

Fort Calhoun Station Driving Through Restart

Plan for Sustained Improvement

August 27, 2013

Topics for Discussion

- Plant status and major remaining work
- Fort Calhoun Station
 Performance Improvement
 Policies and Procedures
- Plan for Sustained Improvement
- Key Drivers for Achieving and Sustaining Excellence
- Exelon Nuclear Management Model (ENMM)
- Integration of Fort Calhoun Station into the Exelon Nuclear Fleet

Fort Calhoun Station

Vision

Safe and efficient restart of Fort Calhoun Station and achievement of sustained excellence

Mission

Safe, event-free, cost-effective, nuclear production of electricity

Values

- Safety Nuclear, Industrial,
 Radiological, & Environmental
- Alignment
- Accountability
- Bias for Action
- Strong Nuclear Safety Culture

Current Plant Status and Remaining Work

- Core re-load completed July 29, 2013
- Reactor vessel head installed August 25, 2013
- Critical path work
 - Tornado missile protection modifications
 - High-energy line break modifications
 - CVCS letdown and charging lines
 - Steam generator blow down lines
 - Containment internal structures
- Plant heat-up with non-nuclear heat September
- Submit Integrated Restart Report After heat-up
- Ready for restart

Regulatory Documents Governing Restart

- December 13, 2011: NRC letter to OPPD documenting transition from the Reactor Oversight Process to Inspection Manual Chapter (IMC) 0350 – (shutdown plant with significant event involving switchgear fire)
- June 11, 2012: NRC Confirmatory Action Letter with Restart Checklist issued, updated February 26, 2013
- July 9, 2012: OPPD Fort Calhoun Station Integrated Performance Improvement Plan, Rev. 3 submitted including Restart Checklist Implementation Strategy, Rev. 5 submitted June 19, 2013
- July 29, 2013: OPPD Fort Calhoun Station Plan for Sustained Improvement, Rev. 0 submitted

Restart Decision-Making Criteria

- Confirmatory Action Letter commitments addressed and Restart Checklist items resolved
- Fundamental organizational weaknesses addressed and improving
- Plant, people, processes and departments are ready for restart
- Independent assessments completed
 - Nuclear Oversight Department
 - Corporate Governance and Oversight Committee
 - Nuclear Safety Review Board
- Post-Restart Plan for Sustained Improvement in place
- Integrated Restart Report Submitted to NRC

Early Implementation of Exelon Performance Improvement (PI) Program

- CNO/Site VP established PI policy for Fort Calhoun requiring that personnel shall
 - Demonstrate excellence in performance improvement
 - Embrace continuous improvement
 - Exemplify problem prevention, detection and correction
 - Strive to achieve high levels of operational performance
- PI program and procedures issued to implement the policy

Plan for Sustained Improvement

Plan for Sustained Improvement

- PSI will continue improvement momentum
- Outcome is achieving sustained excellence
- PSI implemented using the PIIM
 - OPPD and Exelon senior executives reviewed and fully support the PSI
 - Fleet-, Site- and Department-level action plans address gaps to excellence – Action plans owned by line managers
 - Fort Calhoun Station Senior Leadership Team (SLT) will review progress at least monthly
 - OPPD and Exelon corporate executives will review progress during periodic Management Review Meetings
 - Nuclear Oversight and Nuclear Safety Review Board will provide independent oversight of progress
 - Action plans will not be closed until SLT concludes outcomes are achieved
- Excellence will be cemented by full implementation of the ENMM, and integration into the Exelon fleet

Early Implementation of Performance Improvement Program

- Performance Improvement Integrated Matrix (PIIM) key component of PI process
 - Brings focus on gaps to excellence and plans to close gaps
 - Predictable reliable continually updated
 - Systematic approach utilizing full range of PI tools to address gaps
 - Planning, analyzing and monitoring all driven by the PIIM
 - Facilitates effective management oversight
 - Computerized PIIM system directly connected to the Corrective Action Program computerized system

Plan for Sustained Improvement

- Key Drivers for Achieving and Sustaining Excellence identified
- Key Drivers provided as regulatory commitments for Restart Confirmatory Action Letter
- Key Drivers address actions that ensure
 - Corrective actions are effective
 - Actions to prevent recurrence are effective
 - Sustained performance improvement

Addresses those issues in Restart Checklist, safetysignificant Fundamental Performance Deficiencies and other critical performance improvement areas

Key Drivers for Achieving and Sustaining Excellence

- Organizational effectiveness, safety culture, and safety conscious work environment
- Problem identification and resolution
- Performance improvement and learning programs
- Design and licensing basis control and use
- Site operational focus
- Procedures
- Equipment performance
- Programs
- Nuclear oversight
- Transition to the ENMM and integration into the Exelon Nuclear Fleet

