Part 21 (PAR)
Event\#
51907

PART 21 - ANOMALY RELATED TO MICRO SWITCHES

The following report was received via email:
"Based on test data, Rotor believes an unsafe condition may exist as defined under 10CFR21. The adhesive formulation used for the construction of V12 and K5 safety related micro switches was altered by the switch maker's sub-supplier. K5 switches have no reported failures, but are affected because of construction. The altered adhesive formulation outgases an insulating material at elevated temperatures, which coats the switch contacts as it cools, and can prevent the conduction of electricity."

675 Mile Crossing, Ulvd
Rochester, New Yoik 14624
tel: +15852472304
fix: +1 585 2472303
www.rotork.com
mlo@rotork.com
To: NRC Operations Center From:

Dear sir/modame,
please find attweted a Prot 21 notification from Roterte Contrabinc. concerning sofety rellitt miero-saractes Port Nös and deserciction:

$$
\begin{array}{ll}
N 69-921, & N 12 / 3252 \\
N 69-926, & 15 / 3252 \\
N 69-838, & 155 / 3252-A 2
\end{array}
$$

Aho included is Rotort engeincering repart ER857.
Sincercly
Patrick A Alsew
Quality Ansurance Manazer.

rotorif
 Controls

Rotork Controls Inc.
675 Mile Crossing Blva
Rochester, New York
14624
U.S. Nuclear Regulatory Commission,
tel: +1585 2472304
Washington, DC 20555-0001
fax: +1 5852472308
www.rotork.com
From: Patrick A. Shaw, P.E
To: NRC Operations Center
Datc: May $4^{\text {th }} 2016$

Subject: Rotork Controls Inc. Part 21 Notification, concerning V12 [Pt No N69-921] and K5 [N69838 \& N69-926] safety related micro switches

Dear Sir/Madame,
On January 25 $5^{\text {th }} 2016$ Rotork Controls Inc. opened a formal Part 21 investigation into an anomaly reported by Duke Energy from testing conducted at Kinectrics in Canada. The anomaly related to Basic micro switches incorporated within Rotork safety related NA1E range electric actuators; also referred to as electric Valve Operators. The anomaly description was "switches failed to change state [Pt No N69-921]" and was observed after ten (10) days of thermal aging at 125 Centigrade (257 Fahrenheit).

On March $18^{\text {dil }} 2016$ Rotork wrote to the U.S. NRC requesting a 40 day extension to the 60 day investigation period permitted under 10CFR21 (Ref. Event No ML16088A087).

Based on test data, Rotork believes an unsafe condition may exist as defined under 10CFR21. The adhesive formulation used for the construction of V12 and K5 safety related micro switches was altered by the switch maker's sub-supplier. K5 switches have no reported failures, but are affected because of construction. The altered adhesive formulation outgases an insulating material at elevated temperatures, which coats the switch contacts as it cools, and can prevent the conduction of electricity.

The anomaly onset is a function of temperature and time. The anomaly may occur when a switch is maintained above $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ for an extended period of time, and then subsequently cooled below $65^{\circ} \mathrm{C}(150)^{\circ} \mathrm{F}$ (see Rotork Engineering Report ER857 for details). Based on Rotork's NCR data this anomaly has not been reported by any U.S. NRC licensed operator. The anomaly is not observed at normal operating temperatures. Furthermore, all switches are expected to function normally while at elevated temperatures (i.e. above $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$). The concern is limited to accident design based events that include heating above $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ and subsequent cooling below $65^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{F}\right)$. Tests described within report ER857 suggests the anomaly has a lower limit of $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ (i.e. the switch is expected to function normally if the temperature is maintained below $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$). To assist the industry with risk assessment, the report includes tests performed using temperature time accident

rotoris
 Controls

protiles provided by the industry. The extent of condition affects switches manufactured from 2007 to 2015, inclusive. Product supplied prior to this date was tested and did not exhibit the anomaly.

Below is a summary in accordance with 10CFR Part 21.21(d)(4), which includes a list of all supplied actuators and spare components containing V12 and K5 switches affected by this notification.

Sincerely

Patrick A. Shaw, P.E
Quality Assurance Manager
Tel (585) 770-1019
Patrick.Shaw@rotork.com

rotorf
 Controls

Required information as per 10CFR Part 21.21 (d)(4) follows:
(i) Name and address of the individual or individuals informing the Commission.

Patrick A. Shaw, P.E.
Rotork Controls Inc, 675 Mile Crossing Blvd, Rochester, New York 14624
(ii) Identification of the facility, the activity, or the basic component supplied for such facility or such activity within the United States which fails to comply or contains a defect.

Rotork part number N69-921 Micro-Switch V12;3252 (RS104) and N69-926 MicroSwitch K5/3252 (RS378) and N69-838 Micro-Switch K5/3252-A2 (RS366) manufactured by Johnson Electric (Formerly Burgess) from 2007 to 2015.
(iii) Identification of the firm constructing the facility or supplying the basic component which fails to comply or contains a defect.

Rotork Controls Ltd
Brassmill Lane
Bath, England
BA1 3JQ
(iv) Nature of the defect or failure to comply and the safety hazard which is created or could be created by such defect or failure to comply.

The supplier (Johnson Electric) incorporates a small amount of adhesive in each switch's construction to secure the two halves of the switch housing together. The specified adhesive \& hardener are AY103 \& HY951, respectively. Both are provided to Johnson Electric by Huntsman. To comply with legislation concerning toxicity, Huntsman altered the formulation and renamed the adhesive AY103-1; the HY951 is unaltered. This change was not formally communicated by Huntsman and the modified adhesive name was not noticed by Johnson Electric.

The altered adhesive formulation outgases at elevated temperatures and deposits an insulating material layer onto the switch internal electrical contacts as it cools (see Rotork Engineering Report ER857 for specifics). The deposit of insulation material results in contact resistances exceeding the supplier acceptance criteria of $25 \mathrm{~m} \Omega$ max, the industry $500 \mathrm{~m} \Omega$ max acceptance criteria and in some cases causes an open circuit.

rotoris
 Controls

(v) The date on which the information of such defect or failure to comply was obtained.

January 25 2016
(vi) In the case of a basic component which contains a defect or fails to comply, the number and location of these components in use at, supplied for, being supplied for, or may be supplied for, manufactured, or being manufactured for one or more facilities or activities subject to the regulations in this part.

V12 switch list

Order	Part	Qty	Description		Custamer_PO	Project
$\begin{aligned} & 355818 \\ & \text { fommally } \\ & 840993010301 \end{aligned}$	NA/3S581801	I	I4NA IEFAI4A N	WTU202IVNO	$\begin{aligned} & \text { RSP35818 (RCI } \\ & \text { SERVICE) / } \\ & \text { DO108308 (DUKE) } \end{aligned}$	CATAWBA
B38669	NA/33866901	1	IGNA IFAI4A N	WTU 2023VNO	00051126	MCGUIRE
B38773	NNB3877301	3	30NAX I FAIGA N	WIU 2023VNO	00078626	CATAWBA
838786	NAB38786\%1	I	16NA IFAI4A N	WTU 2023VNO	00079069	MCGUIRE
B38854	NA/B388.540	1	90NA 1FA30A N	WTU 202IVNO	00080357	MCGUIRE
B38854	NAB3885402	1	7 NA I FAIOA N	WTU 2023VNO	00080357	MCGUIRE
B38945	NA/B3894501	3	IGNA IFAI4A N	WTU 2023VNO	00081992	MCGUIRE
B38945	NA/B3894502	5	7NA 1 FAIOA N	WTU 2023VNO	00081992	MCGUIRE
838963	NA/B3896301	6	IINA IFAIOA N	WTU2023VNO	00082321	MCGUIRE
839003	NAB390030]	2	90NA IFAJOA N	WTU 2021VNO	0×1083027	CATAWBA
B39315	NA/B3931501	1	70NAX I FA25A N	WTU 2021VNO	00087663	CATAWBA
B39400	NA/B3940001	1	40NA I FA2SA N	WTU 2023VNO	00088722	MCGUIRE
B39435	NA/B3943501	1	14NA IFAIAA N	WTU 202IVNO	00089037	CATAWBA
B39475	NA/B3947501	I	30NA IFAl6A N	WTU 2023VNO	00689808	MCGUIRE
B39693	NA/B3969301	6	16NA IEFAIAA N	WTU 2023VNO	00092438	MCGUIRE
B3972S	NAB3972501	4	30NAX IEFAIGA N	WTU 2023 VNO	40726 (CRANE)	MCGUIRE
B39765	NA/B3976501	1	14NA I FAl4A N	WTU 202iVNO	00093385	CATAWBA
B39836	NA/B3983601	2	IINA IFAIOA N	WTU202IVNO	00094314	CATAWBA
B39970	NA/B3997001	1	30NAX IEFAIGA N	WTU 2023VNO	00096162	CATAWBA
B39974	NA/33997401	1	IINA IEFAIOA N	WTU 2021VNO	00096233	MCGUIRE
839974	NA B3997402	1	30NAX IEFAI6A N	WTU 2023VNO	00096233	MCGUIRE
B39975	NA/B3997501	2	IINA IEFAIOA N	WTU 202IVNO	00096222	CATAWBA
B39977	NAB3997701	2	14NA IEFA14A N	WTU 2021VNO	00096249	CATAWBA
B40076	NAB4007601	2	40NAX I FA25A N	WTU 2021 VNO	00097864	CATAWBA
B40243	NA/B4024301	2	IINA I FAIOA N	WTU2023VNO	00099808	MCGUIRE
B40243	NA/B4024302	I	70NA IFA25A N	WTU 2023VNO	00099808	MCGURE
B40312	NA B4031201	I	30NA IEFAI6A N	WTU 2023VNO	00099864	MCGUIRE

rotork

Controls

Orider	Part	Qty	Description		Customicr_l ${ }^{\text {d }}$	Projeet
B40313	NA/134031301	2	14NA IEFAIAA N	WTU 202.3VNO	00090865	MCGUIRE
B40451	NA/84(14510)	2	16NA IEFAIAA N	WTU 2023VNO	(10102329	MCGUIRE
B40877	NA/B4087701	2	IINA IFFAIOA N	WTU 202IVNO	00106558	CATAWBA
B40877	NA/34087702	I	IGNAX IEFAIAA N	WTU 202IVNO	00106558	CATAWBA
1340993	NNB44099301	4	I4NA IEFAIAA N	WTU 202IVNO	0108308	CATAWBA
B41029	NA/R4 102\%01	I	30NAX IFFAI6A N	WTU 2023VNO	43604 (CRANE)	MCGUIRE
B41560	NA/B41.56001	3	16NA IEFAI4A N	WTU 2023VNO	00115319	MCGUTRE
B41573	NA/B4157301	2	IINA IEFAIOA N	WTU 2023VNO	00115417	MCGURE
B41573	NA/84 157302	2	40NA IEFA25A N	WTU 2023 VNO	00115417	MCGUIRE
B41699	NN/B4 60\%)1	1	IINA IEAIOA N	WIU2023VNO	00115991	MCGUIRE
B41617	NA/B4161701	I	14NA IEFAI4A N	WTU 2023VNO	00116103	MCGUIRE
B41785	NA/34178501	1	IINA IFAIOA N	WTU 2023VNO	00118959	MCGUIRE
1341910	NA/B4141001	2	I6NA IEFAIAA N	WTU 2023 VNO	00120513	MCGURE
B41981	NA/B4198101	I	14NA IEFAI4A N	WTU 2023VNO	00121598	MCGURE
B419k]	NAR4158102	I	40NA IEFA25A N	WTU 2023VNO	00121.598	MCGUIRE
B42068	NA/B4206801	I	[4NA IEFAI4A N	WTU 202IVNO	00123289	CATAWBA
B42078	NA/B4207801	1	90NA Ifa30a N	WIU2021VNO	00123469	MCGUIRE
3422.4	NAB422.3401	2	16NA IEFAI4A N	WTU 2023VNO	00126085	MCGUIRE
B42279	NA/B42279)1	2	70NA IEFA2SA N	WTU 2023VNO	00127067	MCGUIRE
B42279	NA/B4227902	2	IINA IEFAIOA N	WTU 2023VNO	00127067	MCGUIRE
B42353	NA ${ }^{\text {P4235301 }}$	2	I4NA IEFAI4A N	WTU 2021VNO	00128249	CATAWBA
B42373	NA/B423730t	I	90NA IFA30A N	WTU 2023VNO	00128425	MCGUIRE
B42457	NA/B4245701	1	40NA IEFA2SA N	WTU 2023VNO	00130114	MCGUIRE
B42525	NA/B4252501	1	I6NAX IEFAI4A N	WTU 2021 VNO	00131141	CATAWBA
B42525	NA/B4252502	1	30NAX IEFAIGA N	WTU 2021 VNO	00131141	CATAWBA
B42525	NA/B4252503	1	IINA IEFAIOA N	WTU 202IVNO	00131141	CATAWBA
B42585	NA/B4258501	1	40NA IEFA25A N	WTU2023VNO	00132277	MCGUIRE
B42696	NĀB4269601	1	IINA IEFAIOA N	WTU2023VNO	00133938	MCGULIRE
B42831	NA'B4283101	2	14NA IEFAIAA N	WTU2021VNO	00135938	CATAWBA
B42855	NA/B4285501	6	40NA IEFA25A N	WTU 2029VNO	$\begin{aligned} & 97567 \\ & \text { (FLOWSERVE) } \end{aligned}$	LUNGMEN
B42868	NA/B4286901	2	IINA IEFAIOA N	WTU 2023VNO	00136550	MCGUIRE
B42871	NA/B4287101	I	40NA IEFA25A N	WTU 2023VNO	00136593	MCGUIRE
B42918	NA/B4291801	1	70NA IEFA2.5A N	WTU 2023VNO	00137202	CATAWBA
B42918	NA/B4291802	1	40NAX IEFA25A N	WTJ 2023 VNO	00137202	CATAWBA
B4,2922	NA/B4292201	1	J6NAX IEFAIAA N	WTU 202]VNO	00137242	CATAWBA
B42922	NA/B4292202	1	30NAX IESAIGA N	WTU 202IVNO	00137242	CATAWBA
B42953	NA/B4295301	1	14NA IEFAIAA N	WTU 2023VNO	00137763	MCGUIRE
B43608	NA/B4360801	1	IINA IEFAIOA N	WTU 2023VNO	00142102	MCGUIRE

