USACE Methods for Quantifying Extreme Flood Hazards

Douglas J. Clemetson, P.E. Chief, Hydrology Section USACE, Omaha District Omaha, Nebraska 29 January 2013

US Army Corps of Engineers BUILDING STRONG_®

DRAFT

USACE DAM SAFETY PROGRAM PORTFOLIO RISK ASSESSMENT (PRA)

INFLOW FLOOD HYDROGRAPHS METHODOLOGY & EXAMPLE APPLICATIONS

Wolf Creek Dam Spillway

NOVEMBER 2008

DEPARTMENT OF THE ARMY U.S. Army Corps of Engineers Washington, D.C. 20314-1000

ETL 1110-2-XXX

CEXX-XX Technical Letter

No 1110-2-XXX

30 September 2012

EXPIRATION DATE Engineering and Design FREQUENCY CURVE EXTENSION FOR EXTREME FLOOD EVENTS

1. Purpose. This engineer technical letter (ETL) provides guidance for the development of inflow frequency curves that extend to the Probable Maximum Flood (PMF). The inflow frequency needs to address both the peak inflow and the volume associated with events of various durations. Furthermore, the coincident basin condition downstream of a project needs to be appropriately correlated with the hydrologic scenario that is defining the project inflow.

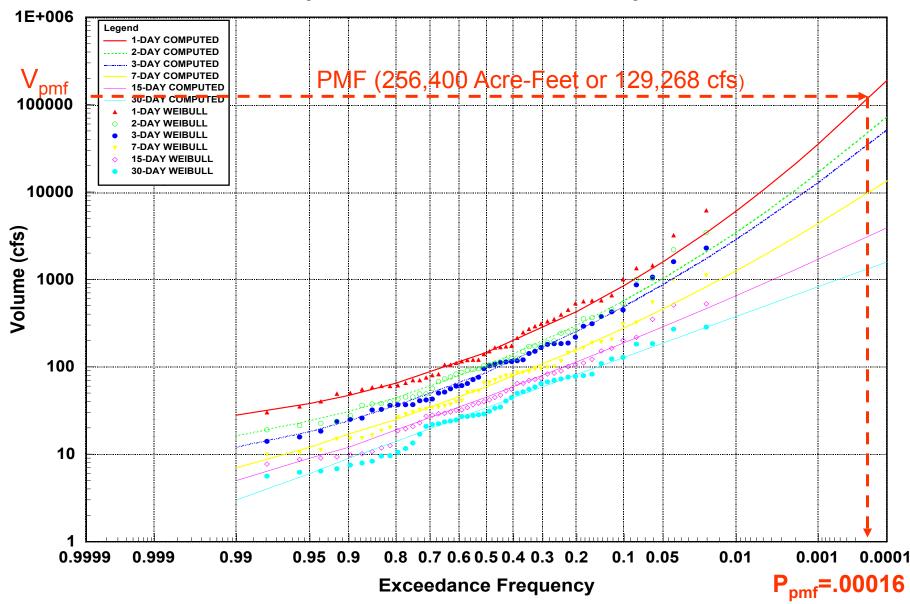
Applicability. This ETL applies to all HQUSACE elements and all USACE commands 2 having Civil Works responsibility for hydrologic analysis associated with dam safety studies, and other projects that require analyzing flow frequencies out to very rare events.

