Seismic Review Table

Prepared by M. Subudhi, M. Reich, B. Koplik, J. Lane

Department of Nuclear Energy Brookhaven National Laboratory

Prepared for U. S. Nuclear Regulatory Commission

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Available from

GPO Sales Program Division of Technical Information and Document Control U.S. Nuclear Regulatory Commission Washington, D.C. 20555

and

National Technical Information Service Springfield, Virginia 22161

Seismic Review Table

Manuscript Completed: April 1980 Date Published: May 1980

Prepared by M. Subudhi, M. Reich, B. Koplik, J. Lane*

Structural Analysis Group Department of Nuclear Energy Brookhaven National Laboratory Upton, NY 11973

*Staff, U.S. Nuclear Regulatory Commission

Prepared for Division of Operating Reactors Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN No. A 3326

ABSTRACT

The Seismic Review Table is a summary of Engineering Design parameters that were employed in the seismic analysis and design of nuclear power plants. The table covers 71 reactors licensed to operate by the U.S.N.R.C. The information contained is listed plant by plant and consists of OBE and SSE "g" Level and Modified Mercalli Intensity; Earthquake Time History used to develop the ground response spectra or as input in the dynamic analysis; Number of Earthquake Components used and Method of Combining Them; Method of Modal Combination; Type of Ground Design Spectra; Method of Generation of Floor Response Spectra; Type of Foundation and Depth; Type, Thickness, Shear Wave Velocity and Shear Modulus Profile of the Surrounding Subgrade Soil and Bedrock; Ground Water Table Depth; nearby Dams; Modelling Method used for soil-structure interaction; Material Damping of Soil; Limitation on Modal Damping . Damping Values; and Loading Combinations, and Acceptance Criteria for Category I Structures, Mechanical Equipment, Piping, and Electrical systems. The goal of the Seismic Review Table is to provide a reference of the available information relevant to the seismic design of currently licensed nuclear power plants.

1

.

.

TABLE OF CONTENTS

	Page
Abstract	iii
Acknowledgements	vii
Introduction	1
Program Tasks and Accomplishments	2
Table I - Contents of Seismic Review Table (Currently Licensed in the United States)	I-1

ACKNOWLEDGEMENTS

The authors wish to acknowledge their indebtedness and gratitude to various people consulted during the preparation of the Seismic Review Tables. Particular thanks are due to our Department Librarians, Mrs. Helen Todosow and Mrs. Catherine Green for their help in gathering and obtaining the various FSAR's, amendments, etc. and to Dr. C. P. Tan of the Structural Engineering Branch, NRC, for the Containment Vessel data shown in Table I of this report. Grateful acknowledgement is also due to Larry Shao, Acting Assistant Director of Engineering Programs, Division of Operating Reactors and Assistant Director for General Reactor Safety Research, NRC, and Dr. P. T. Kuo, Section Leader, Seismic Review Group, NRC, for their constructive criticism and advice regarding the contents of the review tables. Finally to Miss Joan Murray who with patience typed and retyped the corrected drafts, our sincerest gratitude is due.

vii

INTRODUCTION

The intent of this report is to enable a quick reference of the major seismic design parameters inherent in the 71 currently licensed nuclear power plants. All of the presented data was obtained from the existing Final Safety Analysis Reports (FSAR) and their associated amendments. The results are tabulated for each plant in a five page "Seismic Review Table." The major headings in the table are:

- A) Earthquake data
- B) Method of combination (e.g., modes and earthquakes directional components
- C) Design spectra
- D) Foundation and liquefaction assessment
- E) Soil-structure interaction
- F) Damping, load combination and acceptance criteria and allowable stresses for:
 - 1) Category I structures
 - 2) Mechanical Equipment and piping
 - 3) Electrical equipment

Table I lists all of the plants together with the names of the owners, the location, the principal reactor contractor, the plant architectural engineers, the type of plant (PWR, BWR, HTGR), the type of containment vessel, and the electrical and thermal power output. FSAR's for all the plants listed in the table have been reviewed and the tabulated results are given in this report. For completeness Figure 1 depicting the geographical locations of the operational plants is also included.

PROGRAM TASKS AND ACCOMPLISHMENTS

Efforts under this program can be subdivided into three distinct stages: Stage 1 involved the determination and collection of all available plant FSAR's and related questions, answers, and amendments. Next, under Stage 2, the collected information was reviewed in detail for relevance to the information needed for the Seismic Review Table. Finally, under Stage 3, the pertinent parameters were assembled and summarized in tabular form.

With reference to the work carried out under Stage 1, it should be realized that the documented information contains numerous sections, subsections, and amendments per plant which were compiled over a span of many years. This information had to be reviewed to ascertain which documents were available and which had to be ordered. This was accomplished by carrying out a careful review of the documents and comparing the information contained within the documents against the information compiled in the following reference reports:

- <u>Title Listing of Civilian Power Reactor Docket Literature in Nuclear</u> <u>Science Abstracts</u>, volumes 21-26 (1967-1972), TID-3354 R1. U.S. Atomic Energy Commission, Technical Information Center, April 1973.
- <u>Title Listing of Civilian Power Reactor Docket Literature in Nuclear</u> <u>Science Abstracts</u>, volumes 27 (Jan.-June 1973), TID-3324-R1-S1. U.S. Atomic Energy Commission, Technical Information Center, September 1973.
- <u>Title Listing of Power Reactor Docket Information</u>, PRDI-74-12. U.S. Atomic Energy Commission, Technical Information Center, December 1974.
- Power Reactor Docket Information, Annual Cumulation, NUREG/PRDI-75/12. U.S. Energy Research and Development Administration, Technical Information Center, December 1975.
- Power Reactor Docket Information, Annual Cumulation, NUREG/PRDI-76/12/P1. U.S. Energy Research and Development Administration, Technical Information Center, December 1976.
- Power Reactor Docket Information, Annual Cumulation, NUREG/PRDI-77/12/P1. U.S. Dept. of Energy, Technical Information Center, December 1977.
- Power Reactor Docket Information, Annual Cumulation, NUREG/PRDI-78/12/P1. U.S. Dept. of Energy, Technical Information Center, December 1978.

2

Since there was no specific standardized FSAR format until 1975-76, each FSAR had to be examined on an individual basis. In a number of cases the FSAR was actually defined as an amendment to the PSAR. Once it was determined what information was missing and what part of the missing information involved seismic design criteria, the necessary steps were taken to obtain the required documents.

Once the material needed for the review was compiled, Stage 2 efforts were initiated. For each plant assembled FSAR's were first reviewed for the pertinent seismic information. These were available either in "hard cover" or in "microfiche" form. Next, the amendments which include various questions and answers about the plant raised over a period of many years were reviewed and the gathered information was then compiled and referenced for section and page number.

Under Stage 3, the compiled reference material of Stage 2 was prepared and extracted for insertion into the Seismic Review Tables. The information given in the table thus reflects the data up to an including the latest amendments available at time of publication. The tables are numbered according to the numbering scheme shown in the first column of Table I. For each number, a set of five pages comprising the Seismic Review Table is presented with the page number appearing in the lower right hand corner in sequence. As an example, page 8-2 would indicate the eighth entry on Table I, with the number 2 representing the second page of the five-page review table.

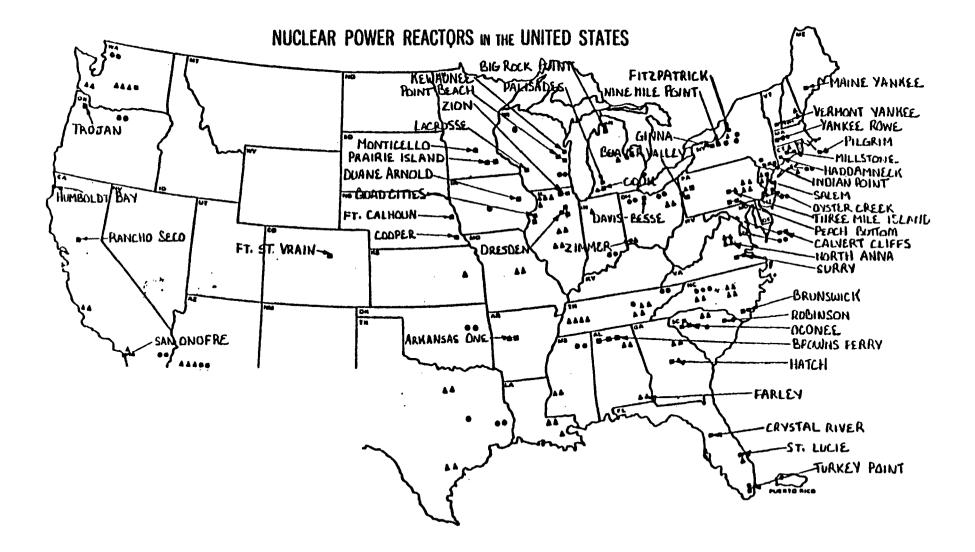
Referring to the Seismic Review Tables, the first item assembled is on page 1 of the five-page table. The name of the plant with reactor unit numbers (if more than one), the type of reactors, and containment, Nuclear Steam System Supplier (NSSS), the architect engineer, and the CP/OL issue dates. Next, under the heading of earthquake data, information pertaining to OBE, SSE, and earthquake time-history was assembled. The OBE and SSE information was further broken down into horizontal and vertical "g" values and Modified Mercalli Intensity values. Reference pages, sections, and amendment numbers are listed in the tables for all assembled information. Under the time history column, names of the earthquake records used are given. These records in turn are used either for the development of the ground design spectra or are modified so that their response spectra envelopes the specified ground design spectra. Generally speaking, this information was available for most of the plants. However, some of the early plants, such as Yankee Rowe, did not have this information in the reviewed dockets, and thus the term "not available" is written in the table. For those cases where the available information was unclear, the term "unclear information" appears in the table, together with the pertinent page numbers where the unclear information is given so that the reader can look up the information for further insight.

Returning to headings OBE and SSE, in many plants the vertical components were equal to two-thirds of the horizontal, with OBE values typically one-half of the SSE. For the earthquake time-history, the older plants usually used El Centro or Taft, while the newer plants used synthetic time-histories.

Methods of combinations were assembled under the subheadings "Number of Earthquake Components Used and Its Combination" and "Modal Combination." The information under these headings includes such items as the the number of horizontal and vertical components used for the analysis, the number of modes considered, and how they were combined, e.g., absolute sum, SRSS, or algebraic sum. It is to be noted that the term "modal combination used" in the table refers to the response spectrum analysis.

The final item on page 1 involves the design spectra with the two subheadings entitled "Type of Ground Design Spectra" and "Method of Generation of Floor Response Spectra." Ground design spectra includes the Housner, Newmark, and Regulatory Guide 1.60 response spectra or any other method specified in the FSAR's. The most commonly used method for generating the floor response spectra was the time-history method. When information regarding the input time-history was available, it was also included under this heading. For some of the older plants, the ground design spectra was directly used with some amplification factor.

Turning to page 2 of 5 of the table, the major headings are "Foundation and Liquefaction Assessment" and "Soil-Structure Interaction." The first item contains four subtopics: "Type of Foundation," "Bearing Information" (including information related to the type, thickness, and shear velocity profile), "Groundwater Table," and "Dams." Foundation description and bedrock characteristics are listed for the containment building. Information regarding structures on pile foundations is also given under this heading. Bearing Information lists such items as type of rock (dolomite, glacial fill, sandstone, etc.), the thickness of the various soil deposits, and shear wave velocities. Groundwater Table information and the existence of nearby dam locations were obtained from the site geological survey.


"Soil Structure Interaction" consists of four subtopics. "Method of Modelling" lists the mathematical model chosen for generating the floor response spectra of the reactor building and the soil beneath it. Usually the structure is modeled as a conventional stick model while the soil is represented as either a lumped spring or finite element model. It is to be noted that a number of plants have their foundation on bedrock. When reviewing the soil structure interaction modelling method, it was found that for some plants a fixed base method was employed. For these cases, the notation fixed base method appears. For cases where no statement was found as to the type of modelling used, the term "not available" was entered in the table. The term "not available" should only be interpreted as a statement of fact with reference to the material presented in the FSAR; it only means that no information about the particular item was found. Other subtopics include the "Soil Shear Strength Modulus Profile," "Material Damping of Soil," and the "Limitation on Modal Damping."

Pages 3, 4, and 5 of the Seismic Review Table are devoted respectively to Category I--structure, mechanical, piping and electrical equipment. Each of these pages have common headings that include "Damping Values" (OBE/SSE) and "Design Criteria," with the latter heading containing subheadings for load combination and acceptance criteria/allowable stresses. "Method of Qualification" (testing or analytical) was included for the mechanical equipment, piping and electrical equipment given on pages 4 and 5. Generally, very little information was available for electrical equipment.

The information listed for the 11 SEP plants (Big Rock Point, Dresden 1 and 2, Ginna, Haddam Neck, LaCrosse, Millstone 1, Oyster Creek, Palisades, San Onofre 1, and Yankee Rowe) was partly obtained through the use of unpublished docket search reports supplied to us by the Systematic Evaluation Program Branch, DOR. This information supplements what was obtained by Brookhaven staff members in their docket search.

In conclusion, this report contains much information covering a wide range of seismic topics. It is possible that some relevant information has been inadvertently overlooked. The Structural Engineering Branch of the Division of Engineering has the responsibility for maintaining these tables and would appreciate any contribution from interested parties as to additions or modifications which might be made to improve it.

The information contained here comprises a data base which will be used to evaluate conformance of the operating reactors with current seismic design guidelines.

CONTENT:	2
----------	---

- - ----

Seismic Review			NSSS Manufac-	Architect	Reac	Containment	Power		
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Type *	Unit Size Net MW(e)	Reactor MW (t)	
151	Arkansas Nuclear One, Unit 1 (Arkansas Power & Light Co.)	Russellville, Ark.	B&W	Bechtel	PWR	(11)	850	2,568	
2-1	Arkansas Muclear One, Unit 2 (Arkansas Power & Light Co.)	Russellville, Ark.	Comb.	Bechtel	PWR	(11)	912	2,815	
3-1	Beaver Valley Power Station, Unit 1 (Duquensme Light Co., Ohio Edison Co., and Pennsylvaina Power Co.)	Shippingport, Pa.	West.	S&W	PWR	(7)	852	2,652	
4-1	Big Rock Point Plant Nuclear (Consumer Power Co.)	Big Rock Point, Mich.	GE	Bechtel	BWR	(1)	72	240	
5-1	Browns Ferry Nuclear Power Station, Unit 1 (Tennessee Valley Authority)	Decatur, Ala.	GE	TVA	BWR	(2)	1,065	3,293	
*-1	Browns Ferry Nuclear Power Station, Unit 2 (Tennessee Valley Authority)	Decatur, Ala.	GE	TVA	BWR	(2)	1,065	3,293	
9-1	Browns Ferry Nuclear Power Station, Unit 3 (Tennessee Valley Authority)	Decatur, Ala.	GE	TVA	BWR	(2)	1,065	3,293	
6-1	Brunswick Steam Electric Plant, Unit 1 (Carolina Power & Light Co.)	Southport, N.C.	GE	UE&C	BWR	(5)	821	2,436	
6-1	Brunswick Steam Electric Plant, Unit 2 (Carolina Power & Light Co.)	Southport N.C.	GE	UE&C	BWR	(5)	821	2,436	
7-1	Calvert Cliffs Nuclear Power Plant, Unit 1 (Baltimore Gas & Electric Co.)	Lusby, Md.	Comb.	Bechtel	PWR	(10)	845	2,700	
7-1	Calvert Cliffs Nuclear Power Plant, Unit 2 (Baltimore Gas & Electric Co.)	Lusby, Md.	Comb.	Bechtel	PWR	(10)	845	2,700	
8-1	Cooper Nuclear Station (Nebraska Public Power District and Iowa Power and Light Co.)	Brownville, Nebr.	GE	B&R	BWR	(2)	778	2,381	
9-1	Crystal River Nuclear Plant, Unit 3 (Florida Power Corpi)	Red Level, Fla.	B&W	Gilbert	PWR	(10)	825	2,452	

TABLE I: CURRENTLY LICENSED REACTORS IN UNITED STATES

Seismic Review			NSSS Manufac-	Architect	1	Containment	Power		
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Type *	Unit Size Net MW(e)	Reactor MW (t)	
10-1	Davis-Besse Nuclear Power Station, Unit 1 Cleveland Electric Illuminating Co.)	Oak Harbor, Ohio	B&W	Bechtel	PWR	(4)	906	2,772	
11-1	Donald C. Cook Nuclear Power Plant, Unit 1 (Indiana and Michigan Electric Co.)	Bridgman, Mich.	West.	AEP	PWR	(6)	1,054	3,250	
11-1	Donald C. Cook Nuclear Power Plant, Unit 2 (Indiana and Michigan Electric Co.)	Bridgman, Mich.	West.	AEP	PWR	(6)	1,100	3,391	
12 -1	Dresden Nuclear Power Station, Unit 1 (Commonwealth Edison Co.)	Morris, Ill.	GE	Bechtel	BWR	(1)	200	700	
13-1	Dresden Nuclear Power Station, Unit 2 (Commonwealth Edison Co.)	Morris, Ill.	GE	S&L	BWR	(2)	794	2,527	
13-1	Dresden Nuclear Power Station, Unit 3 (Cosmonwealth Edison Co.)	Morris, Ill.	GE	S&L	BWR	(2)	794	2,527	
14-1	Duane Arnold Energy Center, Unit 1 (Iowa Electric Light & Power Co., Central Iowa Power Cooperative, and Corn Belt Power Cooperative)	Palo, Iowa	GE	Bechtel	BWR	(2)	538	1,593	
15-1	Edwin I. Hatch Nuclear Plant, Unit 1 (Georgia Power Co.)	Baxley, Ga.	GE	Bechtel	BWR	(2)	786	2,436	
16-1	Edwin I. Hatch Nuclear Plant, Unit 2 (Georgia Power Co.)	Baxley, Ga.	GE	Bechtel	BWR	(2)	795	2,436	
17-1	Fort Calhoun Station, Unit 1 (Omaha Public Power District)	Fort Calhoun, Nebr.	Comb.	G&H	PWR	(9)	457	1,420	
18 -1	Fort St. Vrain Nuclear Generating Station (Public Service Co. of Colorado)	Platteville, Colo.	GA	S&L	HTGR	(9)	330	842	
19-1	Haddan Neck Plant (Connecticut Yankee Atomic Power Co.)	Haddam Neck, Conn.	West.	S&W	PWR	(8)	575	1,825	
.20-1	H. B. Robinson Plant, Unit 2 (Carolina Power & Light Co.)	Hartsville, S. C.	West.	Ebasco	PWR	(9)	700	2,200	

-

Seismic Review			NSSS Manufac-	Architect	Reac	Containment	Po	wer
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Туре	Unit Size Net MW(e)	Reactor MW (t)
21 -1	Humboldt Bay Power Plant, Unit 3 (Pacific Gas & Electric Co.	Eureka, Calif	GE	Bechtel	BWR	(1)	63	242
22 -1	Indian Point Station, Unit 1 (Consoli- dated Edison Co. of New York, Inc.)	Buchanan, N.Y.	B&W	UE&C	PWR	(3)	265	615
23 -1	Indian Point Station, Unit 2 (Consoli- dated Edison Co. of New York, Inc.)	Buchanan, N.Y.	West.	UE&C	PWR	(8)	873	2,758
24 -1	Indian Point Station, Unit 3 (Power Authority of New York)	Buchanan, N.Y.	West.	UE&C	PWR	(8)	965	2,760
25 -1	James A. FitzPatrick Nuclear Power Plant (Power Authority of the State of New York)	Scriba, N.Y.	GE	S&W	BWR	(2)	821	2,436
26 -1	Joseph M. Farley Nuclear Plant, Unit 1,2 (Alabama Power Co.)	Dothan, Ala.	West.	Bechtel	PWR	(11)	821	2,652
27 -1	Kewaunee Nuclear Power (Wisconsin Power & Light Co., Wisconsin Public Service Co. and Madison Gas & Electric Co.)		West.	Pioneer	PWR	(4)	535	1,650
28 -1	La Crosse (Genoa) Nuclear Generating Station (Dairyland Power Cooperative)	La Crosse, Wis.	AC	S&L	BWR	(1)	50	165
29 -1	Maine Yankee Atomic Power Plant (Maine Yankee Atomic Power Co.)	Wiscasset, Maine	Comb.	S&W	PWR	(7)	790	2,500
30 -1	Millstone Nuclear Power Station, Unit 1 (Northeast Nuclear Energy Co.)	Waterford, Conn.	GE	Ebasco	BWR	(2)	660	2,011
31 -1	Millstone Nuclear Power Station, Unit 2 (Northeast Nuclear Energy Co.)	Waterford, Conn.	Comb.	Bechtel	PWR	(11)	830	2,560
32 -1	Monticello Nuclear Generating Plant (Northern States Power Co.)	Monticello, Minn.	GE	Bechtel	BWR	(2)	545	1,670
33 -1	Nine Mile Point Nuclear Station, Unit 1 (Niagara Mohawk Power Corp.)	Scriba, N.Y.	GE	S&W	BWR	(2)	610	1,850

Seismic Review			NSSS Manufac-	Architect	Reac	Containment	Power		
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Туре	Unit Size Net MW(e)	Reactor MW (t)	
34 -1	North Anna Power Station, Unit 1 (Virginia Electric & Power Co.)	Mineral, Va.	West.	S&W	PWR	(7)	907	2,775	
35 -1	Oconee Nuclear Station, Unit 1 (Duke Power Co.)	Seneca, S. C.	B&W	Utility & Bechtel	PWR	(10)	887	2,568	
35 -1	Oconee Nuclear Station, Unit 2 (Duke Power Co.)	Seneca, S. C.	B&W	Utility & Bechtel	PWR	(10)	887	2,568	
35 -1	Oconee Nuclear Station, Unit 3 (Duke Power Co.)	Seneca, S. C.	B&W	Utility & Bechtel	PWR	(10)	887	2,568	
36-1	Oyster Creek Nuclear Power Plant, Unit 1 (Jersey Central Power & Light Co.)	Toms River, N.J.	GE	B&R	BWR	(2)	650	1,930	
37 -1	Palisades Nuclear Plant, Unit 1 (Con- sumers Power Co. of Michigan)	South Haven, Mich.	Comb.	Bechtel	PWR	(10)	805	2,530	
38-1	Peach Bottom Atomic Power Station, Unit 2 (Philadelphia Electric Co., Public Ser- vice Electric & Gas Co., Atlantic City Electric Co., and Delmarva Power & Light Co.)		GE	Bechtel	BWR	(2)	1,065	3,293	
38-1	Peach Bottom Atomic Power Station, Unit 3 (Philadelphia Electric Co., Public Ser- vice Electric & Gas Co., Atlantic City Electric Co., and Delmarva Power & Light Co.)		GE	Bechtel	BWR	(2)	1,065	3,293	
39-1	Pilgrim Nuclear Power Station, Unit 1 (Boston Edison Co.)	Plymouth, Mass.	GE	Bechtel	BWR	(7)	655	1,998	
40-1	consin Electric Power Co. and Wisconsin Michigan Power Co.)		West.	Bechtel	PWR	(10)	497	1,518	
40-1	Point Beach Nuclear Plant, Unit 2 (Wis- consin Electric Power Co. and Wisconsin Michigan Power Co.)	Two Creeks, Wis	West.	Bechtel	PWR	(10)	497	1,518	

Seismic Review			NSSS Manufac-	Architect	Reac	Containment	Power		
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Type *	Unit Size Net MW(e)	Reactor MW (t)	
41-1	Prairie Island Nuclear Generating Plant, Unit 1 (Northern States Power Co.)	Red Wing, Minn.	West.	Pioneer	PWR	(4)	530	1,650	
41 -1	Prairie Island Nuclear Generating Plant, Unit 2 (Northern States Power Co.)	Red Wing, Minn.	West.	Pioneer	PWR	(4)	530	1,650	
42 -1	Quad-Cities Station, Unit 1 (Commonwealth Edison Co. and Iowa-Illinois Gas & Electric Co.)	Cordova, Ill.	GE	S&L	BWR	(2)	789	2,511	
42 -1	Quad-Cities Station, Unit 2 (Commonwealth Edison Co. and Iowa -Illinois Gas & Electric Co.)	Cordova, Ill.	GE	S&L	BWR	(2)	789	2,511	
43 -1	Rancho Seco Nuclear Generating Station, Unit 1 (Sacramento Municipal Utility District)	Clay Station, Calif.	B&W	Bechtel	PWR	(11)	918	2,772	
44 -1	Robert Emmett Ginna Nuclear Power Plant, Unit 1 (Rochester Gas & Electric Co.)	Ontario, N.Y.	West.	Gilbert	PWR	(9)	490	1,520	
45 -1	Salem Nuclear Generating Station,Unit 1,2 (Public Service Electric & Gas Co., Philadelphia Electric Co., Atlantic City Electric Co., and Delmarva Power & Light Co.)	Salem, N.J.	West.	UE&C	PWR	(8)	1,090	3,338	
46 -1	San Onofre Nuclear Generating Station, Unit 1 (Southern California Edison and San Diego Gas & Electric Co.)	San Clemente, Calif.	West.	Bechtel	PWR	(3)	436	1,347	
47 -1	Shippingport Atomic Power Station (DOE and Duquesne Light Co.)	Shippingport, Pa.	West.	B&R,S&W	PWR	(3)	60	236	
48 -1	St. Lucie Plant, Unit 1 (Florida Power & Light Co.	Fort Pierce, Fla.	Comb.	Ebasco	PWR	(4)	802	2,560	
49 -1	Surry Power Station, Unit 1 (Virginia Electric & Power Co.)	Gravel Neck, Va.	West.	S&W	PWR	(7)	822	2,441	

I-5

Seismic Review		NSSS Manufac- Architect Reac Containme						Power		
Table No.	Name and/or owner	Location	turer **	Engineer **	tor Type	Type *	Unit Size Net MW(e)	Reactor MW (t)		
49 -1	Surry Power Station, Unit 2 (Virginia Electric & Power Co.)	Gravel Neck, Va.	West.	S&W	PWR	(7)	822	2,441		
50 -1	Three Mile Island Nuclear Station, Unit 1 (Metropolitan Edison Co.)	Middletown, Pa.	B&W	Gilbert	PWR	(10)	819	2,535		
51 -1	Three Mile Island Nuclear Station, Unit 2 (Metropolitan Edison Co.)	Middletown, Pa.	B&W	B&R	PWR	(10)	906	2,772		
52 -1	Trojan Nuclear Plant, Unit 1 (Portland General Electric Co., Eugene Water & Electric Board, and Pacific Power & Light Co.)	Prescott, Oreg.	West.	Bechtel	PWR	(12)	1,130	3,411		
53-1	Turkey Point Plant, Unit 3 (Florida Power & Power Co.)	Florida City, Fla.	West.	Bechtel	PWR	(10)	693	2,200		
53 -1	Turkey Point Plant, Unit 4 (Florida Power & Power Co.)	Florida City, Fla.	West.	Bechtel	PWR	(10)	693	2,200		
54 -1	Vermont Yankee Nuclear Power Station (Vermont Yankee Nuclear Power Corp.)	Vernon, Vt.	GE	Ebasco	BWR	(2)	514	1,593		
55 -1	Yankee-Rowe Nuclear Power Station (Yan- kee Atomic Electric Co.)	Rowe, Mass.	West.	S&W	PWR	(3)	175	600		
56 -1	Zion Nuclear Plant, Unit 1 (Commonwealth Edison Co.)	Zion, Ill.	West.	S&L	PWR	(10)	1,040	3,250		
56 -1	Zion Nuclear Plant, Unit 2 (Commonwealth Edison Co.)	Zion, Ill.	West.	S&L	PWR	(10)	1,040	3,250		
 (1) Pre (2) Mar (3) Dry (4) Dry (5) Mar (6) Ice (7) Sub (8) Atm (9) Witc 	-Mark (Steel) k I (Steel) (11) 3 Containment-Spherical (Steel) Containment-Cylindrical (Steel) (12) 3 k I (Reinforced Concrete) ** Ma -Atmospheric (Reinforced Concrete) AC ospheric (Reinforced Concrete) AE hout Buttresses (Pre-Stressed	(Pre-Stressed Buttresses Wit (Pre-Stressed Buttresses Wit Dome (Pre-Stre nufacturers an = Allis-Chaln P = American P Service	th Shallow Dome Concrete) th Hemispherical essed Concrete) ad Engineers mer Mfg. Co. Electric Power	GA = Genera GE = Genera G&H = Gibbs S&W = Stone Con S&L = Sarge TVA = Tenne	ock & W nbustic al Ator al Elec s & Hil e & Wel cp. ent & l esse Va	Vilcox Co. on Eng., Inc. nic ctric Co. lls, Inc.	Cor West. = West s	ed Engineers & nstructors tinghouse Electric Corp. I-6		

-

.

- - -

Docket	Number
50-3	313

NAME AND NSSS Type of the Plant			EAR	THQUAKE D	ATA	METHO		DESIGN SPECTRA			
	0	BE	SSE			EARTHQUAKE	NO, OF EARTH.	MODAL	TYPE OF GROUND	METHOD OF	
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR. g	VERT. B	TIME HISTORY	COMP. USED AND ITS COMB.	COMB.	DESIGN SPECTRA	GENERATION OF FLOOR RESPONSE SPECTRA	
ARKANSAS NUCLEAR UNIT No. 1 Reactor type: PWR Containment type: 3 buttresses with shallow dome (prestressed con- crete) NSSS Manufacturer: Babcock & Wilcox Arcitect Engineer: Bechtel	0.10	0.067	VII	0.20	0.133	A synthetic time history is generated so that its response spectra envelops the ground design spectrum.	Three components: 2 horizontal & 1 vertical. Each horizontal was combined with the ver- tical, assuming simultaneous occurrences.	SRSS (No closely spaced modes).	Housner	Time-history method Vertical ground response spec- trum was used for equipment design (no ver- tical floor response spec- tra generated).	
12-68/5-74	Sec. 5.1. p. 5-28a	1.2.5	p. 2-19	Sec. 5.1 p, 5-28a		p. 5.A-6 Amend. 28	Sec. 5.A.4.1	5.A.4.2	Sec. 5.A 4.1 p. 5.A-5 Figs. 5.A-1 and 5.A-2	Sec. 5.A. 4.2 p. 5.A-6 p. 5-28c Amend. 23	

8/18/72

	FOUN	DATION AND	LIQUEFACTION AS	SESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEA	RING INFOR	MATION	GROUND WATER	DAM	METHOD		MATERIAL	LIMITATION
AND ITS DEPTH	TYPE THICKNESS V PROFILE			TABLE DAM		OF MODELLING	G _s profile	DAMPING OF SOIL	ON MODAL DAMPING
Flat Slab 9 feet "All Class I structures utilized the shale bedrock as a foundation"	Bedrock which consists of Pennsylvanian McAlester formation shale.	24 ft.	Properties of shale, 10,000 to 14,500 fps.	Most wells drilled into bedrock are less than 150 ft.	Not avail- able.	Stick model with soil springs, as indicated in Fig. 5A-3 Fig. 5A-4 Fig. 5A-5	Not available	Unclear in- formation	Not availabl
Sec. 5.1.1.1 p. 5.1 Sec. 2.7.2 p. 2.16	p. 2-24	p. 2-16	Table 2-5 p. 2-28	Sec. 2.5.3 p. 2-7a				Sec. 5.1.1.5. p. 2-28a	6

STRUCTURES										
		DESIGN CRITERIA								
DAMPING OBE/SSE		LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
(% critical Welded steel plate assemblies Welded steel framed structures		Y = $1/\phi$ (1.25 D + 1.0 R + 1.25 E) Y = $1/\phi$ (1.25 D + 1.25 H + 1.25 E) Y = $1/\phi$ (1.25 D + 1.25 H + 1.25 W) Y = $1/\phi$ (1.0 D + 1.8 E) (For structural element carrying mainly	ACI-318-63 Code AWS D12.1-61							
Bolted or riveted steel framed structure	2.5/2.5	earthquake forces.) $Y = 1/\phi$ (1.0 D + 1.0 R + 1.0 E') $Y = 1/\phi$ (1.0 D + 1.0 H + 1.0 E') (0.9 D is used where dead load subtracts for critical stress in	Ultimate strength design "Design of Protective Structures", Dept. of Navy,							
Reinforced concrete equipment supports	2.0/3.0	<pre>the first three equations.) Y = yield strength. D = dead load. R = force or pressure on structure due to rupture of any pipe.</pre>	NP-3726, August 1950.							
Reinforced concrete frames and buildings	3.0/5.0	H = force on structure due to thermal expansion. E = design earthquake load.								
Prestressed concrete structure	2.0/5.0	 E' = maximum earthquake load. W = tornado load \$\phi\$ = 0.9 for reinforced concrete, 0.85 for shear, bond. Anchorage in reinforced concrete. 0.75 for spirally reinforced concrete component members. 0.70 for tied component members. 0.90 for fabricated structural steel, and 0.90 for reinforced steel (not prestressed) in direction of tension. 								
Sec. 5.A.4 p. 5.A-6		Sec. 5.A.3 p. 5.A-3 p. 5.A-4	Sec. 5.A.3 p. 5-38a p. 5.A-3 Amend. 28							

	DAMP ING	METHOD	MECHANICAL & PIPING DESIGN CRITERIA				
	OBE/SSE	METHOD OF QUALIFICATION	LOAD COM	BINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses		
Steel piping	(% critical damping) 0.5/0.5	Analytical and/or testing.	L. C. for Internals, vessels, : and piping: <u>L.C.</u> Design loads + design earthquake loads Design loads + SSE Design loads + pipe rupture Design loads + SSE	integral support attachments $\frac{\text{Stress Limit}}{P_{M} \leq 1.0 \text{ S}_{M}}$ $P_{L} + P_{B} \leq 1.5 \text{ S}_{M}$ $P_{M} \leq 1.2 \text{ S}_{M}$ $P_{L} + P_{B} \leq 1.2 \text{ (1.5 S}_{M})$ $P_{M} \leq 1.2 \text{ S}_{M}$ $P_{L} + P_{B} \leq 1.2 \text{ (1.5 S}_{M})$ $P_{M} \leq 2/3 \text{ S}_{U}$ $P_{L} + P_{B} \leq 2/3 \text{ S}_{U}$	ASME BPVC, Section III ANSI B31.7 Nuclear Power piping code -		
Sec. 5A.4 p. 5.A-6		Sec. 5.A.4.2 p. 5A-6 p. 5A-8	Sec. 4.1,2 p. 4-4		Sec. A-3 p. A-2		

	ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRIT	TERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Not available.	Not available.	Not available.	Class I electrical equipment is seismic qualified in accordance with the IEEE Guide for seismic qualification of Class I elec- trical equipment for nuclear power generating stations, JcNPS/Sec. 5 (to be designated IEEE 344).						
			Sec. 8.1 p. 8-1, Amendment No. 22, December 14, 1971						

- --

Docket Number 50-368

NAME AND NSSS TYPE OF THE	EARTHQUAKE DATA							D OF ATION	DESIGN SPECTRA	
PLANT	OF	E	SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR. B	VERT.	INTENSITY MM	HOR. 8	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Arkansas Nuclear One Unit No. 2 Reactor type: PWR Containment type: 3 buttresses with shallow dome (prestressed con- crete) NSSS Manufacturer: Combustion Engin- eering Architect Engineer: Bechtel	0.10	0.067	VII	0.20	0.133	Synthetic time history	Three components: two horizontal and one vertical. Each horizontal was combined with the vertical, assuming simultaneous occurrence.	SRSS	Design response spectra generated from time-histories as per AEC Reg Guide 1.60 (BC-TOP-4)	tion time history
12-72/9-78	p. 2.5-25	p. 3.7-7		p. 2.5~2	5 p. 3.7-	7 pg. 3.7-1	p. 3B-1	p. 3.7-9	p. 3.7-1	p. 3.7-3

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEAF	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON	
and Its depth	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	•	OF SOIL	MODAL DAMPING	
Reinforced con- crete flat cir- cular slab.	and tan clay lay, which ally bedded sandstone of	90 ft.	Not available.	About 10 ft below ground surface.	Ozark Dam Dardanelle Dam	Stick model with fixed base	Not available.	No soil dampin	g Not available.	
Depth not avail- able.	Moderate to stiff, plastic, red and to with occasional zone of silty clay, v overlies black, dense, horizontally ahale and interbedded shale and sands	Formation.			Robert S. Kerr Dam					
p. 3.8-46	p. 2.5–9	p. 2.5-8		p. 2.5-11	p. 2.4-6 to 2.4-8	p. 3.7-3		p. 3.7-2		

The second second

STRUCTURES								
		DESIGN CRITERIA						
DAMPING OBE/SSE		LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
(% critic) Welded steel frame structures	al damping) 2.0/5.0	A. Design loading case: 1) D+L+F+T ₀ 2) D+L+F+P+T _A B. Factored loading case: 1. C = $1/\phi$ ((1.0+0.05) D + 1.5 P + 1.0 T _A + 1.0 F)	ACI 318-63 AISC 1969 Supplement 1, 2, November 1970 and December 1971.					
Bolted and riveted steel	3.0/5.0	2. $C = 1/\phi$ ((1.0+0.05) D + 1.3 F + 1.0 T_A + 1.0 F) 2. $C = 1/\phi$ ((1.0+0.05) D + 1.25 P + 1.0 T + 1.25 H + 1.25 E + 1.0 F) 3. $C = 1/\phi$ ((1.0+0.05) D + 1.25 H + 1.0 R + 1.0 F + 1.25 E						
Reinforced concrete structure and equip ment supports	3.0/5.0	4. $C = 1/\phi$ ((1.0+0.05) D + 1.0 F + 1.25 H + 1.0 W' + 1.0 T _o) 5. $C = 1/\phi$ ((1.0+0.05) D + 1.0 P + 1.0 T _A + 1.0 H + 1.0 E'						
Prestressed concrete structures	2.0/5.0	+ 1.0 F) 6. $C = 1/\phi$ ((1.0+0.05) D + 1.0 H + 1.0 R + 1.0 E' + 1.0 F + 1.0 T _o)						
Bolted or riveted steel frame structures	2.5/2.5	<pre>C = Required capacity of the containment D = Dead loads. E = Operating basis earthquake loads. E' = Design basis earthquake loads. F = Prestress loads. H = Pipe expansion loads. L = Live loads. P = LOCA pressure loads. R = Pipe rupture loads. T = LOCA thermal loads. T_= Operating thermal loads. W'= Tornado wind and tornado missile loads.</pre>						
p. 3.7-15		φ = Capacity reduction factors. p. 3.8-7 to 3.8-8	p. 3.8-3					

	MECHANICAL & PIPING									
DAMPING OBE/SSE		METHOD	DESIGN CRITERIA							
0667336		OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
(%) Steel piping	critical dampin 0.5/0.5	g) Analytical	Loading combination 1: normal operating loads + OBE loads. Loading combination 2: normal operating loads + DBE loads.	ASME BPVC Section III						
Vital piping	0.5/1.0		Loading combination 3: normal operating loads + DBE loads + pipe rupture loads.							
Welded steel plate asse	mblies 1.0/1.0									
p. 3.7-15		p. 3.6-6	p. 3.6-4	p. 3.6-4						

	ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA	_						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses						
Not available.	Not available.	Not available.	Equipment supplied by NSSS vendor: Combustion Engineering Topical Report CENPD-61 Equipment supplied by other than NSSS vendor: IEEE Standard 344-1971						
			p. 3-10.2						

- -

Docket Number 50-334

NAME AND NSSS Type of the Plant			EAR	THQUAKE D		METHOD OF COMBINATION		DESIGN SPECTRA		
L PWU 7	0	BE	SSE			EARTHQUAK	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF
CP/OL ISSUE DATE	HOR. 8	VERT. g	INTENSITY MM	HOR.	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	GENERATION OF FLOOR RESPONSE SPECTRA
Beaver Valley Power Station Unit No. 1 Reactor type: PWR Containment type: Sub-atmospheric (Reinforced con- crete) NSSS Manufacturer: Westinghouse Architect Engineer: Stone & Webster	0.06	0.04	IV	0.125	0.085	Compared with El Centro 1940 and Taft 1952, Golden Gate 1957.	Three com- ponents. Combination is simul- `taneous.		Housner response spectra was gener- ated which enveloped El Centro, Taft and Golden Gate time histories. Performe by Dr. R. V. Whitmar	d
6-70/7-76						3 Sec. 2.6.4.2 p. 2.6-11		Amend. 1 4/23/73	Figs. 2.5-1 and 2.5-2 P4. 2.5-3 App. 2D	

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEA	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF MODELLING	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON		
	TYPE	THI CKNES S	V PROFILE	TABLE	UAR		8 INTID	OF SOIL	MODAL DAMPING		
Reinforced con- crete mat 10 ft thick	Gravel terrace	100 ft	Varying from 800 to 1250 psf	10 ft to 50 ft average 30 ft be- low surface.	3.1 miles downstream from Mont- gomery Lock and Dam 19.6 miles upstream from New Cumberland Rock and Dam.	Stick model with soil springs.	 (1) Containment structure G = 22,000 psi (2) Fuel building, auxil- iary building and other near surface building G = 17,000 psi (3) Intake structure G = 17,000 psi 		5% OBE 7% DBE		
Sec. 2.6.3.1 p. 2.6-3		Sec. 2.4 p. 2.4-2	Sec. 2.6.2.3 p. 2.6-3	Sec. 2.3.2.1.1 p. 2.3-3	Sec. 2.3.1 p. 2.3-1	Sec. 2.6.4.4 p. 2.6-15	Sec. 2.5.3 p. 2.5-5		App. B pg. B.1-3		

· · · · · · · · · · · · · · · · · · ·	<u></u>		
		DESIGN CRI	TERIA
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES
Containment structure Steel reinforced concrete (no cracking) Welded steel, well reinforced concrete (with slight cracking) Reinforced concrete (with consider- able cracking) Bolt steel Welded steel Reinforced concrete Bolted steel	5.0/7.0 0.5 to 1.0 2.0 2.0 5.0 5.0 5.0 7.0	Concrete structure D.L. + L.L. D.L. + L.L. + OBE D.L. + L.L. DBE D.L. + L.L. + TOR D.L. + L.L. + F Steel structure D.L. + L.L. + OBE D.L. + L.L. + DBE D.L. + L.L. + TOR D.L. + L.L. + F	Using working stress design ACI 318-63 Steel structure, AISC-63, Part I Specified minimum yield strength for structural steel.
Amendment I, Sec. B.1.2, Table B.1-3, 4/23/73	p. B.1-3	Amendment VII, p. B.1-6 (3/29/74)	Amendment VII, P. B.1-7 3/29/74

	MECHANICAL & PIPING								
	DAMPING	METHOD		DESIGN CRITERIA					
	OBE/SSE (% criti- cal damping)	OF QUALIFICATION	LOAD	COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
Piping	0.5/1.0	Analytical and testing.	<pre>Pressure piping 1. Normal conditions 2. Upset conditions 3. Emergency conditions Pressure vessel 1. Normal conditions 2. Upset conditions 3. Emergency conditions</pre>	(a) $P_m \leq S$ (b) $P_m (\text{or } P_L) \leq S$ (a) $P_m \leq 1.2 \text{ S}$ (b) $P_m + P_B \leq 1.5 \text{ S}$ (c) $P_m + P_B \leq 1.5 \text{ S}_m$ (c) $P_m + P_B \leq 1.5 \text{ S}_m$ (c) $P_m + P_B + Q \leq 3 \text{ S}_m$ (c) $P_m + Q = 3 $	Piping ANSI, B31.1 pressure piping code with diameters of 6 in. NPS and below. ASME BPVC, Section III (1968 edition)				
Amendment I, 4/23/73	Table B.1-3		For further details refer t	o Table B.3-4	Question 3.22-1				

_

ELECTRICAL EQUIPMENT							
DAMPING	METHOD	DESIGN CRITERIA					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
Not available	Testing for mounted components	"Class I instrumentation and electrical equipment are designed to capability to: 1. Initiate a protective action during DBE and OBE 2. Withstand seismic disturbances during post accident operation 					

Docket Number 50-155

NAME AND NSSS Type of The	EARTHQUAKE DATA						METHO COMBIN		DESIGN	SPECTRA					
PLANT	01	BE		SSE		EARTHQUAKE				EARTII.	EARTII.	EARTII.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. g	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA					
Big Rock Point Nuclear Plant Reactor type: BWR Containment type: Pre-Mark (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	Not used	Not used	Not avail- able	.05 and 0.025 (see last column of this page) 0.12 for RDS only.		not used	one horizon- tal component 3 direc- tions with SRSS for reacto depressuri system on 1	zation	Not used	The lateral concrete loads for design of internal concrete structures were determined from U.B.C requirements. A seismic factor of 0.025 was used for the equivalent la- teral coefficient for these structures as well as other ma- jor structures, e.g. turbine building, 240 ft. high stack, control room and waste storage building. RDS re- analyzed in 1974 using R.G. 1.60, floor response spectra by Kapur method.					
5-60/8-62				Sec. 2-1	1		Sec. 2-11								

*Information obtained from BNL Docket search and SEPB Report prepared by LLL; EDAC Report #175-130.04, January 1979.

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION	GRO		GROUND WATER DAM		METHOD OF					
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	5	OF SOIL	MODAL DAMPING	
The lower segment of the spherical steel vessel is embedded in concrete and the structure extends 27 ft. below grade. The foundation consists of a combination of a 3-foot thick concrete mat and reinforced concrete footings from 38 ft. to 8 ft. below grade.	Rock	Not available	Not available	Not available	Not available	Not used	Not available	Not used	Not avail- able	

<u>مان می در مان مان و بر مان و بر از با می از با می می از می می از می از می می از می می می می می می می می می می</u>	STRUCTURES						
		DESIGN CRITERIA					
DAMPING OBE/SSE	(% Critical damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES				
Containment: used in 1974 reanalysis of reactor depressurization system to acceleration equal to 0.12g. RDS components assumed to have damping values of R.G. 1.61.	4.0	<u>Containment</u> : Seismic (0.05g) + DL + snow <u>Internal Concrete Structure</u> : Seismic (0.05g) + DL + equipment <u>NSSS</u> : Seismic (0.05g) + DL + pressure <u>NSSS Piping</u> : Seismic (0.025g) + pressure + equipments <u>Turbine Building</u> : Seismic (0.025g) + DL + equipment	Containment: ASME B and PV Sec. VI, VIII, IX UBC - 1958 ACI - 318-56				
		Sec. 3-3	Sec. 2-11				

	MECHANICAL & PIPING							
DAMPING	Method	DESIGN CRITERIA						
OBE/SSE (% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses					
Not available	Not available	Not available	Containment/Reactor Vessel: ASME BPVC					
			Sec. II, VI, VIII, IX, 1958					
			Piping and Supports: ASA B 31.1 1955					

· ____

	ELECTRICAL EQUIPMENT							
DAMP ING	METHOD	DESIGN CRITERIA						
OBE/SSE (% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
	Test		<pre>MIL-STD-167, Mechanical vibration of shipbord equipment MIL-STD-901C, Requirements for shock test. "Seismic qualification of RDS for BRP plant". Amend. 8, Docket 50155-50</pre>					

•

<u>Docket Number</u> 50-259, 260, 348

NAME AND NSSS Type of the			EAR	THQUAKE DA	TA		METHO COMBIN		DESIGN	SPECTRA
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. g	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Browns Ferry Nuclear Plant Unit Nos. 1, 2, & 3 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Tennessee Valley Authority	0.10	0.067	VII	0.20		Leo mentiment erecter		al n is to act sly contal) cease or ne ver- , which- st	Housner design spectra	Time-history method.
Jnit 1: 5-67/6-73 Jnit 2: 5-67/6-74 Jnit 3: 7-68/8-76	Sec. 2.5. p. 2.5-6	4 p.12.2-2	p. 2.5-6	Sec. 2.5 p. 2.5-6	.4 p.12.2-	Sec. 2.5-4 2 pp. 2.5-7, 2.5-8, 2.5-12	p. 12.2-32 Sec. C.3-2 p. C.0-3	2 Sec. C.3-2 p. C.0-3	Figs. 2.5-15 and 2.5-16 , 2.5-17 p. 2.5-7	Sec. 12.2.2.8 p. 12.2-12

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEAR	ING INFORM	ATION	GROUND Water Table	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE		DAT					
Base slab with a circular mass of concrete at the center supporting		Average depth 54 ft (41 to 69 ft)	Not available.	Ground water is derived from pre- cipitation.		Lumped mass model with soil springs	2,300,000 psi bedrock	Not available	5% for all modes	
the drywell.		50 ft below bed rock								
	Payne forma-	145 ft below Tuscomb- ia								
Sec. 12.2.2.1 p. 12.2-1	Sec. 2.5. pp. 2.5-	2.3.2 1&2.5-2		Sec. 2.4.2.1 p. 2.4.1	p. 2.4-3	Sec. 12.2.2.8 p. 12.2-11	Sec. 2.5.2.4.2 p. 2.5-5	p. 12.2-69	Sec.12.2.22 p. 12.2-31	

p. 12.2-69 Fig. 12.2-78

	STRUCTURES								
		DESIGN CRITERIA							
	MMPING BE/SSE (% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Steel structure Concrete	1.0 5.0	These loads are considered in the following combinations: Reactor building Case 1. Prestartup - DL+LL+P Case 2. Operating - DL+LL+P+THERM+RESTR Case 3. Operating + Earthquake -A. DL+LL+P+THERM+RESTR+OBE -B. DL+LL+P+THERM+RESTR+DBE where DL = dead load LL = live load P = pressure transmitted through polyurethane foam at oper- ating temperature OBE = Operating Basis Earthquake (0.1 g) DBE = Design Basis Earthquake (0.2 g) THERM = thermal load at operating temperatures RESTR = restraint to thermal growth of shield by pools For more details: refer to Tables 12.2-1 through 12.2-43	ACI-318-63 N.O. + OBE $\leq 0.5 \text{ f}_y$ N.O. + DBE $\leq 0.85 \text{ f}_c' \text{ or } 0.9 \text{ f}_y$ Ultimate strength method						
Sec. 12.2.2 p. 12.2-4		Sec. 12.2.2.2.3 p. 12.2-4	AEC Q. 12.2-10 p. 12.2-4						

	MECHANICAL & PIPING								
	DAMPING	METHOD		DESIGN CRITERIA					
	OBE/SSE (% criti- cal damping)	OF QUALIFICATION	LOAD CON	BINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses				
Piping Equipment	0.5 1.0	Analytical	Deformation limit Primary stress limit Buckling stability limit Fatigue limit For details refer to Tables (Table C.O-1 Table C.O-2 Table C.O-3 Table C.O-4 C.O-1 to C.O-7.	Piping ANSI B31.1.0 ANSI B31.7 Vessel ASME BPVC, Section III				
Sec. C.3-2 .p. C.0-3		Appendix C Section C.3	Section C.2-6 p. C.0-2		Appendix C Section C.4-1				

-

_ _. . .

ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRITERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Not available.	Not available.	Not available.	Not available.						

.

<u>Docket Number</u> 50-324, 325

NAME AND NSSS Type of The	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE			SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Brunswick Steam Elec- tric Plant Units 1 & 2 Réactor type: BWR Containment type: Mark I (Reinforced con- crete) NSSS Manufacturer: General Electric Architect Engineer: United Engineers & Constructors	0.08	0.053	VII (SSE)	0.16	0.107	1940 N-S El Centro spectrum normalized by a factor was used for developing the design spectra.	s combine distinct	equipment by SRSS C.4.3.2 For struc- ture abso- lute sum. Lute sum. Comment C-10	The envelope of the Housner spectra and the El Centro spec- tra was termed as the smoothed 1940 N-S El Centro nor- malized spectrum. Fig. 2.6-7 Fig. 2.6-9	Time-history method
Unit 1: 2-70/10-76 Unit 2: 2-70/12-74	Sec. 2.6 p. 2.6-6	Sec. 2.6 p. 2.6-10	Sec. 2.6 p. 2.6-11	Sec. 2. p. 2.6-	6 Sec. 2 7 p. 2.6	.6 Sec. 2.6.6.1 -11 p. 2.6-10	C4.3.2 p. C-56	MC.10-1 Amend. 14 1972	Sec. 2.6 p. 2.6-9 Fig. 2.6-7	Comment C.3, P.MC.3-1 Amend. 13 (Sept. 72)

	FOUNE	DATION AND	LIQUEFACTION AS	SESSMENT		SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION TYPE THICKNESS V PROFILE			GROUND WATER DAM TABLE		METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
crete mat founda- tion, founded on a strata of very dense-fine to medium-coarse sand. Depth not avail- able.	Limestone Hard cal- careous clay and	115 ft		Table M.2.17-1 gives ground water details.		Lumped mass with soil springs. See design reports 4, 9, and 10.	Not available	Soil structure interaction damping .04/.0 critical damp- ing for OBE/DB	Not avail- able.
Sec. 12.2.1 p. 12.2-1	Sec. 1.5 p. 1.5-2	Sec. 1.5 p. 1.5-2	Fig. 2.6-7	Comment 2.17 PM2.17-1 Amend. 14, 11/72		C.57, p. MC.57-1		Table C-1	

STRUCTURES										
		DESIGN CRITERIA	DESIGN CRITERIA							
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION Primary containment (Drywell & Suppression Chambers)	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
Reinforced concrete: Primary containment Other Class I structures	4.0/7.0 4.0/7.0	$U_1 = (1.0\pm0.1) D + 1.50 P + 1.0 T_{1.5} + 1.0 R$ $U_2 = (1.0\pm0.1) D + 1.25 P + 1.0 T_{1.25} + 1.25 E + 1.0 R$ $U_3 = (1.0\pm0.1) D + 1.00 P + 1.0 T_{1.00} + 1.00 E' + 1.0 R$	Codes ACI 318-63, Part IV B Ultimate strength design AISC (1963) specification for the							
Steel structures: (Reactor building and other Class I structures) Bolted or riveted Welded	5.0/10.0 2.0/5.0	$T_{p} = (1.0\pm0.1) D + 1.15 P (Pressure test condition)$ Class I Structures $U = 1.5 D + 1.8 L + 1.0 T + R + Pr$ $U = 1.5 D + 1.5 L + 1.5 E + 1.0 T + R + Pr$ $U = 0.9 D + 1.5 W + 1.0 T + R + Pr$ $U = (1.0\pm0.1) D + 1.0 E' + 1.0 T + R + Pr$ $U = (1.0\pm0.1) D + 1.0 W' + 1.0 T + R + Pr$ $U = (1.0\pm0.1) D + 1.5 W + 1.0 T + R + Pr$ $U = 1.5 D + 1.5 L + 1.5 W + 1.0 T + R + Pr$	erection of structural steel Plant stack design, ACI 307-69							
Table C-1		Sec. C.2.6.1 p. C-9	Comment 22 p. MC.22-1 Amendment 13 (Sept. 1972) C-5							

_

	MECHANICAL & PIPING										
	DAMPING	METHOD		DESIGN CRITERIA							
	OBE/SSE (% criti- cal damping)	OF QUALIFICATION		LOAD COMBINATION		ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Equipment Piping	1.0/2.0 0.5/2.0	Analytical and testing	Piping <u>Design condition</u> Design, normal and upset Emergency	Load combination Pressure Pressure; dead weight Pressure, dead weight, OBE Pressure, dead weight, thermal Pressure, dead weight, DBE	Stress limits S _h S _h 1.25 S _h S _n +S _h 1.8 S _h	ANSI B31.1 - 1967 Power piping ASME BPVC, Sec. III <u>Valves</u> ANSI-B31.1-67 ANSI-B16.5 <u>Pumps</u> ANSI-B31.1-67 ASME Sec. III. Class C					
Table C-1		Sec. 2.2 C-4	Table C-7 through C- Amendment 13, Comment			Amendment 13 (Sept. 1972) p. M4.1-1 Sec. A.1.1, p. 2					

p. MC.18-3

_

		ELECTRICAL EQUIPMENT	
DAMPING OBE/SSE	METHOD	DESIGN CRI	TERIA
	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
Not available.	Analytical and Testing	OBE Combined stresses < 0.6 S . y	IEEE 344-1971 Equip Max. Hor. "g"
		DBE Combined stresses \leq 0.9 S $_{\rm y}$.	Voltage 8.5 pre-amp
			Temp. control 12 switch
			Intermediate 1.5 range monitor
			see Tahle C-30
			Table C-30
	Sec. 2.2 p. C-4	Comment 7.8, p. M7.8-5 Amendment 13 (Sept. 1972)	Comment 7.8 p. M7.8-2 Amendment 13 (Sept. 1972)

.

Docket Number 50-317, 318

NAME AND NSSS Type of The			EAR	THQUAKE D	ATA		METHOD OF COMBINATION		DESIGN S	DESIGN SPECTRA	
PLANT	OBE		SSE				NO, OF EARTH. COMP.	. MODAL	TYPE OF GROUND	METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR. B	VERT.	INTENSITY	HOR.	VERT. g	TIME HISTORY	USED AND ITS COMB.	сомв.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Calvert Cliffs Nuclear Power Plant Units No. 1 & 2 Reactor type: PWR Containment type: 6 Buttresses with shallow dome (prestressed con- crete) NSSS Manufacturer: Combustion Engineer ing Architect Engineer: Bechtel	0.08	0.053	VII	0.15	0.10	Compared with digit- alized El Centro earthquake 1940 (E-W) normalized to: 0.08 g horizontal 0.053 g vertical	Horizontal and vertical components combined simultaneously.	cluding	 Housner spectra for frequency 0.33 cps. Newmark spectra for frequency 0.33 cps (Figs. 2.6-4, and 2.6-5) 	"Digitized El Centro was used in the analysis of Class I equipment. Class 2 struc- tures use UBC Zone 3. AEC TID 7024 "Nuclear Reactors and Earthquakes".	
Unit 1:7-69/7-74 Unit 2:7-69/11-76	Sec. 2.6.5.2 p. 2.6-9	Sec. 2.6.5.2 p. 2.6-9	p.	d. 2.6.5. 2.6-9		Sec. 2.6.5.4 p. 2.6-10	Sec. 5A.3.1.4 p. 5A-5	Sec. 5.1.3.2(b) p. 5-22	1- 2610	p. 2.6-10 p. 5A-6	

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEAI	RING INFOR	MATION	GROUND	DAV	METHOD		MATERIAL DAMPING	LIMITATION		
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	WATER TABLE	DAM	MODELLING	G _s profile	OF SOIL	ON MODAL DAMPING		
Foundation for containment: 10 ft thick rein- forced concrete slab.	Major structure: Miocene sandy and clay silts of Chesapeake group. Appurtenant structure: surficial pleistocene silt which overlies the miocene sediments.	200 ft	1600 fps	Varies from 8 ft to 82 ft.	Not avail- able.	Stick model with soil springs.	Not available.	Rocking Motion Prestressed concrete Prestressed concrete Rocking Motion Reinforce concrete Reinforce concrete	Not available		
Sec. 5.1.2.1 p. 5.2	Sec. 2.6.5.1	Sec. 2.4.1 p. 2.4-1	Sec. 2.6.4.4 p. 2.6-7	Sec. 2.5.3.3 p. 2.5-9		Sec. 5.1.3.2 p. 5-21		Sec. 5A.3.1.4 p. 5A-5, p. 5A-6	•		

.....

- -

	STRUCTURES										
			DESIGN CRITERIA								
	DAMPING OBE/SSE	(% criti- cal damping)_	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES							
з.	Welded steel framed structure Bolted or riveted steel framed structure Reinforced concrete frames and buildings Prestressed concrete structures Rocking motion for prestressed concrete structures Rocking motion for reinforced concrete structures	1.0/1.0 2.5/2.5 3.0/5.0 2.0/5.0	$\begin{array}{l} Y \geq 1/\Phi \ (1.05 \ \mathrm{D} + 1.5 \ \mathrm{P} + 1.0 \ \mathrm{T}_{\mathrm{A}} + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.05 \ \mathrm{D} + 1.25 \ \mathrm{P} + 1.0 \ \mathrm{T}_{\mathrm{A}} + 1.25 \ \mathrm{H} + 1.25 \ \mathrm{E} + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.05 \ \mathrm{D} + 1.25 \ \mathrm{H} + 1.0 \ \mathrm{R} + 1.0 \ \mathrm{F} + 1.25 \ \mathrm{E} + 1.0 \ \mathrm{T}_{\mathrm{O}}) \\ Y \geq 1/\Phi \ (1.05 \ \mathrm{D} + 1.25 \ \mathrm{H} + 1.0 \ \mathrm{F} + 1.25 \ \mathrm{W} + 1.0 \ \mathrm{T}_{\mathrm{O}}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{P} + 1.0 \ \mathrm{T}_{\mathrm{A}} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{D} + 1.0 \ \mathrm{H} + 1.0 \ \mathrm{R}^{+} + 1.0 \ \mathrm{E}' + 1.0 \ \mathrm{F}) \\ Y \geq 1/\Phi \ (1.0 \ \mathrm{E} + 1.0 \ \mathrm{E} + 1$	ACI-318-63, when \$ is taken as 1.							
S.	ec. 5A.3.1.4 . 5A-5 and 5A-6		Sec. 5A.3.1.2 pp. 5A-3 and 5A-4	Sec. 5A.3.1.2 p. 5A-3							

MECHANICAL & PIPING										
DAMPING OBE/SSE	METHOD OF		DESIGN CRITERIA							
	QUALIFICATION	LOAD COMBINATION		ACCEPTANCE CRITERIA & Allowable Stresses						
(% critical dampin (Translational) Steel piping 0.5/0.5 Welded steel plate assemblies 1.0/1.0	Analytical	Vessels 1. Design loading + OBE: $P_m \leq S_m$ $P_B + P_L \leq 1.5 S_m$ 2. Normal operating $P_m \leq S_D$ $+ SSE:$ $P_B \leq 1.5 \ pm - (\frac{P_m}{S_D})$ 3. Normal operating $P_m \leq S_L$ $+ SSE + pipe$ $P_B \leq 1.5 \left[1 - (\frac{P_m}{S_L})\right]$ $P_B = Calculated primary membrane stress.$ $P_B = Calculated primary bending stress.$ $P_B = Calculated primary local membrane st SL = Allowable stress limit ASME BPVC III.S_T = Design stress.S_L = S_Y + 1/3 (S_U - S_Y).S_U = Tensile strength at temperature.$	$P_{B}+P_{L} \leq 1.5 S_{m}$ $P_{B}+P_{L} \leq 1.5 S_{m}$ $P_{m} \leq S_{D}$ $P_{m} \leq S_{L}$ $P_{m} \leq S_{L}$ $P_{m} \leq S_{L}$ $P_{B} \leq \frac{4}{\pi}S_{L}\cos(\frac{\pi}{2} \cdot \frac{P_{m}}{S_{D}})$	Reactor vessel: ASME BPVC III Piping: ASME BPVC III (1967) USAS B 31.7, Class I (Code cases 83, 1477 are included).						
Sec. 5A.3.1.4 p. 5A-5	p. 5A-5	Sec. 4.2.1, Table 4-2 pp. 4-5 to 4-7		Sec. 4.2.1, Table 4-2 p. 4-7						

-

. ...

	ELECTRICAL EQUIPMENT										
DAMPING	METHOD	DESIGN CRITERIA									
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses								
Not available	Not availabl	"All electrical-systems and components vital to plant e safety, including the emergency diesel generators, are de- signed as Class I so their integrity is not impaired by the design basis earthquake, high winds, or disturbances on the external electrical system".	Not available								
		pg. 8.1									

Docket Number 50-298

NAME AND NSSS Type of The			EARI	THQUAKE DA	ATA		METHO COMBIN	D OF ATION	DESIGN SPECTRA	
PLANT	01	BE	SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT. 8	INTENSITY MM	ROR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Cooper Nuclear Station Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Burns & Roe, Inc.	0.10	0.05	VII	0.20	0.10	The accelerogram of the N69W component of the July 21, 1952 Kern County earth- quake recorded at Taft, California was used to develop re- sponse spectra	rizontal and one il was combined with ily.	Reactor vessel in- ternals: SRSS for re sponse spec trum method algebraic sum for time- history nethod	1	Time-history method.
6-68/1-74		Vol. 1 Sec. 5.2.3 p.II-5-4	Vol. 1 Sec. 5.2.1 p. II 5-3				App. C Sec. 3.3.	3Vol. 1 Sec.3.5.3 p.III-3-12		Vol. VII Amend 9 Q.12.35

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF Foundation And Its depth	BEAJ	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
	TYPE	THICKNESS	V PROFILE	TABLE					
Mat foundation. Depth not avail- able.	Dense structure fill extending from the bed- rock surface to the mat foundation. Silty sand, sand silt, silt clay, clay.	Dense structure not avail- able. Silty sand: 10 to 25 ft.		Not available.	Not avail- able,	Stick model with rocking springs, No vertical or horizontal soil springs were included	Not available		Not avail- able.
Vol. I Sec. 5.2.3 p. II-5-4	Vol. I Sec.5.1	Vol. I .5ec. 5.1. I4,p.II-3				Vol. VII Amend 13 Q.12.55		Vol, V Appendix C p. C-2-7	

5.3

.

STRUCTURES								
		DESIGN CRITERIA						
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Reinforced concrete structures.	3.4,	D+E D+R	ACI-318-63 for reinforced concre					
Steel frame structures.		D+R+E D+E+Flood D+T D+R+E'	AISC Manual of Steel Construc- tion (Sixth Edition)					
Welded assemblies.	1.0							
Bolted and riveted assemblies	2.0	D = Dead load of structure and equipment. R = Loads resulting from jet forces and pressure and temperature due to rupture of a single pipe. E = OBE E' = SSE Flood = Loads due to flooding. W = Wind loads. T = Tornado loads.						
Vol. IV, p. XII-2-16 Fable XII-2-5		Appendix C Sec. 2.2 p. C-2-1	Vol. V Sec. 2.4 p. C-2-3					

MECHANICAL & PIPING									
DAMPING		METHOD	DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD COM	BINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES				
Vital piping system	(% criti- cal damping)		LOAD COMBINATION Deformation limit Table C-3-2 Primary stress limit Table C-3-3 Buckling stability limit Table C-3-4 Fatigue limit Table C-3-5 Loading criteria Table C-3-7		Reactor vessel ASME BPVC, Sec. III Vol. V, Table C-3-7, p. C-3-14 Piping USAS, B31.1.0				
Vol. IV, p. XII-2-16 Table XII-2-5		C-3-12. Appendix C Vol. VII p. 12.61.1	p. C-3-3, p. C-3-14, Table C-3 App. C, Table C-3-7	1-7	Vol. V, Table C-3-7, p. C-3-28				

. _____

ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses					
Not available.	Not available.	Not available,	Not available.					

Docket Number

NAME AND NSSS Type of the	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Crystal River Nuclear Generating Plant, Unit 3 Reactor type: PWR Containment type: Mark I (steel) NSSS Manufacturer: Babcock & Wilcox Architect Engineer: Gilbert Associates	0.05	0.033	V	0.10	0.067	 South and the second and th	Three components: Each horizontal combined with the vertical by absolute sum, although "struc- tural response due to vertical	insignificant".	Spectra developed were estimated by two methods: Housner and Estere and Rosenblueth	Approximate method not based on time-history
9-68/12-76	Sec. 5.2.1.2.9 p. 5-12		Sec. 2.5.4.1 p.2-31 Amend. 34 (11-15-73)	Sec. 5.2.1.2 p. 5-12		Amend. 26 (5-25-73) and Sec. 2.5.4.1 p. 2-31	Sec. 5.4.5 p.5-65 Amend. 26 (5-25-73)	5.4.5.2 p.5-66 D	p. 2-32	GAI Topical 1729 Sec. 5.4.5 p. 5-65A Amend. 26 (5-25-73)

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEA	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF MODELLING	G _g PROFILE	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING
	TYPE	THICKNESS	V PROFILE	TABLE				OF SOIL	
For reactor building Mat foundation thickness 12.5 ft.	nic Natural soil: Laminated Underlying brgainc sandy silts and 'limerock a plays interspersed with a plastocene marine ¹ 2, p.2.1 deposits.	Average of thick- ness of approxi- mately 4 ft.	Not availabl e			Stick model with fixed base. Soil spring model was used to check accuracy of fixed base model. Sec. 5.4.5.2 p. 5-66	Not available.	"Sum of material and radiation damping was assumed as small as 5%."	Not available.
Sec. 2.5.7 p. 2-36 and Sec. 5.2, p.5-7 Amend.26,(5-25-7	Bedrock: blogenic carbonates of tertiary age.	Approxi- mately 20 ft. beneath the pre- sent ground surface.		Sec. 2.5 p. 2-20 and Sec. 2.5.3.5 p. 2-29 and p.2-30		and Sec. 5.4.5 p. 5-65 and p. 5-65a Amend. 32 (10-1-73)		p. 5-65a	

Sec. 2.5.3 p 2-22

9-2

	STRUCTURES							
B.1105106		DESIGN CRITERIA	*					
DAMP ING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Reactor building shell Concrete support: Structure (Inside reactor building) Steel assemblies and structure a) bolted b) welded Other concrete structure (Above ground)	2.0 2.0 2.5 1.0 5.0	 a) c= (1.0 ± .05) D + 1.5P + 1.0T b) c= (1.0 ± .05) D + 1.25P + 1.0T' + 1.25 (E or W) c) c= (1.0 ± .05) D + 1.0P + 1.0 T + 1.0E' d) c= (1.0 ± .05) D + 1.0 W_T + 1.0 P_t D= Dead load P= Design accident pressure load E= Seismic load based on 0.05g. E'= Seismic load based on 0.10g. W _T = Wind load based on external pressure drop of 3 psig between inside and outside of reactor building.	Reactor building: R. C. ACI 318-63 Structure concrete ACI 301-66 Structure steel AISC. 1963.					
p. 5-42		Sec. 5.2.3.2.1 p. 5-32	Sec. 5.2.3.1 p. 5-31					

MECHANICAL & PIPING								
DAMPING	METHOD	DESIGN CRITERIA						
CBE/SSE (% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses					
Vital piping systems. 0.5	Analyses and test. Details. Ref. Table 5-5 p.5-86 AMEND. 17 (4-10-72) Sec. 5.4.5 p. 5-65 AMEND. 40	For piping:primary stress + OBE $\leq 1.2 \times S_h$ thermal stress $\leq S$ where $S_{\perp} = t (1.25^A S_{\perp} + 0.25 S_h)$ $S_{\perp} = 3$ allowable stress $S_{\perp}^A = basic material allowable stress at max. (hot) temp.S_{\perp}^h = basic material allowable stress at min. (cold) temp.p. 5-641 Amend. 45(7-11-75) and p. 5-63CaseLoad Combinationloads + design earthquakeIDesign loads + design earthquakeloads = 1.2 S_mII) Design loads + maximum hypothet-ical earthquake loadsPL + Pb \leq 1.2 S_mIII) Design loads + pipe rupture loadsPL + Pb \leq 1.2 S_mIII) Design loads + pipe rupture loadsPL + Pb \leq 1.2 S_mIII) Design loads + maximum hypothet-ical earthquake loadsPL + Pb \leq 1.2 S_mPL + Pb \leq 2/3 S_mIV) Design loads + maximum hypothet-ical earthquake loadsPL + Pb \leq 2/3 S_y$	Reactor coolant system: ASME, boiler and pressurizer Vessel code, Sec. III, Art. 9 Summer, 1967 For piping (belongs to re- actor coolant) USAS Sec. B31.7					
, p. 5-42	(7-3-74) p.5-64b AMEND. 45, (7-14-75)	$P_L = Primary$ local membrane stress intensity $P_m = Primary$ general membrane stress intensity $P_b = Primary$ bending stress intensity $S_m = Allowable membrane otross intensity$	Amendment 48,(3-16-76) p. 5-64a					

	ELECTRICAL EQUIPMENT						
DAMPING	METHOD	DESIGN CRIT	ERIA				
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses				
Not available.	Test or protype test or calcula- tion.	Not available.	IEEE Standard. 314-1971				
	Ref. Sec. 7.1.3.1.4 p. 7-9b Amend. 32 (10-1-73)		Sec. 7.1.1.8 p. 7-2b and p. 7-26 Amend. 45 (7-11-75)				

.

Docket Number

50-346

NAME AND NSSS Type of the	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	01	BE		SSE			NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Davis-Besse Nuclear Power Station, Unit 1 Reactor type: PWR Containment type: Dry containment -cylindrical (steel NSSS Manufacturer: Babcock & Wilcox Architect Engineer: Bechtel	0.08	.053	VII	0.15	0.10	E-W component of Helena Earthquake of October 31, 1935 was used as the basis for developing accelerograms of the OBE & DBE.	3 com- ponents: each hor- izontal combined with the vertical resulting two seis- mic load cases.	SRSS	Design spectrum re- sponse curves were developed by Newmark's method modifying the spec- tral amplification factors.	Time-history method.
	Sec.D	Append.2C	Vol. 1, Append. 2C, p. 2C-31	Append. 2C,	Vol. 1, Append. 2C, p. 2C-39		Vo1. 2C, Sec. 3.7.1.6 p. 3-51	Vol. 2 Sec. 3.7.3.3 p. 3-63 Fig. 3-24	Vol. 1, Append. 2C, p. 2C-41 to 45	Vol. 2 Sec. 3.7.2 p. 3-54

	FOUNDATION AND LIQUEPACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND	D THE THEORY PROPERTY P		WATER		METHOD DAM OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL		
ITS DEPTH Main structure: Mat footings & Auxiliary building: 'Pier footings bearing on bed- main Depth not avail- able.	Soil: Glaciola- guatrine and a till de-		For bedrock 5,700 fps to 7,500 fps	Prior to construc- tion 571 ft. to 572 ft.(I.G. L.D.) During construc- tion 525 ft. (I.G. L.D.)	Not availa- ble.	with fixed base for the containment and the auxil- iary building		Soil: For OBE: 0.04 For SSE: 0.05 Bedrock: For OBE:0.01 For SSE:0.02	able.	
Vol. 1 Sec. 2.5.1.10.2 p. 2-126 to 128	Bedrock: Tymochtee sists of argillaceou terbedded gypsum, an strata.		Vol. t Sec. 2.5.1.7 p. 2-123	Vol. 1 Sec. 2.5.1.5 p. 2-122		Vol. 2 Sec. 3.7.2 p. 3-52 to 55	Vol. 1, Sec. 2.5.1.8, p. 2-124	Vol. 1 Sec. 2.5.1.8 p. 2-124		

Vol. 1, Sec. 2.5.1.8, p. 2-123 and p. 2-124

10-2

	STRUCTURES						
	DAUDTING				DESIGN CRITERIA	€	
	DAMPING OBE/SSE			riti- damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES	
Welded steel	< 1/4 σ _y	^{1/2σ} y	σy	≥σy	<u>Class I Structures: Operation during normal and OBE conditions</u> <u>Concrete</u>	<u>Concrete</u>	
•	1.0	2.0	5.0	7.0	U=1.5D + 1.8L U=1.25(D + L + H + E) + 1.0 T	A.C.I. Code. 318-63 Ultimate strength method	
Bolted and Riveted steel	1.0	5.0	10.0	20.0	U=1.25(D + L + H + E) + 1.0 T $U=1.25(D + L + H^{\circ} + W) + 1.0 T^{\circ}$ $U=0.9D + 1.25(H^{\circ} + E) + 1.0 T^{\circ}$ $U=0.9D + 1.25(H^{\circ} + W) + 1.0 T^{\circ}$		
Reinforced concrete	1.0	2.0	7.0	10.0	Structural steel	Structural steel	
Vol. 2,	Table 3-7, p	9. 3-5	ò	• 	$D + L$ $D + L + T + H + E$ $D + L + T^{+}H^{0} + W$	f 1.25fs 1.33fs	
 D= Dead load of structure and equipment plus other permanent loads, e.g., soil or hydrostatic loads L=Live load and piping loads R=Force or pressure on structure due to pipe rupture To=Thermal loads due to temp. gradient, operating Ho=Force due to thermal expansion of pipes, operatin Ta=Thermal loads due to temp. gradient, accident Ha=Force on structure due to thermal exp., accident E=force due to OBE E'=force due to SSE W=Wind load-wind velocity 90 mph at 30 ft. above gradient 				atic loads ipe ruptur perating s, operati ccident , accident	$\begin{array}{c} \underline{During \ accident \ and \ SSE \ conditions:}\\ \hline Concrete:\\ e \\ U=1.0D + 1.0L + 1.25E + 1.0T_a + 1.0H_a + 1.0R\\ U=1.0D + 1.25E + 1.0T_a + 1.0H_a + 1.0R\\ U=1.0D + 1.0L + 1.0E' + 1.0T_o + 1.25H_o + 1.0R\\ U=1.0D + 1.0L + 1.0E' + 1.0T_a + 1.0H_a + 1.0R\\ U=1.0D + 1.0L + 1.0W' + 1.0T_o + 1.25 H_o\\ \hline Structural \ Steel\\ D + L + R + T_o + H_o + E' \end{array}$	1.55fs	
W'=Tornado loads	including di	fferent	ial p	ressure	$D + L + R + T_a + H_a + E'$	1.555 1.555	

Vol. 2, Sec. 3.1.1.3, pg. 3-76

Vol. 2, Sec. 3.8.1.1.6, pg. 3-72

MECHANICAL & PIPING							
DAMP ING	METHOD	DESIGN CRITERIA					
obe/sse	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
<pre>< 1/4σ_y 1/2σ_y σ_y > σ_y Vital piping 0.5 0.5 2.0 Piping 0.5 1.0 2.0 5.0</pre>	analytical	Code Class I Pressure VesselsConditionNormal $P_M \leq S_M$ P_M (or P_L) + $P_B \leq 1.5 S_M$ P_M (or P_L) + $P_B + Q \leq 3.0 S_M$ P_M (or P_L) + $P_B + Q + F \leq S_E$ Emergency $P_M \leq 1.2 S_M \text{ or } S_Y$ whichever is larger P_M (or P_L) + $P_B \leq 1.5 (1.2 S_M)$ or 1.5 S_Y whichever is larger or 0.8 C_L	ASME BPVC, Section III, Class "A" 1968 edition for reactor vessel, steam generator, pressurizer, reactor coolant pump, casing. ANSI B 31.7 - 1968 for piping				
Vol. 2, Table 3-7, p. 3-50	Vol. 2 Sec. 3.7.2.1 p. 3-52	See Table 5-13 for upset and faulted condition Tables 5-12,13,14,15,16,17, 18 p. 5-79 through 5-85	Tables 5-10, p. 5-77				

10-4

.