- Organizational effectiveness, safety culture, and safety conscious work environment – Actions taken
 - Entered into an Operating Service Agreement with Exelon Nuclear
 - Assessed leadership capabilities and made needed changes
 - Aligned organization to Vision, Mission & Values
 - Established and trained leadership on corporate governance, oversight, support and perform model (GOSP)
 - Implemented GOSP accountability model
 - Implemented GOSP management model with emphasis on nuclear safety and continuous improvement
 - Implemented performance management, succession planning, knowledge retention, and strategic workforce planning
 - Created organizational effectiveness metric

- Organizational effectiveness, safety culture, and safety conscious work environment – Actions taken
 - Trained managers, supervisors, and personnel on Safety Culture/SCWE
 - Implemented the fleet Employee Concerns Program
 - Implemented Differing Professional Opinion Process
 - Implemented fleet Nuclear Safety Culture Monitoring Panel
 - Implemented 2Cs meetings with Site VP (Compliments and Concerns)
 - Performed site-wide safety culture focus group interviews
 - Established pulse surveys and industry leading safety culture metric

- Organizational effectiveness, safety culture, and safety conscious work environment – Results achieved
 - Improving trend in organizational effectiveness
 - Fleet support and challenge on station issues
 - Improving trend in safety culture and safety conscious work environment
 - Operations department is leading the station in safety culture
 - Most departments have made significant improvement in safety culture – targeted department-level improvement actions being implemented
- Ready for restart

- Organizational effectiveness, safety culture, and safety conscious work environment – Plans going forward
 - Continue the safety culture pulse survey metric
 - Focused safety culture improvement action granularity at department level
 - External assessments annually for three years on station safety culture
 - Continue to monitor the organizational effectiveness metric during plant operations
 - External assessment of organizational effectiveness six months after restart

- Problem identification and resolution Actions taken
 - Corrective Action Program (CAP) root cause analysis performed early 2012
 - Enhanced procedures, staffing and training
 - Improved Station and Department Corrective Action Review Boards (SCARB and DCARB)
 - Implemented detailed Exelon Nuclear performance monitoring tools
 - Marked improvement in problem identification, root and apparent cause quality, and timely action closure in targeted work groups

- Problem identification and resolution Actions taken
 - Additional improvement necessary Second CAP root cause analysis completed in June 2013

- Station personnel not consistently following CAP procedures and station leadership not consistently reinforcing CAP procedure compliance
- CAP strategy for improving performance not fully implemented and understood at all organizational levels
- Station trending time consuming and not fully effective

- Problem identification and resolution Results achieved
 - Problem identification
 - 16,690 condition reports generated in 2013 (to date)
 - Station engagement ratio at 70% (white rating) and improving
 - SLT observations of CAP meetings at 10 per month (green rating)
 - Issue Resolution
 - DCARB closure rejection rate at 13% and improving (white rating)
 - DCARB RCA rejection rate at 11% and improving (white rating)
 - RCA products demonstrating improvement
- Ready for restart

- Problem identification and resolution Plans going forward
 - CAP behavior improvement plans

- Reinforce CAP fundamentals / accountability model with all station personnel
- Conduct additional training for Root Cause Analysts and Station and Department Corrective Action Review Board members
- Implement additional department CAPCOs and CAP advocates
- Continuous CAP performance monitoring through CAP Health and Trend Reports

- Design and Licensing Basis Control Actions completed
 - Design and configuration control was identified as a Fundamental Performance Deficiency
 - Root cause analysis was completed in October 2012
 - Scope of review covered 2007 to 2012 and identified causes and actions to improve performance
 - Additional items have been identified by the NRC and OPPD since October 2012
 - Accuracy and completeness of the design and licensing basis challenged the engineers' efficiency at performing key station processes
 - A new design and licensing basis root cause analysis was completed in 2013
 - Scope of the review covered the period from 1968 when the construction permit was issued to 2013

- Design and licensing basis control and use Actions completed
 - Developed key calculation review program for accuracy and consistency
 - Completed Phase 1, Phase 2 in progress
 - Trained engineers and operators in utilizing the design and licensing basis for operability determinations and safety screenings/evaluations
 - Performed structural walk downs of safety-related systems to ensure consistency with design drawings
 - Monitoring engineer and operator work product quality utilizing review comments and scores from independent Engineering Assurance Group
- Ready for restart

- Design and licensing basis control and use Actions going forward
 - Define model for form and content of design basis and licensing basis documents
 - Reconstitute design and licensing basis in a desktop available platform
 - Train station staff on utilizing new design and licensing basis resources
 - Perform annual risk-significant system design reviews until completion of reconstitution
 - Maintain Engineering Assurance Group while necessaryto provide independent oversight of engineering work product quality

