we did calculations
7	as well that were looking at 4.3, you know, which is our
8	results. And that was the best estimate. And we were
9	must closer. We were, you know, pretty on the line
10	there.
11	I don't have the exact values in front of
12	me. That was presented, I believe, I'm not sure, I
13	believe at Chapter 4 ACRS. But that was presented there
14	and I thought it was a lot closer.
15	MEMBER MARCH-LEUBA: What method is used?
16	Did you use CASPR to simulate, or what, what did they
17	use for physics, what section?
18	MR. DRZEWIECKI: Oh. They use ROCS and
19	DIT.
20	MEMBER MARCH-LEUBA: Oh, okay. So their
21	own, their own system.
22	MR. DRZEWIECKI: Yeah. It's a CE
23	methodology.
24	MEMBER MARCH-LEUBA: And we don't do we
25	ever get a PATHS model for this, a model for this? We
	NEAL R. GROSS

(202) 234-4433

	212
1	don't have
2	MR. YARSKY: Yes.
3	MEMBER MARCH-LEUBA: We do?
4	MR. YARSKY: Yes.
5	MEMBER MARCH-LEUBA: So, you could
6	MR. YARSKY: We did this. We presented
7	these results to the subcommittee for 4.3.
8	MEMBER MARCH-LEUBA: Yeah, I don't
9	remember.
10	MR. YARSKY: But the, for instance, the
11	shutdown worth comparison and the bank-by-bank worth
12	comparison were in good agreement between PARCS/PATHS
13	and the applicant's analysis in 4.3. So, there was no
14	indication at that point, but the methods were diverging
15	in terms of the prediction of rod worth.
16	MEMBER MARCH-LEUBA: Yeah. And with the
17	shutdown event you also believe
18	MR. YARSKY: Right.
19	MEMBER MARCH-LEUBA: 9.6 was So this
20	is an outlier.
21	MR. YARSKY: The 1.08, as we said, is
22	artificially imposed in their method. There isn't a
23	calculation of an ejected rod that has this worth.
24	They, in their method, imposed in a point kinetics model
25	this degree of reactivity insertion. So there isn't a
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	213
1	nuclear design calculation up front that says the rod
2	in location 27, if it were ejected, would have this
3	worth. This is an imposed assumption.
4	And then this magnitude is such that if you
5	compared it to Section 4.3, all of the worths are bounded
6	by this assumption.
7	MEMBER MARCH-LEUBA: But the DCD or FSAR,
8	whatever the document, it seems there should be a
9	affirmative calculation that says the number we used is
10	conservative because
11	MR. YARSKY: Yes.
12	MEMBER MARCH-LEUBA: they would
13	calculate this.
14	MR. YARSKY: Exactly.
15	MEMBER MARCH-LEUBA: Yes. Does that
16	thing exist?
17	MR. YARSKY: Yeah, it does. It says that
18	they calculated a value of like, you know, \$0.90. But,
19	you know, multiplied by 1.2 so you get up front a
20	critical response.
21	MEMBER MARCH-LEUBA: So this made .9 as
22	opposed to use .26.
23	MR. YARSKY: Yeah.
24	MEMBER MARCH-LEUBA: I mean it merits
25	asking a question.
	NEAL R. GROSS

	214
1	MR. YARSKY: If there are no additional
2	questions, that's all I have to present on rod ejection.
3	MR. DRZEWIECKI: So that's all for 15.4.
4	So we move on to 15.5.
5	Our first event, this is inadvertent ECCS
6	actuation. This was, this was not evaluated in any kind
7	of code in civil hand calculations. Or, actually, it
8	was the qualitative type of evaluation.
9	They ran three cases. If the RCS is above
10	the SI pump shutoff head, if it's somewhere in modes like
11	3 or 4, and then also if you're, if you're in a lower
12	mode on the LTOP system.
13	And of course, you know, staff went through
14	and identified all the inputs from their basis and their
15	values.
16	Next slide, please.
17	Okay. So if you're in Modes 1 and Modes 2
18	you're above the shutoff head of the SI, and so there's
19	no impact up on the RCS.
20	So, if you're in Modes 3 and 4 and you're
21	cooling down, okay, there's actually two scenarios if
22	you're cooling down and you're heating up. What if
23	you're, if you're outside the range and it should be on
24	the LTOP system, then your pressure limit is actually
25	higher than your shutoff head of the SI pumps. So
	NEAL R. GROSS

(202) 234-4433

	215
1	there's no challenge to your pressure limits there.
2	If you're in these lower Modes 4, 5, and 6
3	and you're on the LTOP system, then the relief capacity
4	of the LTOP system is much larger with the inside of
5	ejection capacity. So there's no challenge there.
6	So 15.5.2, this is a malfunction of the CVCS
7	that can increase the inventory of the RCS. Against
8	that had gone Oh, okay. This was evaluated using
9	CSEC-III and classification KCE-1 CHF correlation. I
10	guess staff had gone through and tried to evaluate all
11	the input parameters and to ensure they had a basis that
12	was conservative.
13	There was an operator action that was taken
14	at 30 minutes. They did assume the head had a loss of
15	offsite power with reactor trip. And it didn't take any
16	credit for pressurizer heaters in order to have in
17	order to maximize inventory in the RCS.
18	What they had shown is there wasn't any
19	challenge to the SAFDLs. DNBR 1.5.177. So not very
20	challenging in that perspective. Not very challenging
21	from a peak pressure perspective.
22	They did not do an overfill analysis of the
23	steam generator. And so this is where staff actually
24	had some questions. And so what they were able to show
25	to us during an inspection is that the POR sorry, the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	216
1	POSRVs all qualified for water and 2-phase mixture
2	passage.
3	So during inspection we had looked at their
4	design spec for that valve and I was able to verify that.
5	Therefore, we determined it didn't have to actually
6	evaluate these consequences.
7	So that's actually all for 15.5. That's a
8	very short section.
9	Move on to 15.6. The first event, 15.6.1.
10	Now, in the SRP this is an AOO. But they evaluated it
11	as a postulated accident. So staff had some questions
12	on that.
13	Now, it's actually, now this is evaluated
14	by KHNP as part of a small break LOCA. And so we issued
15	an RAI. And they had responded that there was no single
16	operator action or spurious signal that could cause this
17	event because of this tech spec here. If they lock out
18	one of the valves, it would have to open in order to have
19	a spurious signal.
20	What it is is that POSRVs they have an
21	emergency depressurization function, if you would, to
22	lose the heat sink. And so they would pass a feed and
23	bleed using these. But to have that scenario set up you
24	have to take the action of actually to close a breaker
25	in order to get power to these valves and to actuate that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	217
1	sequence.
2	Next slide, please.
3	Okay, the next one is the failure of small
4	lines carrying coolant outside of the containment.
5	This was identified as a letdown line break. This was
6	the largest line. Staff had gone through and verified
7	that that was consistent with table in the BCD 6.2.4.1.
8	They did evaluate this using CSEC and
9	CETOP. Again, staff had gone through and evaluated all
10	the parameters to verify they were suitably
11	conservative. And the results showed that there was a
12	change in the pressurizer level, but that was about it.
13	This event, it didn't really have much of
14	an impact on the response of the NSSS system. It just
15	kept going. And so a half an hour was actually taken
16	in order to trip the reactor.
17	Next slide, please.
18	Okay, steam generator tube rupture. This
19	again has two separate analyses to look at the thermal
20	margin to see if you would fail any fuel at all, and then
21	to look at the radiological consequences.
22	This was ran with CSEC and CETOP again.
23	Again, staff had gone through, cleared a table. Had
24	identified parameters and made sure they had a basis.
25	They ran it with and without a loss of offsite power.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	218
1	But the one with the loop is more conservative. They
2	assume that the NSRVs are going to close instantaneously
3	on a high steam generator level. And that is done so
4	that the safeties are going to open up so you get more
5	of a steam release, which is worse with those
6	consequences standpoint.
7	Next slide, please.
8	So, the results are that there is no
9	violation of the SAFDLs, so no fuel failures. No
10	challenge to the peak pressure. There was no steam
11	generator overfill that occurred during this event.
12	And that the mass leak through the break is consistent
13	with the value used in the dose consequence analysis for
14	steam generator tube rupture.
15	Staff had determined that that leak was
16	suitably conservative to use in dose consequences
17	calculations.
18	MEMBER STETKAR: Tim, why was there no
19	steam generator overfill? I was looking at something
20	else. The operator action stops it?
21	MR. DRZEWIECKI: I believe so, yes.
22	MEMBER STETKAR: That's the only way
23	MR. DRZEWIECKI: It took a half hour, yeah.
24	MEMBER STETKAR: Auxiliary feedwater on
25	this plant is not isolated on high speed generator
	NEAL R. GROSS

(202) 234-4433

	219
1	level.
2	MR. DRZEWIECKI: Yeah. Yeah, so a half an
3	hour they have to identify it, one, and then
4	MEMBER STETKAR: Yes.
5	MR. DRZEWIECKI: That's it.
6	MR. LU: Thank you. Before we jump into
7	the LOCA section. I had LOCA, you know, and in the LOCA
8	section we have a lot of slides, about 30 slides. So
9	there is one slide about ATWS.
10	Jim, do you want to come over. This is
11	supposed to be 6.8. It's after the LOCA but I, since
12	there is only one slide, if Jim will cover that one then
13	we can get into lots of LOCA slides, too, because they're
14	still pending for review. And then we are going to
15	it's going to be under these contractors will give a
16	one-day presentation about the LOCA.
17	So maybe just go through those few slides
18	then if we want to take a break we can take a break. Then
19	we'll finish the remaining of the LOCA set.
20	CHAIR BALLINGER: Let's just keep going.
21	MR. GILMER: Good afternoon. I'm Jim
22	Gilmer with Reactor Systems.
23	We touched briefly this morning with Member
24	Stetkar's questions on the diverse protection system in
25	Chapter 7 conclusion that satisfies the ATWS Rule
	NEAL R. GROSS

(202) 234-4433

	220
1	5062.
2	I should mention that the DPS is virtually
3	identical to radium in the system 80-plus plants. So
4	obviously approved in an upgrade.
5	The Section 15.8 is a technical report
6	which did a detailed evaluation basically re-running
7	all the cases submitted by Combustion Engineering in
8	CENPD 158, which was provided to the agency back during
9	the ATWS rulemaking. And it led to the special
10	requirements for Combustion Engineering plants. So
11	that's part of the 5062.
12	The applicant basically concluded the same
13	thing that Combustion Engineering did, that the
14	limiting event was found to be the loss of normal feed
15	without a turbine trip. Even the Combustion
16	Engineering tests resulted in a reactor coolant system
17	overpressure which exceeded the service level C. And
18	that's what led to the special ATWS requirements.
19	For this section, because the Chapter 7
20	reviewers concluded that the protection system meets
21	the intent of the ATWS rule, and the Chapter 19 actually
22	does the Level 1 PRA for all the ATWS events. So there's
23	more discussion in the beyond design basis section in
24	Chapter 19 for ATWS.
25	So, therefore, for this section staff
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	221
1	concluded that it's acceptable.
2	Any questions on this?
3	MEMBER MARCH-LEUBA: In this event in this
4	plan boron terminates the event? Is boron assumed to
5	work or this also fails?
6	MR. GILMER: There was no, no mention of
7	credit.
8	MEMBER MARCH-LEUBA: So the event never
9	terminates? I mean, how do you get out of ATWS?
10	MR. GILMER: What turns it around? We
11	haven't dug in detail into the analysis but I presume
12	it's because
13	MEMBER MARCH-LEUBA: Well, what does the
14	protection system I mean in a WR your rod still can
15	serve and then boron terminates the out. Here, what
16	event will you use enough negative radioactivity so you
17	are out of the, the woods?
18	MR. GILMER: Well, I assume it's just the
19	negative
20	MEMBER MARCH-LEUBA: Yeah, and you
21	continue to operate at the same power forever? That's,
22	is that the assumption? Which is probably okay, I mean
23	as long as you don't lose anything else.
24	MEMBER STETKAR: Does the diverse
25	protection system work successfully here?
	NEAL R. GROSS

(202) 234-4433

	222
1	MR. GILMER: In the analysis or?
2	MEMBER STETKAR: In the analysis.
3	MR.GILMER: Yes, sir. I believe it does.
4	MEMBER STETKAR: The diverse protection
5	system stops it.
6	MEMBER MARCH-LEUBA: Okay. So you use
7	control rods and boron.
8	MEMBER STETKAR: Yes. It opens the
9	reactor breakers alternately.
10	MR. GILMER: They did make a conservative
11	they made a conservative assumption that there is a
12	mechanical failure of the rods to drop. So your diverse
13	protection system
14	MEMBER MARCH-LEUBA: So then you still
15	have
16	MR. GILMER: Yeah.
17	MEMBER STETKAR: Jim, I didn't read the
18	ATWS analysis. Let's be clear. In their analysis does
19	the diverse protection system shut down the reactor or
20	not?
21	MR. GILMER: I believe that it does.
22	MEMBER STETKAR: And how does it do that?
23	Does it drop the rods or does it not drop the rods?
24	MR. GILMER: It initiates the signal to
25	drop the rods. But there's certain, many rods do not
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	223
1	drop. If the rods do not drop because of some
2	mechanical part
3	MEMBER STETKAR: the reactor does not ever
4	get shut down. Their injection pumps will not inject
5	at the higher pressures that you're going to get. You
6	establish some sort of meta-stable state with auxiliary
7	feedwater flow and some reactor power that is controlled
8	by temperature and Doppler and secondary heat removal.
9	I mean I, I didn't look at their ATWS
10	analysis, so I don't Can't pull it up quickly here.
11	MR. GILMER: Well, and we didn't dig in
12	detail into it because basically they were re-bench
13	marking the analysis that was previously done by
14	Combustion during the rulemaking.
15	MEMBER STETKAR: You can't get boron into
16	the pressure down because they don't have high pressure
17	injection pumps that will dead-head against the safety
18	valves.
19	MEMBER MARCH-LEUBA: Yes. But you can't
20	get boron but you can still get some regular boron
21	control.
22	MEMBER STETKAR: From where?
23	MEMBER MARCH-LEUBA: I don't know. They
24	need boron control.
25	MEMBER STETKAR: Right. You can't get
	NEAL R. GROSS

(202) 234-4433

	224
1	boron in.
2	MEMBER MARCH-LEUBA: Yeah, it would be
3	worthwhile to find out what happens or it's supposed to
4	stay there for the next 60 years. Eventually you will
5	burn up the U-235; right?
6	MR.GILMER: Right. That was definitely a
7	good question. And we'll take it back and I think we
8	should address it from there.
9	MEMBER MARCH-LEUBA: Assume the
10	contingency there was some way what you do.
11	MR.LU: Let me add another point. I don't
12	think that we need to take action at this point.
13	They have performed this analysis,
14	actually they, of course, did not assume that the unit's
15	diverse scram system would work. Okay. So actually if
16	the power goes on and then, you know, the pressure goes
17	on. Then so actually has really reached the pressure
18	limit. But that's the beyond event basis.
19	For ATWS scenario by itself seems this,
20	because of this analysis demonstrated there is a need
21	for scram. So scram is required. And then because of
22	the requirement there's no need to worry about the
23	continuous power of the reactor for 60 years. That's
24	not possible. This is number one.
25	Number two, the APR1400 design, we just
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	225
1	endorsed the same, the diverse scram system. And the
2	ATWS rule, and they do have like a diverse scram system.
3	And they confirmed that in Chapter 7 the Division of
4	Engineering I&C Group, that's its function, and
5	acceptable. So they can take credit of having a diverse
6	scram system.
7	If that satisfies the requirement from the
8	ATWS rule and also that's the same level of safety
9	requirement we have imposed to the Combustion
10	Engineering plant operating fleet. So, therefore,
11	staff does not believe there is anything we need to
12	pursue in terms of this section.
13	MEMBER SKILLMAN: I need to ask. I'm
14	looking at the safety evaluation.
15	MR. LU: Yes.
16	MEMBER SKILLMAN: Section 15.8.6 on
17	Chapter 15-239. And the conclusion is because of the
18	open items the staff cannot yet conclude that the
19	APR1400 design meets the requirements of the ATWS rule.
20	And that's contrary to what is on that
21	slide. It's on your SER, page
22	MR. GILMER: Yeah, those open items were
23	Chapter 7 open items. Thermohydraulically we don't
24	have any open issues on this. So it's just being
25	contingent on the final conclusion for the Chapter 7.
	NEAL R. GROSS

(202) 234-4433

	226
1	MEMBER SKILLMAN: Well, that may be. But
2	I'm reading out of your Chapter 15 conclusion. And your
3	Chapter 15 conclusion is that the staff cannot yet
4	conclude that the APR1400 design meets the requirements
5	of the ATWS rule. That's on page 15-239 of your safety
6	evaluation.
7	So I think that there's a difference
8	between what's in your safety evaluation and what's on
9	your slide.
10	MR. GILMER: You have a good point. That
11	really is open until we finalize the Chapter 7.
12	MEMBER SKILLMAN: So I think your slide 52,
13	the last bullet is premature.
14	MR. GILMER: I would agree, yeah. A good
15	catch.
16	MEMBER SKILLMAN: Thank you.
17	MR. GILMER: Any other questions on this
18	section?
19	Okay. Okay, back to 15.6.5, large break
20	LOCA. As you heard earlier, we're going to have a
21	separate session on the topical report review of the
22	realistic evaluation model.
23	One thing I was going to point out is that
24	I believe will be a Thermohydraulic Subcommittee
25	meeting, so logistically we may need to work out the like
	NEAL R. GROSS

(202) 234-4433

	227
1	a joint APR1400 site works committee meeting. Because
2	typically these topical reports would be presented to
3	the TH Subcommittee.
4	MEMBER CORRADINI: This is Corradini.
5	Can I ask when that is scheduled? I was under the
6	impression
7	MEMBER STETKAR: Why don't we do that
8	offline because we don't need the staff, the NRC staff
9	to tell the ACRS how to organize subcommittee meetings.
10	MR. GILMER: Yeah, I think it won't be
11	until November. It's not currently scheduled, sir.
12	MEMBER CORRADINI: That's all I wanted to
13	know. Thank you.
14	MR.GILMER: Okay. So because we're going
15	to get into more details in a separate session, the only
16	things we're going to talk about here are issues that
17	were specifically identified for DCD Revision 0.
18	And one is well, these are sort of
19	generic questions. So the first one was on loss of
20	offsite power, single failure, and the limiting
21	single-failure assumptions. And under that, then
22	whether or not the reactor coolant pump trips were
23	we were not exactly clear which resulted in the limiting
24	peak clad temperature. Ultimately that was just
25	resolved by a sensitivity study in response to RAI.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

Similar question on control element assembly insertion, whether with insertion or without resulted in peak clad temperature. And the sensitivity study demonstrated that no insertion resulted in what's sought by PCT.

And the third question was regarding the safety injection tank check valves, whether active or passive failure. And KHNP took the position that they did not need to consider a check valve failure. But the staff's concern was, in particular, stuck open -- or stuck closed, rather, check valve preventing injection.

And we sort of answered our own question in investigating that, number one, their design with regard to the safety injection check valves is not that much different than convention PWR, Westinghouse, or Combustion. And we typically have not required them to analyze their reasons why. And one is related to the SECY paper 94-084, that there were certain exceptions where designs similar to the safety injection systems were postulated failure of the check valve was not required. But there were certain other stipulations that the failure probability was less than 10 to the minus 5.

And at the time of the question we didn't have the Level 1 PRA completed, but now do. And the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

	229
1	probability is certainly less than that value of
2	failure.
3	Another reason is the surveillance
4	requirements for the check valves for KHNP it's 120 tons
5	over the design life of the plant, 60 years life. So
6	that would be essentially twice per year.
7	So given the probability type and the
8	surveillance requirements, staff concluded that this
9	was not an issue here.
10	Another item
11	MEMBER SKILLMAN: Jim, let me ask, is there
12	any other place where you deem a check valve an active
13	failure?
14	MR. GILMER: For LOCA or surveillance?
15	MEMBER SKILLMAN: I'm scratching my head
16	here because for my many years check valve was always
17	considered to be passive device that you could depend
18	on.
19	MR. GILMER: That didn't fail.
20	MEMBER SKILLMAN: That's in the B&W
21	design, the Westinghouse design, the Combustion design,
22	and the GE design.
23	MR. GILMER: Right.
24	MEMBER SKILLMAN: So perhaps you've said
25	enough that this is not an issue now. But I'm just
	NEAL R. GROSS

(202) 234-4433

	230
1	curious why it ever would have become an issue?
2	MR. GILMER: Well, it's not an issue
3	because of the extremely low failure probability. But
4	
5	MEMBER SKILLMAN: Well, Hallelujah,
6	you've got these passive valves everywhere. I mean it
7	seems like a precipitous direction to go given 100
8	plants in the country that basically use check valves.
9	MEMBER STETKAR: I can say this because San
10	Onofre Unit 1 is shut down now. They have five of them
11	fail to open. Check valves can fail occasionally.
12	MEMBER SKILLMAN: It's not very often.
13	And it is not often.
14	MEMBER STETKAR: It is not often but they
15	do occasionally fail. So, you know, whether they're
16	passive or active, they do occasionally fail.
17	MR. GILMER: Yes, that's a good question.
18	And I, I don't know the status of this as a generic issue
19	here. I think it was in the past. And I'm not sure
20	exactly how the agency closes that generic issue.
21	We'll have to look into that.
22	MEMBER SKILLMAN: I am not suggesting any
23	further action. Thank you.
24	MR. LU: I think the conclusion on this
25	point is that a check valve, active or passive, is not
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	231
1	considered as part of what's needed for large LOCA
2	analysis. And the issue resolved.
3	MR.GILMER: Okay. Continuing then. The
4	members may have observed when looking at the DCD is that
5	there is a surprising result for one of the curves in
6	particular. 15.6.5-13 there is an unrealistic power
7	spike which is totally unexpected for a light water
8	pressurized water reactor. So the staff questioned
9	that as an RAI.
10	And KHNP basically concluded that there is
11	an error in the input of moderated temperature
12	coefficient reactivity table in the RELAP codes that's
13	being used for large break LOCA.
14	So this would apply not only to the ON6
15	double-ended guillotine case that was presented in that
16	figure, it would apply to all of the spectrum of breaks.
17	And that is being corrected. And the runs that are
18	currently being done to find a resolution of all of
19	these, so there will be new curves generated for the TCD.
20	Finally, because of the review is not
21	complete, mainly because of the thermal conductivity
22	issue and some other issues that were identified during
23	the review that are being corrected, the talks are
24	currently ongoing, so that's why we won't be ready to
25	have the detailed presentation until November.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	232
1	The other issue besides the thermal
2	conductivity that we had a lot of discussion was on the
3	number of statistical random samples that would satisfy
4	the 95/95 criteria. The original Rev. 0 they used 124.
5	But because they were reporting the third highest PCT,
6	we determined that they really needed to run 181 cases
7	to meet the 95/95. So that's also being addressed in
8	the revision.
9	So it will result in another revision to the
10	DCD which I guess will be Revision 2.
11	MEMBER CORRADINI: So this is Corradini.
12	I'm not exactly sure then why we're
13	reviewing any quantitative calculations at this point,
14	given what you just said.
15	MR. GILMER: Yes. We are not reviewing
16	quantitative at this point either. So we would not
17	expect the members to do any detailed look at it at this
18	point.
19	MEMBER CORRADINI: Okay, fine.
20	MR. GILMER: Any other questions on this?
21	Okay, moving on then.
22	MR. LU: Shall we move on? Or do you want
23	to move on to LOCA? I think we will have quite a lot
24	of presentations here, including a confirmed analysis.
25	So loop seal formation clearing and it is a big section.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	233
1	So we have Syed and Dr. Syed Haider and
2	also Dave Caraher and maybe Dean Prelewicz.
3	CHAIR BALLINGER: We're scheduled for a
4	break at 3:45.
5	MR.LU: 3:45. So you want to do that now?
6	CHAIR BALLINGER: So, why don't we take
7	that now.
8	MR. LU: Right.
9	CHAIR BALLINGER: And come back at five
10	till 3:00.
11	(Whereupon, the above-entitled matter went
12	off the record at 3:40 p.m. and resumed at 3:45 p.m.)
13	CHAIRMAN BALLINGER: All right, we are
14	back in session. I don't know who's next, but whoever
15	it is.
16	MR. HAIDER: Good afternoon. My name is
17	Syed Haider. I'm a reviewer at NRO for the APR program
18	and the small break loss of coolant accident
19	methodology.
20	We also have with us David Caraher from ISL
21	who is with the contractor.
22	Today I will present the status of the staff
23	review regarding the evaluation of the small break LOCA
24	as it relates to Section 15.6.5 of the APR1400 DCD.
25	The applicant also submitted a technical
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	234
1	report to describe the APR1400 small break LOCA
2	evaluation model details. Experience shows that for
3	pressurized water reactors the most challenging
4	transient for peak cladding temperature is always in
5	limiting small break LOCA due to loop seal formation and
6	the potential core uncovery.
7	I would like to emphasize that the present
8	review was confined to the short-term thermohydraulic
9	response of the reactor systems during the initial phase
10	of the small break LOCA until the peak cladding
11	temperature has occurred and the core has recovered and
12	is covered with 2-phase mixture and the loop seals have
13	been closed.
14	For the chill core reheat phenomenon due to
15	later reformation of the loop seal swill recover and the
16	post-LOCA long-term cooling for both small and large
17	break LOCAs, that will be presented later today by Dr.
18	Shanlai Lu.
19	The present slide highlights the four
20	aspects of the APR1400 small break LOCA safety
21	evaluation that the staff focused on. The objective
22	was to ensure that the APR1400 design complies with the
23	10 C.F.R. 54 46 acceptance criteria for emergency core
24	cooling systems for light water reactors. That
25	essentially means that even in case of the most
	NEAL R. GROSS

(202) 234-4433

	235
1	challenging small break LOCA, the peak cladding
2	temperature would not exceed the 10 C.F.R. mandated
3	2,200 degree Fahrenheit safety limit.
4	The staff first assessed the application of
5	the Supplement 1 small break LOCA methodology and its
6	four computer codes used for the APR1400 design. The
7	SM-1 methodology and the use of the computer codes were
8	approved by the NRC in 1977 for the Combustion
9	Engineering ABB design. Continued use of S1-M
10	methodology was also approved by NRC in 1986 for meeting
11	the EMI requirements.
12	The applicant also showed that the
13	Supplement 1 methodology used for APR1400 predicts more
14	controverted PCTs than its Supplement 2 variant that was
15	approved later by NRC in 1998.
16	So, this methodology has been reviewed
17	about three times.
18	The S1-M methodology uses two computer
19	codes CELASH 4AS and compact 2 to model the system's
20	hydraulic response for drill-down and reflect
21	(phonetic) cases, while STRIKIN-II and PARCH are used
22	to model the hot rod cladding temperature.
23	In this backdrop, the staff also reviewed
24	various modeling assumptions used for the small break
25	LOCA analysis.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	236
1	The staff also spent considerable effort on
2	reviewing the applicant's modeling of the safety
3	certification involved in small break LOCA, such as the
4	initial loop seal formation and clearing, core cooling,
5	the peak cladding temperature, or PCT.
6	My presentation will also cover the
7	acceptability of the applicant's small break LOCA
8	spectrum analysis.
9	Next slide.
10	This slide illustrates APR1400's
11	conceptual design of each loop that can also help
12	explain one of these main small break LOCA concerns in
13	this review about the loop seal formation at the coolant
14	pump section.
15	Starting from the right and going to the
16	left of the slide, the zone of concern includes the cold
17	leg initiating from the coolant pump start, the pressure
18	vessel, the hot leg, the steam generator, and the
19	intermediate leg that runs from the steam generator
20	outlet to the coolant pump inlet.
21	The tube part of the intermediate leg
22	between the steam generator and the coolant pump is
23	called the loop seal. In case of a limiting small break
24	LOCA, the loop seal may get flooded due to the
25	accumulation of a significant amount of water. Unless
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