	ELECTRICAL EQUIPMENT						
D.VPPING	METHOD	DESIGN CRITER					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES				
Not available.	Not available.	Not available.	IEEE 344-1971 and IEEE 336-1971				
			Vol. 2, Sec. 3.10, p. 3-176, Vol. 2 Append. 3D, p. 3D-85				

------ -

Docket Number

50-315, 316

NAME AND NSSS Type of the	HE		METHOD OF COMBINATION		DESIGN SPECTRA					
PLANT	OI	3E		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	HOR. 8	VERT.	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Donald C. Cook Nu- clear Plant Units No. 1 & 2 Reactor type: PWR Containment type: Ter-Condenser (Refinition con- crete) NSSS Manufacturer:. Westinghouse Architect Engineer: American Electric Power Service Corporation	0.10 Wol. I	0.067 Vol. I	VII	0.20 Vol. I	0.133 Vol. I	El Centro (as present ed in TID 7024) Normalized to the rec ommended ground accel eration was used to develop response spec tra. Vol. I	vertical response	SRSS Vol. IX	Response spectra as shown in Figs. 2.5-2 and 2.5-3 were generated from El Centro earth- quake.	Time-history method.
3-69/10-74	Sec. 2.8.	6Sec. 2.8. p. 2.8-2	6	Sec.2.8. p. 2.8-2	6Sec.2.	8 6 Sec. 2.5.2	•	Amend. 9	Sec. 2.5.2 p. 2.5-5	Question 5.71 p. 5.71-6

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION	TION		GROUND WATER	DAM	Method Of	G _a profile	MATERIAL DAMPING	LIMITATION ON		
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE	<i></i>	MODELLING	8 101 222	OF SOIL	MODAL DAMPING	
Mat foundation Depth not avail- able.	Compact sand, re- compacted sand or stiff clay de- posits of shale bedrock.	200 ft	900 fps	ground water elevation 593 ft	Not avail- able,	Stick model with soil springs,	Not available,	Not available	Not avail- able,	
Sec. 2.5.2 p. 2.5.2	Sec.2.3.	2Sec. 2.3 Fig.2.3-2	Vol. IX, Amend. 19, p. 5.85-2	Vol. I, Sec. 2.4.: p. 2.4-4		Amend. 16. Question 5.71 Fig. 5.71-1				

.

_ _

- -

		STRUCTURES	
······································		DESIGN CRITERIA	
DAMPING OBE/SSE	(Ź criti- cal d em ping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES
Containment structure: (with DBA) (without DB Welded steel structure Bolted or rivited steel assemblies	1.0/1.0	<pre>For containment: C = 0.0+0.05) D + 1.5 P = 1.0 (T+TL) + 1.0 B C = 0.0+0.05) D + 1.25 P + 1.0 (T'+TL') + 1.25 E + 1.0 B C = 0.0+0.05) D + 1.0 P + 1.0 (T''+TL'') + 1.0 B + 1.0 W' + 1.0P C = 0.0+0.05) D + 1.0 (T''+TL'') + 1.0 B C = (1.0+0.05) D + 1.15 P</pre>	ACI-318-63, Ultimate strength design.
Amend. 9 Question 5.85, p. 5.85-2		Sec. 5.2.2.3 p. 5.2-18	Amendment .9, Question 5.1-1 Appendix B-9

11-3

	MECHANICAL & PIPING								
	DAMP ING	METHOD	DESIGN CRITERIA						
	OBE/SSE (% criti- cal damp:		LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES					
Piping	0.5/0.	5 Analytical and Testing	For pressure vessels: 1. (a) $P_m \leq S_m$ (b) $P_m (\text{or } P_L) + P_B \leq 1.5 S_m$ (c) $P_m (\text{or } P_L) + P_B + Q \leq 3.0 S_m$ F-2. (a) $P_m \leq S_m$	 ASME BPVC, Section III USAS.1, B31.1 code (power piping) 					
			(b) $P_m + P_B \leq 1.5 S_m$ (c) $P_m + P_B + Q \leq 3.0 S_m$ For pressure piping:						
			$\left \begin{array}{ccc} 1. & (a) & P_m \leq S \\ (b) & P_m + P_B \leq S \end{array}\right\}$ Normal condition						
			2. (a) $P_m \leq 1.2 S$ (b) $P_m + P_B \leq 1.2 S$ Upset condition						
Amendment p. 5.85-2	19, Q. 5.85	Amendment 25 Q. 4.31-1	Tables 1 and 2, p. B-18 and p. B-19.						

· · ---

ELECTRICAL EQUIPMENT								
DAMP ING	METHOD	DESIGN CRITH	ERIA					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available.	Not available.	Not available.	Not available.					
,								

· · · · — — — — — · · · ·

.

Docket Number 50-010

NAME AND NSSS Type of the	EARTHQUAKE DATA						METHO COMBIN	D OF ATION	DESIGN SPECTRA	
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT.	INTENSITY MM	ROR.	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Dresden Nuclear Power Station Unit 1 Reactor type: BWR Containment type: Pre-Mark (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	None used (0.10)**	Norie used (0,067)**	None used	None used (0.20)**	None used (0.13) **	None used	None used Two comps.,** vertical + worst case horizontal		None used	No floor response <u>spectra generated</u> UBC, 1955 used for containment (Zone 2) and internal con- crete structure (Zone 1) Housner spectra Times 2 used for ECCS and Core Spray System.
5-56/9-59										

* Data are obtained

Data are obtained from FHSR Docket 50-010 and SEPB Report "Seismic Design Bases and Criteria for Dresden Unit 1 Nuclear Generating Station," EDAC 175-130.03, January 1979.

** Used for ECCS and Core Spray System only.

12-1

	FOUND	ATION AND	LIQUEFACTION ASS	SESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEAR	ING INFOR	MATION	GROUND WATER	DAM	METHOD OF MODELLING	G _g profile	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE	Ditt		g	OF SOIL	
Circular con- crete foundation 37 ft. below grade.	Shale Dolomited	70 ft.	Not used, bed- rock site	"Groundwater found @ various levels beneath the site".	Dresden Dam	No SSI model used	Not used	Not used	Not used

	STRUCTURES									
	DESIGN CRITERIA									
DAMPING OBE/SSE (% Critical damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES								
Not available	<pre>Internal Concrete Structures: E + pressure + equipment (E = 0.025g)</pre>	UBC, 1955 ACI, 318-55 AISC, 1955								

DAMPING		METHOD	DESIGN CRIT	TERIA
OBE/SSE	(% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses
Vital piping Welded assembly Bolted assembly	0.5 1.0 1.0	None	<u>Containment:</u> 1.) 0.033g 2.) pressure + snow + wind <u>NSSS:</u> 1.) 0.025g 2.) operational transients <u>ECCS:</u> 1.) earthquake + operational + blowdown	Steel Containment Sphere and NSSS: ASME Section VIII (1955 ed.) and UBC, 1955 Piping and ECCS, Core Spray: ANSI B31.7, and ASME Sec. III, (1974 ed.)

ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRIT	ERIA					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses					
Not available	Not available	Not available	Not available					

Docket Number 50-237,249

NAME AND NSSS TYPE OF THE			EAR	THQUAKE D	ATA	*****	METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	C)BE	SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OI. ISSUE DATE	HOR. g	VERT. g	INTENSITY MM	HOR. g	VERT. 8	TIME HISTORY	USED AND ITS COMB.	сомв.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Dresden Nuclear Power Station Unit 2 and 3 Reactor type: BWR Containment type: Mark-I (steel) NSSS Manufacturer: General Electric Architect Engineer: Sargent and Lundy Engineers. Unit 2: 1-66/12-69 Unit 3: 10-66/1-71		0.067 p. 12.1-9	VII p. 12.1-9	0.20 p. 12.1-		N-S component of the El Centro Earthquake (May, 1940) nor- malized to a maximum ground acceleration of 0.1g was used for time history analysis. 9 Question II.A.1 Docket 50237-16 (microfiche)	2 comp., greater horizontal + vertical, absolute method	SRSS (reactor, turbine bldg., and drywell analyzed by time history method)	Housner-(El Centro T-H envelops the Housner spectra except for high frequency end.)	Equipment and piping analyzed by either response spectru or equivalent static method. Floor response spectra for pressure vessel, isolation condensor, turbine building, control room, etc. are derived by factoring up the Housner Ground Response Spectra to account for the maxi- mum floor acceleration determined from the time history analysis. Static coefficients were also used for APCI and Core Spray Equipment. Floor response spectra from Brown's Ferry used for recirculating Loop Piping, feed- water and mainsteam lines.

*Information was obtained from BNL Docket Search and SEPB Report "Seismic Review of Dresden Unit 2 for the Systematic Evaluation Program", NUREG/CR-0891, July 1979.

	FOUNE	DATION AND	LIQUEFACTION AS	SESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEAF	NING INFOR	MATION	GROUND WATER DAM		METHOD OF	G _a profile	MATERIAL DAMPING	LIMITATION ON
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE (calculated)	TABLE		MODELLING	(calculated)	OF SOIL	MODAL DAMPING
Reinforced con- crete mat founded on com- petent rock	The site consists of an upper layer of Pennsyl- varian Pottsville sandstone of variable thickness which is 40-50 ft. Next below is a layer of a- bout 15 to 35 ft. of Ordovician Maquoketa Divine innestone based on a 65 ft. layer of Maquoketa	dolomitic shale. The Ordovician system has a total thickness approaching 1000 ft with the combrian system next below. Brecciated rock is found on same cross sections and is indicative of ancient faulting.	Sandstone = 2,600 fps Limestone = 8,600 fps Argillaceous Dolomite = 4,700 fps Shale = 3,900 fps Dolomite Shale = 4,700 fps	Not available	Dresden Dam p. 2.5-1	9 indicate stick model	Sandstone = 18.7 x 10 ⁴ psi Limestone = 250 x 10 ⁴ psi Argillaceous = 68x10 ⁴ psi Dolomite = 68x10 ⁴ psi Shale = 44x10 ⁴ psi Dolomite = 74x10 ⁴ psi Shale .)	Not available	Not ava1lable
p. 12.1-10	p. 111- 1-3								

		STRUCTURES		
DAMPING		DESIGN CRITERIA		
OBE/SSE (% criti- cal damping)		LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWÄBLE' STRESSES	
Reinforced concrete structures Steel frame structures	5.0 2.0	Reactor building + all other Class I structures a) D + R + E	 a) Normal allowable code stresses, AISC for struc- tural steel, ACI-318-63 without increase for seismic 	
Welded assemblies Bolted and Riveted assemblies	1.0 2.0	b) D + R + E' Stresses are limited to the minimum yield pt. case an analysis, using the limit-design ap- the energy absorption capacity which should be energy input. AEC publication TID-7024 "Nuclea 5.7.	as a general case. In this proach, is made to determine such that it exceeds the r Reactor and Earthquake" Sec.	
Reactor and turbine building Ventilation stack	5.0 5.0	Primary containment (including penetrations) a) D + P + H + T + E	a) ASME, Sec. III, Class B, without the usual increase for seismic loadings.	
Drywell Control room	5.0 5.0	b) D + P + R + H + T + E	Same as (a), above except lo- cal yielding is permitted in the area of jet force where the shell is backed up by con- crete. In areas not backed up by concrete, primary local mem- brane stresses at the jet force <0.9 x yield pt. of material at 300°F.	
Amend 13 - Unit 2-SAR Amend 14 - Unit 3-SAR		 c) D + P + R + H + T + E[*] Primary membrane stresses, in general, of the material. If the total stresse analysis was made to determine that t exceeded the energy input from the ear as in (b), above, is applied to the effect of the energy in the energy in	s exceeded yield pt. an he energy absorption capacity thquake. The same criteria	

D = Dead load of structure and equipment plus any other permanent loads contributing stress.

P = Pressure due to loss-of-coolant accident, R = Jet force on pressure on structure due to rupture of any one pipe,

H = Force on structure due to thermal expansion of pipes under operation conditions, T = Thermal loads on containment due to loss-of-coolant accident, E = Design earthquake load.

13-3

p. 12.1-5

DAMPING OBE/SSE		METHOD		DESIGN CRITERIA	
(% c damp	ritical ing)	QUALIFICATION		ACCEPTANCE CRITERIA & Allowable Stresses	
Suppression chamber	2.0	Analytical model	Reactor Primary Ves a) D + E	sel Internals	a) ASME, Sec. III Class A vessel
Feedwater lines	0.5	moder	b) D + E' b) The secondary and primary plus secondary st	esses are examined on a	
Vital piping systems	0.5			rational basis taking into account elastic a strains are limit to preclude failure by def	nd plastic strains. These ormation which would com-
Reactor pressure vessel	2.0			promised any of the engineered safeguards or the reactor.	prevent sare shut-down of
Recirculation 100 p piping	0.5		c) P + D		c) ASME, Sec. III, Class A
Main steam lines Suppression chamber	0.5		Reactor Primary Ves a) D + H + E	sel Supports	a) AISC for structural steel ACI for reinforced concrete
ring header	0.5		b) D + H + R + E		 b) Stresses do not exceed: - 150% of AISC allowable for structural steel
					 90% of yield stress for reinforcing bars
					- 85% of ultimate stress for concrete
		Question 2.16 Amend. 7,8	c) D + H + E ⁻	p. 12. 1-6	c) The design is such that energy absorption capacity exceeds energy input.

	ELECTRICAL EQUIPMENT										
DAMPING	METHOD	DESIGN CRITERIA									
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Otresses								
Not available	Analysis and Generic Testing	Battery racks - No structural design calculations Instrumentation and control room panels - GE generic tests* Motor Control Center - Cutler Hammer Co. Generic Tests ** - Vibration test and analysis of 7700 Line Motor Control Center, # 70ICS100, 8- Transformers - No tests or calculations Cable trays - S. and L. Engrs., Specs, for Cable Pans and Hanger Spec. K-2197	. Not available 70								
		* GE - "Seismic Testing of Instrumentation" Dresden 2, 1-71									

* GE - "Seismic Testing of Instrumentation Diesden 2, 1-71 ** Wyle Labs - "Seismic Simulation Test Report for Modified Unitrol Motor Control Center, Report 43746-1, 10-77

Docket Number 50-331

NAME AND NSSS Type of The		EARTHQUAKE DATA							DESIGN SPECTRA	
PLANT	01	BE		SSE		NO, OF EARTHQUAKE EARTH, MODAL COMP.		MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT. 8	INTENSITY MM	HOR.	VERT.	TIME HISTORY	USED AND ITS COMB.	NDITS	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Duane Arnold Energy Center Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	For struc- tures on bedrock or loft fill: 0.06 For struc- ture on 30-50 ft. of soil: 0.09.	For struc- ture on bedrock: 0.05 For struc- ture on soil: 0.06	able.	struc- tures on bedrock or 10 ft. of fill: 0.12 For struc-	Struc- ture on rock: 0.10 Struc- ture on 30-50 ft. of soil: 0.12	 1935 Helena, Montana earthquake. 1952 Taft, California earth- quake. 	The earth- quake con- ditions were applied to the struc- ture in the direc- tion of each of their principal axes.	addition (Time history) SRSS (Spectrum	Response spectra developed for stuc- tures on: (1) Bedrock: 1935 Helena, Montana earthquake, (2) Compact fill and/or soil over- lying bedrock: 1952 Taft, Cali- fornia earthquake.	developed earth- quake time history.
6-70/2-74	Sec. 2.6.2.1.1 p. 2.6-24 Table 2.6-2	Sec. 2.6.2.1.1 p. 2.6-24 Table 2.6-2		Sec. 2.6.2.1. p. 2.6-40 Table 2.6-3	Sec. 1 2.6.2.5 p. 2.6-40	3 Sec. 2.6.2.5.3 p. 2.6-40	Sec. C.5.2.3.1 p. C.5-5	р. С.5-5 р. С.5-13	Sec. 2.6.2.5.3 p. 2.6-40	Sec. C.5.2.3.1 p. C.5-6

FOUNDATION AND LIQUEPACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	AND TYPE THICKNESS V PROFILE		GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING		
Reactor building: mat foundation on bedrock. Depth: not available.	cial deposits of clayey silt, sand, and gravel. Glacial till. Wapsipin-	feet thick. About 67 feet	<pre>V value computed: Surficial deposit: 500 fps Glacial till: 1800 fps. Limestone: 8600 fps.</pre>	About 8 feet below the existing ground surface.	"There are 12 low head dams."	Figure C.5-5 indicates stick model with soil springs.	Alluvial sand: 0.5x10 ⁶ psf Glacial till: 0.7x10 ⁶ psf Rock: 200x10 ⁶ psf	,	Not avail- able.	
Sec. 2.6.3.1.1 p. 2.6-46	b. 2.6-1	Sec. 2.6.1.1. p. 2.6-1 Fig. 2.6-9	1 Fig. 2.6-9		Sec. 2.5.1	Sec. C.5.2.3.1 p. C.5-5	Table 2.6-4 p. 2.6-80	Table C.5-1		

.

- -

_ _ +

. ____ .---

. .

	STRUCTURES									
		DESIGN CRITERIA								
DANPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
Containment structure and all internal concrete structures: Other conventionally reinforced concrete structures, such as shear walls or rigid frames:	2.0/5.0 5.0/5.0	 Normal loads + operating basis earthquake Normal loads + maximum probable flood Normal loads + design basis earthquake Normal loads + tornado loads Normal loads + design basis loss-of-coolant accident reference For further information refer to Sec. 12.4.2, p. 12.4-1.	ACI-318-63 Ultimate strength design.							
Table C.5-1		p. 12.4-3	p. 12.4-7							

DAMP ING		METHOD	DESIGN CRITERIA					
OBE/SSE	(% of criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
Welded structural steel assemblies:	1.0/1.0	Analytical and testing.	Table C.2-1 (partial) Summary of Loading Conditions and Criteria	ANSI B31.1.0-1967 B31.7				
Bolted or riveted steel assemblies:	2.0/2.0		Reactor Pressure Vessel - Normal - ASME Code, Special Criteri Upset - ASME Code, Special Criteri Emergency - ASME Code, Special Crit					
Piping systems:	0.5/1.0		Faulted - ASME Code, Special Criter Piping - Normal - Industry Codes, Table C.2-2 Upset - Industry Codes, Table C.2-2 Emergency - Industry Codes, Table C.2-2 Faulted - Industry Codes, Table C.2-2	La (Table C.2-2)				
Table C.5-1		Sec. C.5.2. 3-1 p. C.5-6,7	Tables C.2-1 through C.2-25,p. C.2-11 through C.2-73	Sec. A.1.2 p. A.1-3				

- --

ELECTRICAL EQUIPMENT									
DAMP ING OBE/SSE	METHOD	DESIGN CRITERIA							
UBE/ 55E	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses						
Not available.	Analysis or testing. Sec. C.5.2 .3.1 p. C.5-6, 7	<u>CE equipment:</u> "All instrumentation required for nuclear safety is capable of p functions important to safety during normal operation, during DE operation. Qualification is achieved by test and/or analysis at of 1.5g horizontal and 0.5g vertical over a frequency of 0.25 to <u>Bechtel supplied equipment</u> : "Purchase specifications will require that each type of Class 1 qualified by vibration test or suitable analysis. The methods the general requirements of IEEE Standard 344-1971. For futher information refer to: Appendix M: Section M.3.3, p. M.3-27 through p. M.3-34	IEEE 344-1971 e of performing all ing DEA and post-accident eis at acceleration values 25 to 33 Hz". ess 1 device be individually						

.

Docket Number

50-321

NAME AND NSSS Type of the	EARTHQUAKE DATA							O OF ATION	DESIGN SPECTRA	
PLANT	OBE		SSE				NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	ROR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Edwin I. Hatch Nuclean Power Plant Unit No. 1 Reactor type: BWR Containment type: Mark I (steel) HSSS Manufacturer: General Electric Architect Engineer: Bechtel	. 0.08	0.053	VII	0.15	0.10	N-S component of 1940 El-Centro earthquake.	2 com- ponents: Worst horizontal component plus vertical combined simultan- eously	closely spaced modes.	Conform to the aver- age spectra by G.W. Housner for T <4 s. Normalized to the peaks (horizontal) of OBE and SSE.	Time-history method Class II UBC
9-69/8- 74	Sec. 12.3 p. 12-8	3.2	Sec. 2.5.9 p. 2-33	Sec. 12.3.3.2 p. 12-8	Sec. 12.3.3.2 9. 12-8	Sec. 12.6.2.1 p. 12-21	p. C-13	Sec. 12.6.2.1 p. 12-20	Sec. 2.5.9 p. 2-33 Fig. 2.5-5 and 6	Sec. 12.6.2.1 p. 12-21

	FOUND	ATION AND	LIQUEFACTION AS	SESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEAF	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF	G_ PROFILE	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	s		
Reinforced con- crete mat founda- tions for the fol lowing buildings: reactor, turbine,	clay-sand grading to sandy clay). Beneath: (sand, sandy- clay)	10 to 70 ft 65 ft 4000 ft	2450 fps	Summary of domestic well study is given in Table 2.4-3, pp. 2-18 and 2-19 of Section 2.4.6.2. Summary of Piezom- eter Installation Data is given in Table 2.4-4, pp. 2-20 and 2-21 of Section 2.4.6.2 No liquefaction potential has been found.	able.	Stick model with soil springs. Ta	Amendment 14, 4/72 Vol. VIII of FSAR able Q 12.3.3.2.4-1 of Ques	and rotation of foundation soil - 4.5%OBE - 5.5%DBE	Unclear in - formation Ref: PSAR Sec. XII-31
Sec. 12.5 p. 12-18	Sec. 2.7 p. 2-41		Amend. 14 (4/72) 5. 12.3.3.2.4-2	Sec. 2.7.7 p. 2-45		Amendment 12 12/72 Sec. 12.6.2.1 p. 12-20 Fig. 12.6-1		Table 12.3-2 p. 12-10	

15-2

- -----

STRUCTURES								
DAMETHA		DESIGN CRITERIA	f					
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Reinforced concrete structures:	3.0/5.0	Class I structures	They are classified according to					
Steel frame structures:	3.0/5.0	1. Primary containment. (a) D+L+H+T+E (b) D+L+H+P+R+T+E (c) D+L+H+P+R+T+E' (d) D+E+F	the load combination case. For details, see Sec. 12.4, pp. 12-15 and 12-16.					
Bolted and riveted assemblies:	3.0/5.0	 (c) D+L+H+P+R+T+E' (d) D+E+F 2. Reactor pressure vessel support. 	Generally used: ASME, Sec. III,					
Welded assemblies:	2.0/3.0 0.5/1.0	(a) D+L+H+E (b) D+L+H+R+P+T (c) D+L+H+T+P+T+E (c) D+L+H+R+P+T+E'	Class B. For steel structures, AISC. For concrete structure: ACI					
Vital piping:		3. Reactor building and all other Class I structures.	318-63 and 307-69					
Translation and rotation of foundation soil:	4.5/5.5	(a) D+L+II+E (b) D+L+II+W (c) D+L+II+E' (d) D+L+II+W'						
		4. Reactor building crane structure.						
		(a) D+L+C+I (b) D+L+C+E (c) D+L+C+E' (d) D+L+C+W (d) D+L+C+W'						
		Class II structures: designed according to applicable codes and standards.						
Amendment 12, 2/72, Vol. III Sec. 12, Table 12.3-2 p. 12-10		NOTE: D = dead load, L = live load, C = crane load, I = impact load, P = pressure due to LOCA, R = jet force, T = thermal load, E = OBE, E' = SSE, W = wind, W' = tornado wind, and F = hydro- static. Sec. 12.4, p. 12-15						

MECHANICAL & PIPING									
DAMPING		METHOD	DESIGN CRITERIA						
obe/sse	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
iping:	cal damping)		<pre>Reactor vessel: 1. Normal + OBE 2. Normal + piping rupture or normal + SSE 3. Normal + SSE + piping rupture Piping: Dead loads + external loads + thermal loads. 1. Dead + pressure 2. Dead + pressure + OBE 3. Dead + pressure + thermal 4. Dead + pressure + SSE 5. Dead + maximum pressure + OBE 6. Dead + maximum pressure + SSE More details on Table C-3.1 of Section: NSSS Equipment Loading Design on FSAR, Vol. IV, pp. C-14 to C-46.</pre>	ASME, BPVC, Section III, Nuclear Vessels, 1965 Edition and Winter 1966 Addenda with additions listed on page I-1 of Appendix I of Reactor Pressure Vessel Report.					
Sec. A.3.1.4 p. A-4		Amendment 13 3/2 Sections C.1.1 a C.12, p. C-1		pp. C-10, C-12					

	ELECTRICAL EQUIPMENT						
DAMPING OBE/SSE	METHOD	DESIGN CRIT	TERIA				
UBL/ SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
Not available.	Not available.	Not available,	Not available.				

.

.

- -- --

Docket Number

50-366

NAME AND NSSS Type of the	EARTHQUAKE DATA						METHO COMBIN		DESIGN	SPECTRA
PLANT	OI	BE		SSE			NO, OF EARTH, MODAL COMP.		TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	ROR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Edwin I. Hatch Nuclear Power Plant Unit No. 2 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	0.08	0.053	VII	0.15	0110	was used for develop-	zontal	summed absolute- ly.	Modified Newmark design spectra.	Time-history method.
9-69/8-74			Бес. 2. 5. 2.10 р. 25	Sec. 2.5.2.10 p. 25	Sec. 2.5.2.1 p. 25	C Sec. 3.7A.1.2 p. 3.7A-1	Sec. 3.7A.3.7 Sec. 3.7B.3.7 p.9	Sec. 3.7A.2.1.1 Sec. 3.7A.2.2 Sec. 3.7A.3.7	Sec. 3.7A.1.1 Figs. 3.7A1-3.7A6	Sec. 3.7B.2.6 Sec. 3.7B.2.3 Sec. 3.7B.2.8

	FOUNDATION AND LIQUEPACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION			GROUND WATER	DAM	METHOD OF	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	8	OF SOIL	MODAL DAMPING
Reinforced con- crete mat 27'2" thick at middle dry well and 12'4" thick at other sections.	Miocene Dublin locally cemented sand to sandy clay	To a depth of 135' (ft) Below	2450 <u>+</u> 200 fps	el.70 to el.75 ft.	2 upstream of plant, Caltamaha River Basin 1) Sinclair Dam on Oconee Riv. 2) Lloyd Shoals Dam, Ocmulgee River.	Stickmodel with soil springs	Not available.	Not available	Not avail- able.
Sec. 3.8.5.1b p. 3.8-76 Fig. 3.8-31 & 32	p. 4 Figures	2A-2 thru	Sec. 2A.1.4 p. 2A.1-3 Fig. 2A-5 and 2A-6	Sec. 2.5.4.6 p. 2.5-30		Sec. 3.7A.2.4 Sec. 3.7A.2.5 p. 5			

. _ --- .---

- - ----

	STRUCTURES						
- <u></u>		DESIGN CRITE	RIA				
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES				
Reinforced concrete structure: Steel frame structures: Bolted and riveted assemblies: Welded assemblies: Translation and rotation of soil: (NSSS)- Drywell-building (coupled): Suppression chamber: Reactor pressure vessel, support skirt, shroud head, separator and	3.0/5.0 3.0/5.0 3.0/5.0 2.0/3.0 4.0/5.0 3.0/5.0 2.0/3.0	Steel containment (a) Initial and final testings (1) $D+L+P_t+T_t+E$ (2) $D+L+P_t+T_t+E'$ (b) Normal operating (1) $D+L+T_0+R_0+E$ (2) $D+L+T_0+R_0+E'$ (3) $D+L+T_t+R_t+P_t+E$ (4) $D+L+T_t+R_t+P_t+E'$ (5) Refueling (1) $D+L+E$ (2) $D+L+E'$ (3) $D+L+E'$	ASME, BPVC, Sec. III AISC 1969 Ed. ACI 318-63				
guide tubes: Fuel: Table 3.7A-1 and 3.7B-1	2.0/3.0 7.0/7.0	(e) Flood Sec. $3.8.4.3$ p.	7 Sec. 3.8.2.2 p. 4 47 Sec. 3.8.3.2 p. 45 58 Sec. 3.8.4.2 p. 57 78 Sec. 3.8.5.2 p. 78				

	MECHANICAL & PIPING								
DAMPIN		METHOD	DESIGN CRITERIA						
OBE/S	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES ASME, BPVC, Section III Table 3.91, 3.9-2 Sec. 3.9.1.6 p. 3.9-8					
Vital piping systems Fuel	0.5/1.0 7.0/7.0		Load combination definitions are according to ASME Sec III NB-3200 through NB-3600. For details see tables below, e.g., Table 3.9-4, "Reactor Pressure Vessel Internals and Associated Piping." Table 3.9-4, through 3.9-64	Table 3.91, 3.9-2 Sec. 3.9.1.6					

		ELECTRICAL EQUIPMENT				
DAMPING OBE/SSE	METHOD	DESIGN CRITERIA				
935 1967	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses			
Not available.	Analytical and testing.	Not available.	Seismic class I electrical equipment IEEE Std. 344-1971 p. 3.7A.A-1 to 3.7A.A-6 Tubing- ASME BPVC Section III			
	Secs. 3.7A,A.3.1 3.7A,A.3.2 Table 3.9-23					

.

- ---

__ __ _

-- -----

- -----

Docket Number 50-285

NAME AND NSSS Type of the Plant		EARTHQUAKE DATA					METHOD OF COMBINATION		DESIGN	SPECTRA
	01	BE		SSE			NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. S	VERT. 8	INTENSITY MM.	HOR. 8	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Fort Calhoun Station Unit #1 Reactor type: FWR Containment type: Without Buttresses (Prestressed Con- crete) NSSS Manufacturer: Combustion Engi- neering Architect Engineer: Gibbs & Hill, Inc.	0.08	.053	Unclear information	0.17	.0113	Time history-1940 El Centro and 1952 Taft normalized to the ground acceler- ation of the maximum hypothetical earth- quake are used for developing floor response spectra.	3 compo- nents. Combina- tion not available.		Response spectra conform to the average spectra developed by Housner for fre- quency > 0.33 HZ and Newmark for frequency < 0.33 HZ.	Time history method.
6-68/5-73	Sec. 2.4 p. 2.4-3		Sec. 2.4 p. 2.4.1			Sec. F.2.2.4 p. F-10	Sec. F.2.5		App. F Sec. F.2.1.4 p. F-6	Арр. F Sec. F.2 p. F.10 & F.14

	FOUNDATION AND LIQUEPACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION	DATION		CROUND WATER	DAM	METHOD OF	G_ PROFILE	MATERIAL DAMPING	LIMITATION ON	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE		MODELLING		OF SOIL	MODAL DAMPING	
concrete mat supported by pile foundation resting on	Compact granular. Fluvial deposits on lime- stone. Bedrock underlain by rock strata.	4-8 ft 19-21 ft	Not available.	Missouri River Valley. Domestic wells depth 20 ft to 35 ft. Commercial wells depth 50 ft to 75 ft.	Gavin Point Fort Randall Big Bend Oahe Garrison Fort Peck	Stick model with soil springs.	Not available.	Not available.	0.05 SSE 0.02 OBE
Sec. 5.1 p. 5.1.1 Covering letter "Dames & Moore" App. C p. 10	Sec. 5.1 p. 5.1.1 App. C p. 6	Sec. 5.1 p. 5.1.1 App. C p. 6		Sec. 2.7.2 p. 2.7-6	Sec. 2.7 p. 2.7-1	Sec. F.2.2.3 p. F-8			Sec. F.2.2.3 p. F.9

_ _ _ _

STRUCTURES							
DAMPING		DESIGN CRITERIA					
OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES				
Containment structure: Concrete support structures for reactor vessel and steam generators: Steel Assemblies: Bolted or riveted Welded Vital piping systems: Rigid vault type concrete structures: Framed concrete structures:	2.0/2.0 2.0/2.0 2.0/2.0 1.0/1.0 0.5/0.5 2.0/5.0 5.0/7.0	 D+L+S+T''' D+L+S+T'''+W or E D+L+P+S+T+W or E where: D = Dead load including equipment weights and hydrostatic loading L = Live load S = Post-tensioning load (which varies with time) P = Accident design pressure T = Thermal loads based on a temperature corresponding to pressure P W = Wind load E = Design earthquake T''= Thermal loads based on normal operating temperature 	Ultimate strength method ACI 318-63 Modified ultimate strength design No loss of function design for extreme environmental loading				
Sec. F-2.1.3 p. F-6		For further details refer to section 5.5. Sec. 5.5 p. 5.5-1 to 5.5-5a	Sec. F.2.1.1 p. 5.5-1 Sec. 5.5 p. F.3				

~

	MECHANICAL & PIPING								
DAMPING OBE/SSE		METHOD		DESIGN CRITERIA					
066/335	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBI	INATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES				
Mechanical equipment: Piping:	2.0/2.0 0.5/0.5	Analytical and testing.	Reactor vessel: 1. Design loading + OBE	P _m < S _m P _b +P ₁ < 1.5S _m	ASME, BPVC, Section III USAS, B31.1 and B31.7				
			2. Normal operation + SSE	$ \frac{P_{m} \leq S_{d}}{P_{b} \leq 1.5} \left[1 - \left(\frac{P_{m}}{S_{d}} \right)^{2} \right] S_{d} $					
			3. Normal operation + SSE + pipe rupture	$ \begin{array}{c} P_{m} \leq S_{L} \\ P_{b} \leq 1.5 \\ p_{b} \leq 1.5 \end{array} \left[1 - \left(\frac{P_{m}}{S_{L}} \right)^{2} \right] S_{1} $					
			where S_=S_+(1/3) S_=1.2S_m	(S _u -S _y)					
			d 1120m Piping: 1. Design load + OBE 2. N.O. + SSE	Applicable code allowable $P_{m} \stackrel{<}{\xrightarrow{-} d} P_{b} \stackrel{<}{\xrightarrow{-} 4/\pi} S_{d} \cos\left(\frac{\pi}{2} \cdot \frac{P_{m}}{S_{d}}\right)$					
Appendix F Sec. F.2.1.3 p. F.6 Table F.2		Appendix F Sec. F.2.2.2 p. F-7C	3. N.O. + SSE + pipe rupture For reactor vessel and piping Sec. F.2.1.2 Table F.1, p. F.4 and F.5, Appen	$P_{m} \leq S_{L}$ $P_{b} \leq 4/\pi S_{L} \cos\left(\frac{\pi}{2} \cdot \frac{P_{m}}{S_{L}}\right)$	Appendix F Sec. F.2.1.1 p. F.3				

	ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRITERIA								
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses							
Not available.	Shop test, prototype test, field test or seismic anal- ysis to meet Class I seis- mic criteria.	"Special seismic restraints will be installed at the electrical cable trays. The cable will be supported vertically and horizontally so as to meet the stress criteria under all conditions including postulated earthquakes."	According to IEEE 344 "Guide for Seismic Qualification of Class I Equipment for Nuclear Power Generating Station"							
	Appendix F Sec. 6.14 Sec. F.2.2.2 p. 6.1-4 p. F.7.C, 7d	Sec. F.2.2.2 p. F.7.C	Sec. F.2.2.2 and Sec. 7.2.2 p. F.7.C and p. 7.2.1							

Docket Number

50-267

NAME AND NSSS Type of the			EARI	THQUAKE DA	TA		METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT. 8	INTENSITY MM	ROR. 8	VERT.	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Fort St. Vrain Nuclear Generating Station (Unit 1) Reactor type: HTGR Containment type: Prestressed Concret NSSS Manufacturer: Gulf General Atomic Architect Engineer: Sargent and Lundy Engineers		0.033	VII	0.10	0.067	TID-7024, "Nuclear Reactors and Earthquakes",AEC, 8/63	simulta- neously with the	super- position of all	Response spectra were developed as recommended in AEC TID-7024. Housner	TID-7024
<u>9-68/12-73</u>	Sec.	Amend. 14 Sec. 5.2.1. p. 5.2-4		Amend. 14 Sec. 5.2.1.1 p. 5.2-4	Sec. 5.2.1.1	1	р. 5.3-33	р. 14.1-4	Fig. 14.1-1 Sec. 14.1 p. 14.1-1, 14.1-3	p. 14.1-1 App. E.13

	POUND	MATION AND	LIQUEFACTION AS	Sessment		SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION			GROUND WATER	DAM	METHOD OF	G _s profile	DAMPING	LIMITATION ON
		THICHNESS	V PROFILE	TABLE		MODELLING		OF SOIL	MODAL DAMPING
 Reactor, tur- bine buildings and heavy equipment, as well as the main and service wa- ter cooling towers. Straight shaft piers. drilled into the clay- 	The major plant facili- ties will be founded on Pierre Shale bedrock (dark gray, silty	shale). 44 to 54 ft. p 1.2-2	Not av ailable	Ground water level was well below proposed founda- tion level, except reactor building which extends be- low the water level.	V _S = 1200 fps		<pre>6 = 850 psi @ 20 ft. G_S = 104,000 psi @ 65 ft. Boring UH1</pre>	Not available	Not availa ble
<pre>stone bedrocks. 2. Miscellaneous light equip- ment. Spread footings. Sec. 2.6 p. 2.6-20</pre>	Above it lies St. Vrain Platte River alluvia sands and gravel	p. 1.2-2		Sec. 2.6 p. 2.6-21	Table 3-1	p. E. 37-12 Fig. E.13-1	Table 3-1 p. 3-8		

	STRUCTURES										
			DESIGN CRITERIA								
	DAMPING OBE/88E	(% Criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE' STRESSES							
Reinforced concrete: PCRV. (prestressed concrete reactor)vessel) Welded steel Bolted steel		2.0/5.0 2.0/5.0 2.0/5.0 2.0/10.0	<pre>PCRV: DL + 1.23 NWP + E' + TL DL + 1.23 NWP + 1.5 TL NWP = Normal working pressure DL = Dead load E' = SSE earthquake loads TL = Temperature loads</pre>	For reactor core support structure: Concrete. ACI 318-63 Metal. ASME B and PV Code Sec. III. Class A Stress Criteria: Operating Principal Comp. 0.45 Cf $\stackrel{\circ}{c}$ Principal tension $3\sqrt{f^{\circ}c}$ Bearing tendon area $0.6f_{c}^{\circ} 3\sqrt{ab^{\circ}/ab^{\circ}} < f^{\circ}c$ Bearing: Shear Anchors $0.6f_{c}^{\circ}$ average							
Amend. 16, p. 14.1-3			Table E.1-1	Table E.1-1 Sec. 3.2, p. 3.2-2							

	MECHANICAL & PIPING										
DAMPING OBE/SSE (% criti- cal damping)		METHOD	DESIGN CRITERIA								
	(Z criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses							
Vital steel piping Amend. 16, p. 14.1-3	0.5/0.5	Dynamic seis- mic method for Class I System and piping based on Fig. "SSE" ground acceleration Sec. 1.4 p. 1.4-3 and Tests for Class I systems, Q. 5.1, Amend. 16 Attachment A, p. 5.11-1 and Q. 5.11, Amend. 16 Attachment A p. 5.11-1 and Amend. 1 Attachemnt A p. 5.11-9	 b) D. L. + Operating mechanical load + Design seismic loads ≤ Fy c) D. L. + Operating mechanical + twice design seismic load ≤ No loss of safety function 	For all piping systems: ANSI B.31.1.0-1967. For containment tank: ASME Code Sec. III-C For coolers: ASME Code Sec VIII Sec. 4.2, p. 4.2-10 Sec. 4.2, p.4.2-28 Sec. 4.2, p.4.2-35							

ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRIT	ERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Not available	1 de cese t de se	Not available	Not available						
	For auxiliary electrical system.								
		:							
	!	:							
	: : !								
	Amend. 25 p. 8.4-1								

- - -- ---

Docket Number

50-213

NAME AND NSSS TYPE OF THE		EARTHQUAKE DATA						D OF ATION	DESIGN SPECTRA	
PLANT	0	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT.	INTENSITY MM	HOR. 8	VERT. g	TIME HISTORY	USED AND ITS COMB.	сомв.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Haddam Neck Nuclear Power Plant, Unit 1. Reactor type: PWR Containment type: Reinforced Concrete Cylindrical NSSS Manufacturer: Westinghouse Architect Engineer: Stone and Webster Emgineering Corp. 5-64/6-67	Not used	Not used	Not used	 Kor safety related structures, e.g., reac- tor vessel, reactor coolants system safety injection system, spent fuel storage pit). 0.03 (for non-safety related). 	0.11	Not used	For the reactor containment a vertical acceleration component equal to 2/3 the horizontal was assumed to act <u>non-concurrently</u> . Resulting stresses were lower than those from the horizontal component and so verti-	tions - r degree of the maxi urve was used.	Housner (JEMD, ASME, Oct. 1959) Fig. 2.5-1	No floor re- sponse spectra generated. Housner's "Average Ac- celeration spec- trum" was used for all eleva- tions.