- Design and licensing basis control and use Engineering Department Performance
 - Staffing
 - 22 of 27 system engineers fully qualified was 7 in 2012
 - 20 of 22 design engineers fully qualified was 15 in 2012
 - 14 of 17 programs engineers fully qualified
 - Additional design engineering supervision added
 - Engineering Programs and Design Engineering Manager positions filled
 - System and Program Health Reports prepared quarterly
 - Challenged and approved by Plant Health Committee
 - Engineering Assurance Group strengthened and effective
 - Feedback to engineers and supervisors across engineering
 - Comprehensive engineering work product quality performance indicators
- Ready for restart

- Procedures Actions taken
 - Procedure revision process adjusted to ensure procedure content and accuracy are addressed
 - Revision criteria established based on
 - Known issues and extent of condition
 - Risk significance
 - Support of event mitigation
 - Reviewed and revised procedures (over 200)
 - Emergency and Abnormal Procedures (EOP / AOP)
 - Annunciator Response Procedures (ARP)
 - Operating Instructions (OI)

- Procedures Results achieved
 - Procedures revised to minimize likelihood of knowledge-based errors
 - Additional performance details developed in attachments
 - Abnormal Operating Procedures (AOP)
 - Emergency Operating Procedures (EOP)
 - Level of detail and accuracy improved
 - Alarm Response Procedures (ARP)
 - Incorporated industry best practices
 - Training operators on new procedures

- Procedures Plans going forward
 - Continue to
 - Incorporate operator input
 - Reinforce procedure usage expectations
 - Reinforce culture of rule-based execution
 - Use field operators and simulator for verification and validation of actions and confirming procedure flow
 - Integrate procedure revisions
 - Train new operators to revised documents
 - Coordinate plant training with transition to revised format
 - Institute enhanced review of maintenance work order instructions

Equipment Performance – Actions Taken

Plant Health Committee (PHC)

- Changed PHC quorum requirements to include senior managers
- Revised PHC procedure for alignment with AP-913 Equipment Reliability and AP-928 Work Management attributes
- Revised PHC agenda to focus on oversight of equipment reliability programs and processes
- Increase PHC meeting frequency to weekly to align with industry standards

Performance Monitoring

- System walk downs are now regularly performed by System Engineers
- Supervisors perform observations during system walk downs to ensure station expectations are being met
- Start-up monitoring plans have been developed for systems following extended shutdown

Equipment Performance – Actions taken

Equipment Service Life (ESL)

- Project team established Identified critical equipment/components
- Replaced 989 equipment/components (breakers, relays, valves)
- Completed review of over 10,000 components planned for post start-up

Maintenance Rule / Preventive Maintenance Program

- Action plans for equipment in Maintenance Rule (a)(1)
 - Majority are in monitoring status
 - Systems in long term shutdown are being monitored in (a)(1)
 - Condition Reports reviewed daily for Maintenance Rule issues
- Backlog of preventative maintenance tasks eliminated

Equipment Performance – Results achieved

Significantly improved equipment reliability by repairing or replacing a large number of components

- Significant work on both Emergency Diesel Generators including voltage regulator modifications
- Refurbished 4160V and 480V busses
- Replaced 4160V breakers on busses 1A1 and 1A3
- Replaced or refurbished Reactor Protection System power supplies
- Replaced Chemical and Volume Control System piping and supports
- Upgraded turbine controls to digital system

Equipment Performance – Results achieved

Additional actions include

- Completed System Health Readiness Reviews for restart
- Revised system engineering quarterly system health process to be in line with industry standards
- Performance monitoring identified a low level vibration issue with Raw Water Pump AC-10B prior to failure
- Bias for action demonstrated on recent plant issues including HPSI Pump SI-2B low flow issues and system imbalance, and HCV-2983 excess leakage
- Ready for restart

Equipment Performance - Plans going forward

- Adopt Exelon Equipment Reliability processes and procedures
 - Performance Monitoring Plans, Walk Down Plans, and System Notebooks in System IQ
 - Additional programmatic enhancements
 - Margin Management Program
 - Obsolescence Program
 - Component Health Program
 - Critical Component Failure Report
 - Predictive Maintenance (Plant IQ) Program
 - Vulnerability Review Process
 - Troubleshooting Process

- Nuclear Oversight Actions taken
 - Conducted a root cause analysis in 2012
 - Established safety-focused OPPD strategic plan
 - Early implementation of the ENMM
 - Documented expectations and roles and responsibilities
 - Implemented Exelon Nuclear Safety Review Board (NSRB)
 - Established Nuclear Oversight Department (NOS)
 - Strengthened confidential Employee Concerns Program (ECP)

- Nuclear Oversight Results achieved
 - Expectations clear
 - NOS intrusive and actively engaged
 - NOS goes beyond minimum regulatory requirements
 - Focus on values and behaviors that achieve excellence
 - NSRB intrusive and effective
 - Fort Calhoun leadership responsive to NOS and NSRB findings
 - Staff utilizing ECP
- Ready for restart