237 the flooded loop seal is cleared of the water, the entire 1 steam continuum running from the intermediate leg to the 2 3 reactor pressure vessel to the steam generator will get 4 pressurized. Due to the so-called double manometer 5 6 effect, the deeper the loop seal geometry, the higher 7 the steam pressure needed in the core to clear the 8 flooded loop seal by overcoming its static pressure 9 head. With the bottom elevation of the APR1400 loop 10 seal being closed to the neck point of its core height, 11 the steam pressure on top of the core needs to rise up 12 to the point of overcoming the static head of the deep 13 loop seal before it is cleared. 14 The resulting pressurization could leave 15 to a depressed water level in the core and, hence, to 16 a temporary core uncovery and peak cladding temperature 17 offense. 18 MEMBER MARCH-LEUBA: Okay. So if I 19 understand correctly, if you have a seal, a loop seal 20 like the one you're showing there, you will have lower 21 water level in the core than in the downcomer because 22 of this high pressure; correct? 23 MR. HAIDER: Yes. 24 MEMBER MARCH-LEUBA: Yes. If once you 25 clear the seal, then the steam can go through there and

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	238
1	you will still have a little higher pressure in the upper
2	plenum because you have some pressure drops with the
3	steam related, but it won't be as much; correct?
4	MR. HAIDER: Yes.
5	MEMBER MARCH-LEUBA: So the numbers we
6	were looking at there from the DCD showed 6 meters of
7	delta p, just water, which later we found out that is
8	not as much because it was seal reference, but there's
9	still a significant result.
10	Are you going to show us some continuous on
11	this?
12	MR. HAIDER: Yes.
13	MEMBER MARCH-LEUBA: Maybe I'll wait.
14	MEMBER CORRADINI: This is Corradini.
15	I think, Jose, you're looking at a large
16	break calculation when you quote 6 meters.
17	MEMBER MARCH-LEUBA: You may be right.
18	MEMBER CORRADINI: So, I had a question.
19	I had a question I want to make sure just about
20	quantitative analysis. You've got a bunch of axial
21	distances labeled here. What is the bottom of the loop
22	seal V sub I can't read it exactly V sub LF compared
23	to Z core, what's the difference in height?
24	MR. HAIDER: The difference in height I
25	believe is about it's about 18 percent if I remember
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	239
1	correctly.
2	MEMBER CORRADINI: 18 what?
3	MR. HAIDER: 18 percent of the core height.
4	The top of the core is 20.67 foot. While, while the
5	bottom of the loop seal is 15.909 foot. And the
6	diameter is about 2 foot.
7	MEMBER CORRADINI: Okay. So just
8	repeating it back just so I got it right. The delta,
9	the delta difference between the core Z and V sub 3 is
10	what, how many feet?
11	MR. HAIDER: I was referring to ZLS because
12	Z sub 3 is, Z sub 3 is a transient. I think you must
13	be referring to either ZLS or the bottom of the crossover
14	piping.
15	MEMBER CORRADINI: Either one. I'm just
16	trying to
17	MR. HAIDER: Okay.
18	MEMBER CORRADINI: I'm just trying to
19	get the difference in height.
20	MR. HAIDER: Okay. So difference in
21	height, if you look at the top of the core and the top
22	of the crossover piping, the difference is about 2.27
23	foot.
24	MEMBER CORRADINI: Okay.
25	MR. HAIDER: Which is about 18.2 percent of
	NEAL R. GROSS

(202) 234-4433

	240
1	the core height.
2	MEMBER CORRADINI: Okay. All.
3	MEMBER REMPE: Say that number again?
4	What was that?
5	MR. CHO: This is Sung Ju Cho from KEPCO
6	Nuclear Fuel. The difference between the tops of the
7	loop seal height and the active core top is 2.3 feet.
8	MR. HAIDER: Yes. And you can see from the
9	applicant's slide number 42 from this morning, they have
10	a nice drawing of those relationships.
11	MEMBER CORRADINI: Okay. Thank you.
12	MR. HAIDER: Okay. Can we go to the next
13	slide, please.
14	MEMBER CORRADINI: The reason I'm asking
15	the question, then I'll be quiet, is that it's not the
16	collapsed water valve but it's the 2-phase liquid level.
17	And I'm eventually going to ask what's the calculated
18	2-phase liquids level, because with just a modest amount
19	of void I still would cover the top of active fuel.
20	MEMBER MARCH-LEUBA: If I look at the
21	applicant's slide number 42 I see that the maximum
22	column height that they can have on the loop seal is 6.2
23	feet, which is 3.9 plus 2.3, of water. And I said 6
24	meter, really it's 6 feet.
25	So the maximum you could have on the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	241
1	collapse level in the core would be 6 feet. And with
2	a little boiling you will cover that.
3	MEMBER CORRADINI: So that, okay, you're
4	thinking what I'm thinking. Thank you.
5	MEMBER MARCH-LEUBA: Right. So 6 foot of
6	12, I mean it will go, it can go as far as half, half
7	the core. I mean if there is no pressure drops anywhere
8	else, it still will be.
9	So the maximum you could possibly go was
10	half, of the collapsed level will be half, half core.
11	MR. HAIDER: Yeah, that is correct. I
12	mean, to be exact it's about 38 percent. To be exact.
13	MEMBER MARCH-LEUBA: Yeah. It would be
14	nice to have a background calculation of how much boils
15	you need to cover the core, to have 50 percent more.
16	Oh, you're back here. Do you guys have a
17	Path 1, the bypass to the downcomer. On the top of the
18	slide, Path 1.
19	MR. LU: Bypass through the core region or
20	the bypass
21	MEMBER MARCH-LEUBA: Yeah, bypass from the
22	upper plenum to the downcomer. Are we generating so
23	much steam that that bypass becomes irrelevant?
24	MR. LU: Okay.
25	MEMBER MARCH-LEUBA: I would like to see
	NEAL R. GROSS

(202) 234-4433

	242
1	for the RELAP or TRACE calculation the Path 1 bypass is
2	it 1 percent of the steam flow or is it 99 percent of
3	the steam flow?
4	MR. LU: David, do you want to take a shot
5	at that?
6	MR. CARAHER: Yes. I'm David Caraher.
7	It's closer to 1 percent. It's very small
8	compared to what's going around the loops.
9	MEMBER MARCH-LEUBA: But we've been told
10	that during normal pressure with 100 percent water flow,
11	liquid flow, you have .5 percent of the liquid going
12	through there.
13	MR. CARAHER: No. You have .5 percent of
14	the liquid flow goes up to downcomer to upper head.
15	MEMBER MARCH-LEUBA: Right. So now you
16	MR. CARAHER: Point 5.
17	MEMBER MARCH-LEUBA: don't have you
18	have, you have 2 percent power because you are shut down.
19	So the mass flow rate of steam flow is 2 percent of what
20	you used to have in liquid. And before you were able
21	to put .5 percent of the liquid through there. And now
22	it's steam, so it cannot be 1 percent.
23	MR. LU: But I think about giving the low
24	pressure there, especially for this manometer type, the
25	pressure difference between the upper plenum of the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	243
1	vessel and the downcomer, that part is very small. So
2	with that small, even let's say, let's assume right
3	there so you have a .5 percent of the opening or flow,
4	the nominal operation with the pumps running through
5	which has much higher DP, and then so the leakage flow
6	for this case it becomes very small.
7	And then it's so small and then I think the
8	current assumption is that let's assume it does not
9	exist or that we need them to evaluate the loop seal,
10	which may be more conservative.
11	MEMBER MARCH-LEUBA: My initial question
12	was what does TRACE or RELAP predict?
13	MR. LU: Okay.
14	MEMBER MARCH-LEUBA: I would get the 100
15	percent power, 100 percent flow, adjust the KM till I
16	get .5 percent, and then see what happens in this
17	condition.
18	MR. CARAHER: We have done that.
19	MEMBER MARCH-LEUBA: You have done that?
20	And you say it's 1 percent? Okay.
21	And you've done that decisively, I mean
22	you're sure?
23	MR. LU: I'm sure.
24	MEMBER MARCH-LEUBA: You certainly agree
25	with conviction.
	NEAL R. GROSS

	244
1	MR. LU: Yes. Because that's on the
2	analyses.
3	MEMBER MARCH-LEUBA: So you sound
4	credible. Because if that part was open then the seal
5	will never clear. But if it's only 1 percent it's okay.
6	MR. LU: That's right. But
7	MR. CARAHER: This is David again. If it,
8	if did allow all that steam to go there you wouldn't need
9	to clear the loop seals.
10	MR. LU: There is no issue.
11	MR. CARAHER: There's no issues now. The
12	loop seals don't need to clear because you're getting
13	all the steam short circuited to, directly to the
14	downcomer.
15	MEMBER MARCH-LEUBA: Yeah. And you don't
16	have a difference in the
17	MR.LU: And then you don't have depression
18	off the to this level in the core either.
19	MEMBER MARCH-LEUBA: No, you will still
20	have a delta P.
21	MR.LU: But the DP is very small. And if
22	it is further reduced so you can have a
23	MEMBER MARCH-LEUBA: The VP is the one that
24	yeah, okay. If you don't clear the seal you'll never
25	have sufficient pressure to depress the core. All
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	245
1	right.
2	MR. LU: That's right.
3	MEMBER MARCH-LEUBA: It would be nice to
4	have a bounding calculation saying, ignoring everything
5	else, 6.2 feet of delta P between downcomer and upper
6	plenum, you need 50 percent boils to cover the core.
7	MR. CARAHER: This is David Caraher again.
8	The TRACE calculation is around. You
9	could actually look at those numbers. And I have
10	informal RELAP5 calculations that could also show you
11	those numbers.
12	MEMBER MARCH-LEUBA: Okay.
13	MR. LU: I think both we have, they're in
14	both codes, yeah. So I think right after this, several
15	slides later and we're going to show the slide with
16	TRACE confirm 10 on the slide.
17	MR. HAIDER: So this is Syed Haider again.
18	Based on the docketed information in RAI
19	responses the staff were able to identify several
20	conservatisms used in loop seal modeling that are built
21	into the S1M methodology and the computer codes used in
22	the APR1400 small break LOCA evaluation model.
23	This slide captures a summary of those
24	conservatisms.
25	First, the applicant described that the
	NEAL R. GROSS

loop seal clearing is delayed in the model until the water level reaches the bottom, and not just the top, of the horizontal segment of the crossover piping of the loop seal. The staff considered such a biasing of the loop seal downward to be conservative with respect to the loop seal clearing.

Modeling the loop seals 2.5 feet deeper than they typically are would delay their clearing and would allow for longer core uncovery period and, thus, a higher PCP.

It's also worth mentioning that the S1M SBLOCA methodology is based on the Appendix K and uses conservatisms like 1.2 multiplier for decay heat curve and a partly skewed axial power shape that would promote core uncovery by biasing the axial PCP to peak near the top of the core. So, the hardest part is keeping it moderate, somewhere 15 percent to below the top of the core conservatively.

Another feature of the S1M methodology is that if you lump two of the four seals for intact loop cold legs into a single equivalent loop seal. For licensing basis simulation results they have provided, the staff established that the lumping two loop seals into a single loop seal was conservative with respect to loop seal cleaning for delimiting case of small break

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

	247
1	LOCA.
2	From detailed spectrum analysis it was
3	evident that the lumped loop seal was the last one of
4	the three loop seals to clear for delimiting the small
5	break LOCA. Even for the two break sizes analyzed
6	around delimiting SBLOCA case, the lumped loop seal was
7	not the first one to clear.
8	This supports the staff's conclusion about
9	the conservatism of the lumped loop seal modeling.
10	The staff also found that CEFLASH-4AS
11	licensing basis calculations were more conservative
12	than the applicant's supporting RELAP5 and the staff's
13	TRACE confirmatory calculations. So the applicant
14	also submitted their RELAP5 calculations. But they are
15	no the licensing basis calculations, they are just
16	working calculations.
17	MEMBER CORRADINI: This is Corradini.
18	I don't understand what that bullet means
19	compared to the second bullet or Appendix K. So you're
20	telling me then on top of using Appendix K assumptions
21	there were additional conservatisms in the CEFLASH
22	calculations?
23	MR. HAIDER: That is right.
24	MEMBER CORRADINI: And you know what they
25	are or do you just know they're somewhere buried in the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

248 calculations? 1 2 MR. HAIDER: I'm identifying them on this 3 slide. 4 MEMBER CORRADINI: Okay. Like the loop seal clearing 5 MR. HAIDER: delaying it until --6 7 MEMBER CORRADINI: Yeah. Yeah, Ι 8 understand the loop seal clearing. I understand 9 Appendix K methodology. 10 I'm asking what are the additional things referenced in the fourth bullet? 11 12 MR. HAIDER: Okay. The fourth bullet is 13 emphasizing that а CEFLASH-4AS licensing basis 14 calculation were found to be more conservative than the 15 applicant's RELAP5 and the staff's TRACE confirmatory 16 calculations. 17 So, yeah, the fourth bullet doesn't have 18 an additional conservatism but it builds confidence 19 that CEFLASH-4AS licensing basis calculations are more 20 conservative than RELAP5 and TRACE confirmatory 21 calculations. 22 MEMBER CORRADINI: Okay. But just asking 23 my question again, the root cause for the difference is 24 unknown? In other words, you're telling me the number 25 if bigger but you don't know why the number if bigger,

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	249
1	you just know it's bigger?
2	MR. CARAHER: It's bigger due to the
3	bullets ahead of it.
4	MEMBER CORRADINI: Well, I don't think
5	that, I don't think that's what Syed was saying to me.
6	The bullets ahead of it, you could do a one-to-one
7	comparison between TRACE and CEFLASH with the Appendix
8	K methodology and lumping. And what I thought the
9	fourth bullet was saying, even if you did that it has
10	additional conservatisms embedded in it.
11	Am I misunderstanding the bullet?
12	MR. HAIDER: What I am really trying to say
13	here is that because of the three earlier bullets,
14	CEFLASH licensing basis calculations are more
15	conservative.
16	MEMBER CORRADINI: Okay, fine.
17	MR. HAIDER: And it has been demonstrated
18	by the applicant and the staff.
19	MEMBER CORRADINI: So it's the okay, but
20	it's the things above that you mean? You don't mean
21	additional things in addition to those above?
22	MR. HAIDER: No, no, no.
23	MEMBER CORRADINI: Okay. All right,
24	thank you.
25	So another aspect is that the staff also
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	250
1	found that the applicant's CEFLASH-4AS yeah, I mean
2	I've gone over that, so.
3	MEMBER REMPE: Well, let's not just skip by
4	that. This is a good place for you to answer my question
5	from this morning. Tell me how you validated CEFLASH
6	using data from semi scale and why it's validated for
7	a CE plant?
8	MR. HAIDER: Yeah, I'm going to do that.
9	MEMBER REMPE: Oh. Oh, okay. I'm sorry.
10	MR. HAIDER: No, no, I'm not skipping that.
11	MEMBER REMPE: I thought you were going to
12	skip it.
13	MR. HAIDER: No, no, I'm not skipping that.
14	Okay. The applicant also documented that
15	CEFLASH-4AS computer code used in the S1M methodology
16	had been relegated for the loop seal clearing phenomena
17	in Semiscale test SUT-8.
18	The SUT-8 test was designed to assess
19	CEFLASH-4AS computer code for the CE plant features that
20	are also relevant to the APR1400 design, such as core
21	uncovery, water hold-up, and the loop seal formation.
22	The test was designed to induce an extended core water
23	level depression prior to loop seal clearing.
24	MEMBER REMPE: So was the geometry for a CE
25	System 80 type of configuration or an APR1400
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

251 configuration? Or was it a generic PWR that 1 was 2 probably looking more like a Westinghouse plant? 3 MR. HAIDER: It's a generic PWR --4 MEMBER REMPE: Okay. So you're aware of 5 the issue that was raised about last time you talked about the PRA, that there's a difference with the CE 6 7 geometries and the Westinghouse geometries. And so 8 what I was trying to get to earlier this morning was do 9 we have confidence without going through a process such 10 as was done with NUREG-2121 -- am I giving the right 11 report number? No, I should know it now. But do we 12 have confidence that this code is appropriately or is 13 it appropriate for CE geometry? 14 Am I saying that clearly enough? You know 15 where I'm coming from? I think someone --16 MR. R. LEE: This is Robert Lee from 17 Westinghouse. 18 And I'd like to try to answer your question 19 on behalf of -- well, right now it's staff but really 20 it's KHNP. Earlier this morning, I think it's this 21 morning, right, you raised the question which you just 22 asked of us that the scale geometry is really modeled 23 on Westinghouse design compared to a CE design, so what's the difference? 24 25 Well, if there is a difference between CE

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	252
1	design and Westinghouse design how can this system test
2	the reactor for CE design application? I think that is
3	really key of your question; right?
4	MEMBER REMPE: Yes.
5	MR. R. LEE: Okay. That, I think most of
6	us, for me it was Semiscale testing, so I know what to
7	describe what the Semiscale test is. One thing,
8	Semiscale test, a lot of criticism in that scale. One
9	thing in my view Semiscale, the best thing was the way
10	it maintained the elevation of the system. And so that
11	in this design, the Semiscale design especially for this
12	clearing behavior, because this is an manometric effect
13	between this loop seal side and core side, and that
14	geometry is basically the same between Westinghouse and
15	this redesign, again APR1400 design.
16	The only difference, only difference is
17	that the difference between the top of the core and the
18	loop seal bottom is much shallower for APR1400 design.
19	So in terms of the model, that's going to affect the
20	pressure depressions and the core region before the
21	core it's clear that physics is the same, so.
22	MEMBER REMPE: So it's an elevation, it
23	won't be the actual volume of water,
24	MR. R. LEE: Exactly. Yes.
25	MEMBER REMPE: the water height.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	253
1	MR. R. LEE: Right.
2	MEMBER REMPE: It's the case parameters is
3	what you're telling me.
4	MR. R. LEE: Yes.
5	MEMBER REMPE: Okay, thank you.
6	MR. R. LEE: Thanks.
7	MR. HAIDER: This is Syed Haider again.
8	So based on the oral review of the staff,
9	the staff concluded that the S1M methodology and
10	computer codes conservatively characterized the safety
11	significant phenomena of the loop seal formation and
12	clearing and peak cladding temperature during the most
13	limiting small break LOCA. Therefore, there is
14	sufficient overall conservatism in the S1M as the LOCA
15	methodology as it is applied to the APR1400 design.
16	MEMBER MARCH-LEUBA: Have we run a
17	security analysis to let's assume we're all wrong and
18	the seals never clear, what happens? I mean are we
19	relying on the seal clearing to survive the event? Or
20	is the seals all blocked, all four are always blocked,
21	does this survive the event?
22	Because in my mind there is sufficient
23	physics support and volubility that there is some
24	probability I don't know how high that none of the
25	seals clear.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	254
1	MR. CARAHER: Not possible. David
2	Caraher. Not possible.
3	They have to clear. They have to clear.
4	One has to clear. Because otherwise you just build up
5	steam forever in the upper, upper part.
6	MEMBER MARCH-LEUBA: You don't have enough
7	relief from the pressurizer? Are you
8	MR. CARAHER: No. No. It's not possible
9	to have a small break LOCA without clearing a loop seal,
10	at least one. But often you'll clear all four and end
11	the slide.
12	MR. LU: Another analogy is you put a ball
13	on top of the hill and you can always assume the ball
14	may stay at the top of the hill, but in reality
15	something's going to happen and it's going to tilt and
16	so either it's not a stable condition. You have a
17	continuous loop seal build-up. At the same time you
18	have the depression of the core, of the lining of the
19	core. That's part of the manometer, the banners if it's
20	already unstable situation. So either way it will be,
21	it will be done.
22	And then based on actually that's one of the
23	reasons it's possible to catch that phenomena. That's
24	the reason we asked the KHNP initially. So they were
25	doing the best estimating analogies, running RELAP5.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	255
1	We were able to predict the core, the depressed level
2	into the core region, it's almost half of the core, and
3	then it comes back. And the loop seal clears. And then
4	so does the TRACE.
5	So we have not seen the situation, at least
6	right now we don't have evidence to show that the loop
7	seal would stay forever at this point.
8	MEMBER MARCH-LEUBA: The loop seal you
9	have the left side of the seal when you when you try and
10	push it down you have 6 feet of water.
11	MR. LU: Yes. Right.
12	MEMBER MARCH-LEUBA: And there's steam
13	behind it.
14	MR. LU: Right.
15	MEMBER MARCH-LEUBA: And this steam has to
16	push 6 feet of water out. It pushes like the minute it
17	starts boiling. But and then releases pressure but
18	never, never removes the column of liquid.
19	MEMBER CORRADINI: This is Corradini.
20	I'm not, I'm not sure that's how it works
21	in a plumbing sense. It doesn't have to clear all of
22	it, it has to bubble through it.
23	MR. LU: Right.
24	MEMBER MARCH-LEUBA: That releases a
25	little pressure but only at the critical pressure, which
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	256
1	is the 6 feet of water.
2	MR.LU: Yes. But that's a manometer type
3	of pressure boundaries. But continuously you could have
4	steam generated through the core, getting the steam
5	generator aside. And inside the steam generator it
6	will be the tube gun going downwards. There is a
7	continuously condensation going on if you have steam
8	going there. So you are going to have additional water
9	supply to get into the loop seal.
10	And that's what
11	MEMBER MARCH-LEUBA: You keep presenting
12	it.
13	MR. LU: Yeah, exactly. And then at
14	certain point that all depends on the pressure upon it.
15	So far we have seen quite many like PKL tests, in
16	additional to Semiscale, and then PKL test is the latest
17	one, they all observe loop seal clearing if you have deep
18	loop seal. And then none of them would show it would
19	stay there. And only periodically for a limited amount
20	of time you capture that one.
21	MEMBER MARCH-LEUBA: My point is
22	MR. LU: Yes.
23	MEMBER MARCH-LEUBA: it would be very
24	nice if we could say that the loop seal remains intact,
25	my core is fine. I'm not relying on
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	257
1	MR. LU: I agree with you. I agree with
2	you. We then can argue for KHNP can demonstrate that
3	one. That will be very safe for us to say everything's
4	fine.
5	MR. CARAHER: This is David Caraher.
6	You could, the only way you could prevent
7	the loop seals from clearing and still have this reactor
8	survive would be feasibly to bleed off, go with the
9	secondary and keep the connections clear.
10	But that would, then you wouldn't need loop
11	seals to clear in that case, of course.
12	MEMBER CORRADINI: Yeah, you would
13	equalize pressure by
14	MR. CARAHER: Yes. That's right.
15	MEMBER CORRADINI: by condensing.
16	MR. LU: Yeah. Secondary side or, you
17	know, keep it going.
18	CHAIRMAN BALLINGER: Can we kind of move
19	on.
20	MR. LU: Let's keep going.
21	CHAIRMAN BALLINGER: Not just kind of move
22	on. Let's move on.
23	MR. HAIDER: So we already submitted DCD
24	and technical report presented a small break LOCA
25	spectrum analysis results for two types of breaks that
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

1	included direct vessel injection line or DVI line breaks
2	and the pump discharge or PD cold leg breaks.
3	The applicant presented four DVI line
4	breaks and four cold leg breaks. The staff determined
5	that the submitted small break LOCA spectrum had measure
6	gaps in the analyzed break sizes that would not satisfy
7	the SRP guidance that interior diameter break sizes may
8	not be sufficient to identify delimiting SBLOCA break
9	size with the highest peak cladding temperature.
10	Therefore, the staff requested KHNP to
11	perform a final small break LOCA break spectrum analysis
12	with no major gaps. And the applicant submitted a
13	revised spectrum analysis of 15 DVI line breaks and 17
14	cold leg breaks in half-inch break size increments.
15	As asked, the applicant provided details
16	for each of the targeted breaks analyzed, including peak
17	cladding temperature, loops seals clearing order, and
18	the core cool phase mix 11, white fraction, mass flow
19	rate, safety injection flow rate, core pressure, and
20	break flow rate.
21	The staff accepts the licensing basis
22	calculations and found that a 5-inch diameter DVI line
23	break is identified as the limiting small break LOCA or
24	the highest peak cladding temperature of 1,683 degree
0 5	