*Information obtained from BNL Docket search and SEPB Report prepared by LLL, EDAL Report # 175-130.01, January 1979.

19-1

	FOUNI	DATION AND	LIQUEFACTION ASS	Sessment	SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION TYPE THICKNESS V _B PROFILE		GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g profile	MATERIAL Damping Of Soil	LIMITATION ON MODAL DAMPING	
Containment- 9 ft. mat. Spent fuel pit founded on bedrock with lowerside walls embedded in rock and earth. Major structures are founded di- rectly on the granitic gneiss bedrock. Minor structures are founded either on rock on piles drived to rock or on spread footings in com- pacted granular fill.	Boring Loose loam Firm find sand and gravel + boulder		.0	21 ft. MSL is yard grade. Calculated site flood stage is 15.1 MSL GWL: - 8 ft. MSL		Fixed base with single degree of freedom (containment).	Not available	Not used	Not used
2.4-2	Fig. 2.	4-4		2.3-3					

_

STRUCTURES								
		DESIGN CRITERIA	-					
DAMPING OBE/SSE (% criti- cal damping)		LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES					
R/C containment: Include mat R/C framed structure Steel framed structures, include support. structure and foundation bolted welded	7.0 5.0 2.5 1.0	Reinforcing steel - primary plus secondary operating + incident - 33.3 ksi operating + .03g hor 26.7 ksi operating + .03g hor. + incident - 33.3 ksi operating + incident + 0.17g hor 40.0 ksi - wind loads up to 150 mph - 30 psf snow and ice (not included in combination) p. 3.2-2 Non-safety related systems: E (=Ø.Ø3g): No loss of function	ACI and ASME Codes plus Rayleigh method and equiva- lent static loads for seismic.					
Table 2.5-2			p. 3.2-2					

MECHANICAL & PIPING										
DAMPING OBE/SSE (% criti- cal damping)	METHOD OF QUALIFICATION	LOAD C	ACCEPTANCE CRITERIA & Allowable Stresses							
Piping: Carbon steel 0.5 Stainless steel 1.0 Reactor internals and CRD welded 1.0 bolted 2.0 Mechanical equipment includes pumps and fans 2.0	'Analytical	Reactor coolant <u>Safety Injection System</u> : Operating loads + E < working Stress (E = 0.17g) <u>Main Steam Piping</u> : Operating loads + E < Working Stress (E= 0.03g)	Component Steam generator- Reactor Coolant Pumps- Reactor Coolant Piping - Pressurizer Safety and Relief Valves Loop Stop Valves Loop Check Valves Pressure Control and Relief System Piping Low Pressure Surge Tank	Design Code ASME Section VIII (1956 ed.) ASME Section VIII (1956 ed.) ASA B31.1 (1955 ed.) ASME Section VIII (1956 ed.) and Code Case Nos. 1224 and 1234 ASME Section I (1956 ed.) and Code Case Nos. 1224 and 1234 ASA B16.5 (1957 ed.) ASA B16.5 (1957 ed.) ASA B31.1 (1955 ed.) ASME Section VIII (1956 ed.)						

_

ELECTRICAL EQUIPMENT									
DAMPI		METHOD	DESIGN CRITERIA						
obe/s	SSE (% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available		No testing	Not available	Not available					

Docket Number 50-261

- ----

NAME AND NSSS Type of the		EARTHQUAKE DATA						D OF ATION	DESIGN SPECTRA	
PLANT	01	OBE		SSB		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT.	INTENSITY MM	AOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
H. B. Robinson Nuclear Steam Electric Plant Unit No. 2 Reactor type: PWR Containment type: without buttresses (prestressed con- crete) NSSS Manufactuer: Westinghouse Architect Engineer: Ebasco	0.10	0.067	ΥΠ	0.20	0.133	Not used.	K and Y (vertical) or Z and Y (vertical) applied together. Combina- tion not available.		Housner spectra.	No floor re- sponse spectra generated. Housner spectra used for components.
4-67/8-70	p. 5.1.2 -6	p. 5.1.2 -6		p. 5.1.2 -6	p. 5.1. 2-6	p. 5A-4	Question III A 11	Question IIA	Figures 2.9-2 9.9-3 p. 2.9-9	p. 5A-4

.

FOUNDATION AND LIQUEPACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION			
TYPE OF Foundation And Its depth	BEAF TYPE	BEARING INFORMATION TYPE THICKNESS V PROFILE			GROUND Water Table	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
A 144 ft. diam- eter circular reinforced con- crete slab 10 ft. in thickness supported by 923 steel pile. p. 5.1.2-20 TYPE (cont.) * over 430 ft. middendorf formations. Sec. 2.8.3 p. 2.8-6 Dock. 50261-104	crystal- line basement rock at the site is over- laid with 460 ft. of uncon- solidated	dendorf is made up of sands, silty and sandy clay, sandstone and mud- stone. Fig. 2.8 -2 Basement Rock Midden- dorf 430ft. Alluvium 30ft.		available.	Not available.	pool is at E1. 220 and the dam has a maximum height of 50 ft. The crown width of dam is 15 ft. and side slopes are 1(verti	3(horizontal) on upstream side and 1 (vertical): 2.5(Horizontal) on downstream with 15 ft. berm at El. 200. Sec. 2.9.8	Not available.	Not avail- able.	The modal analysis was per- formed utilizing the same damping factor for each mode. Question III A4

STRUCTURES								
DAMPING		DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Containment structure: Concrete support structure of reactor vessel: Concrete structures above ground: (a) Shear wall (b) Rigid frame	2.0 2.0 5.0 5.0	<pre>For containment structure: (a) C=1.0D±0.05D+1.5P+1.0(T+TL)+1.0B (b) C=1.0D±0.05D+1.25P+1.0(T'+TL')+1.25E+1.0B (c) C=1.0D±0.05D+1.0P+1.0(T'+TL')+1.0E'+1.0B (d) C=1.0D±0.05D+1.0P_T+1.0(T_T+TL_0)+1.25WT+1.0B (e) C=1.0D±0.05D+1.15P_D Symbols used in these formulas are defined on p. 5.1.2-9.</pre>	For containment structure using ACI 318-63 Ultimate strength design.					
Table 5A.1-1 p. 5A-5		p. 5.1.2-8						

		<u></u>	1	MECHANICAL & PIPING						
	MPING E/SSE		METHOD		DE	SIGN CRITERIA				
	-,	(% criti- cal damping)	OF QUALIFICATION		ACCEPTANCE CRITERIA & Allowable stresses					
Vital pipe system Steel assemblies (a) Bolted or : (b) Welded	:	0.5 1 2.5 1.0	Analytical	quake loads	$P_{L}^{m} + P_{B} \leq 1.5S_{m}$	$P_{m} \leq 1.2S$ $P_{L} + P_{B} \leq 1.2(1.5S)$ $P_{m} \leq 1.2S$	Pressure piping: USAS B31.1 Pressure vessel: ASME,BPVC			
Table 5A.1-1 p. 5A-5				$P_m = primary general me P_L = primary local membres P_B = primary bending stands S_m = stress intensity of S = allowable stress of Table 5A.3-1$	brane stress; or stre tress; or stress inte value from ASME, BPVC	ss intensity. nsity. Code, Section III	p. 5A-3			

_ - - - -

20-4

ELECTRICAL EQUIPMENT								
DAMP ING OBE/SSE	METHOD	DESIGN CRIT	ERIA					
055/335	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available.	Circuits and equipment were subjected to vibration tests which simulated the seismic condi- tions for the "low seismic" class of plants.	Not available.	Electrical equipment: WCAP 7397-L					
	p. 7.5-13		p. 7.5-14 Amendment 10					

Docket Number 50-133

NAME AND NSSS TYPE OF THE	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE			NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR. g	VERT. g	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Humboldt Bay Power Plant, Unit 3 Reactor type: BWR Containment type: Pre-mark (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	0.25	0.17	VIII	0.50	0.333	Time-histories given in BC-TOP-4A	BC-TOP-4A	BC-TOP-4A	Reg. Guide 1.60, Rev. 1, 1973	Time history
			FHSR Amend. 11	FHSR,						BC-TOP-4A
11-60/8-62	p. 1-1	p. 1-1	p. 125	Amend. p. 162		p. 5-3				p. 5-1

Information gathered from FHSR Amend. 11 (50133-1), Amend. 13 (50133-3) FSAR Supp. (50133-59), FSAR proposed Amend (50133-124), FSAR Supp. Emergency Plant (50133-183)

and Summary Report of Seismic Design Review, Rev. 3, 1977.

21-1

	FOUN	DATION AND	LIQUEFACTION A	SSESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEA	RING INFOR	· · · · · · · · · · · · · · · · · · ·	GROUND WATER	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE					
Not available	Sand and alluvium overlaying strata of Hookton and Carlotta formation which are more or less consoli- dated sands. Gravels and clays and conclomerates with good structural properties.	available	Not available	Not available	Not avail- able	2 dimensional finite ele- ment model which in- cludes em- bedded reactor caissions		BC -	TOP 4A

FHSR, Amend 11, Sec. I, p. 155

21-2

____ -

	DESIGN CRITERIA	A					
DAMPING OBE/SSE	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
R. G. 1.61 (BC-TOP-4A)	Accident Condition Concrete structures: $U = D + L + T_A + H_A + R + 1.5 P$ $U = D + L + T_A + H_A + R + 1.25 P + 1.25 E$ $U = D + L + T_A + H_A + R + P + E^{\prime}$ $U = D + L + T_0 + H_0 + E^{\prime}$ Steel Structures Elastic working stress 1.6S = D + L + T_A + H_A + R + P + E 1.6S = D + L + T_A + H_A + R + P + E 1.6S = D + L + T_A + H_A + R + P + E^{\prime} Plastic 0.9 Y = D + L + T_A + H_A + R + 1.5 P 0.9 Y = D + L + T_A + H_A + R + 1.25 P + 1.25 E 0.9 Y = D + L + T_A + H_A + R + P + E^{\prime} App. B-3	AWS D1.1-74 welded steel tanks for oil storage, API 650, 1973 BC-TOP-9A, Design of structure for missile impact, Rev. 2, 1974 UBC - 1973 ACI -214 - 65 ACI -318 - 71 AISC - 1969 p. C-1 p. C-2					

DAMPING	METHOD	DESIGN CRITERIA	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses
Reg. Guide 1.61 (BC-TOP-4A)	Test or Analysis	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

*Applies to main steam line

_ _

ELECTRICAL EQUIPMENT						
DAMP ING	METHOD	DESIGN CRI	TERIA			
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses			
Not available	Test and/or analysis	Not available	Recommended practices for seismic qualification of Class 1E equipment for NPP, IEEE 344, Jan. 1975.			
	Table 6.1, p. 9-1		Table 6.1 p. 8-1			

·

Docket Number 50-3

NAME AND NSSS Type of The			EAR	THQUAKE D	ATA	METHO COMBIN				
PLANT	0	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT. g	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Indian Point Nuclear Generating Station, Unit No. 1 Reactor type: BWR Containment type: Dry containment- spherical (steel) NSSS Manufacturer: Babcock and Wilcox Architect Engineers and Constructors 5-56/3-62	None	None	Not avail- able	· · · · · 0.10g for containment structure (including · · steel sphere and interior structure), nu- 너머 clear service bldg., chemical systems bldg., fuel handling bldg., stack		Synthetic Time History "Earthquake Analysis of Piping Systems." 9-12-69 J. Blume Report, p. 1-2	Each hori. zontal combined with vertical simul- taneously Sheet* 161.1 p. D.2-2		Synthetic design spectra TID-7024 Housner "Earthquake and Tornado Analysis of Structures" 9-5-69 J. Blume Report p.1-2	<pre>Time-history method J. Blume Report on Piping Systems, p. 1-2 Class I structure Sheet 10.1, p. 1-4, 5 Piping Sheet 11.1, p. 1-2, 5 Reanalyzed,2Sheet 4.30, p. 1,2,3</pre>

* "Sheet" refers to microfiche Sheet #

	FOUNDATION AND LIQUEFACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION					GROUND	DAM	METHOD OF	G _s profile	MATERIAL DAMPING	LIMITATION ON
and Its depth	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	8	OF SOIL	MODAL DAMPING	
Reinforced concrete mat.	well-bedded dolomitic limestone, bedrock ly jointed and fractured joint systems ext ar right angles to bedding, other systems ular. The intensity is almost brecciation	Founda- tion sits on bed- rock	Not available	Not available	Not avail- able	Stick model with founda- tion rigidly fixed to bed- rock.	Not available	No damping assumed Sheet 10.1	Not available	
Sheet 10.1 p. 2-1	Hard, treme. at new	10.1 p. 2-1				p. 2-1		p. 2-1		

.----

......

STRUCTURES								
DAMPING		DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Reinforced concrete Structural steel - bolted - welded	5.0/5.0 2.0/2.5 1.0/1.0	<pre>First analysis- C = (1.0 ± 0.05) D + (E or W) C = Required load capacity; E = earthquake loads D = Normal loads (dead load of structure, plus any normal Sheet 10.1, p. 1-3 operating live loads) Reanalysis- U = D + L + F = A - steel containment U = D + L + T + F = A - steel containment U = D + L + T + F = Biological shield U = D + L + F = other Class I structures D = Dead loads; L = live loads T = Thermal loads; P = pressure loads F = SSE loads</pre>	ACI Standard- ACI 318-63 "Ultimate Strength Design" ASME BPVC, Sec. VIII					
Sheet 10.1, p. 1-2		Sheet 4.30,p. 1 and 2 Sheet 114.2, Question 7	Sheet 4.1, p. 1-4 Sheet 10.1, p. 1-3 and Sheet 10.2					

	MECHANICAL & PIPING								
DAMPING		METHOD	DESIGN CRITERIA						
obe/sse	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Piping	0.5/0.5	Analytical	Reanalysis U = D + P + P' + F - piping U = D + L + F _{eqs} - component supports D = Dead doads L = Live loads P = Internal pressure loads P' = "Load on safeguard systems in the event of LOCA" F _{eqs} = SSE loads	ASME - USA Standards , code for pressure piping, nuclear power piping, USAS B31.7 also ASME BPVC, Sec. III					
Sheet 11.1, p. 1-3 Sheet 430,p. 1		Sheet 5 Sec. 2.1.2.1 p. 4	Sheet 430 p. 1 and 2	Sheet 11.1 Sheet 5, Sec. 3.0 p. V. and p. 8					

.

· ____·

-

ELECTRICAL EQUIPMENT						
DAMPING	METHOD	DESIGN CRITERIA				
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable otresses			
Not available	Not available	Not available	Not available			

Docket Number

NAME AND NSSS Type of the	· · · · · · · · · · · · · · · · · · ·		EAR	THQUAKE I	ATA		METHO		DESIGN SPECTRA	
PLANT	0	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT.	INTENSITY MM	ROR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Indian Point Nuclear Generating Station, Unit No. 2 Reactor type: PWR Containment type: Atmospheric (Reinforced Concrete) NSSS Manufacturer: Westinghouse Architect Engineers & Constructors	0.10	0.05	VI	0.15	0.10	None used	Horizontal and verti- cal. acting simultan- eously	SRSS	Housner	No floor re- sponse spectra generated; ground response spectra used for piping and com- ponents.
10-66/10-71	Sec. 1.2.2 p. 1.2-9		Sec. 2.8 p. 2.8-1	Sec. 1.2.2 p. 1.2-9		Арр. А	p. A-3	Q. 1.3-2 Suppl. 9 (5/70)	Fig. A.1-2	Sec. 3.1.5 p. 3.0-9 Supp. 6 (2/70)

	FOUNDATION AND LIQUEPACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION			GROUND		DAM	METHOD	C PROEVER	MATERIAL DAMPING	LIMITATION ON
AND ITS DEPTH	TYPE	Thickness	V PROFILE	WATER TABLE	PAR	MODELLING	G _s profile	OF SOIL	MODAL DAMPING
Mat foundation 9ft, thick.	dolomitic limestone. This bedr donoffactured Joint systems ignt angles to bedding, other sy The intensity may be described a	Not available	Not available.	Stony Point: about 35ft. depth Rockland County 100ft. to 300ft. depth At the fringe of Westchester Coun- ty depth less than 50ft.	Not avail- able.	Structure; Stick Model Fixed base	Not available.	Not available	Not available.
Sec. 1.3.0 p. 1.0-4 Supp. 6 (2/70)	Hard, wellbedded extremely jointe tended at near r are irregular. as brecciation.			Vol. 1, Sec. 2.5, p. 5-10		Sec. 3.1.5, p. 3.0-9, Suppl. 9			

Sec. 2.7 p. W-4

STRUCTURES							
		DESIGN CRITERIA					
	(% criti- cal damping)	LOAD COMBINATION	ACÇEPTANCE CRITERIA & Allowable Stresses				
Containment structure Concrete support structure of reactor vessel Steel assemblies: (a) bolted or riveted (b) welded Concrete structures above ground (a) shear wall (b) rigid frame * One damping value is given, but no clear whether for O.B.E. or D.B.E.	2.0 * 2.0 2.5 1.0 5.0 5.0 t		d Sec. 2.1.12, p. 2.0-7 and				
Sec. 5.1.3.8, p. 5.1.3-6			Sec. 2.1.13, p. 2.0-8 Supp. 6				

			MECHANICAL & PIPING		
DAMPING		METHOD		DESIGN CRITERIA	
	(% criti- cal damping)	OF QUALIFICATION	LOAD COM	BINATION	ACCEPTANCE CRITERIA & Allowable Stresses
Vital Piping Systems * One damping value But not clear whet O.B.E. or D.B.E.	* 1s given. ther for	Analytical and Testing	2. Normal + Design Same as E.Q. above 3. Normal + $P_{M} \leq 1.2 S_{M}$	PipingSupports $P_M \leq S$ Working stress $P_L + P_B \leq S$ or applicable factored load v. $P_M \leq 1.2 S$ 1 1/3 working $P_L + P_B \leq 1.2 S$ 6tress $P_M \leq 1.2 S$ Maintain equip. within stress $P_L + P_B \leq 1.2(1.5 S)$ 1imitsSame as aboveSame as above	For further details refer to 0. 4.10
Sec. 5.1.3.8, p. 5.1.	3-7	Sec. 5.1.3.8 p.5.1.3-6 and Q.4.5, Q.4.5-1 Supp. 6	Table A.3-1		Sec. 3.2.3, p. 3.2.3-3 Sec. Q. 4.5, p. Q. 4.5-1 Supp. 6

	ELECTRICAL EQUIPMENT										
DAMPING	METHOD	DESIGN CRITE	ERIA								
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses								
Not available.	Not available.	Not available.	Not available.								
/											

* **

-

- . ..____

.

١

Docket Number 50-286

.

NAME AND NSSS TYPE OF THE			EAR	THQUAKE D/	ATA		METHO COMBIN		DESIGN SPECTRA	
PLANT	OI	3E		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. g	VERT. g	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Indian Point Nuclear Generating Station, Unit No. 3 Reactor type: PWR Containment type: Atmospheric (reinforced con- crete) NSSS Manufacturer: Westinghouse Architect Engineer: United Engineer and Contractors	.10	.05	VII	.15		Compared with (1) E1 Centro 12/30/34 and 5/18/40 (2) Olympia 4/13/49 (3) Taft 7/21/52.	3 compo- nents: Each hori- zontal combined with vertical component by abso- lute sum.	SRSS; closely spaced (10%) modes combined by abso- lute sum.	Containment response: Housner spectra	Time history.
8-69/5-76	Sec. 5.1. 2.2 p. 5.1.2 -4	Sec. 5.1. 2.2 p. 5.1.2 -4		Sec. 5.1 2.2 p. 5.1.2 -4	1.2.2	. p. Al-9, Appendix Al Curves-Fig. Al-1&2	Question 5.22	p. Q5.28 -1 p. Q5.37 -1	Sec. 5.1.3.5 p. 5.1.3-3	p. Q4.32-1 Vol. VI

	FOUND	ATION AND	LIQUEFACTION ASS	SESSMENT		SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND	BEAI	RING INFOR	<u> </u>	GROUND WATER TABLE	DAM	METHOD OF NODELLINC	G _s profile	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING	
ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL		
Concrete base mat9 feet thick.			Not available.		Three reservoirs are within five mile radius. No informa- tion on dams is available.	Structure: stick model Soil: cantilever beam assump- tion indi- cates fixed base modeling.	Not available.	Not available.	Not avail- able.	
Sec. 5.1.2.1 p. 5.1.2-1	Sec. 2.7 p. 2.7-1			See Fig. 2.7-3	Sec. 2.5 p. 2.5-2	Appendix 5A Sec. 3.1.5 p. 5A-26→28				

- --

DAMPING	(% criti-	DESIGN CRITERIA	
OBE/SSE	cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES
Containment:	2.0/5.0	Containment factored load equations: (a) C=1.0D±0.05D+1.5P±1.0(T+TL)	Containment concrete ACI-318-63
Concrete support structure of reactor vessel:	2.0/2.0	<pre>(b) C=1.0D±0.05D+1.25P+1.0(T'+TL')+1.25E (c) C=1.0D±0.05D+1.0P+1.0(T''+TL'')+1.0E'</pre>	Ultimate strength design ACI 318-63 Part IV-B
Concrete structures above ground: (a) shear wall (b) rigid frame	5.0/5.0 5.0/5.0	<pre>(d) C=1.0D+0.05D+1.0W' (a) = LOCI (b) = Design base accident (DBA)+OBE (c) = DBA+SSE (d) = Design base tornado</pre>	
Steel assemblies: (a) bolted or riveted (b) welded	2.5/2.5 1.0/1.0	<pre>where C = required load capacity D = dead loads P = accident pressure load T = maximum temperature gradient load associated with 1.5P. TL = liner load due to temperature associated with 1.5P. W' = tornado wind and external pressure drop T' and TL' are T and TL but due to 1.25P. T'' and TL'' are T and TL but due to 1.0P. E = operational base earthquake load E' = design base earthquake load</pre>	~
Sec. 2.1.8, p. 5A-10, Appendix 5A Table A.1-1, p. A1-10, Appendix Al		p. 5A-13 Appendix 5-A Table 3.2, 4.1	p. 5.1.1-2 p. 5A-13, Appendix 5-A

· · · · · · · · · · · · · · · · · · ·				MECHANICAL 6	PIPING	· · · · · · · · · · · · · · · · · · ·	
	DAMP ING	·····	METHOD OF QUALIFICATION		· · · · · · · · · · · · · · · · · · ·	DESIGN CRITERIA	
	OBE/SSE	(% criti- cal damping)		l	OAD COMBINATIO	N	ACCEPTANCE CRITERIA 6 Allowable Stresses
Piping:		0.5/0.5	Analytical.	(1) Normal=D+T+P	<u>Piping</u> P <_ σ	$\frac{Vessels}{P_{m} \leq S_{m}} \leq P_{L} \leq 1.5S_{m}$ $P_{m} (or P_{L}) + P_{B} \leq 1.5S_{m}$	Piping: ANSI B31.1-1955 ASME BPVC Sec. III-1965
				(2) Upset=D+T+P+E	P <_ 1.2σ	$P_{m}(or P_{L}) + P_{B} + Q \leq 3.0S_{m}$	
				(3) Faulted=D+T+P+E'	Design limit curves	P _m <_ (1.25S _m) or S _y or P _L <_ (1.25S _m) or 1.5S _y whichever is larger	
				(4) Faulted=D+T+P+PR	Design limit curves	$P_m(\text{or } P_L) + P_B \le 1.5(1.2S_m)$ or 1.5S _y whichever is larger	
				(5) Faulted=D+T+P+E'+PR	Design limit curves	For stress limit refer to Table A.1-3	
			Sec. 2 p. A.3-3 p. A.3-10-12	D = dead load, T = therm E = OBE, E' = SSE			
Table A.1- p. 4.2-8;	1, p. A.1-10 p. 4.3-29	0	For testing p. Q4.17 Vol. VI	Sec. 4.0, p. Al-18, Appe	endix Al		Table 4.10-6 & 10 p. 4.9-2

		ELECTRICAL EQUIPMENT	
DAMPING	METHOD	DESIGN CRITERIA	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses
Not available.	Analytical and testing.	Not available.	Westinghouse Report WCAP-7817 "Seismic Testing of Electrical and Control Equipment"
	Sec. 3 Appendix A3 p. Q5.16-2 Vol. VI		Sec. 3 p. A.3-6, 7, 8 Appendix A3 Supplement 4

Docket Number 50-333

NAME AND NSSS Type of The	······································		EAR	EARTHQUAKE DATA				O OF ATION	DESIGN SPECTRA	
PLANT	OB	E		SSE			NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
James A. Fitzpatrick Nuclear Power Plant	0.08	.053	VIII	0.15	0.10	Articifical time- history used	nquake in X and eously, and Z were computed	SRSS	Housner	Time-history method.
Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Stone and Webster Engineering Corp.							ents. Results for earthquake al) directions simultaneously, rections simultaneously were c ly.			
5-70/10-74	p. 2.6-1	p. 2.6-1		p. 2.6-1	p.2.6-1	Sec. 2.6 , p. 2.6-1	d W 3 components. Rei d Y(vertical) directions C 3 and Y directions F 5 separately.		Sec. 2.6, p. 2.6-2 See Fig. 2.6-1 and Fig. 2.6-2	Sec. 12.5.4, p. 12.5-13

	FOUNI	DATION AND	LIQUEPACTION ASS	Sessment		SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND	ION		GROUND WATER	DAM	METHOD OF	G _s profile	MATERIAL DAMPING	LIMITATION ON MODAL		
ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL	DAMPING	
Reinforced con- crete mat. 5'-9" thick embedded 45 ft. below top of bedrock in the surrounding area		150 ft. of Oswego sandstone	Not available.	Water table at the site slopes to- ward Lake Ontario at an average gra- dient of 37 ft. per mile and the direction of ground water is toward the lake.	able.	Stick model with springs to model the rock.	Not available.	Not available.	Not avail- able.	
Sec. 12.3.1, p. 12.3-1	Sec. 2.5 p. 2.5-1			Sec. 2.4.1 p. 2.4-1		Sec. 12.5.1.1 p. 12.5-1				

··· ------

		STRU	CTURES						
	····		DESIGN CRITERIA						
DAMP ING OBE/SSE	(% criti- cal damping)		LOAD COMBINATION		ACCEPTANCE CRITERIA & ALLOWÄBLE' STRESSES				
Concrete structures	2.0/5.0	L. C. 1. Normal dead + live load	<u>Structural steel</u> AISC Code	Concrete ACI 318 working stress	Building code requirements ACI-318 (working stress de- sign)				
Steel frame structures; Bolted and riveted assemblies	2.0/3.0	2. "1" + wind 3. "1" + OBE	1/3 increase of AISC Same as above	1/3 increase per ACI Code Same as above	Specific for structural con- crete ACI-301				
Welded assemblies	1.0/1.0 0.5/0.5	4. "1" + DBE	90% of yield	75% of ultimate	Concrete chimneys ACI-307 AISC				
Fluid containers	0.3/0.3	5. Normal dead + tornado load	Same as above	Same as above	NY State Building Construction Code				
		6. Normal dead + max. possible flood	Same as above	Same as above					
Sec. 12, Table 12.4-2			Table 12.4.3		Sec. 12.4.8 to 12.4-5				

.

- --

MECRANICAL & PIPING										
DAMPING OBE/SSE	(% criti-	METHOD	DESIGN CRITERIA							
	cal damping)	QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES						
Vital piping systems	0.5/1.0	Analytical	Piping: 1. General membrane primary stress: $S_{LP} + S_{DL} \leq S_{m}$ 2. Operating basis earthquake: M_{R} $S_{LP} + S_{DL} + S_{OBEQ} = S_{LP} + \frac{R}{SM} i \leq 1.8 S_{m}$ where $M_{R} = \sqrt{(M_{x1} \pm M_{x2})^{2} \pm (M_{y1} \pm M_{y2})^{2} + (M_{z1} \pm M_{z2})^{2}}$ 3. Design basis earthquake $S_{LP} + (S_{DL} + S_{TH} + S_{DBEQ}) = S_{LP} + \frac{M_{R}}{SM} i \leq 3 S_{m}$ where $M_{R} = \sqrt{(M_{x1} + M_{x2} \pm M_{x3})^{2} + (M_{y1} + M_{y2} \pm M_{y3})^{2} + (M_{z1} + M_{z2})^{2}}$	<u>For piping</u> : ANSI B31.1.0 App. C.3.3, p. c.3-3 <u>Mechanical</u> : ASME BPVC Section III Subsec- tion B, 1968 Edition and Addenda published to June 30, 1968. $\pm M_{z3}$						
Sec. 12, Table 12.4-2		Sec. 12.5.4, p. 12.5-11	SLP = Longitudinal Pressure Stress SDL = Dead Load Stress i = Appropriate stress intensification intensification STH = Thermal Stress SOBEQ = Operating Earthquake Stress SDBEQ = Design Earthquake Stress SDBEQ = Design Earthquake Stress Sm = Allowable Stress at operating temperature	Арр. І.3.2.2, р. І.3-2						

Section 12.5.4, p. 12.5-10 to p. 12.5-11

ELECTRICAL EQUIPMENT									
DAMPING	METHOD OF QUALIPICATION	DESIGN CRITERIA							
OBE/SSE		LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses						
Not available	Not available	Not available	Not available						

Docket Number

NAME AND NSSS Type of the			EART	HQUAKE DA	TA		METHO Combin		DESIGN SPECTRA	
PLANT	OE	E		SSE			NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF Generation of Floor Response Spectra
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	
Joseph M. Farley Nuclear Power Plant Units I and II Reactor type: PWR Containment type: 3 buttresses with shallow dome (prestressed con- crete)	0.05	0.033	VI	0.10		history.		SRSS Closely spaced modes are combined absolutely	Modified Newmark curves.	Time history method.
NSSS Manufacturer: Westinghouse										
Architect Engineer: Bechtel										
Unit I: 8-72/6-77 Unit II: 8-72/6-77		Sec. 2.5.2.11	Sec. 2.5.2.10 p. 2.5-33	Sec. 2.5.2.10 p.2.5-33	Sec. 2.5.2.1 p.2.5-3	G 3 Sec. 3.7.1.2 p. 3.7-2	Sec. 3.7.3.7 p. 3.7-14	Sec. 3.7.3.3.4 p. 3.7-13		Sec. 3.7.2.1 p. 3.7-6

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEAI	RING INFOR	MATION	GROUND	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING		
	TYPE	THICKNESS	V PROFILE	WATER TABLE	DAR			OF SOIL			
Rigid mat foun- dation 9 ft. thick on Lisbon formation. Sec. 286.2 p. 28-15 Sec. 3.8.1.1 p. 3.8-1	Upper residium. Lower residium. Moody's limestone Lisbon formation Sec. 2B.4.3.2 p. 2B-8	30 ft 10 ft	Not available.	Approximately 55-65 ft below grade. Sec. 28.4.3.2 p. 28-8	There are 13 dams up- stream, 14 dams in area: Jim Wood- ruff, Columbia, Walter F. George, Eagle, City Mills, North High- lands, Oliver, Goat Rock, Bartlett's Ferry, Riverview, Langdale, West Point, Morgan Falls, and Buford Dams.	springs.	Soils- 3,000-21,000 psi Lisbon- 50,000-970,000 psi Sec. 2B.7.2.2 p. 2B-20	0.04 critical damping for OBE. 0.07 critical damping for SSE. Table 3.7-1	Not avail- able.		

STRUCTURES									
		DESIGN CRITERIA							
damp ing OBE/SSE	(% criti- cal damping)	LOAE	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Welded steel frame structures: Reinforced concrete structures plus equipment supports: Prestressed concrete structures:		<pre>Design loading case: 1. D+F+L 2. D+F+L+T₀+E (or W) 3. D+F+L+P+T_e 4. D+F+L+T +E (or W) 5. D+F+L+1.15P Factored loading case: 1. C=1/\$\$\\$(1.0D+1.5P+1.0T 2. C=1/\$\$\\$(1.0D+1.25P+1.0T 3. C=1/\$\$(1.0D+1.25P+1.0T 4. C=1/\$\$(1.0D+1.25P+1.0T 5. C=1/\$\$(1.0D+1.0P+1.0T 6. C=1/\$\$(1.0D+1.0H+1.0R)</pre>	ACI 318-63 AISC 1969 AEC Reg. Guides For further details refer to Section 3.8.1.2.						
Table 3.7-1		Sec. 3.8.1.3 p. 3.8-13		Sec. 3.8.1.2 p. 3.8-3					

MECHANICAL & PIPING									
DAMPIN		METHOD	DESIGN CRITERIA						
OBE/SS	E (% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 <u>A</u> llowable Stresses					
Vital piping: Welded steel plate assemblies: Bolted and riveted steel:	0.5/1.0 1.0/2.0 3.0/5.0	Analytical and Testing	L. CClass 1 ComponentsStress LimitsNormal $P_M \leq S_M$ $P_L \leq 1.5 S_M$ $P_L (or P_L) + P_B \leq$ $P_M (or P_L) + P_B +$ UpsetSame as normalFaultedTable 5.2-6						
Table 3.7-1		Sec. 3.7.2.1 p. 3.7-5 3.9-1, 3.9-24 3.9-3	p. 3.9-1, Table 3.9-1, Table 5.2-4, -5, -6, -7	Table 3-9-3 Section 3.9.2, 3.9.2					

~

ELECTRICAL EQUIPMENT								
DAMPING OBE/SSE	METHOD	DESIGN CRITERIA						
UBE/ 55E	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses					
Not available.	Testing and analysis.	For electrical cable tunnels: (Dead load + live load + E.Q.) 0.75 < maximum allowable stress	IEEE 344-1971					
	Sec. 3.10.1 p. 3.10-2	Table 3.8-14	Sec. 3.10.1,2 p. 3.10-2,3					

.

.

Docket Number 50-305

NAME AND NSSS Type of The	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE			earthquake	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. 8	VERT.	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Kewaunee Nuclear Power Plant Reactor type: PWR Containment type: Dry containment- cylindrical (steel) NSSS Manufacturer: Westinghouse Architect Engineer: Pioneer	0.06		V normal fo- cus shock within 7 miles of plant site. VII normal fo- cus_shock	0.12	0.08	Synthetic time history	Horizontal and vertical components Combina- tion not known	SRSS	Newmark method	Spectral method Blume report #JAB-PS-01, JAB-PS-03
8-68/12-73	App. B Sec. B.4.5 p. B.4-2	App. B Sec. B.6.3 p. B.6-5	App. A p. 31-32	App. B Sec. B.4.5 p. B.4-3	App. B Sec. B.6.3 p.B.6-6		App. B p. B.6-5	Арр. В р. В.6-5	Plate 8-A and Plate 8-B App. A p. 33	Арр. В р. В.6-5

	FOUNI	DATION AND	LIQUEFACTION AS	SOIL - STRUCTURE INTERACTION					
TYPE OF FOUNDATION	BEARING INFORMATION			GROUND WATER	DAM	METROD OF		MATERIAL DAMPING	LIMITATION
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE	VAN	MODELLING	G _S PROFILE	OF SOIL	MODAL DAMPING
Soil-bearing type (Raft-type formation)	Glacial till	60-150 fr	Shear wave velocity soil	Varies from 10-30 ft below ground surface	Not avail- able.	Stick model with soil springs.	Glacial till G=1x10 ⁷ lbs/sq ft	5% critical damping OBE,SSE	Not avail- able.
Concrete base slab	Glacial lacus- trine deposits		=2500 fps				Glacial lucustrine deposits G=5x10 ⁵ lbs/sq ft		
35 ft. depth of slab	Bedrock (Niagra dolomite	ft	Shear wave velocity rock =11,500 fps				Bedrock G=7.5x10 ⁸ lbs/sq ft		
App. E Sec. E.1-E.3 Fig. E.2-5	App. A p. 16		Арр. А р. 16	App. A p. 11		App. B Sec. B.6.3 p. B.6-5	App. A p. 26 - Table 7	App. B Table B.6-5	

STRUCTURES									
			DESIGN CRITERIA						
DAMP ING OBE/SSE	(% criti- cal damping)		ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Reactor Containment vessel	1.0/1.0			ACI 318-63					
Shield building	2.0/2.0	Normal operating	Dead+live+wind+snow						
Reactor containment vessel internal concrete	5.0/5.0	OBE	Dead+live+DBA+snow+greater of the OBE or wind						
Steel frame structures	2.0/2.0	DBE	Dead+live+snow+DBA+DBE						
Reinforced concrete construction	2.0/2.0	Tornado	Dead+live+300 mph design tornado+tornado missile, if any						
App. B Table B.6-5		Table B.6-1		App. B Table B.6-2					
		l							

......

