

NUREG/CR-6965 ANL-07/11

Protecting People and the Environment

Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

Office of Nuclear Regulatory Research

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material	Non-NRC Reference Material
As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html</u> . Publicly released records include, to name a few, NUREG-series publications; <i>Federal Register</i> notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments. NRC publications in the NUREG series, NRC regulations, and <i>Title 10, Energy</i> , in the Code of <i>Federal Regulations</i> may also be purchased from one of these two sources. 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000	Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, <i>Federal</i> <i>Register</i> notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization. Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at— The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738 These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from— American National Standards Institute 11 West 42 nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900
A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows: Address: U.S. Nuclear Regulatory Commission Office of Administration Mail, Distribution and Messenger Team Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301–415–2289 Some publications in the NUREG series that are posted at NRC's Web site address <u>http://www.nrc.gov/reading-rm/doc-collections/nuregs</u> are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.	Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC. The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/IA-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

h

ľ;

k

1 1 1

1.

ì

1

i:

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party would not infringe privately owned rights.

Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

Manuscript Completed: February 2007 Date Published: September 2008

Prepared by Y. Chen, O.K. Chopra, W.K. Soppet, N.L. Dietz Rago W.J. Shack

Argonne National Laboratory Argonne, IL 60439

A.S. Rao, NRC Project Manager

NRC Job Code Y6388

, *· · · ·*

· · ·

· · · ·

۰. ۱

Abstract

This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of irradiation-assisted stress corrosion cracking (IASCC) in the core internals of light water reactors. Phase II in this effort focused on determining the influence of grain boundary engineering (GBE), alloying elements, and neutron dose on the IASCC susceptibility of austenitic stainless steels (SSs) and Alloy 690. Flat dog-bone specimens irradiated in the Halden boiling heavy water reactor to neutron doses of ≈ 2 displacements per atom (dpa) were subjected to slow strain rate tensile (SSRT) tests in high dissolved oxygen water at 289°C. The areas of the fracture surfaces with brittle fracture morphology (intergranular and transgranular cleavage cracking) were measured with a scanning electron microscope. All materials showed significant irradiation hardening and loss of ductility. Some strain hardening was observed in the normal-Carbon (C) content SSs (Types 304 and 316) and Alloy 690, but not in the low-C content SSs (Types 304L and 316L). The area fraction of the intergranular cracking increased with decreasing uniform elongation and was used to rank the IASCC susceptibility of the alloys. The GBE process did not seem to have a significant effect on the IASCC behavior of Type 304 and 304L SSs, at least at a dose level of about ≈2 dpa, but did affect the cracking behavior of Alloy 690. A minimum-C content and a low-sulfur (S) content (<0.002 wt.%) may be required for IASCC resistance. By analysis of the results from the Halden Phase-II specimens along with previous results on Halden Phase-I specimens, the effect of neutron dose on IASCC behavior was determined. While irradiation hardening and embrittlement start below 0.4 dpa, IG cracking appears between 0.4 and 1.3 dpa for most commercial austenitic SSs in this study.

Paperwork Reduction Act Statement

This NUREG does not contain information collection requirements and, therefore, is not subject to the requirements of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.).

Public Protection Notification

The NRC may not conduct or sponsor, and a person is not required to respond to, a request for information or an information collection requirement unless the requesting document displays a current valid OMB control number.

.

Foreword

This report examines the effects of simulated light-water reactor coolant, irradiation damage, material chemistry, and grain boundary engineering (GBE) on the irradiation-assisted stress-corrosion cracking (IASCC) susceptibility of austenitic stainless steels (SSs) and Alloy 690. This report is one of a series dating back nearly 10 years describing such results, and supports analysis of the structural integrity of reactor internal components, many of which are subject to IASCC. These earlier reports present results on specimens irradiated in Phases I and II in the Halden test reactor.

This report is built upon specimens irradiated to approximately 2 displacements per atom (dpa) in Phase II in the Halden test reactor. Phase I irradiations included SSs of wide-ranging chemistry (including commercial steels of typical SS chemistry) and conventional thermomechanical processing. Phase II irradiations include several innovatively fabricated and engineered alloys that are designed to (possibly) be more resistant to IASCC. Future reports will detail the results of ongoing and future tests of higher fluence Phase II irradiations.

As in earlier reports, alloying elements have an effect on IASCC susceptibility. This study shows that high oxygen content contributes to the IASCC susceptibility by enhancing intergranular crack initiation. In addition, low carbon content is associated with a poor ductility in high-dissolved-oxygen (DO) water for all irradiated austenitic SSs, which was shown through the linear increase in uniform elongation with carbon content up to 0.06 weight percent (wt.%). Carbon and sulfur content contribute to the IASCC susceptibility of austenitic SSs. Reducing the sulfur content to less than about 0.002 wt.% protects against IASCC; however, this alone is not a sufficient material condition to ensure resistance to IASCC. With a similar sulfur composition, a low-carbon austenitic SS is more susceptible to IASCC than a normal-carbon SS. Thus, there may be a tradeoff in minimizing susceptibility to IASCC and minimizing susceptibility to intergranular stress-corrosion cracking resulting from conventional sensitization.

The GBE process used in this study did not show a significant, beneficial effect for Type 304 or 304L SS. However, the GBE treatment did result in a smaller reduction in uniform elongation for Alloy 690 at 2 dpa and did reduce its IASCC susceptibility in high-DO water.

In part, the results of this report form the technical basis for Title 10, Section 50.55a, "Codes and Standards," of the *Code of Federal Regulations* (10 CFR 50.55a). In addition, the results of this research, including crack growth rates, may be reviewed, and if applicable, used as a basis for deciding whether to approve or deny requests for relief or requests for reductions in the inspection requirements of 10 CFR 50.55a.

Jennifer L. Uhle, Director Division of Engineering Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission .

• . .

· · · · · · · · ·

Contents

Abst	ract		iii
Fore	word		v
Exec	utive S	ummary	xiii
Ackr	nowledg	gments	xv
		nd Abbreviations	xvii
1	Introd	uction	1
2		imental	3
	2.1	Specimens and Irradiation	3
	2.2	Test Facility and Procedure	4
3	Resul	ts	7
	3.1	SSRT Tests	7
	3.2	Fracture Surface and Gauge Surface Observations	. 9
		3.2.1 Baseline Specimens	9
		3.2.2 Irradiated Type 304 SS	11
		3.2.3 Irradiated Type 304L SSs	13
		3.2.4 Irradiated Type 316 and 316L SSs	18
		3.2.5 Irradiated Alloy 690	21
	3.3	Measurements of IG and TG Cracking on Fracture Surfaces	22
4	Discu	ssion	25
	4.1	SSRT Tests	25
		4.1.1 Effect of Irradiation and High-DO Water Environment on the SSRT Behavior	25
		4.1.2 Influence of GBE Processing on the SSRT Behavior	27
		4.1.3 Influence of Alloying Elements on the SSRT Behavior of Austenitic SSs	28

	4.2 Frac	tographic Analyses	30
	4.2.1	Influence of Irradiation and High-DO Water on the Fracture Morphology	30
	4.2.2	IASCC Susceptibility of Halden Phase-II Specimens	31
	4.2.3	Effect of GBE Process on the IASCC Behavior	33
	4.2.4	Effects of Alloying Elements on the IASCC Behavior of Austenitic SSs	34
	4.2.5	Irradiation Dose and IASCC Behavior	41
5	Summary		43
Refe	rences		45
App	endix A		A- 1

Figures

1.	Halden SSRT test specimen geometry	3
2.	Schematic diagram of the recirculating water system	5
3.	Schematic for determining SSRT properties	7
4.	Stress-strain curves of SSRT specimens tested in high-DO water environment: Type 304 SS, Type 304L SS, Type 316 and 316L SS, and Alloy 690.	8
5.	Ductile dimple morphology on the fracture surface of nonirradiated GBE Type 304L SS tested in high-DO water at 289°C.	9
6.	Ductile dimple morphology on the fracture surface of irradiated GBE Type 304L SS tested in air at 287-292°C.	10
7.	Similar appearance of gauge surfaces for nonirradiated GBE Type 304L SS tested in high- DO water at 289°C and irradiated GBE Type 304L SS tested in air	10
8.	IG and mixed-mode cracks on the fracture surface of Type 304 SS tested in high-DO water at 289°C.	11
9.	Fracture surface of GBE Type 304 SS tested in high-DO water at 289°C.	12
10.	Comparison of gauge surface for Type 304 and GBE Type 304 SSs tested in high-DO water at 289°C.	13
11.	Fracture surface of Type 304L SS tested in high-DO water at 289°C	14
12.	Fracture surface of irradiated GBE Type 304L SS tested in high-DO water at 289°C	15
13.	Comparison between gauge surface of Type 304L and GBE Type 304L SSs tested in high- DO water at 289°C	15
14.	Fracture surfaces of two high-purity Type 304L SSs with low-O content tested in high-DO water at 289°C	16
15.	Fracture surface of high-purity Type 304L SS with high-O content tested in high-DO water at 289°C.	17
16.	Moderate plastic deformation and occasional surface cracks on the gauge surfaces of high- purity Type 304L SSs: low-O content and high-O content	17
17.	Fracture surface of GBE Type 316 SS tested in high-DO water at 289°C.	18
18.	A surface crack on the gauge surface of GBE Type 316 SS tested in high-DO water at 289°C.	19