Fahrenheit. This still has about a 517 Fahrenheit

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

258

25

(202) 234-4433

	259
1	margin to the 2,200 degree Fahrenheit regulatory limit.
2	The staff's TRACE confirmatory
3	calculations show the maximum peak cladding temperature
4	of 1,265 degree Fahrenheit that has 935 degree margin
5	to the limit of 2,200. Which shows that the licensing
6	basis calculations are significantly more conservative
7	than the staff's confirmatory calculations.
8	MEMBER CORRADINI: Syed, this is
9	Corradini. So let me make sure I understand.
10	This margin or this difference is due to the
11	Appendix K methodology and the location of the assumed
12	loop seal clearing? Or what is are those the two
13	major reasons?
14	MR. HAIDER: And also the fact that they
15	depressed the loop seal clearance by 2.54.
16	MEMBER CORRADINI: Okay. But what I guess
17	I should have asked just precisely, when you do the TRACE
18	calculations you're not making the same assumptions for
19	Appendix K as the applicant?
20	MR. HAIDER: Yes.
21	MEMBER CORRADINI: Okay, thank you.
22	MR. HAIDER: So this is This is Syed
23	Haider again. How this issue is still being read as a
24	confirmatory item as the applicant needs to update the
25	DCD and the technical report to reflect the revised
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	260
1	break spectrum analysis as shown by the mark-ups that
2	have been submitted with the RAI response.
3	Now, so based on the oral review activity,
4	the staff concludes that the applicant was able to
5	demonstrate sufficient conservatism in the APR1400
6	small break LOCA analysis using the Combustion
7	Engineering Supplement 1 methodology to meet the
8	regulatory requirements for light water reactors, as
9	given in 10 C.F.R. 50 46 and Appendix K to 10 C.F.R. Part
10	50.
11	The SER still has one confirmatory item and
12	one open item. However, they are mainly documentation
13	issues with no outstanding safety concerns about the
14	APR1400 short-term response with small break LOCA.
15	For the confirmatory item, as I described,
16	even though the detail SBLOCA analyses are acceptable
17	to the staff, the region has still yet to be reflected
18	in the DCD.
19	Similarly for the open item, the staff is
20	still expected a docketed RAI response from the
21	applicant to justify the upper bound on the small break
22	LOCA break sizes analyzed. We will do it as an open
23	item. This is not a safety concern but a completeness
24	issue as delimiting PCP was proven to take place for the
25	127 centimeter square DVI line break.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	261
1	This concludes my presentation for the
2	short-term response of SBLOCA. Now I would like to ask
3	if the committee still has any questions left?
4	MR.LU: So we will go into the TRACE large
5	and small break LOCA confirmatory analysis.
6	And as we mentioned at the beginning, we
7	asked for Office of Research to develop the TRACE input
8	deck based on the APR1400 RELAP5 deck. And they have
9	done great work to support our regulatory review.
10	So we will have Dr. Staudenmeier from
11	Office of Research to talk about and give a
12	presentation. The actual work was done by Bill
13	Krotiuk. He was NRC Research staff.
14	MR. STAUDENMEIER: As Shanlai said, I'm
15	Joe Staudenmeier. Bill Krotiuk did the calculation.
16	I was involved in some small break LOCA calculations
17	last summer if we had some issues that came up before
18	the final reports Bill did before he left. He's out on
19	a cruise now, enjoying having a more enjoyable day.
20	So the presentation provides a description
21	of the TRACE model. I'm not going to go into too much.
22	I need some more details about the modeling to some of
23	the backup slides that are at the end of the
24	presentation.
25	We looked at large break LOCA analysis and
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	262
1	small break LOCA analysis to compare the DCD results and
2	also some results for thermal conductivity degradation.
3	Next slide.
4	This is just kind of a noting diagram view
5	from SNAP showing that we modeled the whole system in
6	TRACE. It's a fairly big model as far as TRACE models
7	go for LOCA. Highly detailed.
8	Next slide.
9	The way we run TRACE, we run steady state
10	calculations to reach full plant operating conditions.
11	We initial the system at 102 percent power to cover the
12	uncertainty in power range instrumentation. WE have
13	steady state system conditions that compare well to the
14	conditions in the DCD. And also have set points and
15	delays from the DCD.
16	Next slide.
17	Okay. For the limiting break it was a
18	double-ended guillotine break in the primary system
19	cold leg. Failure to safety injection system pumps,
20	consistent with the DCD, and all safety injection tank
21	flows.
22	Can see the summary, the results. We get
23	answers that are pretty close to what they are
24	calculating in the DCD, and in terms of both
25	temperatures and locations of the limiting temperature
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	263
1	or limiting location.
2	CHAIRMAN BALLINGER: So, to the
3	uninitiated you're assuming that the APR1400 DCD, their
4	calculation did not include burn-up dependent thermal
5	conductivity? That's in TRACE?
6	MR. STAUDENMEIER: Not in this
7	calculation. In later calculations we have some.
8	MR. LU: We did a spectrum of them.
9	CHAIRMAN BALLINGER: Okay.
10	MR.LU: So initially it was comparing head
11	to head to see what's the difference.
12	MR. STAUDENMEIER: Yeah. There's a slide
13	that comes later that shows how much difference there
14	is.
15	Okay, next slide.
16	This is just kind of traces of curves of the
17	temperature versus time compared to the licensee
18	calculation. There's two different probes there for
19	TRACE, the TRHMAX, that's maximum temperature looking
20	around the whole core. So that position of that
21	temperature can change during time.
22	The other curve is the temperature at the
23	same position as the licensing licensee limiting
24	curve. So it moves in a little earlier because in the
25	TRHMAX that's not quenching until the whole core
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	264
1	quenches, so the top of the core will quench later in
2	lower elevations where the peak temperature is.
3	MEMBER CORRADINI: Can you repeat that?
4	This is Corradini. I don't understand the difference
5	between the red and the black. Why is it quenching
6	later?
7	MR. STAUDENMEIER: TRHMAX is looks
8	core-wide for the limiting temperature. So that won't
9	quench until everything in the core is quenched.
10	The other curve is at a fixed location in
11	the core where the peak temperature occurs, which is
12	lower down in the core, so that will quench earlier than
13	the rest of the core quenches.
14	MEMBER CORRADINI: Oh, I understand that.
15	But I'm looking at the difference between the black line
16	which is the DCD
17	MR. STAUDENMEIER: Oh, the DCD? Okay.
18	The DCD is a licensee okay, they're quenching, if you
19	look at their quench model, they're quenching from a
20	higher temperature than TRACE is. So they're entering
21	in the transition blowing at a higher temperature than
22	TRACE does.
23	Our t-min model is based on stainless steel
24	data. RELAP5 doesn't really have a t-min model. I
25	don't, actually I don't if the KHNP model does. But our
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	265
1	RELAP5 doesn't have a t-min model. What it looks at,
2	it has a transition blow-in correlation and film
3	boiling correlation, and it takes the highest
4	t-transfer coefficient of the two, so.
5	MEMBER CORRADINI: Okay. That explains
6	it. Thank you, Joe.
7	MR. STAUDENMEIER: So it's, yeah, it's
8	just entering in the transition blow-in. That's the
9	way we do our TRACE.
10	Okay, next slide.
11	Small break LOCA, we also performed some
12	small break LOCA calculations for a spectrum of break
13	sizes with the same safety system features and failures,
14	consistent with the DCD. There was a break spectrum.
15	We can see the different SI pump operation and SIT
16	availability, a variety of calculations.
17	Next slide.
18	Yeah, actually unfortunately I don't have
19	a PCT versus time curve for this.
20	MEMBER STETKAR: This actually isn't
21	APR1400, is it? It's the old CE plant, used to have two
22	pumps on one diesel.
23	MR. STAUDENMEIER: It's the assumptions,
24	same assumptions as in the DCD, in the DCD calculations,
25	so.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	266
1	MEMBER STETKAR: It's the old Combustion
2	Engineering plant that had two SI pumps on one diesel.
3	You can't fail two SI pumps on this plant with failure
4	of a single diesel.
5	MR. STAUDENMEIER: Well, what they assume
6	is the SI in the broken line doesn't inject it, it all
7	spills at the break.
8	MEMBER STETKAR: Okay.
9	MR. STAUDENMEIER: So that's the
10	difference between cold leg breaks and
11	MEMBER STETKAR: Got it.
12	MR. STAUDENMEIER: direct vessel
13	injection line breaks.
14	MEMBER STETKAR: Got it.
15	MR. STAUDENMEIER: Okay?
16	MEMBER STETKAR: Okay.
17	MR. STAUDENMEIER: All right. This is a
18	result of the break spectrum. One thing here is you
19	should ignore the numbers with the kinetics on because
20	that was using a faulty feedback curve that was
21	discussed during the large beak LOCA staff presentation
22	before. So, so the temperatures, yeah, there isn't the
23	power feedback that would have gone on in these
24	calculations, isn't real. It was from, this report was
25	done quite a while ago and it would have to be re-done
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	267
1	with the more recent feedback.
2	But the actual, the non-feedback curves are
3	a good way to really model small break LOCAs, which is
4	constant power until you get a reactor trip and you go
5	on the KP curve and that's
6	MEMBER STETKAR: I'm still confused. And
7	I hate, hate to belabor this because I'm not a
8	thermohydraulics person, I just know how plants work.
9	If you look at the DVI break on this slide
10	that you have here, not on the slide that you have up
11	here, the number that I'm on, 65.
12	MR. STAUDENMEIER: Okay.
13	MEMBER STETKAR: It says one SI pump
14	operates. Two SI pumps fail due to emergency diesel
15	failure, and one SI flows out the break.
16	I challenge anyone to figure out how on this
17	plant two SI pumps fail because
18	MR. CARAHER: This is Caraher. One is out
19	for maintenance, the other fails due to the diesel
20	generator failure.
21	MEMBER STETKAR: Ah, okay. Thank you.
22	MR. STAUDENMEIER: Next slide.
23	MEMBER SCHULTZ: Joe, on 66 can you tell us
24	what we're not supposed to look at here? I didn't find
25	it
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	268
1	MR. STAUDENMEIER: Okay. There's a, in
2	the, yeah, next-to-last column there's two
3	temperatures. And one's for no feedback and one's with
4	feedback.
5	MEMBER SCHULTZ: Got you.
6	MR. STAUDENMEIER: The ones with feedback
7	you should disregard. So the ones before the slash are
8	ones with no feedback. So they're more representative
9	of what the safety analysis would see.
10	MEMBER SCHULTZ: Thank you.
11	MEMBER CORRADINI: So I'm whoever asked
12	that question, I'm just as confused. So I ignore the
13	N/As?
14	MR. STAUDENMEIER: No. Not the
15	MEMBER CORRADINI: We're on slide 66 I
16	thought.
17	MR. STAUDENMEIER: We are. Now, the PCT
18	column, the next-to-last column, TRACE analyses, no
19	feedback/feedback, there's two temperatures under PCT
20	and also two ECRs. No feedback and feedback. So the
21	no feedback ones are the ones you should pay attention
22	to.
23	The reactivity feedback curve using a
24	feedback calculation was an obsolete curve that is not
25	good.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	269
1	MEMBER CORRADINI: Okay. All right,
2	sorry. I misunderstood. Sorry.
3	MR. STAUDENMEIER: Okay. And, yeah,
4	talking about loop seal clearing, loop seal clearing is
5	really not a big deal for small break LOCAs. There's
6	a short transient heat-up you get that isn't the
7	limiting temperature generally. And it's been studied
8	in a lot of test facilities for a long time. There's
9	probably a good description of it in the ECCS compendium
10	if you want to find out more about it. Yeah, lots of
11	test facilities who've looked at it.
12	And, actually, the bigger the piping, the
13	less the loop seal will fully clear. Like the biggest
14	loop seal test I think were UPTF. They were full-size
15	piping. And you don't clear it fully, you get bubbling
16	up through the water column going up to the cold leg pump
17	in the cold leg.
18	Something like Semiscale, which is a real
19	thin facility, you actually do sweep out the whole loop
20	seal because of smaller pipe size. You get in a
21	different like, a big pipe you can't get slow flow,
22	whereas in a Semiscale you could get slow flow.
23	MEMBER REMPE: So now you're confusing me.
24	It's not just a water-height effect, it's the geometry
25	of the piping. Is that what you're telling me?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	270
1	MR. STAUDENMEIER: Some, to some extent
2	it's size of the piping in two-phase flow.
3	MEMBER REMPE: So now they
4	MR. STAUDENMEIER: That can get through
5	it, yeah.
6	MEMBER REMPE: validated their code for
7	Semiscale. Is the sizing of the piping appropriate to
8	
9	MR. STAUDENMEIER: Well, it would be
10	actually worse in Semiscale than a full-size plant.
11	MEMBER REMPE: Well, is it appropriate to
12	
13	MR. STAUDENMEIER: But you don't get
14	bubbling through as early as you get in a full-size plant
15	type.
16	MEMBER REMPE: Then tell me again why it's
17	appropriate to use a code that has been tuned to predict
18	clearing in Semiscale for the APR1400? Why is that a
19	good code to use?
20	MR. STAUDENMEIER: Yeah, I don't know if
21	I'd call it tuned. I'd call it compared to the results.
22	Semiscale loop seal is deeper than a CE plant loop seal
23	because Westinghouse loop seals are deeper. So, I mean
24	you're just and it's really predicting loop seal
25	clearing is a balance of steam flow around the loop.
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	271
1	There's also some water hold-up you can get in steam
2	generator tubes that can also cause an addition with DP.
3	Compared to steam flow in the bypass, like hot leg nozzle
4	or upper T between the upper head and the downcomer, so.
5	MEMBER REMPE: So you think
6	MEMBER CORRADINI: I think, Joy, I think
7	all he's basically saying is that if the length scale
8	of the diameter is on the order of the length scale of
9	the U-tube, then you get bubbling, you don't get a
10	push-through. If the diameter is very small you push
11	it through like a slug of water. That's what he's
12	saying.
13	MEMBER REMPE: So, then tell me is the L
14	over D appropriate for applying this to the APR1400?
15	Because you've tuned this for matching the Semiscale,
16	did somebody do some sort of analysis and say, yeah,
17	close enough, I can go ahead and apply it to the APR1400?
18	MR. STAUDENMEIER: Well, I guess back in
19	the '80s there was a decision made that people because
20	the only tests back then that existed were Semiscale and
21	LOFT. And aftermath of TMI the vendors were told they
22	had to compare their small break LOCA codes to Semiscale
23	and LOFT. And there were SERs written up on them saying
24	if they compared conservatively to those tests and said
25	they were okay for Appendix K small break LOCA.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

So actually, and it's not a big deal. 1 The loop seal clearing isn't going to make a big difference 2 That's not where the 3 in peak clad temperature anyway. peak clad temperature comes from, it's from the longer 4 5 core uncovery that occurs later, so. 6 MEMBER REMPE: And you have a lot of 7 margin. There's another thing you could have said that 8 would have made me happier. But, again, I just was, I 9 was looking at this and I said, well, it's validated for I was kind of, in a way it made me wonder. 10 using this. 11 And I looked at the RAI response. 12 There's other reasons I would buy off and 13 say this is appropriate, but I'm not sure I would say 14 that it's validated and I can get good numbers or very 15 precise numbers with it. 16 MR. STAUDENMEIER: Yeah. I mean I haven't 17 seen the CE report where they -- back from the '80s where 18 they did the comparison, so I don't, I don't know what 19 that looks like. But I know what TRACE looks like for 20 those things and was able to predict loop seal clearing 21 pretty well over a whole range of tests. 22 MEMBER REMPE: The staff write-up, your 23 draft SE, they acknowledged the fact people were trying 24 to validate a CFD model because they were saying more 25 advanced codes are being used now. And that was the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

	273
1	motivation for asking that question to KHNP. And then
2	they said, and they responded back, and they said, yeah,
3	it's validated or it's appropriate.
4	And I just am inquiring why the staff
5	decided it was appropriate.
6	MR. LU: May I just chime in?
7	So when we talk about Semiscale it's a very
8	skinny, it's a very skinny pipe. As Mike on the phone
9	mentioned, when you have a very skinny pipe and it's easy
10	to accumulate. And it's very hard from a collective
11	point, very hard to clear.
12	So in comparison, when you, you know, tune
13	the code or validate the code at some point, when you
14	apply it to the APR1400 so that means that you do need
15	some conservatism in terms of timing of the clearing of
16	the slot.
17	MEMBER REMPE: Okay.
18	MR. LU: But in reality because it's not a
19	one deep load and they have large diameter, you have 2
20	feet diameter of the cold leg of the, you know, loop
21	seal, therefore the penetration of this steam going on
22	starts earlier than what your model predicts. So the
23	model, when it's validated at the Semiscale, it tends
24	to be more conservative.
25	MEMBER REMPE: That I would buy, too. But
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	274
1	I guess I didn't get that from what he said. It may be
2	it's in the words.
3	MR. LU: Yeah, yeah. I think that I'm
4	trying to explain that point.
5	MEMBER REMPE: Okay, thank you.
6	MR. STAUDENMEIER: The big conservatism in
7	Appendix K calculations is the
8	MR. LU: Right.
9	MR. STAUDENMEIER: 1.2 multiplier under
10	decay heat. That's where most of it is, and maybe some
11	in the break flow. But the big one is with decay heat.
12	MEMBER MARCH-LEUBA: Okay. Joe, can I say
13	in plain English what you said? For a small break LOCA
14	whether the seal clears or not makes no difference?
15	MR. STAUDENMEIER: It makes a difference
16	if it clears. I mean the timing of clearing and things
17	like that don't make much of a difference. It throws
18	some kind of randomness in the calculations. That's
19	why the vendors all try to make deterministic clearing.
20	They bias their calculations in a certain way to get
21	consistent clearing. So that especially if they make
22	a change to a code that they're seeing the difference
23	of that change instead of seeing a difference in how loop
24	seals clear. Because even in testing there's some
25	randomness in testing on how we see this, too, so.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

22	long-term cooling for both large and small break LOCA
	Okay, long-term cooling. There was some
20	
20	the loop seals, you just vent through the vent valves.
19	downcomer and the upper plenum so that you don't have
18	But they have vent valves in B&W plants between the
17	bottom of the loop seal is below the bottom of the core.
16	plants. And you would never be able to clear them. The
15	about loop seals is, like, the big loop seals are B&W
14	Yeah, I was going to say one last thing
13	Let's go on to the next slide.
12	Appendix K calculation there.
11	we'll see peak temperatures and a smaller break size in
10	in our realistic calculation with lower decay heat,
9	isn't relieving energy through the break. So we'll see
8	of the, just because of the physics, a small break LOCA
7	limiting break size moves to a bigger break size because
6	limiting temperature. The higher the decay heat, the
5	this same temperature versus at the same break size or
4	Okay. Yeah, I was going to say we won't see
3	phase, the right phase, that one will clear first, so.
2	balancing and oscillating, and the one that catch it in
1	Especially if we have multi-loop, they're
	275

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	276
1	we didn't see any significant heat-ups.
2	The longer you go out in time, the less
3	steam is generated and the less loop seal depression you
4	can generate. And eventually at some point you would
5	be able to get where the leakage between internal core
6	and the downcomer would be enough that it could relieve
7	all the steam at some point. But, yeah, we don't see
8	any loop seal depression or significant heat-up. And
9	we bring calculations out long past where the switchover
10	to hot leg injection is, so.
11	MEMBER STETKAR: That's, recirculation
12	here is hot leg recirculation time?
13	MR. STAUDENMEIER: Yeah. That
14	recirculation time is where you would have to switch
15	over to actually sump
16	MEMBER STETKAR: No, not on APR1400.
17	There is no recirculation. It's the same pot of water.
18	MR. STAUDENMEIER: Okay.
19	MEMBER STETKAR: So I'm trying to
20	understand what the significance of sump recirculation
21	and these very precise times are.
22	MR. LU: I think what Joe means, I think,
23	is they're related to the switchover time.
24	MEMBER STETKAR: Switchover to what?
25	MR. LU: From cold leg injection to hot leg
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	277
1	injection.
2	MEMBER STETKAR: Okay. Hot leg I get.
3	MR. LU: Yeah. Yeah.
4	MEMBER STETKAR: If that's what we're
5	talking about here.
6	MR. LU: Yeah, if you have a hot leg
7	injection you don't see the loop seals stop in terms of
8	long-term. And you can see the conclusion around to
9	5.44 hours or 4.79 hours, assuming there was no
10	switchover. But in reality when they have this one,
11	that's the mandated switchover. And then we to uncover
12	as part of why they, you know, require that 2-hour
13	switchover time.
14	MEMBER STETKAR: Right. Right. Okay.
15	Okay, thanks.
16	MR. STAUDENMEIER: Okay, next slide.
17	Thermal conductivity degradation. Some
18	calculations were done looking at different times in
19	burn-up. You can see the first column is the primary
20	fuel rod. That's at a nominal peaking factor.
21	The next three columns are at different
22	burn-ups, and they're a hot rod with higher peaking
23	factor. You can see the difference in peak center line
24	temperature.
25	As you go to, the column on the furthest
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

278 right is the lowest burn-up. Supplemental rod one is 1 2 the highest burn-up, that's 60 gigawatt days per metric 3 ton. You can see the central line temperatures are 4 significantly higher. And down at the bottom, the PCT 5 is significantly higher also. I guess on thing is kind of unrealistic 6 7 about this is rods that are at that burn-up, you could 8 never get that peaking factor on them, so. The rods 9 with the highest burn-ups would have lower peaking 10 factors. But this is just kind of bounding everything, 11 showing that if you did have a peaking factor at 12 different burn-ups, the difference that you get. And 13 it's just all because of the stored energy and you can't 14 take as much out during a blowdown cooling. And some 15 of it gets locked into the heat flow, so. 16 But, yeah, I don't want to -- I know the 17 review isn't finished. But this part has quite a bit 18 of margin in terms of large break and small break LOCA 19 margins. So this isn't something I think that is going 20 to make a significant safety difference in the long run. 21 It's just a matter of doing calculations. 22 In trips we've had the thermal conductivity 23 degradation models in the code for I think about eight 24 vears now. They're something we -- I remember looking 25 at this for AP1000 in operating plants at the time the

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	279
1	issue was first brought up, quite a while ago.
2	Okay. Next slide.
3	Okay, conclusions. Yeah, we have
4	predictions that are similar to or bounded by the AP600
5	or APR1400 DCD. Significant margins to 50 46 limits.
6	The small break LOCA, I guess the one thing
7	there is about the reactivity feedback. It is
8	significant, but that was with a bad reactivity feedback
9	curve. And long-term cooling calculations show no way
10	heat-ups are things you have to worry about in terms of
11	long-term core uncovery.
12	Okay, I think that's the last slide.
13	MR. LU: Go to the next one.
14	MR. STAUDENMEIER: Okay.
15	MR. LU: Boron presentation, I think Dan.
16	Yeah, the next one will be Dan Prelewicz.
17	MR. PRELEWICZ: Thank you. Appreciate
18	it.
19	I am Dan Prelewicz. I'm going to talk
20	about the boron precipitation. If I find my right
21	slides here.
22	We're on slide 70. And first of all
23	there's a technical report that's referenced here that
24	covers the boron precipitation analysis.
25	The methodology is a modification of the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

CENPD-254 methodology which dates to the '70s. 1 But in 2005 that methodology was basically unaccepted by the 2 NRC and was called a Waterford Interim Methodology. 3 There were some deficiencies in that 4 Replaced it. 5 methodology. For example, they didn't consider voids. They have a mixing zone which is where the boron 6 7 concentrates. Half the LOCA plenum was established by 8 some testing and in the core region, and then it was 9 above the core. And then they didn't consider any voids 10 there. So there was too much liquid. They weren't 11 using the 1.2 multiplier in separation. 12

So that was fixed. And the new methodology is what is being used at this point, the so-called Interim Waterford Methodology. With one exception. Since that time the mixing zone was basically changed by Westinghouse. And I notice Duke is doing the same thing. They don't include the region between the bottom and the top of the hot leg, it's no longer in the mixing zone.

If you think about it, they, once you get liquid up there it's starting to flow and the lines are basically starting to flush. And the methodology also used a pressure drop based on steam flow in going through out the hot leg and through the steam generator. So you would get a higher pressure drop if you had liquid going

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

13

14

15

16

17

18

19

(202) 234-4433

280

	281
1	there and, plus, you're flushing.
2	So now they're consistent with what's being
3	used for the Westinghouse plants. And I notice Duke
4	uses the same assumption as the lower, the bottom of the
5	hot leg for their analysis of boron precipitation.
6	So the analysis basically determines when
7	you do the switchover to combined hot leg DVI really
8	in hot leg injection above the core injection. And the
9	switchover to hot leg injection by the operator
10	basically starts the flushing process where you flush
11	the core of the concentrated boron in the core.
12	The methodology uses, going back all the
13	way to the CENPD-254 methodology, four computer codes,
14	BORON, NATFLOW, CEPAC, and CELDA to do various parts of
15	the calculation. The codes that were approved then
16	were basically the same codes used, except that the
17	BORON code is modified very slightly because, I think
18	as somebody mentioned during the previous conversation,
19	you don't have to switch the source. The source is
20	before you had to switch from the refueling water tank
21	to the sump. And now there's an in-containment
22	refueling water storage tank that basically is the sump.
23	So you can do the switchover. So that's a very minor
24	change that was done to the methodology, to the computer
25	code. And we invariably checked that out to make sure
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	282
1	that was done right.
2	There were raised a lot of issues in RAIs.
3	But basically the only one that really a couple of
4	them we had some significance. One of them was that
5	switch of the mixing zone from the top of the hot leg
6	to the bottom of the hot leg and the change in the
7	computer code to check the computer code, the BORON code
8	for the switchover.
9	So then KHNP decreased the size of the
10	mixing zone. And what the consequence was that it
11	changed the switchover time from three hours to two
12	hours. And they modified the DCD to reflect that.
13	So once those changes were made, the boron
14	precipitation long-term cooling methodology and the
15	plan are acceptable for the APR1400.
16	Are there any questions regarding boron
17	precipitation?
18	MR. LU: Just one point about that.
19	Because of the staff RAIs from the vendors
20	the design changes are made because of the result of our
21	review on RAIs. So the switchover time has been shorted
22	from three hours to two hours.
23	MR. PRELEWICZ: Okay, next slide.
24	MR. CARAHER: Yes, this is David Caraher.
25	I'm going to address the review of the long-term cooling
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	283
1	boron dilution.
2	In the current version of the SER there was
3	an RAI and following the SBLOCA which addresses boron
4	dilution due to loop seal clearing or the restart of the
5	pump. And the applicant has responded, providing
6	calculations well, in the current version of the SER
7	it's an open item, but it's really been closed since
8	then. The responses were not docketed yet; that's
9	largely why it was open.
10	So now the boron dilution due to a start-up
11	of an RCP or reestablishment of natural circulation and
12	the applicant has done it simultaneously in all loops.
13	But the PKL test shows this would be conservative
14	because natural circulation basically gets started in
15	one loop, and then another and then another. So that's
16	one big conservatism.
17	And then we checked the mixing calculations
18	that were used in the boron dilution calculations and
19	they were verified to be conservative.
20	So the applicant asserted the closure of
21	GSR-185 also applied to the APR1400 because its geometry
22	is essentially the same as the system 80.
23	And so the minimum calculation, calculated
24	boron concentrations done by the applicant were
25	significantly above the criticality limit. And
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	284
1	informally they also verified their calculations, or
2	corroborated them with the CFP calculation which showed
3	that they were significantly above the limit.
4	MEMBER SCHULTZ: You said informally they,
5	they talked to you about that or they
6	MR. CARAHER: They presented it to us in
7	the, it's in the ER.
8	MEMBER SCHULTZ: Okay, thank you.
9	MR. LU: The old version of SER is still
10	providing. But, you know, as it is right now we ought
11	to receive their RAI responses. But I don't think it's
12	going to be a problem to close it.
13	All right, next slide. You want to
14	comment? Long-term loop seal clearing.
15	MR. CARAHER: Oh yeah. It's getting late.
16	The long-term loop seal clearing, the
17	analytical methods is, well, there was a supplemental
18	RAI response. We asked the question, well, if you did
19	it does the loop seal reseal later in time in the small
20	break LOCA, plug the system, and now the temperature
21	gets another rise. You know, the slide presentation
22	was only on short-term.
23	And so we asked that question. And they
24	went off and they, they ran the calculations out 7,200
25	seconds. And they did a break spectrum and looked at
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	285
1	several. And they found that, yes, they did get some,
2	you know, spot loop seal clearing or loop seal refills,
3	and then they would clear slightly and then the refills
4	clear slightly. And so you'd see it going along in the
5	long-term and you'd see little bumps in temperature.
6	But the maximum of all those cases was only 627 degrees
7	Fahrenheit.
8	So, the question that we asked was that,
9	well, did it remain below 800? And, yes, their analysis
10	showed that it did.
11	And I think you also heard Joe say that
12	TRACE calculation showed that it never went back up in
13	temperature.
14	MR. LU: So that loop seal issue by itself
15	has been closed from staff perspective. Consider this
16	acceptable. Okay.
17	The last piece on long-term cooling
18	in-vessel downstream effects. And it covers three
19	parts, or four parts of the debris source analysis and
20	the available driving head across the debris bed, fuel
21	assembly head loss testing, and LOCA deposition model.
22	And I did want to point out there was a
23	presence from the regulatory practice perspective.
24	Right now it's being used by the staff, approved the
25	ACRS, too, and it was back too for the double capital
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

16793 regarding a clean plant criteria. So the clean plant criteria, as long as you provide the licensee or applicant has demonstrated for domestic plant, not for international, that they have, they can demonstrate that they have a 15 grams per fuel assembly. They now need to do additional analysis, whatever, and then

And but one had the year before the submittal of the DCD. And then we met with the KHNP and we told them, hey, although it might be, you know, 15 grams per assembly clean-plant criteria, however, that was based on the test data for domestic fuel. And then some fuel has not been tested, so it's better to have a test and then they launch their program to do this. And then they perform the full spectrum analysis starting from debris source, available driving head, and the fuel assembly head loss testing plus LOCA at the end. And it's similar to the WCAP methodology.

Next slide.

Okay, related to the debris source they did, they performed a fiber only loss testing. They used the whatever they did for the strainer head-loss testing. And just run that test for the typical testing facility, and they run that fiber only. And that turned out to be very conservative.

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

286

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

testing.

And then they also used the in-line filtration system to make sure that they capture all the fibers bypassing the stainer surface. And then the staff actually looks back at that test facility and audited the actual testing. And we found that the testing was conducted following the approved testing protocol.

8 And then the key number here is 6.8 grams 9 fiber per assembly was predicted by KHNP. And, 10 however, just keep that in mind. For from staff review 11 we have 15 grams is allowed and you don't need to do 12 additional testing analysis. But now they performed 13 the unit bypass testing demonstrating they only have 6.8 14 assembly fiber. So that's grams per reallv 15 conservative from the perspective of the fiber debris 16 would get into the core because simply they use this 17 metallic insulation.

All right, next slide.

19 Available driving head. We audited their 20 initial calculation based on our comments. And they 21 did identify all the limiting core flow condition. 22 They assumed a conservative debris arrival time. And 23 then on top of that they recalculated the driving head 24 is that the available driving head across the core, they 25 actually took very conservative assumption without

> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W.