Page 5 of 12

Order	Pars	Qty	Descriplion	Customer_ro	Project
B43661	WNR2398	3	NAISSE L2SW V12 AOPI	00142224	MCGUIRE
843946	WNX2308	12	NAISSE L2SW V12 AOPI	RSP381104	DLKF MCGUIRE
B44151	NA B4415101	2	IANA IEFAI4A N WTUZO2IVNO	00143556	DUKE Catawba
1344269	NN/34426901	1	IGNA IEFAI4A N WTU2023VNO	100143880	MCGUIRE
B451767	NA/B4506705	2	MÓD3A UUNAI C -WISE SW.MFCH ASSY.	104962	OPG
845067	NA/B4506706	2	MOD8A 12 SW WTU 2029VNO AOPI ASSY.	104962	OPG
B45074	NAM64507401	2	IINA ILFAIOA N WTU 2023VNO	00145881	MCGUIRE
846016	NN'B4601601	1	I4NA IEFAIAA N WTU 2023 VNO	00147120	MCGUIRE
846022	NA/B4602201	1	IINA IEFAIOA N WTU2023VNO	00147790	MCGUIRE
B46028	WN8239S	5	NAl/SE GEW VI2 AOPI	00147787	CATAWBA
B46724	NNB4672401	1	gina iefajoa n WTU 2023 VNO	00148800	MCGUIRE
B46724	NA/B4672402	2	IGNA IEFA14A N WTU2023VNO	00148800	MCGUIRE
847288	WN82398	9	NAlise I2SW Viz AOPI	$\begin{aligned} & \hline \text { RSP39208 (RCI } \\ & \text { SERVICE): } \\ & 00147756 \text { (DUKE) } \end{aligned}$	MCGUIRE
B473.52	NA/B4735201	1	IINA IEFAIOA N WTU2023VNO	00150030	MCGUIRE
B47745	NA-03-102	5	NAI/5 SWITCH MECH	$\begin{aligned} & \hline 011208 \mathrm{~N}(\mathrm{RCC}) / \\ & 00208959 \text { (OPG) } \end{aligned}$	OPG
B48378	NA/B4837801	8	IINA SEFIOB4 IWN3 WTU 2021 VNO	04284SR ECU CORPORATION	NOT KNOWN
B48687	NA/B4868701	1	IINA IEFAIOA N WTU 2023VNO	00152920	MCGUIRE
B48811	NNB4881101	1	IGNA LEFAI4A N WTU2023VNO	00153320	MCGUIRE
B48925	NA/B4892501	2	IINA IEFAIOA N WTU 202IVNO	00153564	CATAWBA
B49264	NA/B4926401	1	I4NA 1EFAI4A N WTU 2021 VNO	00154397	CATAWBA
B49369	NA/B4936901	2	IINA IEFAIOA N WIU 2021 VNO	00155275	DUKE CATAWBA
B49459	NA/B4945901	1	14NA IEFA14A N WTU 202IVNO	00155653	CATAWBA
849620	NA/84962001	1	MOD8A 6 SW WTU 202IVNO AOPL ASSY.	205435	AK NUCLEAR 1
849770	NA/B4977001	1	14NA IEFAI4A N WTU 2023VNO	00156719	MCGUIRE
849774	WN80262	4	MODILA TIINAl/4 COMP KIT POST 78	RSP41188 (RCI SERVICE) 0230945 (SEABROOK)	SEABROOK
849774	NA-03-102	1	NAl/5 SWITCH MECH	RSP4II88 (RCI SERVICE) 0230945 (SEABROOK)	SEABROOK
849777	WN82398	6	NA1/5E 12SWV12 AOPI	RSP41660(RCl SERVICE): 001S5079 (DUKE)	MCGURE
849779	WN80262	2	MODILA 7/1INAI/4 COMP KIT POST 78	RSP41189 (RCI SERVICE)/ 02302948 (SEABROOK) RSPI	SEABROOK
849779	NA/B497791I	1	7 NA 1 FA10A N WTU 202IVNO	RSP41189 (RCI SERVICE) 0230248 (SEABROOK)	SEABROOK

Page 6 of 12

rotorit
 Controls

Order	Part	Qty	Description	Customer_PO	Project
1349779	NA/B4)77912	I	7NAIFAIOA N WTU202IVNO	$\begin{aligned} & \text { RSP4I189(RCI } \\ & \text { SERVICE) } \\ & \text { 02302948 } \\ & \text { (SEABROOK) } \end{aligned}$	SEABROOK
849781	NA/84978101	1	I4NA IEFA14A N WTU2021VNO	$\begin{aligned} & \text { RSE39823 (RCI } \\ & \text { SERVICE) } \\ & 00155773 \text { (DUKE) } \end{aligned}$	CATAWBA
B49783	NA/B4978301	I	14NA JEFAI4A N WTU2023VNO	$\begin{aligned} & \text { RSE39410 (RCI } \\ & \text { SERVICE)! } \\ & 00155086 \text { (DUKE) } \end{aligned}$	MCGUIRE
B49842	NA/B4984201	1	90NA IEFA30A N WTU 2023VNO	00156967	MCGUIRE
B49890	WN80334	1	MODID I4IIGNAS G/CASE MAINT KIT POST 78	$\begin{aligned} & \hline 012171 \mathrm{~N} \text { (RCC)/ } \\ & 00214820 \text { (OPG) } \end{aligned}$	OPG
B50131	NA-03-102	2	NAI/5 SWITCH MECH	00158579	MCGUIRE
B50641	NABS064101	1	IINA JEFALOA N WTU2023VNO	00159726	MCGUIRE
B51066.5	WN82398	8	NAI/SE I2SW VI2 AOPI	NCR114367(RCI)/ 00157511 (DUKE)	MCGUIRE
B50775	WN81509	5	MOD3B V12 NA'E' S/M	00160864	MCGUIRE
B51199	NA/B5119901	1	I4NA IEFAI4A N WTU2023VNO	00162285	MCGUIRE
BS1201	NABSi2010]	1	IINA IEFAIOA N WTU2023VNO	00162286	MCGUIRE
B51470	NA/B514700]	1	90NA IFA30A N WTU 2023VNO	00163632	MCGUIRE
B51625	NA-03-102	4	NAl/5 SWITCH MECH	NU02SR748437	VC SUMMER ST
BS1684	NAB5 168401	1	I6NA IEFAI4A N WTU 2023VNO	00164715	MCGUJRE
B51902	NA/B5190201	2	30NAX IEFAIGA N WTU2023VNO	00165981	MCGURE
B52307	NA/B\$230701	1	14NA IEFAI4A N WTU 202IVNO	$\begin{aligned} & \text { RSE41495 (RCI } \\ & \text { SERVICE)/ } \\ & \text { 00I64457 (DUKE) } \end{aligned}$	CATAWBA
B52439	NA/B5243001	I	90NA IEFA30A N WTU 2023VNO	00168826	MCGUIRE
852790	NA/B5279001	I	16NA IEFA14A N WTU 2023VNO	00170740	MCGUIRE
B52801	NA/B5280101	2	30NAX IEFAIGA N WTU2023VNO	$\begin{aligned} & 57081 \\ & \text { CRANE NUKE } \end{aligned}$	DUKE
B53470	NA/B534700]	3	7 NA IEFAIOB4 IWN3 WTU 2023VNO	8907060N	DUKE MCGUIRE
B53613	NA/B5361301	1	I4NA IEFAI4A N WTU202]VNO	00172853 (DUKE)	CATAWBA
B54087	NA/B5408701	2	30NAX IEFAI6A N WTU 2023VNO	58666	CRANE NUKE
B54177	NA/B5417701	1	IANA IEFAI4A N WTU 202!VNO	$\begin{aligned} & \text { RSP4629)(RCI } \\ & \text { SERVICE) } \\ & \text { B441510101 } \end{aligned}$	$\begin{aligned} & \text { DUKE } \\ & \text { CATAWBA } \end{aligned}$
B54177	NA/B5417704	1	I4NA IEFAI4A N WTU 2021VNO	$\begin{aligned} & \text { RSP46290 (RCI } \\ & \text { SERVICE) i } \\ & 00174477 \text { (DUKE) } \end{aligned}$	CATAWBA
B54330	NA/85433001	1	14NA IEFAI4A N WTU202IVNO	00177225	$\begin{aligned} & \text { DUKE } \\ & \text { CATAWBA } \end{aligned}$
B54444	WN 2395	1	NA USE 6SW V12 AOPI	NCR136918(RCI) 00176305 (DUKE)	MCGUIRE

Controls

Order	Parl	Qty	Description	Customer PO	Project
B54444	WN82348	10	NAI/SE 12SW VI2 AOPI	NCR136914 (RCl) 00176305 (DUKE)	MCGUIRE
854727	NA/B5472701	2	I4NA IEFAI4A N WTU202IVNO	00179165	$\begin{aligned} & \text { DUKE } \\ & \text { CATAWBA } \end{aligned}$
B54727	NA/B5472702	2	14NA IEFA14A N WTU 2021 VNO	00179165	DUKE CATAWBA
B. 4848	NA-03-102	6	NALIS SWITCH MECH	00179639	CATAWBA
B56398	NA B 5639801	2	I4NA IEFAI4A N WTU 2021 VNO	00186461	CATAWBA
B56437	NA/B5643706	I	IINA IEFAIOA N WTU2023VNO	RSP48672	DUKE MCGURIE
B56515	NABB56S1501	I	IINA IEFAIOA N WTU 2023VNO	00186989	DUKE MCGUIRE
B57235	NA/B5723501	1	90NA IEFA30A N WTU 2023VNO	00189572	DUKEMCGUIRE
B57239	NABB572301	3	I6NA IEFAI4A N WTU 2023VNO	00189629	DUKEMCGUIRE
B57239	NABS5723902	1	90 NA IEFA30A N WTU 2023VNO	00189629	DUKEMCGUIRE
B57239	NABE5723903	1	90NA IEFA30A N WTU 2023VNO	00189629	DUKEMCGUIRE
BS7443	NA/B5;44301	3	TNA SEFAlOB4 IWN3 WTU 2220 VNO	1193547	OPG ESW STRA
B57603	NA/B5760301	1	70NAX I FA2SA N WTU 202IVNO	00191051	CATAWBA
857687	WN803,34	1	MODID 14I]6NA5 GICASE MAINT KIT POST 78	$\begin{aligned} & \text { P0012240-4 (RCC) } \\ & 00286201 \text { (OPG) } \end{aligned}$	OPG
857722	NA/B577220]	1	40NA IEFA25A N WTU 2023 VNO	00191584	MCGUIRE
B58332	NA/B5833201	2	I4NA IEFAI4A N WTU 2023VNO	00193561	DUKEMCGUIRE
B58901	NA/B5890101	I	IINA JEFAIOA N WTU2023VNO	00195572	DUKE MCGUIRE
B59205	NA/B5920501	4	16NA IEFA14A N WTU2023VNO	00196629	DUKE. OCONEE
B59205	NA/85920502	1	16NA IEFAI4A N WTU2023VNO	00196629	DUKE. OCONEE
859319	NA/B5931901	1	IGNA IEFAI4A N WTU202IVNO	00197087	CATAWBA
859392	NA/B5939201	1	70NA IEFA25A N WTU2023VNO	00197274	DUKE MCGUIRE
859392	NA/B5939202	1	IINA IEFAIOA N WTU 2023VNO	00197274	DUKE MCGUIRE
859879	NA/B5987901	1	IINA IEFAIOA N WTU 202iVNO	00199184	DUKE CATAWBA
B60213	NA/B602130l	1	7 NA SEFALOA N WTC 202lVNO	$\begin{aligned} & \text { POOK139 (RCI)/ } \\ & \text { P1500268 (NEWMAN } \\ & \text { HATTERSLEY) } \\ & \hline \end{aligned}$	OPG
B69896	NA/B6089601	2	11NA IEFAIOA N WTU 2023VNO	03003170	MCGUIRE
B61560	WN81509	2	MOD3B VI2 NA'E'S/M	03007832	CATAWBA
B61 721	N69-921	6	SWITCH-M VI2/3252	$\begin{aligned} & \hline \text { RSP54951/ } \\ & \text { NCR164927 (RCI } \\ & \text { SERVICE } \end{aligned}$	$\begin{aligned} & \text { O13962010301) } \\ & \text { OPG } \end{aligned}$
B61721	NA/B6172301	i	7 NA SEFA10A N WrC 2023VNO	$\begin{aligned} & \text { RSPS4951/ } \\ & \text { NCRI64927 (RCI } \\ & \text { SERVICE) } \end{aligned}$	$\begin{aligned} & \text { O13962010301 - } \\ & \text { OPG } \end{aligned}$