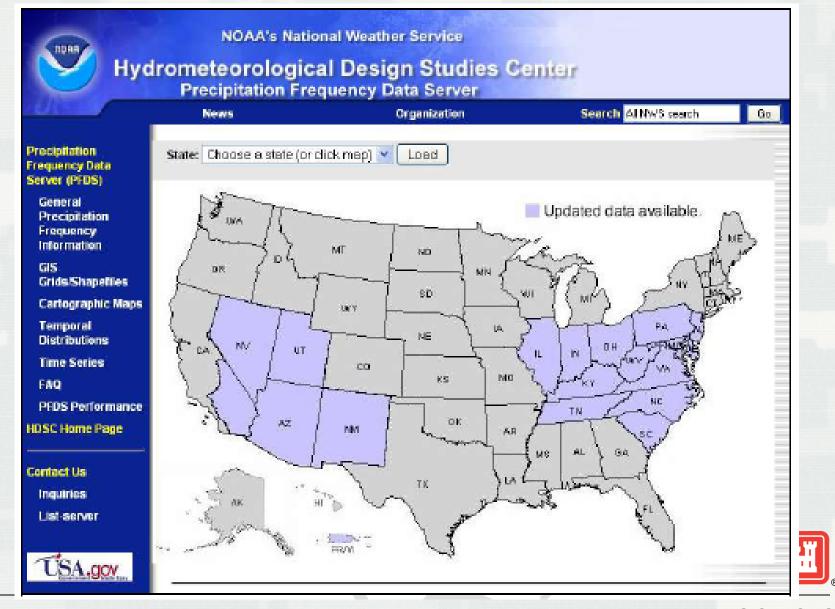
- Distribution Statement. Approved for public release, distribution is unlimited.
- References. See Appendix A.

Discussion. Currently there is no credible scientific approach to assign a single 5. probability to a flood of the magnitude of the PMF. Additionally, no single method exists for extending gaged frequency curves out to the PMF level. This ETL presents a process for development of credible estimates of infrequent Annual Exceedance Probabilities (AEP) that rely on the use of data from multiple sources and a regional approach.

Quantification of the frequency curve out to rare events, such as the PMF, is necessary to evaluate the hydrologic risk for any project. Per the National Weather Service, the Probable Maximum Precipitation (PMP) is theoretically, the greatest depth of precipitation for a given duration that is physically possible over a given storm area at a particular geographical location at a certain time of the year. The PMF is a function of the PMP and basin conditions and is characterized as the upper limit of hydrologic loading for the Corps dams. While the frequency curves must be defined out to the PMF, more emphasis needs to be placed on defining the curves from the 100-year to the 5,000-year event, as this area of the curve plays a much more important role in the Portfolio Risk Assessment (PRA) analysis. Several techniques have been identified as candidates for use. The technical basis, data and resource requirements for each are summarized in the following chapters. As several of these various techniques may be used for any project, a method is described for blending the resultant frequency curves to prepare the adopted frequency curve. It is important to note that the application of these methods requires an experienced

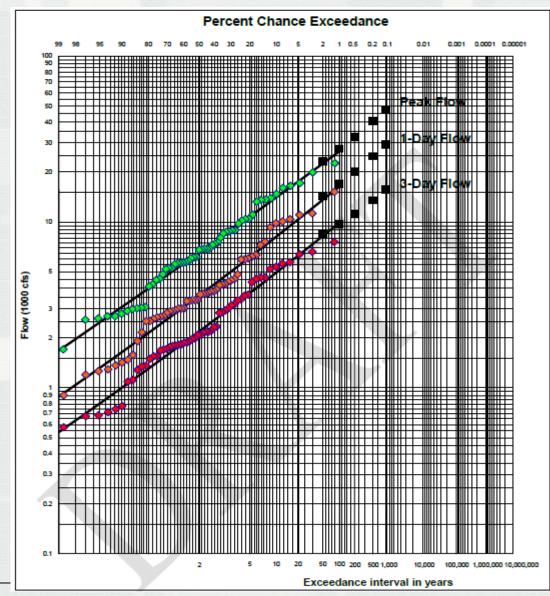
Methods to Extend Frequency Curves


- 1. Extension using Bulletin 17B Methods
- 2. Hydrologic Modeling using frequency based storm events
- 3. Regional Probability of the PMF
- 4. Stochastic Event Flood Model (SEFM)
- 5. Application of the GRADEX Method
- 6. Utilization of Paleoflood Information


BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Extension using Bulletin 17B Methods