19.	Fracture surfaces of Type 316LN SS tested in high-DO water at 289°C.	19
20.	Fracture surfaces of Ti-doped Type 316LN SS tested in high-DO water at 289°C	20
21.	Gauge surfaces of Type 316 LN SS and Ti-doped Type 316 LN.	20
22.	Fracture surfaces of Alloy 690 and GBE Alloy 690 tested in high-DO water at 289°C	21
23.	Gauge surfaces of Alloy 690 and GBE Alloy 690 tested in high-DO water at 289°C.	22
24.	Schematic for fracture surface characterization and measurement	22
25.	Effects of irradiation and high-DO water on the SSRT behavior of GBE Type 304L SS	25
26.	Variation in yield strength with irradiation dose in high-DO water at 289°C.	26
27.	Variation in ultimate tensile strength with irradiation dose in high-DO water at 289°C	26
28.	Variation in uniform elongation with irradiation dose in high-DO water at 289°C	27
29.	Variation in total elongation with irradiation dose in high-DO water at 289°C.	27
30.	The influence of GBE treatment on the increase in YS and decrease in UE in high-DO water at 289°C.	28
31.	The influence of alloy elements on the uniform elongation for austenitic SSs with and without GBE treatment.	29
32.	Fraction of IG and TG fracture in the Halden Phase-II specimens tested in high-DO water at 289°C.	31
33.	Uniform elongations of the Halden Phase-II specimens tested in high-DO water at 289°C	32
34.	Correlation between IG fraction and UE among Halden Phase-I and Phase-II specimens	32
35.	Number of IG and TG cracks observed in Halden Phase-II specimens	33
36.	Number of IG cracks normalized by the UE in Halden Phase-II specimens.	33
37.	Comparisons of Type 304 and 316 SSs for the IG area fraction and the number of IG cracks normalized by uniform elongation.	35
38.	The influence of Cr and Ni content on the IG cracking for austenitic SSs.	36
39.	The influence of C content on the IG cracking behavior for austenitic SSs	37
40.	The influence of S content on the IG cracking behavior for austenitic SSs	37

41.	Range of bulk S and C contents in which Type 304 or 316 steels are resistant or susceptible to IASCC in BWR-like oxidizing water.	38
42.	Ranges in the sulfur-carbon content map that austenitic SSs are resistant and susceptible to IASCC in high-DO aqueous environment.	38
43.	The influence of P content on the IG cracking behavior for austenitic SSs	39
44.	The influence of Mn content on the IG cracking behavior for austenitic SSs	39
45.	The influence of N content on the IG cracking behavior for austenitic SSs.	40
46.	The influence of Si content on the IG cracking behavior for austenitic SSs	40
47.	Dose dependence of IG area fraction for Halden Phase-I and Phase-II specimens tested in high-DO water at 289°C.	41
48.	Dose dependence of number of IG cracks per UE for Halden Phase-II specimens tested in high-DO water at 289°C.	42

Tal	oles	
1.	Chemical compositions of Halden Phase-II SSRT specimens	3
2.	Irradiation conditions for Halden Phase-II SSRT specimens	4
3.	Results of Halden Phase-II SSRT tests.	8
4.	Measurements of IG and TG cracking on the fracture surfaces of Halden Phase-II specimens.	23
5.	Chemical compositions of commercial heats in Halden Phase-I study	26
6.	Comparison of SSRT results with tensile properties obtained before irradiation	28
7.	Percentages of CSL boundaries (Σ) in GBE materials irradiated in Halden Phase-II study	34

ł

Executive Summary

Non-sensitized austenitic stainless steels (SSs) and nickel (Ni) alloys used in the core internals of light water reactors (LWRs) have experienced intergranular (IG) cracking after extended neutron exposure. This form of material degradation is commonly referred to as irradiation-assisted stress corrosion cracking (IASCC). This complex phenomenon involves simultaneous actions of irradiation, stress, and corrosion. As nuclear power plants age, IASCC becomes an important issue for the reliable continuous operation of LWRs. A research program was established at Argonne National Laboratory (ANL) to evaluate the IASCC susceptibility of core internal materials and to further the understanding of the IASCC mechanism. The current research at ANL involves experimental testing and evaluation of various austenitic SSs, Alloy 690, and grain boundary engineered (GBE) materials irradiated in the Halden boiling heavy water reactor. This report summarizes the results of SSRT tests conducted in high purity water with high dissolved oxygen (DO). The influences of GBE treatment, alloying elements, and neutron dose on IASCC susceptibilities are discussed.

As part of the Halden Phase-II project, flat dog-bone tensile specimens of several austenitic SSs and Alloy 690 were irradiated to a fast neutron fluence of $\approx 1.6 \times 10^{21} \text{ n/cm}^2$ (>1 MeV) (≈ 2 dpa). The irradiated specimens underwent SSRT testing in high-DO water at 289°C. The fracture surfaces of the test specimens were examined, and the area fractions of the regions with intergranular cracking were measured with a scanning electron microscope (SEM). The area fractions of IG cracking, along with the uniform elongation (UE) obtained from the SSRT tests, were used to evaluate the IASCC susceptibility of the examined alloys.

Irradiation hardening and embrittlement were observed in all irradiated specimens. At the dose level of ≈ 2 dpa, the SSRT yield strengths of irradiated specimens were about three times higher than those of nonirradiated specimens, and the UE of irradiated specimens was less than 10%. Some strain hardening was observed in the normal-C content SSs (Types 304 and 316) and Alloy 690, but not in the low-C content SSs (Types 304L and 316L). A low-C content is associated with a poor ductility in high-DO water for all irradiated austenitic SSs, and the UE obtained from SSRT tests in high-DO water increases linearly with C content up to 0.06 weight percent (wt.%).

Regions with intergranular (IG) or transgranular (TG) cracking were observed in all irradiated specimens except GBE Alloy 690. A general correlation can be seen between the IG area fraction and UE. Fractographic analysis also showed that IG cracks always initiated on the surface of an SSRT specimen and then extended into the specimen's interior under stress. Transgranular cracks observed in SSRT specimens did not necessarily originate from IG crack sites.

The GBE process employed in this study increased the coincident site lattice boundaries (Σ <29) to \approx 66% for austenitic SSs and to \approx 70% for Alloy 690. For Alloy 690, the GBE treatment results in a smaller reduction in UE after irradiation and reduces the IG susceptibility in high-DO water. However, little beneficial effect of the current GBE process was observed for Type 304 and 304L SSs.

Similar to the Halden Phase-I results, a higher IG area fraction is often seen in low-C and high-S austenitic SSs. An S content below 0.002 wt.% is a critical requirement for IASCC resistance in austenitic SSs. With a similar S composition, a low-C austenitic SS is more susceptible to IASCC than a normal-C SS. Thus, there may be a trade-off in minimizing susceptibility to IASCC and minimizing susceptibility to IASCC resulting from conventional sensitization.

Type 316 SSs tested in this study showed more resistance to IASCC than Type 304 SSs. The presence of Mo or the higher Ni concentrations in Type 316 SSs may contribute to the difference in IASCC susceptibility between Type 304 and 316 SSs. By comparing the results between two high-purity Type 304L SSs, we found that the oxygen (O) content is also critical for IASCC susceptibility. The high-O content contributes to the IASCC susceptibility by enhancing IG crack initiation.

Although irradiation hardening and loss of ductility are evident at 0.4 dpa for all alloys, IG cracking only starts to appear between 0.4 and 1.3 dpa in the commercial austenitic SSs. This dose range is consistent with the threshold value reported by other researchers. The threshold dose may also vary among materials.