Page 8 of 12

rotoris Controls

Order	1'art	Qty	Description	Cuslamer_PO	Projert
B61721	WNS150\%	1	MOD3 3 VI2 NA'E' SM	$\begin{aligned} & \text { RSP5495II } \\ & \text { NCRI64927 (RCI } \\ & \text { SFRVICE) } \end{aligned}$	O13962010301NEWMAN HATTERSLEY OPG
D12989	NADDI298501	2	30NA IFAI6A N WTC WDI8016	00153869	OPG
D13140	NADI314001	2	30NA IFAJ6A N WTC WDIR016	00159480	OPG
D13151	NADDI31.5101	1	40NA 1FA25Z N WTC WD03142	(1)155590	OPG
016979	NAIO1097901	1	IGNA IEFAI4A N WTC 2029VNO	$\begin{aligned} & \text { Pl100211 } \\ & \text { NEWMAN } \\ & \text { HATTERSLEY. } \end{aligned}$	CFRNAVODA
013359	NAMO135\%01	1	7NA IEFAIOB4 IWN3 WTC 2024 VNO	P1200360 (NEWMAN HATTERSLEY)	EMBALSENPP
013159	NADO133592	1	7NA IEFAIOB4 IWN. 3 WTC 2024 VNO	FI200360 (NEWMAAN HATTERSLEY)	EMBALSE NPP
01338.5	NAOI338501	I	7 NA SEFALOB4 IWN3 WTC 2020VNO	12-12079 (RITEPRO)	FMBALSE NPP
013962	NANO139620]	3	7 NA SEFAIOA N WTC 202IVNO	PI.300202 (NE WMAN HATTERSLEY)	OPG
SD)393	NA/SD939302]	MOD3A 90NAI C -WISE SM.MECH ASSY.	$\begin{aligned} & \text { 216341, } \\ & \text { REPLACMENT FOR } \\ & \text { IO156515 } \\ & \text { (ENTERGY) } \end{aligned}$	ENTERGY
WE2984	NA-03-102	3	NAISS SWITCH MECH	114800 CURTIS WRIGHTENERTECH,	PALO VERDE
WE3110	NA-03-102	3	NA1/5 SWITCH MECH	$\begin{aligned} & \text { ESD8468N (RCC)/ } \\ & 00151524 \text { (OPG) } \end{aligned}$	OPG
WE3167	NA- 3 - 40	1	NAI/5 SWITCH MECH	$\begin{aligned} & \text { ESD8630N(RCC)/ } \\ & 00154615(\mathrm{OPG}) \end{aligned}$	OPG
WE3267	$\text { NAVWE } 32670$ 1	1	N00-03-020 NA1 SWITCH MECH	4500362690	PSEG
WE3747	NA-03-102	3	NAL/5 SWITCH MECH	$\begin{aligned} & \text { ESD9023N(RCC) } \\ & 0016228 \text { (OPG) } \end{aligned}$	OPG
WE3873	NA-03-102	I	NAl/5 SWITCH MECH	$\begin{aligned} & \text { ESD9070N (RCC) } \\ & 00163571 \text { (OPG) } \end{aligned}$	OPG
WE3907	NA-03-102	2	NA1/5 SWITCH MECH	4500428140	PSEG
WE3910	NA-03-102	2	NA1/5 SWITCHMECH	EDI3239R (RCC)	OPG TRAINING PURPOSES PER PO,
WE4022	NA-03-102	1	NA1/S SWITCHMECH	$\begin{aligned} & \text { ESD9135N(RCC)/ } \\ & 00158829 \text { (OPG) } \end{aligned}$	OPG
WE4037	NA-03-502	2	NA I/S SWITCH MECH	00098888	MCGUIRE
WE4246	NA-03-102	1	NAl/5 SWITCH MECH	SJ15871	ENTERGY

Page 9 of 12

rotork
 Controls

Order	Part	Q4	Descripiloir	Cuslamer_PO	Project
WEA396	NA-03-102	1	NA1/S SWITCII MECII		OPG
WE4869	N A -03-102	2	NA1/S SWITCH MECH	$\begin{aligned} & \text { ESD94in (RCC) } \\ & \mathbf{0 0 1 7 3 2 5 9 (O P G)} \end{aligned}$	OPG
W15621	NA-13-102	*	NAI/S SWITCli MECLI	$\begin{aligned} & \text { ESDPROIN (RCC)/ } \\ & 00181008 \text { (OPG) } \end{aligned}$	OPG
WEFh60)	NA-(13-102	6	NAI/S SWITCH MECII	ESDDO2SN/REV2 (RCC) / 00186.517 (OPG)	OPG
WE6152	NA-03-102	2	NAl/S SWITCIT MECII	$\begin{aligned} & \text { ESD } 0092 \mathrm{~N}(\mathrm{RCC}) / \\ & \text { 101882012 (OPG) } \end{aligned}$	OPG
WE6660	NA-03-102	1	NAL/S SWITCII MECH	501356062	APS - PALO VERDE
WE6822	NA-08-706	1	NAI 6 SW VIz AOPI ASS	RSP35818 (RCI SERVICE) (B0132331 (DUKE)	RCISERVICE/ CATAWBA
WE6904	WN82395	4	NAl/SE 6SW VI2 AOPI	00136411	CATAWBA
WF7023	WN82395	5	NAl/5F 6SW VI2 AOPI	00137764	CATAWBA
WE708S	WN82398	15	NAI/SE I2SW VI2 AOPI	00138769	MCGUIRE
WE7139	WN80262	1	MODIA 7/11NAI/4 COMP KIT POST 78	02263579	SEABROOK
WE7247	WN82398	3	NAI/SE I2SW VI2 AOPI	00140435	MCGULIRE

Controls

K5 switch list

Orucr	l'art	Q13	Descriplion	Customer PO	Praject
B4641102	N56484	2	NAI SWITCH MECH SPEC	010634 N (RCC) 4503054188 (Hydm Quebse)	HYOROQUBEC /CENTRALE GENTILLY II
1349458	WN80653	11	NAI SW MEC11 K5-3252-A2	Ol1965N(RCC)/ 00171079 (BRUCE POWER)	BRUCE POWER
B49779	NASO3B0 OHIA	2	NAI/S SWITCH MECH KS	RSP41189(RCI SERVICE)/ 02302948 (SEABROOK)	SEABROOK
B49524	NS6484	3	NAI SWITCII MECII SPEC	Ol1998N(RCC)/ 1065218 (MOBLLE VALVE) / 4500370878 (NEW BRUNSWICK POWER)	MOBIL VALVE / NEW BRUNSWICK POWER
B50333	WN806S3	6	NA1 SW MECH K.5-32.52-A2	$\begin{aligned} & \text { O124I0N (RCC) / } \\ & 00216597 \text { (OPG) } \end{aligned}$	OPG
851532	WN80653	8	NAI SW MECII KS-3252-A2	OI2969N (RCC) / 00177514 (BRUCE POWER)	BRUCE POWER
B52075	N56484	3	NAI SWITCH MLCII SPEC	O13329N(RCC)/ 00179616 (BRUCE POWER)	BRLCE POWER
853208	NASO3B- 0005	1	SWITCH MECH NAI KS DAP. ANNEALED RYTON	$\begin{aligned} & \text { O13968N (RCC) / } \\ & 00226962 \text { (OPG) } \end{aligned}$	OPG
853575	N56484	1	NAI SWITCH MECH SPEC	$\begin{aligned} & \text { O13877N (RCC) } \\ & 00183812 \text { (BRUCE } \\ & \text { POWER) } \end{aligned}$	BRUCE POWER
B54843	N56484	3	NA1 SWITCH MECH SPEC	O14684N(RCC) II7746\| (MOBILE VALVE)/ 4500398343 (NEW BRUNSWICK POWER)	BRUNSWICK POWER
B55380	N56483	1	NAI SWITCH BANK SPEC	$\begin{aligned} & \text { P000623-1 (RCC)/ } \\ & 00232427 \text { (OPG) } \end{aligned}$	OPG
B56689	N56484	1	NAI SWITCH MECH SPEC	NCR148775	NCR SPARES
B56643	NA/B5664301	5	MOD3A 90NAIC-WISESW.MECH ASSY.	$\begin{aligned} & \text { P002330-1 (RCC)/ } \\ & \text { O0235579 (OPG) } \end{aligned}$	OFC
B55572	$\begin{aligned} & \text { NAS03B- } \\ & 0005 \end{aligned}$	I	SWITCHMECH NAI KS DAP. ANNEALED RYTON	$\begin{aligned} & \text { P000918-1 (RCC)/ } \\ & 00233354 \text { (OPG) } \end{aligned}$	OPG
012090	NA/O120900t	3	7 NA 5EFAIOB4 IWN3 WTC 2040-NO	202546 (BRAY)	BRAY, BRUCE POWER
014002	NA/O1400201	1	I4NA IFAI4A N WTC 2024-NO	$00183784 \text { (BRUCE }$ POWER)	BRUCE POWER

rotoris
 Controls

(vii) The corrective action which has been, is being, or will be taken; the name of the individual or organization responsible for the action; and the length of time that has been or will be taken to complete the action.

By this notification Rotork is informing all Utilities and listing affected customer orders. Utilities may contact their local Rotork office or the undersigned for support relating to their specific units. Rotork recommends the replacement of switches in the affected orders.

Rotork is currently evaluating options regarding replacement switches with the supply chain. The switch assembly's design will be changed by Johnson Electric so that the adhesive AY103-1 is no longer used.
(viii) Any advice related to the defect or failure to comply about the facility, activity, or basic component that has been, is being, or will be given to purchasers or licensees.
U.S. Licensees with installed or in storage actuators, switch mechanisms or Add-On-Pak (AOP) spares modules containing V12 and K5 switches identified in section (vi) should evaluate the impact of a high contact resistance or open circuit condition on safety related systems.
(ix) In the case of an early site permit, the entities to whom an early site permit was transferred

Not Applicable

rotork

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Approved by Engineering

Date: $3^{\text {rd }}$ May 2016

REVISION SHEET

ORIGIN	Priyang Jadav \& Patrick Shaw
DATE OF ISSUE	$\underline{03 / 05 / 2016}$
TITLE	Part 21 Investigation. Anomaly of V12 Micro-Switch N69-921.

Prepared	Checked	Approved
Priygang fadaw		
Priyang Jadav Product Engineer - Nuclear	Patrick Shaw Quality Assurance Manager	Kevin Sweet Engineering Manager Nuclear

Issue No	Date	Revision	By
1	$03 / 05 / 16$	Original	PUJ

rotork

Nuclear Engineering Report No.