Cherry Creek Dam Volume-Probability Curves



Hydrologic Modeling Using Frequency Based Storm Events

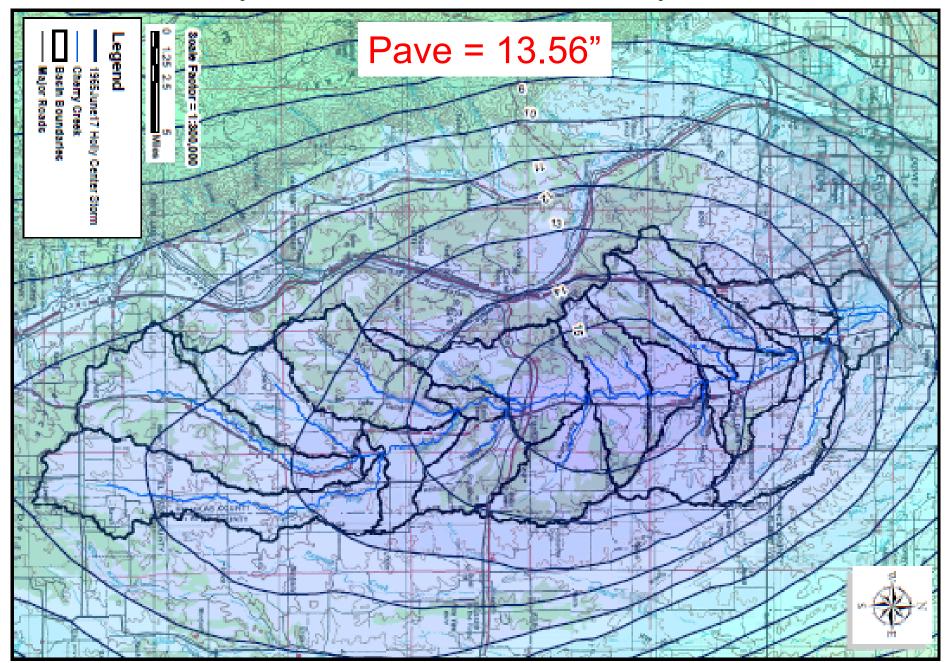
http://www.nws.noaa.gov/ohd/hdsc/index.html

Hydrologic Modeling Using Frequency Based Storm Events

Regionalized Probability of PMF

AEP=10^{-[(1-Ratio)×Range+MinValue]}

Ratio = Historical Max Precip/PMP


Range = 10^{-3} to 10^{-5} = (-3)-(-5) = 2

Min Value = $10^{-3} = 3$

AEP=10^{-[(1-Ratio)×2+3]}

1965 Holly Storm Centered Over Cherry Creek Basin

Cherry Creek Transposed Storms

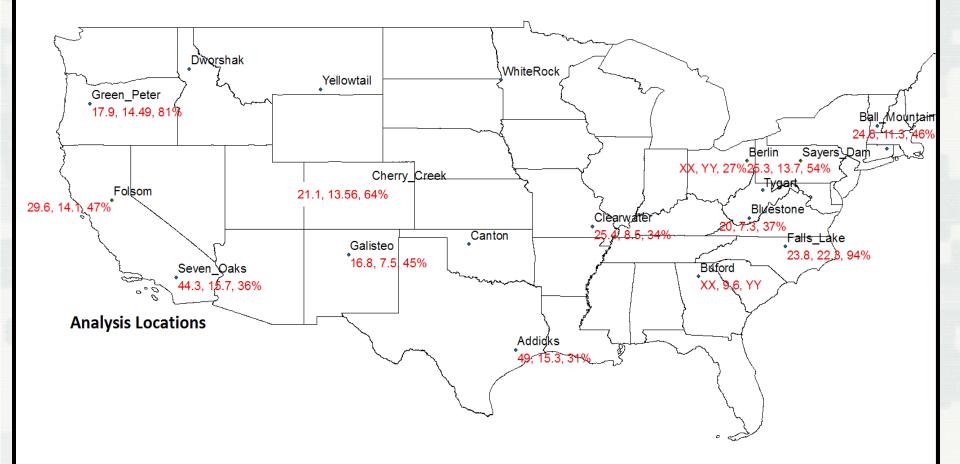
	Maximum	Average	HMR55A			Transposed
	Precip	Precip (in)	Vertical	Horizontal	Total	Basin Ave
Storm	(in)	CC Basin	Factor	Factor	Factor	Precip (in)
1921 Penrose SW 1-23	12	8.21	0.99	1.00	0.99	8.13
1935 Cherry Cr	24	8.08	1.00	0.97	0.97	7.84
1935 Hale	24	8.85	0.89	0.95	0.85	7.48
1965 Plum Cr	14	5.10	1.00	1.00	1.00	5.10
1965 Palmer	16	10.49	1.00	1.00	1.00	10.49
1965 Holly	15	13.56	0.80	0.94	0.75	10.20
1981 Frijole Creek	14	8.14	1.00	1.00	1.00	8.14
1997 Fort Collins	12	3.84	0.97	1.03	1.00	3.84
1997 Pawnee	15	5.59	0.93	0.97	0.90	5.04