Acknowledgments

The authors thank T. M. Karlsen, OECD Halden Reactor Project, Halden, Norway, for specimen irradiations in the Halden reactor; D. O. Pushis for specimen retrieval; and L. A. Knoblich, E. E. Gruber, R. Clark, and E. J. Listwan for their contributions to the experimental effort. The authors are also grateful to W. H. Cullen, Jr. and S. Crane for many helpful discussions. This work is sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, under Job Code Y6388; Program Manager: Appajosula S. Rao.

۵ ۲ :

•

Acronyms and Abbreviations

ABB	Asea Brown Boveri Ltd.
ANL	Argonne National Laboratory
BWR	Boiling Water Reactor
CSL	Coincident Site Lattice
DO	Dissolved Oxygen
dpa	Displacements per atom
dpm	Disintegrations per minute
ECP	Electrochemical Potential
FS	Fracture Strength
GBE	Grain Boundary Engineered
IASCC	Irradiation-Assisted Stress Corrosion Cracking
IG	Intergranular
kV	kilovolt
LWR	Light Water Reactor
MATMs	Melting Alloy Temperature Monitors
MeV	Million electronvolt
MPa	Megapascal
mm	Millimeter
ml/min	Milliliter / minute
mV	Millivolt
μs/cm	Microsiemens / centimeter
n/cm ²	Neutron / centimeter ²
ppm	Parts per million
psig	Pound per square inch gauge
PWR	Pressurized Water Reactor
RIS	Radiation-Induced Segregation
SCC	Stress Corrosion Cracking
SEM	Scanning Electron Microscope
SHE	Standard Hydrogen Electrode
SS	Stainless Steel
SSRT	Slow Strain Rate Tensile
TE	Total Elongation
TG	Transgranular
UE	Uniform Elongation
UTS	Ultimate Tensile Strength
YS	Yield Strength
wt.%	Weight percent %

1 Introduction

As nuclear power plants age and exposure to neutron irradiation increases, failures of reactor core internal components have increased. Examples of such failures include cracking of the core shroud, jet pump assembly, top guide, and core plate in boiling water reactors (BWRs)¹⁻⁷ and baffle former bolts in pressurized water reactors (PWRs).⁸ When exposed to neutron irradiation for extended periods, various nonsensitized austenitic stainless steels (SSs) and Ni alloys become susceptible to intergranular (IG) failure. This form of degradation is commonly referred to as irradiation-assisted stress corrosion cracking (IASCC). This complex process involves simultaneous actions of irradiation, stress, and corrosion. In recent years, to address issues related to plant aging and license renewal, IASCC studies have attracted increased attention.

Neutron irradiation plays a key role in IASCC of internal components in light water reactors (LWRs). A characteristic rise in IASCC susceptibility is observed above a "threshold" neutron fluence. This threshold is often taken to be $\approx 5 \times 10^{20} \text{ n/cm}^2 (\text{E} > 1 \text{ MeV})^*$ ($\approx 0.75 \text{ dpa}$) in BWR environments,^{9,10} and approximately one order of magnitude higher in PWRs.¹¹ Some studies show that IASCC could occur even at a dose as low as $\approx 2 \times 10^{20} \text{ n/cm}^2$ ($\approx 0.3 \text{ dpa}$) in water with high dissolved oxygen (DO).¹² Irradiation-induced microstructural (e.g., radiation defects) and microchemical (e.g., radiation-induced segregation) changes in the material combined with changes in water chemistry (e.g., radiolysis) contribute to the increased susceptibility of IG cracking.^{13,14}

Early mechanistic studies of IASCC focused mainly on the depletion of Cr at grain boundaries and its influence on the grain boundary oxidation.^{15–17} Radiation-induced segregation (RIS) was considered as the main reason for the sharp Cr depletion at grain boundaries. It is believed that the absence of protective oxide layers stimulates cracking along grain boundaries in the IASCC process. More recently, the roles of impurity elements such as Si, P, and S on IASCC susceptibility have also been investigated.^{14,18} Although redistribution of impurities to grain boundaries due to RIS clearly does occur, no clear correlations have yet been found between the original concentration of impurities in the bulk material and IASCC susceptibility. The Halden Phase-I study was an effort to investigate the contributions of alloying and impurity elements to IASCC susceptibility in various austenitic SSs.^{19–21} The Halden Phase-I study indicates that the S content contributes to the IASCC susceptibility in low-C SSs but is less critical in the high-C SSs.^{21,22} Recent studies on IASCC have also attributed a greater role to radiation hardening and the development of localized deformation modes in the increase of susceptibility.²³ The localized plastic deformation induced by irradiation contributes to the rupture of the oxide film near the grain boundary and, therefore, is a critical factor for IASCC susceptibility.²⁴

Based on the progress in the mechanistic understanding of IASCC, various engineering methods have been proposed to mitigate the effect of IASCC on LWR core internal components. Because of the strong dependence of IASCC susceptibility on the corrosion potential between -100 and 0 mV with a standard hydrogen electrode (SHE),¹⁸ the most effective way to mitigate IASCC may be to control the electrochemical corrosion potential (ECP). In addition, because of the predominately IG nature of IASCC, considerable attention has been paid to the role of grain boundary properties. It is believed that coincident site lattice (CSL) grain boundaries with low Σ numbers[§] (\leq 29) are more resistant to IG cracking.²⁵⁻²⁸ Grain boundary engineering (GBE), a thermomechanical treatment that systematically

^{*}All references to fluence levels are calculated for fast neutron $E \ge 1$ MeV.

 $[\]Sigma$ is the reciprocal of the density of coincident sites. For example, Σ of 17 means that one in every 17 sites in one grain coincides with a site from the neighboring grain, and the density of coincident sites is 1/17.

increases the population of low Σ CSL grain boundaries, is therefore considered as another potential approach to improve the material's resistance to IASCC.

In the Halden Phase-II effort, additional studies were performed on the effects of alloy composition and the GBE process on the IASCC behavior. Slow strain rate tensile (SSRT) tests were conducted in high-DO water at 289°C on several austenitic SSs, Alloy 690, and their GBE counterparts after having been irradiated to the same dose level in the Halden boiling heavy water reactor in Norway. The IASCC susceptibility of the materials was determined by fractographic analyses using a scanning electron microscope (SEM). The Halden Phase-II test matrix also provided opportunities to investigate the effects of bulk O content and Ti doping on the IASCC behavior of austenitic SSs. The results obtained from the Halden Phase-II study also enlarged the Halden Phase-I database, in which the effect of C and S contents on IASCC behavior was determined for austenitic SSs.

Experimental 2

Specimens and Irradiation 2.1

As part of the Halden Phase-II experiment, 32 alloy specimens from 13 heats were irradiated in helium capsules, between August 2001 and October 2004, in the Halden boiling heavy water reactor in Norway. The tensile specimens had a flat dog-bone geometry whose dimensions are given in Fig. 1. All specimens were packed in two irradiation capsules and loaded in the Halden reactor at core position 1-00. The specimens were removed from the reactor in December 2004 and transferred to ANL for SSRT testing in March 2005. Table 1 shows the chemical compositions of the specimens.

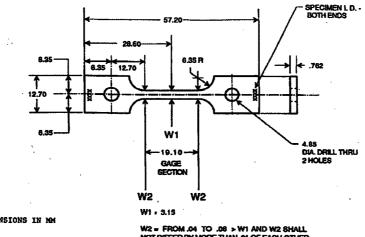


Figure 1. Halden SSRT test specimen geometry.

DIMENSIONS IN MM

W2 = FROM .04 TO .08 > W1 AND W2 SHALL NOT DIFFER BY MORE THAN .01 OF EACH OTHER

Table 1. Chemical compositions of Halden Phase-II SSRT specimens.