Page 2 of 48

ER857 Issue 1

Rotork Controls Limited
Rotork Controls Limited Approved by EngineeringDate: 3 ${ }^{\text {rd }}$ May 2016
CONTENTS

1. Summary 3
2. Deviation description 3
3. Micro-switch function 4
4. Review of orders affected 4
5. Summary of tests performed 7
5.1. Air volume of actuator electrical enclosure 9
6. Tests replicating the anomaly 11
6.1. Procedure for thermal aging switches inside an enclosure 11
6.2. Test $1-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V 12 switches manufactured in 2015 12
6.3. Test 2 - Volt ramp on aged switches from Test 1 14
6.4. Test $3-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V 12 switches manufactured in 2007 14
6.5. Test $4-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V 12 contacts only 14
7. Supporting information and post-curing 16
7.1. Procedure for post-curing tests 17
7.2. Test 5-Post-curing 17
7.3. Test $6-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of K 5 switches manufactured in 2012 18
8. Tests of unglued and glued switches using different adhesives 19
8.1. Test $7-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of a switch without adhesive 19
8.2. Test $8-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with Duralco 4525 19
8.3. Test $9-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switches assembled with AY105-1/HY991 20
8.4. Test $10-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with Raychem S 1264 21
8.5. Test $11-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with X 60 21
9. Anomaly effect upon switch operation 22
9.1. Factors Causing Anomaly 22
9.2. Estimated Anomaly Onset 23
9.3. Switch performance under accident profiles 25
10. Results from independent test lab 30
11. Conclusion 35
12. References 36

rotork

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1
Approved by Engineering

Date: 3 ${ }^{\text {rd }}$ May 2016

1. Summary

This report documents work performed to support a Part 21 investigation opened by Rotork Controls Inc. ref. tracking number NCR173472. Measurements and tests were performed to establish the operational reliability of Rotork safety related micro-switches. Non-compliant switches were identified from a batch manufactured in 2015 against Rotork purchase order PO128459. The investigation has confirmed that the defect is only attributed to batches received in 2007 and later.

The switch supplier (Johnson Electric) incorporates a small amount of adhesive in each switch's construction to secure the two halves of the switch housing together. The adhesive formulation was altered in 2003 by the adhesive supplier (Huntsman). Tests detailed in this report show that the altered formulation outgases at elevated temperatures and deposits an insulating material layer onto the switch internal electrical contacts as it cools.

2. Deviation description

On January 25, 2016 Rotork Controls Inc. opened a formal Part 21 investigation into an anomaly relating to a Basic micro-switch - Part No. N69-921 (RS104), description "V12". The anomaly is high resistance or loss of electrical continuity and was first observed following a customer thermal aging test of Rotork Safety Related NA Range electric Actuators; also referred to as an electric Valve Operator. Following 10 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ a significant percentage of micro-switches in the test actuators exhibited open circuit.

Subsequent in-house testing has revealed that the anomaly also relates to Basic micro-switches with the following Part Nos. as they are constructed using the same adhesive.
N69-838 (RS366), description "K5" (screw terminals)
N69-926 (RS378), description "K5" (fast-on terminals)

Drawings of the three switches can be found in Appendix A.

Rotork Controls Limited

3. Micro-switch function

The micro-switch has four functions:

- Rotork actuators can be set to operate to a maximum torque level of opening or closing a valve. When the torque sensing mechanism in the actuator registers this maximum torque, the micro-switch will be tripped to turn off the motor.
- Rotork actuators can also be set to operate to a maximum travel limit. The mechanism inside the actuator will register when the maximum travel in the open or close direction is reached and the micro-switch will be tripped to turn off the motor.
- In the Add-on-Pak (AOP) the switch is intended for indication purposes but can also be used for interlocks and permissives to start other equipment such as pumps and valves. AOP switches can be set to trip at any point during valve travel. The AOP can also be used for torque switch bypass. If the circuit is "open" then the MOV could stop before achieving "end of travel".
- Switches must be "closed" to initiate travel.

4. Review of orders affected

The following are details of the affected switches.

- 11000 V12 switches N69-921 supplied to Rotork against the following purchase orders.

Purchase order no.	Quantity	Rotork Lot reference	Manufacture Year
P0081139	700	LC006383	2007
	1050	LC006391	
	1500	LC006398	
	725	LC006399	
	2025	LC006402	
PO128459	183	LC010448	2015
	500	LC010464	
	700	LC010483	
	483	LC010509	
	612	LC010539	
	1	LC010540	
	639	LC010547	
	640	LC010566	
	640	LC010570	
	448	LC010576	
	154	LC010638	
	11000		

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Page 5 of 48

Approved by Engineering

Date: $3^{\text {rd }}$ May 2016

- 1900 K5 switches N69-838 supplied to Rotork against the following purchase orders.

Purchase order no.	Quantity	Rotork Lot reference	Manufacture Year
PO084220	200	LC006390	2007
PO086172	100	LC006539	
PO087057	100	LC006603	2008
PO089251	200	LC007024	
PO090778	100	LC007135	
PO092646	20	LC007254	2009
	80	LC007255	
PO095664	100	LC007450	
PO100333	100	LC007682	2010
	200	LC007693	
	240	LC008194	2011
	183	LC008250	2012
	277	LC008271	

- 1503 K5 switches N69-926 supplied to Rotork against the following purchase order.

Purchase order no.	Quantity	Rotork Lot reference	Manufacture Year	
PO106615	175	LC008192	2011	
	325	LC008193	2012	
	476	LC008203		
	149	LC008207		
	253	LC008233		
	125	LC008253		
	1503			

- Suspect V12 and K5 switches have date code ending with 07 K to 15 K stamped at the location shown below. The code refers to week (43) and year (2015).

Figure 1: Location of date code on V12 switch

Figure 2: Location of date code on K5 switch N69-838

ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

5. Summary of tests performed

A range of tests were conducted as part of the investigation in order to:
a. Replicate the anomaly
b. Identify root cause
c. Evaluate switches from previously supplied batches
d. Attempt salvaging defect switches
e. Experiment with alternative adhesives
f. Evaluate the effect of the anomaly on switch operation

Table 1 provides a summary of tests performed to cover points a to e above. Further details on each test are provided in subsequent sections which are referenced within the table itself. The experiments were performed using two programmable test ovens. Test switches were placed in metallic enclosures and heated to a fixed temperature for a defined time (thermal aging). The testing was destructive, and new switches and metallic enclosures were used for every test. Prior to use, the metallic enclosures were thermally cleaned to remove any volatile materials remaining from their manufacture. The metallic enclosure construction does not incorporate any non-metallic seals or non-metallic coatings.

Part f is a study of the 1) factors causing the anomaly, 2) estimated anomaly onset, and 3) switch performance under accident profiles. This work is detailed in section 9.

Test no.	Test description	No. of switches tested	Test parameters	Concentration factor $(C f)$	Result	Full test details
1	Thermal aging of V12 switches manufactured in 2015.	5 switches, date code 3715 K , in a metal container of volume $1680 \mathrm{~cm}^{3}$.	5.75 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$	$\begin{gathered} 1680 \mathrm{~cm}^{3} \\ \text { test } \\ \text { container. } \\ 336 \mathrm{~cm}^{3} \\ \text { per switch. } \\ C f=1.78 \end{gathered}$	Switch anomaly occurs even when the switch is aged in isolation, therefore cause lies within the switch itself. Contamination is present on NO and NC contact rivets. UV images suggest it may be coming from adhesive.	See Section 6.2 6.2
2	Volt ramp on aged switches from Test 1.	2 aged switches taken from Test 1.	Volt ramp up to 60VDC across the NO contact with $4.3 \mathrm{k} \Omega$ fixed resistor in series (14mA max across contacts).	N/A	Volt ramp up to 60VDC, 14 mA does not reliably clean the contacts.	See Section 6.3

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

Approved by Engineering

Date: $3^{\text {rd }}$ May 2016

$\begin{aligned} & \text { Test } \\ & \text { no. } \end{aligned}$	Test description	No. of switches tested	Test parameters	Concentration factor $(C f)$	Result	Full test details
3	Thermal aging of V12 switches manufactured in 2007.	4 switches, date code 2807K.	3.93 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$1680 \mathrm{~cm}^{3}$ test container. $420 \mathrm{~cm}^{3}$ per switch. $C f=1.42$	The 2007 manufactured switches exhibit the same anomaly as the 2015 switches.	See Section 6.4
4	Thermal aging of V12 contacts only.	3 switches, date code 3613K, had their NO, NC and moving contacts removed to be aged.	6 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$2552 \mathrm{~cm}^{3}$ test container. $851 \mathrm{~cm}^{3}$ per switch. $C f=0.70$	There is no issue with the silver plating process of the rivets.	See Section 6.5
5	Post-curing of V12 switches manufactured in 2015.	6 switches, date code 4315K.	Post-cured at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ for up to 8 days. Then aged inside container for 3.77 days.	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. $C f=2.44$	After 8 days of postcuring, outgassing still occurs causing the switch to exhibit the anomaly.	See Section 7.2
6	Thermal aging of K5 switches N69-838 manufactured in 2012.	2 switches, date code 0612K.	6 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$1680 \mathrm{~cm}^{3}$ test container. $840 \mathrm{~cm}^{3}$ per switch. $C f=0.71$	The K5 switch N69-838 exhibits the same anomaly as the V12. K5 N69-926 is constructed of the same glue thus is also affected.	See Section 7.3
7	Thermal aging of a switch without adhesive.	1 switch, assembled without adhesive applied.	7 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. $C f=2.44$	Switch performance is acceptable if no adhesive is present.	See Section 8.1
8	Thermal aging of switch assembled with Duralco 4525.	1 switch	10 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. $C f=2.44$	Duralco 4525 outgasses to an extent that the switch will exhibit the anomaly.	See Section 8.2

Date: $3^{\text {rd }}$ May 2016

Test no.	Test description	No. of switches tested	Test parameters	Concentration factor $(C f)$	Result	Full test details
9	Thermal aging of switches assembled with AY1051/HY991.	3 switches	Up to 14.2 days at $125^{\circ} \mathrm{C}$ ($257^{\circ} \mathrm{F}$).	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. $C f=2.44$	Switch performance is acceptable if assembled using a small quantity of AY105-1/HY991.	$\begin{gathered} \text { See } \\ \text { Section } \\ 8.3 \end{gathered}$
10	Thermal aging of switch assembled with Raychem S1264.	1 switch	$\begin{aligned} & 10 \text { days at } \\ & 125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right) . \end{aligned}$	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. $C f=2.44$	Switch performance is acceptable if assembled using a small quantity of Raychem S1264.	$\begin{gathered} \text { See } \\ \text { Section } \\ 8.4 \end{gathered}$
11	Thermal aging of switches assembled with X 60 .	1 switch	10 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.	$245 \mathrm{~cm}^{3}$ test container. 1 switch per container. Cf $=2.44$	X60 outgasses to an extent that the switch will exhibit the anomaly.	See Section 8.5

Table 1: Summary of tests performed

5.1. Air volume of actuator electrical enclosure

During the investigation it was observed that the air volume per switch is an important factor which needs to be considered in aging tests since it can influence the length of aging time before onset of the anomaly. Experimental data demonstrated, for a given temperature, the anomaly would manifest itself in a shorter time period when switches were placed in a smaller enclosure. This is further discussed in section 9 . It is necessary to know the air volume in the actuator electrical enclosure in order to relate the test results to the application. To be conservative a small size actuator was used for the calculation, giving a worse switch to air volume ratio. Using CAD the air volume in an empty electrical enclosure was estimated to be $11960 \mathrm{~cm}^{3}$ (Figure 3).

Similarly, the volume of the switch mechanism and AOP were estimated $594 \mathrm{~cm}^{3}$ from CAD (5% of enclosure volume). It is assumed another 5% of enclosure volume is consumed by the heater, looms and other components within the enclosure. The air volume to which a small actuator fitted with a switch mechanism and 12 switch AOP would outgas to is:
$11960-594-594=10772 \mathrm{~cm}^{3}$
The maximum number of switches available in an actuator are 18. Therefore the estimated volume of air per switch is:
$10772 / 18=598 \mathrm{~cm}^{3}$

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

Different sizes of enclosures were utilised. Most of the tests listed in Table 1 were performed using $245 \mathrm{ml}\left(=245 \mathrm{~cm}^{3}\right.$) enclosures (Figure 4). The term concentration factor ($C f$) is introduced to relate the actuator air volume per switch to the test enclosure volume per switch:
$C f=\frac{\text { actuator air volume per switch }}{\text { test enclosure volume per switch }}=\frac{598 \mathrm{~cm}^{3}}{245 \mathrm{~cm}^{3}}=2.44$
The concentration factor for each test is also specified in Table 1.

Figure 3: Air volume inside actuator electrical enclosure

Figure 4: 245 ml enclosure

6. Tests replicating the anomaly

6.1. Procedure for thermal aging switches inside an enclosure

In-house thermal aging tests were performed to replicate the anomaly. The tests were performed according to the following procedure.
a) Remove screw terminals.
b) Using milliohm meter, record resistance across NC contacts. (Meter used applied 9V, 5mA max. Figure 5). Manufacturer's end-of-line acceptance level is $25 \mathrm{~m} \Omega$ max.