	MECHANICAL & PIPING									
DAMP ING OBE/SSE		METHOD OF		DESIGN CRITERIA						
	(% criti- cal damping)	QUALIFICATION		LOAD COMBINATION		ACCEPTANCE CRITERIA 6 Allowable stresses				
Piping systems Mechanical Equipment	0.5/0.5 2.0/2.0	Analytical or Tests.	Normal condition:	Pressure Vessels (a) $P_{m} \leq S_{m}$ (b) P_{m} (or P_{L})+ $P_{b} \leq 1.5S_{m}$ (c) P_{m} (or P_{L})+ P_{b} + $Q \leq 3.0S_{m}$	<u>Piping</u> P <u>< S</u>	ASME, BPVC, Sec. III, 1968 ANSI B31.1 code for power piping 1967.				
			Upset condition:	(a) $P_{m} \leq S_{m}$ (b) $P_{m} (\text{or } P_{L}) + P_{b} \leq 1.5S_{m}$ (c) $P_{m} (\text{or } P_{L}) + P_{b} + Q \leq 3.0S_{m}$	P <u><</u> 1.25					
			Emergency condition	:(a) $P \le 1.2S_m$ or S_y (b) P_m (or P_L)+ $P_b \le 1.8S_m$ or 1.5S _y	P <u><</u> 1.5(1.2S)					
			Faulted condition:	<pre>(b) Carbon steel: (i) P =1.5S or 1.2S (ii) P (or P)+Pb <2.25S m</pre>	 (a) Stainless steel design limit curve (b) Carbon steel P < S or 1.8S y 					
App. B Table B.6-5		Арр. В р. В.7-10d,е	Table B.7-2 Table B.7-3 For fu	or 1.875S y rther details refer to App. B		App. B p. B.7-6				

	ELECTRICAL EQUIPMENT								
DAMP ING OBE/SSE	METHOD	DESIGN CRITERIA							
086/ 225	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Not available	Analysis	"Electrical equipment and its supports were designed to be sufficiently rigid so that its natural frequency will be out of the range of resonance with the building structure".	Not available						
		B.7-10C							

.

Docket Number

NAME AND NSSS Type of the Plant		EARTHQUAKE DATA						DD OF NATION	DESIGN SPECTRA	
r LAN I	C	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR. g	VERT.	TIME HISTORY		COMB.	DESIGN SPECTRA	GENERATION OF FLOOR RESPONSE SPECTRA
La Crosse (Genoa) Nuclear Generating Station Reactor type: BWR Containment type: Pre-Mark (steel) NSSS Manufacturer: Allis Chalmers, Manufacturing Co. Architect Engineer: Sargent and Lundy Engineers	.06	(Vertical acceleration used for re- analysis of M.S., Feedwater HPCI . piping systems 1975-77).	VI	.12	.08	Taft 1952 record chosen as initial accelerogram. A ground time-history which envelops the 2% damping curve of R.G. 1.60 was gene- rated for analysis of major structures such as the containment.	Horizontal only for RCB Maximum horizontal spectra (x or z direction) are addéd simultan- eously with the vertical for major piping and equipment	equipment and piping (R.S.) Algebraic sum for reactor bldg. (time his- tory method	R.G. 1.60 used as basis to develop response spectra from Taft earth- quake. (not specifi- cally stated as such but curves are those of R.G. 1.60) .)	No vertical response spectra generated, instead use 2/3 of horizontal ground response spectra. Horizontal re- sponse spectra derived from time history analysis. Reanalysis of Mechanical and Piping, 1975-77, No amplification of vertical response.
3-63/7~67	Sec. 2.4	Sec. 2.4	Sec. 2.4	Sec. 2.4	Sec. 2.4					

*Information was obtained from BNL Docket search and SEPB Report "Seismic Review of La Crosse BWR Phase I Report"

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND	TION TYPE THICKNESS V PROFILE		GROUND WATER DAM TABLE		METHOD OF MODELLING	G _S PROFILE	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING		
ITS DEPTH Pile foundation 232 piles will support 50 tons each	15 ft. of hydraulic fill overlies about 100-130 ft. of glacial outwash and fluvial deposits at the site. Bedrock of flat-lying sandstone and shale of the	Dresbach group extends below these deposits about 650 ft. where it makes contact with the crystalline basement.	Not available	Not available	Not avail- able	Lumped-mass for structure soil-spring and dashpot deconvolution process used; soil layers modeled as shear beam (2% damping used)	Not available	Not available	Not available	

-

ς

STRUCTURES										
	RAMINO		DESIGN CRITERIA	*		******				
	DAMPING OBE/SSE	(% Critical damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES						
Reactor Containment Turbine building	<u>1/2 SSE</u> 3.0 up	<u>SSE</u> 7.0 up 7.0	$\frac{\text{Structural Steel - Elastic:}}{\text{Construction: } 1.0 \text{ D} + 1.0 \text{ L} + 1.0 \text{ T} + W < 1.33 \text{ AISC (1969)}}{\text{Test: } 1.0 \text{ D} + 1.0 \text{ L} + 1.0 \text{ T} + 1.0 \text{ R} < 1.33 \text{ AISC (1969)}}{\text{Normal: } 1.0 \text{ D} + 1.0 \text{ L} + 1.0^{\circ}\text{T} + 1.0^{\circ}\text{R} < \text{AISC}}$	Allowable s Capacities turbine bui	for RCB, Tw					
Stacks		7.0 up	o Severe Environmental: 1.0 D + 1.0 L + 1.0 T + 1.0 R + E < AISC Extreme Environmental: 1.0 D + 1.0 L + 1.0 T + 1.0 R + E' < 1.6	building: ISC		_				
New diesel genera- tor building	4.0	7.0	R/C - strength design: Construction: 1.1 D + 1.3 L + 1.3 T _o + 1.3 W Test: 1.1 D + 1.3 L + 1.3 T _o + 1.3 R _o	<u>Concrete</u> : Moment Shear	1/2 SSE Mu Vu	<u>SSE</u> 0.63 N 0.60 N				
			Normal: $1.4 \text{ D} + 1.7 \text{ L} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0}$ Severe Environmental: $1.4 \text{ D} + 1.7 \text{ L} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0} + 1.3 \text{ W}_{0.9 \text{ D}}$	<u>Steel</u> Moment	0.66 M	M y				
			Severe Environmental: $1.4 \text{ D} + 1.7 \text{ L} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0} + 1.3 \text{ W}$ $0.9 \text{ D} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0} + 1.3 \text{ W}$ $1.4 \text{ D} + 1.7 \text{ L} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0} + 1.4 \text{ E}$ $0.9 \text{ D} + 1.3 \text{ T}_{0} + 1.3 \text{ R}_{0} + 1.4 \text{ E}$	Shear	0.40 V	0.53 3				
			Extreme Environmental: $1.0D + 1.0 L + 1.0 T_0 + 1.0 K_0 + 1.0 E^2$							
			Section 3.7.1; Table 4.5-1 and 4.5-2							

	MÉCHANICAL & PIPING								
	DAMPING		DESIGN CRITERIA						
	OBE/SSE (% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Piping	<u>1/2 SSE</u> <u>SSE</u> 1.0 2.0	Not available	<u>M.S. Piping</u> : Load conditions from NB-3110, 3620 <u>Design</u> : (Primary) P ₀ + DL + E < 1.5 S _M <u>Normal</u> : (Primary and secondary) T + P + SA + TA + E < 3 S _M <u>Upset</u> : Same as for <u>normal</u> condition <u>Emergency</u> : (Primary stress) < 2.25 S _M Faulted: P ₀ + DL + E < 3.0 S _M (Main steam piping and feedwater piping designed as Class 2 since fatigue loads not considered). Follows R.G. 1.48, EQ 8,9,10,11 of ASME Code	Piping: AEC Reg. Position 1 and Subsection NB-3600 of Section III of ASME B&PV Code					

	`	ELECTRICAL EQUIPMENT	
DAMP ING	METHOD	DESIGN CRITERIA	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable stresses
Not available	Not available	Not available	Not available
			ν.

Docket Number

NAME AND NSSS Type of the	EARTHQUAKE DATA							METHOD OF D COMBINATION		ESIGN SPECTRA	
PLANT	OB	E		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF Generation of	
CP/OL ISSUE DATE	HOR.	VERT. g	INTENSITY MM	HOR.	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Maine Yankee Atomic Power Company Reactor type: PWR Containment type: Sub-atmospheric (Reinforced concrete NSSS Manufacturer: Combustion Engineer- ing Architect Engineer: Stone & Webster Engineering Corp.		0.033	VI	0.10	.067	No earthquake time- history used.		ation used flexual mode used only.	Sec. 2.5.4	Empirical procedure used for piping to provide amplified response spectra. For equipment and anchors used equi- valent static load method or Housner response spectra. Amendment 22 (4-71) Q. 4.4 Q. 4.5 Method used de- scribed in Section 5.1.1.2.2 p. 5-6	
10-68/9-72	Sec. 1.3.2 p. 1-6	2 Sec. 1.3 p. 1-6	.2	Sec. 1.3 p. 1-6		Amendment 20 (3-71) Q. 4.5	p.5-3	p. 5-6	p. 2-27 Figs. 2.5.6 and 2.5.7		

	FOUND	ATION AND	LIQUEFACTION A	SSESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation And ITS DEPTH		THICKNESS		GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
Plat reinforced concrete slab bearing on bed- rock with a central reactor vessel pit. 10 ft. thick	Major structure Hard crystal- line bed- rock Minor structure on rock or com- pacted granular fill a- bove the rock.	are med- ium spaced,	r	Dug wells: less than 25 ft deep. Drilled wells: depth of 100 ft or more.	Not avaii- able.	Translational & Rocking modes were not in- corporated in the dynamic model.	1.80x10 ⁶ -2.06x10 ⁶ psi	Not available.	
Sec, 5.1 p. 5-1	Sec. 2.4 p. 2-23	Sec. 2.4 p. 2-23	Sec. 2.4 p. 2-23	Sec. 2.3.3 p. 2-22		Sec. 5.1.1.2.2 5.5-6	Sec. 2.4 p. 2-23		

29-2

- - - -----

	STRUCTURES								
		·····	DESIGN CRITERIA						
	DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
 Reinfor than co Reinfor on soil Steel f Bolted Welded Reactor Welded 		5.0/7.0 5.0/7.0 2.0/5.0 3.0/5.0 1.0/2.0 1.0/1.0 3.0/3.0	<pre>1. (1.0±0.05) D + 1.5 P + 1.0 (T+TL) 2. (1.0±0.05) D + 1.25 P + 1.0 (T+TL) + 1.25 E 3. (1.0±0.05) D + 1.0 T + 1.0 C 4. (1.0±0.05) D + 1.0 P + 1.0 (T+TL) + 1.0 E' D = dead load P = design pressure load TL = load by exposed liner T = temperature gradient load E = OBE E' = SSE</pre>	Containment: Ultimate strength methods ACI 318-63, Sec. 1504, Part IV B or the Ultimate Strength Design Handbook ACI Special Publication No. 17.					
Table 2.5-	-1		Section 5.1.1.2, p. 5-2	Section 5.1.1.2, p. 5-2					

MECHANICAL & PIPING									
DAMPING		METHOD	DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION *	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
1. Mechanical equipment.	2.0/2.0	Analytical	Reactor vessel internal structure 1. Design loading + OBE $P_m \leq S_m$ $P_B + P_L \leq 1.5 S_m$	ASME BPVC, Section III					
2. Piping.	1.0/2.0		2. Normal Operating + SSE $P_{m} \leq S_{D}$ $P_{B} \leq 1.5 \left[1 - \left(\frac{m}{S_{D}}\right)^{2}\right]S_{D}$						
			3. Normal Operating + SSE + pipe $P_m \leq S_L p$ rupture $P_m \leq (1.5) [1-(\frac{m}{S_L})^2] S_L$						
			Where: $S_{L} = S_{y} + (1/3)(S_{u} - S_{y})$ $S_{D} = 1.2 S_{m}$						
			Piping 1. Design load + OBE Applicable code allowables 2. N.O. + SSE $P_m \leq \frac{S}{D}$						
Amendment 20 (3-71) Q. 4.9, Table 2.5-1		Amendment 22 (4-71) Q. 4.8	$P_{B} \leq \frac{4}{\pi} S_{D} \cos \left(\frac{\pi}{2} \cdot \frac{m}{S_{D}}\right)$ 3. N.O. + SSE + pipe rupture $P_{m} \leq S_{L}$ $P_{B} \leq \frac{4}{\pi} S_{L} \cos \left(\frac{\pi}{2} \cdot \frac{m}{S_{L}}\right)$	p. 3-4, 4.2-4					

*For reactor internals: Table 3.2-1, p. 3-4 Vessels and piping: Table 4.2-3, p. 4.2-4

- -

•).

		ELECTRICAL EQUIPMENT	
DAMP ING	METHOD	DESIGN CRITE	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
Not available.	Not available.	Not available.	Not available.

Docket Number 50-245

NAME AND NSSS TYPE OF THE			EAR	THQUAKE DA	TA		METHO COMBIN		DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. g	INTENSITY MM	HOR. g	VERT. B	TIME HISTORY	USED AND ITS COMB	сомв.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Millstone Point Nuclear Power Station Unit 1 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Ebasco	0.07	0.05	VII	0.17	0,113	Taft 69° west earth- quake record (Blume response spec- trum is more con- servative than Taft response spectrum)	(X+Y,Z+Y) · The resulting seismic stress for	combina- tion needed for time his- tory. Un- clear in- formation for re- sponse	Housner	Equivalent Static Method - for intake structure, turbine bldg., main steam lines, Class I piping in reactor and turbine bldg., batteries and battery racks. <u>Time History Method:</u> Reactor bldg., ventilation stack, radwaste/control room, condensate storage tank <u>Response Spectrum</u> Gas turbine bldg., recirculation loop piping, torus, RPV,
5-66/10-70	Sec. XII p. XII- 1.7	Sec. XII p. XII- 1.7		Sec. XII p. XII- 1.7	p. XII- 1.7	Q VII - A.9 and Q VII - A.10 Amend. 17	Sec. XII p. XII- 1.7		Fig. XII-1.2 Fig. XII-1.3 Sec. XII p. XII-1.7	p. XII-1.12

Information obtained from BNL Docket Search and SEPB Report, "Seismic Review of Millstone Nuclear Power Station, Unit 1"

	FOUNI	DATION AND	LIQUEFACTION AS	SESSMENT		SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	ATION		GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g PROFILE	MATERIAL DAMPING Of Soil	LIMITATION ON MODAL DAMPING		
Reinforced .con- crete square mat (42'-6") and six feet of thickness at elevation of 32'-0". The foundation is supported di- rectly on the bedrock. Gas turbine building founded on piles. Turbine build mat foundation on piles.			14,000 fps le Sec. XII-p. XII- 1.13	Not available	None	Lumped mass with soil springs (for reactor bldg. only). Rocking mode was considered for reactor bldg. Fixed base without rocking for other major structures. Sec. XII p. XII-1.2.1	Not available	Not available	Not avallable	

	· · · · · · · · · · · · · · · · · · ·	STRUCTURES						
		DESIGN CRITERIA						
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
 Reinforced concrete structures Steel frame structures 	5.0 2.0		code stresses are ACI increase in de- earthquake loads is1. AISC 2. ACI Code					
 Welded assemblies Bolded and riveted assemblies Ventilation stack Radwaste Bldg., Control room Condensate storage tank 	1.0 2.0 5.0 5.0 0.5(fluid) 2.0(tank)	yield point. In stresses may exce in this case the as discussed in A -7024 "Nuclear Re quakes", Section	eed yield pt. then limit-design method AEC publication TID eactor and Earth- 5.7, to determine absorption capacity					
 8. Gas Turbine Bldg. Sec. XII and Table VII - A.14- p. XII-1.7 Q.A.14, Amend. 17 	5.0	D = Dead load R = Jet force or pressure any one pipe E = Design earthquake load E [*] = maximum Sec. XII - 1.12 1. DL + LL + OL + E (.07g) 2. DL + LL + OL + W 3. DL + LL + OL + E [*] (.17g) Table XII -1 p. XIII - 1.3	due to rupture of m earthquake load Table XII-1					

MECHANICAL & PIPING										
DAMPING OBE/SSE (% critical		METHOD OF		DESIGN CRITERIA						
	ing)	QUALIFICATION		LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
.Vital Piping System Sec. XII p. XII-1.7	0.5	• Analytical	Reactor Vessel Int 1. D + E	<u>ernals</u> Stress criteria of ASME Section III, Class A vessel	ASME Section III, Class B USAS - B31.1+1967					
. Containment heat exchange . RPV	2.0		2. D + E^	The secondary and primary plus secondary stresses are examined on a rational basis taking into account elastic and plastic strains.						
. Recirculation loop piping . Suppression chamber	0.5		Emergency Core Coo i: D + T + H + E	ling Systems Stresses remain within code allowable. USAB-B 31.1 plus code cases (piping)						
				Primary stresses are within the stress criteria of ASME Section III, Class A. The secondary and primary plus secondary stresses and examined on a rational basis taking into account elastic and plastic strains. These strains are limited to pre- clude failure by deformation.						
			Primary Containment 1. D + P + H + T - 2. D + P + R + H - 3. D + P + R + H -	t + E D =Dead load + T + E P =Pressure due to LOCA R =Jet-force or pressure on	Sec. XII Question A.14, Amend 17 Table XII-1					

T = Thermal loads on containment due to LOCA

E = Design E.Q. load; E'= maximum E.Q. load

.

	ELECTRICAL EQUIPMENT										
DAMPING	METHOD OF QUALIFICATION	DESIGN CRITERIA									
OBE/SSE		LUAD COMBINATION	ACCEPTANCE CRITERIA & Allowable tresses								
Not available	Not available	Battery racks and batteries were designed to withstand lateral and vertical seismic loads of 0.12g horizontal and 0.046g vertical	Not available								

Docket Number 50-336

NAME AND NSSS Type of the			EART	HQUAKE DA	TA		METHO COMBIN		DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	ROR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Millstone Nuclear Power Plant Unit 2 Reactor type: PWR Containment type: 3 buttresses with shallow dome (pre- stressed concrete) NSSS Manufacturer: Combustion Engineer- ing Architect Engineer: Bechtel	0.09	0.06	VII	0.17	0.11	S ynt hetic time- history	3 compo- nents: Each hori- zontal combined with vertical component simultane- ously.		Separate sets of design spectra were developed for rock foundation and backfill. Housner for rock foundation. Modifi Newmark for backfil	
12-70/9-75		Sec. 5.8.3.2.2 p. 5.8-8	Amend. 39 Sec. 2.6	Sec. 5.8.1.1 p. 5.8-1	5.8.3.2	Sec. 5.8.1.1 p. 5.8-1 Fig. 5.8-6	Sec. 5.8.4 p. 5.8-11	Sec. 5.8.3.2.11 p. 5.8-7	Sec. 5.8.1 p. 5.8-1 Fig. 5.8-1,2 Fig. 5.8-3,4	Sec. 5.8.4 p. 5.8-11

	FOUND	ATION AND	LIQUEFACTION AS	SBSSHENT		SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION	BEAS	RING INFOR	MATION	ground Water	DAM	METHOD OF	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING 2%
AND Its depth	TYPE	THECHNESS	V PROFILE	TABLE	UAR	MODELLING	6 FROFILE	OF SOIL	
Reactor building mat rests on unweathered rock. Depth: 8½ feet	Ablation till and a dense basal till which lies above the bed- rock. Bedrock consist of Monson gneiss intruded by westerly	deposits O to 30		Little or no	able.	Backfill: Stick model with soil springs. Bedrock: Stick model with fixed base.	Not available.	2%/5%	
Sec. 2.7.5 p. 2.7-3 Sec. 5.2.1 p. 5.2-1	granite. Sec. 2.4 p. 2.4-4	Sec. 2.4 p. 2.4-4. p. 2.4-5	Sec. 2.4.4	Sec. 2.5.2 p. 2.5-2 Fig. 2.4-2c, 2d		Sec. 5.8.2 p. 5.8-3,4		Table 5.8-1 p. 5.8-9	Sec. 5.8.3 p. 5.8-10

_

.

STRUCTURES										
DAMPING			DESIGN CRITERIA	· · · · · · · · · · · · · · · · · · ·						
OBE/SSE	(% criti- cal damping)	LOAI	COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Welded steel plate assemblies:	1.0/1.0	a. D+F+L	Construction case	ACI-318-63						
Welded steel framed structures:	2.0/2.0	b. D+F+L+T _o +E c. D+F+L+P+T ₄	Operating case Design incident case	ACI-301-66						
Bolted or riveted steel framed structures:	2.5/2.5	d. D+F+L+T $_{8}^{1}$ e. D+F+L+1.15P	Prolonged shutdown case Test case	ASME, BPVC (1968) AISC, 1963						
Reinforced concrete equipment supports:	2.0/3.0	D = dead loads								
Reinforced concrete frames and		L = live loads								
buildings:	3.0/5.0	F = prestressing loads								
Prestressed concrete structures:	2.0/5.0	P = design pressure T ₁ = thermal loads due to	the loss of coolant incident							
		T = thermal loads due to	operating temperature							
			transient wall temperature over a 20 F at exterior face, 70 F at center, e)							
		E = operating basis eart	nquake loads (0.09 g)							
		For further details refe	r to Section 5.2.3.2.5.							
Table 5.8-1, p. 5.8-9		Sec. 5.2.3.2.4 p. 5.2.8		Sec. 5.1.2 p. 5.1-2						

- -----

	MECHANICAL & PIPING										
	DAMPING		METHOD		DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINAT	ION	ACCEPTANCE CRITERIA 6 Allowable stresses						
Steel piping:	Steel piping:	0.5/0.5	Analytical and testing.	Reactor coolant system (vessels): 1. Design loading + OBE	P _m < S _m P _b +P _L < 1.5S _m	Piping ANSI B 31.7 ANSI B 31.1.0 Sec. 1.2.14, p. 1.2-21 and					
				2. Normal operation + SSE	$\frac{P_{m} \leq S_{m}}{P_{b} \leq 1.5} \left[1 - \left(\frac{P_{m}}{S_{D}}\right)^{2} \right] S_{D}$	Sec. 4.5.2.1, p. 4.5-5 Pressure vessels ASME, BPVC, p. 1.2-19 and					
	3. Normal operation + SSE + pipe rupture $S_L = S_y + (1/3) (S_u - S_y)$		+ pipe rupture	$ \frac{P_{m} \leq S_{m}}{P_{b} \leq 1.5} \left[1 - \left(\frac{P_{m}}{S_{L}}\right)^{2} \right] S_{L} $	ASME, Brve, p. 1.2-19 and Sec. 4.5.2.2, p. 4.5-5						
				R.C.S. (Piping) 1. Design loading + OBE	Բ≤ ₽+₽ <_1.55						
				2. Normal operation + SSE	$\frac{P_{m} \leq S_{m}}{P_{b} \leq 4/\pi S_{D}} \cos\left(\frac{\pi}{2} \cdot \frac{P_{m}}{S_{D}}\right)$						
				3. Normal operation + SSE + pipe rupture	$\frac{P_{m} \leq S_{L}}{P_{b} \leq 4/\pi S_{L}} \cos\left(\frac{\pi}{2} \cdot \frac{P_{m}}{S_{D}}\right)$						
Sec. 5.8.3.3 p. 5.8-9			Sec. 5.8.5 p. 5.8-12	See Table 4.2-2, p. 4.2-3. For mechanical see Sec. 3.2.1, p. 3	.2-1 to 3.2-5.						

- ----

· ---- · · ·

		ELECTRICAL EQUIPMENT	
DAMPING	METHOD OF QUALIFICATION	DESIGN CRITERIA	
OBE/SSE		LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
Not available.	Analytical and testing.	Not available.	Instrumentation designed as per Reg. guide 1.12.
	Sec. 5.8.6 p. 5.8-13		Sec. 5.8.6 p. 5.8-13

۵.

Docket Number 50-263

NAME AND NSSS Type of the			EAR	THQUAKE DA	ATA	·	METHO COMBIN		DESIGN SPECTRA	
PLANT	0	OBE		SSE		EARTHQUAKE	NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. S	INTENSITY MM	ROR. 8	VERT.	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Monticello Nuclear Generating Plant, Unit 1 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	Class I 0.06 Class II 0.05	0.004	VIII	0.12	0.08	Taft Earthquake of July 21, 1952, North 69 West component	Horizon- tal and vertical component combined linearly.	SRSS Sec. 2.1.9	Response spectra from Taft earth- quake	Time-history analysis for Class 1 struc- tures UBC for Class 2
6-67/9-70		Sec. 6.0 p. 2.6-1		Sec. 2.1 p. 12-28		Sec. 6.0, p. 2-6.1	Sec. 2.1. 9, p. 12- 2.8	Append. A	Fig. 2-6-5 p. 2-6.1 Sec. 2.1.9, p. 12 -2.8a and p. 12-	Sec. 2.1.9 p. 12-2.9

Analysis p-6

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION			GROUND WATER	DAM	METHOD OF	G PROFILE	MATERIAL DAMPING	LIMITATION ON
	TYPE *	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL	MODAL DAMP ING
Reinforced con- crete mat; founded on medium sand with some gravel. Sec. 2.2.1.1 p. 12-2.13	hered precam- becomposed becomposed an crystalline granitic ro ka are basic ro basic ro precambr	ds with gravel, as the above the lass a few layers strata. fou clay and gracial 10 to 15 ft. 75 1. 50 ft.	Not available.	The water table beneath the low terraces which border the Mississippi River usually lies at a- bout river eleva- tion and slopes very slightly to- ward the river during periods of normal stream flow. Groundwater at shallow depths moves toward the Mississippi River or its tributaries at variable gra- dients depending on local condi- tions. Sec. 5.4, p. 2-5.3 and Fig. 2-5-3	Not avail- able.	Stick model with soil springs. Append. A. at Seismic Analysis Part	Not available.	Not available App. A Sec. 2.1.9 p. 12-2.8	10.0% of critical damping. Append. A Table 1

Sec. 5.3, p. 1-5.2, *Because of space Type and Thickness columns p. 2-5.3 are combined together.

STRUCTURES									
	DESIGN CRITERIA								
DAMPING OBE/SSE (% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
Recommended damping:Rector-boilding (massive construction5.0with many cross walls and equipment and providing only secondary containment)Thin-shell and prestressed concrete2.0Steel structures2.0	 Primary containment a. D + P + H + T + OBE b. D + P + R + H + T + OBE c. D + P + R + H + T + SSE Reactor building and all other Class 1 structure a. D + R + OBE b. D + R + SSE c. D + W d. D + W' 	AISC - Sixth Edition ACI - 318-63 ASME CODE Sec. III and IX ACI 505-54 for R. C. Chimney							
Ref. Append. A., Table 1, p.8		Sec. 2.1.4, NSP-1, p. 12-2.6 Table 12-2-1 Sec. 2-1.4, p. 12-2.4 and p. 12-2.5							

DAMP ING	METHOD	DESIGN CRITERIA		
OBE/SSE (% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES ASME Sec. III and USAS B 31.1-1967	
Piping: Vital Damping System 0.5	Analytical	<pre>3. Reactor vessel supports a. D + H + R + OBE b. D + H + R + SSE 4. Reactor vessel internals a. D + 0.B.E. b. D + S.S.E. c. D + P 5. Emergency core cooling system (ECCS) a. D + 0.B.E. b. D + S.S.E. For piping: Suction header pipe: Dead loads + seismic loads + OBE = 820 psi allowable Dead loads + seismic loads + SSE = 1640 psi stress is 17, 500 psi</pre>		
Append. A, Table 1, p. 8	Sec. 2.1.9, p. 12-28	Sec. 2.1.4, p. 12-2.3-12.2.6 p. 12-2.11	Sec. 2.1.4., p. 12-2.5 p. 12-2.6	

- ---

_ ____

.

ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRITERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Not available.	Inspection and testing for: 1. Auxiliary Power System 2. Plant standby gen- erator sys- tems. 3. D-L Power supply sys- tems. 4. Reactor protection system power supplies. Sec. 8 b. 8.3-5	Not available.	For diesel-generator set: Equipment shall conform to applicable standards of the NEMA, ASA, DEMA, ASME, NBFW, NIPA, ASTM, IEE, USASI and state and local regulations.						
	p. 8.4-4 p. 8.5-6 p. 8.6-2		Sec. 4.1 p. 8-4.1						

Docket Number

NAME AND NSSS Type of the	EARTHQUAKE DATA							D OF ATION	DESIGN SPECTRA	
PLANT	OBE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR.	VERT. 8	INTENSITY MM	ROR.	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Nine Mile Point Nuclear Station Unit No. 1	Not used	Not used	IX	0.11	0.055	Not used	Not avail- able.	SRSS	Hounser	Analysis by Reserve Energy- Technique, by John Blume
Reactor type: BWR										
Containment type: Mark I (steel)										
NSSS Manufacturer: General Electric										
Architect Engineer: Stone & Webster Engineering Corp.										
	1									
					Amend-					
4-65/8-69			PHSR III-1	PHSR III-1	ment 6, Supp. 2 Ques- tion I-11	, 2. 8		Amend. 6, Supp.2, Question I-2.	рнsr Х <mark>1-22</mark> е	PHSR III-1

1

	FOUND	DATION AND	LIQUEFACTION ASS	SOIL - STRUCTURE INTERACTION					
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION			GROUND WATER	Dav	METHOD		MATERIAL DAMPING	LIMITATION ON
	TYPE	THICKNESS	V PROFILE	TABLE	DAM	OF MODELLING	G _g profile	OF SOIL	MODAL DAMPING
All major struc- tures founded on Oswego sandstone. Reactor bldg. is founded in rock to a depth of 60 ft.	10-12 ft. of glacial till was removed. Bedrock is Oswego sandstone. It makes contact with Lorraine Shale at a depth of 185 ft.	185 ft.	14,000 fps	195 ft. below ground surface	Not avail- able.	Stick model with soil springs.	Not available.	2 to 3% critical damping. Amend. 6,	Not avail- able.
PHSR III-3	Amend. 2. Vol. 2, FSAR 6/1/67]	Amend. 6, Supp. 2, FSAR, Oct. 1968, Question IV 12, p IV-24	App. C "Earth Science"		Amend. 6, Supp.2, Ques- tion 1-2		Supp. 2, FSAR Oct. 1968, Question IV 12, p IV-25	

	STRUCTURES				
	DESIGN CRITERIA				
DAMPING (% criti~ OBE/SSE (% criti~ cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES			
critical damping for integral reinforced- concrete structures	Reactor bldg. Waste disposal bldg. screen and pump house drywell radial steel framing: DL + LL + OL + Design Earthquake Reactor vessel concrete pedestal DL + Equipment Load + Temp. (operating) DL + Equipment Load + Jet Load + Temp. + Design Earthquake See Table I-4 for 10 load combinations for the drywell	 ACI-318-63 For proportioning of concrete members: Part IV-A "Working stress design" of Code 318-63. Reinforced-concrete ventilation stack: ACI 505-54 AISC specifications for the design, fabrication and erection of structural steel for building. New York State Building Code UBC 			
Amendment 6, Supp. 2, Question I-5	Supplement 2, question I-4, question I-9	Amend. 6, Supp. 2, Question I-2			

	MECHANICAL & PIPING							
DAMPING	METHOD	DESIGN CRITERIA						
obe/sse	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES					
Not available.	Not available.	Core spray piping and sparger ring located in the reactor vessel: Equations given in ASME Section III. <u>Drywell</u> - ASME Sect. VIII plus Code Case 1270N-5, 1271N, 1272N-5	 "Method of Differences" Reactor internals: ASME Code Class A Asmend. 6, Supp. 2, Question I-10 Amend. 5, Supp. 1 FSAR Question I-5 					

_ _

THOD OF IFICATION' wailable. Not availab	LOAD COMBINATION	DESIGN CRITERIA	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES Not available.
IFICATION			ALLOWABLE STRESSES
vailable. Not availab	ble.		Not available.
			i de la constante de
			í I

Docket Number

50-338

NAME AND NSSS Type of The	EARTHQUAKE DATA METHOD COMBINA		THOD OF DESI		GN SPECTRA									
PLANT	01	BE		SSE			NO, OF EARTH. MODAL			EARTH.	ARTH. MODAL TYPE OF GROUN		METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR.	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB .	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA				
North Anna Power Station Unit 1 Reactor type: PWR Containment type: Sub-atmospheric (reinforced con- crete) NSSS Manufacturer: Westinghouse Architect Engineer: Stone and Webster	struc- tures on rock	0.04g for struc- tures on rock 0.06g for struc- tures on soil		0.12g for struc- tures on rock 0.18g for struc- tures on soil	for struc- tures on rock 0.12g for struc-	E-W and N-S compo- nents of Helena, Montana 1935 earth- quake, and the S-E component of the San Francisco 1957 earthquake.	2 components Horizontal plus ver- tical adde simultan- eously		Developed from Helena 1935 and San Francisco 1957 by enveloping the response spectra shown in Fig. 2.5-9 thru Fig. 2.5-12.	Time history method.				
2-71/11-77		p. 1.2-2 p. 1.2-3		p. 1.2-3	2 p.1.2-2 3 1.2-3	p. 2.5-9	p. 3.7-10	Sec. 3.7	p. 2.5-9	Sec. 3.7				

	FOUND	DATION AND	LIQUEFACTION ASS	SESSMENT		SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEAF	BEARING INFORMATION		GROUND	DAM	METHOD		MATERIAL DAMPING	LIMITATION ON	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE			OF G _S PROFILE DA MODELLING OF			
Flat reinforced concrete mat 10 ft. thick. Founded on concrete backfill.		Not avail able.	- Not available.	Not available.	North Anna Reservoir	Stick model with soil springs.	Fresh and slightly weathered rock G=1.0x10 ⁶ psi Soils @ 10 ft. depth 14,000 psi @ 20 ft. depth 19,800 psi	Not available.	Not avail- able.	
p. 1.2-2 p. 2.5-17	p. 2.5- 12					Sec. 3.7 p. 2.5-9	p. 2.5-24			

		-	STRUCTURES	
			DESIGN CRITERI	A
DAMPING OBE/SSE			LOAD COMBINATION Containment Structural Loading Criteria:	ACCEPTANCE CRITERIA & Allowable Stresses
Stress Level	Type & Condition of Struct, Syst. or Component	Critical	(1.0 ± 0.05) D ± 1.0 P ± 1.0 (<u>T</u> + <u>TL</u>) + 1.5 E (1.0 + 0.05) D ± 1.0 P ± 1.0 (<u>T</u> + <u>TL</u>) + 1.0 (DBE)	AISC Manual ACI 301-66 ACI 318-63
1. Low Stress, well below proportional limit. Stresses be- low 0.25 yield point.	a. Steel, reinforced concrete; no crack- ing and no slipping at joints.	0.5 to 1.0	(1.0 ± 0.05) D + 1.25 P + (T' +TL') + 1.25 E	
2. Working stress limited to 0.5 yield point stress	 a. Welded steel,well reinforced concrete (with only slight cracking) b. Bolted steel 	2.0		
3. At or just below yield point	a. Welded steel b. Reinforced con- crete c. Bolted steel	5.0 5.0 7.0		
Table 3.7.2-1			p. 3.8-87, Table 3.8.2.2-1	p. 3.7-49 3.8-17

	DAMPING	,,,,,,	Method	DESIGN CRITERIA					
OBE/SSE (% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses						
Piping		0.5/1.0	Analysis and Testing	ASME Class 1 Piping: based on Subarticle NB-3650 Class A Components 1) Normal a)P _m \leq S _m , b) P \leq 1.5 S _m , c) P _m (or P _L) + P _B \leq 1.5 S _m d) P _m (or P _L) + P _B + Q \leq 3.0 S _m 2) Upset a) P _m \leq S _m , b) P _L S 1.5 S _m (SIC) c) P _m (or P _L) + P _B + P _B \leq 1.5 S _m d) P _m (or P _L) + P _B + Q \leq 3.0 S _m 3) Faulted i) P _m \leq 1.2 S _m or S _y whichever is larger, AND P _m (or P _L) + P _B \leq 1.5 (1.2) S _m or 1.5 S _y whichever is larger ii) Table 5.2-15	ANSI B31.7-1969 ASME BPVC Sec. III				
p. 3.7-23			p. 3.7-46,47 p. 3.7-22	p. 3.7-30, p. 5.2-46, T 5.2-15	p. 3.1-101 p. 3.7-49				

34-4

_.

		ELECTRICAL EQUIPMENT	
DAMPING	METHOD	DESIGN CRITERIA	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses
NOT AVAILABLE	Analysis and testing	NOT AVAILABLE	IEEE Standard 344-1971
	p. 3.10-1		p. 3.10-1

_ .