Material	Heat ID	Composition (wt.%)								
Туре		Ni	Si	P	S	Mn	С	N	Cr	Others
Туре	333	8.45	0.68	0.027	0.019	1.38	0.04	0.068	18.54	Мо 0.37
304 SSs	GBE304	8.19	0.41	0.029	0.006	1.73	0.054	0.052	18.28	Mo 0.23, Co 0.10, Cu 0.31
	304L	8.33	0.45	0.028	0.007	1.74	0.023	0.090	18.35	Mo 0.37, Co 0.13, Cu 0.35
	GBE304L	8.33	0.45	0.028	0.007	1.74	0.020	0.090	18.35	Mo 0.37, Cu 0.35
Type 304L SSs	327	9.54	0.01	0.001	0.002	1.12	0.006	<0.001	19.71	Mo 0.02, O 0.008
50412 005	945	9.03	0.03	<0.005	0.005	1.11	0.005	0.003	19.21	Mo <0.005, O 0.047
	L15	8.00	1.82	0.010	0.013	1.07	0.02	0.085	17.80	O 0.011
	GBE316	11.16	0.35	0.029	0.025	1.59	0.041	0.050	16.34	Mo 2.07, Cu 0.37, Co 0.09
Type 316 SSs	<i>`</i> 623	12.20	0.7	0.007	0.002	0.97	0.019	0.103	17.23	Mo 2.38, Cu 0.21
510 555	625	12.30	0.72	0.007	0.002	0.92	0.012	0.064	17.25	Mo 2.39, Ti 0.027, Cu 0.21
A 11 (00	690	61.49	0.05		0.001	0.15	0.030	-	29.24	Fe 9.02, Co 0.007, Cu 0.01
Alloy.690	GBE690	59.40	0.42	0.026	0.003	0.42	0.010	-	29.10	Fe 10.26, Al 0.22, Ti 0.29
Fe-Cr-Ni model alloy	151	23.49	0.06	0.006	0.005	1.39	0.004	0.001	24.02	Mo 0.002

The target irradiation dose was ≈ 1.8 dpa for all specimens. The actual neutron fluence was monitored by an Al/1% Co wire for thermal neutrons and by Fe and Ni wires for fast neutrons; these wires were attached to the external surface of each of the irradiation capsules. During the irradiation, specimen temperature was monitored by two sets of Melting Alloy Temperature Monitors (MATMs) in each irradiation capsule. The post-irradiation analyses of the dosimeter wires and MATM results provided the actual conditions of the Halden Phase-II irradiation, and the results are summarized in Table 2.

Heat ID	Material Description	Available Specimens	Neutron Fluence $E > 1 \text{ MeV} (x 10^{21} \text{ n/cm}^2)$	Damage Dose (dpa)	Irr. Temp. (°C)
333	Type 304 SS from ABB ^a	3	1.63	2.44	290-296
GBE304	GBE Type 304 SS	3	1.31	1.96	296-305
304L	304L SS, commercial heat	2	1.31	1.96	296-305
GBE304L	GBE Type 304L SS	3	1.31	1.96	296-305
327	High-purity Type 304L SS, low O	3	1.63	2.44	290-296
945	High-purity Type 304L SS, high O	3	1.63	2.44	290-296
L15	Type 304 SS, laboratory heat	1	1.63	2.44	290-296
GBE316	GBE Type 316 SS	3	1.31	1.96	296-305
623	Type 316LN (high N, low C)	2	1.63	2.44	290-296
625	Type 316LN (high N, low C), Ti-doped	2	1.63	2.44	290-296
690	Alloy 690	2	1.31	1.96	296-305
GBE690	GBE Alloy 690	3	1.31	1.96	296-305
151	Fe-Cr-Ni model alloy, Fe-20Cr-24Ni	2	1.63	2.44	290-296

Table 2. Irradiation conditions for Halden Phase-II SSRT specimens.

^aProcured from Asea Brown Boveri Ltd. (ABB).

2.2 Test Facility and Procedure

The SSRT tests were carried out in a test facility that is located in hot cell #1 of the ANL's Irradiated Materials Laboratory. It is equipped with a worm gear actuator, a set of gear reducers, and a variable speed motor with speed control. A high-purity, high-DO aqueous environment was provided by the recirculating water loop, as shown in Fig. 2. This water loop consists of a storage tank, 0.2 micron filter, high-pressure pump, regenerative heat exchanger, autoclave preheater, test autoclave, electrochemical potential (ECP) cell preheater, ECP cell, air-cooled heat exchanger, Mity MiteTM back-pressure regulator, two ion-exchange cartridges, another 0.2-micron filter, and a return line to the storage tank. The high-pressure portion of the system extends from the high-pressure pump (item 10) to the back-pressure regulator (item 27). Overpressurization of the loop due to temperature excursions is prevented by a rupture disk (set at 2300 psig) installed upstream from the high-pressure pump.

Most SSRT tests on the Halden Phase-II specimens were conducted at 289°C in high-purity water containing \approx 8 ppm DO, and another test was conducted in laboratory air at \approx 290 °C to obtain baseline data. For all tests in water, the system pressure was maintained at \approx 9.31 MPa (\approx 1350 psig). The flow rate of the system was 15-30 ml/min, and water samples were taken periodically from ports 7 and 29B to monitor the resistivity, pH, and DO level in the effluent. The conductivity and pH of water at room temperature were 0.06-0.10 µS/cm and 6.4-7.2, respectively. The ECPs of a Pt electrode and a SS sample located downstream from the autoclave were monitored continuously during the test. Another

nonirradiated specimen was also tested in water with ≈ 8 ppm DO at 289°C for comparison. The strain rate during for all SSRT tests was held at about $\approx 3.31 \times 10^{-7} s^{-1}$.

- 1. Cover gas supply tank
- 2. Two stage high-pressure regulator
- 3. Low-pressure regulator
- 4. Compound vacuum & pressure gauge
- 5. Feed water storage tank
- 6. Sparger
- 7. Tank water sample port
- 8. Solenoid valve
- 9. 0.2 micro filter
- 10. High-pressure pump
- 11. Rupture disk
- 12. Check valve
- 13. High-pressure gauge

- 14. Heat exchanger
- 15. Autoclave preheater
- 16. Tube autoclave
- 17. Thermocouple well
- 18. ECP cell preheater
- 19. Preheater thermocouple
- 20. ECP cell
- 21. ECP cell thermocouple
- 22. SS electrode
- 23. Standard reference electrode
- 24. Platinum electrode
- 25. Heat exchanger

26. Cooling fan

- 27. Back-pressure regulator
- 28. Outlet vent port
- 29. Loop water sampling port (not used)
- 29B. Loop water sampling port (new)
- 30. Ion exchange bed
- 31. 2nd ion exchange bed
- 32. 0.2 micron filter
- 33. Feed water fill port
- 34. Recirculating pump
- 35. Check valve
- 36. Pressure relief valve to tank
- 37. Check valve
- 38. Bypass pressure relief valve

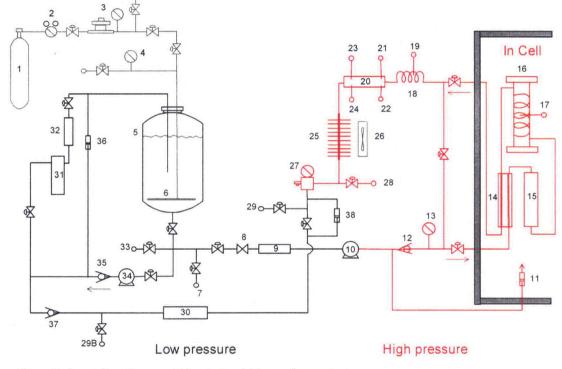
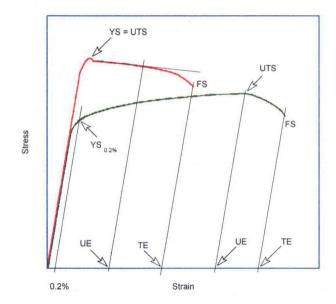


Figure 2. Schematic diagram of the recirculating water system.

Because of the relatively small thickness ($\approx 0.76 \text{ mm}$) and cross sectional area ($\approx 2.4 \text{ mm}^2$) of the SSRT specimens, precautions were taken during specimen installation and pressurization of the autoclave to prevent their premature straining. Each specimen was first loaded in a sample grip and then inserted into the tube autoclave. After tightening of the flanges of the autoclave, both upper and lower pull rods were engaged with the sample grip. The assembled autoclave was then installed in the test frame without having the lower pin in place to maintain a stress-free condition on the specimen. The subsequent pressurization generates about ≈ 120 MPa tensile stress on the specimen. Once the desired temperature and pressure were achieved, the lower pin was inserted to connect the loading train with the lower pull rod. The specimen was then soaked in the autoclave (at 289°C and ≈ 9.3 MPa) for about 24 hours to stabilize the environmental conditions.


To evaluate the IASCC susceptibility, the fracture surfaces of the SSRT test specimens were examined with an SEM. Because of the high radioactivity and loose contamination, safety precautions were taken to prepare the SEM specimens. A fracture tip, about 3 mm (0.12 in.) long, was first cut remotely from a tested SSRT specimen using a shear device installed inside the hot cell. Then, the fracture tip was cleaned with an ultrasonic cleaner and moved out of the hot cell. The obtained fracture tip was manually wiped several times with a damp cloth in a fume hood to further reduce the loose contamination. Once a smear test result was below 200 disintegrations per minute (dpm), the fracture tip was moved to the SEM facility for examination. A Hitachi S-3000N variable pressure microscope was used for the fractographic examinations. A secondary electron image at 30-kV acceleration voltage with 25-mm (1.0 in.) work distance was used for most observations.