AEP=10^{-[(1-Ratio)×2+3]}

Cherry Creek 24-hr PMP = 21.1"

Max Historical Precip = 13.56" → Ratio = 13.56/21.1 = 0.643

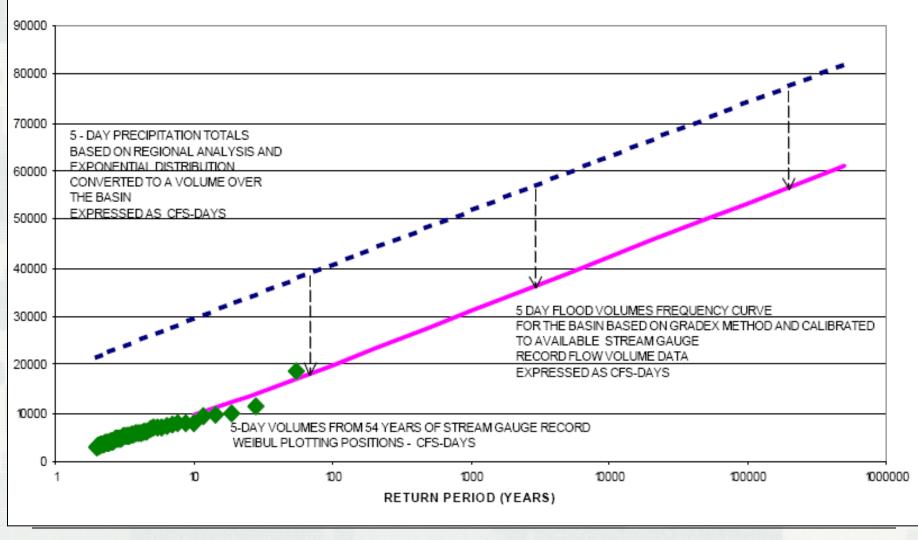
Max Transposed Precip = 10.49" → Ratio = 10.49/21.1= 0.497