Docket Number 50-269, 270, 287

NAME AND NSSS Type of the			EAR	THQUAKE D	ATA		METHO COMBIN		DESIGN	SPECTRA
PLANT	01	BE		SSE			NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. S	INTENSITY MM	HOR. g	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Oconee Nuclear Station Unit Nos. 1,2,3 Reactor type: PWR Containment type: 6 buttresses with shallow dome (pre- stressed concrete) NSSS Manufacturer: Babcock & Wilcox Architect Engineer: Utility & Bechtel	0.05 for rock foundation	0.03	VI	0.10 for rock foun- dation. 0.15 for over burden foun- dation.	0.07	El Centro Earthquake was used (vertical and N-S horizontal		Absolute sum	R-S smooth curve with max. accelera- tion of .15g @ 2% damping. Housner.	Time-history method.
Unit #1: 11-67/2-73 Unit #2: 11-67/10-73 Unit #3: 11-67/7-74				Sec. 2.6 p. 2-9		Sec. 1C.3.4.2.1 p. 1C-4d	Sec. 5A. 2.2 p. 5A-3	p.5-19		Sec. 1C.3.4.2.1 p. 1C-4d Sec. 1C.3.4.2.2(b) p. 1C-4e-4f

	FOUNI	DATION AND	LIQUEFACTION ASS	SESSMENT		SOIL - STRUCTURE INTERACTION							
TYPE OF Foundation	BEARING INFORMATION		BEARING INFORMATION		BEARING IN		BEARING INFORMATION		DAM	METHOD OF	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	WATER TABLE		MODELLING	8	OF SOIL	MODAL DAMP ING				
Reinforced con- crete foundation slab. Depth = 8 ¹ / ₂ feet thick. Founded on bedrock.	te hornblande geniss and granite geniss. has weathered unevenly and the residual down irregularly.		FSAR	Not available in FSAR.	"Design of Keowee and Jocassee Dam" Refer to PSAR p. 2.4.3 and Question 8.6-PSAR Supp. 1, Question 12.1-PSAR Supp. 4, Question 12.2-PSAR Supp. 4, Item 11- PSAR Supp. 5 Item 1-PSAR Supp. 6.	Stick model with soil springs.	Not available	in FSAR.	2% OBE 5% SSE				
Sec. 5.1.2.1 p. 5-2	Banded biotite The surface hau soils grade do		Refer to Sec. 2.5 and Sec. 2.6 p. 2-8 in PSAR	Refer to PSAR 2.4.4 Sec. 2.4.5 p. 2-8	Sec. 2.4.4 p. 2-8	Sec. 5.1.3.2 p. 5-18		and Sec. 2.6 2-9	p. 5-12 Fig. 5-10				

-

- - - - - -

۲

		STRUCTURES	
		DESIGN CRITERIA	
DAMP ING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES
<pre>Welded carbon and stainless steel assemblies: Steel framed structures: Reinforced concrete equipment supports: Reinforced concrete frames and buildings: Prestressed concrete structures (1) under design earthquake forces (11) under maximum hypothetical earthquake</pre>	1.0 2.0 2.0 5.0 2.0 5.0	$\frac{Y}{1} = \frac{1}{9} (1.0D+1.0P+1.0T+E')$ $\frac{Y}{1} = \frac{1}{9} (1.05D+1.25P+1.0T+1.25E \text{ or W})$ $\frac{Y}{1} = \frac{1}{9} (1.0D+1.5P+1.0T)$ $\frac{Y}{1} = \frac{1}{9} (1.0D+1.0W_{t}+1.0P_{i}) \text{ for tornado forces}$ $\frac{Y}{1} = required \text{ yield strength of structure}}{D=dead loads}$ $P=design \ accident \ pressure$ $T=thermal \ load$ $E=seismic \ load \ based \ on \ design \ earthquake$ $E'=seismic \ load \ based \ on \ maximum \ hypothetical \ earthquake}$ $W=wind \ load$ $P_{i}=stress \ due \ to \ differential \ pressure}$ $\varphi=capacity \ reduction \ factor$	ACI 318-63 ACI 301 ASME, PVBC, Sec. III, VIII, IX
Sec. 5A.2.2 p. 5A-3		For further details refer to Sec. 5A.2.2, p. 5A-2	Sec. 5.1.2.1 p. 5-4

	MECHANICAL & PIPING								
DAMPING		METHOD	DESIGN CRITERIA	DESIGN CRITERIA					
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses					
Vital piping:	0.5	Analytical	(A) piping: I. Design loads + design earthquake loads $P_m \le 1.0S_m$ $P_L + P_b \le 1.5S_m$ II. Design loads + maximum hypothetical earthquake loads $P_m \le 1.2S_m$ $P_L + P_b \le 1.2(1.5S_m)$ III. Design loads + pipe rupture loads $P_m \le 1.2S_m$ $P_L + P_b \le 1.2(1.5S_m)$ IV. Design loads + maximum hypothetical earthquake loads + pipe rupture loads $P_m \le 2/3S_u$ $P_L + P_b \le 2/3S_u$ $P_L + P_b \le 2/3S_u$ $P_L = Primary local membrane stress intensity P_L = Primary bending stress intensity$	For piping: Nuclear power piping code USAS B31.7, Sec. 1C.3, p. 1C-3 <u>Mechanical components:</u> -ASME, Sec. III for nuclear vessels. -S _m values Table N-421 of ASME code.					
Sec. 5A.2.2 p. 5A-3		Sec. 1C.3.4.1 p. 1C-4ai	<pre>Pb=Primary general membrane stress intensity S^m=Allowable membrane stress intensity S^m=Ultimate stress u p. 4-4</pre>	Sec. 4.1.2.5.1 Sec. 4.1.2.5.2 p. 4-3					

-- -- --

	ELECTRICAL EQUIPMENT									
DAMP ING	METHOD	DESIGN CRI	TERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses							
Not available.	Analytical and tests.	Not available.	No detailed information available. Refer to Table 8.8 for some seismic considerations.							
	Table 8.8 p. 8-36		p. 8-36							

`

Docket Number 50-219

NAME AND NSSS TYPE OF THE			EAR	THQUAKE DA	ATA		METHO COMBIN		DESIGN SPECTRA	
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH, COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. g	INTENSITY MM	HOR. g	VERT. S	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Oyster Creek Nuclear Power Station Unit 1 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Burns & Roe, Inc.	0.11 Sec. V.3 p. V-3-1	0.073 Sec. V.3 p. V-3-5	VII	0.22 Sec. V.3 p. V-3-5	0.147 Sec. V. p. V-3 -5	Not used	<pre>P 0 2 components: Horizontal and vertical added D directly and linearly for: Reactor building. P Control room/turbine building, rad. waste U building. Horizontal only for intake structure. U 9</pre>		Housner spectra used for analysis of reactor building, ventilation stack, control room, rad- waste bldg. Equivalent static method for intake structure, suction header, spent fuel pool Question IV. 2 Amend. 11, Sec. V-3-1.2, FDSAR,	No floor response spectra: Seismic Design Cürves for FWCI piping and equip- ment. p. 5-11, 12 Amend. 38
12-64/4-69			·				Q IV-3-1		Sec. 3.5.1	

*Information from BNL Docket search and SEPB Report "Seismic Review of Oyster Creek Nuclear Power Plant for SEP", Phase I Report.

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation	BEARING INFORMATION			GROUND WATER	DAM	METHOD OF	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON		
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE	2721	MODELLING	8	OF SOIL	MODAL DAMPING		
Mat foundation Grade: + 23 ft MSL Foundation: -11 ft MSL	Fine to medium texture sand of med. dense alternat: layers of clay,sil sand dense sa med. to coarse texture layers of clay,silt and fine sand dense fir to coarse sand	ng 17 ft and fine nd, 65 ft. 8 ft. below	Not available	Wells are 60 to 70 ft. or more in depth. Sec. II.4,	Not avail- able	Rocking mode analyzed separately in seismic analyst of reactor and control room/ turbine building. Using a tor- sional spring to represent the founda- tion flexi- bility.	Not available LS	Not available	Not available		
Sec. 11.5.2	Sec. II.5.2	Sec. II.5.2		p. II-4-1							

STRUCTURES										
		DESIGN CRITERIA								
DAMPING OBE/SSE (% cri cal da	riti- lamping)	LOAD COMBINATION	ACÇEPTANCE CR & Allowable St							
Reinforced concrete structures (reactor building) steel frame structures welded assemblies	10.0 2.0 1.0	Reactor building., Control Room., Battery Room., Intake Structure.* 1. DL + LL + OL + E (0.11g) 2. DL + LL + OL + W 3. DL + LL + OL + E ^(0.22g)	Reinforcing Steel <u>Max. Tension</u> 1. 0.5 Fy 2. 0.667 F 3. 0.90 F y y	Concrete Max. Allowab <u>Compression</u> 0.45 f c 0.60 f c 0.90 f c						
welded assemblies bolted and riveted assemblies reinforced concrete stack	2.0 5.0	Reactor Concrete Pedestel** 1. DL + equipment + jet load + temperature + OBE 2. DL + equipment + jet load + temperature + SSE	1. 0.25 F _y 2. 0.25 F _y	0.133 f [°] c (bending) 0.267 f [°] c (bending)						
		Drywell Concrete Shield*** 1. DL + LL + over pressure + max. temp. + OBE 2. DL + LL + over pressure + max. temp. + SSE 3. DL + LL + max. temp. + OBE + jet force	1. 0.50 F _y 2. 0.50 F _y 3. 0.667 F _y	0.45 f [°] c Q.45 ^f °c 0.60 f [°] c						
Sec. V.3, p. Table V-3-1										

*Table V-3-3, Table 1-A-4, Amend. 22 **Table 1-A-2, Amend. 22 ***Table 1-A-1, Amend. 22

.

DAMPING OBE/SSE (% criti- cal damping)		METHOD		DESIGN CRITERIA	
		OF QUALIFICATION	LOAD COMBINATIO	ACCEPTANCE CRITERIA 6 Allowable Stresses	
 Bolted and riveted assemblies Welded assemblies Vital piping Vital piping Antipiping Antipiping<	2.0 1.0 0.5	Not available	$\frac{\text{Class I piping}^{*}}{\text{Thermal}} \\ \text{MOL + SL} \\ \text{MOL + 2(SL)} \\ \text{MOL = Max. operating loads} \\ \text{SL = Seismic loads due to OBE} \\ \text{S}_{A} = f(1.25 \text{ S}_{C} + 0.25 \text{ S}_{H}) \\ \text{f = stress range reduction factor} \\ \text{S}_{C}, \text{S}_{H} = a-lowable stress, ASA B31.1 \\ \hline \\ \frac{\text{Reactor vessel supports}^{*}}{\text{Seismic}} \\ \frac{-}{\text{Seismic}} \\ \frac{-}{2(\text{seismic})} \\ \frac{-}{2(\text{seismic})} \\ \hline \\ \frac{\text{Primary containment}}{\text{pl + operating + LOCA + E}} \\ \text{DL + operating + LOCA + E'} \\ * Ques. IV. 1, Amend. 11 \\ ** Table V-3-2, Sec. 3.8.1 \\ \hline \end{array}$	Allowable stress S _A S _H Safe shutdown can be achieved Normal AISC allowables 150% of normal AISC allowables 150% of normal AISC allowables ASME Sec. VIII Code case 1272N-5	See load combinations and Supplement 6, Amend. 68, Appendix 6.

_

_

ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRITERIA							
OBE/SSE (% Critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Otresses						
Not available	Not available	Quoted from answer to Question IV.1, Amend 11 "The control room panels and auxiliary racks are usually shipped assembled and therefore these units must be designed for normal shipping shock which is in the order of several g's acceleration. Certain components are removed and padded to re- duce vibration effect and excessive acceleration. In all cases, however, the design analysis is made of the panels and instru- ments. All relays in safety circuits are energized; and since they are capable of closing against 1.0g, they can certainly maintain contact during an acceleration of 0.22g." Question IV.1, Amend. 11							

Docket Number

50-255

NAME AND NSSS Type of the Plant	EARTHQUAKE DATA			METHOD OF COMBINATION		DESIGN SPECTRA					
E LANI	0	BE		SSE		EARTHQUAKE	NO, OF EARTH. MODAL COMP. USED COMB. AND ITS COMB.	EARTH. MODAL TYPE OF		TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. g	VERT. B	TIME HISTORY		COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Palisades Nuclear Generating Plant Unit 1 Reactor type: PWR Containment type: 6 buttresses with shallow dome (prestressed con- crete) NSSS Manufacturer: Combustion Engineering Architect Engineer: Bechtel 3-67/3-71	0.10 p. 2-16	0.067 Sec. A.2 p. A-7	VII	0.20 p. 2-16	0.13 Sec. A.7 p. A-7	Housner spectra. For floor response spec- tra generation and for equipment and piping the 1952 TAFT earthquake was used, whose R-S envelops the Housner spectra.	Maximum horizontal component with ver- tical com- ponent simul- taneously. Sec. A.2 p. A-7	spectra method for structural modes and	Housner design spectrum Question 5.13 p. 5.13-1	Not clear - it appears that TAFT 1952 earthquake was used to generate floor response spectra. Then from lumped-mass model, the accelerations at each floor level were obtained and the TAFT response spectra were scaled to those valves. Static method used for piping with frequency > 20 Hz. For vertical R-S, $2/3$ of horizontal ground spectrum Ref. $3.0.5.8$ and $0.5.6$.	

*Information obtained from BNL Docket search and SEPB Report, "Seismic Review of Palisades NPP Unit No. 1".

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEA	RING INFOR	MATION	GROUND WATER	DAM	METHOD OF		MATERIAL DAMPING	LIMITATION ON MODAL DAMPING		
AND ITS DEPTH	TYPE	THICKNESS	V _B PROFILE	TABLE	DAN	MODELLING	G _g profile	OF SOIL			
Reinforced con- crete slab 8 1/2 to 13 ft. thick Sec. 5.1.2	Loose dune sand overties about 30 ft. of well-com- pacted, gray silty sand. Below this is about 90 ft. of compact till. Bedrock, Mississippian Coldwater Shale. is reached at a depth of about 150 ft. below	evel. It is composed **	5400 fps for lake deposits 6700 fps for glacial till 10,000 fps for bedrock	10 ft. from ground surface Sec. 2.4.1, p. 2-14,	Not avail- able	Containment: Lumped mass, spring model cfcfruing Torizontal spring constant and 2 vertical springs which provide rotational restraint. "Building FNDT. interaction effects". 10-66, ASCE Figr. Mech.	Not available	Not available	Not available		

Sec. 2.3.1

p. 2-10 to p. 2-11

** Type and thickness of bearing information are presented together.

STRUCTURES									
		DESIGN CRITERIA							
DAMPING OBE/SSE (% cri cal da	iti- amping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES						
1. Welded steel framed structures	2.0/2.0	Final design (SSE) for Class I structures except the containment she 1. $Y = 1/\phi$ (1.25D + 1.0R + 1.25E) 2. $Y = 1/\phi$ (1.25D + 1.25H + 1.25E)	ACI 318-63 Code						
 Bolted steel framed structures Reinforced concrete: structures tures on soil including structure 	2.0/2.0	3. $Y = 1/\phi$ (1.25D + 1.25H + 1.25E) (0.9 D is used where dead load subtracts from critical stress in the above two equations)	Utlimate strength design Sec. A.2, p. A-3, Appendix A						
tural damping 4. Prestressed concrete: con-	5.0/7.5	4. $Y = 1/\phi$ (1.0D + 1.0 R + 1.0E ⁴) 5. $Y = 1/\phi$ (1.0D + 1.0H + 1.0E ⁴) Final design (SSE) of the containment structure (.7< ϕ < .9) (a) $Y = 1/\phi$ (1.05D + 1.5P + 1.0 T + 1.0F)							
tainment structure on soil including structural damping	4.0/7.5	b) $Y = 1/\phi (1.05D + 1.25P + 1.0T^{A} + 1.25H + 1.25E + 1.0T)$ c) $Y = 1/\phi (1.05D + 1.25H + 1.0R^{A} + 1.0F + 1.25E + 1.0T_{O})$	3						
		e) $Y = 1/\phi (1.0D + 1.0P + 1.0T + 1.0H + 1.0E' + 1.0T')$ f) $Y = 1/\phi (1.0D + 1.0H + 1.0R^{A} + 1.0E' + 1.0F + 1.0T^{O})$	Sec. B.1.6 p. B-5, Appendix B Containment Working						
		 Y = Required yield strength of the structures D = Dead load of structure and equipment + any other permanent 1 contributing stress, such as soil or hydrostatic loads 	pads $\frac{\text{Stress:}}{\text{a. D + L + F + T}}$						
		 R = Force or pressure on structure due to rupture of any one pip H = Force on structure due to thermal expansion of pipes under operating conditions. 	b. D + L + F + T_A + (or W)						
		E = Design seismic load for Class I structures E' = Maximum seismic load for Class I structures W = Wind load for Class I structures, tornado load for containme	c. P' = 1.15P nt FSAR App. B.						
Sec. A.2, p. A-8, Appendix A		φ = Capacity reduction factor (Defined in B.1.7) P = Design accident pressure loads	} 						
		F = Effective prestress loads T = Thermal loads due to temperature gradient through wall durin T ^O = Thermal loads due to temperature gradient through the wall a	g operating conditions and expansion 37-3						

TA

MECHANICAL & PIPING									
DAMPING		METHOD	DESIGN CRITERIA						
•	criti- l damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
1) Welded steel plate assemblies	1.0/1.0	Analytical method	$\frac{\text{Critical reactor vesse} \text{ internal structural}}{1. \text{ Design loading + design earthquake forces}} \begin{array}{c} P_{\text{m}} \stackrel{\checkmark}{=} S_{\text{m}} \\ P_{\text{B}} + P_{\text{L}} \stackrel{\checkmark}{=} 1.5 \text{ S}_{\text{m}} \end{array}$	P _L , P _m , S _m , S _y are defined in the ASME Boiler and Pressure Vessel Codes, Section III, Article 4.					
 Concrete equipment supports on a- nother structures 	2.0/2.0	DC control centers 250V-test	2. Normal operating loadings + hypothetical earthquake forces $P_{m} \leq S_{D}$ $P_{B} \leq 1.5 \left[1 - \left(\frac{P_{m}}{S_{D}}\right)^{2}\right] S_{D}$	ASA B31.1					
3) Steel piping 0.5/0.5		3. Normal operating loadings + hypothetical $P_m \leq S_L$ earthquake forces + pipe rupture loadings $P_B \leq 1.5 \left[1 - \left(\frac{P_m}{S_L}\right)^2\right] S_L$	"USA Standard Code for pressure piping power piping." Piping: FSAR App. A						
			$\begin{split} S_u &= \text{Minimum tensil strength of material at temperature} \\ S_L &= S_y + (1/3) (S_u - S_y) & \text{Sec.} \\ S_D &= \text{Design stress} = 1.2 S_m & p. \end{split}$	Q.5.12, Q.5.7 3.2 3.6					
			Class 1 systems and equipment design (including piping)1. MOL + PTT + SL1. Applicable code allowable stress2. MOL + MTT + SL2. Minimum yield stress at temperature3. MOL + MTT + 2SL3. Minimum yield stress at temperature	may be exceed but limited to					
Sec. A.2 Appendix A		Question 5.8 p. 5.8-3	no more than + 10% MOL = Maximum normal operating load including design pressure, de and support reactions PTT = Normal planned thermal transients associated with expected transients such as start-up, shutdown and load swings	• • • • • •					
			 MTT = Maximum thermal transients in the systems functioning during such as full power reactor trip turbine generator trip, the DBA SL = Design seismic load resulting from a seismic ground surface 2SL = Hypothetical seismic load resulting from a seismic ground seismic ground seismic ground seismic her seismic ground seismic	37-4 e acceleration of 0.1g					

	ELECTRICAL EQUIPMENT										
DAMPING	METHOD	DESIGN CRIT	TERIA								
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Otresses								
Not available	Not available	Not available	Not available								

. .

.

_

Docket Number 50-277, 278

NAME AND NSSS Type of The			EART	HQUAKE DA	TA		METHO COMBIN		DESIGN SPECTRA	
PLANT	OI	BE		SSE		EARTHQUAKE	NO, OF EARTH. MODAL COMP.		TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. g	VERT.	INTENSITY MM	HOR.	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Peach Bottom Atomic Power Station, Unit 2 and 3 Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Bechtel	0.05	0.033	VII	0.12	0.08	Synthetic time- history.	2 com- ponents H+V simultan- eous	Absolute sum (Response spectrum analysis)	Housner OBE: Fig. C.3.1 SSE: Fig. C.3.2 Max. acceleration = 0.15g @ 2% damping	Time-history method using an earthquake time- history whose raw spectrum response curve is greater than or equal to the site design response spectrum curve.
Unit 2:1-68/8-73 Unit 3:1-68/7-74	p.C.2-1	p.C.2-2	Sec. 2.5. 3.1.1, p.2.5-12	p.C.2-2	p.C.2-2		p. C.4-1 Sec. C.2.2 Sec. C.3.3	Sec. C.3.3	p. C.3-2,	Sec. C.3.3 p. C.3-3

38-1

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION TYPE THICKNESS V _g PROFILE			GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING		
Class I structures: Spread or mat Foundation on fres rock Peters Creek Schiss Depth: Not avail- able Auxiliary building: Steel H bearing pile foundation.	soils. Peters Creek Schist. Fresh Peters Creek	ft. be- low sur- face.	Not available	Varies from 12 to 15 ft. near and upstream. Reaches 100 ft. one mile down- stream.	Site is 9 miles above Conowingo Dam; 6 miles below Holt- wood Dam	Fig. C.3.3 indicates fixed base stick model.	Not available	Not available	Not avail- able		
p. 2.7-3, p. 2.7.4	p. 2.5- 14	p.2.5- 14	· ·	p. 2.5-10	p. 2.5-10	p. C.3.3					

STRUCTURES									
		DESIGN CRITERIA							
DAMPING OBE/SSE	(% criti- cal damping)		LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Reinforced concrete strutures Steel framed structures	2.0/5.0 2.0/5.0 1.0/2.0	1. D + E 2. D + E ⁻ 3. D + W			AISC for structural steel ACI 318-63 for reinforced concrete <u>Maximum allowable stresses</u>				
Weld steel assemblies Bolted and riveted assemblies	2.0/5.0	4. D + W´ 5. D + E + T 6. D + E´ + T 7. D + F			Steel9 yield strength Concrete85 compressive strength Reinforcement9 yield strength				
		where	D = Dead load W = Wind load W' = Tornado load E = OBE	E' = DBE T = Thermal F = Flood	See Codes on p. C.2-8.				
p. C.2-2		p. C.2-6 p. C.2-7 For further refe	erence, refer Appendix	С	p. C.2-6				

MECHANICAL & PIPING									
DAMPING OBE/SSE (% criti-	METHOD OF	DESIGN CRITERIA							
cal damping)	QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
Welded steel assemblies 1.0/2.0 Bolted and riveted assemblies 2.0/5.0 Seismic Class I Piping System 0.5/0.5	tests	<pre>Normal and upset: 1. D. W. + pressure 2. D. W. + pressure + OBE 3. D. W. + pressure + thermal 4. D. W. + pressure + OBE + thermal Emergency: 1. D. W. + DBE Faulted: 1. D. W. + DBE + Jet reaction forces</pre>							
p. C.2-2	p. C.5-1	For further details refer to TAble C.5.6, Table C.5.7	Table C.5.6 Table C.5.7						

. .

ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available	Test and empirical experience.	Not available	Not available					
	p. C.5-1							

Docket Number 50-293

NAME AND NSSS Type of The	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE				NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. B	INTENSITY	HOR. 8	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Pilgrim Nuclear Power Station Unit No. 1 Reactor type: BWR Containment type: Reinforced Concrete NSSS Manufacturer: General Electric Architect Engineer: Bechtel	0.08	0.053	VII	0.15	0.10	July 21, 1952 nor- malized to 0.08g and 0.15g ground acceler- ate was used for com- puter analysis and		piping system:	Housner	Time-history method using Taft record. Then each curve was compared to the ground re- sponse spectrum and corrected to fall below the ground spectrum curve.
8-68/6-72	Sec. 2.5.3.2 p. 2.5-6	App. C, Sec. C.2.2 p. C.0-1	2 Sec. 2.5.3.2 p. 2.5-6	Sec. 2.5.3.2 p. 2.5-6	App. C, Sec. C.2.2 p. C.0-	Sec. 12.2.3.5.2 p. 12.2-5	Comment 12.2.4 p. 2-26	App. C, Sec. C.3.3 p. C.0-7	Fig. 2.5-5 Fig. 2.5-6	Sec. 12.2.3.5.2, p. 12.2-6 Comment: 12.2.2 p. 2-22

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF Foundation And Its depth			GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g PROFILE	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING		
Heavily rein- forced concrete mat 8 ft. depth	s of glacial and recent deposits. Upper laye silts (about 20 ft.) lower layer (glacial zo) graded to well graded sands with varying a- of graded. Boulders are scattered thru-out	of		the site topo- graphy. i.e., moderately steep ground water gra- dients are present with flow toward Cape Cod Bay. Water level is a- bout 2 1/2 to 5 ft. from surface (gathered from boring logs).	able.	Stick model with soil springs.	Not available.	Not available.	Not avail- able.	
Sec. 12.2.2.1, p. 12.2-2	Layers sandy poorly mount	soils. depth		Sec. 2.4.1.3.2, p. 2.4-1	·	Sec. 12.2.3.5.2 p. 12.2-5				

Sec. 2.5.2.4.2 and Sec. 2.5.2.4.3 p. 2.5-4

STRUCTURES								
DAMPING		DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES					
Reinforced concrete building	5.0/7.5	1. Dead load + OBE.	 Stresses according AISC. and ACI Codes. 					
Internal concrete structures and equipment supports	2.0/3.0	2. Dead load + wind loading.	 Maximum allowable stress increased 1/3 above nor- 					
Steel frame structures	2.0/5.0		mal code-allowable stress					
Bolted steel assemblies	2.0/5.0	3. Dead load + jet forces and pressure and temperature transient with rupture of single pipe + OBE.	3. Normal code-allowable					
Welded assemblies	1.0/2.0		stress.					
		4. Dead load + R + SSE	 Steel - 15% of AISC Code allowable stress concrete -0.75 f'c where "working stress design" method is used. Reinforcement = 0.9 f, when "ultimate 					
		R= Jet forces and pressure and temperature transient with rupture of single pipe.	strenyth design" method i used. Load factor of 9.0 is used with appropiate reduction factor as in ACI-318-63.					
Table 12.2.3, p. 12.2-6		Details: See C.2.3, App. C, p. C.0-2	Details: See C.2.3, App. C, p. C.0-2					

			MECHANICAL & PIPING					
DAMP ING		METHOD	DESIGN CRITERIA					
OBE/SSE		OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses				
Class I Piping System	0.5/1.0	Both analyti- cal and empir- ical (testing).	Load combinations are presented as tables. Per ASME Code. Drywell membrane stresses: D + R + E stress intensities are defined per code D + R + flood paragraph N-413 and their limits as per code N-413.	ASME BPVC Section III				
Table 12.2.3, p. 12.2-6 Table 12.2.3-2		App. C, C.3.1, p. C.0-5	Table C-9 Table C-20	Sec. C.3.4, App. C, p. C.0-7				

		ELECTRICAL EQUIPMENT						
DAMP ING	METHOD	DESIGN CRITERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available	Not available	Not available	Not available					

.

-

- ---

- - - -

Docket Number

50-266, 301

NAME AND NSSS Type of the		<u> </u>	EAR	THQUAKE D	ATA		METHO COMBIN		DESIGN SPECTRA	
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY mm	HOR. 8	VERT. 8		COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Point Beach Nuclear Plant Unit No. 1 & 2 Reactor type: PWR Containment type: 6 buttresses with shallow dome (prestressed con- crete) NSSS Manufacturer: Westinghouse Architect Engineer: Bechtel	0.06	0.04	NOT AVAILABLE	0.18	0.08	NOT AVAILABLE	Horizontal & Vertical Components Combined Simultan- eously	SRSS	Housner Spectra	Olympia, Washing- ton N80E on April 13, 1949 Earthquake normalized to .06g was used for this analysis.
	Sec. 5.1 p. 5.1-41			Sec. 5.1 p. 5.1-4			Append. A p. A-3	Sec. 5.1.2. p. 5.1-52	4 p. 5.2-2 Fig. A-1 & A-2	p. A-18

.

	FOUNDATION AND LIQUEFACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION			
TYPE OF Foundation	BEARING INFORMATION		GROUND WATER	DAM	METHOD OF	G, PROFILE	MATERIAL DAMPING	LIMITATION ON	
AND TYPE THICKNESS	V PROFILE	TABLE		MODELLING	0	OF SOIL	MODAL DAMPING		
building:	Overburder soils: silty cla silty san sand, gra vel, cob- ples and poulders. Bedrock: Niagara dolomite the bed- tock as a whole con sists of dolomite limeston and sand stones.	70 ft. , to , 100 ft. NOT AVAIL- ABLE s	NOT AVAILABLE	"The potable water for use at the Point Beach Plant is drawn from a 257 ft. deep well."	NOT AVAILABLE	Structure: Stick Model Soil: Cantilever Beam assumption indicates fixed base modelling	NOT AVAILABLE	OBE/SSE: 5.0/5.0 % of damping factors.	NOT AVAILABLE
Sec. 1.2 p. 1.2-2 Sec. 2.11.4 p. 2.11-3	Sec. 2.9 p. 2.9-2	.3		Sec. 2.6 p. 2.6-10		Q.5.15 p.Q5.15-6		Append. A p. A-5	

.

.

.

STRUCTURES							
DAMPING		DESIGN CRITERIA					
OBE/SSE (% critical o	damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable' Stresses				
Bolted Steel Framed Structures2.5Reinforced Concrete Structures on Soils5.0Prestressed Concrete Containment	0/2.0 5/5.0 0/7.5 0/5.0	<pre>For Containment Structures: a) Y = 1/\$\phi\$ (1.05D + 1.5p + 1.0TA + 1.0F) b) Y = 1/\$\phi\$ (1.05D + 1.25p + 1.0TA + 1.25H = 1.25E + 1.0F) c) Y = 1/\$\phi\$ (1.05D + 1.25H + 1.0R + 1.0F + 1.25E + 1.0To) d) Y = 1/\$\phi\$ (1.0D + 1.0P + 1.0TA + 1.0H + 1.0E' + 1.0F) f) Y = 1/\$\phi\$ (1.0D + 1.0H + 1.0R + 1.0E' + 1.0F + 1.0To) Note: 0.95D is used instead of 1.05D where dead load subtracts critical stress.</pre>	For Concrete Structures of the Reactor Containment: ACI-318-63. For further details refer to Sec 5.1 p. 5.1-8				
Append. A p. A-5 Table A.l-1		Sec. 5.1 p. 5.1-26	Sec. 5.1 p. 5.1-2				

OBE/SSE OF QUALIFICATIO			RITERIA		
(% critical damping)	N	LOAD COMBINATION Pressure Vessel Pining			
nterior Concrete Equip. Analytical Supports 2.0/2.0 & ital Piping Systems 0.5/0.5 Testing	Normal Conditions	(a) $P_m \leq S_m$ (b) $P_m (or P_L) + P_B \leq 1.5S_m$		For pressure piping: ASME BPVC, USAS B31.3	
elded Steel Plate Assemblies 1.0/2.0	Upset Conditions	(c) $P_m (\text{or } P_L) + P_B + Q \le 3.0S_m$ (a) $P_m \le S_m$	P <u><</u> S	For reactor vessel: ASME Sec. III, Class A	
	(Normal + OBE)	(b) $P_{m}(\text{or } P_{L})+P_{B}=1.5S_{m}$ (c) $P_{m}(\text{or } P_{L})+P_{B}+Q\leq3.0S_{m}$	P <u><</u> 1.2S		
	Emergency Condition	$ms(a) P_m < 1.2S_m \text{ or } P_m < S_m - y$ whichever is larger			
		(b) $P_m(\text{or } P_L) + P_{B-1.5}(1.2S_m)$ or $P_m(\text{or } P_L) + P_{B-1.5}(S_y)$ whichever is larger	P <u><</u> 1.2S		
	Faulted Conditions	Design Limit Curves of WCAP-5890, Rev. l as Modified by Note l of	Same as Pressure		
Append. A p. A-3	Normal + DBA, Normal + DBE + DBA	This Appendix	Vessel		
bit bit <td>P_r^m = Primary local</td> <td>al membrane stress intensity membrane stress intensity ng stress intensity ess intensity</td> <td></td> <td>Append. A p. A-3 Sec. 4 Table 4.1-9</td>	P_r^m = Primary local	al membrane stress intensity membrane stress intensity ng stress intensity ess intensity		Append. A p. A-3 Sec. 4 Table 4.1-9	

· ---

		ELECTRICAL EQUIPMENT					
DAMP ING	METHOD	DESIGN CRITERIA					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Otresses				
NOT AVAILABLE	Testing as per WCAP 7397-1.	NOT AVAILABLE	NOT AVAILABLE				
	Q.5.2 p. 5.2-2						

.

Docket Number 50-282,306

NAME AND NSSS Type of The			EAR	THQUAKE D	NTA		METHO		DESIGN	SPECTRA
PLANT	OI	BE	SSF			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. 8	INTENSITY MM	HOR. 8	VERT. B	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Prairie Island Nuclear Generating Plant Unit 1 and 2 Reactor Type: PWR Containment Type: Dry Containment- Cylindrical (Steel) NSSS Manufacturer: Westinghouse Architect Engineer: Pioneer	0.06	0.04	V I	0.12	0.08	Synthetic time- history	2 com- ponents combined linearly JAB-PS-02 App. B, John Blume	SRSS	Housner	Time history method. For details refer to John A. Blume report, JAB-PS-04.
Unit #1: 6-68/8-73 Unit #2: 6-68/10-74	Sec. 2.10.2 p. 2.10-	Sec. 5.2.1 2p. 5.2-6		Sec. 2.10.2 p. 2.10 -2	Sec. 5.2.1 p. 5.2 -6	B. 6-7 App. A-1 p. 4.11	B.6-9 B.6-6	App. B Sec. B.6. 3(1) p. B.6-10	Αρρ. Α. Plate 4.5,4.6	Арр. В Sec. B6.3 p. B.6-6 to B.6-7

	FOUNDATION AND LIQUEFACTION ASSESSMENT					SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEARING INFORMATION		GROUND WATER DAM		METHOD OF		MATERIAL DAMPING	LIMITATION ON		
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE	MODELLING	G _s profile	OF SOIL	MODAL DAMPING		
I. Mat foundationar at Elv. 674 per sa App. A-1, p. 5.12A Because of prob- faction of soils on above Elv. 645 ar due to ground acceleration, r the soil above du Elv. 645 is den- sified to a min- imum relative density of 85%.	en nterials re ermeable andy lluvial oils rom lacial	on densified sandy Alluvial soils of 158 to 185 feet.	0-20 ft/sec loose sand	Vermillion River.	Lock and dam number 2 is 17 miles up- stream of plant site. It is 3250 ft long dike, 2 single-lift locks with chambers 110'x600' and 110'x 500'; and a spillway section of 20-30 ft. Amend. 22 Sec. 2.7.3 p. 2.7-8C		Not available.	5% of critical damping. Amend. 12 App. B Table B.6-5	Not avail- able.	

41-2

_

STRUCTURES									
			DESIGN CRITERIA						
DAMP ING OBE/SSE	(% criti~ cal damping)		ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Reactor building containment vessel: Reactor building shield structure:	1.0/1.0	L.C. Normal operating OBE	$\frac{Class 1}{D + L + (W \text{ or } S)}$ D + L + DBA + greater of the OBE +	$\begin{array}{ccc} R/C & Steel \\ ACI 318-63 & AISC \\ H & H \end{array}$					
Reactor building internal concrete construction:	5.0/5.0	DBE	(W or S) D + L + S + DBA + DBE	1 1/2 times ACI 318-63 1 1/2 AISC					
Steel framed structures:	2.0/2.0	Tornado	D + L + tornado + tornado missiles	$f_c = 0.85 f_c f_s = 0.9 F_y$					
Reinforced concrete construction:	2.0/2.0	Other	Jet forces, rupture loads, flood whereever applicable	f _s = 0.9 F _y					
Amend. 12 (11-15-71) App. B Table B.6-5		For details refer to App. B, Sec. B.6.1, Table B.6-1.	p. B.6-1 and	App. B Sec. B.3 p. B.3-1					

MECHANICAL 6 PIPING									
DAMP ING OBE/SSE		METHOD		DESIGN CR	ITERIA				
	(% criti- cal damping)	OF QUALIFICATION	I	LOAD COMBINATION		ACCEPTANCE CRITERIA 6 Allowable Stresses			
and	Analytical and testing.	 Normal condition (p.L. thermal and pressure) Upset condition (normal and OBE) 	$\frac{\text{Vessel}}{(a) P_{m}} \leq S_{m}$ (b) $P_{m} (\text{or } P_{L}) + P_{B} \leq 1.5S_{m}$ (c) $P_{m} (\text{or } P_{L}) + P_{B} + Q \leq 3.0S_{m}$ (a) $P_{m} \leq S_{m}$ (b) $P_{m} (\text{or } P_{L}) + P_{B} \leq 1.5S_{m}$	<u>Piping</u> P < S P < 1.2S	ASME, BPVC, Section III ANSI B31.1, 1967 (App. B., Table B.7-3) p. 5.2-11 App. B Table B.7-3				
			3. Emergency condition	(c) $P_{m}(\text{or } P_{L})+P_{B}+Q \leq 3.0S_{m}$ (a) $P_{m} \leq 1.2S_{m}$ or S_{y} whichever is larger (b) $P_{m}(\text{or } P_{L})+P_{B} \leq 1.5(1.2S_{m})$	P ≤1.5(1.2S) m)	LOAD COMBINATION(cont.) P =Primary general membrane m stress intensity P _L =Primary local membrane stres intensity			
Amend. 12 (11-15-71)		App. B Sec. B.7(i)	4. Faulted condition (Normal+DBE+pipe rupture)	or 1.5S whichever is larger (a) $P_m \leq 1.5S_m$ or 1.2S whichever is larger (b) $P_m (\text{or } P_L) + P_B \leq 2.25S_m$ or 1.875S whichever is 1		P _B =Primary bending stress intensity Q =Secondary stress intensity S =Allowable stress intensity ^m value from ASME, BPVC S =Maximum specified material ^y yield strength Amend. 24			
App. B Table B.6-5		p. B.7-9 p. B.7-14	S =Minimum specified yid Amend. 11, App. B., Tab	eld strength (ASME, BPVC Cod le B.7-2 and Table B.7-3	e, Sec. III)	<pre>(10-6-72) Table 5.2-1 P =Stress S =Allowable stress from ANSI B31.1 code for power piping T</pre>			

--

App. B, Table B.7-3. p. 5.2-11

~

.

.

	ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses						
Not available.	Not available.	Not available.	Not available.						

·

<u>Docket Number</u> 50-254, 265

NAME AND NSSS Type of the		EARTHQUAKE DATA					METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OB	E		SSE			NO. OF EARTH. MODAL COMP. USED COMB. AND ITS COMB.	TYPE OF GROUND METHO GENERAT		
CP/OL ISSUE DATE	HOR. g	VERT.	INTENSITY MM	HOR.	VERT.	TIME HISTORY		ND ITS	DESIGN SPECTRA FI	FLOOR RESPONSE SPECTRA
Quad - Cities Station Unit 1 and 2 Reactor type: BWR Containment type: Mark I(Steel) NSSS Manufacturer: General Electric Architect Engineer: Sargent & Lundy, Engineers	0.12	0.08	VII	0.24	0.16	South-East component of San Francisco Golden Gate 1952 earthquake normalized to a maximum ground acceleration.	Horizon- tal and vertical	SRSS	Ground response spectra for the Golden Gate Park earthquake as well as the Housner spectra.	Normalized Golden Gate 1952 earthquake was used for the Time History Method.
Unit 1: 2-67/9-71 Unit 2: 2-67/3-72	Sec. 2.6 p. 2.6-1	Sec. 12.1.1.3 p. 12.1-6	Sec. 12.1.1.3 p. 2.6-1	Sec. 2.6 p. 2.6-1	Sec. 12.1.1. p.12.1-			Sec. 12.1.2 p.12.1-9	Amend. 13, Sec. 12, p. 12.1-1, Fig. 12.1-1	Sec. 12, Amend.13 p. 12.3-8

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND	BEARING INFORMATION			GROUND WATER	DAM	METHOD OF	G _s profile	MATERIAL DAMPING	LIMITATION ON	
ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL	MODAL DAMPING	
Reactor building: Reinforced con- crete foundation. 297 ft0 by 150 ft0	530) con-	0 to 20 h ft. pr k 00) 30 ft. 75) 25 ft. 50 ft.	Turbine Room No. 1. Middle Grout Zon 8,000 to 9,000 fps. above Upper Soft Zone 5,500 to 7,500 fps. Upper Soft Zone 3,900 to 5,100 fps. Good Rock Zone 8,000 fps. Lower Soft Zone 4,700 to 6,200 fps. below Deep Soft Zone 6,000 fps.	Not available.	This site is about midway be- tween Lock and Dam No. 14 and 13 on Mississippi River.	Structure: Stick Model Soil: Fig. 12.1.6 shows fixed base assump- tion.	300,000 psi to 1,500,000 psi	Not available.	Not a- vailable.	
Sec. 12.1.2.1 p. 12.1-7	mend. 15 . 13 Table 4		Amend. 15, p.6		Sec. 2.4, p. 2.4-1	Sec. 12.1.2, p. 12.1-8 and p. 12.1-9	Amend. 15, 1 of 2			

_

_____ · · · · · ·

STRUCTURES									
	··	DESIGN CRITERIA							
	(criti- al damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Reinforced concrete structure Steel frame structure Welded assemblies Bolted and riveted assemblies *(For both O.B.E and D.B.E.) Sec. 12.1.1.3, Table 12.1.1, p. 12 and p. 12.2-4	5.0 [*] 2.0 1.0 2.0	<pre>Primary containment (including penetrations) = a) D + P + H + T + E b) D + P + H + T + E c) D + P + H + T + E c) D + P + H + T + E Class I structure = D + R + E D + R + E D + L D = Dead load; L = Wind live load P = Pressure due to loss-of-coolant accident R = Jet force or pressure on structure due to rupture of any one pipe H = Force on structure due to thermal expansion of pipes under operating conditions T = Thermal loads on containment, reactor vessel, and internals due to loss-of-coolant accident. E = Design earthquake load, ground horizontal g = 0.12, vertical g = 0.68 E' = Maximum earthquake load, ground horizontal g = 0.24, vertical g = 0.16 Amend. Sec. 12, p. 12.1-3 ~ p. 12.1-6</pre>	AISC - For structure steel ACI - 318 - 63 Amend. 13, Sec. 12, p. 12.13-1						

······································		MECHANICAL & PIPING	
DAMPING OBE/SSE (% criti- cal damping)	METHOD	DESIGN CRITERIA	
	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses
Vital Piping Systems 0.5 (For both O.B.E. and D.B.E. except for the standby gas treatment system, where 1% of critical damping was used).	Analytical	<pre>Reactor primary vessel supports = a) D + H + E b) D + H + R + E c) D + H + E' Reactor primary vessel internals = a) D + E b) D + E' c) P + D + T Other major Class I equipment = a) D + T + M + E b) D + T + M + E'</pre>	For reactor pressure vessel: ASME Boil and Pressure Code, Sec. III, 1963 and Summer 1964, Append. A. Class I piping: USAS B31.1
Sec. 12.1.1.3, Table 12.1.1 p. 12.1-6	Amend. Sec. 12 p. 12.2-14	For designations refer to previous page. Amend. 13, Sec. 12, p. 12.3-10	Append. C p. ii, Amend. Sec. 12, p. 12.1-4

_

ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA						
OBE/SSE	OF QUALIFICATION	LOÄD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses					
Not available.	Not available.	Not available.	Not available.					