WASHINGTON, D.C. 20005-3701

(202) 234-4433

1

2

3

4

5

6

7

18

	288
1	considering anything in the steam generator side.
2	And so with that driving head they, based
3	on this driving head they performed the head loss
4	testing.
5	Next slide.
6	As KHNP presented this morning, they had a
7	full bundle test facility. And then we inspected the
8	test facility early on. And the unit SER did say what
9	they had, we reissued the findings as part of the
10	inspection findings. And then they corrected the
11	design and the manufacture of the flow chamber and
12	introduced additional measures to make sure that the
13	full-bundle test facility was designed and then
14	operated properly according to whatever the staff
15	comments through the on-site inspection. We had one
16	week staying there, watching all their tests.
17	And then so because of that, the results
18	turned out to be much, much, much more margin. And
19	then, on top of that, they were using 15 grams per
20	assembly running the test. They were not using 6.8 or
21	6.9 grams. So if they used that one, that was probably
22	even lower.
23	So with that one we, we think that there is
24	sufficient margin in terms of the core DP across the
25	core. And then the debris would not be enough to cause
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	289
1	any concern of the blockage in terms of core blockage.
2	Next slide.
3	MEMBER SKILLMAN: Shanlai, if we could
4	change back one slide.
5	MR. LU: Sure.
6	MEMBER SKILLMAN: Just so you know we're
7	listening, you said full bundle. That was a
8	full-geometry bundle.
9	MR. LU: A full geometry.
10	MEMBER SKILLMAN: Half length?
11	MR. LU: Right. Not the entire core.
12	It's just one bundle.
13	MEMBER SKILLMAN: Half a bundle.
14	MR. LU: Yes, half a Oh, okay. I
15	thought it was Half bundle height? Oh, okay. Yeah,
16	I'm sorry. You're right.
17	MEMBER SKILLMAN: Making sure we're
18	listening.
19	MR. LU: Yeah, yeah, yeah, yeah.
20	MEMBER SKILLMAN: Okay. All right, thank
21	you.
22	MR. LU: Yeah, yeah. Oh yeah. Well,
23	yeah, okay, yeah, that's right.
24	So on LOCA DM model and then they followed
25	the PWR Owners' Group and they just follow standard.
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	290
1	They reported the WCAP with the spreadsheet model and
2	which was approved by NRR. And they used that one.
3	The reason we still have an open item in the
4	SER, not in the slides because of when we wrote it it
5	was part of SER at that time, the final results of RAI
6	responses regarding the LOCA DM model was not coming in
7	yet. And then so we actually state that it's an open
8	item. But as it is today, we don't believe that's a
9	problem anymore.
10	So we actually asked for their actual
11	spreadsheet model, which is their LOCA deposition
12	model. We performed our confirmatory analysis.
13	So what it really concluded is that during
14	30 days on long-term cooling the crud formation shall
15	be less than the thickness limit, which is 50 mills, and
16	the piece, you have the last 800 to get verified. And
17	then the reason we are saying that they are pending on
18	final closure off RAI because right now we still have
19	not really officially told KHNP in writing this is done
20	deal.
21	So, so based on this one, from our
22	perspective and then as part of Chapter 6 presentation
23	the staff from Containment Branch covered at NPSH, the
24	strainer. And then the entire GSI-191 perspective,
25	from that perspective we believe this plant we don't see
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	291
1	a problem anymore. And simply because it has the all
2	metallic installation, plus they are imposing a
3	containment cleanest program to limit the latent
4	debris. And we've got so much margin there and we don't
5	see a problem.
6	That's the conclusion of the GSI-191, or we
7	call that a post-LOCA long-term cooling in-vessel
8	downstream effects.
9	Any questions on this part of the
10	presentation?
11	MEMBER STETKAR: And they do from the
12	Chapter 6 analyses they take credit for 28 pounds of
13	pressure, over-pressure in the containment to maintain
14	that adequate
15	MR. LU: Yes. But that's the, that's
16	related to NPSH margin.
17	MEMBER STETKAR: Right. That's part of
18	the long-term cooling.
19	MR. LU: Right. That's NPSH margin.
20	MEMBER STETKAR: That's what you usually
21	have to grapple with.
22	MR. LU: Yeah, I understand that ACRS has
23	always had issue with people taking the credit of the
24	contained pressure, but I think
25	MEMBER STETKAR: Especially for new plants
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	292
1	where you can actually
2	MR. LU: Right.
3	MEMBER STETKAR: do something about it.
4	MR.LU: Yeah. I think that that's part of
5	what was presented to you guys at Chapter 6 review;
6	right?
7	So from the reactor system perspective,
8	this part, the downstream effect, we do not agree with
9	the issue.
10	That's the conclusion of this part. And
11	did not have the entire whole pad, Chapter 16, as a one
12	conclusion. But I do want to give you just a few words
13	here.
14	And as I mentioned right at beginning, we
15	had a very, you know, we very challenging schedule
16	to finish this one. We conducted this review with
17	initial burst of the spending on resources. And we
18	issued much less number of RAIs. Actually they may
19	still feel the pressure to resolve all those issues.
20	And we understand that. But the number of RAIs is much
21	less than what we average issue to any other new
22	applicant from that system.
23	We still have about 12 total, 12 including
24	dose, and there are 12 open items there to be closed.
25	And only two of them are still being worked on oh,
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	293
1	three of them. Dose is one. And then from reactor
2	system there are two. And PCD is being worked on. And
3	then we have RD interactive with KHNP starting from
4	one-and-a-half years before the submittal. And then we
5	start from there.
6	And then we knew that that's a tough issue
7	for any other certification, we run into similar
8	situation. So we start early on. Now we can see the,
9	probably the end of the tunnel. So it's going to be
10	resolved. And then according to the schedule it's a
11	September time frame. Hopefully, we will get the
12	results and then we can present it to the committee once
13	the staff review, and whether the issues are being
14	closed or not in December or November time frame.
15	So I think I do want, you know, I do want
16	to say that few words. And those guys have mentioned
17	about that when they are working on the staff's
18	questions being 24 hours because they have the Korean
19	side. And answering our questions, talking to us, and,
20	you know, responding to our RAIs at the end of the day.
21	And then they have a meeting at 8:00 o'clock at night
22	until midnight with us. And we have been doing that
23	almost every two weeks.
24	And then I think that once you have that
25	group of dedicated people, you can see the issues can

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	294
1	be easily resolved sometime.
2	All right, that's the, that's all the
3	staff's presentation for Chapter 15. Any other
4	comments or, you know, or I understand that you still
5	want to have another session on cooling, so please let
6	us know what exactly specific the issues you want us to
7	talk about. I think that KHNP already presented a
8	testing plan, testing facility. We present our side
9	for the in-vessel downstream evaluation. And also the
10	containment guys finished theirs.
11	But if you do want to have another session,
12	we definitely will support whatever you need. Okay.
13	CHAIRMAN BALLINGER: Thank you.
14	The public line is open? So, as we do
15	usually, are there, is there anybody in the room that
16	would like to make a comment?
17	Here it comes. Is there anybody on the
18	line that would like to make a comment?
19	MR. BROWN: There's no one on the line.
20	CHAIRMAN BALLINGER: No one on the line.
21	Thank you, Theron.
22	Okay, so then we should go around the table
23	and see if there are members that have to make that
24	would like to make or have to make additional comments.
25	Joy?
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	295
1	MEMBER REMPE: I would like, if it's a
2	question on the table, I do think it would be useful to
3	have another meeting to discuss the methodology report.
4	And I'm not sure if you
5	CHAIRMAN BALLINGER: What methodology
6	report?
7	MEMBER REMPE: I don't have the vugraphs in
8	front of me. But the report that you're still the open
9	item about the methodology that you're reviewing the
10	LOCA.
11	MEMBER MARCH-LEUBA: Large break LOCA?
12	MEMBER REMPE: Yes. That's what I'm
13	trying to say, large break LOCA. I think we are going
14	to have that; right?
15	MR. LU: Yes, we are. We are.
16	MEMBER REMPE: That should be
17	CHAIRMAN BALLINGER: I'm not sure when
18	it's scheduled, but I think it's in December or
19	something.
20	MEMBER MARCH-LEUBA: In December; right?
21	MR. BROWN: It is scheduled sometime later
22	this year. I'll get it out. I'll send it to you.
23	MEMBER REMPE: Yeah. And how we're going
24	At some point I think I don't know if you're planning
25	to have a full committee meeting and have them present
	NEAL R. GROSS

NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	296
1	the differences with all the new calculations or how
2	that, where that discussion will occur. That's a
3	question in my mind, too, and what your plan is. But
4	I guess we can discuss that at other places.
5	I appreciate the presentations from KHNP
6	and the staff. I also wanted to mention that I thought
7	that even though there were some questions asked today,
8	that the SE was well done and that it went through all
9	the assumptions that KHNP made and what the staff had
10	made. And today I appreciated the presentations where
11	they discussed why there were differences in the TRACE
12	calculations versus what the applicant had presented.
13	And that's helpful to try and understand
14	what's going on. So I wanted to especially thank them
15	for that part. And other than that, I'll turn it over
16	to the next person.
17	CHAIRMAN BALLINGER: Charlie.
18	MEMBER BROWN: I will make comments at
19	another opportunity, but not on this subject.
20	CHAIRMAN BALLINGER: Okay.
21	MEMBER MARCH-LEUBA: Could you just say
22	"no comment"?
23	MEMBER BROWN: That was too easy.
24	CHAIRMAN BALLINGER: Jose.
25	MEMBER MARCH-LEUBA: Yeah. I'd like to
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	297
1	say that I'm really encouraged that the agency and the
2	staff has the capability of performing all these
3	confirmatory calculations. I mean, being able to put
4	together TRACE models of this complexity in such short
5	period of time is not is an achievement that we need
6	to applaud. And I'm really glad that we have that.
7	I love the fact that for every single AOO,
8	or at least the limiting ones, we don't just at take the
9	word of the applicant, we run a confirmatory and confirm
10	that everything is okay. For the more complex ones like
11	LOCA, we spend more time but we get complete models and
12	complete results, reliable results. So this is a great
13	capability that the agency has.
14	MEMBER STETKAR: No comment.
15	MEMBER POWERS: A couple of things. The
16	dispersion of any release that takes place around the
17	main control room seems to me done in an extraordinarily
18	approximate method. While conservatism is built into
19	that and the way they did it, but it's still
20	fundamentally based on a Gaussian plume kind of concept
21	which won't exist in that region.
22	And so I think I need to understand better
23	how that is. And I think maybe the staff needs to
24	assure that a COL applicant validates that analysis for
25	his particular location. Because I mean it's involving
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	298
1	an assumption on something that's non-physical. So it
2	may be a point of alerting the COL applicant that he
3	needs to understand how they made this analysis to make
4	sure it's working for his plant, at his location. It
5	will be affected by where he puts the plant as much as
6	how the plant is configured.
7	So it may just a COL application action item
8	in there.
9	The sump calculation, sump pH calculation
10	is something I'm going to have to research some more.
11	We did a pretty standard, nice job. They based the pH
12	calculation on a thermodynamic model Stihl gas mix which
13	was a recognized model. Not one of my favorites because
14	it's classic spaghetti code, but that's
15	CHAIRMAN BALLINGER: It's also 60 years
16	old.
17	MEMBER POWERS: Well, so is most of the
18	chemistry. So it's okay to use that old code.
19	But the problem is you have a dynamic system
20	here where you're getting radiolysis, which is a kinetic
21	effect. They seem to have recognized the radiolysis,
22	the gas phase to create nitric acid. Radiolysis has
23	tables to create hydrochloric acid. They did not
24	mention that they will get radiolytic production of
25	carboxylic acids due to any organics that are in the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	299
1	water. We've certainly seen those in the RTF tests that
2	are done in Canada.
3	The other issue, of course, is the sump pH
4	is dominated by buffering effects of boric acid
5	trisodium phosphate. And it's not apparent how the
6	applicant took into account the depletion of the
7	buffering capacity as those phosphates and borates
8	reacted with various contaminants that come into the
9	sump as a result of these accidents.
10	Then there are various arcane features.
11	The molarities of the solution are high enough that both
12	coulombic effects and short-range effects affect the
13	chemical activity of the solutes in making the analysis.
14	And it's not apparent to me exactly how they handled that
15	in the curves.
16	So I think probably I need to do a little
17	more background work on this to just understand exactly
18	what they did. And I may need help from KHNP to
19	understand exactly what they did. Because there's not
20	this kind of detail in the chapter.
21	CHAIRMAN BALLINGER: Thank you. Dick.
22	MEMBER SKILLMAN: Thank you, Ron. I want
23	to thank KHNP and the staff for two very solid days of
24	presentations. And I agree with my colleagues: well
25	done for the confirming analysis that the staff has done
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	300		
1	to check what KHNP has done.		
2	One comment of specificity. This has to do		
3	with Chapter 15.6.5.2, large break LOCA. And this is		
4	the figures of the core water level and the downcomer		
5	level. And I was kind of taken aback when Jose		
6	discovered that the datum weren't the same datum for the		
7	portrayal of those levels. And I just hadn't even		
8	though of that when I looked at the image.		
9	So that sparks in my mind a need for		
10	uber-caution when we see figures, particularly of what		
11	may be static or dynamic water levels, to make sure we're		
12	using the same zero point for the level. So, I think		
13	at a minimum those figures need to be amended. But all		
14	of us need to be on guard to make sure that when we see		
15	a portrayal like that we understand what the datum, zero		
16	datum is.		
17	MR. LU: You are talking about DCD or		
18	you're talking about a staff SER?		
19	MEMBER SKILLMAN: Actually it's both.		
20	MR. LU: Okay. All right.		
21	CHAIRMAN BALLINGER: And the slides.		
22	MEMBER SKILLMAN: And the slides. It was		
23	in the slides.		
24	MR. LU: All right. So it's the large		
25	break LOCA section?		
	NEAL R. GROSS		

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

	301			
1	MEMBER SKILLMAN: Yeah.			
2	MR. LU: Okay.			
3	MEMBER SKILLMAN: And it was a slide that			
4	showed the core water level compared with the downcomer			
5	water level. And it was the 3 meters or 6 meters, 20			
6	feet, .434, that's 10 psi. That's a lot of pressure			
7	drop.			
8	CHAIRMAN BALLINGER: it was actually more			
9	than one figure.			
10	MEMBER SKILLMAN: Yeah.			
11	CHAIRMAN BALLINGER: I think at least two			
12	in each one.			
13	MR. LU: So part of the TRACE analysis or			
14	it's really or it's a slide; right?			
15	MEMBER SKILLMAN: It's in the slides.			
16	MR. LU: Okay.			
17	MEMBER MARCH-LEUBA: Yeah. Either the			
18	slide needs to be corrected or there needs to be a label			
19	saying that the zero is 2 meters off.			
20	MEMBER SKILLMAN: It was KHNP slides.			
21	MR. LU: Okay.			
22	MEMBER SKILLMAN: Thank you. That's all I			
23	have.			
24	MR. LU: Which page of KHNP slides?			
25	CHAIRMAN BALLINGER: There's two. Two			
	NEAL R. GROSS			

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

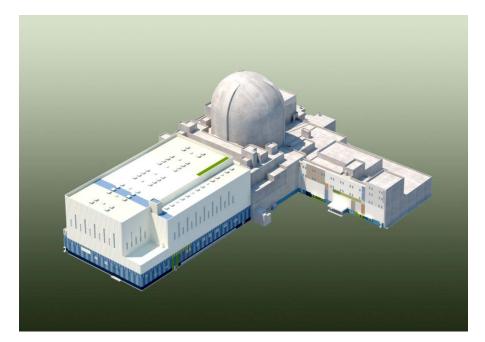
(202) 234-4433

	302
1	slides, two slides in a row.
2	MR. LU: Thirty-three?
3	MEMBER MARCH-LEUBA: Thirty-three and 34,
4	I think.
5	MR. LU: Thirty-four. Okay.
6	MEMBER MARCH-LEUBA: No, not 34.
7	Thirty-three.
8	CHAIRMAN BALLINGER: Steve.
9	MEMBER SCHULTZ: Yeah. I just wanted to
10	summarize a couple of things, and certainly that the
11	work by KHNP in developing and documenting the design
12	and the capabilities in these areas, and by the staff
13	in reviewing and confirming the design and its
14	performance or requirements, this is really converging
15	towards a robust design evaluation. Today's
16	presentations were exceptional in that area and
17	demonstrate the work that has been done as was
18	described.
19	And the open items yet to be resolved, they
20	are worthy, certainly, of additional attention to
21	develop a full understanding and agreement between the
22	KHNP applicant's work and that of the staff. So keep
23	at it is what I would say. And thank you for the
24	presentations.
25	Just to come back to it one more time, the
	NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

thermal conductivity degradation. 1 fuel Just а 2 reminder, you know, this affects the steady state fuel 3 temperature, which means it just doesn't affect steady 4 state performance or the transient performance. 5 Isotopic cross sections and physics parameters are That affects then the steady state fuel 6 affected. 7 performance which affects the transient analysis input. 8 The transient analysis and temperatures, the stored 9 energy, and ultimately, realistic source terms. 10 So it's all, it's all --11 MR. LU: All over the place. 12 MEMBER SCHULTZ: -- engaged. I know we're 13 addressing this in every which way we can. Don't expect 14 a perfect solution by November/December. But just to 15 keep in mind that all of these things are affected by 16 that and ought to be kept in mind as we move forward to 17 the overall evaluation. 18 Thank you. 19 MR. LU: Right. CHAIRMAN BALLINGER: Professor Emeritus 20 21 Corradini. 22 MEMBER CORRADINI: Thank you professor 23 soon-to-be emeritus. 24 CHAIRMAN BALLINGER: Amen to that, brother. 25 MEMBER CORRADINI: I wanted to thank the


> NEAL R. GROSS COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701

(202) 234-4433

(202) 234-4433

	304
1	applicant and the staff for their presentations today.
2	I do think that we have to phase the
3	scheduling of the methodology with TCD being considered
4	as Steve had indicated with the recalculation of some
5	of the key accidents or transients. And if that's going
6	to be in six months, so be it. But I guess I'd leave
7	it to Ron and Chris to decide how you want to phase that,
8	whether it would be the Thermohydraulics Committee or
9	this APR committee, since a lot of us are the same.
10	But thanks to them. I think this was a good
11	introduction to the whole range of accident analysis
12	that's been done by the applicant.
13	That's all.
14	CHAIRMAN BALLINGER: I'd like to express
15	my thanks, too. And it's long I can't concentrate.
16	A great job for the last two days. A long,
17	hard, slow task today and yesterday, but well worth it.
18	So we thank you very much.
19	And with that we are adjourned.
20	(Whereupon, the above-entitled matter went
21	off the record at 5:30 p.m.)

APR1400 DCA Chapter 15: Transient and Accident Analyses

KEPCO/KHNP May 19, 2017

Contents

Overview of Chapter 15

Section Summary

15.1 Increase in Heat Removal by the Secondary System

15.2 Decrease in Heat Removal by the Secondary System

2

15.3 Decrease in Reactor Coolant System Flow Rate

15.4 Reactivity and Power Distribution Anomalies

15.5 Increase in Reactor Coolant Inventory

15.6 Decrease in Reactor Coolant Inventory

15.7 Radioactive Material Release from a Subsystem or Component

15.8 Anticipated Transient without Scram

3

Summary

🌔 κερсο

15A Analytical Model for Determining Radiological Consequences of Accidents

□ Section Overview

Section	Title	Presenter	
15.1	Increase in Heat Removal by the Secondary System	Kim, Ung Soo	
15.2	Decrease in Heat Removal by the Secondary System	Kim, Ung Soo	
15.3	Decrease in Reactor Coolant System Flow Rate	Kim, Ung Soo	
15.4	Reactivity and Power Distribution Anomalies	Kim, Ung Soo	
15.5	Increase in Reactor Coolant Inventory	Kim, Ung Soo	
15.6	Decrease in Reactor Coolant Inventory	Kim, Ung Soo Chon, Woochong Kim, Yong Gun	
15.7	Radioactive Material Release from a Subsystem or Component	Lee, Dong su	
15.8	Anticipated Transient without Scram	Lee, Dong su	
15A	Analytical Model for Determining Radiological Consequences of Accidents	Lee, Dong su	

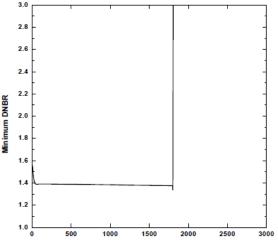
List of Submitted Documents

Document No.	Title	Revision	Туре
APR1400-K-X-FS-14002- P/NP	APR1400 Design Control Document Tier 2: Chapter 15 Transient and Accident Analyses	1	DCD
APR1400-K-X-FS-14001- P/NP	APR1400 Design Control Document Tier 1	1	DCD
APR1400-F-A-TR-12004-P	Realistic Evaluation Methodology for Large-break LOCA of the APR1400	0	ToR
APR1400-F-A-NR-14001-P	Small Break LOCA Evaluation Model	1	TeR
APR1400-Z-A-NR-14006-P	Non-LOCA Safety Analysis Methodology	1	TeR
APR1400-Z-A-NR-14014-P	ATWS Evaluation	0	TeR
APR1400-F-A-NR-16003-P	Loop Seal Reformation	0	TeR
APR1400-F-A-NR-16004-P	Boron Dilution Analysis for APR1400	0	TeR
APR1400-F-A-NR-14003-P	Post-LOCA Long Term Cooling Evaluation Model	1	TeR

15.1 Increase in Heat Removal by the Secondary System

- 15.1.1 Decrease in Feedwater Temperature (AOO)
- 15.1.2 Increase in Feedwater Flow (AOO)
- 15.1.3 Increase in Steam Flow (AOO)
- 15.1.4 Inadvertent Opening of a Steam Generator Relief or Safety Valve (AOO)
- 15.1.5 Steam System Piping Failure Inside and Outside the Containment (PA)

15.1.4 Inadvertent Opening of a Steam Generator Relief or Safety Valve (AOO)


□ Main steam flow increase

- No more than 11% increase over the nominal full-power steam flow rate
- Resulting in a decrease in core inlet temperature
- Concerning Minimum DNBR

Reactor trip override (RTO) mode failure is assumed as a single failure.

Analysis result

• MDNBR remains above fuel design limit.

Time, Seconds

APR1400-F-N-EC-17002-NP

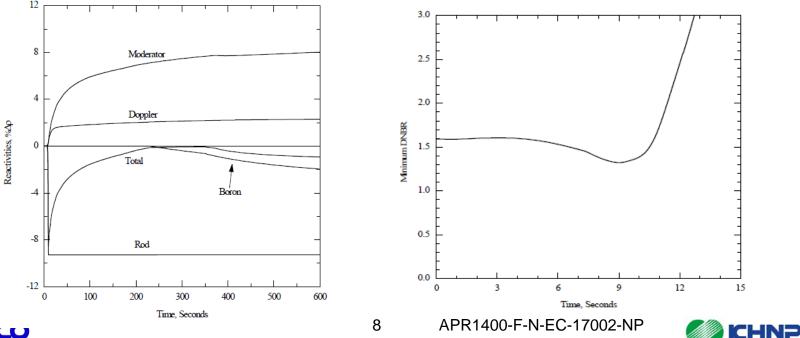
15.1.5 Steam System Piping Failure Inside and Outside the Containment (PA)

Excessive RCS cooldown

- Steam line break (SLB)
- Core reactivity increase
- Degradation in fuel cladding performance

□ SLB analysis cases are chosen

- To maximize potential for a post-trip return to power (RTP)
- To maximize potential for degradation in fuel cladding performance



15.1.5 Steam System Piping Failure Inside and Outside the Containment (PA)

MSIV or SI pump failure are considered as a single failure.

Analysis result

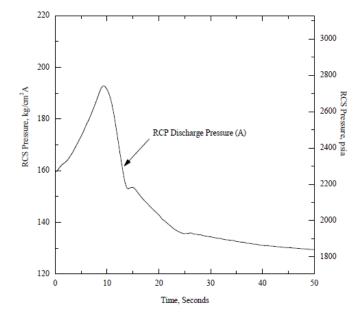
- Post-trip RTP does not occur.
- MDNBR remains above fuel design limit.

15.2 Decrease in Heat Removal by the Secondary System

- 15.2.1 Loss of external load (AOO)
- 15.2.2 Turbine trip (AOO)
- 15.2.3 Loss of condenser vacuum (AOO)
- 15.2.4 Closure of main steam isolation valve (AOO)
- 15.2.5 Steam pressure regulator failure (not applicable to the APR1400)
- 15.2.6 Loss of nonemergency ac power to the station auxiliaries (AOO)
- 15.2.7 Loss of normal feedwater flow (AOO)
- 15.2.8 Feedwater system pipe break inside and outside the containment (PA)

15.2.3 Loss of condenser vacuum (AOO)

□ Loss of condenser vacuum (LOCV) analysis assumes


- Immediate cessation of feedwater flow
- Turbine trip immediately coincident with LOCV

Decrease in RCS cooldown

- Increase in temperature and pressure of RCS
- System peak pressure is concerned.

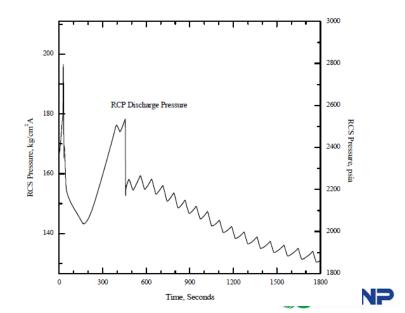
Analysis result

 RCS and main steam system pressures increase but remain below acceptance criteria.

ACRS Meeting (May.19 , 2017)

15.2.8 Feedwater system pipe break inside **NON-PROPRIETAR** and outside the containment (PA)

Rapid depletion of affected SG liquid mass


- Reducing heat transfer capability
- Rapid RCS heat up and pressurization
- System peak pressure is concerned.

□ Feedwater line break (FLB) at economizer line

• Spectrum of break sizes is analyzed to determine limiting break size

Analysis result

 RCS and main steam system pressures increase but remain below acceptance criteria.

ACRS Meeting (May.19 , 2017

15.3 Decrease in Reactor Coolant System Flow Rate

15.3.1 Loss of Forced Reactor Coolant Flow (AOO)

15.3.2 Flow Controller Malfunctions (not Applicable to the APR1400)

15.3.3 Reactor Coolant Pump Rotor Seizure (PA)

15.3.4 Reactor Coolant Pump Shaft Break (PA)

15.3.1 Loss of Forced Reactor Coolant Flow

Description

- Complete loss of forced reactor coolant flow event is the most limiting
- Simultaneous loss of electrical power to all RCPs
- Decrease in margin to DNB, increase system pressure

Assumptions

- Simultaneous turbine trip and loss of feedwater flow
- Select the most limiting initial conditions for each aspect

Analysis Code

• COAST, HERMITE, CETOP, CESEC-III ; NRC approved codes

Analysis Results

- Max. RCS and SG pressure < 110% of the design values
- Minimum DNBR > DNBR limit (1.29)

15.3.3-15.3.4 Reactor Coolant Pump Rotor NON-PROPRIETARY Seizure and Reactor Coolant Pump Shaft Break

□ Description

- Seizure of an RCP rotor / shaft break
- Decrease in margin to DNB, increase system pressure

Assumptions

- Consequential loss of feedwater flow, coastdown of remaining RCPs with LOOP
- Select the most limiting initial conditions for each aspect

Analysis Code

• COAST, HERMITE, CETOP, TORC, CESEC-III ; NRC approved codes

Analysis Results

- Max. RCS and SG pressure < 110% of the design values
- Doses at the site boundary < their allowable criteria limits

15.4 Reactivity and Power Distribution Anomalies

- 15.4.1 Uncontrolled Control Element Assembly Withdrawal from a Subcritical or Low-Power Startup Condition (AOO)
- 15.4.2 Uncontrolled Control Element Assembly Withdrawal at Power (AOO)
- 15.4.3 Control Element Assembly Misoperation (AOO)
- 15.4.4 Startup of an Inactive Reactor Coolant Pump (AOO)
- 15.4.5 Flow Controller Malfunction Causing an Increase in BWR Core Flow Rate (not applicable to the APR1400)
- 15.4.6 Inadvertent Decrease in Boron Concentration in the Reactor Coolant System (AOO)
- 15.4.7 Inadvertent Loading and Operation of a Fuel Assembly in an Improper Position (AOO)

15.4.8 Spectrum of CEA Ejection Accidents (PA)

15.4.1 Uncontrolled CEA Withdrawal from NON-PROPRIETARY a Subcritical or Low-Power Startup Condition

Description

- Failure in the CEDM, CEDMCS, RRS, or operator error
- Adds reactivity to the reactor core
- Increase core power, core heat flux, reactor coolant temperature, and system pressure

Assumptions

- 0.001% of rated thermal power
- Maximum reactivity insertion rate
- Select the most limiting initial conditions
- Analysis Code
 - CESEC-III, CETOP ; NRC approved codes
- Analysis Results
 - Minimum DNBR > DNBR limit (1.29)
 - Peak linear heat generation rate < 20 kW/ft

15.4.2 Uncontrolled CEA Withdrawal at Power

Description

- Failure in the CEDM, CEDMCS, RRS, or operator error
- Adds reactivity to the reactor core
- Increase core power, core heat flux, reactor coolant temperature, and system pressure

Assumptions

- 102% of rated thermal power
- Maximum reactivity insertion rate
- Select the most limiting initial conditions
- Analysis Code
 - CESEC-III, CETOP ; NRC approved codes
- Analysis Results
 - Minimum DNBR > DNBR limit (1.29)
 - Peak linear heat generation rate < 20 kW/ft

15.4.3 Control Element Assembly Misoperation

Description

- Dropped CEA or CEA subgroup / Statically misaligned CEA / Single CEA withdrawal
- 4-Finger CEA drop is the most limiting case
- Increase in the hot pin radial peaking factor

Assumptions

- 102% of rated thermal power
- Maximum radial peak distortion
- Select the most limiting initial conditions
- Analysis Code
 - CESEC-III, CETOP ; NRC approved codes
- Analysis Results
 - Minimum DNBR > DNBR limit (1.29)
 - Peak linear heat generation rate < 20 kW/ft

15.4.4 Startup of an Inactive Reactor Coolant Pump

Description

- Startup of an Inactive RCP
- Increase or decrease core average coolant temperature
- Increase in core reactivity

□ Assumptions

- MODE 3 to MODE 6 condition
- Maximum primary to secondary temperature difference

19

Most positive or post negative ITC

□ Analysis Codes

• N/A

Analysis Results

• No return to critical core condition

15.4.6 Inadvertent Decrease in Boron NON-PROPRIETARY Concentration in the Reactor Coolant System

Description

- CVCS malfunction or operator error
- Decrease coolant boron concentration
- Increase core reactivity

Assumptions

- Maximum dilution flow rate
- Minimum RCS mixing volume, minimum shutdown margin
- Maximum critical boron concentration, minimum inverse boron worth

□ Analysis Codes

• N/A

Analysis Results

• More than 30 minutes operator action time is available

15.4.7 Inadvertent Loading and Operation NON-PROPRIETARY of a Fuel Assembly in an Improper Position

Description

- Interchange fuel assemblies in a core
- Core power distribution is affected

Assumptions

Considering of a spectrum of misloading

Analysis Codes

• ROCS ; NRC approved code

Analysis Results

 Peaking factor would not increase more than that assumed in the CEA drop event

15.4.8 Spectrum of Control Element Assembly Ejection

Description

- Mechanical failure of the CEDM housing or its associated nozzle
- Adds reactivity to the reactor core for a short period of time

□ Assumptions

- Maximum ejected rod worth
- Minimum effective delayed neutron fraction
- Minimum Doppler coefficient

Analysis Codes

• STRIKIN-II, CETOP, and CESEC-III ; NRC approved codes

Analysis Results

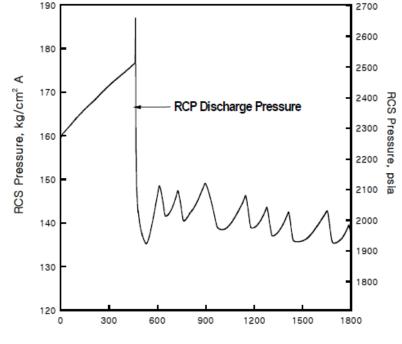
- Max. RCS pressure < "Service Limit C" as defined in the ASME Code
- Peak radial average fuel enthalpy < 230 cal/g
- No fuel melting
- Doses at the site boundary < their allowable criteria limits

APR1400-F-N-EC-17002-NP

15.5 Increase in Reactor Coolant Inventory

15.5.1 Inadvertent Operation of the Emergency Core Cooling System that Increases the Reactor Coolant Inventory (AOO)

15.5.2 Chemical and Volume Control System Malfunction that Increases the Reactor Coolant Inventory (AOO)



15.5.2 Chemical and Volume Control Systemon-proprietary Malfunction (AOO)

□ Pressurizer level control system (PLCS) malfunction

- Maximum charging flow and minimum letdown flow
- Pressure transient due to RCS coolant inventory increase, not to thermal expansion
- No significant power and coolant temperature transient prior to reactor trip

System pressure remains below acceptance criteria.