Figure 5: Milliohm meter
c) Operate and hold switch plunger.
d) Record resistance across NO contacts.
e) Release plunger.
f) Repeat steps $b-e$ until 3 NC and 3 NO measurements are obtained for each switch.
g) Fasten screw terminals
h) Place switches inside a metallic container.
i) Thermally age the container at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$. (Total aging time varied for each test and is stated in subsequent sections of the report)
j) Once thermal aging complete, remove container from oven and allow to cool. It is important that the container remains closed until cooled so that any outgassing can condense.
k) Remove switches and repeat resistance check following steps a-g

6.2. Test $\mathbf{1 - 1 2 5 ^ { \circ }} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V12 switches manufactured in 2015

5 switches, Rotork part no. N69-921, date code 3715 K , labelled F - J, were tested following the procedure in section 6.1. A drawing of switch N69-921 is shown in Appendix A. Thermal aging time was 138 hrs (5.75 days).

Results are shown in Appendix B. Before aging, the switches were within the manufacturer's $25 \mathrm{~m} \Omega$ acceptance. After aging, the NO contacts exhibited open circuit, indicated by a dash in the result field. Switch H recovered on the second operation post-aging. A^{*} in the result field indicates that the resistance value was fluctuating between several ohms, to hundreds of ohms, to open circuit.

Green cells identify readings below the $25 \mathrm{~m} \Omega$ manufacturer's end-of-line acceptance. Yellow cells identify readings below the $500 \mathrm{~m} \Omega$ industry acceptance. Red cells identify unacceptable reading.

Switch F was opened for examination of the contacts (Figure 6 - Figure 9). Blue plastic particles were formed only as a result of breaking the switch apart. A pale yellow layer appears to have formed on the surface of the NC and NO contact rivets, Figure 6 and Figure 8. At the very centre of the NC and NO rivet, i.e. the point of contact, the layer has broken away and the normal silver appearance of the rivet is visible. The white powder on the moving contact, Figure 7 and Figure 9, indicates that there was transfer of the broken layer from the stationary contacts to the moving contact.

Contacts from aged switches were observed under UV light. Figure 10 indicates the contamination is formed only on the NC and NO stationary contacts. Under UV light the contamination is a similar colour to the residue in the area where adhesive is applied, Figure 11. The conjecture for this is that the NC and NO contact tabs extend outside of the switch housing where the surrounding temperature is lower than the temperature inside the switch. Thus through loss of heat by conduction, the NO and NC contacts would cool quicker than other components enclosed within the switch housing. This would mean that the NO and NC contacts act as heat sinks causing vapours released from the adhesive to condense onto the contacts. The NC and NO stationary contacts are made from Silver-CadmiumOxide ($\mathrm{AgCdO} \mathrm{)} \mathrm{which} \mathrm{provides} \mathrm{the} \mathrm{best} \mathrm{known} \mathrm{performance} \mathrm{for} \mathrm{switching} \mathrm{off} \mathrm{electrical} \mathrm{current} \mathrm{quickly}$ and cleanly (Ref 1).

An independent investigation was performed by an external laboratory Exova in an effort to identify the source of contamination (Section 10). However, due to differences in chemical composition between the non-metallics and the contaminant, the source could not be confirmed by analysis. Nevertheless, literature (section 7), test results of an unglued switch (section 8.1) and UV images identify the adhesive being the root cause.

Summary

- The V12 switch anomaly occurs even when the switch is aged in isolation, therefore the cause lies within the switch itself.
- Contamination is present on the NO and NC contact rivets, and UV images suggest it may be coming from the adhesive.

rotor*

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Page 13 of 48

Approved by Engineering

Date: $3^{\text {rd }}$ May 2016

Figure 6: Switch F, NC contact rivet

Figure 8: Switch F, NO contact rivet

Figure 10: Contact rivets under UV light

Figure 7: Switch F, NC side of moving contact

Figure 9: Switch F, NO side of moving contact

Figure 11: Separated switch housing under UV light

Rotork Controls Limited
Approved by Engineering

Nuclear Engineering Report No.
ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

6.3. Test 2 - Volt ramp on aged switches from Test 1

A volt ramp up to 60 VDC was performed across the NO contact of switch G, using a $4.3 \mathrm{k} \Omega$ fixed resistor in series. Switch G maintained open circuit.
$\frac{60 \mathrm{~V}}{4300 \Omega}=14 \mathrm{~mA}$ max across contacts.

The volt ramp was repeated across the NO contact of switch I. At 60VDC the switch started to conduct. The plunger was released for 5 mins before repeating the test. During the second volt ramp switch I began to conduct at 27VDC.

Summary

- Volt ramp up to $60 \mathrm{VDC}, 14 \mathrm{~mA}$ does not reliably clean the contacts.

6.4. Test $\mathbf{3}-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V12 switches manufactured in 2007

4 switches N69-921, date code 2807 K , labelled P, Q, S and T, were tested following the procedure in section 6.1. Thermal aging time was 94.25 hrs (3.93 days).

Results are shown in Appendix B. Before aging, the switches were within the manufacturer's $25 \mathrm{~m} \Omega$ acceptance. After aging, the NO contacts exhibited high resistance or open circuit. Resistance readings up to $500 \mathrm{~m} \Omega$ are generally acceptable in the industry.

Summary

- The 2007 manufactured switches exhibit the same anomaly as the 2015 switches.

6.5. Test $4-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of V12 contacts only

UV images of switch internals post-aging (Figure 10) showed that the contamination is deposited only on the NO and NC contact rivets. It was thus thought that the contamination may be related to the silver plating process of the rivets.

3 switches N69-921, date code 3613K, had their NO, NC and moving contacts removed to be aged in isolation inside a metal container. The contacts were resistance checked (Figure 12) pre and postaging. Thermal aging time was 144 hrs (6 days).

Rotork Controls Limited
Page 15 of 48

Approved by Engineering

Nuclear Engineering Report No.
ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

Figure 12: Resistance checks of contacts removed from switches
Thermal aging the contacts in isolation did not influence their ability to conduct current. Pre and postaging contact resistances were 3 to $4 \mathrm{~m} \Omega$.

The contacts were also observed under an optical microscope but there were no signs of contamination. The rivets were similar in appearance pre-aging (Figure 13) and post-aging (Figure 14).

Figure 13: Contact rivet pre-aging

Figure 14: Contact rivet post-aging

Summary

- The results indicate there is no issue with the silver plating process of the rivets.

Page 16 of 48
Rotork Controls Limited
Approved by Engineering

Nuclear Engineering Report No. ER857 Issue 1 Date: 3 May 2016

7. Supporting information and post-curing

A technical report on an adhesive related issue (Ref 2) in the Large Hadron Collider (LHC) provides information supporting this Part 21 investigation. Araldite AY103-1 was used in the construction of a LHC component. The component shows an outgassing effect which has been tracked back to the adhesive. Different adhesives were investigated using a setup for measuring the amount of outgassing after 24 hrs aging at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$. The two part epoxy AY103-1 with its hardener HY951 is also used in construction of the V12 switch.

In summary the technical report states the following:

- AY103-1 is a replacement of AY103 which is no longer manufactured.
- Adhesive AY103 did not outgas but AY103-1 does.
- Higher ambient temperatures accelerate the outgassing.
- 68% of the outgas is water but the remainder isn't identified.
- Curing at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ for two weeks and extracting the condensate reduces the effect.

The adhesive manufacturer, Huntsman, confirmed that AY103 was indeed withdrawn in February 2003 and replaced by AY103-1. In accordance with the 28th adaptation of the EU Dangerous Substances Directive (Directive 2001/59/EC), all products containing $>0.5 \%$ DBP (Dibutyl phthalate) are to be classed toxic. AY103 would have fallen into this category therefore its formulation was changed. AY103-1 is free of DBP and phthalate esters.

Another technical paper (Ref 3) identifies the plastifiers present in the chemical makeup of the two epoxies. The report states:

- AY103 contained the plastifier dibutyl-phthalate (DBP) which is toxic.
- In the AY103-1 formulation, DBP was replaced with plastifier di-isopropyl-naphthalene (DIPN)
- The plastifier DIPN does not take part in the curing process with the hardener and is expected to remain volatile close to the surface of the hardened epoxy.
- AY105-1 is another epoxy but without any plastifier. See section 8.3 for thermal aging test results with this adhesive.

Based on technical literature, the following conjecture was formed to explain the mechanism which leads to the anomaly. The adhesive is thought to outgas at temperature releasing water vapour, and with it the gaseous plastifier. The water vapour is the carrier of the contaminating material. After thermal aging the NO and NC contacts are thought to cool first (as explained in section 6.2). The contacts thus act as a heat sink enabling water vapour to condense onto them and deposit the contaminating material.

7.1. Procedure for post-curing tests

It has been confirmed from literature that the adhesive AY103-1 used in the construction of the V12 switch outgasses. The literature also indicates that a post-curing process where the condensate is extracted during thermal aging may solve the issue. The following test procedures describes the tests performed to investigate post-curing.
a) Remove screw terminals.
b) Using milliohm meter, record resistance across NC contacts. (Meter used applied 9V, 5mA max. Figure 5). Manufacturer's end-of-line acceptance level is $25 \mathrm{~m} \Omega$ max.
c) Operate and hold switch plunger.
d) Record resistance across NO contacts.
e) Release plunger.
f) Repeat steps $\mathrm{b}-\mathrm{e}$ until 3 NC and 3 NO measurements are obtained for each switch.
g) Fasten screw terminals
h) Place all switches freely in a fan assisted oven and thermally cure at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$. Post-curing time for each switch is different as shown in Table 2.
i) Remove each switch when its post-curing time is complete and allow to cool.
j) Repeat resistance check following steps a - g.
k) Place each switch in its own aluminium container and perform subsequent aging at $125^{\circ} \mathrm{C}$ $\left(257^{\circ} \mathrm{F}\right)$ as shown in Table 2.

Switch Identification	Date code	Post-curing time at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$	Subsequent aging inside container at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$
1	4315K	1 day	90.5 hrs (3.77 days)
2		4 days	
3		5 days	
4		6 days	
5		7 days	
6		8 days	

Table 2: Post-curing time
I) Repeat resistance check following steps $\mathrm{a}-\mathrm{g}$.

7.2. Test 5 - Post-curing

6 switches N69-921, date code 4315K, labelled 1 to 6 , were tested following the procedure in section 7.1. As detailed in the procedure and in Table 2 the switches were post-cured for different number of days up to 8 days in a fan assisted oven. Following post-curing each switch was removed, resistance checked, then placed in a separate container. The containers were further aged to see if after being post-cured each switch would still outgas and exhibit the anomaly in a closed volume of air.

Results are shown in Appendix C. Before any aging the switches were all within the manufacturer's $25 \mathrm{~m} \Omega$ acceptance. After post-curing, the NO contacts showed resistance values above $25 \mathrm{~m} \Omega$ in most operations, however, this would not affect switch performance in the field. All switches remained

rotork

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

Approved by Engineering
functional after the post-curing process. However, after further aging in containers the switches exhibited open circuit / unacceptable high resistance across the NO contacts.

Summary

- After 8 days of post-curing, outgassing still occurs causing the switch to exhibit the anomaly.

7.3. Test $6-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of K 5 switches manufactured in 2012

2 switches N69-838, date code 0612K, labelled 16 and 17, were tested following the procedure in section 6.1. A drawing of switch N69-921 is shown in Appendix A. Thermal aging time was 6 days.

Results are shown in Appendix D. Before aging, the switches were within the $500 \mathrm{~m} \Omega$ industry acceptance. After aging, the NO contacts exhibited high resistance or open circuit. Resistance readings above the $500 \mathrm{~m} \Omega$ acceptance level are highlighted red.

Summary

- K5 switches N69-838 exhibit the same anomaly as the V12.
- The only difference between the two types of K5 switches N69-838 and N69-926 are the contact terminals. Therefore, switches N69-926 also fall within the scope of this Part 21.

rotork

8. Tests of unglued and glued switches using different adhesives

8.1. Test $7-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of a switch without adhesive

1 switch N69-921, assembled in 2016 without adhesive applied, and labelled 18, was tested following the procedure in section 6.1. Results are shown in Appendix E. After aging for 2 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ in a container the resistance readings were still below manufacturer's acceptance. The switch was placed back into the container and aged for a further 4.96 days. This made the NO resistance higher but still acceptable for in-field use. The switch was again placed back into the container and aged for a further 3.98 days. Contact resistances remained acceptable for in-field use.

Total aging of unglued switch $=2$ days +4.96 days +3.98 days $=10.94$ days

Summary

- The switch performance is acceptable if no adhesive is present.

8.2. Test $8-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with Duralco 4525

A switch labelled 21 was assembled using Duralco 4525 (Figure 15) and cured in a fan assisted oven for 1 hour at $121^{\circ} \mathrm{C}\left(250^{\circ} \mathrm{F}\right)$, as per the adhesive's datasheet. The switch was then left for 15 hours before being tested to the procedure in section 6.1.

Figure 15: Switch 21, 4 drops of Duralco 4525
Results are shown in Appendix F. After being aged for 10 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ the switch exhibited open circuit mode across the NO contacts.