·

Docket Number 50-312

NAME AND NSSS TYPE OF THE			EAR	THQUAKE DA	ATA		METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH. MODAL COMP.	. MODAL TYPE OF GROUND MET		METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. B	VERT. g	INTENSITY	HOR. g	VERT. g	TIME HISTORY	USED	сомв.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Rancho Seco Nuclear Generating Station Unit No. 1 Reactor type: PWR Containment type: 3 buttresses with shallow dome (pre- stressed concrete) NSSS Manufacturer: Babcock and Wilcox Architect Engineer: Bechtel	0.13	0.09	VI	0.25	0.17	1952 Taft Earthquake	Three earthquake components: two horizontal and one vertical. Results for each horizontal earth- quake were added separately on absolute basis to those from vertical earthquake; yielding two distinct seismic loading cases.	SRSS both for struc- tures and piping.	Accelerogram of Taft Earthquake 1952. The response spectra are broad- ened in their range of peak responses.	
0-68/8-74	p. 5.1-2	p. 5.1-2		p. 5.1-2	p. 5.1-	2 Appendix 5B p. 5B-4	Question AEC 5.51 p. 5A-51	Question AEC 5-51 p. 5A-51	Appendix 5B p. 5B-4, Figs. SK6292-S-59 and	Appendix B p. 5B-4

SK6292-S-62

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
FOUNDATION	BEAJ	RING INFOR	MATION	GROUND WATER	DAM	METHOD		MATERIAL DAMPING	LIMITATION	
AND ITS DEPTH	TH TYPE THICKNESS V PROFILE TABLE	DAN	OF MODELLING	G _s PROFILE	OF SOIL	ON MODAL DAMPING				
Foundation is Found about 35 ft	The granite & metamorphic basement is overlain in the site by 1500 to 2000 ft tertiary pr older sediments. The surface unit is pliocene laguna formation of firm siltstone, sand,grave	face unit of pliocene laguna formatio it 126 ft.	Not available.	150 ft below original ground surface.	 Data on reservoirs and lakes within 50-mile radius are given in Table 2.4-1. Plot of on-site dam, Question AEC No. 2.14. 	Stick model with soil springs.	Not available	10% for design basis earth- quake.	Not available.	
p. 5.2-1	Appendix	2C, ble 2C-1.2		p. 2.4-1	Appendix 2A p. 2A-132	Sec. 5.2.1.3.6 p. 5.2-18		Appendix 5B p. 5B-6		

.

· .

	STRUCTURES	
	DESIGN CRITERIA	
DAMPING OBE/SSE (% criti- cal damping) Stress level: 1. a) Welded structural steel, reinforced 0.5/1.0 or prestressed concrete, no crack- ing, no joint slip. 2. a) Welded structural steel, reinforced 2.0 and prestressed concrete (only slight cracking). b) Reinforced concrete with consider- able cracking. c) Bolted and/or riveted steel. 5.0/7.0 3. a) Welded structural steel, prestressed 5.0 concrete (without complete loss in prestress). b) Prestressed concrete with no pre- stress left. c) Reinforced concrete. 7.0/10.0 d) Bolted and/or riveted steel. 10.0/15.0 concrete (without complete loss in prestress). b) Prestressed concrete. 7.0/10.0 d) Bolted and/or riveted steel. 10.0/15.0 concrete structure 5.0/9.0 Translation of entire structure 30 (OBE, SSE *NOTE. Stress level 1 = low, well below proportion- al limit. Stress below 1/4 yield point. Stress level 2 = Working stress Stress level 3 = At or just below yield poin Stress level 4 = Varies Appendix 5B	<pre>T = Thermal loads due to the temperature gradient. T = Thermal loads due to the temperature gradient. E = OBE C = Required capacity to resist factored loads. E' = DBE</pre>	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES 1. ACI-318-63 Ultimate strength method Question AEC 5.23, p. 5A-25 2. AISC (Sixth Edition) Sec. 5.1.3, p. 5.1-4 NOTE: 1. Normal working stress. Design methods are used for design load case. 2. Factored load caseto check the capacity to withstand accident conditions. Sec. 5.1.4, p. 5.1-4a For details see: Sec. 5.2.1.3 p. 5.2-11

MECHANICAL & PIPING									
DAMPING	METHOD	DESIGN CRITERIA							
OBE/SSE (% criti- cal damping	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Vital piping systems or equip- ment. Low, well below proportional 0.5 limit, stress below 1/4 yield point. Working stress, no more than 0.5/1 point. At or just below point. 0.5/2	Dynamic analysis Testing	I. Design loads + OBE loads II. Design loads + DBE loads P _L +P _B ≤ 1.0 S _m P _L +P _B ≤ 1.5 S _m P _L +P _B ≤ 1.2 S _l P _L +P _B ≤ 1.2 (1.5 S _m) III. Design loads plus pipe rup- ture load IV. Design loads + DBE + pipe + rupture loads P _L +P _B $\leq 2/3$ S _U P _L = Primary local membrane stress intensity. S ^m = Primary bending stress intensity. S ^m = Allowable membrane stress intensity. S ^m = Ultimate stress for unirradiated material at operating temperature.	Nuclear vessels: ASME BPVC 1967, Section III Piping: USAS I, B31.7						
p. 5 B- 7	Question AEC 5.49 p. 5A-49	p. 4.1-4	p. 4.1-5						

- - - -

ELECTRICAL EQUIPMENT								
DAMP ING	METHOD	DESIGN CRIT	ERIA					
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available.	Test data/or calculations of equipment to with- Test stand OBE and DBE are provided by vendors. Solu	Not available.	Not available.					

.

Docket Number 50-244

NAME AND NSSS Type of the		EARTHQUAKE DATA						D OF ATION	DESIGN SPECTPA		
PLANT	OB	E		SSE		EARTHQUAKE	COMP.	EARTH. MODAL	EARTH. MODAL TYP	ARTH. MCDAL TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8			COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Robert Emmett Ginna Nuclear Power Plant, Unit No. 1 Reactor type: PWR Containment type: cylindrical without buttresses (prestressed concret NSSS Manufacturer: Westinghouse Architect Engineer: Gilbert	Sec.	0.08 Sec. 5.1.2.4	V Sec. 2.9	Sec. 5.1.2.4	0.20 Sec. 5.1.2.4	None used	Two comp., larger horizontal plus ver- tical, com- bined via "direct addition" vertical component is assumed unampli- fied due to high axial stiffness of the con tainment.	ment analyzed as single degree of freedom).	Housner	Equivalent static approach based on Housner ground spectra. Multimode response spectrum analysis used to check con- tainment vessel and RHRS pipeline from RCS loop to con- tainment.	
4-66/9-69	5.1.2-15	5.1.2-15	p. 2.9-1	p. 5.1.2-15	5.1.2-1	5					

*Information was obtained from BNL Docket Search and SEPB Report

"Seismic Review of Ginna Nuclear Power Station Unit No. 1 for SEP, Phase 1 Report".

FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION			
TYPE OF Foundation And Its depth	BEARING INFORMATION TYPE CHICKNESS V ₈ PROFILE			GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g PROFILE	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL DAMPING
Foundations for major structures will be installed at depths of 25 or more feet below original ground level Foundations are spread or mat foundations on natural compact granular soil, compacted granular backfill or sound bedrock. The containment cyclinder is founded on rock (sandstone) by means of post-tensioned rock anchors. The base slab is 2' thick.	Major structures are founded on Queenston formation atop a thin layer of natural or compacted granular soils immediately above the bed rock. The Queenston is roughly 1000 ft. thick and overlies 80 ft. of	wego sandstone, approximately 600 ft. of Lorrai ales. About 30 ft. of overburden was removed ior construction of foundation.	Not available	Not available	Not avail- able	SDOF stick model with fixed base (checked with MDOF model and rock foundation modeled as elastic media with rotation and transla- tion.	Not used	Not used	Not used

App. 2B,p.2B-4 Sec. 5.1.2.1 p. 5.1.2-1

Sec. 2.8.2 2.8.3

p. 2.8-1 p. 2.8-2

_

	STRUCTURES									
		<u></u>	DESIGN CRITERIA							
	DAMPING OBE/SSE (% criti- cal damp		LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
1.	Containment structure (prestressed cylindrical wall)	2.0	$\frac{\text{Containment Structure Loading Combinations:}}{\frac{\text{Normal-} 12 \text{ load combinations, example}}{1.0 \text{ DL} + 1.17 \text{ VP} + 1.0 \text{ OT}_{S} + 2.0 \text{ E}}$	ACI-318 AISC - 63 State of New York Building Construction Code,						
2.	Concrete support structure for reactor vessel and steam generator	2.0	Test- 4 load combinations, example 1.0 bL + 1.17 VP + 1.0 OT + 1.15 IP	1961 (Class III structures)						
3.	Steel assemblies a) Bolted or riveted b) Welded	2.5 1.0	Accident Pressure- Cond. "d" - 12 load combinations, example 1.0 pL + 1.17 VP + 1.0 OT _W + 1.0 IP + 1.0 AT ₆₀ + 0.8 E (a=0.1g)							
4.	Other concrete above ground	5.0	Cond. "a" = 4 load combinations, example 1.0 pL + 1.17 VP + 1.0 OT_W + 1.5 IP + 1.0 AT_{90} Cond. "b" = 8 load combinations, example 1.0 pL + 1.17 VP + 1.0 OT_W + 1.25 IP + 1.0 AT_W +F							
			1.0 DL + 1.17 VP + 1.0 OT_W + 1.25 TP + 1.0 AT_{90} +E Cond. "c" - 8 load combinations, example 1.0 DL + 1.17 VP + 1.0 OT_S + 1.0 TP + 1.0 AT_{60} + 2.0 E							
			$ \begin{array}{llllllllllllllllllllllllllllllllllll$							
Ta	ble 5.1.2-1		App. 5D, Table 5.1.2-4I FSAR E = Design earthquake (a=0.1g)	5.1.2.3 FSAR 5.1.2.4, 7.2						

MECHANICAL & PIPING									
DAMPING OBE/SSE (% criti-	METHOD OF	DESIGN CRITERIA							
cal damping)	QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
	IANAIVLICAI	P _m = Primary general membrane stress; or stress intensity P _L = Primary local membrane stress; or stress intensity P _B = Primary bending stress; or stress intensity S = Stress intensity value from ASME B and PV Code Sec. III S = Allowable stress from USAS B31.1 Code for pressure piping	ASME BPVC Sec. III, USAS B31.1 <u>Supports</u> Working stress within yield after load redistribution within yield after load redistribution <u>Fuel Pool Racks:</u> Reg. guides 1.13, 26, 28, 38, 60, 61 ANSI N 18.2 - 1973 ANSI N 18.2 - 1973 ANSI N 45.2.13 - 1974 Structural Welding Code AWS Spec. D1.1 Rev. 2-74 ASME BPV Code, Sec. III, Sec. VIII, and IX, 1974 AISC - 1974 FSAR 9.5, App. 14A						

Equipment: FSAR Table 3.2.3-2 through 3.2.3-7

ELECTRICAL EQUIPMENT								
DAMPING OBE/SSE	METHOD	DESIGN CRITERIA						
000,000	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available	Testing Amend. 2 Question 5	<pre>Class I instrumentation: Control Room: Racks have been assembled and the mounting and wiring of all components has been designed such that the functions of the circuits or equipment will perform in accordance with pre- scribed limits when subjected to seismic accelerations of 0.21g in the horizontal and vertical direction simultaneously. Control room, containment, and auxiliary bidg: Mounting and wiring of all components has been done such that simultaneous accelerations of 0.52g in the horizontal and vertical planes will not dislodge, cause relative movement or result in any loss or change of function of circuits or equip- ment. Section 5.1.2.4, 7.2</pre>	ALLOWABLE STRESSES Not available					

·

.

Docket Number

NAME AND NSSS TYPE OF THE	EARTHQUAKE DATA							D OF ATION	DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. VERT. g g		INTENSITY HOR, VERT.			TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Salem Nuclear Generating Station Units 1 and 2 New Jersey Reactor type: PWR Containment type: Atmospheric (reinforced concrete) NSSS Manufacturer: Westinghouse Architect Engineers and Constructors	0.10	0.067	VII	0.20	.133	El Centro (N-S) May 18, 1940 normalized to 0.10g to 0.20g for OBE and DBE respectively was used for containment structure analysis by step by step integration method.	cal com- ponent was considered to be acting simultane- pusly with	spectra analysis: Sq root of squares but if < 3 modes→ absolute sum of maximum values. 2.Time history analysis (finite element method): summing	<pre>1. For freq > 0.33 cps: Aug spectra developed by Housner. 2. For freq < 0.33 cps: Utilized data suggested by Newmark.</pre>	Time history method.
Unit #1: 12-66/8-71 Unit #2: 10-67/8-71	Sec. 2.9 p. 2.9-1	Sec. 5.2.4.2 p. 5.2-17	Sec. 5.2. 4.2 p. 5.2-17	icant	Fig. IIC-3a Fig. IIC-3b App. B p. IIC-10	App. C Sec. C.3.3 p. C.3-2				

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEAF	NING INFOR	MATION	GROUND WATER TABLE	DAM	METHOD OF MODELLING	G_ PROFILE	MATERIAL DAMPING Of Soil	LIMITATION ON MODAL DAMPING	
	TYPE	THICKNESS	V _S PROFILE				g Horibb			
Circular concrete mat Depth 16 ft	feet of sediments Upper 35 feet in- cludes hydrau- lic fill and Qua- ternary alluvium of clay silt and some sand and gra- yel. Vincen- town forma- tion is encoun- tered at about 70	lished directly in Paleocene silty sands of Vincen- town formation or upon compacted fill extended to Vincen- town. Depth of Vincen- town is		macor zoros so	-	Two methods were used: 1. Lumped mass model analysis using aug resp. spectra 2. Finite element modal analysis, for structure and soil. The most conser- vative results are used.	Not available.	2%OBE 5%DBE	Not avail- able.	
Sec. 5.6.2 See Table 5.6-1	feet. App. B	App. B	App. B. p. IIC-9	p. IIB-14 Table IIB-2		Sec. 5.2.4.2 p. 5.2-17		Sec. 5.2.4.2 p. 5.2-17		

See Plate IIC-1, App. B

_____ ·

STRUCTURES										
			DESIGN CRITERIA							
	DAMPING OBE/SSE	(% criti - cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Concrete structures: Structural steel: Bolted or riveted Welded App. C Sec. C.3.2		2.0/5.0 2.5 1.0	<pre>1. Operating + DBA + OBE</pre>	ACI 318-63 AISC Manual, 6th edition Note: (a) For normal operating + OBE' "Working Stress Design" ACI 318-63 and the allowable stresses are 1/3 above the normal applicable code working stresses. (b) For normal load + DBE: "Ultimate Strength Design" ACI 318-63 Sec. 5.6.3 p. 5.6-2						

MECHANICAL & PIPING											
DAMP ING		METHOD	DESIGN CRITERIA								
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD COMBINATION ACCEPTANCE CRITERIA & ALLOWABLE STRESSES								
Vital piping system;	0.5	Not available,	VesselPiping Condition:ASME Nuclear Vessel Code Section III1. Normal condition:(a) $P_m < S_m$ (a) $P_m < S$ (b) $P_m or(P_L) + P_b < 1.5S_m$ (b) $P_m or(P_L) + P_b < S$ (c) $P_m (P_L) + P_b + Q < 3.0S_m$ ASME Nuclear Vessel Code Section IIIASME Nuclear Vessel Code Section IIIASME Nuclear Vessel Code Section IIIASME Nuclear Vessel Code Section IIIANSI B31.1 for piping								
			2. Upset condition: (a) $P_{m} < S_{m}$ (b) $P_{m}(P_{L})+P_{b} < 1.5S_{m}$ (c) $P_{m}(P_{L})+P_{b}+Q < 3.0S_{m}$ (c) $P_{m}(P_{L})+P_{b}+Q < 3.0S_{m}$ (c) $P_{m}(P_{L})+P_{b}+Q < 3.0S_{m}$ (c) $P_{m}(P_{L})+P_{b}+Q < 3.0S_{m}$ (c) $P_{m}(P_{L})+P_{b}+Q < 3.0S_{m}$								
			3. Emergency condition: (a) $P_m < 1.2S_m$ or S_y (a) $P_m < 1.2S$ whichever is larger (b) $P_m(P_L)+P_b < 1.5(1.2S_m)$ (b) $P_m or(P_L)+P_b < -$ or 1.5S _y whichever is 1.5(1.2S) larger								
			<pre>4. Faulted Design limit curves* Design limit curves* condition: NOTE: P_m = primary general membrane stress, P_L = primary local</pre>								
App, C Sec, C.3.2 p. C.3-1			membrane stress, P _b = primary bending stress, S _m = stress value for ASME, BPVC code, Section III, nuclear vessels, S = minimum specified material yield, S = allowable stress from USASI, B31.1 code for press piping. App. C, Table C.4-2								

*Design limit curves developed using 50% of ultimate strain as maximum allowable membrane strain.

~

.

.

.

ELECTRICAL EQUIPMENT										
DAMP ING OBE/SSE	METHOD	DESIGN CRITERIA								
	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses							
Not available.	Not available.	Not available.	Not available.							

.

. .

Docket Number 50-206

NAME AND NSSS Type of the Plant			EAR	THQUAKE I	DATA	<u> </u>	METHO COMBIN	D OF ATION	DESIGN SPECTRA		
I LAN I		DBE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF	
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	GENERATION OF FLOOR RESPONSE SPECTRA	
San Onofre Nuclear Generating Station Unit 1 Reactor type: PWR Containment type: Dry containment- spherical (steel) NSSS Manufacturer: Westinghouse Architect Engineer: Bechtel	0.25g for Cat. A, 0.20g for Cat. B, UBC for Cat. C.	0.167	Not avail- able	1 H H	(0.44g for re-evaluation)	A synthetic time history was generated so that it's response spectra envelop the Housner spectra at 2% damping. 3.7.1-1 Model Model System Analysis E.Q.Comp.&Comb. Comb. Reactor bldg. Res. Spec. 3comp. R.G. 1.92 R.G. 1.92 Steel Con- Res. Spec. 3comp. SSS Steel Con- Res. Spec. 3comp. SRSS Steel Con- Res. Spec. 3comp. SSS Steel Con- Res. Spec. 3comp. SRSS Steel Con- Res. Spec. 3comp. SRS Steel Con- Res. Spec.	ping Time his- 3comp. algebraic Direc ipment tory integra ports Time his- 3comp. algebraic Direc te sphere tory 3comp. SRSS SR	en. Res. Spec. 3comp. g. Res. Spec. 3comp. truct., Res. Spec. 2comp. 8.,	battery rm. Housner spectra used in original design and 1972-75 re-evaluation except that a site specific spectra was used for the concrete sphere enclosure and the deisel generator bldg. 3.7.1.1	Floor response spectra by time history method for re-evaluation of RCL piping, equipment, and NSSS supports. All other Category "A" piping and equipment (ECCS, ACS, SIS, feedwater lines, CVC) - 1.0g and 0.67g for horizontal and vertical, 0.5g, Housner spectra for equipment.	

*Information from BNL Docket search and SEPB Report No. EDAC-175-166.01, August '79, "Seismic Design Bases and Criteria for San Onofre Nuclear Generating Station, Unit 1".

TYPE OF FOUNDATION AND ITS DEPTH	BEAR TYPE	ING INFOR	MATION				· · · · · · · · · · · · · · · · · · ·		·
		THICKNESS	V PROFILE	GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _g profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL
f the containment-reacto of a spherical segment e surface to a depth of 40 edium is San Mateo sand. 1000 ft.	3 1	to coarse sand with gravel and occasional lenses of thin beded gray shale or siltstone. Approx. 1000 ft. thick.	Surface terrace deposit 400 and 1250 fps San Mateo sand 765 fps Capistrano siltstones 2000 fps Monterey shale 2160 fps San Onofre Breccia 3,900 fps undifferentiated 3,900 fps	Average level of ground water is 15 ft. below original grade (El + 5ft. MLLW Datum), and the gradient is 17 ft. per mile toward the ocean. Sec. 1.1.4 p. 1-10	Not avail- able	Soll-structure interaction is represented by a set of six frequency-independent interaction springs attached to the reactor building structure at the center of gravity of the base mat. "SHAKE" program used.	Not available	Soil horizontal translation - 12% Soil vertical transalation - 18% Soil rocking - 10% These values include radiation and material damping.	DAMPING Not available

. . _.

p. 1-56

	DESIGN CRITERIA	
DAMPING OBE/SSE (% critical damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES
Reactor vessel internals (stainless steel core support structure) (a) welded assemblies (b) bolted assemblies 2.0 Reinforced concrete reactor support 4.0 Steel containment vessel and foundation Framed steel structures 2.5 Concrete structures above ground (a) shear wall type (b) rigid frame type ec. 9.2.2 able 9.1 	$\frac{\text{Steel structures}}{\text{S} = \text{D} + \text{L}}$ 1.6S = D + L + T + R + E' 1.6S = D + L + T + R + A + I.0 (Y _R + Y _j + Y _M) + E	Concrete sphere enclosure, Reactor bldg. (concrete in- ternals), foundation and cradle, diesel generation bldg - ACI 318 - 71, AISC 1971 Main building, intake structur auxiliary bldg., battery rm., turbine pedestal - ACI 318 - 63 - AISC 1963 - UBC 1964 Refueling Water Stg. Tank-API publication for storage tank.

MECHANICAL & PIPING											
DAMP ING	METHOD	DESIGN CRITERIA									
OBE/SSE (% crit- cal damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES								
1. Vital Piping Systems 0.5 Sec. 9.2.2 Table 9.1 p. 9-10	Not Available	 Primary membrane and bending stresses are evaluated at: A). Basic shell thickness under combined dead weight, design pressure and seismic loads B). Shell to base mat juncture under combined deadweight, design pressure and seismic loads. C). Shell in vicinity of equipment hatch and personnel lock D). Main feedwater penetration under combined dead weight, internal pressure, seismic, and piping. 	Containment sphere: ASME Sect. III, 1971 and 1972 Summer Addenda Allowable Stress Ref. rimary Membrane plus pri- 1.55 NE-3221.1 Primary bending Primary plus NE-3131.0 secondary 3.05 NB-3222.2 Equipment&Piping, RCL&NSSS Supports Category A, ASME, Section III, 1971, NB-3600;All other Category A piping and equipment (feedwater, CVC, ECCS, ACS): ASME Section III - 1962, USAS B 31.1 (1964) DIESEL Gen-IEEE-STD-344								

- ----

ELECTRICAL EQUIPMENT										
DAMPING	METHOD	DESIGN CRITERIA								
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses							
Not available	Tested or evaluated to determine that the instru- ments would withstand 1.0g without mis- operation. Amend. 10, Suppl. 1, Quest. 14		Not available							

,

Docket Number

NAME AND NSSS Type of The	EARTHQUAKE DATA							D OF ATION	DESIGN SPECTRA	
PLANT	01	BE	SSE			EARTHQUAKE	NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND METHOD OF GENERATION OF	GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT.	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	MB. DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Shippingport Project 129 Reactor type: PWR										
<pre>Reactor type: Pwk Containment type: Dry containment- spherical (steel) NSSS Manufacturer: Westinghouse Architect Engineer: Burns and Roe, Ind also Stone and Webster Engineering Corp.</pre>	i .			Not av	ailable _					

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTE	RACTION	
TYPE OF FOUNDATION	BEARING INFORMATION		MATION	GROUND		METHOD		MATERIAL	LIMITATION
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	WATER TABLE	DAM	OF Modelling	G _s profile	DAMPING OF SOIL	ON MODAL DAMPING
F				Not Availabl	e				

STRUCTURES									
	DESIGN CRIT	ERIA							
DAMPING OBE/SSE	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
Not available	Not available	ASME Code Sec. VIII 1952 Ed. P.A. Regulations for pressure vessels 1954 ed.							
	·								

.

MECHANICAL & PIPING										
DAMPING	METHOD	DESIGN CRITERIA								
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses							
			i							
€		Not Available	·							

---- -

- -----

		ELECTRICAL EQUIPMENT	
DAMPING OBE/SSE	METHOD	DESIGN CRITERIA	
0567336	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
		Not Aug/1-b1-	
۴		Not Available	>

Docket Number 50-335

_ - -

NAME AND NSSS Type of the			EAR	THQUAKE I	ATA		METHO COMBIN	D OF ATION	DESIGN SPECTRA	
PLANT	01	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. 8	INTENSITY MM	HOR. 8	VERT. B	TIME HISTORY	USED AND ITS COMB.	СОМВ.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
St. Lucie Plant, Unit No. 1. Reactor type: PWR Containment type: Dry containment- cylindrical (steel) NSSS Manufacturer: Combustion Engineering Architect Engineer: Ebasco		0.033 for shield building Sec. 3.8 2.2, p. 3.8-67,	VI Sec. 2.5 p. 2.5-27	0.10	0.067 for shield building Sec. 3.1 2.2, p. 3.8-67,	8 Sec. 2.5.3	3.2.4, p.	2, p. 3.7.	Housner spectra Fig. 2.5-23 and 24 Fig. 3.7-1 and 2	Time-history method using synthetic time history Sec. 3.7 p. 3.7-36 Sec. 3.7 p. 3.7-3
7-70/ 3-76	25a	Amend. 3	2		Amend. 32		3.7-43a	19		Rev. 16

	FOUN	DATION AND	LIQUEFACTION AS	SESSMENT		SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND	BEARING INFORMATION TYPE THICKNESS V PROFILE		GROUND WATER TABLE	DAM	METHOD OF MODELLING	G _s profile	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL		
ITS DEPTH For reactor building: Rigid foundation mat.	eater Loose sand with small a- eriar mounts of silt and clay, ieve) containing isolated poc- of kets of shell fragments	and limestone nodules. 50' to 60'	Not available	Shallow non- artesian aquifer extends to a depth of about 150 ft. below land surface	ted within the hydrologic chinson Island."	Stick model with soil springs.	Generally utilize shear shear moduli ranging from ranging from 16,700 psi to 14,000 psi.	Not available	DAMPING Not a- vailable	
p. 2.5-1	More dense contains a gr percentage of fines (mat finer than the no. 200 s	limestone nodules and * 60' to 150'	Sec. 2.5-36 p. 2.5-3 8	Vol. 1, Sec. 2.4 p. 2.4-20	dams are local or or influence of Hutt 	Sec. 3.7.2.1.1 p. 3.7-6	Sec. 2.5, p. 2.5-38	p. 2.5-19		

(Note: Due to * shell fragments space the more clayey than the columns for material above, does not 150' to at least 400' Type and Depth contain pockets of shells had to be continued here....) in consistency. Vol. 1, Sec. 2.5, p. 2.5-8

-

	· - · · · · · · · · · · · · · · · · · ·	STRUCTURES						
		DESIGN CRITERIA						
DAMP ING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES					
Welded steel framed structure	2.0/2.0	Shield Building (1.0 ± 0.05)(D + T) + 1.25 LOCA + 1.25 OBE	AIC 318-63					
Bolted or riveted steel framed structure	2.5/2.5	$(1.0 \pm 0.05)(D + T) + 1.25$ DECA + TL25 ODE $(1.0 \pm 0.05)(D + T) + 1.25$ OBE $(1.0 \pm 0.05)(D + T) + 1.0$ LOCA + 1.0 DBE $(1.0 \pm 0.05)(D + T) + 1.0$ DBE	<pre></pre>					
Reinforced concrete frames and buildings	2.0/5.0	For further details refer to Sec. 3.8.2.2	Sec. 3.8.2.2.8 p. 3.8-71					
Steel containment vessel	2.0/2.0	p. 3.8-68 of Amend. 32-9/6/74.	AISC -1969 Sec. 3.8 p. 3.8-2,3					
Sec. 3.7 p. 3.7-3a								

DAMPING METHOD		DESIGN CRITERIA						
OBE/SSE	(% criti- cal damping)	OF QUALIFICATION	LOAD CO	DMBINATION	ACCEPTANCE CRITERIA 6 Allowable Stresses			
elded steel plate assemblies einforced concrete equipment supports steel piping		Analytical and Testing Sec. 3.7, p. 3.7-36,43a Sec. 3.9 p. 3.9-1	LOCA + DBE: $P_M \leq 0.9 \text{ S}_y$ $P_L + P_B \leq 0.9 \text{ S}_u$ OBE + Pipe rupture: $P_M \leq 1.0 \text{ S}_m$ $P_L + P_B \leq 1.5 \text{ S}_m$ $P_L + P_B + Q \leq 3.0 \text{ S}_m$ DBE + Pipe rupture: $P_M \leq 0.9 \text{ S}_y$ $P_L + P_L \leq 0.9 \text{ S}_m$	Table 3.9-3 p. 3.9-18 Amend. 38	ASME BPVC Sec. III Sec. 3.8 p. 3.8-14 Rev. 13, 7-15-73 ANSIB31.7 Sec. 3.9 Table 3.9-3 p. 3.9-18			

_ _ _ _ _

_

۰.

DAMPING	METHOD	DESIGN CRITERIA	·
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable otresses
Not available	Testing and Inspection Sec. 8.3 p. 8.3-23	Type II - 600 v penetration assembly. A steel plate barrier has been erected inside the containment in the electrical system penetrations: $D + P_R \leq 90$ percent of material yield strength $D + OBE \leq$ normal AISC working stress $D + DBE \leq 90$ percent of material yield strength Vol. 2 Sec. 3.8 p. 3.8-33, Rev. 15 (10-11-73)	IEEE - 317, April 1971 Standard for electrical assemblies in containment structure for nuclear fueled power generating stations. Sec. 3.8, p. 3.8-33, Rev. 15, 10-11-73. IEEE -279 (Aug. 1968) IEEE -308 (Nov. 1970) Sec. 8.1, p. 8.1-2

`

.

Docket Number

50-280, 281

NAME AND NSSS TYPE OF THE			EARI	THQUAKE D	ATA		METHO		DESIGN	SPECTRA	
PLANT	OF	BE	SSE		EARTHQUAKE	NO. OF EARTH. MODAL COMP.		EARTH. MODAL		TYPE OF GROUND	METHOD OF Generation of
CP/OL ISSUE DATE	HOR. B	VERT.	INTENSITY	ROR. g	VERT. 8	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA	
Surry Power Station Unit 1 & 2 Reactor type: PWR Containment type: sub-atmospheric (reinforced concrete) NSSS Manufacturer: Westinghouse Architect Engineer: Stone and Webster	0.07	0.046	VII	0.15	0.10	Synthetic time- history	For Class l Structures Hor. & Vert. Combined simultan- eously		 For frequencies higher than 2 cycles /sec. Housner Spectra Frequency range between 0.3 cycles/ sec. Housner Average Spectra tra have been nor- malized to a max. ground velocity of about 4"/sec for 0.B.E. and 9"/sec for P.B.E. For frequencies lower than about 	passed by the umbrel- la spectrum used in the dynamic analyses if Westinghouse sup- plied equipment. RCL analysis done with floor re- enonse spectra	
Unit 1: 6-68/5-72 Unit 2: 6-68/1-73	Sec. 2.5. p. 2.5.4- 2-13-70		Sec. 2.5 p. 2.5.5-5 2-13-70	Sec. 2. p. 2.5. p. 2.5. 12-1-69	5-1 5-7	Q4.23, Supp. 1	p. 15.2-1 B.1-1	Sup. Vol.1 Q.4.12 Go. S4.12 D. S4.12-2 10-15-70	0.3 cycles/sec. using data sugges- ted by Dr. Newmark & Hall. Sec. 2.5.5 p. 2.5.5-9 Fig. 2.5-4, 2.5-5	App. B, p. B.3-I Supp. Vol. 1 Q.4.10, Q 5.10, 4.12	

49-1

	FOUND	ATION AND	LIQUEFACTION AS	SESSMENT	<u> </u>	SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	BEAI	BEARING INFORMATION		GROUND WATER	DAM	METHOD OF	G _g PROFILE	MATERIAL DAMPING	LIMITATION ON	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL	MODAL DAMPING	
for the fuel build ing and main steam valve enclosure struct.):	Deposits -Consist of sand, silty san thin lay- ers of iron ox- ide-cemen sands and clays of Norfol tstuarine <u>Formation</u> Below thi ies clay compact sand and silt mem bers, an shell	80' * * * * * * * * * * * * * * * * * * *	Not available Sec. 2.5 p. 2.5.5-2 TYPE - THICKNESS (cont.) Below this Thic lie forma- ness tions of Eocene 45' Paleocene 55' Cretaceous 800' Crystal- Esti- line Bed- mated rock. at a depth	about 400' k-		STICK MODEL with soil springs	NOT AVAILABLE	O.B.E/S.S.E. 0.05/0.10 This is an over all value which includes the damping in bot the reinforced concrete struct ture and the damping.	h 	
Sec. 15.4 p. 15.4-8 Sec. 15.5 p. 15.5.1-1 p. 2.4.6-1	fragment of the Chesapea Formatic		of about 1300' Sec. 2.4 p. 2.4.2-2			p. 15.5.1.4-2 Append. B Sec. B.2 p. B.3-1		Sec. 15.5 p. 15.5.1.4-2 & p. 15.5.1.4-3	Supp. Vol.1 Q. 5.22 p. S5.22-1	

.

		STRUCTURES						
		DESIGN CRITERIA						
DAMPING OBE/SSE	(% of Crit, Dampin	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE' STRESSES					
 Containment Struct. & Foundation Steel Framed Struct. Including Supporting Struct. and Foundation a) Bolted b) Welded Concrete Struct. Aboveground a) Shear-wall type b) Rigid-frame type 	on 5.0/10.0		For Containment Struct. ACI 318-63 Part IV-B					
Q.	pp. Vol. 1 5.12 S5.12-1	Sec. 15.5 Table 15.5.1.2-1 p. 15.5.1.2-4 4-15-70	Sec. 15.5 p. 15.5.1.2-2					

.

				MECHANICAL & PIPING		
DAMP ING OBE/SSE		METHOD OF		DESIGN (CRITERIA	
(% Critical	L Damping)	QUALIFICATION		LOAD COMBINATION PRESSURE VESSELS	PIPINGS	ACCEPTANCE CRITERIA & Allowable Stresses
Reactor Vessel Internals of Control Rod Assembly Drives: a) Welded assemblies b) Bolted assemblies Vital Piping Systems:	1.0	Analytical & Testing	Normal Conditions:	$P_{m} \leq Sm$ $P_{m}(or P_{L})+P_{B} \leq 1.5S_{m}$ $P_{m}(or P_{L})+PB+Q \leq 3.0S_{m}$	P < S	ASME BPVC SEC. III USAS B31.1
a) Carbon steel b) Stainless steel Reinforced concrete reactor support structure including the reactor vessel	0.5/1.0 0.5/1.0 5.0		Upset Conditions:	$P_{m} \leq S_{m}$ $P_{m}(or P_{L})+P_{B} \leq 1.5S_{m}$ $P_{m}(or P_{L})+P_{B}+Q \leq 3.0S_{m}$	P _m ≤ 1.2S	
Mechanical equipment, including pumps, fans, and similar items	2.0		Emergency Conditions:	$P_{m} \leq S_{y} \text{ whichever is larger}$ $P_{m} (\text{or } P_{L}) + P_{B} \leq 1.5(1.2S_{m}) \text{ or}$ $P_{m} (\text{or } P_{L}) + P_{B} \leq 1.5(S_{y}) \text{ whichever}$	P _m <u>≤</u> 1.2S	
Sec. 15.2 Table 15.2.4-1 p. 15.2-19 Supp. Vol. 1 Q5.12 p. S5.12-1		Sec. B.5 p. b.5-1 Table B.5-1 Supp. Vol. 1 Q 4.10 p. S4.10-1	P ^m = Primary P ^L = Primary	is larger Design Limit Curves of WCAP-5890 general membrane stress intensity local membrane stress intensity bending stress intensity y stress intensity	Design Limit Curves of - WCAP-5890 _	App. B p. B.2-8 p. B.2-10 p. B.2-13

S^m = Minimum specified material yield ^yFor further details refer to App. B, Talbe B.2-1, p. B.2-6

		ELECTRICAL EQUIPMENT	
DAMPING	METHOD	DESIGN CRITER	IA
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
NOT AVAILABLE	Tests Method. (This tests data is con- tained in WCAP- 7397-L Seismic Testing of Electrical and Control Systems Equipment) Supp. Vol. 1 Q.4.11 p. S4.11-1 3-15-71	NOT AVAILABLE	NOT AVAILABLE

.

____ · · ·

.....