ACRS Meeting (May.19 , 2017)

Time, Seconds

15.6 Decrease in Reactor Coolant Inventory

- 15.6.1 Inadvertent Opening of a PWR Pressurizer Pressure Relief Valve (PA)
- 15.6.2 Failure of Small Lines Carrying Primary Coolant Outside Containment (AOO)
- 15.6.3 Steam generator tube failure (PA)
- 15.6.4 Radiological consequences of main steam line failure outside the containment for a boiling water reactor (not applicable to the APR1400)
- 15.6.5 Loss-of-Coolant Accidents Resulting from Spectrum of Postulated Piping Breaks within the Reactor Coolant Pressure Boundary

15.6.2 Failure of Small Lines Carrying Primary Coolant Outside Containment (AOO)

Double-ended break of the letdown line outside the containment

- Results in the largest release of reactor coolant outside the containment
- Radiological release
- RCS depressurization
- Operator takes action to terminate the primary system fluid loss 30 minutes after initiation of the event

Analysis result

- MDNBR remains above fuel design limit.
- Radiological acceptance criteria are satisfied.

15.6.3 Steam Generator Tube Failure (PA)

Penetration of the barrier between the RCS and the main steam system

- Radiological release
- RCS depressurization
- Double-ended rupture of a SG U-tube at full-power conditions
- Primary-to-secondary leakage and SG release are used as input to dose calculation

Analysis result

- MDNBR remains above fuel design limit.
- Radiological acceptance criteria are satisfied.

□ Large Break LOCA

- Topical Report, 'Realistic Evaluation Methodology for Large-Break LOCA of the APR1400', (APR1400-F-A-TR-12004)
- CAREM : Code Accuracy based Realistic Evaluation Model
- Revisions of Topical Report and DCD Section 15.6.5 LBLOCA are on going to reflect the Thermal Conductivity Degradation (TCD) issue

Small Break LOCA

• Analysis results confirmed the satisfaction of acceptance criteria

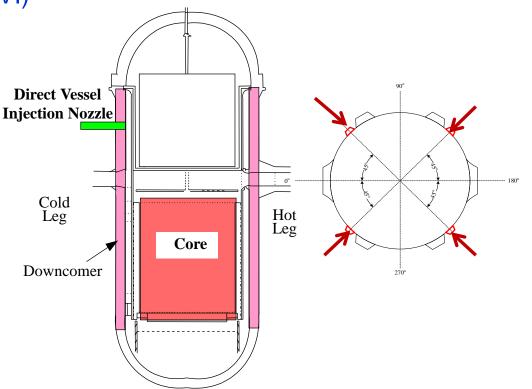
Long-term Cooling

• Analysis results confirmed the satisfaction of acceptance criteria

□ Code of Federal Regulations

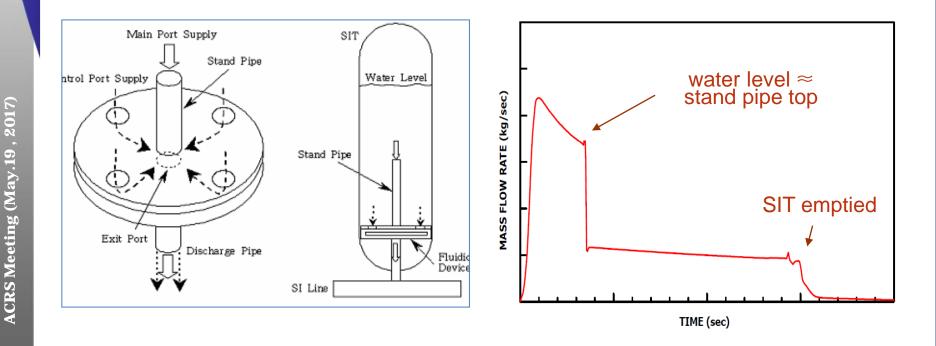
- 10 CFR 50.46
- Acceptance criteria for ECCS for light water NPR

Regulatory Bases


- RG 1.157, BE calculations of ECCS performance
- RG 1.206, Combined license applications for NPP
- NUREG-0800, SRP for the review of safety analysis reports
- NUREG-1230, Compendium of ECCS research for realistic LOCA analysis
- NUREG-5249, Quantifying reactor safety margins: application of code scaling, applicability and uncertainty evaluation methodology to a LBLOCA (CSAU)

15.6.5.2 Sequence of Events and Systems OperationDescription of LBLOCA

- APR1400 SIS consists of 4 mechanically independent trains
- Direct vessel injection (DVI)
- A safety injection pump and a safety injection tank are installed in each train
- All the ECC water is injected into the upper annulus of reactor pressure vessel

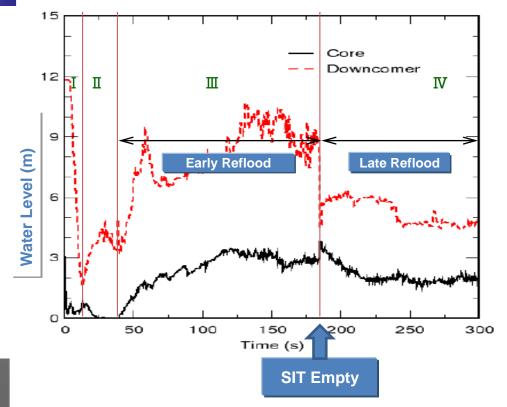


15.6.5.2 Sequence of Events and Systems Operation Description of LBLOCA (cont'd)

- Fluidic device in SIT regulates the injection flow rate and enhances removal of decay heat in early reflood phase
- Topical Report, 'Fluidic Device Design' (APR1400-Z-M-TR-12003-P-A)

15.6.5.2 Sequence of Events and Systems Operation Description of LBLOCA (cont'd)

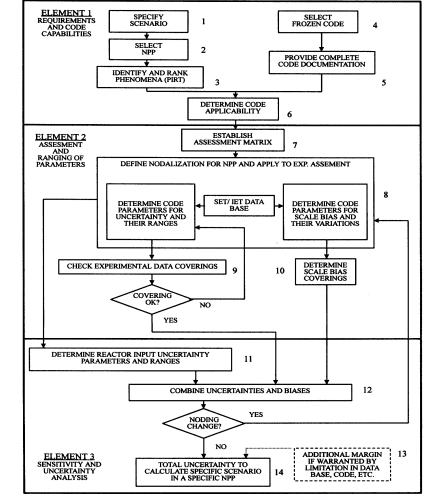
- RELAP5/Mod3.3K & CONTEMPT4/Mod5
- ✓ RELAP5/Mod3.3K: Thermal-hydraulic analysis
- ✓ CONTEMPT4/mod5: Containment back pressure calculation
- Two codes exchange mass/energy and pressure as boundary conditions
- CAREM developed based on the CSAU (NUREG-5249)
 - ✓ Uncertainties are quantified by non-parametric statistics and SRS calculation
 - Introduce experimental data covering for confirmation of uncertainty parameters and their ranges & distributions



NON-PROPRIETAR

15.6.5.2 Sequence of Events and Systems OperationDescription of LBLOCA (cont'd)

• LBLOCA scenario specification for APR1400



- I: Blowdown (~ 20 sec) break open ~ initiation of SIT
- II: Refill (~ 35 sec)
 - until water level is reached to the bottom of active core
- III : Early Reflood (~ 190 sec) until SIT empty
- IV : Late Reflood after SIT empty

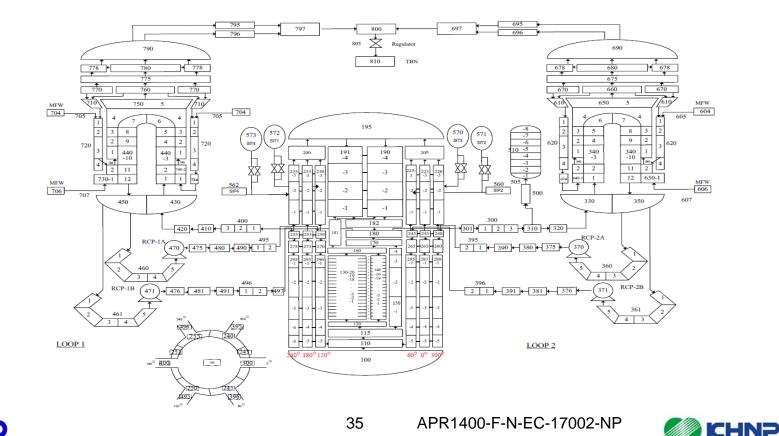
<u>CRS Meeting (May.19</u>

15.6.5.3 Core and System PerformanceLBLOCA methodology: CAREM

- CAREM consists of 3 elements and 14 steps as in CSAU
- Step 9 checks Experimental Data Covering (EDC) using the uncertainty parameters determined in step 8. If it fails, step 8 repeats until the covering is satisfied
- Non-parametric statistics is used in EDC as well as in plant calculations
- References:
 - Nuclear Tech. V.148, 3, 2004
 - Nuclear Tech. V.158, 2007

APR1400-F-N-EC-17002-NP

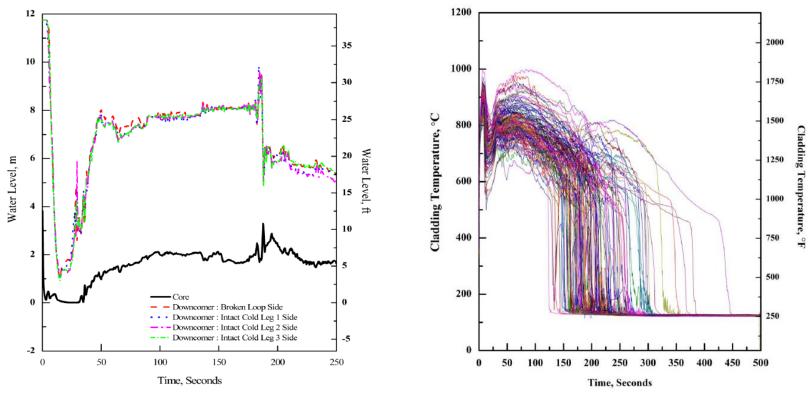
ACRS Meeting (May.19 , 2017)


34

KHNP

NON-PROPRIETARY

15.6.5.3 Core and System PerformanceLBLOCA methodology: CAREM


- Core is modeled with 2 hydraulic channels and 20 axial nodes
- Downcomer is modeled with 6 channels and 10 axial nodes

NON-PROPRIETARY

15.6.5.3 Core and System PerformanceLBLOCA Results

100% double-ended guillotine break in pump discharge leg

36

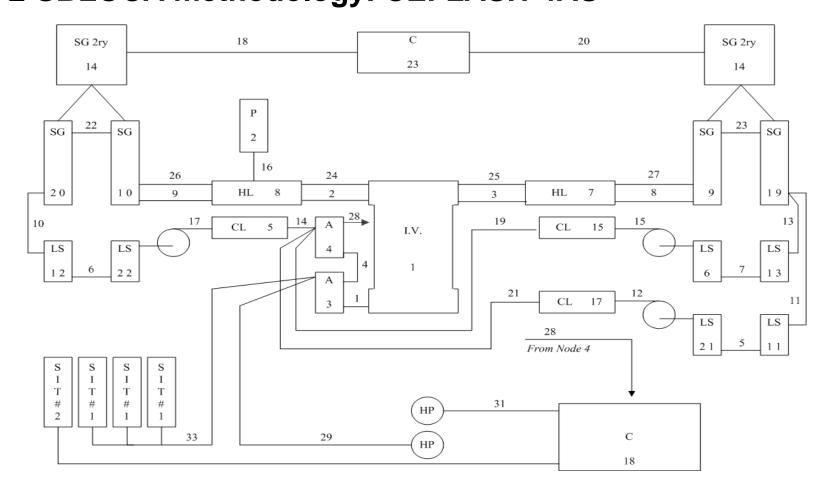
Water Levels in Core and Downcomer

SRS Peak Cladding Temperatures

15.6.5.3 Core and System Performance

LBLOCA Results

- Licensing PCT
 - = PCT_{95/95} + ΔPCT_{Bias results} + ΔPCT_{Additional} (10 °C) < 1,204.4 °C (2,200 °F)
- The satisfaction of acceptance criteria will be confirmed for APR1400 design


15.6.5.2 Sequence of Events and Systems OperationDescription of SBLOCA

- CENPD Appendix K Evaluation Model
 - "Calculative Methods for the C-E Small Break LOCA Evaluation Model," CENPD-137P (1974) and Supplement 1 (1977)
- Multi-Code System
- ✓ CEFLASH-4AS: Blowdown hydraulics and full transient pressure decay
- ✓ COMPERC-II: Refill / reflood hydraulics
- ✓ STRIKIN-II: Hot rod calculation during blowdown period
- ✓ PARCH EM: Hot rod calculation during pool boiling period
- Used in System80+ CESSAR-DC SBLOCA Analysis
- APR1400 design is the same as System80+ in terms of loop arrangement (2X4) and safety injection system (DVI) design

□ SBLOCA methodology: CEFLASH-4AS

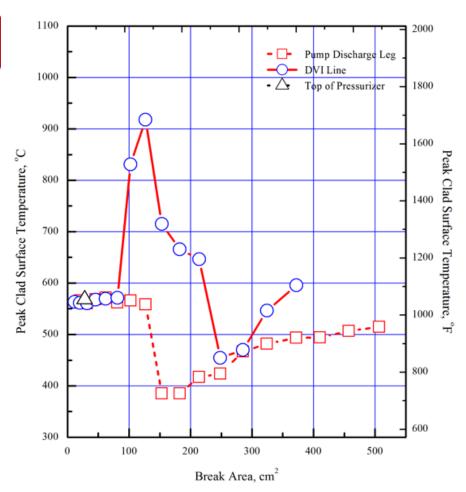
39

ACRS Meeting (May.19 , 2017)

NON-PROPRIETARY

15.6.5.3 Core and System Performance

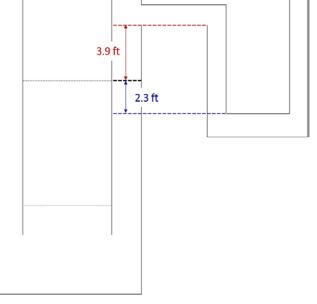
SBLOCA Analysis


- Initial Power = 1.02 x Rated Thermal Power
- LOOP (Loss of offsite power) + Worst Single Failure of ECCS (Emergency Core Cooling System) Equipment
- For the DVI line break, 15 cases were analyzed
- For the Cold Leg break, 17 cases were analyzed
- In addition, one break at the Top of Pressurizer was analyzed and one rupture of In-core Instrument tube was evaluated

NON-PROPRIETARY

15.6.5.3 Core and System PerformanceSBLOCA Results

- Limiting PCT : DVI line break
- The result of SBLOCA satisfies acceptance criteria



Loop Seal Clearing and Reformation

Background and Relevant RAI

- Loop Seal Reformation due to ECCS injection during the long term cooling phase of a LOCA can cause suppression of the two-phase mixture level in the reactor core
- If this level drops below the top of the active fuel, cladding heat-up and oxidation can occur

- The distance from top of the core to bottom of loop seal is only about 2 ft
- The Loop Seal Reformation calculation for several break sizes was performed using CENPD SBLOCA methodology

Loop Seal Clearing and Reformation

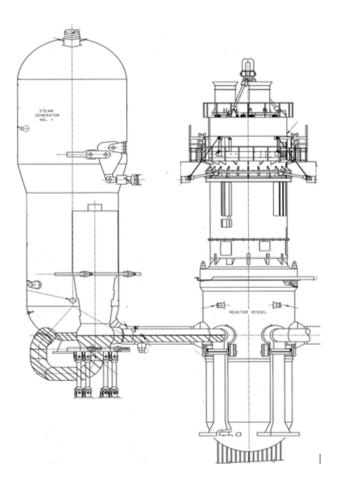
□ Analysis Results

- Loop seal reformation shows slight core uncovery intermittently
- The PCT caused by Loop Seal Reformation remains below 800°F

Post-LOCA Boron Dilution Analysis

Background and Relevant RAI

- Following a LOCA, a slug of water can be formed in the loop seal by the condensed steam in S/G tubes
- The slug enters the vessel through a cold leg and then travels along the downcomer. Again the slug moves into a lower plenum and it turns upward to enter the core
- During this period, it may cause a reactivity excursion if the water slug is not sufficiently mixed with the borated water in the RCS
- It was requested that the core should not reach a recriticality when the boron dilution accident occurs



Post-LOCA Boron Dilution Analysis

Analysis Results

- Two cases were studied:
 - ✓ Restart of one RCP
 - ✓ Start of natural circulation
- Mixing evaluation shows that the downcomer and lower plenum water mixes well with water from the loop seal
- KHNP has demonstrated that both of the restart of one RCP and the initiation of natural circulation will not cause core recriticality

15.6.5.2 Sequence of Events and Systems Operation

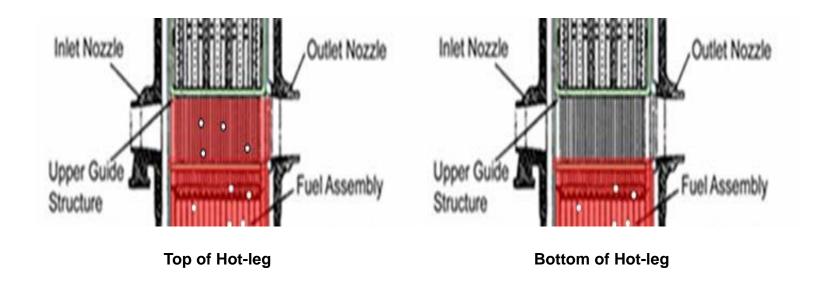
Description of Post LOCA Long-Term Cooling

- The post-LOCA long-term phase
 - ✓ To avoid the precipitation of boric acid
 - ✓ Operator action is needed
- Large break LTC
- ✓ Heat removal by the safety injection flow
- ✓ Boron precipitation can occur in the core
- Simultaneous injection
- Small break LTC
- ✓ Heat removal by SG cooldown until shutdown cooling initiation
- ✓ Boron precipitation concerns are not possible: natural circulation

15.6.5.3 Core and System Performance Post LOCA LTC Evaluation Model

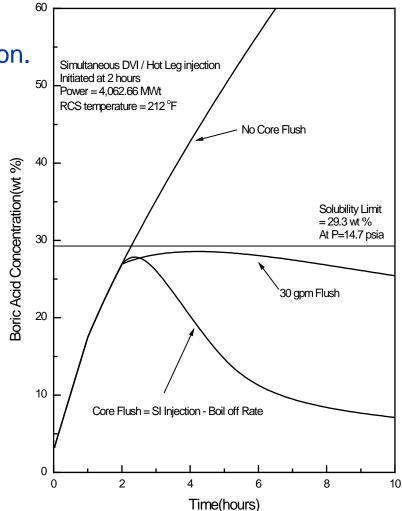
- CENPD conservative evaluation model
 - ✓ "Post-LOCA Long Term Cooling Evaluation Model," CENPD-254-P-A (1980)
- Code system
 - ✓ CELDA: Long Term depressurization and refill of the RCS
 - ✓ NATFLOW: Flowrates, pressure and temperature in primary system
 - ✓ CEPAC: S/G cooldown performance
 - ✓ BORON: Transient boric acid concentration in the core
- NRC approved 'Interim Method' was adopted (Waterford Unit 3, ML050490396)

47


 $\checkmark\,$ The interim method provided resolution of issues to CENPD-254 $\,$

15.6.5.3 Core and System PerformancePost LOCA LTC Evaluation Model(cont'd)

- Applying Mixing Volume Change
 - The limiting mixing region in boron precipitation analysis is changed from top of hot leg to bottom of hot leg



□ Post LOCA LTC Results

- Three results about boron precipitation.
- No core flush
- With no core flushing flow, boric acid does begin to precipitate after 2.3 hours.
- Core flush
- When the operator initiates simultaneous injection by 2 hours, there is no boric acid precipitation
- 30 gpm flush
 - The margin provided for the prevention of boric acid precipitation by the core flushing flow of 30 gpm

ACRS Meeting (May.19 , 2017)

49

NON-PROPRIETAR

15.6.5.3 Core and System Performance

Post LOCA LTC Results

- The overlap in break areas for which either the large break or small break procedures can be used is illustrated in Figure
- Therefore, the plant can be secured for all break size

		Break Area	RCS Pressure at 8 Hours
		cm ² (ft ²)	kg/cm ² A (psia)
Simultaneous Hot Leg/DVI Nozzles	Ť	464.5 (0.500)	2.8 (38)
Simulaneous not Legib VI Nozzies		92.9 (0.100)	5.3 (75)
Injection Cools Core and Flushes Boric Acid from Vessel.		46.5 (0.050)	5.3 (76)
Bonc Acid Ironi Vessei.		37.2 (0.040)	5.3 (76)
		35.3 (0.038)	5.3 (76)
		34.4 (0.037)	6.0 (86)
		27.9 (0.030)	7.6 (108)
Refill of RCS Disperses Boric		18.6 (0.020)	11.3 (161)
Acid throughout System and		9.3 (0.010)	25.9 (368)
SGs are able to cool RCS to		4.6 (0.005)	57.4 (816)
SDC Entry Temperature.		3.7 (0.004)	69.6 (990)
	,	2.8 (0.003)	83.2 (1184)

NON-PROPRIETAR

Post LOCA LTC: Evaluation of In-vessel Downstream Effects

□ Debris Generation

- According to the guidance of NEI 04-07, RCS hot-leg line (diameter of 42 in) break is selected, and this break location bounds variations in debris generation by size, quantity, and type of debris from other break locations
- Generated debris : RMI, coatings (epoxy, IOZ), latent debris (fiber, particle), concrete, aluminum
- For conservatism, APR1400 assumes that all generated coatings and all latent debris are transported to the sump in the IRWST

Strainer Bypass Testing (Scale-down Test)

- Total fibrous debris at the strainer established 6.8 kg(15 lbm) of latent fiber
- Testing is performed with only fibrous debris since adding particulates may reduce the amount of bypass debris due to clogging at the strainer
- Filter bag is used to collect debris bypassed through the strainer
- Bypassed fibrous debris mass: 1.67 kg (3.68 lbm) (through 4 sump strainers)
- Fibrous debris mass per fuel assembly is calculated to 6.93 g

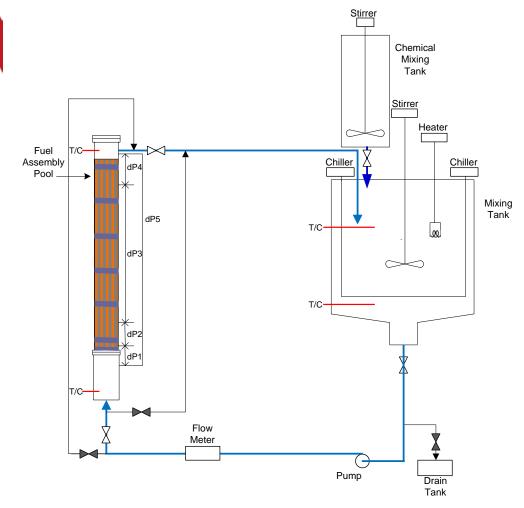
Post LOCA LTC: Evaluation of In-vessel Downstream Effects Three LOCA scenarios were chosen

- Core flow rate and its direction affect the behavior of debris in the core
- Break location affects the driving force of injected ECCS water

LOCA scenario	Core flow direction	APR1400 flow rate	Flow rate/ FA*	Remark
HL Break	Upward	4,940 gpm	20.5 gpm	Max. safeguard flow rate of four SIs
CL Break	Upward	880.2 gpm	3.65 gpm	Boil-off flow rate at 700 sec
CL Break after HLSO	Downward	2,470 gpm	10.25 gpm	Max. safeguard flow rate of two SIs

52

* 1/241 of the maximum flow rate for the scaled tests



Post LOCA LTC: Evaluation of In-vessel Downstream Effects

Test loop

53

NON-PROPRIETARY

ACRS Meeting (May.19 , 2017)

Post LOCA LTC: Evaluation of In-vessel Downstream Effects

- Mock-up FA of PLUS7 : 1/2 full length
- Same components : top/bottom nozzle, p-grid, top/bottom grid
 ✓ 4 mid grids (Full length of PLUS7 has 9 grids)

Debris mixing tank

- Transparent cylindrical shape : 1,880 L (500 gal, 45.6 % of the minimum IRWST water/FA)
- Heater/chiller are installed to control water temperature
- A stirrer is installed to prevent debris settling

Recirculation System

- One recirculation pump, one flow meter
- Flow rate can be adjustable

Control and Monitoring System

- Control : water flow rate, water temperature
- Record : flow rate(1), temperature(4), differential pressure(5)

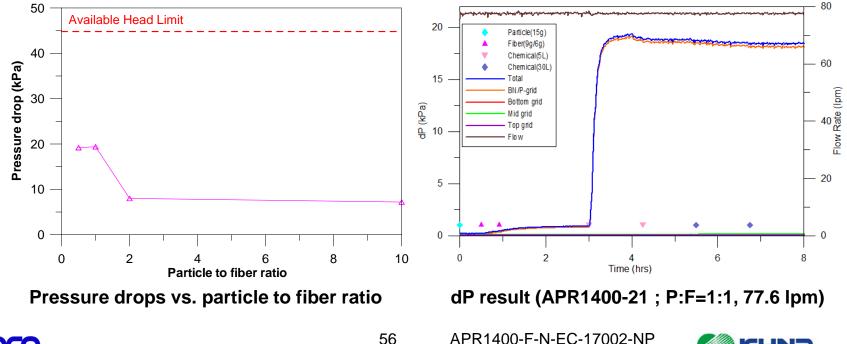
Post LOCA LTC: Evaluation of In-vessel Downstream Effects Input for In-vessel Fuel Assembly Test