- Nuclear Oversight Plans going forward
 - Effectiveness review of corrective actions and actions to prevent recurrence
 - Performance indicator effectiveness review
 - Nuclear industry evaluation program assessment

- Transition to the Exelon Nuclear Management Model (ENMM) and integration into the Exelon Nuclear Fleet
 - Implementation of the ENMM and full integration into the Exelon fleet will cement sustained excellence in safety and efficiency of operation

- Exelon uses a comprehensive management system known as the Exelon Nuclear Management Model
 - To ensure top safety performance and operational efficiency in normal, outage, transient, and emergency situations
 - To establish a strong safety culture

The Exelon Nuclear Management Model contains all necessary policies, programs and procedures, but its success is driven by a <u>strong and intrusive leadership team</u>, a <u>passion for excellence</u> and <u>effective independent</u> <u>oversight</u>

Exelon Nuclear Management Model

- Model defines how Exelon works
 - Common vision and shared values
 - Conduct business
 - Set priorities
 - Develop and execute plans
 - Monitor and assess performance
- Playbook for driving standardization
 - Gets everyone on the same page
 - Defines the "One way, best way" to run the business
 - Aligns the corporation and stations eliminating localized differences
 - Establishes processes for continuous assessment and improvement
 - Documents progress and change
 - Manage Fleet as single cohesive entity
 - Passion for Excellence

Integration of Fort Calhoun Station into the Exelon Fleet

- Integration managed by joint OPPD/Exelon management team
- Corporate and Site Functional Area Managers and Subject Matter Experts completing integration activities
- Integration organized around 27 functional areas

CFAM SFAM 90% Corp 10% Site Input 60% Corp 40% Site Input 25% Corp 75% Site Input 10% Corp 90% Site Input

 Phase I: Framework Development

 Phase II: Analysis Phase III: Design Phase IV: Implementation Planning

Phase V: Implementation

Early Analysis Accelerated mplementation

Phase I Objectives:

- Establish foundation for the integration process
- Form and charter Transition Team
- Establish decisionmaking and issueresolution processes
- Define roles and responsibilities
- Create tools and templates

Phase II Objectives:

- Complete Early Analysis and Accelerated Implementation
- Identify "gaps"
 between the FCS
 current state and the
 Exelon Nuclear
 baseline in controlled
 documents,
 organization structure,
 performance metrics
 and IT systems
- Support station restart
- Complete gap templates to record findings

Phase III Objectives:

- Develop the proposed end-state for FCS
- Define specific corporate and site organization structures and staffing levels
- Design complete suite of controlled documents
- Recommend metrics and other departmental tools

Phase IV Objectives:

- Develop an actionable implementation plan to achieve the endstate
- Create detailed schedule with resource loading, accountability assignments and completion timing defined

Phase V Objectives:

- Turnover all implementation responsibilities to line management
- Establish appropriate on-going progress monitoring mechanisms

Exec Challenge OPPD & Exelon

Challenge 2

Fort Calhoun Integration Status

- Framework Development
 - Complete
- Analysis
 - Complete
- Early Implementation
 - Nuclear oversight
 - Security
 - Human performance
 - Regulatory assurance
 - Performance improvement
 - Records management
 - Fort Calhoun Station performance challenged daily during Midwest fleet morning calls

Fort Calhoun Integration Status

- Integration Design
 - Executive challenge meetings in progress
 - Scheduled to be completed by October 29, 2013
- Implementation Planning
 - Development of Level 3 schedules in progress
 - Scheduled to be completed by December 20, 2013
- Implementation
 - Scheduled to commence 30 days after achieving 100% power
 - Scheduled to be completed by March 31, 2015

Progress Toward Restart

- Core re-load completed July 29, 2013
- Reactor vessel head installed August 25, 2013
- Plant heat-up with non-nuclear heat –
 September
- Submit Integrated Restart Report After heat-up
- Ready for restart

Closing Remarks

- Today we updated you on
 - Plant status and major remaining work
 - Fort Calhoun Station
 Performance Improvement
 Policies and Procedures
 - Plan for Sustained Improvement
 - Key Drivers for Achieving and Sustaining Excellence
 - Exelon Nuclear Management Model
 - Integration of Fort Calhoun
 Station into the Exelon Nuclear
 Fleet

Fort Calhoun Station

Vision

Safe and efficient restart of Fort Calhoun Station and achievement of sustained excellence

Mission

Safe, event-free, cost-effective, nuclear production of electricity

Values

- Safety Nuclear, Industrial, Radiological, & Environmental
- Alignment
- Accountability
- Bias for Action
- Strong Nuclear Safety Culture