3 Results

3.1 SSRT Tests

An SSRT test on a nonirradiated GBE Type 304L SS specimen was carried out in high-DO (\approx 8 ppm DO) water to establish a baseline for irradiated specimens. Another SSRT test on an irradiated GBE Type 304L SS specimen was performed in air around \approx 290°C as a baseline for the tests in water. All the other SSRT tests were conducted on irradiated specimens in high-DO water at 289°C.

The characteristic SSRT properties were determined by using the scheme illustrated in Fig. 3. If a well-defined upper yield point was present in an SSRT test stress vs. strain curve, the stress at the upper yield point was selected as the yield strength (YS). Otherwise, the stress at 0.2% plastic strain was defined as the yield strength (YS_{0.2%}). If no strain hardening was observed in a stress vs. strain curve, the ultimate tensile strength (UTS) was considered the same as the YS. Accordingly, the uniform elongation (UE) in this case was taken as the plastic strain at the point where the stress vs. strain curve starts to deviate from a linear strain softening. If a small amount of strain hardening remained in a SSRT test, the nominal definition of UE (i.e., the plastic strain at UTS) was used. The fracture strength (FS) was taken at the end of the SSRT test when the specimen was broken. Accordingly, the plastic strain at the fracture was defined as the total elongation (TE). The characteristic SSRT properties determined using this scheme for all Halden SSRT tests performed in this study are summarized in Table 3. The complete SSRT test results, including the engineering stress vs. strain results, are given in Appendix A.

The stress vs. strain curves on the SSRT specimens tested in high-DO water are shown in Fig. 4. A significant amount of irradiation hardening was observed in all the specimens. Irradiation embrittlement was also evident, except for the GBE Alloy 690, where more than 22% uniform elongation remained in this alloy after irradiation. For austenitic SSs, a minimum amount of strain hardening occurred in Type 304 and 316 SSs, while no strain hardening occurred for Type 304L and 316L SSs. For Alloy 690, a considerable amount of strain hardening occurred in the GBE alloy, whereas only limited strain hardening was found in the alloy without the GBE treatment. Dynamic strain aging was observed in both Alloy 690 materials, with and without GBE treatment.

7

Material	Heat ID	Dose (dpa)	YS (MPa)	UTS (MPa)	FS (MPa)	UE (%)	TE (%
Туре	333	2.44	711	711	628	4.06	5.34
304 SS	GBE304	1.96	750	750	581	5.80	8.22
	304L	1.96	677	677	282	2.18	4.65
	GBE304L	1.96	747	747	581	1.11	2.22
-	GBE304L ^a	1.96	750	750	621	9.41	11.30
Type 304L SS	GBE304L ^b		231 (0.2%)	532	454	32.20	36.10
J04L 33	327	2.44	703	703	334	1.51	3.10
	327	2.44	690	690	333	1.25	2.59
	945	2.44	666	666	443	1.22	2.20
-	GBE316	1.96	640 (0.2%)	644	378	4.44	6.80
Type 316 SS	623	2.44	883	883	729	1.94	4.00
	625	2.44	890	890	725	0.75	2.59
Allers 600	690	1.96	837 (0.2%)	868	743	5.94	7.29
Alloy 690	GBE690	1.96	677 (0.2%)	801	704	22.80	27.60

Table 3. Results of Halden Phase-II SSRT tests	Table 3.	Results	of Halden	Phase-II	SSRT tests
--	----------	---------	-----------	----------	------------

^aTested in air.

^bNonirradiated specimen, tested in high-DO water.

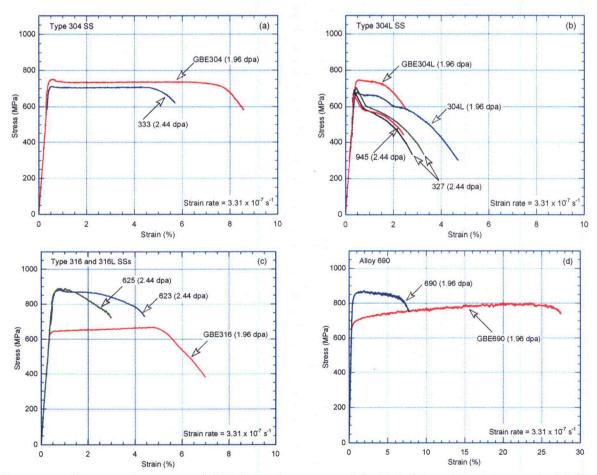
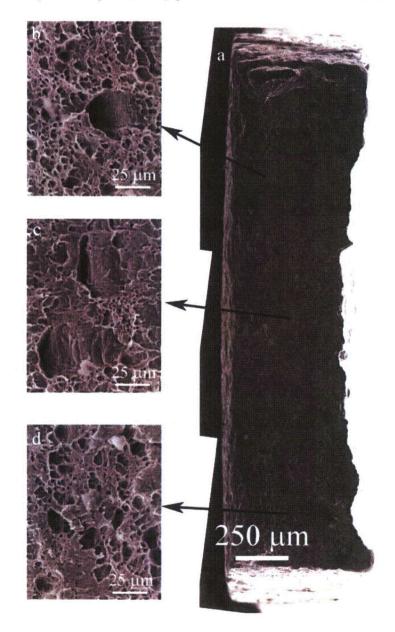
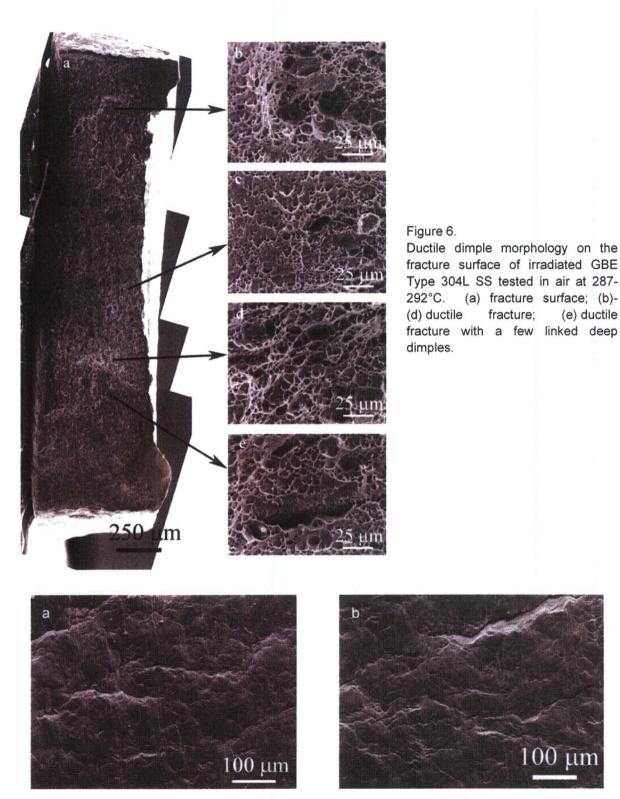



Figure 4. Stress-strain curves of SSRT specimens tested in high-DO water environment: (a) Type 304 SS, (b) Type 304L SS, (c) Type 316 and 316L SS, and (d) Alloy 690.

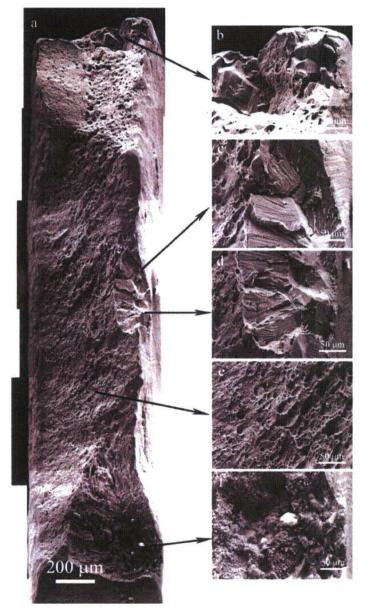
3.2 Fracture Surface and Gauge Surface Observations


3.2.1 Baseline Specimens

The two baseline specimens, a nonirradiated GBE Type 304L SS tested in water and an irradiated GBE Type 304L SS tested in air, were examined with the SEM. The fracture surfaces of these two specimens are shown in Figs. 5 and 6, and their gauge surfaces appear in Fig. 7. The cross sections of both the nonirradiated and irradiated specimens indicate fully ductile dimple fracture despite their different testing conditions. The gauge surfaces of these two specimens are also very similar. Surface steps resulting from heavy plastic deformation can be seen on both gauge surfaces.