Debris type	Specific type	Debris generated in containment	Assumed bypass debris	Per FA* (g)
Fibrous	Latent fiber	15 lbs (6.8 kg)	3.68 lbs** (1.67 kg)	<u>6.93***</u>
Particulate	Coating debris	3.1 ft ³ (280.5 kg)	3.1 ft ³ (280.5 kg)	1,164
Farticulate	Latent particle	185 lbs (83.9 kg)	185 lbs (83.9 kg)	348
Chemical compounds		408.0 lbs (185.1 kg)	408.0 lbs (185.1 kg)	768 (70 liters)

55

* 1/241 of the assumed bypass debris amount

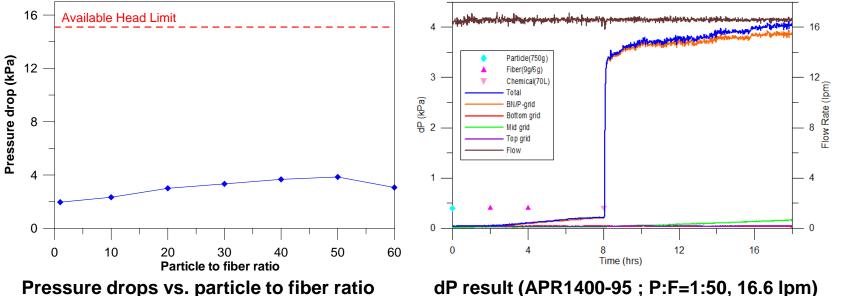
- ** Result from the APR1400 strainer bypass testing
- *** 15 g is applied for actual test



15.6.5 LOCA Resulting from Spectrum of Postulated Piping Breaks (Cont'd)

Post LOCA LTC: Evaluation of In-vessel Downstream Effects □ Hot-leg break

- 5 Tests had been run to evaluate hot-leg break conditions
- p:f ratio ranged from 0.5 to 10
- Limiting result occurred at p:f ratio = 1
- Meet the acceptance criteria(42.7 kPa) with sufficient margin(54.6%)



15.6.5 LOCA Resulting from Spectrum of Postulated Piping Breaks (Cont'd)

Post LOCA LTC: Evaluation of In-vessel Downstream Effects □ Cold-leg break

- 7 Tests had been run to evaluate cold-leg break conditions
- p:f ratio ranged from 1 to 60
- Limiting result occurred at p:f ratio = 50
- Meet the acceptance criteria(13.2 kPa) with sufficient margin(70.8%)

57

ACRS Meeting (May.19 , 2017)

□ Radioactive Gas Waste System Leak or Failure

• The analysis method and radiological consequences of the GWMS leak or failure event are described in Subsection 11.3.3

Radioactive Liquid Waste System Leak or Failure

- US NRC SRP Rev. 3, the section corresponding to a LWMS leak or failure event has been deleted
- Postulated Radioactive Releases Due to Liquid-Containing Tank Failures
 - According to BTP 11-6, this analysis has been added to Section 11.2.3

58

Fuel Handling Accident

- FHA in the Containment Building
- FHA Outside Containment

15.8 Anticipated Transient without Scram (ATWS)

□ The failure of the reactor trip function

- AOO followed by the failure of the reactor trip by RPS
- Required to reduce risk of ATWS for PWR (10 CFR 50.62)

Installed diverse protection system(DPS)

- Equipped with diverse protection system
- Reduction of risk from ATWS events
- DPS includes reactor trip function and auxiliary feedwater actuation signal (AFAS)

15A. Radiological Consequence Analysis

15A.1 Design Targets and Design Features
15A.2 Analysis Methods
15A.3 Design Evaluation for LOCA
15A.4 Design Evaluation for Non-LOCA
15A.5 Radiological Consequences for DBAs

15A.1 Design Targets and Features

Design targets

- To demonstrate that the doses due to DBAs are within the limits
 - ✓ Public at EAB and LPZ : 10 CFR 52.47 (25 rem), SRP 15.0.3 (2.5 25 rem)
 - ✓ Worker in MCR : GDC 19 (5 rem)

□ APR1400 design features to minimize accident releases

- SIS to prevent fuel damage
- AFWS for SG cooling
- CSS with 5,000 gpm capacity for fission product removal
- TSP to prevent iodine re-evolution from IRWST
- CREVAS and FHEVAS for emergency filtration by RMS
- CIAS and CPIAS for early isolation of containment bypass
- Steel-lined containment for limitation of leakage
- Automatic selective dual MCR air intakes for less contaminated air supply
- Positive pressure in MCR for minimization of unfiltered in-leakage

15A.2 Analysis Methods

- Assumes core meltdown for conservatism
- Detailed assumptions and parameters for LOCA are presented in 15A.3

□ Non-LOCA

- Uses fuel damage & mass release data based on T/H analysis
- Detailed assumptions and parameters for Non-LOCA are presented in 15A.4
- Based on AST and TEDE dose criteria
- □ Uses RADTRAD 3.03 codes (NUREG/CR-6604)
- □ Conservative X/Q values listed in DCD Ch. 2 were used
- □ Approaches are consistent with RG 1.183 guidance

15A.3 Design Evaluation for LOCA

Source term

- Core fission product inventory
 - ✓ Core power : 4,063 MWt (102% of rated power)
 - ✓ Burnup : 56.4 GWD/MTU
- Release timing & magnitude
 - ✓ Based on RG 1.183

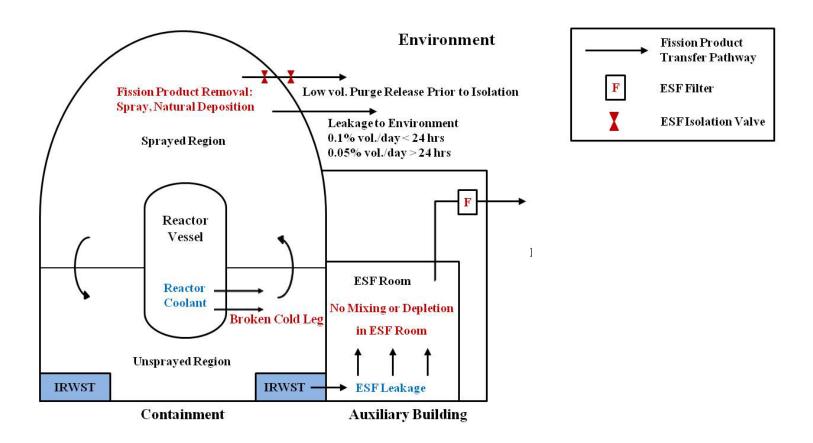
Containment building

- Sprayed/unsprayed regions : 75%/25%
- Air mixing
- ✓ 2 volumes of unsprayed region per hour (SRP 6.5.2)
- Leak rate
 - ✓ 0.1%/day (< 24 hrs) / 0.05%/day (> 24 hrs)
- Airborne Fission Product Removal Coefficient
 - ✓ Elemental iodine removal by containment spray : model in SRP 6.5.2
 - ✓ Particulate iodine removal by containment spray : model in SRP 6.5.2
 - Particulate (aerosol) removal by natural deposition : 10 percentile value of the Powers model (NRC NUREG/CR-6189) built into RADTRAD 3.03

15A.3 Design Evaluation for LOCA

□ Other parameters

- Containment purge isolation delay time : 5 seconds
- ESF leakage rate : Two times of the design leakage
- ACU filtering for ESF leakage : 95% for aerosols and iodines


□ Long term pH in IRWST after LOCA

- Calculation methodology : based on NUREG/CR-5950 (1992)
- Calculation code : SOLGASMIX-PV
- Materials considered for pH
 - ✓ Boron Oxides (acidic)
- ✓ Tri-sodium phosphate (basic)
- ✓ Hydriodic acid (HI) (acidic)
- ✓ Nitric acid (acidic)
- Hydrochloric acid (acidic)
- Radiation condition
 - The maximum values of the time dependent total integrate doses (TIDs) in the Containment Building during LOCA condition

15A.3 Design Evaluation for LOCA

Radioactivity Transport Model for Loss of Coolant Accident

🔇 κερςο

15A.4 Design Evaluation for Non-LOCA

Source term

- Primary coolant
 - ✓ Noble gases (DE Xe-133)
 - ✓ Iodine (DE I-131)
 - ✓ Alkali metal
- Iodine spike concentration
- ✓ Pre-Accident Iodine Spike (PIS)
- ✓ Event-Generated Iodine Spike (GIS)
- Fuel pellet clad gap inventory : RG 1.183
- Radial power peaking factor : 1.8
- Secondary coolant
 - ✓ Iodine (DE I-131) : 0.1 µCi/g (TS LCO)

- : 580 µCi/g (TS LCO)
- : 1.0 $\mu\text{Ci/g}$ (TS LCO)
- : 1.0% fuel defect (RG 1.183)

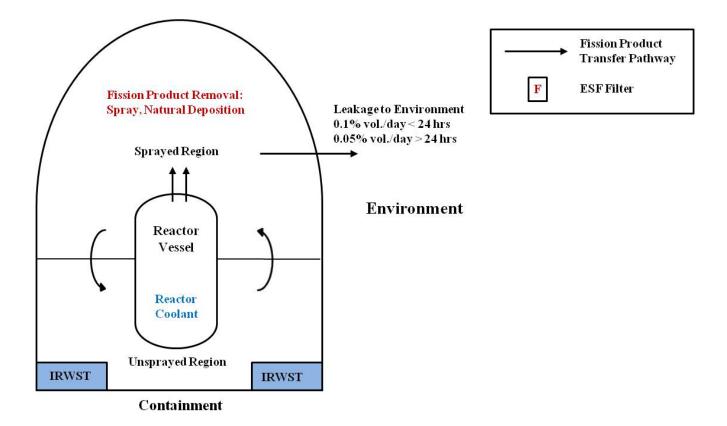
15A.4 Design Evaluation for Non-LOCA

□ Assumptions and parameters for non-LOCA

- SG leak rate TS LCO for 0.3 gpm (per SG)
- Fuel cladding damage (determined using T/H analyses)
- ✓ MSLB : 1% of core
- ✓ CEA ejection : 10% of core
- ✓ RCP seizure : 7% of core
- ✓ FWLB, LDLB, SGTR : No failure
- ✓ FHA : 100% of 1 fuel assembly
- DF of iodine by SG water level
 - ✓ Dryout : 1
 - Partial uncovery of the SG tube: calculated using flashing fraction based on RG 1.183

67

✓ Submergence : 100

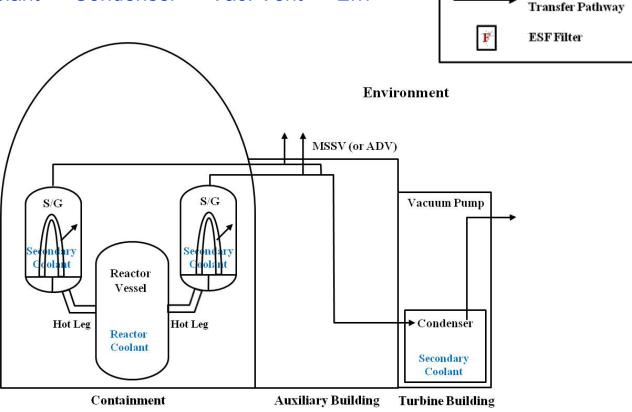


15A.4 Design Evaluation for Non-LOCA

□ Release Transport

• Fuel \rightarrow RCS \rightarrow Containment \rightarrow Env

Radioactivity Transport Model for CEA Ejection (Containment Release)



Fission Product

15A.4 Design Evaluation for Non-LOCA

□ Release Transport

- Fuel \rightarrow RCS \rightarrow 2 SGs \rightarrow MSSV or ADV \rightarrow Env
- Sec. Coolant \rightarrow Condenser \rightarrow Vac. Vent \rightarrow Env

Radioactivity Transport Model for CEA Ejection (Release through the Secondary System)

15A.5 Radiological Consequences for DBAs

Results

- Doses to the public at EAB/LPZ for all DBAs are well within dose limits of 10 CFR 52.47 (2.5 – 25 rem)
- MCR habitability is ensured for all DBAs by complying the criteria in GDC 19 (5 rem)

15A.5 Radiological Consequences for DBAs

APR1400 Radiological Consequences for DBAs

Design Basis Accident		Results for APR1400 (rem)			Dose Limit (rem)	
		EAB	LPZ	MCR	EAB/LPZ	MCR
Stoom watom piping	1 % Fuel Failure	4.9	3.8	3.6	25.0	
Steam system piping failure	Pre-accident spike	3.5	1.5	2.1	25.0	
	Event-generated spike	1.0	0.5	2.2	2.5	
Feedwater system pip	Feedwater system pipe break			1.98	2.5	
RCP rotor seizure	RCP rotor seizure		0.8	1.5	2.5	
Control element	Containment leakage	5.9	5.6	3.5	6.3	
assembly ejection	Steam system release case	4.0	2.2	2.9	6.3	5.0
Failure of small lines carrying primary coolant outside containment		0.4	0.1	1.95	2.5	
Steam generator	Pre-accident spike	0.8	0.2	2.0	25.0	
tube rupture	Event-generated spike	0.5	0.1	1.96	2.5	
Loss of coolant accident		20	10.6	4.7	25.0	
Fuel handing accident		3.9	0.9	0.9	6.3	

Summary

- APR1400 Transient and Accident Analyses of Chapter 15 demonstrate to comply with requirements of federal regulations and NRC regulatory documents
- There are 12 Open Items in total for Chapter 15 as described in next slides

Open Items

OI	RAI No	Question No	Description	Response Submitted	Status
15.0.3-1	108- 7973	15.00.03-1	 The periodic reopening of the control room HVAC outside air intakes in Accident condtion Related to the RAI 368-8470, Q 14.03.08-14 	1 5/8/2017	Under discuss with NRC staff to resolve
15.4.6-1	17- 7917	15.04.06-1	Justification that the complete mixing model yields conservative times to criticality for Modes 4 and 5 without an RCP in service	108/26/2015	Under discuss with NRC staff to lock close the unborated water source isolation valve
15.4.6-2	511- 8668	15.04.06-8	Justification that which reactor trip would prevent violating the minimum DNBR under condition of an at power boron dilution	08/19/2016	Response submitted (Under review by staff)
4.2-1	N/A	N/A	Application of suitable penalty to address the impa ct of TCD on postulated accidents	-	DCD 15.4.8 will be revised
4.2-1			The staff expects TCD to result in a higher peak radi al average fuel enthalpy and fuel centerline tempera ture.	-	Under the re-reanalysis applying revised MTC and TCD
15.6.5-1	399- 8510	15.06.05-7	The staff evaluation of issues associated with the co des or CAREM methodology will be documented in t he topical report SER.	-	Under the re-reanalysis applying revised MTC and TCD
15.6.5-2	399- 8510	15.06.05-7	The error in the moderator reactivity curve input in t he RELAP5 code All of the LBLOCA cases presented in the DCD are i n the process of being re-run.		Under the re-reanalysis applying revised MTC and TCD

Open Items

OI	RAI No	Question No	Description	Response Submitted	STRICT
15.6.5	5-3 318 833	, 15.06.05-2	The entire SBLOCA section of DCD Tier 2 Chapter 15.6.5 and the technical report (APR1400-F-A-NR-1 4001-P) will be revised.	102/02/2017	DCD and TeR revisions were submitted
15.6.5	5-4 404 8488	15.06.05-10	The staff is tracking this item until the applicant sub mits a revision to its response.	-	Under the revision of response
15.6.5	5-5 398 845	115 06 05-5	The final analysis and the relevant DCD changes ha ve already been submitted to staff and are currently under review.		Under NRC review
15.6.5	5-6 430 845	115 06 05-22		01/17/2017	revision were submitted 1
15.6.5	5-8 143 8092	1 15 06 05-1	The applicant is expected to submit a revised response.	01/17/2017	RAI response and TeR revision were submitted

Acronyms

ACU	air cleaning unit	CPCS	core protection calculator system
ADV	atmospheric dump valve	CPIAS	control element assembly
AFW	auxiliary feedwater	CREVAS	control room emergency ventilation actuation system
AOO	anticipated operational occurrence	CSS	containment spray system
APR1400	advanced power reactor 1400	CVCS	chemical and volume control system
AST	alternative source term	DBA	design basis accident
ATWS	anticipated transient without scram	DBE	design basis event
BOC	beginning of cycle	DE	dose equivalent
BWR	boiling water reactor	DNB	departure from nucleate boiling
CEA	control element assembly	DNBR	departure from nucleate boiling ratio
CEAE	control element assembly ejection	DPS	diverse protection system
CEDM	control element drive mechanism	DVI	direct vessel injection
CEDMCS	control element drive mechanism control system	EAB	exclusion area boundary
CHF	critical heat flux	ECCS	emergency core cooling system
CIAS	containment isolation actuation signal	EOC	end of cycle
COLSS	core operating limit supervisory system	ESF	engineered safety features

Acronyms

ESFAS	engineered safety features actuation system	LCO	limiting conditions for operation
ESF-CCS	-	LDLB	letdown line break
FHEVAS	component control system fuel handling area emergency	LBLOCA	large break loss of coolant accident
	ventilation actuation signal	SBLOCA	small break loss of coolant accident
FLB	feedwater line break	LOCV	loss of condenser vacuum
FTC	fuel temperature coefficient	LOOP	loss of offsite power
FWCS	feedwater control system	LPZ	low population zone
GDC	general design criteria	MCR	main control room
GIS	generated iodine spike	MSIS	main steam isolation signal
HFP	hot full power	MSIV	main steam isolation valve
HPPT	high pressurizer pressure trip	MSSV	main steam safety valve
HZP	hot zero power	MTC	moderator temperature coefficient
IOSGADV	inadvertent opening of a steam generator atmospheric dump valve	PA	postulated accident
IRWST	in-containment refueling water storage tank	PIS PLCS	pre-accident iodine spike pressurizer level control system
ITC	isothermal temperature coefficient		

Acronyms

POL	power operating limit	VOPT	variable overpower trip
POSRV	pilot operated safety relief valve		
PPS	plant protection system		
PWR	pressurized water reactor		
RCP	reactor coolant pump		
RCS	reactor coolant system		
RMS	radiation monitoring system		
RRS	reactor regulating system		
RTO	reactor trip override		
SAFDL	specified acceptable fuel design limit		
SGTR	steam generator tube rupture		
SIP	safety injection pump		
SIS	safety injection system		
SLB	steam line break		
TEDE	total effective dose equivalent		
TSP	tri-sodium phosphate		

Protecting People and the Environment

Presentation to the ACRS Subcommittee

Korea Hydro Nuclear Power Co., Ltd (KHNP) APR1400 Design Certification Application Review

Safety Evaluation with Open Items: Chapter 15

Transient and Accident Analyses

May 19, 2017

Technical Staff Reviewers

NRO/DSRA Staff

Christopher Van Wert Carl Thurston James Gilmer Jeffery Schmidt Raul Hernandez Ryan Nolan Timothy Drzewiecki Shanlai Lu (Lead) Matt Thomas NRO/DSEA

Michelle Hart

NRO/DEIA

Eduardo Sastre

RES/RSAB

Andrew Bielen Joseph Staudenmeier Peter Yarsky

Project Managers: William Ward. Lead Project Manager James Steckel, Chapter Project Mgr.

Additional Review Support

Consultants

Dan Prelewicz David Caraher Douglas Barber Ed Tomlinson Carl Beyer Glenn Roth William Krotiuk Mahmoud Massoud Jim Servatious

May 19, 2017

Chapter 15 Transient and Accident Analyses

Chapter Sections and Presenters

Protecting People and the Environment

Section	Title	Presenter Non-proprietary
15.0/15.0.2	Review of Transient and Accident Analysis Methods	
15.0.3	Design Basis Accident Radiological Consequence Analyses	Michelle Hart
15.1	Increase in Heat Removal by the Secondary System	Tim Drzewiecki
15.2	Decrease in Heat Removal by the Secondary System	Raul Hernandez, Carl Thurston
15.3	Decrease in Reactor Coolant System Flow Rate	Chris Van Wert, Peter Yarsky
15.4	Reactivity and Power Distribution Anomalies	Shanlai Lu, Tim Drzewiecki, Carl Thurston, Andy Bielen
15.5	Increase in Reactor Coolant Inventory	Tim Drzewiecki
15.6	Decrease in Reactor Coolant Inventory	Shanlai Lu, Tim Drzewiecki, James Gilmer, Syed Haider, Dan Prelewicz, David Caraher, Joe Staudenmeier
15.7	Radioactive Material Release from a Subsystem or Component	N/A
15.8	Anticipated Transients Without Scram	James Gilmer

Staff Perspectives and Review Approaches

APR1400 - Similar to the Previously Approved Reactor Design

- APR1400 is a design evolved from CE System 80+, which was certified in 1994
- CE System 80 plants, e.g., Palo Verde, remain operating safely
- Many system designs are either similar or identical to those of CE System 80+
- DCD application is also similar to that of CE System 80+
- APR1400 has been designed with more safety margins

Staff Review Perspectives and Approaches

Regulatory Review Approach

- Focus on the changes implemented into APR1400 design
- In-depth review on those safety issues identified after 1995
- Provide overall coverage with the assistance of staff confirmatory analyses on selected areas
- Identify potential issues early on and keep close communication with KHNP on issue resolution path
- Use audits and on-site inspections to clarify the issues

May 19, 2017

Chapter 15 Transient and Accident Analyses

15.0: Transient and Accident Analyses

- Classification of Events
- Plant Characteristics and Initial Condition Assumed in the Accident Analysis
- Reactor Trip System and Engineered Safety Feature Systems Analytical Limit and Delay Times
- Component Failures, Nonsafety-Related Systems, Operator Actions Considered in the Safety Analysis
- Loss of Offsite Power, Long-Term Cooling, Methodology for Determining Uncertainties and Thermal Conductivity Degradation

Staff Findings

Staff finds that the documented information in Section 15.0 satisfies the relevant regulatory requirements except two Open Items.

15.0: Transient and Accident Analyses

Protecting People and the Environment

Non-proprietary

Open Item: Fuel Pellet Thermal Conductivity Degradation

- Staff SER Section 4.2 "Fuel Design" identified this issue as an Open Item for fuel performance evaluation due to FATES3B code deficiency
- As the result, the initial steady state fuel center line temperature and the total core sensible heat/stored energy have been underestimated
- Chapter 15 analyses relying on the initial core conditions are affected

Open Item: Boron Dilution During LOCA Long Term Cooling Phase

- GSI-185 needs to be addressed according to Reg. 1.206
- No analysis was performed specifically for APR1400
- The phenomenon is possible due to the presence of a deep loop seal

15.0.2: Review of Transient and Accident Analysis Methods

Computer Codes

CESEC-III, TORC, CETOP, COAST, HRISE, STRIKIN-II, HERMITE, ROCS/DIT, CEFLASH-4AS, COMPERC-II, PARCH, RELAP5/MOD3.3K, CONTEMPT4/MOD5, CELDA, BORON, CEPAC, NATFLOW

Methods

Non-LOCA Safety Analysis Methodology LBLOCA Method (Pending on LBLOCA Topical Report Review) SBLOCA Evaluation Methodology Post-LOCA Long Term Cooling Evaluation Methodology

Applicability

System response ranges. Original approval and limitations Code maintenance program and QA records. Operating system

15.0.2: Review of Transient and Accident Analysis Method

Audits and RAIs

- Staff conducted two audits to examine the calculation reports and QA records.
- RAIs were issued and resolved about the following: HERMITE radial leakage term and limiting pressure ROCS code benchmark COAST code friction and form loss coefficients CESEC-III cold edge enthalpy definition STRIKIN-II fuel/cladding temperature during SLB events
- Staff issued RAIs about the application of RELAP5/MOD3.3K to LBLOCA analyses. The conclusion is pending on the review of LBLOCA topical report

Results

Except for one Open Item on the pending LBLOCA topical report review, all transient and accident analysis methods are considered acceptable for their applications to APR1400

May 19, 2017

15.0.3: Radiological Consequences of Design Basis Accidents

- DBA source terms, transport, and release
- Core isotopic inventory, coolant activity concentrations
- Post-accident containment water chemistry management
- Evaluation of fission product removal
- Offsite doses, control room and TSC radiological habitability

15.0.3: Evaluation

- Applicable guidance is given in SRP 15.0.3 and RG 1.183
- Staff performed independent confirmatory analyses for all DBAs and the core isotopic inventory
- Confirmatory items to ensure that changes proposed in RAI responses are incorporated into future revision of DCD
- Applicant's offsite dose results are within regulatory dose acceptance criteria. The DBA dose analyses are consistent with guidance in RG 1.183 and are therefore acceptable with respect to offsite consequences
- Applicant's control room and TSC dose results are less than 5 rem TEDE, however, Open Item 15.0.3-1 remains unresolved. Therefore, the staff is unable to make a finding with respect to control room and TSC radiological habitability

Open Item 15.0.3-1: Modeling of Control Room Emergency Makeup Air Cleaning System Operation

- Control logic automatically re-opens closed CR air intake isolation dampers at a preset interval for a short time to determine which intake has lower radioactivity concentration
 - COL applicant is to choose both the interval time between damper re-openings and the length of time the intakes are both open
- This mode of operation was not described in DCD Sections 6.4 and 9.4.1, and the DBA dose analyses did not explicitly model the periodic intake of outside air through both air intakes
- Discovered in response to an RAI on ITAAC for the control room intake radiation monitors
- RAI Question 14.03.08-14 sub-question 6.b remains under review. Applicant is to provide final revision of the RAI response. Open item 15.0.3-1 is tracking the issue until resolution

15.1.1 - 15.1.4: AOOs that Increase Heat Removal by Secondary System

- 15.1.1 Decrease in Feedwater Temperature
- 15.1.2 Increase in Feedwater Flow
- 15.1.3 Increase in Steam Flow
- 15.1.4 Inadvertent Opening of a Steam Generator Relief or Safety Valve (IOSGADV)
- Evaluation Model
 - CESEC-III for nuclear steam supply system (NSSS) modeling
 - CETOP with KCE-1 CHF correlation for departure from nuclear boiling ratio (DNBR)
- Staff confirmatory calculations
 - Hand Calculations and TRACE
 - Verify input assumptions and identification of bounding event

15.1.4: IOSGADV

- Input Parameters and Initial Conditions
 - Table 15.1.4-1 of SER provides basis for input parameters
 - Applicant assumed a bounding relief capacity
 - Loss of offsite power (LOOP) occurs coincident with turbine trip
 - Analysis performed with and without reactor trip override (cut back feedwater post reactor trip)
 - Operator action taken at 30 minutes to trip the reactor and initiate cooldown

Results and Findings

- Fuel integrity is maintained (minimum DNBR of 1.336 vs limit of 1.29)
 - GDC 10, 20, and 26
- Peak SG pressure and RCS pressure remain below 110 percent (Upset Conditions)
 - GDC 15

May 19, 2017

15.1.5: Steam Line Break

- Two sets of cases of Steam Line Break (SLB)
 - Maximize return-to-rower (RTP)
 - Maximize pre-trip fuel degradation
- Evaluation Model
 - CESEC-III for NSSS modeling (cold edge temperature for feedback)
 - Cold edge temperature implementation verified during inspection
 - CETOP with KCE-1 CHF correlation for DNBR
- Input Parameters and Initial Conditions
 - Table 15.1.5-2 and Table 15.1.5-3 of SER provides basis for input parameters
 - Double-ended break upstream of main steam isolation valves
 - Events evaluated with and without LOOP

15.1.5: Steam Line Break – Cont.