Summary

- Duralco 4525 outgasses to an extent that the switch will exhibit the anomaly after 10 days aging at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.

8.3. Test $9-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switches assembled with AY105-1/HY991

The Araldite manufacturer Huntsman suggested an alternative adhesive/hardener system.

Used by switch manufacturer: AY103-1/HY951
Suggested alternative: AY105-1/HY991

AY105-1/HY991 has been found to be low outgassing in NASA tests. 2 switches labelled 19 and 20 were assembled using AY105-1/HY991 and cured in a fan assisted oven for 35 mins at $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, as per the adhesive's datasheet. The switches were then left for 3 hours before being tested to the procedure in section 6.1.

Results are shown in Appendix G.
Switch 19 was aged for 2 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ and remained functional.
Switch 20 was aged for 6 days at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ and remained functional.
The switches were placed back into the containers and aged further.
Switch 19 was aged for a total of 14.2 days, following which the NO contact exhibited open circuit. Switch 20 was aged for a total of 10.1 days, following which the NO contact exhibited open circuit.

It was believed that using less adhesive would reduce the effect of outgassing. Therefore, the test was repeated with switch 50, which was assembled with just 3 small droplets of AY105-1/HY991. Figure 16 and Figure 17 compare the quantity of adhesive applied to Switch 20 vs. Switch 50 . With reduced amount of adhesive the switch passed the $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right) 10$ day aging test (results in Appendix G).

Figure 16: Switch 20, 4 drops of AY105-1/HY991

Figure 17: Switch 50, 3 small drops of AY105-1/HY991

Summary

- The extent of the anomaly is reduced by reducing the amount of adhesive used.
- AY105-1/HY991 in reduced quantity passed the 10 days aging at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Date: $3^{\text {rd }}$ May 2016

8.4. Test $10-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with Raychem S1264

A switch labelled 49 was assembled using 3 small droplets of Raychem S1264 (Figure 18) and cured in a fan assisted oven for 1 hour at $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$, as per the adhesive's datasheet. The switch was then left for 3 hours before being tested to the procedure in section 6.1.

Figure 18: Switch 49, 3 small drops of Raychem S1264
The switch passed the $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right) 10$ day aging test. Results are shown in Appendix H .

Summary

- Raychem S 1264 used in small quantity passed 10 days aging at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.

8.5. Test $11-125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$ aging of switch assembled with X 60

A switch labelled 59 was assembled using 3 small droplets of X60. The adhesive has a very quick cure time of 2 mins at room temperature. The assembled switch was left for 2 hours 40 mins before being tested to the procedure in section 6.1.

The switch did not pass 10 days aging test at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$. NO contacts exhibited open circuit. Results are shown in Appendix H .

Summary

- X60 outgasses to an extent that the switch will exhibit the anomaly after 10 days aging at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$.

Page 22 of 48

Rotork Controls Limited
Approved by Engineering

Nuclear Engineering Report No. ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

9. Anomaly effect upon switch operation

This element of the Part 21 investigation assesses 1) factors causing the anomaly, 2) estimated anomaly onset, and 3) switch performance under accident profiles.

9.1. Factors Causing Anomaly

The anomaly is attributed to outgassing from the adhesive AY103-1/HY951 used in the switch construction, specifically meaning the migration of the plasticizer within the adhesive's phenol base material to the air volume contained within the actuator's electrical enclosure.

By review of published literature a number of papers were found on the subject of modelling outgassing expressed as mass flow rate. Most of the models have exponential forms that are functions of temperature and time with constant bases on material properties e.g. activation energy, gas constant, molecular mass etc. The reviewed papers all appeared to model outgassing to an infinite volume. In actuality the actuator electrical enclosure volume is finite and thus the partial pressure of outgassed material may influence the rate of outgassing. Experimental data demonstrated, for a given temperature, the anomaly would manifest itself in a shorter time period when switches were placed in a smaller enclosure. Based on the aforementioned it is determined the anomaly is a function of temperature, time, and electrical enclosure volume. A series of experiments were thus performed to assess these three factors.

The experiments were performed using three programmable test ovens and sealed metallic enclosures. Test switches were placed in sealed metallic enclosure and heated to a fixed temperature for a defined time (thermal aging). The testing was destructive, and new switches and metallic enclosures were used for every test. Prior to use, the metallic enclosures were thermally cleaned to remove any volatile materials remaining from their manufacture. The metallic enclosure construction does not incorporate any non-metallic seals or non-metallic coatings. Switch contact operation was measured using a EXTECH 380560 milliohm meter [calibrated $6 / 18 / 2015$, Due $6 / 18 / 2016$] which provided discrimination from $1 \mathrm{~m} \Omega$ to $20,000 \Omega$ (open circuit); alternative methods of assessing circuit continuity were assessed but dismissed. Switch contact resistance was measured prior to and post each thermal aging test (temperature x time). All resistance measurements were performed at room temperature. The switch was considered to exhibit the anomaly when the milliohm meter registered a resistance exceeding $20,000 \Omega$. The switch maker's acceptance criteria is $<25 \mathrm{~m} \Omega$. The industry acceptance criteria is $500 \mathrm{~m} \Omega$ or less.

The relationship between the three factors was assessed by varying their levels in experiments, recording the point of anomaly onset, and plotting scatter diagrams. Using regression analysis and correlation coefficient, the relation between temperature, time, enclosure volume, and anomaly onset was progressively established.

Nuclear Engineering Report No. ER857 Issue 1 Date: 3rd May 2016

9.2. Estimated Anomaly Onset

The test data reveal two forms of switch anomaly: 1) the normally open (NO) contact failed to change state, 2) the normally closed (NC) contact failed to change state. Failure to change state means the electrical contacts become sufficiently coated with outgassed material to prevent conduction of electricity. As thermal aging progresses, at any fixed temperature, the anomaly is first observed in the NO contact and then later in the NC contact when measured at room temperature. An open contact is more susceptible to the anomaly because the two contact working surfaces are fully exposed. A closed contact partly masks each working surface and requires a higher outgas concentration to become fully coated. Given the switch contacts have identical contact geometry, it is more accurate to state the anomaly occurs first in the contact that is open and later in the contact that is closed during thermal aging. Thus no distinction should be made between NO and NC contacts.

The best fit of data was obtained by plotting temperature (T) against time (t) with a correction factor applied to time (t) that represented the difference between the actuator "switch to air volume" ratio and the metallic test enclosure "switch to air volume" ratio. Smaller than actuator enclosure test volumes were used to increase the "switch to air volume" ratio and accelerate the onset of the anomaly. The term concentration factor $(C f)$ was thus developed and multiplied the experiment duration time, measured in seconds (T versus $t * C f$). The electrical enclosure volume in the Rotork NA actuator is slightly different for each model size. To be conservative the smallest NA actuator enclosure volume was used to develop the best fit equation. The line displayed in Figure 19 is the estimated boundary at which the anomaly onset would be observed. Above the line both open and closed contact anomalies were observed. Below the line anomalies were not observed.

Open Contact Anomaly

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

The boundary was found by performing a series of experiments at fixed temperatures. The duration of each experiment was progressively reduced until only the NO contacts started to exhibit the anomaly. The activity was repeated for different temperatures to develop the graph in Figure 19.

Figure 20 displays the accumulated test data from which the following can be concluded:

1. At time $t=0$ all the switches functioned correctly.
2. Switches function correctly from $t=0(\mathrm{sec})$ to any green triangles on a constant temperature line.
3. Switches function correctly from temperature $T=0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ to any green triangles on a constant time line.
4. Switches function correctly where constant temperature and constant time lines intersect and green triangles straddle the intersection points; two blue extension lines showing one intersection example.
5. Based on Rotork NCR data no utility has reported unreliable switch operation, thus at $49^{\circ} \mathrm{C}\left(120^{\circ} \mathrm{F}\right)$ and below the switches function correctly.
6. The effect of temperature is non-linear upon anomaly onset.
7. At $175^{\circ} \mathrm{C}\left(347^{\circ} \mathrm{F}\right)$ the onset of open contact and closed contact anomaly is less distinguishable.
8. At lower temperatures the Log anomaly onset boundary overstates the anomaly onset.
9. At $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ the anomaly was not observed. However, the test for $3,300,000$ seconds at $90^{\circ} \mathrm{C}$ $\left(194^{\circ} \mathrm{F}\right)$ exhibited elevated contact resistance in 50% of the open contacts. The measured resistances exceeded the supplier acceptance criteria of $<25 \mathrm{~m} \Omega$ but did not exceeded the industry $500 \mathrm{~m} \Omega$ acceptance criteria.

rotork

Figure 20

9.3. Switch performance under accident profiles

The figures in the following pages show a number of temperature time profiles applicable to nuclear power plants that use Rotork NA actuators that use Rotork NA actuators. Each test was performed using eight new test switches placed in a new metallic enclosure having a volume of one US gallon. The enclosure volume and number of switches provided a concentration factor of 1.125 thus assuring margin in the testing. In all cases the switches operated after the test and met the industry acceptance criteria of $500 \mathrm{~m} \Omega$ or less. A large proportion of the switches met the supplier acceptance criteria of $<25 \mathrm{~m} \Omega$. Switch resistances were measured before and after test at room temperature. All test instruments were calibrated under the Rotork Appendix B quality program. The data below demonstrates the test switch temperatures either exceeded the computed actuator switch temperature or equaled the oven air temperature.

Three temperature lines are displayed in each graph:

- $T_{\text {aopint }}$ is the computed temperature time profile of the switches in an actuator switch mechanism and add-on-pack, based on the environmental air temperature time profile.
- $T_{\text {air }}$ is the measured environmental (oven) air temperature for the provided profile.
- $T(8$ test switches) is the measured temperature profile of 8 test switches, within the closed metallic enclosure, exposed to the $T_{\text {air }}$ temperature time profile.

ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

Priority 1

Figure $21 a$

Sample No->	Measured at 20 C		4/15/16				Priority1 test data									
	As provided resistance data mili ohms						-	4/15-4	,	4/15-5	*	4/15-6	-	4/15-7	$*$	4/15-8
		4/15-1		4/15-2	'	4/15-3										
	NC	No														
	5.8	4.2	4.0	3.3	3.3	4.0	2.4	5.2	3.4	3.6	4.8	3.4	3.2	4.2	3.0	3.0
	5.1	3.4	4.7	2.8	4.0	3.5	2.8	3.6	3.7	3.5	3.5	3.2	3.8	3.9	2.9	3.0
	4.4	2.9	4.4	3.0	3.9	3.3	2.9	3.2	3.1	3.0	3.9	3.2	3.6	3.6	2.9	2.8
	4.1	2.8	4.0	2.9	3.6	3.4	2.9	3.4	3.0	3.2	4.7	3.1	3.9	3.9	2.9	2.8
	4.2	2.8	4.0	2.8	3.6	3.3	3.0	3.2	3.3	3.5	4.1	3.1	3.8	4.0	3.0	2.8
	4.2	2.8	4.0	2.6	3.1	2.8	3.0	3.1	3.4	3.0	4.1	3.0	4.1	3.7	3.0	2.7
	3.9	2.7	4.3	2.5	3.5	3.0	3.0	3.0	3.4	2.9	4.6	2.9	4.4	3.3	3.2	2.7
Ave	4.5	3.1	4.2	2.8	3.6	3.3	2.9	3.5	3.3	3.2	4.2	3.1	3.8	3.8	3.0	2.8
Std	0.7	0.5	0.3	0.3	0.3	0.4	0.2	0.8	0.2	0.3	0.5	0.2	0.4	0.3	0.1	0.1
	Measured at 60C (140F)			4/18/16												
	Post thermal aging using Priority 1 temp time profile															
Sample No->		4/15-1		4/15-2		4/15-3	'	4/15-4	-	4/15-5	'	4/15-6	'	4/15-7	'	4/15-8
	NC	NO														
	2.2	3.9	2.3	4.2	2.6	3.9	2.6	4.1	2.4	72.0	2.3	3.3	2.3	4.7	2.2	7.2
	Measured at 20 C		4/19/16													
	Post thermal aging using Priority 1 temp time profile															
Sample No->		4/15-1		4/15-2		4/15-3		4/15-4		4/15-5	'	4/15-6	'	4/15-7		4/15-8
	NC	NO														
	2.6	30.0	3.0	14.0	3.4	6.2	3.3	5.0	2.8	30.0	3.3	3.8	3.4	5.3	2.8	6.0
	2.9	12.0	3.0	5.5	3.8	6.0	3.0	5.2	3.1	75.0	3.2	3.9	3.6	4.0	3.1	4.3
	3.0	6.0	3.0	4.8	4.1	7.3	3.6	5.9	3.0	80.0	3.2	3.2	3.6	4.1	3.2	3.6
	2.9	3.3	3.0	5.2	4.2	7.6	4.1	4.0	3.1	55.0	3.6	3.0	3.6	4.0	3.3	4.0
	3.0	3.4	2.9	3.9	4.4	7.0	4.9	3.5	3.0	50.0	3.0	2.9	3.7	4.1	3.3	3.4
	3.1	3.0	2.8	3.7	4.2	10.2	4.1	3.2	3.3	30.0	3.0	2.7	3.8	3.9	3.2	3.2
	3.1	3.1	2.9	3.1	5.0	6.6	4.0	3.1	2.9	55.0	3.1	2.8	3.8	4.1	3.3	3.1
Ave	2.9	8.7	2.9	5.7	4.2	7.3	3.9	4.3	3.0	53.6	3.2	3.2	3.6	4.2	3.2	3.9
Std	0.2	9.9	0.1	3.7	0.5	1.4	0.6	1.1	0.2	19.5	0.2	0.5	0.1	0.5	0.2	1.0