Figure 5.

Ductile dimple morphology on the fracture surface of nonirradiated GBE Type 304L SS tested in high-DO water at 289°C. (a) fracture surface; (b)-(d) ductile fracture with large dimples.


(e) ductile

100 µm

Similar appearance of gauge surfaces for (a) nonirradiated GBE Type 304L SS tested in Figure 7. high-DO water at 289°C and (b) irradiated GBE Type 304L SS tested in air.

3.2.2 Irradiated Type 304 SS

The fracture surface of Type 304 SS (Heat 333) tested in high-DO water in 289°C is shown in Fig. 8. Four separate regions of cracking are seen on this fracture surface. Two regions show full IG fracture, and the other two consist of a mixture of IG and TG fracture. All the IG and mixed-mode cracks start from the surface, but three of them are just a few grains deep. One small IG crack is completely surrounded by a TG region whose area is significantly larger than its IG initiation site. Another IG crack has progressed deeper into the interior of specimen, and a TG region is observed ahead of the IG cracking. An isolated TG area is also seen at the interior of the specimen. It is believed that this TG area is caused by the irradiation embrittlement rather than IASCC, because contact with water is not expected in this region before the failure of the specimen.

Figure 8.

IG and mixed-mode cracks on the fracture surface of Type 304 SS (Heat 333 from ABB) tested in high-DO water at 289°C. (a) fracture surface; (b) IG cracks; (c) and (d) small IG area surrounded by TG cracking; (e) ductile fracture with elongated dimples; (f) IG cracking area covered by corrosion products.

The fracture surface of the GBE Type 304 SS is shown in Fig. 9; it contains only one large nonductile region, which is nearly all IG. The IG region starts from one side of the specimen surface and covers more than the half of the specimen thickness. A small region of TG and mixed-mode fracture morphology is seen next to the initial IG crack, and the rest of the cross section has a ductile failure appearance.

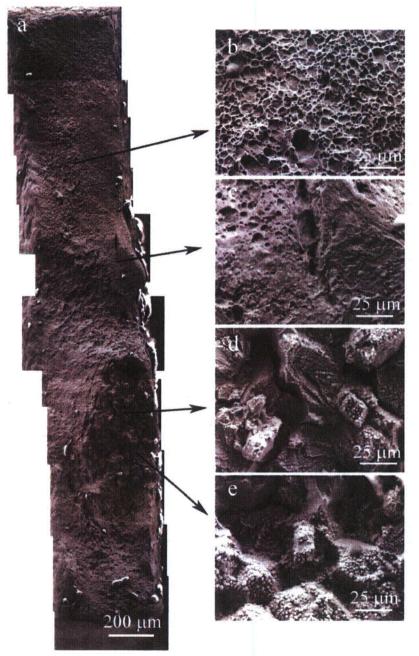
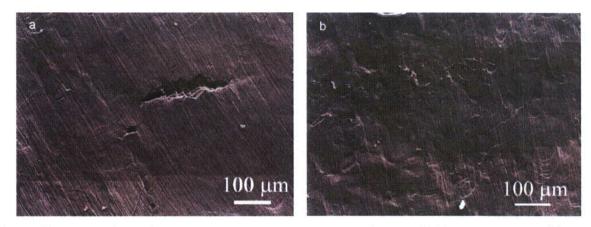
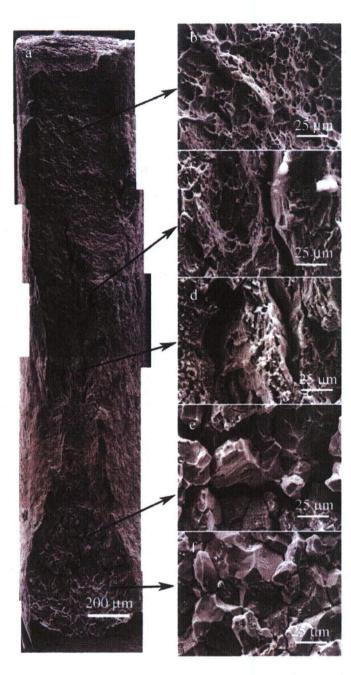


Figure 9.

Fracture surface of GBE Type 304 SS tested in high-DO water at 289°C. (a) fracture surface; (b) ductile dimple fracture; (c) ductile fracture with linked deep dimples; (d) and (e) IG cracking with some TG cleavage morphology covered with corrosion products. Figure 10 shows the gauge surfaces of the Type 304 SS and GBE Type 304 SS specimens. Large surface cracks can be seen on the Type 304 SS specimen, while only small cracks can be identified on the heavily deformed gauge surface in the GBE Type 304 SS specimen.




Figure 10. Comparison of gauge surface for Type 304 and GBE Type 304 SSs tested in high-DO water at 289°C. (a) a large surface crack on gauge surface of Type 304 SS (Heat 333 from ABB); and (b) heavily deformed gauge surface of GBE Type 304 SS.

3.2.3 Irradiated Type 304L SSs

The fracture surface of a Type 304L SS specimen is shown in Fig. 11. Two isolated regions of IG cracking are apparent. One is a small region on the specimen gauge surface, and the other is a large, through-thickness IG crack that initiates from the specimen edge. A region of TG cracking is also seen in the center. The major non-ductile feature that contributes to the failure of this specimen is the large IG crack. Considerable necking occurred in the center portion, as seen in Fig. 11.

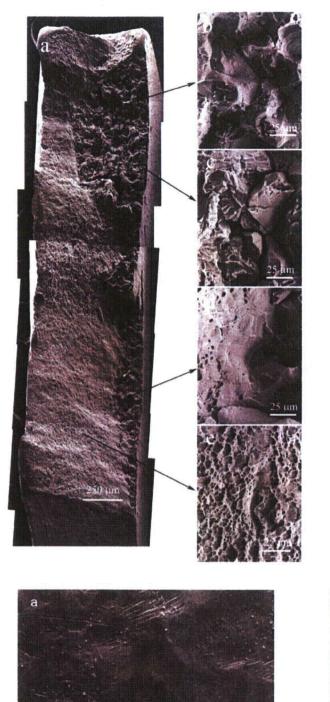

The fracture surface of GBE Type 304L SS is shown in Fig. 12. Significant IG cracking can be seen on the fracture surface. Two separate IG cracks initiated from the periphery of the fracture surface and moved inwards to the interior. Some TG or mix-mode cracking can be seen at the edge of the IG region.

Figure 13 shows the gauge surfaces of both Type 304L SS and GBE Type 304L SS. The plastic flow in Type 304L SS is highly localized in a narrow band around the necked region. No signs of large deformation can be seen on the gauge surface in the region a small distance away from the necked area (Fig. 13a). On the other hand, the deformed region on the gauge surface of GBE 304L SS is wider (Fig. 13b). Small surface cracks can also be seen on the gauge surface of the GBE Type 304L SS.

Figure 11.

Fracture surface of Type 304L SS tested in high-DO water at 289°C. (a) fracture surface with central cracks; (b) ductile fracture; (c) and (d) large TG cracks surrounded by ductile fracture area; (e) and (f) IG fracture.

^b 100 μm

Figure 13. Comparison between gauge surface of Type 304L and GBE Type 304L SSs tested in high-DO water at 289°C. (a) relatively smooth gauge surface for Type 304L SS; and (b) heavily deformed gauge surface of GBE 304L SS.

100 µm

Figure 12.

Fracture surface of irradiated GBE Type 304L SS tested in high-DO water at 289°C. (a) Fracture surface with significant amount of IG cracking; (b) IG fracture; (c) IG and TG fracture; (d) an area between IG and ductile fracture; (e) ductile dimple fracture. Two high-purity Type 304L SSs with low-Oxygen (O) content and one high-purity Type 304L SS with high-O content were tested in high-DO water at 289°C.

Figure 14 shows the fracture surfaces of the two low-O content specimens. The fracture surfaces of these two identical specimens are very similar. Both contain one small IG area, and their reduction of area is large. The fracture surface of the high-O specimen is very different from that of the low-O specimens. There are multiple IG cracks visible on the fracture surface (Fig. 15), and most of cracks are appreciably larger than those of the low-O specimens. Two IG cracks at one end of the fracture surface nearly cover the entire cross section of the high-O specimen, and another IG crack initiated from the gauge surface extends to about one-third the specimen thickness. The total IG cracking area is much greater than that in the low-O specimens. The appearance of the gauge surfaces of these two specimens is also similar. Both show moderate plastic deformation and occasional surface cracks (Fig. 16).