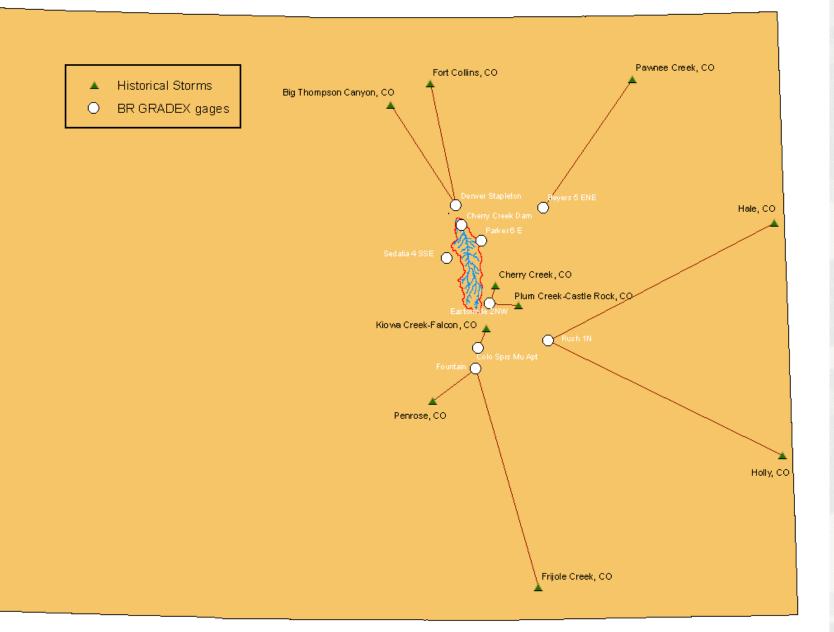

 $AEP=10^{-[(1-.643)\times 2+3]} = 0.000193 \rightarrow 1:5,176$

 $AEP=10^{-[(1-.497)\times 2+3]} = 0.000099 \rightarrow 1:10,139$

Regionalized Probability of PMF Applications

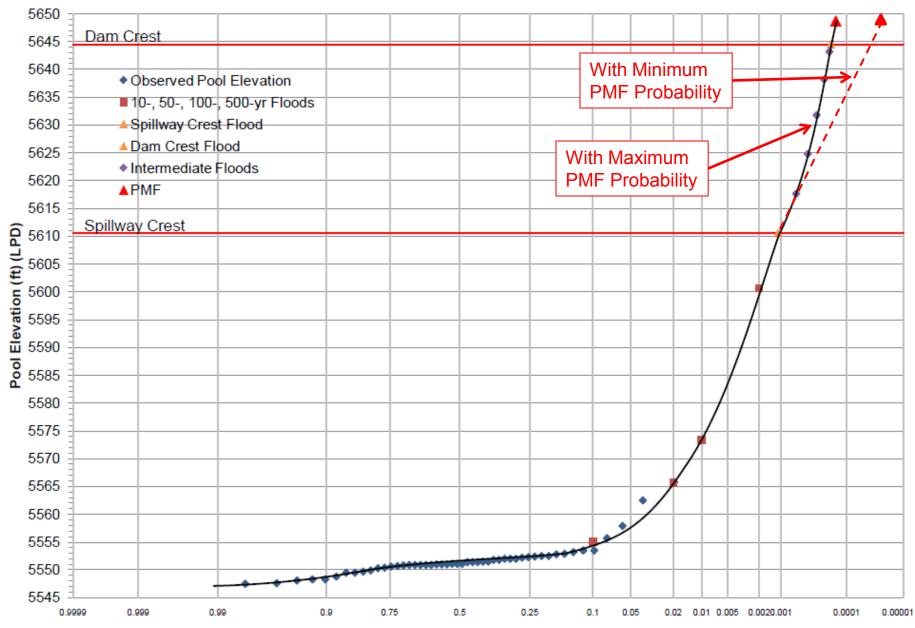
The red numbers represent PMP, Regional Precipitation, Ratio




Regionalized Probability of PMF Applications

	PMP	Regional Rainfall		Return Interval
Location	(in)	(in)	Ratio	(years)
Addicks	49	15.3	0.31	23,742
Bald Eagle	25.3	11.1	0.44	13,260
Ball Mountain	24.6	11.3	0.46	12,059
Bluestone	20	7.34	0.37	18,450
Cherry Creek	21.1	13.6	0.64	5,176
Clearwater	25.4	8.5	0.33	21,415
Falls Lake	23.8	22.3	0.94	1,337
Folsom	29.6	14.1	0.47	11,254
Galisteo	16.8	7.5	0.45	12,798
Green Peter	17.9	14.5	0.81	2,398
Seven Oaks	44.3	15.8	0.36	19,350

GRADEX Method



Cherry Creek AEP of PMF

Method	Annual Exceedance Probability	Return Interval (years)	
Bulletin 17B (Inflow Probability)	0.00016	6,250	
Regional Probability (Maximum Centered Precip)	0.000193	5,200	
Regional Probability (Maximum Transposed Precip)	0.000099	10,000	
GRADEX Method (9 Gages w/ Historic storms)	0.000016	62,500	
GRADEX Method (7 Gages w/Historic storms)	0.00014	7,100	
Average of all Methods	0.000122	8,200	

Cherry Creek Hydrologic Loading

Questions/Discussion