[^0]memo: the contact resistance meets the supplier acceptance criteria of <25 mili ohms

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Priority2

5000
0000
ime (sec)
50000
200000

Figure 22a

Measured at $60 C$ (140F) $\quad 4 / 23 / 2016$

Measured at 2OC 4/25/2016
Post thermal aging using Priority 2 temp time profile

Sample No->	"4/19		4/19		4/19	
	NC	No	NC	No	NC	No
	3	8.3	4.7	5.6	4.1	4.4
	3.6	7.1	3.3	4	3.9	3.7
	3.9	6.2	3.9	3.7	3.3	3.7
	3.8	4.9	6	4.2	5	2.7
	4.1	4.9	3.6	3.3	5.5	3.7
	3.5	3.9	5.5	3.5	4.2	3.5
	4.2	4	6.6	3.6	4.7	3
Ave	3.9	5. 2	4.8	3.7	4.4	3.4
Std	0.27	1.26	1.39	\%.33	0.79	0.4

4/19-4		${ }^{4 / 19-5}$		*4/19-6		4/19-7		'4/19-8	
NC	no								
5.6	13	2.4	5	3	5.3	3.3	4.6	3.1	7.9
5.2	12	2.8	4.8	3.2	4.9	3.6	3.5	4	7.7
6.3	5.6	3.2	6.3	3.5	4.6	3.8	4.5	3.8	5.9
6.5	4.4	3.1	4	3.4	4.3	3.7	4	4.6	4.5
6.5	5.1	3.2	4	3.4	3.8	4.2	2.9	4.1	4.5
6.8	5.9	3.5	4.2	3.5	3.9	3.7	28	5.2	5.1
6.7	6	4	3.3	3.5	3.6	3.9	2.7	4.4	5.3
6.3	6.5	'3.3	4.4	3.4	4.2	3.8	3.4	4.4	5.5
0.58	2.76	\%.41	1.03	\% 0.12	\% 0.50	0.21	0.73	0.50	1.20

memo: the contact resistance meets the industry acceptance criteria of 500 mili ohms
memo: the contact resistance meets the supplier acceptance criteria of <25 mili ohms
Figure 22b

Figure 23a
mesureder $20 x$

Messured at 20 C		$\begin{aligned} & 4 / 25 / 2016 \\ & \text { miliohms } \end{aligned}$
As pros	sistan	
4/25		4/25-2
NC	No	NC
5.0	9.4	3.5
42	5.8	4.7
3.8	4.4	3.2
4.6	3.7	3.4
4.1	3.3	3.0
3.5	3.1	3.1
4.0	3.2	3.0
4.2	4.7	3.4
0.50	2.28	0.60

Measured at 60 (1406)

4/25-1		'4/2s		'4/25-3
NC	No	NC	No	NC
2.4	5.1	2.4	3.8	2.4

Measured at $200 \quad 4 / 27 / 2016$

Post thermal aging using Prioity 3 ter

$\begin{array}{ll}4 / 25-5 & \\ \text { NC } & \text { NO } \\ 2.3 & 4.0\end{array}$

N०
3.8

'4/25-8
NC
2.4 No
11.0

No
12.9
9.1
3.8
3.4
3.3
3.3
3.5
4.4
2.31 memo: the contact eastance meets the industry acceptance cutens of 50 mili ohms

Figure 23b

rotork

Summary

Three factors cause the anomaly onset namely temperature, time, and enclosure volume (concentration factor). An equation relating the three factors to anomaly onset has been developed and is provided for information purposes only - not for prediction. The equation accuracy has not been verified against an adequate sample of design based temperature time accident profiles. The equation is not linear. Testing demonstrated anomalies were not observed at $90^{\circ} \mathrm{C}$ and below. Published literature suggest that some level of outgassing always occurs.

When temperature varies with time, estimating anomaly onset is far more complicated and requires the integration of the outgassed material mass. Furthermore, it would be necessary to established if an elevated temperature for a brief period of time would then permit the outgassing of material at lower temperatures for an extended period. Given the available time, the latter could not be accomplished and verified by experimentation. Switch performance was thus evaluated by experimentation. Switches within closed metallic enclosures having an actuator representative volume were thermally aged using accident condition temperature time profiles. The test results indicate the switches, though degraded, would operate correctly after completing the thermal aging profiles displayed in Figure 21 through Figure 23.

10. Results from independent test lab

An independent test laboratory, Exova, was requested to investigate the contamination on contact rivets of micro-switches that had exhibited the anomaly after being thermally aged in-house at $125^{\circ} \mathrm{C}\left(257^{\circ} \mathrm{F}\right)$. Contacts were analysed by FTIR (Fourier-Transform Infra-Red) spectroscopy and by SEM-EDX (Scanning Electron Microscope/Energy Dispersive Using X-Ray) analysis.

FTIR spectroscopy is a valuable tool to study the molecular structure of organic materials. SEM-EDX enables an elemental analysis of the contamination.

Figure 24 compares the infrared spectra of the residue collected from the NO contact of an aged switch manufactured in 2015 vs. an aged switch manufactured in 2007. Both infrared fingerprints virtually mirror each other which suggest that they appear to be the same type of contaminant. The following infrared bands were observed:

- 2915, 2850, $1415 \mathrm{~cm}^{-1}$ which are likely to relate to alkyl groups (CH2, CH3)
- $1535 \mathrm{~cm}^{-1}$ which could relate to alkyl groups ($\mathrm{CH} 2, \mathrm{CH} 3$) or amide ($\mathrm{NH}-\mathrm{C}=\mathrm{O}$) groups
- $1650 \mathrm{~cm}^{-1}$ which could relate to alkene ($\mathrm{C}=\mathrm{C}$), aromatic groups ($)$, amide ($\mathrm{NH}-\mathrm{C}=\mathrm{O}$) or amine groups (R-NH-)
- $1310 \mathrm{~cm}^{-1}$ which could relate to amine groups (R-NH-) or alcohol groups (-OH)
- $1030 \mathrm{~cm}^{-1}$ which could relate to carbonyl groups ($\mathrm{C}=\mathrm{O}$) or alcohol groups (-OH)
- $720 \mathrm{~cm}^{-1}$ which could relate to aromatic groups () , chlorinated compounds or methylene groups (CH2)

The infrared spectrum of the residue collected from the NO contact rivet of the 2007 switch was compared to the infrared fingerprints of the Araldite adhesive (Figure 25), the DAP case (Figure 26) and the nylon 66 operating plunger (Figure 27) as they are the only organic components and therefore the only possible direct or indirect sources of contamination. The infrared spectrum of the residue did not match any of the organic materials.

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

Approved by Engineering

Date: $3^{\text {rd }}$ May 2016

Figure 24: Infrared spectra of residue on NO contact rivets

Figure 25: Infrared spectra of residue from NO contact rivet and Araldite adhesive

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

Approved by Engineering
Date: 3 ${ }^{\text {rd }}$ May 2016

Figure 26: Infrared spectra of residue from NO contact rivet and DAP case

Figure 27: Infrared spectra of residue from NO contact rivet and nylon 66 operating plunger

rotork

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1

SEM photographs of the NO and moving contact rivets of an unaged 2015 switch, an aged 2015 switch and an aged 2007 switch are shown in Table 3. The SEM photographs show clear contamination on both the NO and moving contact rivets of aged switches. The pattern was consistently different between the NO and moving rivets and suggests the contamination deposited on the NO contact is then transferred to the moving contact during operation. This observation is in line with the results observed from in-house tests (Figure 6 to Figure 9).

| Switch | NO contact rivet | |
| :---: | :---: | :---: | :---: | :---: |
| Unaged, manufactured in
 2015 | | Moving contact rivet |
| Aged, manufactured in | | |
| 2015 | | |

Table 3: SEM photographs
Elemental analysis results are compiled in Table 4. Results show the presence of a significantly higher level of carbon (C) on the aged contacts relative to the unaged contacts. This suggests that the contaminant appears to be mainly organic, which is in line with FTIR results. A significantly higher level of oxygen (O) was observed on the aged contact rivets, especially the sample from 2007, which could suggest the presence of oxidative products.

Rotork Controls Limited

Nuclear Engineering Report No.
ER857 Issue 1

Switch	Contact	Location	C	0	Mg	Ag	Cd	Si	Ca	Cr	Fe	Ni	Cu	Br
Unaged, manufactured in 2015	NO	1	2.9	3.5	0.5	83.1	9.3	-	-	-	-	-	-	-
	Moving	1	2.2	1.0	0.4	94.5	1.9	-	-	-	-	-	-	-
Aged, manufactured in 2015	NO	1	54.1	5.4	-	28.8	11.7	-	-	-	-	-	-	-
		2	53.0	4.7	-	31.4	11.0	-	-	-	-	-	-	-
		$3^{(*)}$	7.5	2.4	-	84.2	5.9	-	-	-	-	-	-	-
	Moving	1	45.2	6.5	-	42.3	6.0	-	-	-	-	-	-	-
		2	42.8	6.9	-	44.8	5.6	-	-	-	-	-	-	-
		$3^{(*)}$	4.5	-	0.5	93.3	1.8	-	-	-	-	-	-	-
Aged, manufactured in 2007	NO	1	19.9	13.0	-	62.0	5.1	-	-	-	-	-	-	-
		2	31.3	10.5	0.2	52.1	5.9	-	-	-	-	-	-	-
		$3^{(*)}$	2.8	2.9	0.5	89.9	3.8	-	-	-	-	-	-	-
	Moving	1	29.2	17.0	0.3	47.8	-	0.6	0.3	-	-	-	-	4.9
		2	32.6	12.2	0.3	47.7	-	-	-	1.2	4.3	0.5	-	1.3
		$3^{(*)}$	12.1	11.1	0.3	73.2	2.9	-	-	-	-	-	0.3	-

${ }^{*}$) away from main contaminated area
Table 4: EDX elemental analysis results indicating \% of each element at spectrum location

Summary

- The contaminant appears to be mainly organic. This is in agreement with literature (section 7), test results of an unglued switch (section 8.1) and UV images (Figure 10 and Figure 11) which all identify the adhesive being the root cause.
- The contaminating residue is not formed on the moving contact rivet but is transferred from the NO contact during operation.

11. Conclusion

The altered adhesive formulation outgases at elevated temperatures and deposits an insulating material layer onto the switch internal electrical contacts as it cools. The deposit of insulation material results in contact resistances exceeding the supplier acceptance criteria of $25 \mathrm{~m} \Omega$ max, the industry $500 \mathrm{~m} \Omega$ max acceptance criteria and in some cases causes an open circuit.

It should be noted that tests were performed at constant temperatures. The effect of varying temperature with time has not been investigated in the available time and the possibility exists that an initial high temperature for a short period could subsequently cause outgassing to continue at lower temperatures. Rotork thus recommend that the risk be assessed by testing switches under representative temperature time profiles.

In tests performed by Rotork the anomaly was not observed at temperatures $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ and below. The maximum service temperature for A range and NA5/5E actuators is $70^{\circ} \mathrm{C}\left(158^{\circ} \mathrm{F}\right)$ thus they can be excluded from the scope of this Part 21.

Nuclear power plants that use Rotork NA actuators provided temperature profiles which also were tested. Anomalies were not observed using these profiles.