Docket Number

NAME AND NSSS TYPE OF THE			EARI	HQUAKE DA	TA		METHO COMBIN	D OF ATION	DESIGN SPECTRA	
PLANT	OB	E		SSE			NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR.	VERT. g	INTENSITY MM	HOR.	VERT. g		USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Three Mile Island Unit 1	0.06	0.04	VI	0.12	0.08	1957 Golden Gate Park - Average smooth revised with 1940 El Centro - nor-	tal and vertical combined	modes 10% within	Actual spectra en- velops Golden Gate and El Centro earthquake time	Time-history method. Gilbert Topical
Reactor type: PWR Containment type: 6 buttresses with shallow dome (pre- stressed concrete)	-					malized to ground acceleration of 0.06g Synthetic time- history for floor response spectra		each other are added absolutely		Report # 1729 "Dynamic Analysis of Vital Piping Systems Sub- jected to Seismic Motion."
NSSS Manufacturer: Babcock and Wilcox										
Architect Engineer: Gilbert										
5-68/4-74		Sec. 5.1.2.1.1 p. 5-10	Sec. 2.8.1 p. 2-41	Sec. 5.1.2.1.1 p. 5-10	Sec. 5.1.2.1 1 p. 5-10	Sec. 2.8.2, p. 2-42	Sec. 5.2.4.1.2 p. 5-52	Sec. 5.4.5.1 p. 5-76a p. 5-52	Sec. 2-7, p. 2-31 Fig. 2-24 Fig 5-48	Sec. 5.4.5.1 p. 5-76a Fig. 5-49 through 5.54

FOUNDATION AND LIQUEFACTION ASSESSMENT							SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION AND ITS DEPTH	BEARING INFORMATION			GROUND		METHOD	0	MATERIAL DAMPING	LIMITATION ON	
	TYPE	THICKNESS	V PROFILE	WATER TABLE	DAM	OF MODELLING	G ₈ PROFILE	OF SOIL	MODAL DAMPING	
ion bearing on	sand and gra- veł	14-19 ft.	Bedrock 8,500 to 11,500 fps.	Depth: between 14 and 19 ft.	Not avail- able.	Stick model with fixed base	Not available.	Not available.	Not avail- able.	
ock. ft. thick with 2 ft. thick con- rete slab. Above he bottom liner late.				- -						
Sec. 5.2, p. 5-11	p. 2-30 Sec.	Sec.	Sec. 2.7.3.4 p. 2-34	Sec. 2.7.4.3 p. 2-37		Fig. 5-47				

.

· _

_

STRUCTURES									
		DESIGN CRITERIA							
	riti- damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES						
Reactor Building: Concrete Equipment Supports: Steel Framed Structure: a) Bolted or riveted b) Welded Prestressed concrete structures	2.0/2.0 2.0/3.0 2.5/2.5 1.0/1.0 2.0/5.0	a) C = (1.0 ± 0.05) D + 1.5P + 1.0T b) C = (1.0 ± 0.05) D + 1.25P + 1.0T' + 1.25E c) C = (1.0 ± 0.05) D + 1.0P + 1.0T + 1.0E' d) C = (1.0 ± 0.05) D + 1.0W _t + 1.0 P _t	Reactor Building: ACI 318-63 ACI 301-66 (modified) AISC Manual of Steel Construction ASME BPVC Sect. III, VIII and IX ASA N 6.2-1965						
Sec. 5.2.1.2.11 p. 5-18a		Sec. 5.2.3.2 p. 5-40	Sec. 5.2.3.1, p. 5-39 Sec. 5.2.2.4.1, p. 5-31						

	MECHANICAL & PIPING									
	DAMPING		METHOD	DESIGN CRITERIA						
	OBE/SSE	(% critical damping)	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Vital Piping Welded Steel	Plate	0.5/0.5	Analytical and Testing	Design loads + DBE loads $P_m \leq S_m$ $P_L + P_b \leq 1.5 S_m$ Design loads + SSE loads $P_m + P_b \leq 1.2(1.5 S_m)$	ASME BPVC Sec. III USAS B31.1.0 USAS B31.7					
Assemblies		1.0/1.0		Design loads + SSE loads + Pipe rupture $P_m^{\leq 2/3} S_{\mu}$ $P_L + P_b^{\leq 2/3} S_{\mu}$						
Sec. 5.2.1.2.	11, p. 5-	-18a	p. 5-10 p. 5-76b	Sec. 4.1.2.5, p. 4-3	Table 4-2 , p. 4-38; and Sec. 4.1.3, p.4-5					

. – – –

. _ .

ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITERIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
Not available.	Not available.	Not available.	Not available.					

· · · ·

Docket Number

50-320

NAME AND NSSS Type of The	EARTHQUAKE DATA						METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE			EARTHQUAKE	NO. OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT. g	INTENSITY mm	HOR. g	VERT. g	TIME HISTORY	USED AND ITS COMB.	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Three Mile Island Nuclear Station Unit 2 Reactor type: PWR Containment type: 6 buttresses with shallow dome (pre- stressed concrete) NSSS manufacturer: Babcock and Wilcox Architect Engineer: Burns and Roe	0.06	о. 04	VII	0.12	0.08	Golden Gate, 1957 El Centro, 1940 Synthetic time- history for floor response spectra Sec 3.7.1.2 p. 3.7-1	& Horizontal Components were con- sidered to act simultan- eously	Closely spaced modes com- bined di- rectly	Acceleration response Spectra for ½SSE were partially devel oped from <u>"Golden</u> Gate Park S.F. March 1957" Earthqk. Then it is modified in the low frequency region by the <u>1940</u> El Centro Earth- <u>quake</u> - normalized to basic ground mo- tion of 0.06g (OBE) p. 2.5-11 Fig. 2.5-8	
Unit 2: 11-69/5-78	Sec 3.7.1 p. 3.7-1	1 Sec 3.7 p. 3.7-		Sec 3.7.1. p. 3.7-1		.2.9	Sec 3.7.2.9 p. 3.7-5	Sec 3.7.3. p. 3.7-8	Sec. 3.7.1.2 p. 3.7-1	Sec. 3.7.2.6 p. 3.7-5

	FOUNI	DATION AND	LIQUEFACTION AS	SSESSMENT	SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION AND ITS DEPTH	BEAI	RING INFORM	MATION	GROUND		METHOD OF MODELLING		MATERIAL Damping Of Soil	LIMITATION ON MODAL DAMPING
	TYPE	THICKNESS	V PROFILE	WATER TABLE	DAM		G _s profile		
steel reinforced		AVAILABLE	NOT AVAILABLE	Water levels occur- red generally at a depth in excess of 15 ft & ranged from 14 to ft. The ground water level occurred at a max. 6.2 ft above the to of rock with less than one ft of head above the soil-rock interface at one pt. of observation.	dams exist immediately upstream of the site.	springs	NOT AVAILABLE	NOT AVAILABLE	NOT AVAILÆBLE
Sec. 1.2.3.1.1 p. 1.2-3	Sec 2.5.1 p. 2.5-7					Sec 3.7.1.6 p. 3.7-3,4			

	DESIGN CRITERIA	
DAMPING OBE/SSE (% of critical dampi	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable' Stresses
Welded steel plate assemblies1.0Welded steel framed structures2.0Bolted steel framed structures(riveted)2.5Reinforced concrete equipment supports2.0Reinforced concrete frames & buildings3.0	1.0 2.0 2.5 3.0 5.0 5.0	1. ACI 318-63 ACI 318-71 2. AISC-1965
Table 3.7-1 p. 3.7-13	Table 3.81,-2	Sec. 3.8.1.2 p. 3.8-2

			MECHANICAL & PIPING	
	DAMPING OBE/SSE		DESIGN CRITERIA	
OBE/		OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses
Steel Piping		Analytical pro- cedure 1. Equivalent	I. Max Operating Loads $P_{m} \leq 1.0S_{m}$ $P_{m} \leq S_{m}$ + $\frac{1}{2}SSE (upset)$ $P_{L}+P_{b} \leq 1.5S_{m}$ $P_{L}+P_{b} \leq 1.5S_{m}$ II. Max Operating Loads $P_{m} \leq 1.2S_{m}$ $P_{c} \leq 1.2S_{m}$ or S_{m} + SSE (emergency) $P_{L}+P_{b} \leq 1.2(1.5S_{m})$ $P_{c} \leq 1.8S_{m}$ or $1.2S_{m}$ $P_{c} \leq 1.8S_{m}$ or $1.5S_{m}$	5\$ _y
			III. Max Operating + SEE $P_m \leq 2/3S_u$ $P_m \leq -$ + Pipe Rupture Loads $P_L^{+P}_b \leq 2/3S_u$ $P_L \leq 2/3S_u$ Faulted $P_L^{+P}_b \leq 2/3S_u$	
m. b. b. c. 7. b		Sec 3.9.1.2.1	P = Primary bending stress p ⁿ = Primary local membrane stress p ^L = Primary general membrane stress S ^m = Allowable stress S ^m = Minimum yield strength at temp. S ^y = Ultimate strength of material at temp. For components: Table 3.6-1, p. 3.6-5 Table 5.2-4, p. 5.2-34 For piping: Table 5.2-3, p. 5.2-33	Table 3.6-1
Table 3.7-1 p. 3.7-13		p. 3.9-1,-2		p. 3.6-5

. . .

- - ----

	ELECTRICAL EQUIPMENT								
DAMPING	METHOD	DESIGN CRITE	2RIA						
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses						
NOT AVAILABLE	TESTING	NOT AVAILABLE	NOT AVAILABLE,						
			-						
	Sec 3.10.1.3 p. 3.10-2								

- ----

Docket Number 50-344

NAME AND NSSS Type of the			EAR	THQUAKE DA	TA		METHO COMBIN		DESIGN	SPECTRA
PLANT	OI	BE		SSE		EARTHQUAKE	NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. 8	VERT.	INTENSITY MM	HOR.	VERT.	TIME HISTORY	USED AND ITS COMB	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Trojan Nuclear Plant, Unit No. 1 Reactor type: PWR Containment type: 3 buttresses with hemispherical dome (prestressed con- crete) NSSS Manufacturer: Westinghouse Architect Engineer: Bechtel	0.15	0.10	VIII	0.25	0.17	Synthetic time history	Horizontal combined with verti- cal com- ponent combined absolutely		Developed by Dr. I. M. Idriss for 2% critical damping. For other damping values Newmark's amplification factors were used.	For Westinghouse equipment: horizontal and ver- tical seismic were used. They were compared with the horizontal and vertical floor response spectra developed by Bechtel Corporation. Time-history used to generate re- sponse spectra BC-TOP-4
2-71/ 11-75	Sec. 2.5 p. 2.5 -19 Sec. 3.7 p. 3.7-1	Sec. 3.7 p. 3.7-1	Sec. 2.5 p. 2.5-19	Sec. 3.7 p. 3.7-1	Sec. 3 .7 p. 3.7 -1	Sec. 3.7 p. 3.7-3	Sec. 3.7 p. 3.7-8 p. 3.7-12	p. 3.7–22	Sec. 3.7 p. 3.7-2 Fig. 3.7-1 & 3.7-2	Sec. 3.7 p. 3.7-31

	FOUND	ATION AND	LIQUEFACTION ASS	ESSMENT			SOIL - STRUCTURE INTER	ACTION	
TYPE OF FOUNDATION	BEARING INFORMATION		GROUND WATER	DAM	METHOD OF	G _S PROFILE	MATERIAL DAMPING	LIMITATION ON	
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	5	OF SOIL	MODAL DAMPING
For containment: Rigid base mat foundation. Depth is not available. Administration building supported by steel H-piles which go to rock 15 ft to 53 ft below grade. Sec. 3.7,p. 3.7-9 Sec. 3.7,p. 3.7-9 Sec. 3.7,p. 3.7-4 TYPE (cont. * soft clayed silt to silty clay with varying amounts of inter- mixed fine sand and layers of silty fine sand. Sec. 2.5, p. 2.5-	is under- laid by bedrock and re- cent al- luvium. The bed- rock is volcanic in ori- gin and consists princi- pally of tuffs, tuff breccias agglomer- ates, and basalt flow. Al- luvium consists	the alluv- ium is consider- ed to be close to 280ft.The upper ap- prox. 80 to 100 ft of the al- luvium: soft to very soft clayed silt. At 50 ft depth irange: decom- posed wood	5000 fps. Sec. 2.5 - p. 2.5-15 DEPTH(cont.) ** upper 25 ft to 35 ft. Predom- inately silty fine sand. All holes in the al- luvium encoun- tered principal- ly soft clayed		Grand Coulee Dam at Columbia River mile 597. Sec. 2.4 p. 2.4-33	The dynamic analysis was performed using stick model with fixed-base assumption. Results were compared with respect to flexible- base model and found to be conserva- tive. Sec. 3.7 p. 3.7-6	0.7 x 10 ⁶ psi Sec. 2.5 p. 2.5-12	Not available.	Not avail- able.

Sec. 2.5, p. 2.5-9

- -

				DESIGN CRITERIA	
	DAMPIN OBE/SS	-		LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES
		Stress Le	vel	$C=1/\phi \{(1.0\pm0.05)D+1.5P+1.0T_{A}+1.0F\}$	ACI 315-65
	Low	Working	At yield point	$C=1/\phi$ {(1.0+0.05)D+1.25P+1.0T _A +1.0H _A +1.25E+1.0F}	ACI 318-63
Steel Structure				$C=1/\phi \{(1.0\pm0.05)D+1.25P+1.0T_{o}+1.25H_{o}+1.25E+1.0F\}$ $C=1/\phi \{(1.0\pm0.05)D+1.0H_{A}+1.0F+1.0F+1.25E+1.0T_{A}\}$	AISC 6th edition (1967)
Prestressed concrete	1.0	2.0	5.0	$C=1/\phi \{(1.0\pm0.05)D\pm1.25H_{o}+1.0R+1.0F+1.25E+1.0T_{o}\}$	ASCE paper no. 3269
Reinforced concrete				$C=1/\phi \{(1.0\pm0.05)D+1.0P+1.0T_A+1.0H_A+1.0E'+1.0F\}$	
				$C=1/\phi \{(1.0\pm0.05)D+1.0P+1.0T_{+}1.25H_{+}1.0E'+1.0F\}$	
				$C=1/\phi \{(1.0\pm0.05)D+1.0H_{A}+1.0R+1.0E'+1.0F+1.0T_{A}\}$ C=1/\phi \{(1.0\pm0.05)D+1.25H_{o}+1.0R+1.0E'+1.0F+1.0T_{o}\}	
				$C=1/\phi \{(1.0\pm0.05)D+1.0A+1.0F+1.0T_{o}\}$	
				For the combinations of category I structures other than	
				containment refer to p. 3.8-13.	
Sec. 3.7 Table 3.7-1 p. 3.7-3				Sec. 3.8 p. 3.8-38	Sec. 3.8 p. 3.8-12, 33

	MECHANICAL & PIPING									
	DAMPING OBE/SSE			METHOD OF	DESIGN CRITERIA					
	<u> </u>	(7 (criti- damping)	QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES				
		Stress Le	evel	Analytical	For reactor vessel internals:	For reactor vessel internals:				
	Low	Working	At yield	and testing.	Normal+OBE < ASME, BPVC Code, Sec. III for upset condition.	ASME, BPVC Code, Section III				
			point		For ANSI B31.7 Class II and III and ANSI B31.1.0 seismic category I piping systems:	For piping: ANSI B31.7 and ANSI B31.1.0				
Vital					For O.B.E.:					
piping:	0.5	0.5	0.5		$S_T = S_{OBE} + S_{1p} + S_{wT} \leq 1.2S_h$					
					where: S_{T} = maximum total longitudinal stress					
					S maximum bending stress due to O.B.E.					
					S _{1p} = longitudinal pressure stress					
				j j	S_{wT} = bending stress due to weight effect					
					S. = basic material allowable stress at maximum h (hot) temperature					
					For S.S.E.:					
					$s_{T(S.S.E.)} = s_{SSE} + s_{1p} + s_{wT} \leq 1.8s_{h}$					
					where: S _{T(S.S.E.)} = maximum longitudinal stress					
					SSE = maximum bending stress due to SSE					
Sec. 3.7 Table 3.7	-1				Sec. 3.7; p. 3.7-12; p. 3.7-26.	Sec. 3.7; p. 3.7-12 Sec. 3.7; p. 3.7-26				

_ ____

		ELECTRICAL EQUIPMENT	
DAMP ING	METHOD	DESIGN CRIT	ERIA
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
Not available.	Analytical and Testing	Not available.	IEEE 344-1971
	Sec. 3.10 p. 3.10-1	Sec. 3.10 p. 3.10-2	Sec. 3.10 p. 3.10-1

Docket Number

50-250,251

NAME AND NSSS Type of The			EAR	THQUAKE DA	ATA		METHO COMBIN		DESIGN	SPECTRA
PLANT	01	3E		SSE		EARTHQUAKE	NO, OF EARTH. MODAL COMP.		TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. g	VERT. S	INTENSITY mm	HOR, g	VERT. g	TIME HISTORY	USED AND ITS COMB	COMB.	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Turkey Point Plant Unit No. 3 & 4 Reactor type: PWR Containment type: 6 buttresses with shallow dome (pre- stressed concrete) NSSS Manufacturer: Westinghouse Architect Engineer: Bechtel	0.05	0.033	VII	0.15	0.10	Synthetic time history	& Horizontal Components Applied Simultan- eously	Spectrum Analysis)	Report to the AEC Regulatory Staff.	i Méthod
Unit 3: 4-67/7-72 Unit 4: 4-67/4-73		Sec. 2.11 p. 2.11-2			Sec. 2. 2p. 2.11	· ·	Appen. 5A p. 5A-12	Арреп. 5А р. 5А-9Ъ	Sec. 5.1 p. 5.1.3-13	Sec. 5.1 p. 5.1.3-11 REV. 5 - 8-28-70 6 - 10-2-70

	FOUND	ATION AND	LIQUEFACTION ASS	SESSMENT		SOIL - STRUCTURE INTERACTION			
TYPE OF FOUNDATION	BEAF	ING INFOR	MATION	GROUND WATER	DAM	METHOD Of Modelling	G _R PROFILE	MATERIAL DAMPING	LIMITATION ON MODAL DAMPING
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE				OF SOIL % Critical Dam	
Sec. 5.1 p. 5.1.2-1	hation which ex- tends to about 20' below sea evel (site elev ess than 10') Small voids and solutions channels are pres- ent Helow this are the	of swamp soils - over- lies the Miami oo- lite bed- rock for- mation * Extends to 70ft -below	TYPE THICKNESS (cont.) Formation (Limestone and cal- careous sandstone The Tamiami Formation (clayey and calcareous marl indu- rated locally to limestone with beds of silty and shell sands)	UNCLEAR INFORMATION Sec. 2.10 p. 2.10-1	NOT AVAILABLE	FIG. 5.1-13 indicates stick model with soil springs p. 5.1.3-13	NOT AVAILABLE	0.B.E./S.S.E. Soil: 5.0/10.0 Vol. 1 Append. 5A p. 5A-13	Com- posite with Soil: 5.0/7.5

Tampa Formations

Vol. 1, Sec. 2.9 p. 2.9-4

.... . . .

- -- --

	STRUCTURES							
D.		DESIGN CRITERIA	,					
DAMPING OBE/SSE	(% criti- cal damping)	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES					
Welded steel framed structure:	2.0/2.0	For class I structure outside the containment structure:	ACI 318-63					
Bolted steel framed structure:	2.0/2.0	Y=1/\$\$\(1.25D+1.25E) Y=1/\$\$\$(1.25D+1.0R)	AISC Manual of Steel Constructio (6th edition)					
Concrete equipment supports on another structure:	2.0/2.0	Y=1/\$\$\theta(1.25D+1.25H+1.25E) Y=1/\$\$\$\theta(1.0D+1.0E')\$\$						
Prestressed concrete containment structure:	2.0/5.0	where: Y = regular D yield strength of the structure.						
Prestressed containment including interior concrete and soil composite:	3.5/7.5 3.0/5.0	 D = dead load of structure and equipment plus any other permanent loads contributing stress. In addition, a portion of "live load" is added when such load is expected to be present when the unit is operating. R = force or pressure on structure due to rupture of any 	Append. 5A, p. 5A-5 Sec. 5.1, p. 5.1.8-1					
R.C. frames and buildings:	3.0/5.0	one pipe. H = force on structure due to restrained thermal expansion	LOAD COMBINATION (cont.)					
		of pipes under operating conditions. E = design earthquake load. E' = maximum earthquake load. W = wind load. (to replace E in the above load equation whenever it produces higher stresses than E does)	 φ = 0.70 for tied comp. members. φ = 0.9 for fabricated structure of steel. 					
Append. 5A p. 5A-13		ϕ = 0.9 for R.C. in flexure. ϕ = 0.85 for tension, shear, bond, and anchorage in R.C. ϕ = 0.75 for spirally R.C. comp. members (cont.)	Vol. 1, Append. 5A p. 5A-5					

DAMPING		METHOD		DI	SIGN CRITERIA	
OBE/SSE (% of	Critical Dar	OF QUALIFICATION mping)		LOAD COMBINATION		ACCEPTANCE CRITERIA 6 Allowable Stresses
Velded Steel Plate Assem- blies Steel Piping	1.0/1.0	For Class I = Analysis and testing	LOADING COMBINATIONS Normal Loads Normal + Design Earthquake Loads Normal + Maximum Potential Earth- quake Loads Normal + Pipe Rupture Loads	$\frac{\text{VESSELS}}{P_{\text{m}} \leq S_{\text{m}}}$ $P_{\text{L}} + P_{\text{B}} \leq 1.5 \text{ S}_{\text{m}}$ $P_{\text{m}} \leq S_{\text{m}}$ $P_{\text{L}} + P_{\text{B}} \leq 1.5 \text{ S}_{\text{m}}$ $P_{\text{m}} \leq 1.2 \text{ S}_{\text{m}}$ $P_{\text{L}} + P_{\text{B}} \leq 1.2 \text{ (1.5 S}_{\text{m}})$ $P_{\text{m}} \leq 1.2 \text{ S}_{\text{m}}$ $P_{\text{L}} + P_{\text{B}} \leq 1.2 \text{ (1.5 S}_{\text{m}})$	$P_{m} \leq 1.2 S$ $P_{L} + P_{B} \leq 1.2 S$ $P_{m} \leq 1.2 S$	ASME BPVC Sec. III USAS B 31.1 Code for piping.
Append. 5A p. 5A-13		Vol. 1 Append. 5A p. 5A-12 p. 5A-17	Append. 5A p. 5A-6, Table 5A-	-1		Append. 5A, Table 5A-1 p. 5A-8

_

		ELECTRICAL EQUIPMENT	
DAMPING	METHOD	DESIGN CRITERIA	
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable stresses
Not available.	Tests and inspections.	"Electrical cable trays and DC battery racks are being checke from the spectrum curves of the supporting floors. Motor con have been shaker table tested to demonstrate no-loss-of-func maximum hypothetic earthquake. Mechanical and electrical equ under specifications that include a description of the seismi plant."	trol center and load centers tion capability under the ipment has been purchased
	Vol. 2 Sec. 8.5 p. 8.5-1 & p. 8.5-2	p. 5A-16, B-37	

 \cdot

.

Docket Number

NAME AND NSSS Type of the			EAR	THQUAKE D	ATA		METHOD OF COMBINATION		DESIGN SPECTRA	
PLANT	OBE		SSE				NO, OF EARTH. COMP.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR. 8	VERT. 8	TIME HISTORY	USED COMB. AND ITS COMB.	COMB,	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Vermont Yankee Nuclear Power Station Reactor type: BWR Containment type: Mark I (steel) NSSS Manufacturer: General Electric Architect Engineer: Ebasco	0.07	0.046	V to low VII	0.14	0.093	1952 Taft earthquake N69°W	Each hor- izontal combined with the vertical simulta- neously, resulting two dis- tinct seismic cases.	SRSS	Housner spectra	Time-history method using 'earthquake N69°W component of Taft earthquake nor- malized to 0.07g (0.14g). See also "addi- tional informa- tion concerning seismic analysis of piping" in App. I.
12-67/3-72	p. 2.5-9	p. 12.2-6		p.2.5-9	p.12.2-	-6 Арр. А	App. C, Sec. C.2.6 p.C.2-22	App. A p. A.5-6	See App. A., Sect. 5, Fig. 10	Question C-l, App. I, p. I.2-144

	FOUNDATION AND LIQUEFACTION ASSESSMENT						SOIL - STRUCTURE INTERACTION				
TYPE OF FOUNDATION	UNDATION		MATION	GROUND WATER DAM		METHOD OF	G _S PROFILE	MATERIAL DAMPING	LIMITATION ON		
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING		OF SOIL	MODAL DAMPING		
Concrete mat. depth is not availalbe. 11 Class I struc- ures except main stack are founded on bedrock. The main stack rests on end bearing steel piles which transfer the loads to the bedrock.	<pre>from pleistocene age which consists gneiss. Rock type = Oliverian Sec. 2.5.1,p. 2.5-1</pre>	l over burden above local bedrock. Sec. 2.5.1, p. 2.5-1	6,500 fps	and existing ground surface is @ 250 from boring logs presented in sec. 2.5)	1.Vernon Dam is about 3,500 ft. downstream. 2. Other dams are 32, 75 and 132 miles up- stream. But have rela- tively low heads from 29 to 62 ft.	Lumped mass with soil springs	1.53 x 10 ⁶ 1b/in ²	Not available	Not a- vailable		
Questions 12.18 12.19 12.22 App. I, p. I2-69	Glacial deposits of hard biotite g Plutonic Series	30 ft. of glacial	Sec. 2.5.2.5.2 p. 2.5-6		Sec. 2.4 p. 2.4-1	Fig. 3., App. A.1	Sec. 2.5.2.5.2, p. 2.5-6				

54 , 2

.

	STRUCTURES									
DAMPING		DESIGN CRITERIA	**************************************							
OBE/SSE (% criti- cal dampi	.ng)	LOAD COMBINATION (Allowable Stress)	ACCEPTANCE CRITERIA & ALLOWABLE' STRESSES							
 Reinforced concrete structures Steel frame structure Bolted or riveted assembly 	5.0 2.0 2.0	 D + L + E Normal allowable code stresses are used.No increase in design stresses for the load combinations considered is premitted. D + L + R + E'	<pre>1. ACI 318-63 2. AISC (1963) "Allowable Stress Design."</pre>							
ec. 12.2.1.2.1, p. 12.2-6		Question 12.15, App. I, p. I.2-66	Sec. 12.2.1, p. 12.2-1							

OBE/SSE (Z criti- OF ONALESCATION	DAMPING	METHOD		DESIGN CRITERIA	
(Equipment and supports)1.02. TestingPrimary Concuration-Vital Piping System0.52. TestingL.C. Normal & UpsetASME B&V Code, Sect. III, Subsection B. Membrane stress intensity S, = 1.0 S _M = 17,500 psi Primary local membrane and berding : 3. Design temperature 4. Piping and mechanical loads 5. Design basis earthquakeASME B&V Code, Sect. III, Subsection B. 	OBE/SSE (% criti-	OF	LOAD COMBINA	ATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES
	(Equipment and supports) 1.0		L.C. Normal & Upset 1. DL 2. Design pressure 3. Design temperature 4. Piping and mechanical loads 5. Design basis earthquake Emergency condition loads 1. Dead load 2. Design pressure 3. Design temperature 4. Piping and mechanical loads 5. Maximum hypothetical earthquak For flooded containment condition 1. Dead weight 2. Design basis earthquake	ASME B&PV Code, Sect. III, Sufference Section	1.0 S _M = 17,500 ps1 ding : g

	ELECTRICAL EQUIPMENT									
DAMPING	METHOD	DESIGN CRI	TERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES							
Not available	Not available	Not available	Not available							
		~								

.

. _ _ .

Docket Number

50-29

NAME AND NSSS TYPE OF THE			EAR	THQUAKE D	ATA**		METHOD OF COMBINATION			SPECTRA
PLANT	0	BE		SSE		EARTHQUAKE	NO, OF EARTH. MODAL COMP. USED COMB. AND ITS COMB.	MODAL	TYPE OF GROUND	METHOD OF GENERATION OF
CP/OL ISSUE DATE	HOR. g	VERT. 8	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY		ND ITS	DESIGN SPECTRA	FLOOR RESPONSE SPECTRA
Yankee Rowe Nuclear Power Station.			VI	No	Seismic	Analysis Performed				>
Reactor type: PWR Containment type: Spherical (steel)										
NSSS Manufacturer: Westinghouse										
Architect Engineer: Stone and Webster Engineer Corp.										
11-57/7-60										
						Search and SEPB Repo		Detendo Det	100	

* Remarks: Information obtained from BNL Docket Search and SEPB Report by LLL "Seismic Design Bases and Criteria for Yankee Rowe Generating Station", EDAC 175-130.02, January 1979.

	Fount	DATION AND	LIQUEFACTION AS	SESSMENT		SOIL - STRUCTURE INTERACTION				
TYPE OF BEARING INFORMATION FOUNDATION	BEARING INFORMATION		BEARING INFORMATION		GROUND WATER	DAM	METHOD OF	G ₈ PROFILE	MATERIAL DAMPING	LIMITATION ON
AND ITS DEPTH	TYPE	THICKNESS	V PROFILE	TABLE		MODELLING	s	OF SOIL	MODAL DAMPING	
<pre>rructures an l footings. ng due to fr ed to a miniu - summary of requirements generator fo a generator fo</pre>	d on medium to fine sands with cobbles and boulders".	Not available	Not available	Not available	Sherman Dam		No soil-struct Interaction an	1		

	STRUCTURES						
	DESIGN CRITERIA						
DAMPING Obe/SSE	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses					
None used	"Neither structures nor equipment were classified into seismic categories, e.g., seismic category I or equivalent, but in- stead were classified as safety related or non-safety related. These systems were designed and analyzed in accordance with the design codes in effect in 1955. For structures, the design of lateral load restraint systems was dictated by wind require- ments. No lateral force provisions were made for internal structures or equipment."	AISC American Standard Building Code requirements A58.1-1955 ACI 318-56 ASTM - specifications for structural steel for bridges. ASA A56.1 - 1952 Stone and Webster "Summary of Structural Design Requirements Yankee Atomic Electric Co." J. O. No. 9699, October 1957.					

		MECHANICAL & PIPING	
DAMP ING OBE/SSE	METHOD	DESIGN CRITERIA	
	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA 6 ALLOWABLE STRESSES
None used	None used	Not available	ASME B and PV Code, Section VIII "Unfired Pressure Vessels" 1955 and code case 1226 ASTM specification for A300 (Class A201, Grade B, Firebox Quality)

_ ___

- -

	ELECTRICAL EQUIPMENT								
DAMP ING	METHOD	DESIGN CRITERIA							
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Stresses						
None used	None	"Electrical penetrations, control room systems, etc, were designed based on nuclear, mechanical and functional criteria. No provisions for lateral loads."	Not available						

.

_

<u>Docket Number</u> 50 - 295, 304

NAME AND NSSS TYPE OF THE		EARTHQUAKE DATA						O OF ATION	DESIGN SPECTRA					
PLANT	OB	E		SSE			EARTH. MODAL COMP.		NO, OF EARTH. COMP.	EARTH. MODAL		TYPE OF GROUND	METHOD OF GENERATION OF	
CP/OL ISSUE DATE	HOR. g	VERT. g	INTENSITY MM	HOR. g	VERT. g	TIME HISTORY	USED COMB. AND ITS COMB.		DESIGN SPECTRA	FLOOR RESPONSE SPECTRA				
Zion Nuclear Plant Unit 1 and 2 Reactor type: PWR Containment type: 6 buttresses with shallow dome (pre- stressed concrete) NSSS Manufacturer: Westinghouse Architect Engineer: Sargent and Lundy Engineers	0.08	0.05	VII	0.17		Compared with the 1940 El Centro (N-S) earthquake record with maximum ac- celeration of 0.08g.	Each hor- izontal was com- bined with the verti- cal com- ponents simulta- neously.	SRSS with closely spaced modes com- bined by absolute sum method (response spectrum)	with maximum ac- celeration of 0.08g	Time-history method using 1940 El Centro (N-S) earthquake record.				
Unit 1: 12-68/4-73 Unit 2: 12-68/11-73														
	p.2.11-2	p.2.11-2	Q.2.26-1	p.2.11-3	p.2.11-	Amend. 18 -3 Q.5.79		Amend. 14 Q.4.23	Amend. 19 Q.5.83	Amend. 14, Q. 4.2 Amend. 19, Q. 5.8				

.

FOUNDATION AND LIQUEFACTION ASSESSMENT				SOIL - STRUCTURE INTERACTION					
TYPE OF Foundation And Its depth	BEARING INFORMATION			GROUND WATER	DAM	METHOD OF MODELLING	G _g PROFILE	MATERIAL DAMPING OF SOIL	LIMITATION ON MODAL
	TYPE	THICKNESS	V PROFILE S	TABLE		MUDELLING			DAMPING
Reinforced con- crete slab 9ft thick	The plant will be founded on relatively firm partly preconsolidated. Pleistocene glacial de- posits. Formations below the site consist of: 1) 24-33 ft. of lake deposits-sand, gravel and	peat and organic material. tal deposits extending to a depth of low the surface - silt, clay, sand an	3) Niagare dolomite is 250' thick 4) Lower bedrick formations consists of sandstone and dolomite, some shale and silt- stone layers. Several thousands of ft. thick. 5) Precambrain basement.*	Ground water is near the surface over much of the site area	Not avail- able	Aux. building was modelled as fixed base assumptions with lumped mass building model. Re- actor building model has a rocking soil spring only. A comparison study was made with a soil model by finite element mesh. Amend. 18 Q. 5.79 Amend. 14	Not available	Soil % criti- cal damping: OBE 2 DBE 5	Not available

p. 2.9-4 * Type and thickness of bearing information are presented together.

STRUCTURES							
	<u> </u>	(% criti- cal damping)	DESIGN CRITERIA				
DAMP OBE/:	SSE (LOAD COMBINATION	ACCEPTANCE CRITERIA & ALLOWABLE STRESSES			
Reactor containment:		0.5/2.0	 1) C = (1/\$\$) (1.05 D + 1.25 P + 1.0 T + 1.25 E) 2) C = (1/\$\$) (1.05 D + 1.5 P + 1.0 T) 3) C = (1/\$\$\$) (1.05 D + 1.0 P + 1.0 T + E'\$) C = Required yield strenght of the structure as defined below D = Dead loads P = Design accident pressure T = Thermal loads due to the temperature gradient through the wall and expansion of the liner and based on a temperature corresponding to the factored design accident pressure E = Operating basis earthquake (OBE) load E' = Design basis earthquake (DBE) load W = Wind load \$	ACI Code 318-63 refer to page 5.1-41 for φ values. AISC Manual of Steel Con- struction (6th Edition)			
Q. 4.23			p. 5.1-38	p. 5.1-41			

DAMPING OBE/SSE (% criti- cal damping)		METHOD OF QUALIFICATION	DESIGN CRITERIA				
			LOAD COMBINATION Pressure Vessels Pressure Piping		ACCEPTANCE CRITERIA 6 Allowable Stresses		
Piping	OBE = 0.5	Analytical and Testing		a) $P_{m} \leq S_{m}$ b) $P_{m}(or P_{L}) + P_{B} \leq 1.5 S_{m}$ c) $P_{m}(or P_{L}) + P_{B} + Q \leq 3.0 S_{m}$	a) $P_{m} \leq S$ b) $P_{m}(or P_{L}) + P_{B} \leq S$	ASME B&PV Code Section III, Nuclear Vessel for limit curves: WCAP 5890, Rev. 1	
			2) Upset condition	a) $P_m \leq S_m$ b) $P_m (or P_L) + P_B \leq 1.5 S_m$ c) $P_m (or P_L) + P_B + Q \leq 3.0 S_m$	a) $P_{m} \le 1.2 \text{ S}$ b) $P_{m}(\text{or } P_{L}) + P_{B} \le 1.2$	S	
			3) Emergenc condition	a) $P_m \leq 1.2 S_m \text{ or } S_y$ whichever is larger b) $P_m (\text{or } P_L) + P_B \leq 1.5$ $(1.2 S_m) \text{ or } 1.5 S_y$ which- ever is larger	a) $P_{m} \le 1.2 \text{ S}$ b) $P_{m}(\text{or } P_{L}) + P_{B} \le 1.5$	(1.2 S)	
			4) Faulted condition	Design limit curves as discussed in the text	Design limit curves as discussed in the text		
P• Q. \$.32-1		Appendix D Amend. 14 Q. 4.23 p. Q4.23-3	P = Prima	ry general membrane stress int ry local membrane stress inten ry bending stress intensity		Appendix D	

S = Allowable stress from USASI B31.1 Code for pressure piping. Table B1-2, Appendix D

ELECTRICAL EQUIPMENT						
DAMPING	METHOD	DESIGN CRITERIA				
OBE/SSE	OF QUALIFICATION	LOAD COMBINATION	ACCEPTANCE CRITERIA & Allowable Otresses			
Not available	Not available	Not available	Not available			

NRC FORM 335 (7-77) U.S. NUCLEAR REGULATORY COMMISSION		1. REPORT NUMBER	(Assigned by DDC)	
BIBLIOGRAPHIC DATA SHEET		NUREG/CR-1429)	
4. TITLE AND SUBTITLE (Add Volume No., if appropriate)		2. (Leave blank)		
Seismic Review Table		3. RECIPIENT'S ACC	ESSION NO.	
7. AUTHOR(S)		5. DATE REPORT CO		
M. Subudhi, J. Lane, M. Reich, B. Koplik		Apri]	1980	
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include	Zip Code)	DATE REPORT IS	SUED	
Brookhaven National Lab	Момтя Мау	1980		
Upton, N.Y. 11973		6. (Leave blank)	#_#* <u>****************************</u>	
		8. (Leave blank)		
12. SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Include U.S. Nuclear Regulatory Commission	Zip Code)	10. PROJECT/TASK/WORK UNIT NO.		
Division of Operating Reactors Seismic Review Group Washington, D. C. 20555		11. CONTRACT NO.		
		FIN No. A3326		
13. TYPE OF REPORT	PERIOD COVERE	ED (Inclusive dates)		
Final	October 1979	9-April 1980		
15. SUPPLEMENTARY NOTES		14. (Leave blank)		
16. ABSTRACT (200 words or less) The Seismic Review Table is a summary of Engineer the seismic analysis and design of nuclear power licensed to operate by the U.S.N.R.C. The inforr consists of OBE and SSE "g" level and Modified Mu used to develop the ground response spectra or as Earthquake Components used and Method of Combinin Ground Design Spectra; Method of Generation of F Depth; Type, Thickness, Shear Wave Velocity and S grade Soil and Bedrock; Ground Water Table Depth structure interaction; Material Damping of Soil; and Loading Combinations, and Acceptance Criteria Equipment, Piping, and Electrical systems. The provide a reference of the available information licensed nuclear power plants.	plants. The nation contain ercalli Intes s input in the ng Them; Methy loor Response Shear Modulus ; nearby Dams Limitation of a for Categor goal of the S	table covers ned is listed ity; Earthquak e dynamic anal od of Modal Co Spectra; Type Profile of th ; Modelling Me n Modal Dampin y I Structures eismic Review	71 reactors plant by plant and <u>e Time History</u> ysis; <u>Number of</u> ombination; <u>Type</u> of of Foundation and <u>e Surrounding Sub-</u> <u>ethod used for soil</u> <u>ig. Damping Values</u> , <u>Mechanical</u> Table is to	
17. KEY WORDS AND DOCUMENT ANALYSIS	17a. DESCRIPTORS			
seismic data, earthquake design, dynamic an	alysis, soil-	structure inte	eraction	
load combinations, design criteria				
17b. IDENTIFIERS/OPEN-ENDED TERMS				
	r		T	
18. AVAILABILITY STATEMENT	Lunclassi		21. NO. OF PAGES	
Unlimited	20. SECURITY unclassi	CLASS (This page) fied	22. PRICE S	
NRC FORM 335 (7-77)			<i>,</i>	

.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

.

POSTAGE AND FEES PAID U.S. NUCLEAR REGULATORY COMMISSION