- Input Parameters and Initial Conditions
 - Reactor trip on low reactor coolant pump (RCP) speed for cases with LOOP and variable overpower trip (VOPT) for cases without LOOP
 - Single failure of an emergency diesel generator (consequent loss of two safety injection pumps)
 - Operator action taken at 30 minutes to initiate a plant cooldown in accordance with emergency operating procedures (EOPs)

Results/Findings

- No post-trip RTP (max post-trip reactivity -0.187 % Δρ, shutdown by 187 pcm)
- Pressure-temperature limits are not exceeded during cooldown associated with SLB
- DNBR analysis shows no fuel failures
- Satisfies GDC 13, 17, 27, 28, 31, and 35

15.2.1 - 15.2.7: Decrease in Heat Removal by the Secondary Systems

Events Evaluated

 Loss Of External Load; Turbine Trip; Loss Of Condenser Vacuum; Closure Of Main Steam Isolation Valve (BWR); Steam Pressure Regulator Failure (Closed); Loss of Non-emergency AC to the Station Auxiliaries; Loss of Normal Feedwater Flow

Area of Review

- Sequence of events, identification most limiting event, confirm maximum pressure in primary and secondary sides below 110% design value
- Fuel cladding integrity is maintained

Staff Findings

- Loss of Condenser Vacuum is the most limiting of the events
- Primary and secondary pressures are maintained below design maximum
- Fuel cladding integrity is not compromised

May 19, 2017

15.2.8: Feedwater System Pipe Break

Staff Findings

- Staff agrees that CESEC-III when combined with conservative assumptions for break flow, affected steam generator heat transfer, intact steam generator level and reactor trip timing yields conservative analysis results
- Minimum DNBR: Remains above the 1.29 95/95 DNBR limit, preserving the SAFDLs
- Maximum RCS and main steam pressure: remains below 120% of the design pressures including the effects of a LOOP

15.3.1: Loss of Forced Reactor Flow

Evaluation Model

- CESEC-III for nuclear steam supply system (NSSS) modeling
- HERMITE for neutron diffusion
- CETOP with KCE-1 CHF correlation for departure from nuclear boiling ratio (DNBR)

Staff Confirmatory Calculations

• RES performed TRACE/PARCS confirmatory calculations

May 19, 2017

15.3.1: Loss of Forced Reactor Flow

Non-proprietary

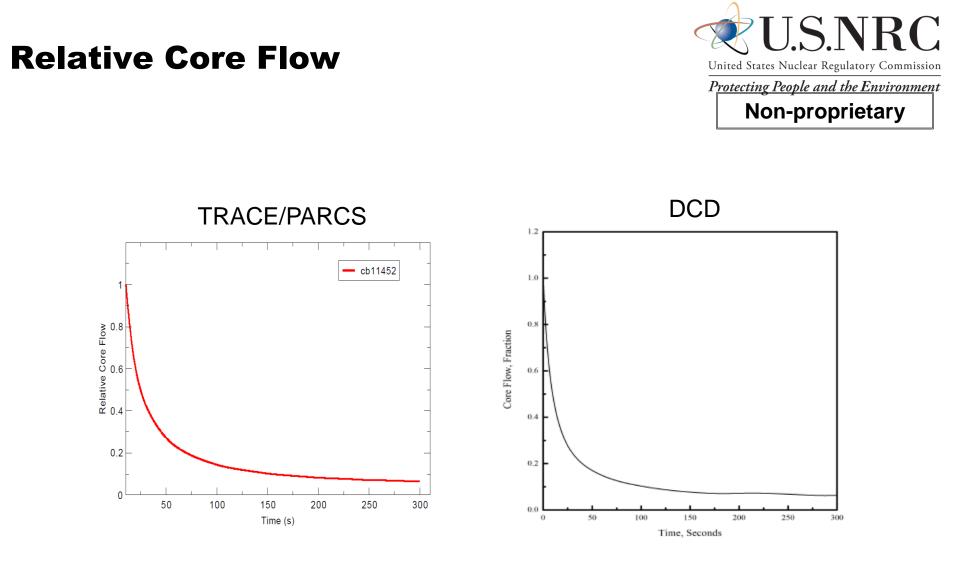
Regulatory Findings: Loss of Forced Reactor Flow Requirements

- The staff finds that the analysis is based on approved codes and methods and is therefore acceptable
- The staff finds that the input assumptions appropriately bound the potential conditions of the plant
- The analysis demonstrates that the SAFDLs are not violated and therefore GDC 10 is met
- The analysis demonstrates that the reactor coolant system and its auxiliaries are not breached during normal operations or AOOs, thereby demonstrating compliance with GDC 15
- The loss of offsite power leads to automatic startup of EDGs, thereby demonstrating compliance with GDC 17
- The reactivity changes are reliably controlled so that the SAFDLs are not exceeded, thereby demonstrating compliance with GDC 26

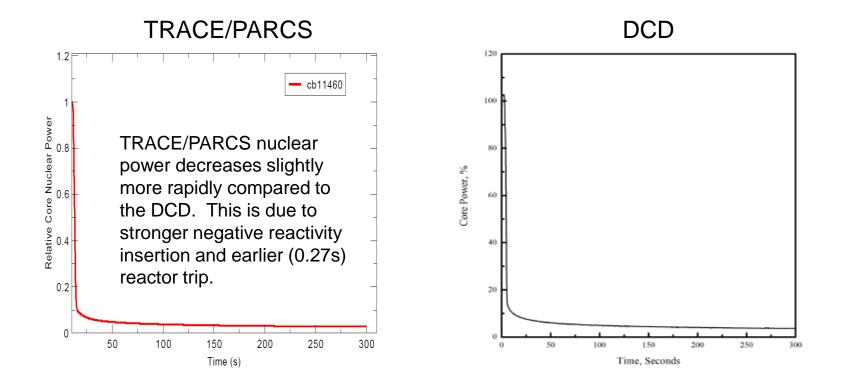
APR1400 Loss of Flow Event Confirmatory Analysis

Dr. Peter Yarsky and Dr. Andrew Bielen

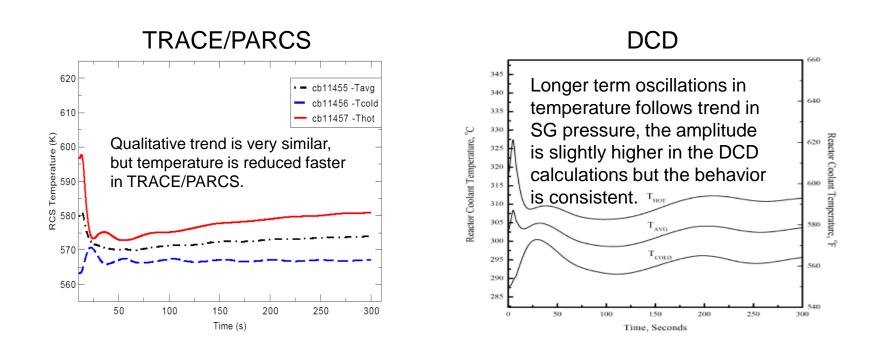
Office of Nuclear Regulatory Research


May 19, 2017

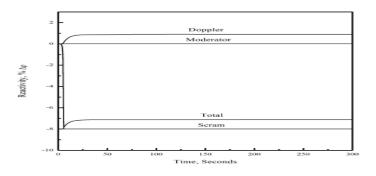
Sequence of Events


- Event is initiated by a LOOP
- The LOOP causes several trips: reactor coolant pumps (RCPs), turbine, and reactor
- mDNBR decreases as coolant flow decreases during coastdown of the RCPs
- mDNBR margin is restored as reactor power decreases following trip and flow achieves a steady, natural circulation through the reactor coolant system (RCS)
- RCS temperature and pressure initially increase as the loss of flow combined with loss of heat sink result in a reduction of heat transfer from the primary to secondary system
- Auxiliary feedwater combined with relief through the main steam safety valves (MSSVs) remove heat from the RCS and controls steam generator (SG) pressure

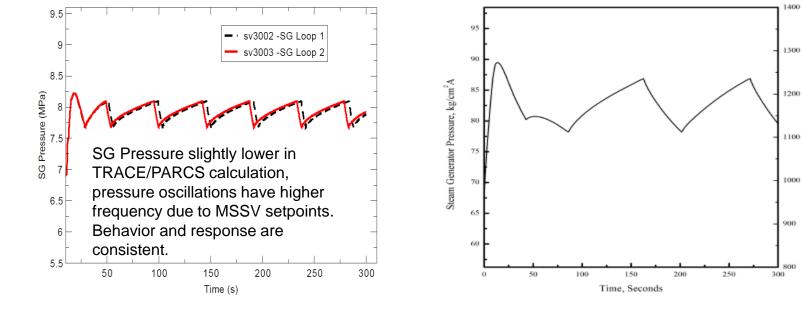
May 19, 2017


Relative Core Nuclear Power

RCS Temperature


Reactivity

APR1400 LOOP Transient Reactivity Total — Doppler - · Moderator Density/Temperature - Control Rods 2 0 -2 -4 -6 Reactivity (\$) -8 -10 -12 -14 -16 -18 -20 -22 50 0 100 150 200 250 300 Time (seconds)


TRACE/PARCS

About 9.6%Dk/k rod worth predicted by TRACE/PARCS vs. 8%Dk/k assumed in the DCD calculations. Differences in Doppler and moderator worth are inconsequential and due to differences in input assumptions.

SG Pressure

TRACE/PARCS

U.S.NRC United States Nuclear Regulatory Commission Protecting People and the Environment **Non-proprietary**

1400

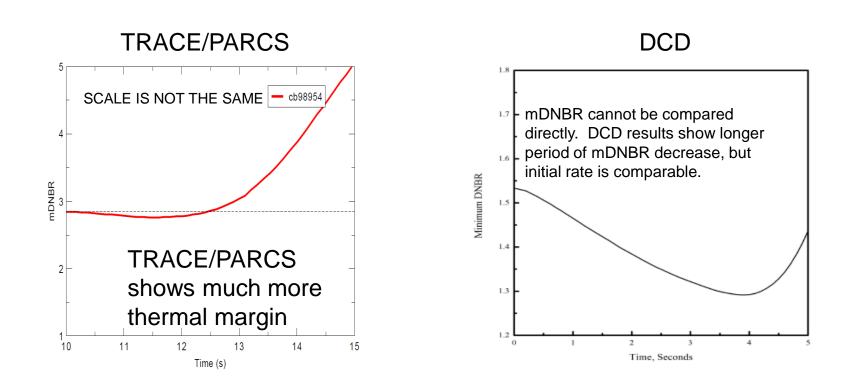
1200

1100

1000

Steam Generator Pressure, psia

DCD



Chapter 15 Transient and Accident Analyses

27

mDNBR (note: not on the same scale)

May 19, 2017

Conclusions

- TRACE/PARCS and DCD analyses compare favorably in terms of major trends and overall system behavior
- TRACE/PARCS calculations indicate that the reactivity assumptions, in particular, the shutdown worth assumed in the DCD calculations, are conservative
- TRACE/PARCS predicts a milder change in mDNBR compared to the DCD, indicating conservatism in the analysis
- DCD analysis results appear to reasonably predict system behavior and to conservatively predict the thermal margin

15.3.3-15.3.4: RCP Malfunctions

Events evaluated

- 15.3.3 Reactor Coolant Pump Rotor Seizure (limiting event)
- 15.3.4 Reactor Coolant Pump Shaft Break

15.3.3-15.3.4: RCP Malfunctions

Evaluation Model:

- CESEC-III for nuclear steam supply system (NSSS) modeling
- HERMITE for neutron diffusion
- TORC and CETOP with KCE-1 CHF correlation for departure from nuclear boiling ratio (DNBR)

Inputs and Assumptions:

• DCD Table 15.3.3-2 was reviewed against tech spec values and the referenced methodology found in topical report CENPD-183-A.

15.3.3-15.3.4: RCP Malfunctions

Protecting People and the Environment

Regulatory Findings – Loss of Forced Reactor Flow requirements

- The analysis is based on approved codes and methods and is therefore acceptable
- The input assumptions appropriately bound the potential conditions of the plant
- The loss of offsite power leads to automatic startup of EDGs, thereby demonstrating compliance with GDC 17
- Compliance with GDC 27 is demonstrated by showing that the operator can achieve cold shutdown during the event
- Compliance with GDC 31 is demonstrated by maintaining the RCS pressure within 110% of design pressure
- The calculated fuel failures bounded by the assumed values in the dose consequence analysis, therefore the requirements of 10 CFR Part 100 are met

15.4.1-15.4.3: Reactivity and Power Distribution Anomalies

DCD Sub-sections

15.4.1 Uncontrolled CEA withdrawal from subcritical or low power startup condition

- 15.4.2 Uncontrolled CEA withdrawal at power
- 15.4.3 Control element assembly misoperation

15.4.1-15.4.3 – Reactivity and Power Distribution Anomalies

Causes

Applicant considered all causes of event which is consistent with typical large PWRs for all the scenarios described in three sub-sections

Event and Event Analysis Results

For all three sub-sections, with several RAIs issued and closed, the staff finds the following:

- The limiting event progression and sequence were identified and analyzed
- The initial conditions, boundary conditions, core parameters are adequate. Appropriate conservativisms were applied
- The input assumptions under these three sub-sections covers all single failures, loss of power, trip delays, etc.
- Found the consequences of the accident are within SAFDL criteria and system response acceptable

MDNBR and PLHGR meet the SRP acceptance criteria with adequate margin

RCS pressure design limits are met with adequate margin

May 19, 2017

15.4.1-15.4.3 – Reactivity and Power Distribution Anomalies

Results

Analytical Methods

Based on the audits, the staff found that the approved methods were properly used to analyze the limiting events for all three sub-sections except the Open Item on thermal conductivity

Event Analyses Results

For all the events described in Section 15.4:

- SAFDLs are not exceeded using conservative assumptions with considered uncertainties
- General Design Criteria 10, 13, 17, 20, and 25 are met

15.4.4 - Startup of an Inactive Reactor Coolant Pump (SIRCP)

Evaluation model

• Bounding hand calculation assumes the RCS average temperature instantaneously changes to the steam generator temperature

Input parameters and initial conditions

- Bounding isothermal temperature coefficient (most negative for cooldown, most positive for heatup)
- Bounding values for temperature difference
- Shutdown margin specified in technical specifications

Results

 Conservative analysis shows that subcritiality is maintained for SIRCP event (Modes 3 through 6)

May 19, 2017

15.4.6 – Inadvertent Decrease in Boron Concentration

Review Results

- Open Item remains questioning that conservative dilution times are predicted using the complete mixing model for Modes 4 and 5 with only one shutdown cooling pump in service
- Open Item remains questioning that the CEA withdrawal event, which credits a VOPT trip, bounds a slow, at power dilution event
- Staff found that other dilution scenarios are conservatively analyzed and satisfy the SRP time criteria

15.4.7: Inadvertent Loading and Operation of a Fuel Assembly in an Improper Position

Review Results

- The applicant has procedural controls including a fuel assembly ID verification process once the core load is complete
- The applicant surveils the planar peaking factor per TS 3.2.2 every 31 EFPD
- The BOC undetectable misloading peaking factor increase is bounded by the peaking factor increase from the CEA drop analysis; hence the minimum 95/95 DNBR limit is not violated

15.4.8: Spectrum of Control Element Assembly Ejection Accidents (CEAE)

- Three Analyses
 - Peak RCS pressure
 - DNBR analysis
 - Fuel enthalpy analysis

Evaluation model

- CENPD-190-A "CE Method for Control Element Assembly Ejection Analysis"
 - ROCS, CESEC-III, CETOP, and STRIKIN-II
 - ROCS used to obtain ejected rod worths, pre and post axial and radial power distributions which are used in point kinetcs calculations (CESEC-III and STRIKIN-II)
- Statistical convolution method (fuel failure fraction based on DNBR)

15.4.8: Control Element Assembly Ejection

- Input parameters and initial conditions
 - Tables 15.4.8-1 through 15.4-8-4 of SER provide basis for input values
 - RPS actuated on a variable overpower trip (VOPT). VOPT setpoint includes excore penalty to account to decalibration
 - Analysis considers a LOOP and single failure
 - Operator action is taken at 30 minutes
- Results/Findings
 - DCD analyses do not account for thermal-conductivity degradation Open Item

15.4.8: Spectrum of Rod Ejection Accidents Staff Initial Cycle Confirmatory Analyses

NRC Methods

- Three-dimensional transient core response using TRACE/PARCS coupled code suite
- PARCS standalone depletion calculations performed for Section 4.3 confirmatory analysis used as initial conditions for BOC and EOC analysis
- TRACE Model
 - Based on model used for LBLOCA analysis
 - Added 3D Cartesian vessel to represent reactor core each radial node in PARCS one-to-one mapped to radial node in core vessel
 - One TRACE heat structure per assembly
 - DNBR calculator implemented via control systems
- PARCS Model
 - Essentially the same as Section 4.3 analysis

15.4.8: Spectrum of Rod Ejection Accidents Staff Initial Cycle Confirmatory Analyses

Applicant Assumptions vs. Staff Methods

- Applicant uses a conservative point kinetics method to evaluate reactivity feedback and power response
 - PK gives analyst considerable freedom in biasing input parameters
 - Conservative inputs for ejected rod worth, MTC/DTC, delayed neutron fraction
 - Resulting power transient fed to conservative thermal-hydraulic analysis
- Staff methodology is to physically simulate the removal of a control rod from the initial core at BOC and EOC for various power levels
 - Ejected rod worth is dependent upon initial flux shape and depletion characteristics
 - Delayed neutron fraction dependent upon depletion characteristics
 - Fuel temperature and moderator feedback explicitly calculated
 - Neutronics reacts to changes in T/H and vice versa

15.4.8: Spectrum of Rod Ejection Accidents Staff Initial Cycle Confirmatory Analyses

Results and Conclusions

- Staff calculations indicate considerable conservatism in applicant's methods and results
 - Extremely high rod worths
 - Very low β
 - Conservatively low Doppler feedback, no credit for negative moderator feedback
- For example, at HZP applicant assumes rod worth of 1.08\$
 - TRACE/PARCS EOC HZP rod worth ~0.26\$
 - Results in Power increase by factor of 3 rather than 8 order of magnitude
 - Realistic results indicate ample margin for initial core
- Confirmatory analysis supports reasonable assurance finding with respect to APR1400 REA analysis

15.5.1: Inadvertent ECCS Actuation

- Qualitative evaluation (No evaluation model)
- 3 Cases considered
 - Reactor coolant system (RCS) pressure above safety injection (SI) pump shutoff head
 - RCS pressure below SI pump shutoff head
 - Plant is on shutdown cooling (SDC), low temperature overpressure protection (LTOP) is available
- Input parameters for evaluation are provided in Table 15.5.1-1 of the SER

15.5.1: Inadvertent ECCS Actuation

Results

- MODE 1 and MODE 2: SI cannot inject, thus no impact to RCS
- MODE 3 and MODE 4 (not on SDC):
 - Cooldown: RCS pressure limit at LTOP enable temperature is greater than SI pump shutoff head
 - Heatup: RCS pressure limit at LTOP disable temperature is above SI pump shutoff head
- MODE 4, MODE 5, and MODE 6 (SDC): LTOP relief capacity is much larger than the four pump SI capacity

15.5.2: CVCS Malfunction that Increases Inventory in RCS

- Evaluation model
 - CESEC-III for NSSS modeling
 - CETOP with KCE-1 CHF correlation for DNBR
- Input parameters and initial conditions evaluated in Table 15.5.2-1 of the SER
 - RPS actuation on high RCS pressure
 - Operator action to initiate a cooldown at 30 minutes
 - LOOP occurs coincident with reactor trip
 - No pressurizer heaters to maximize RCS inventory

15.5.2: CVCS Malfunction that Increases Inventory in RCS

Results/Findings

- Fuel integrity is maintained (minimum DNBR of 1.5177)
 - GDC 10 and GDC 26
- Peak pressure in RCS (2,649 psia) and steam generators (1,294 psia) maintained below 110 percent of design value
 - GDC 15
- Overfill analysis not performed
 - Pilot operated safety relief valves (POSRVs) qualified for water and twophase mixture passage
 - NRC staff reviewed POSRV design specification during quality insurance inspection
 - CVCS malfunction does not lead to an event with more serious consequences

15.6.1: Inadvertent Opening of a Pressurizer Pressure Relief Valve

- Evaluated as a postulated accident as part of small break loss of coolant accident (SBLOCA)
- Pilot Operated Safety Relief Valve (POSRV) opening, due to spurious signal or operator error, is prevented by disconnecting electrical power from the upstream motor operated pilot valve
 - LCO 3.4.10 "Pressurizer Pilot Operated Safety Relief Valves"

15.6.2: Failure of Small Lines Carrying Primary Coolant Outside Containment

- Evaluated as a double-ended letdown line break (LDLB) outside of containment
 - Larger than any instrument or sample line (DCD Table 6.2.4-1)
- Evaluation model
 - CESEC-III for NSSS modeling
 - CETOP with KCE-1 CHF correlation for DNBR
- Input parameters and initial conditions evaluated in Table 15.6.2-1 of the SER
 - Single failure of an isolation valve does not impact the event
 - Operator action taken at 30 minutes to isolate the break and trip the reactor
- Results
 - LDLB reduces pressurizer level, but pressurizer heater maintains pressure at operating conditions
 - 44,700 lb of reactor coolant leaks out of break

May 19, 2017

15.6.3: Steam Generator Tube Rupture (SGTR)

Non-proprietary

• Two analyses

- Investigate thermal-margin (i.e., DNBR)
- Evaluate radiological consequences
- Evaluation model
 - CESEC-III for NSSS modeling
 - CETOP with KCE-1 CHF correlation for DNBR
- Input parameters and initial conditions evaluated in Table 15.6.3-1 and Table 15.6.3-2 of the SER
 - SGTR analysis credits RPS, main steam isolation, and safety injection to mitigate the event
 - LOOP occurs coincident with reactor trip
 - MSIVs close instantaneously on high steam generator level
 - Operator action at 30 minutes

15.6.3 SGTR

Results/Findings

- Fuel integrity is maintained (minimum DNBR of 1.3022)
- Peak pressure in RCS and steam generators (1,195 psia) maintained below 110 percent of design value
- Steam generator overfill does not occur
- Mass leak through break is consistent with the value used in the dose consequence analysis for SGTR

Section 15.8 – Anticipated Transient Without Scram (ATWS)

- APR1400 design includes a Diverse Scram System, alternately referred to as the Diverse Protection System (DPS), which provides a diverse backup to the Plant Protection System (PPS). Chapter 7 review concluded that DPS fulfils 10CFR 50.62 requirements
- APR1400 Reactor Trip System and DPS design are similar to those of the Combustion Engineering System 80 and 80+ designs
- Applicant analyzed the limiting ATWS events considered in the APR1400 PRA and reached a similar conclusion to that of previously-approved CENPD-158

Staff findings:

• APR1400 design meets the ATWS rule, 10 CFR 50.62

Section 15.6.5 – Large Break LOCA

Significant Analysis Issues

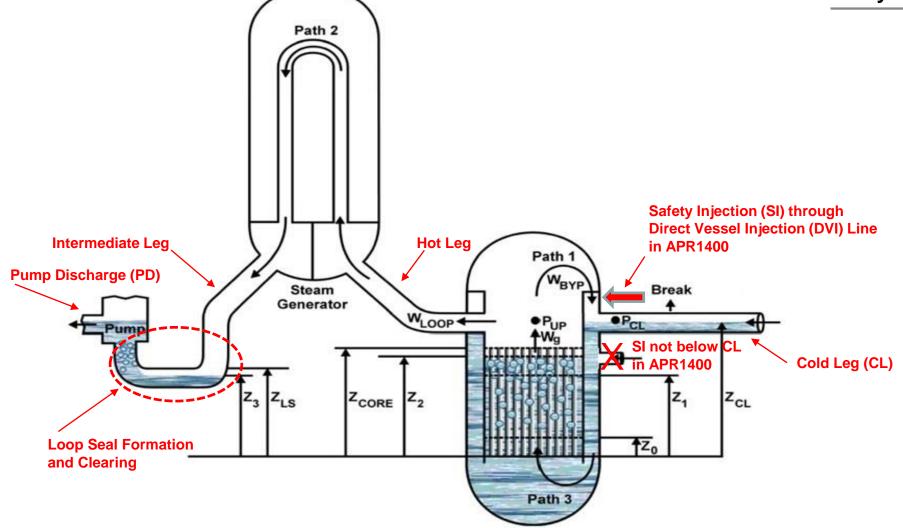
Non-proprietary

- Loss of Offsite Power and limiting single failure assumptions
 - Reactor Coolant Pump (RCP) trip
 - Pump forward/reverse flow resistance
 - Control Element Assembly (CEA) Insertion
 - Safety injection Tank (SIT) check valve active/passive failure
- Unrealistic power spike (DCD Figure 15.6.5-13) due to moderator reactivity curve error (affected all cases)
- Staff review of Topical Report APR1400-F-A-TR-12004-P is incomplete
 - Significant progress made on topical report review, but not complete
 - Tracked as Open Item in Chapter 15 FSER
- Full spectrum LBLOCA analyses being re-performed to address TCD and other methodology issues

Findings

Technical issues resolved except for TCD and topical report methodology

May 19, 2017


15.6.5: Small Break LOCA Staff Review Summary

- SBLOCA Methodology and Computer Codes
- SBLOCA Analysis Input Assumptions
- Initial Loop Seal Formation and Clearing
- Break Spectrum Analysis

15.6.5: Small Break LOCA APR1400 Conceptual Design

15.6.5: Small Break LOCA Initial Loop Seal Clearing

- Protecting People and the Environment
- Loop Seal Modeling Conservatisms in APR1400 SBLOCAPEINTARY
 - Loop seal clearing is delayed until the SG side level reaches the bottom of the horizontal segment of the cross-over piping
 - Appendix K based methodology
 - Lumping two loop seals for intact cold legs into a single loop seal, for the limiting SBLOCA
 - CEFLASH-4AS licensing basis calculations are more conservative than the applicant's RELAP5 and staff's TRACE confirmatory calculations
 - CEFLASH-4AS validated for the loop seal clearing phenomena in Semiscale Test SUT-8

• Findings

- SBLOCA methodology and computer codes conservatively characterize the safety-significant phenomena of (1) loop seal formation and clearing, and (2) PCT during the limiting SBLOCA for the initial phase of blowdown and reflood
- Overall conservatism in the S1M SBLOCA methodology

May 19, 2017

15.6.5: Small Break LOCA Break Spectrum Analysis Summary

United States Nuclear Regulatory Commission Protecting People and the Environment Non-proprietary

- Summary of Review
 - Two types of break spectrum analyzed (PD, DVI line)
 - 4 DVI line breaks: 18.6, 46.5, 93, 372 cm²
 - 4 CL breaks at PD: 46.5, 93, 325, 465 cm²
 - Break sizes analyzed too coarse to identify the limiting SBLOCA break
 - Finer break spectrum analyses
 - 15 DVI line breaks: 1.5-8.5 inch ~ 11.4-372 cm² ~ 0.0123~0.4006 ft²
 - 17 CL breaks at PD: 2-10 inch ~ 20.2-507 cm² ~ 0.0218~0.5454 ft²
 - PCT, details of loop seal clearing for each SBLOCA break size and any core uncovery, two-phase mixture levels, void fractions, vapor mass flow rate, injection flow rate, core pressure, and break flowrate

Findings

- 5 inch dia. (127 cm²~0.1364 ft²) DVI line break identified as the limiting SBLOCA with highest PCT of 1,684°F
 - **516 °F margin** to the 2200 °F limit
 - TRACE Confirmatory Calculations: PCT_{max} = 1265°F~ 935°F margin
- Confirmatory Item: DCD/TeR spectrum analysis markups submitted

15.6.5: Small Break LOCA Conclusions

Protecting People and the Environment

- Sufficient conservatism exists in the APR1400 SBLOCA analysis using the S1M methodology to meet the regulatory requirements for LWRs given in 10 CFR 50.46 and Appendix K to 10 CFR Part 50
- Confirmatory Item
 - Detailed SBLOCA break spectrum analysis acceptable
 - Revisions to the DCD and the SBLOCA TeR submitted
- Open Item
 - Justify the upper bound on the SBLOCA break size of 464.5 cm²
 - Docketed response not submitted

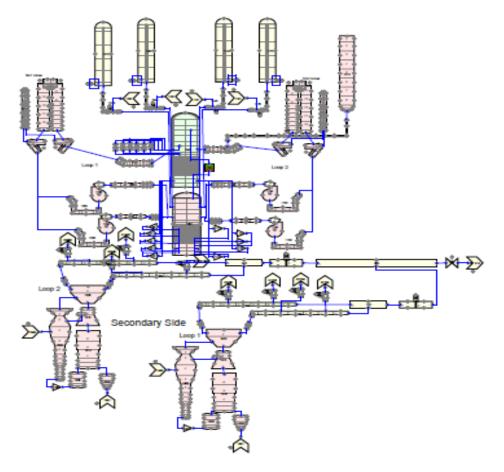
APR1400 TRACE Large & Small Break LOCA Confirmatory Analysis

William Krotiuk Senior Executive Consultant NUMARK Associates, Inc.