Rotork are recommending the replacement of the switches in the affected orders which are identified in the Part 21 notification letter.

rotork

Nuclear Engineering Report No. ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

12. References

1) Czarnecki, N. (2012) Nema White Paper. Cadmium in Electrical Contacts [online]. Rosslyn, VA. Available from: https://www.google.co.uk/url?sa=t\&rct=i\&q=\&esrc=s\&source=web\&cd=1\&ved=0ahUKEwjK 5dCdt7PMAhWiBsAKHbPtBbcQFggtMAA\&url=https\%3A\%2F\%2Fwww.nema.org\%2FProducts \%2FDocuments\%2Fnema\%2Bwhitepaper\%2Bon\%2Bcadmium\%2Bin\%2Belectrical\%2Bcontac ts.pdf\&usg=AFQjCNFevJ949rWGVG65Oefdbr4ejiiT6kw\&sig2=s1UgMfEIFnKDWWhowkA4Ig [Accessed 29 April 2016]
2) Buffing, M. (2009) Outgassing of glue in the Outer Tracker of LHCb; measurements with a quadrupole mass spectrometer [online]. BSc, Vrije Universiteit Amsterdam. Available from: http://www.nikhef.nl/pub/experiments/bfys/lhcb/Theses/bachelor/2009 MaartenBuffing.p df [Accessed 29 April 2016]
3) Tuning, N., et al. (2011) Ageing in the LHCb outertracker: Aromatic hydrocarbons and wire cleaning. Nuclear Instruments and Methods in Physics Research A. 656, pp. 45-50

Rotork Controls Limited
Page 37 of 48
Approved by Engineering
Nuclear Engineering Report No.
ER857 Issue 1 Date: $3^{\text {rd }}$ May 2016

Page 38 of 48

Rotork Controls Limited Approved by Engineering

rotor:

Page 39 of 48
Rotork Controls Limited
Approved by Engineering
Nuclear Engineering Report No.
ER857 Issue 1 Date: $3^{\text {rd }}$ May 2016

rotor:

Rotork Controls Limited Approved by Engineering

Appendix B - Pre and post-aging resistance results, Test 1 and 3

All results in Ohms.
Test $\mathbf{1 - 1 2 5 ^ { \circ }}{ }^{\circ}$ ($\left.\mathbf{2 5} 7^{\circ} \mathrm{F}\right)$ aging of V12 switches manufactured in 2015
Results before ageing

Operation 1			Operation 2		
	Operation 3				
N/C	N / O	N / C	N / O	N / C	N / O

Into oven Out of oven Total aging Results after ageing

Date Code															
	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N / O	N/C	N/O	N/C	N/O
3715K	0.003	0.003	0.004	0.005	0.004	0.005				0.004		0.003	-	0.005	
3715K	0.004	0.005	0.004	0.003	0.005	0.003	14:00	08:00		0.005	-	0.005	-	0.005	-
3715K	0.004	0.005	0.004	0.004	0.004	0.004	Tue	Mon		0.006	-	0.006	0.010	0.006	0.007
3715K	0.004	0.004	0.006	0.003	0.005	0.004	26/01/16	01/02/16	(5.75 days)	0.004		0.005	-	0.005	-
3715K	0.004	0.004	0.004	0.004	0.004	0.003				0.005	*	0.006	-	0.008	

Test $\mathbf{3 - 1 2 5}{ }^{\circ} \mathrm{C}\left(\mathbf{2 5 7 ^ { \circ }} \mathrm{F}\right)$ aging of V12 switches manufactured in 2007
Results before ageing

Into oven	Out of oven	Total aging	Results after ageing					
			Operation 4		Operation 5		Operation 6	
			N/C	N/O	N/C	N/O	N/C	N/O
15:45	14:00		0.004	0.279	0.004	184	0.004	0.124
Mon	Fri	94.25 hrs	0.004	-	0.009	-	0.005	-
01/02/16	05/02/16	(3.93 days)	0.004	-	0.004	-	0.004	-
01/02/16			0.004	0.642	0.004	0.030	0.007	0.04

- indicates open circuit

* indicates that the resistance value was fluctuating between several ohms, to hundreds of ohms, to open circuit

rotork

Rotork Controls Limited

Nuclear Engineering Report No.

ER857 Issue 1
Date: $3^{\text {rd }}$ May 2016

Appendix C - Resistance results post-curing and subsequent aging, Test 5

All results in Ohms.
Post-curing of each switch in a fan assisted oven
Results before post-curing Into oven Out of oven Total aging Results after post-curing
Operation 1 Operation 2 Operation 3

	Date Code	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O
1	4315K	0.004	0.007	0.005	0.006	0.007	0.006		11:55 Fri 12/02/16	1.02 days	0.003	0.023	0.004	0.018	0.002	0.07
2	4315K	0.007	0.010	0.006	0.008	0.006	0.006		11:50 Mon 15/02/16	4.01 days	0.007	0.040	0.007	0.012	0.008	0.01
3	4315K	0.005	0.005	0.004	0.005	0.005	0.005		15:00 Tue 16/02/16	5.15 days	0.004	0.086	0.005	0.047	0.005	0.06
4	4315K	0.002	0.009	0.004	0.006	0.004	0.006		11:30 Wed 17/02/16	6 days	0.005	0.066	0.005	0.006	0.006	0.00
5	4315K	0.004	0.007	0.005	0.008	0.005	0.006		11:30 Thu 18/02/16	7 days	0.006	0.077	0.006	0.176	0.006	0.08
6	4315K	0.004	0.005	0.004	0.005	0.004	0.005		11:30 Fri 19/02/16	8 days	0.005	0.150	0.007	0.159	0.006	0.0

Further aging of post-cured switches in metal containers
Results before ageing
Operation 1 Operation 2 Operation 3
Date Code N/C N/O N/C N/O N/C N/O
14315 K
2 4315K
$3 \quad 4315 \mathrm{~K}$
4 4315K
5 4315K
6 4315K
Above post-cured switches were taken and 14:30
each switch was placed in its own Fri
09:00 Tue 23/02/16
Total aging
Results after ageing

Operation 4		Operation 5		Operation 6	
$\underline{\mathbf{N} / \mathbf{C}}$	$\underline{\mathrm{N} / \mathrm{O}}$	$\underline{\mathrm{N} / \mathrm{C}}$	$\underline{\mathrm{N} / \mathrm{O}}$	$\underline{\mathrm{N} / \mathrm{C}}$	$\underline{\mathrm{N} / \mathbf{O}}$
0.010	-	0.024	-	0.011	-
0.006	4.800	0.016	0.319	0.018	0.243
0.007	-	0.010	-	0.048	-
0.004	49.700	0.008	3.450	0.006	1.200
0.004	0.059	0.005	0.250	0.005	0.164
0.009	-	0.028	-	0.040	-

[^1]
rotork

Rotork Controls Limited	Approved by Engineering	
Nuclear Engineering Report No.	ER857 Issue 1	Date: $3^{\text {rd }}$ May 2016

Appendix D - Resistance results of K5 switches, Test 6

All results in Ohms.

rotor:

Rotork Controls Limited	
Nuclear Engineering Report No.	
	ER857 Issue 1
	Appendix E-Resistance results of switch aged without adhesive, Test 7

All results in Ohms.

	Results before ageing					Into oven	Out of oven	Total aging	Results after ageing							
	Operation 1 Operation 2 Operation 3								Operation 4		Operation 5		Operation 6		Operation 7	
	N/C N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
18	0.0060 .004	0.005	0.004	0.007	0.005	$\begin{gathered} \text { 13:55 Mon } \\ 29 / 02 / 16 \end{gathered}$	$\begin{gathered} 13: 55 \text { Wed } \\ 02 / 03 / 16 \end{gathered}$	2 days	0.004	0.020	0.004	0.012	0.004	0.018	0.004	0.005
Further aging of above switch to complete total 7 days aging																
	Results before ageing					Into oven	Out of oven	Total aging			sults af	ter age				
	Operation 1	Opera	tion 2	Oper	on 3				Opera	tion 4	Opera	tion 5	Opera	tion 6	Opera	tion 7
	N/C N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
18	Above swis	itch w	s aged	urther		$\begin{gathered} 14: 55 \text { Wed } \\ 02 / 03 / 16 \end{gathered}$	$\begin{gathered} \text { 13:55 Mon } \\ \text { 07/03/16 } \end{gathered}$	4.96 days	0.012	0.004	0.006	0.138	0.014	0.227	0.068	0.077
Further aging of above switch to complete total 10 days aging																
	Results before ageing					Into oven	Out of oven	Total aging	Results after ageing							
	Operation 1 Operation 2 Operation 3								Operation 4		Operation 5		Operation 6		Operation 7	
	N/C N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
18	Above swid	witch w	as aged	further		$\begin{aligned} & \text { 08:30 Fri } \\ & \text { 01/04/16 } \end{aligned}$	$\begin{gathered} \text { 08:00 Mon } \\ \text { 04/04/16 } \end{gathered}$	3.98 days	0.007	0.117	0.082	0.006	0.174	0.015	0.006	0.017

[^2]Page 43 of 48
Approved by Engineering
Date: $3^{\text {rd }}$ May 2016

Appendix E - Resistance results of switch aged without adhesive, Test 7

rotork

Rotork Controls Limited	Approved by Engineering	
Nuclear Engineering Report No.	ER857 Issue 1	Date: $3^{\text {rd }}$ May 2016

Appendix F - Resistance results of switch aged with Duralco 4525, Test 8

All results in Ohms.

	Results before ageing						Into oven	Out of oven	Total aging	Results after ageing							
	Opera	tion 1	Opera	tion 2	Opera	tion 3				Opera	ion 4	Operat	ion 5	Oper	n 6	Oper	ion 7
	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
21	0.004	0.004	0.005	0.004	0.007	0.004	$\begin{aligned} & \text { 08:30 Fri } \\ & \text { 01/04/16 } \end{aligned}$	$\begin{gathered} \text { 08:30 Mon } \\ \text { 11/04/16 } \end{gathered}$	10 days	0.027	-	0.178	-	0.250	-	0.186	-

[^3]
rotork

Rotork Controls Limited
Nuclear Engineering Report No.

Total aging time for switch $19=14$ days, 5 hrs
Total aging time for switch $20=10$ days, $3 \mathrm{hrs}, 30 \mathrm{mins}$

- indicates open circuit
* denotes a value that was inconsistent, i.e. the ohm value moved around the value recorded, it did not settle.

rotork

Rotork Controls Limited

Nuclear Engineering Report No.

Page 46 of 48
Approved by Engineering
Date: $3^{\text {rd }}$ May 2016

Thermal aging of switch assembled with reduced quantity of AY105-1/HY991

Results before ageing							Into oven	Out of oven	Total aging	Results after ageing							
Operation 1			Operation 2		Operation 3					Operation 4		Operation 5		Operation 6		Operation 7	
	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
50	0.006	0.004	0.018	0.004	0.012	0.004	$\begin{gathered} \text { 13:00 Thu } \\ \text { 14/04/16 } \end{gathered}$	$\begin{gathered} \text { 08:00 Mon } \\ 25 / 04 / 16 \end{gathered}$	10days 19hrs	0.030	0.078	0.035	0.008	0.005	0.007	0.170	0.005

rotork

Rotork Controls Limited
Nuclear Engineering Report No.

Page 47 of 48

Approved by Engineering
Date: $3^{\text {rd }}$ May 2016

Appendix H - Resistance results of switch aged with Raychem S1264, Test 10

All results in Ohms.

Results before ageing							Into oven	Out of oven	Total aging	Results after ageing							
	Operation 1		Operation 2		Operation 3					Operation 4		Operation 5		Operation 6		Operation 7	
	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
49	0.004	0.003	0.004	0.003	0.004	0.004	$\begin{aligned} & \text { 13:00 Thu } \\ & 14 / 04 / 16 \end{aligned}$	$\begin{gathered} \text { 08:00 Mon } \\ 25 / 04 / 16 \end{gathered}$	10days 19hrs	0.010	0.024	0.007	0.021	0.008	0.023	0.012	0.009

rotor*

Rotork Controls Limited	Approved by Engineering	
Nuclear Engineering Report No.	ER857 Issue 1	Date: $3^{\text {rd }}$ May 2016

ER857 Issue 1 Date: $3^{\text {rd }}$ May 2016

Appendix I - Resistance results of switch aged with X60, Test 11

All results in Ohms.

Res							Into oven	Out of oven	Total aging	Results after ageing							
			Operation 2		Operation 3					Operation 4		Operation 5		Operation 6		Operation 7	
	N/C	N/O	N/C	N/O	N/C	N/O				N/C	N/O	N/C	N/O	N/C	N/O	N/C	N/O
53	0.006	0.002	0.005	0.002	0.006	0.003	$\begin{gathered} \text { 14:20 Mon } \\ \text { 18/04/16 } \end{gathered}$	$\begin{aligned} & \text { 14:20 Thu } \\ & \text { 28/04/16 } \end{aligned}$	10 days	0.008	-	0.040	-	0.016	-	0.042	-

- indicates open circuit
* indicates that the resistance value was fluctuating between several ohms, to hundreds of ohms, to open circuit

[^0]: memo: the contact resistance meets the industry acceptance criteria of 500 mill ohms

[^1]: - indicates open circuit
 * indicates that the resistance value was fluctuating between several ohms, to hundreds of ohms, to open circuit

[^2]: Total aging time for switch $18=2+4.96+3.98=10.94$ days

[^3]: - indicates open circuit
 * indicates that the resistance value was fluctuating between several ohms, to hundreds of ohms, to open circuit