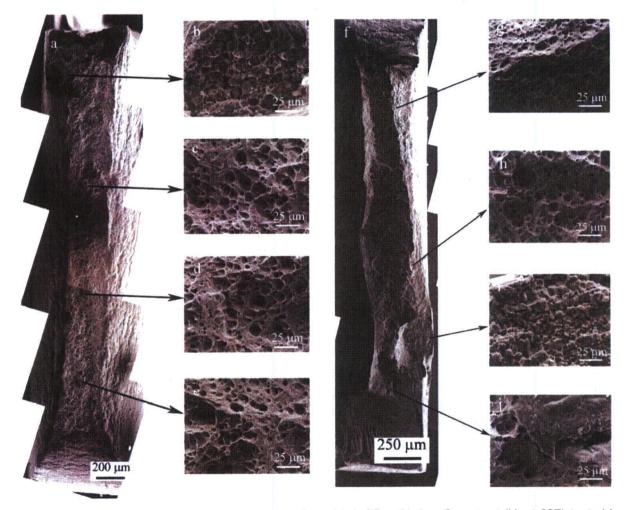


Figure 14. Fracture surfaces of two high-purity Type 304L SSs with low-O content (Heat 327) tested in high-DO water at 289°C. (a) and (f) similar narrow fracture surface for both low-O specimens; (b) and (i) IG fracture in both specimens; (c)-(h) and (j) ductile dimple fracture in both specimens.

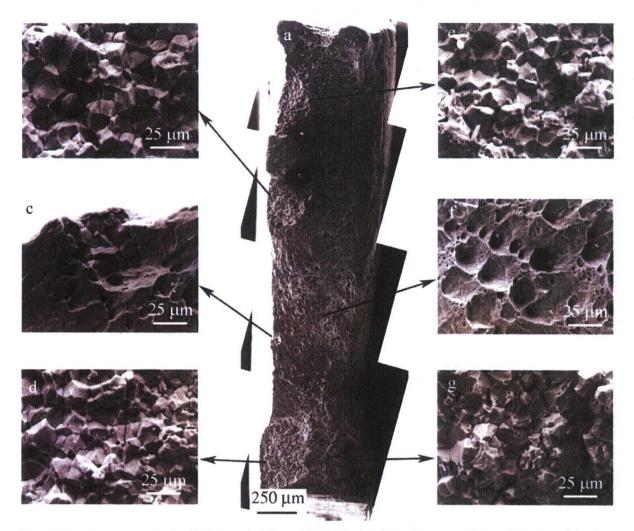


Figure 15. Fracture surface of high-purity Type 304L SS with high-O content (Heat 945) tested in high-DO water at 289°C. (a) fracture surface shows multiple IG areas; (b), (d), (e) and (g) IG fracture; (c) a IG area surrounded by ductile fracture; (f) dimples fracture with inclusions.

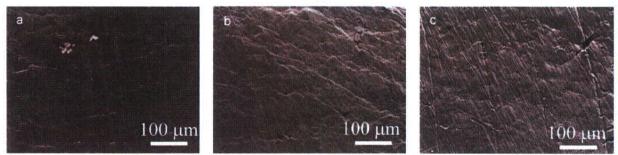
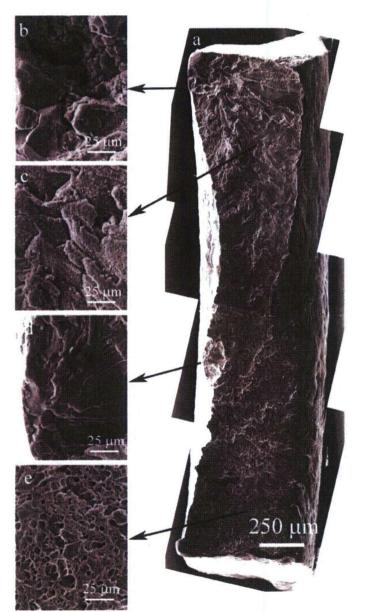



Figure 16. Moderate plastic deformation and occasional surface cracks on the gauge surfaces of highpurity Type 304L SSs: (a) and (b) low-O content (Heat 327) and (c) high-O content (Heat 945).

3.2.4 Irradiated Type 316 and 316L SSs

The fracture surfaces of the Type 316 SS specimens are very different from those of the Type 304 SS specimens. The area of IG cracking is considerably less than that in Type 304 SSs and is often not even detectable. The GBE Type 316 SS has three small IG regions (Fig. 17). Two of the IG regions are so small that they stop at the first grain from the surface. The other IG crack is somewhat larger, but still just a few grains deep. The majority of the non-ductile failure features in GBE Type 316 SS is TG cracking. Two regions of TG cracking can be seen to extend from the small IG cracks, and one TG crack covers nearly half of the entire fracture surface. The gauge surface of the GBE Type 316 SS is shown in Fig. 18. The deformation behavior is similar to that observed in Type 304 SSs.

Figure 17.

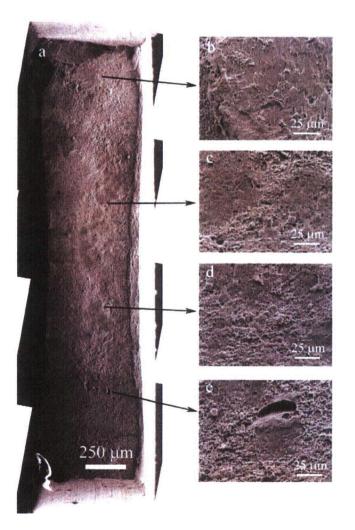

Fracture surface of GBE Type 316 SS tested in high-DO water at 289°C. (a) fracture surface shows large TG crack area; (b) IG fracture covered with corrosion products; (c) TG cleavage fracture; (d) a small IG area surrounded by TG fracture; (e) ductile fracture.

Figure 18.

A surface crack on the gauge surface of GBE Type 316 SS tested in high-DO water at 289°C.

The high-purity Type 316LN SSs, with or without Ti addition, show no IG cracking on the fracture surfaces (Figs. 19 and 20). Several small areas of TG cracking, which are probably unrelated to IASCC, appear in the interior of the specimens. The gauge surface of the Ti-doped specimen shows somewhat more evidence of plastic deformation, as indicated in Fig. 21.

Figure 19.

Fracture surfaces of Type 316LN SS (Heat 623) tested in high-DO water at 289°C. (a) fracture surface; (b) and (c) TG and ductile fracture; (d) ductile fracture; (e) ductile fracture with a deep dimple.

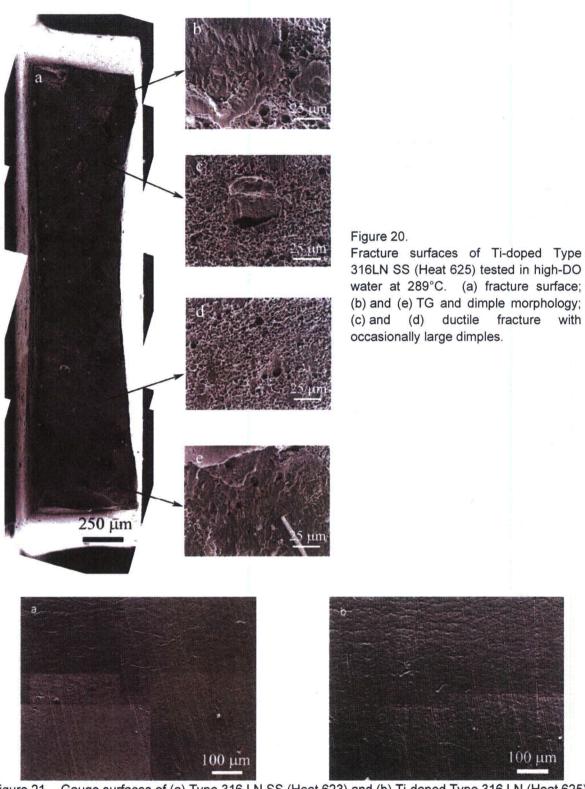


Figure 21. Gauge surfaces of (a) Type 316 LN SS (Heat 623) and (b) Ti-doped Type 316 LN (Heat 625).

3.2.5 Irradiated Alloy 690

Figure 22 shows the fracture surfaces of the Alloy 690 and GBE Alloy 690 specimens. In the Alloy 690 specimen, a small area on the fracture surface shows the typical IG morphology, and the rest of the surface is mainly ductile in appearance. Although a small IG crack initiated on one end of the specimen, TG cracking is not present in the Alloy 690. For GBE Alloy 690, no IG cracking is observed in the entire fracture surface. The gauge surfaces of Alloy 690 and GBE Alloy 690 are shown in Fig. 23. The evidence of plastic deformation is much greater in the GBE Alloy 690. Some surface cracks can be seen on the gauge surface of Alloy 690.