> Joseph Staudenmeier RES/CRAB

ACRS Subcommittee Meeting May 19, 2017

Discussion Topics



This presentation provides

- A description of the independently developed APR1400 TRACE model
- The TRACE confirmatory analyses results for best estimate large break LOCA reported in DCD 15.6.5
- The TRACE confirmatory analyses results for the small break LOCAs reported in DCD 15.6.5
- Results for the fuel thermal conductivity degradation sensitivity study following a LBLOCA

APR1400 Primary/Secondary System TRACE Model

APR1400 Steady-State Comparisons

Protecting People and the Environment

- A steady-state execution of the TRACE APR1400 was performed to obtain initial conditions for all LBLOCA and SBLOCA transient analyses
- Initial system 102% power, pressurizer pressure and water level, safety injection tank water level and temperature obtained from the APR1400 DCD
- Steady-state system conditions for pressure, temperature, flow, pressure drop and system flow distribution obtained from chapters 4 and 15 of the APR1400 DCD
- Emergency safety feature set points and delays obtained from the APR1400 DCD
- Results for the APR1400 TRACE steady-state conditions closely compare to results from the APR1400 DCD calculated using the KHNP RELAP5 code

APR1400 LBLOCA Comparison

• Assumptions

Protecting People and the Environment

Non-proprietary


- Double ended guillotine break in the primary system pump discharge leg 1B
- Failure of two safety injection pumps consistent with the APR1400 DCD
- All safety injection tank flow available consistent with the APR1400 DCD
- Conclusion
 - TRACE LBLOCA major predictions are similar to or bounded by the results reported in the APR1400 DCD using the KHNP RELAP5 code.

	Transient Condition							
APR1400 System Parameter	APR1400 DCD	TRACE						
Blowdown PCT (ºC, K, °F) (trhmax-1999)	892⁰C, 1165.2K 1637.7°F	822.1ºC, 1095.2K 1511.7°F						
Blowdown PCT location (m)	2.57	2.83						
Blowdown PCT time (s)	6.5	9.9						
Reflood PCT (ºC, K, °F) (trhmax-1999)	798.9⁰C, 1072.1K 1470.1°F	721.4⁰C, 994.5K 1330.4°F						
Reflood PCT location (m)	2.57	2.60						
Reflood PCT time (s)	36.5	50.0						
RELAP5 Peak Local Oxidation (%) / TRACE % equivalent clad reacted (ecr)	1.50 	 0.855 max ecr						
Fuel Rod Rupture	None	None						
Chapter 15 Transient and Assident Analyzes								

APR1400 LBLOCA Comparison

- Conclusions
 - The TRACE LBLOCA PCT is below the APR1400 DCD predictions ٠ using the KHNP RELAP5 code
 - The TRACE calculated quench time is larger than the value reported ٠ in the APR1400 DCD

Red line - Clad temperatures at fuel rod location with PCT, Green line - PCT for all fuel rods

May 19, 2017

APR1400 SBLOCA Comparisons

- Assumptions
 - SBLOCA analyses performed for a spectrum of break sizes and locations
 - Emergency safety feature failures and delays consistent with the DCD

Break Location	Break Size (cm ²)	SI Pump Operation	SIT Availability
Pump Discharge (PD)	465 ¹ 325 93 46.5 23.25	Two SI pumps operate, two SI pumps fail due to emergency diesel failure	Four SITs available
Direct Vessel Injection (DVI)	372 93 46.5 18.6	One SI pump operates, two SI pumps fail due to emergency diesel failure, one SI flows out the break	Four SITs available, but one SIT flows out the break
Pressurizer Top - Safety Relief Valve (RV)	27.9	Two SI pumps operate, two SI pumps fail due to emergency diesel failure	Four SITs available
Instrument tube at bottom reactor vessel head	2.8	Two SI pumps operate, two SI pumps fail due to emergency diesel failure	Four SITs available

APR1400 SBLOCA Comparisons

- APR1400 SBLOCA DCD results calculated using several codes similar to methods used for operating Combustion Engineering PWRs
- APR1400 SBLOCA DCD calculations did not include reactivity feedback.
- TRACE SBLOCA calculations performed with and without reactivity feedback
- Calculated PCTs from the DCD and TRACE analyses did not occur at same break size

		APR14	00 DCD	TRACE Analyses no feedback / feedback		
Break Location		PCT (K)	Max. Clad Oxidation (%)	PCT (K)	ECR (%)	
Pump Discharge (PD)	465 ¹ / 9.94% pipe area 325 / 6.95% pipe area 93 / 1.99% pipe area 46.5 / 0.994% pipe area 23.25 / 0.497% pipe area 11.625 / 0.249% pipe area	771.15 765.15 838.15 841.15 NA NA	0.0017 0.0015 0.0010 0.0008 NA NA	678.2/761.3 836.9/849.9 939.5/978.8 801.9/875.3 809.6/778.3 621.2 ² /621.2 ²	0.759/0.759 0.759/0.759 0.759/0.798 0.759/0.760 0.759/0.760 0.759/0.760	
Direct Vessel Injection (DVI)	372 / 101.6% nozzle area 93 / 25.4% nozzle area 46.5 / 12.7% nozzle area 18.6 / 5.08% nozzle area 9.3 / 2.54% nozzle area	897.15 842.15 844.15 889.15 NA	0.0195 0.0069 0.0018 0.0029 NA	801.4/796.0 986.4/832.0 1019.0 /816.8 926.1/ 905.0 621.3 ² /621.3 ²	0.759/0.759 0.759/0.760 0.796/0.760 0.759/0.760 0.759/0.760	
Pressurizer Top - Safety Valve (PORV)	27.9 / 100% valve area	841.15	0.0006	621.4 ² /621.4 ²	0.759/0.760	
Instrument tube at bottom reactor vessel head	2.8 / 100% tube area	Not available	Not available	621.3 ² /621.3 ²	0.759/0.760	

² Initial pre-SBLOCA steady-state temperature

TRACE LOCA Long Term Cooling Assessment

- Long term cooling core uncovery due to loop seal re-formation and clearing
 - Best Estimate LBLOCA and the 46.5 cm² DVI SBLOCA are analyzed to determine if a second PCT occurs
- Assumptions
 - Sump recirculation time estimated assuming 2 of 4 SI pumps available consistent with the shorter term analyses
 - 625,000 gallons available in the IRWST as specified in DCD section 6.8.4
 - All analyses performed with reactivity feedback.
 - LBLOCA estimated recirculation time is about 4.79 hr. (~17,229 s).
 - SBLOCA estimated recirculation time is about 5.44 hr. (~19,600 s).
- A second PCT, if present, will be below the initial PCT
 - Long term vapor generation rate is too low to support extended deep loop seal and core level depression. The associated heatup from a given core depression is less because of lower decay heat

• TRACE calculations do not show a second core uncovery and heatup

May 19, 2017

Fuel Thermal Conductivity Degradation Study

 Determine sensitivity of steady-state fuel rod average and average centerline temperatures and LBLOCA PCT to fuel thermal conductivity degradation resulting from burnup.

TRACE Heat Structure	Primary Fuel Rod	Supplemental Rod 1	Supplemental Rod 2	Supplemental Rod 3
Fuel Rod Description	First Core Avg.	Cycle 3 Hot Rod	First Core Avg. at EOC	BOC
GWD/MTU	17.571	60.0	28.914	2.0
Steady-State Temperatures (°F)				
Max. Centerline at 2.771 m axial	1995.1	3763.4	3301.7	2717.3
height (coarse axial level 49 of 68)				
Min. Centerline at 0.0 m axial height (coarse axial level 1 of 68)	573.0	599.9	587.1	578.2
Fuel Rod Centerline Average	1468.5	2637.0	2281.0	1865.5
Max. Avg. at 2.771 m axial height (axial level 17of 24)	1302.7	2187.8	1917.8	1619.8
Min. Avg. at 0.0 m axial height (axial level 1 of 24)	565.1	580.8	572.6	569.0
Fuel Rod Average	1037.1	1620.2	1425.9	1220.4
Transient LBLOCA Temperatures (°F)			
РСТ	1117.0	1511.7	1424.2	1298.3

Fuel Rod Temperatures from TRACE DCD LBLOCA Analysis

APR1400 LBLOCA & SBLOCA Conclusions

Non-proprietary

- Best Estimate LBLOCA
 - TRACE predictions are similar to or bounded by the reported APR1400 DCD results. The calculated clad temperatures have a significant margin to 50.46 limits
 - TRACE event sequencing predictions are similar to the DCD reported values

SBLOCA

- TRACE PCT predictions do not match DCD reported behavior. The differences may be partially attributable to the absence of CCFL modeling in the APR1400 calculational method. The calculated clad temperatures have a significant margin to 50.46 limits
- The TRACE analyses with and without reactivity feedback illustrate its importance in predicting SBLOCA results. The DCD calculations did not include reactivity feedback
- TRACE long term cooling calculations show no late heatup
 - A secondary PCT due to SG primary system condensation or loop seal refill is not expected to occur for LBLOCAs or SBLOCAs unless an external action (e.g. operator action) occurs
 - The magnitude of any secondary PCT, if it occurs, would be less than the initial PCT because of the drop in primary system pressure

15.6.5: Post LOCA Long Term Cooling Boron Precipitation

Non-proprietary

- Technical Report APR1400-F-A-NR-14003, "Post-LOCA Long Term Cooling Evaluation Model" has details of boron precipitation analysis
- **Methodology** slight modification of CENPD-254-P-A, "Post-LOCA LTC Evaluation Model", June 1980 (Proprietary)
 - Realignment of SI from RWT to sump not needed; IRWST is SI source
 - Revision to mixing volume boundary
- Long Term Cooling Plan operator action needed to assure core cooling, while avoiding boric acid precipitation
- **Timing of Switchover** to combined DVI and hot leg injection by operator key to avoiding boron precipitation

Computer Codes

• BORON (SI source modified), NATFLOW, CEPAC, CELDA

May 19, 2017

15.6.5: Post LOCA Long Term Cooling Boron Precipitation

 Majority of issues required clarifications and additional information which was provided and acceptable

- Significant item was assumption regarding size of the mixing volume
- Proposed methodology not consistent with current PWR vendor methodologies
- KHNP decreased mixing volume size (reduced boundary from top to bottom of hot leg elevation in RPV)
- Resulted in decrease of maximum time of switchover to combined injection from 3 to 2 hours. DCD modified

Staff Findings

Boron precipitation long term cooling methodology, analysis and plan are acceptable for their application to APR1400

15.6.5: Post LOCA Long Term Cooling Boron Dilution

Staff Findings

Analytical Methods

In the current version of the SER, RAI 15.06.05-22 which addresses boron dilution following an SBLOCA, is an OPEN ITEM.

- The applicant has since responded providing calculations of boron dilution due to RCP startup and restart of natural circulation (NC) simultaneously in all loops
- PKL tests show NC does not get established simultaneously in all loops, so assumption of simultaneous restart is conservative
- Mixing volumes used in dilution calculations were verified to be conservative.

Applicant asserted that closure of GSI-185 also applied to APR1400 because its geometry with regard to boron dilution is nearly identical to the C-E System 80+

Conclusions

Minimum calculated boron concentration is well above the calculated limit for criticality

May 19, 2017

15.6.5: Post LOCA Long Term Cooling LTC Loop Seal Clearing

Staff Findings

Analytical Methods

Supplemental RAI response provided calculations SBLOCA break spectrum calculations to 2 hours (hot-leg switchover time) to identify limiting loop seal clearing case

- 0.044 ft² break limiting with periodic loop seal reformation/clearing in one loop
- Slight periodic uncovery of very top of the core
- Maximum calculated LTC cladding temperature was 627 F

Conclusions

NRC criteria that the PCT remain below 800 F during LTC loop seal reformation has been satisfied, with the exception of one open item

- 1. Debris source analysis and fiber only by-pass testing
- 2. Available driving head across the debris bed
- 3. Fuel assembly head loss testing
- 4. LOCA deposition model

Regulatory Requirements And Precedence

15 gram/assembly fiber loading clean plant criteria has been approved and used for US operating PWR plants

(SER on WCAP16793 "Evaluation of Long-Term Core Cooling Considering Particulate Fibrous and Chemical Debris in The Recirculating Fluid" Rev. 2 #ML121020118 December, 12, 2012)

- 1. Debris source analysis and fiber only by-pass testing
 - Reflective Metallic Insulation (RMI) is used
 - Removal of all fiber insulation from ZOI
 - Limit latent fiber amount to 15 lbm at the strainer
 - Fiber only by-pass testing was conducted using the in-line filtration system
 - The same prototypical strainer head loss testing facility was used to preserve the 1:1 approaching velocity ratio through the strainer surface
 - Staff audited and observed the actual test
 - Only 6.8 g fiber per assembly is predicted. However, 15 g was used in the fuel assembly head loss testing and the core DP analysis

Staff findings, Debris Source Analysis

• Debris source analysis and testing are conservative

- 2. Available driving head across the debris bed
 - All limiting core flow conditions have been identified
 - Conservative debris arrival time is assumed
 - Limit latent fiber amount to 15 lbm at the strainer
 - Core two-phase flow friction loss, acceleration term and liquid density are determined properly in response to staff RAIs and audit questions
 - As part of the available driving head, the water column height in the steam generator tube is conservatively treated to add margin

Staff findings, Available Driving Head

Available driving head across the core has been conservatively determined

- 3. Fuel Assembly Head Loss Testing
 - A new test facility was deployed by KHNP to measure the head loss across PLUS7 fuel bundle with the presence of debris
 - The facility and the testing protocols have been adjusted in response to three staff inspection findings
 - 15 g/assembly fiber insulation material was introduced including all the particulate and chemical precipitates
 - For all the limiting flow conditions, the measured head loss values were significantly less than the core available driving head

Staff findings, Fuel Assembly Head Loss Testing

• The head loss tests were conducted properly and the measured bundle head loss was less than the available driving head

- 4. LOCA Deposition Model
 - PWR Owner's Group LOCA deposition model was used to predict the cladding temperature with the presence of crud build up
 - Very conservative fiber and other debris loading was assumed
 - The results show that the crud thickness is significantly less than the limit value of 50 mills. The PCT is much less than 800°F limit
 - RAI was issued to obtain more detailed information about the inputs

Staff findings, LOCA Deposition Model

 During 30 days of the long term cooling, the crud formation shall be less than the thickness limit and the PCT shall be less than 800°F pending on the final closure of the RAI

ACRONYMS

Protecting People and the Environment

- AOO anticipated operational occurrence GDC – general design criterion/criteriaNon-proprietary ASME – American Society of Mechanical Engineers ITAAC - inspections, tests, analyses, and acceptance BOC – beginning of cycle criteria BOL – beginning of life **IOSGADV** - Inadvertent Opening of a Steam Generator **CE** – Combustion Engineering Relief or Safety Valve CEA – control element assembly LPD - local power density COL – combined license LOCA - loss of coolant accident COLSS – core operating limits supervisory system MDC – moderator density coefficient CPC - core protection calculator MSLB - main steam line break CPCS - core protection calculator system **OPR1000 – Optimized Power Reactor 1000** CR - control room PPS – plant protection system CRD – control rod drive RAI - request for additional information CRDS - control rod drive system RCS - reactor coolant system CVCS - chemical and volume control system RG - regulatory guide DBA - design basis accident RPS - reactor protection system DBE – design basis event SAFDL – specified acceptable fuel design limit DCD – design control document SGTR - steam generator tube rupture DNB – departure from nucleate boiling SI - safety injection DNBR – departure from nucleate boiling ratio SIT – safety injection tank ENDF – Evaluated Nuclear Data File SRP – Standard Review Plan ESFAS – emergency safeguards features actuation system TCD – thermal conductivity degradation EOC – end of cycle TS – technical specifications EOL – end of life TEDE - total effective dose equivalent
- FHA fuel handling accident
- FTC fuel temperature coefficient

May 19, 2017

Chapter 15 Accident And Transient Analyses

VOPT- variable overpower trip

Details of TRACE LOCA Model

TRACE Modeling of SITs with Fluid Device

APR1400 TRACE Model BACKUP SLIDE

Protecting People and the Environment

Non-proprietary

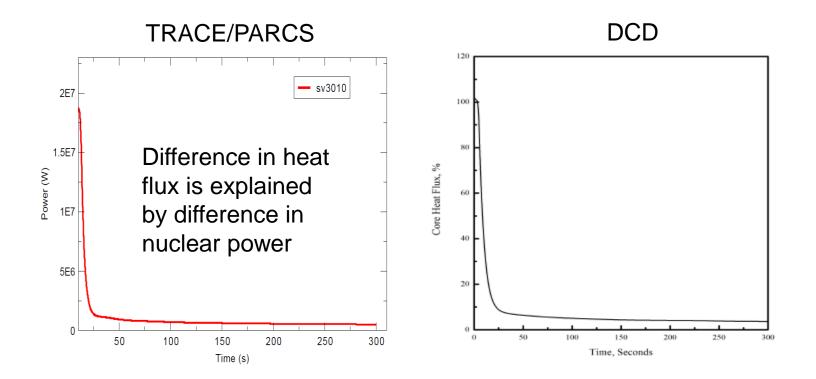
- TRACE APR1400 PWR model was independently developed
 - Developed primarily from KHNP drawings and reports using methods from the USNRC "TRACE PWR Modeling Guidance"
 - Reactivity feedback table inputs obtained from KHNP RELAP5 model input
- Modelled systems include:
 - Primary System
 - Two hot and four cold leg pipes
 - CCFL model included for the hot leg bend at the SG inlet and for the cold legs at the pump inlet.
 - U-tube steam generator (SG) primary side
 - CCFL model included for the u-tubes at the SG inlet.
 - Pressurizer
 - Reactor pressure vessel with 34 levels, 3 rings and 10 azimuthal segments
 - CCFL model included for the reactor vessel guide tubes and for the upper core plate.
 - Reactor core
 - Detailed fuel rod models specified peaking factors and burnups for three cycles.
 - Point kinetics modeling with reactivity feedback
 - Direct vessel injection (DVI) ECCS system using
 - Four safety injection tanks each with a fluidic device to control flow as a function of level
 - » TRACE model developed for SITs with a fluidic device provided reasonable agreement with KHNP test measurements
 - Four trains of high pressure safety injection pumps

APR1400 TRACE Model (continued) BACKUP SLIDE

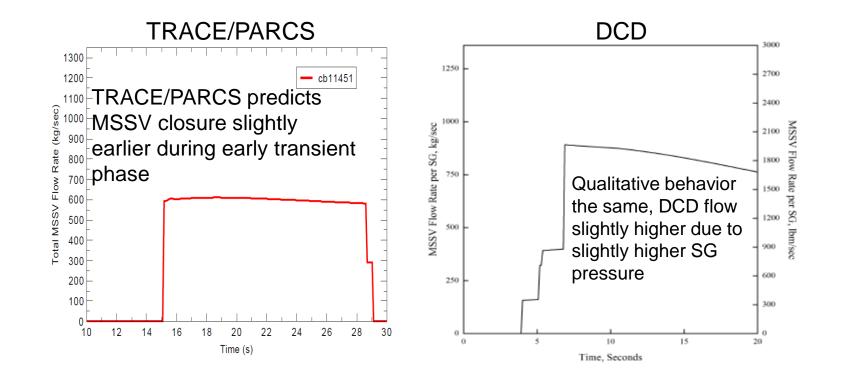
- Modeled systems include:
 - Secondary System
 - U-tube steam generator secondary side
 - Steam and feedwater pipes
 - Four main steam safety valves
 - Atmospheric dump valves
 - Feedwater control system to maintain SG downcomer level

Overview of Methods: TRACE/PARCS BACKUP SLIDE

- Reactor systems response computed by TRACE Non-proprietary
 - RCS is modeled with 2 VESSEL components to accurately track temperature gradients in the downcomer
 - Reactor core is modeled with a 3rd VESSEL component that models each fuel assembly individually for detailed representation of the core
 - Reactor trip is caused by LOOP with 550 ms delay
- Reactivity feedback calculated by PARCS
 - All control rods that are not assigned to a shutdown bank remain fully withdrawn. This is a conservatism in the RES staff analysis
 - The beginning of cycle exposure point free of xenon and samarium was selected as a limiting state because of low Doppler and moderator feedback coefficients
 - Rod motion is delayed by 500 ms to account for solenoid deenergization. Rods take 4.4 seconds to insert


Overview of Methods: mDNBR Calculation BACKUP SLIDE

- mDNBR is calculated using a TRACE control system
- Four assemblies are tracked with signal variables that sense flow and heat flux. These are candidate limiting assemblies
- These signals are processed through control blocks that compute the critical heat flux per the applicant's correlation
- A series of control blocks computes the minimum of the DNBR calculated for these four assemblies
- Since TRACE does not track subchannel flow distribution, the mDNBR should not be compared directly, but the calculation should indicate trends in mDNBR during the transient


Heat Flux BACKUP SLIDE

MSSV Flow BACKUP SLIDE

BACKUP SLIDE 15.4.8: Spectrum of Rod Ejection Accidents Staff Initial Cycle Confirmatory Analyses

Comparison of "Input" Parameters

DCD Input Assumptions

Case	Power Level (MWt)	β	Ejected Rod Worth (\$)	Fq	MTC (δρ/°C)	$\frac{DTC(\delta\rho/\sqrt{K})}{\sqrt{K}}$
HZP	1.00		1.085	11.49	9.0x10 ⁻⁵	
20%	796.60	0.00412	0.901	10.79	7.2x10 ⁻⁵	-0.00130
50%	1991.50	0.00412	0.626	6.49	4.5x10 ⁻⁵	-0.00150
HFP	4062.66		0.354	4.32	0.0x10 ⁻⁵	

TRACE/PARCS Calculated Neutronic Parameters

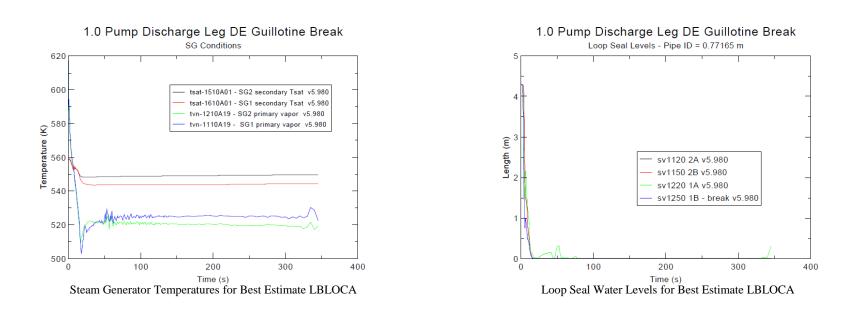
Core State	Initial Power (%)	Core-Averaged $meta$	Transient Ejected Rod Worth (\$)	Transient Maximum F _a
	HZP		0.106	2.68
вос	20%	0.00687	0.105	2.50
вос	50%	0.00087	0.086	2.14
	HFP		0.004	1.83
	HZP	0.00504	0.255	5.70
EOC	20%	0.00500	0.232	3.05
EUC	50%	0.00499	0.196	2.47
	HFP	0.00498	0.036	1.61

BACKUP SLIDE 15.4.8: Spectrum of Rod Ejection Accidents Staff Initial Cycle Confirmatory Analyses

Comparison of T/H Simulations

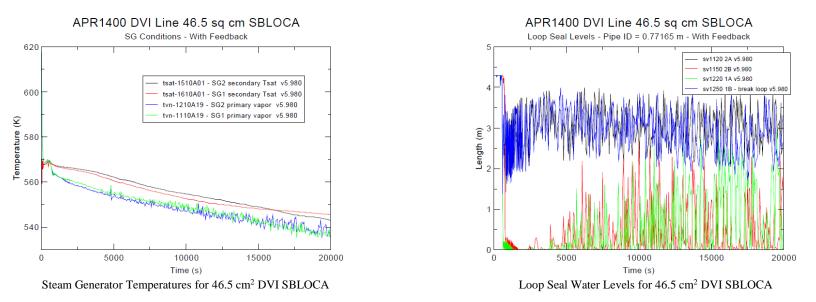
Maximum Fuel Maximum Maximum Hot Spot Maximum Clad Maximum Fuel **Core Power Radial Average Enthalpy Rise** Case Temperature (K) Temperature (K) (%) Enthalpy (cal/g) (cal/g) 141.3 620.2 1774.7 75.2 21.7 HZP 20% 859.9 2604.5 113.1 140.3 33.1 50% 129.4 842.4 2644.1 120.4 38.4 HFP 156.3 840.4 2763.4 124.7 28.4

DCD Analysis


TRACE/PARCS Confirmatory Analysis

Core State	Initial Power (%)	Maximum Core Power (%)	Maximum Clad Temperature (K)	Maximum Fuel Temperature (K)	mDNBR (-)
	HZP	0.03	568.1	568.4	N/A
DOC	20%	25.3	587.1	851.7	8.37
BOC 50%	50%	56.4	605.2	1225.4	3.98
	HFP	102.6	619.2	1895.2	2.34
	HZP	0.076	568.1	569.4	N/A
ГОС	20%	27.1	592.7	860.9	7.96
EOC	50%	64.0	614.0	1162.2	3.95
	HFP	106.4	619.4	1686.1	2.60

TRACE LBLOCA Loop Seal Reformation and Clearing BACKUP SLIDE


- A second PCT, if present, will be below the initial PCT because
 - Primary system condensation is not expected because SG primary system vapor temperatures are below SG secondary system saturation temperatures

TRACE SBLOCA Loop Seal Reformation and Clearing BACKUP SLIDE

- A secondary PCT, if present, will be below the initial PCT because
 - Primary system condensation is not expected because SG primary system vapor temperatures at 20,000 s are below SG secondary system saturation temperatures
 - Long term calculations to 20,000 s do not predict a second PCT

Fuel Thermal Conductivity Degradation Study BACKUP SLIDE

 The fuel thermal conductivity sensitivity analyses demonstrates the importance of burnup in calculating fuel rod temperatures.

Fuel Rod Temperatures Sensitivity Calculation for Additional TRACE LBLOCA Analyses

TRACE Heat Structure	Primary Fuel Rod	Supplementa I Rod 1	Supplementa I Rod 1	Primary Fuel Rod DCD LBLOCA	Primary Fuel Rod	Supplementa I Rod 1	Primary Fuel Rod	Primary Fuel Rod	Supplemental Rod 1
Fuel Rod Description	Core Avg.	Hot Rod	Hot Rod	First Core Avg.	Core Avg.	Hot Rod	Core Avg.	Core Avg.	Hot Rod
GWD/MTU	0.0	0.0 ¹	30.0	17.571	20.0	30.0	30.0	40.0	30.0
Steady-State Temperatures	(°F)							•	
Max. Centerline at 2.771 m axial height (coarse axial level 17 of 24)	1692.2	2704.2	3356.0	1995.1	2028.1	3356.0	2162.2	2281.0	3356.0
Min. Centerline at 0.0 m axial height (coarse axial level 1 of 24)	569.7	581.8	591.5	573.0	573.5	591.5	575.7	577.6	591.5
Fuel Rod Centerline Average	1274.9	1910.1	2328.0	1468.5	1492.6	2328.0	1583.9	1664.6	2328.0
Max. Avg. at 2.771 m axial height (axial level 17 of 24)	1155.9	1627.6	1961.9	1302.7	1320.2	1961.9	1386.6	1445.3	1961.9
Min. Avg. at 0.0 m axial height (axial level 1 of 24)	564.2	573.0	576.8	565.1	565.4	576.8	566.4	567.4	576.8
Fuel Rod Average	947.1	1268.5	1461.4	1037.1	1049.0	1461.4	1094.1	1134.0	1461.4
Transient LBLOCA Temper	atures (°F)								
РСТ	1031.0	1269.1	1396.1	1117.0	1134.6	1444.5	1161.0	1201.8	1464.7

¹ The condition in which the hot rod and average rod are both at 0 GWD/MTU is an unrealistic case which has been run as part of a TCD sensitivity analysis.