Figure 22. Fracture surfaces of Alloy 690 and GBE Alloy 690 tested in high-DO water at 289°C. (a) and (f) similar fracture surfaces of both alloys; (b) small IG area in the Alloy 690; (c)-(i) ductile fracture in both alloys.

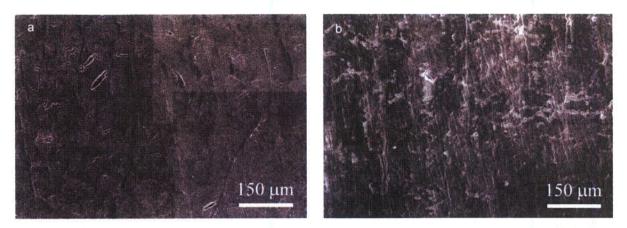


Figure 23. Gauge surfaces of Alloy 690 and GBE Alloy 690 tested in high-DO water at 289°C. (a) surface cracks on the gauge surface of Alloy 690; (b) heavily deformed gauge surface of GBE Alloy 690.

3.3 Measurements of IG and TG Cracking on Fracture Surfaces

To evaluate the fracture morphology quantitatively, the areas of IG and TG cracking were measured from SEM images of the fracture surfaces of the Halden Phase-II specimens. Figure 24 shows schematically how the cracks were characterized on a fracture surface. Four parameters were measured for each fracture surface:

- (a) number of areas of IG and TG cracking,
- (b) length of each IG crack in contact with the aqueous environment (l),
- (c) depth of the IG crack (d), and
- (d) area fraction of IG and TG cracks on the fracture surface.

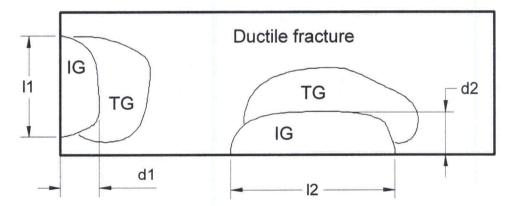


Figure 24. Schematic for fracture surface characterization and measurement.

All measurements were made by pixel counting on composite digital images. A montage of a fracture surface was first constructed by using digital images of at least 120X in magnification. Next, the boundaries that separate IG, TG, and ductile failure regions were defined on the composite image. A

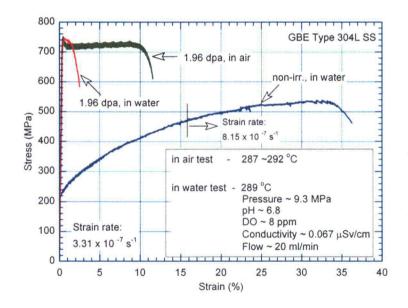
pixel measurement was then conducted for each region. Table 4 summarizes all measurements performed on the fracture surfaces of Halden Phase-II specimens.

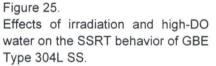
	•		10						
Material	Heat ID	# of IG Cracks	Length (mm)	Depth (mm)	IG Area (%)	# of TG Cracks	TG Area (%)	IG+TG Area (%	
	333	4	0.14	0.12	1.0	3	3.6		
			0.28	0.09	0.7		5.0		
æ			0.10	0.09	0.5		1.1	(
Type 304 SS			0.48	0.32	4.8				
504 55		Sum	1.00	0.62	7.0		9.7	16.7	
	GBE304	1	0.56	0.30	12.5	1	2.1	14.6	
	304L	2	0.28	0.12	1.8	1 .	8.4		
			1.00	0.59	21.0				
		Sum	1.28	0.71	22.8		8.4	31.2	
	GBE304L	2	1.54	0.50	19.2	-	-		
			1.28	0.18	7.1				
		Sum	2.82	0.68	26.3		-	26.3	
Type 304L SS	327	1	0.14	0.14	1.4	· 、 -		1.4	
/	327 ^b	1	0.29	0.20	2.8	-	-	2.8	
	• • • •					<u>`</u>			
	945	4	2.64	0.26	10.8	-	•		
	•		0.40	0.06	0.2				
			2.65	0.29	5.0				
		~	3.07	0.29	6.0				
		Sum	2.19	0.90	22.0	•		22.0	
	GBE316	3	0.27	0.21	1.8	2	40.0		
			0.07	0.02	~0.1		1.4		
			0.08	0.03	~0.1				
Type 316 SS		Sum	0.42	0.26	2.0		41.4	43.4	
	623	-	-	-	-	2	2.1	2.1	
	625	-	•	-	-	3	1.8	1.8	
Alloy 690	690	1	0.16	0.09	0.6	-		0.6	
Anoy 090	GBE690	-	-	-	-	-	-	-	

Table 4. Measurements of IG and TG cracking^a on the fracture surfaces of Halden Phase-II specimens.

^aNumber of cracks and the sum of all cracks in a specimen are in bold.

ı.


^bEstimated values were used for the cross-section and IG areas in this specimen.


4 Discussion

4.1 SSRT Tests

4.1.1 Effect of Irradiation and High-DO Water Environment on the SSRT Behavior

Both neutron irradiation and test environment have a large effect on the SSRT behavior of austenitic SSs and Ni alloys. Figure 25 shows the SSRT test results in air and high-DO water for GBE Type 304L SS in the irradiated and nonirradiated conditions. The test on the nonirradiated specimen in high-DO water was initiated at the same strain rate as all other SSRT tests, but this rate was then increased to $8.15 \times 10^{-7} \, \text{s}^{-1}$ beyond 16% of strain. At a dose level of 1.96 dpa, irradiation hardening and embrittlement are evident regardless of the test environment. The yield strength of GBE Type 304L SS is increased more than a factor of three, while its elongation is reduced by about one-third in comparison to nonirradiated specimen. The strain hardening observed in the nonirradiated materials is either very limited or completely absent in the irradiated materials. The high-DO environment further reduces the elongation of the material during SSRT testing. The yield strength and strain hardening properties of the irradiated material are unaffected by the high-DO water. The reduction in ductility of the irradiated specimen tested in high-DO water is thus attributed to a synergistic effect of irradiation and corrosive environment.

The Halden Phase-II specimens all have irradiation exposures of 1.96 to 2.44 dpa, as shown in Table 2. To help establish the dose dependence of SSRT behavior, some Halden Phase-I SSRT data are plotted along with the current test results in Figs. 26-29. The materials selected from the Halden Phase-I study are commercial heats of Type 304 or 316 SSs. Their chemical compositions are given in Table 5. The SSRT test conditions for Halden Phase-I specimens were similar to those used in the current study.²¹

As shown in Figs. 26 and 27, both the yield strength (YS) and ultimate tensile strength (UTS) obtained from SSRT tests increase with irradiation dose. The increase in YS is more evident than that in UTS. This hardening behavior is not fully saturated at ≈ 3 dpa. Figures 28 and 29 show the decrease in uniform elongation (UE) and total elongation (TE) with an increase in irradiation dose. At ≈ 2 dpa, except

for GBE Alloy 690, the UE and TE of all materials that were investigated decreased to just a few percent elongation.

ANL ID -	Composition (wt%)											
	Ni	Si	Р	S	Mn	С	N	Cr	Others			
C1	8.12	0.50	0.038	0.0020	1.00	0.060	0.060	18.11	O 0.0102, B < 0.001			
C3	8.91	0.46	0.019	0.0040	1.81	0.016	0.083	18.55	B < 0.001			
C9	8.75	0.39	0.013	0.0130	1.72	0.062	0.065	18.48	O 0.0102, B < 0.001			
C10	8.13	0.55	0.033	0.0020	1.00	0.060	0.086	18.19	O 0.0074, B <0.001			
C12	8.23	0.47	0.018	0.0020	1.00	0.060	0.070	18.43	B <0.001			
C16	12.90	0.38	0.014	0.0020	1.66	0.020	0.011	16.92	Mo 2.30, O 0.0157, B <0.001			
C19	8.08	0.45	0.031	0.0030	0.99	0.060	0.070	18.21	O 0.0200, B <0.001			
C21	10.24	0.51	0.034	0.0010	1.19	0.060	0.020	16.28	Mo 2.08, O 0.0112, B <0.001			

Table 5. Chemical compositions of commercial heats in Halden Phase-I study.

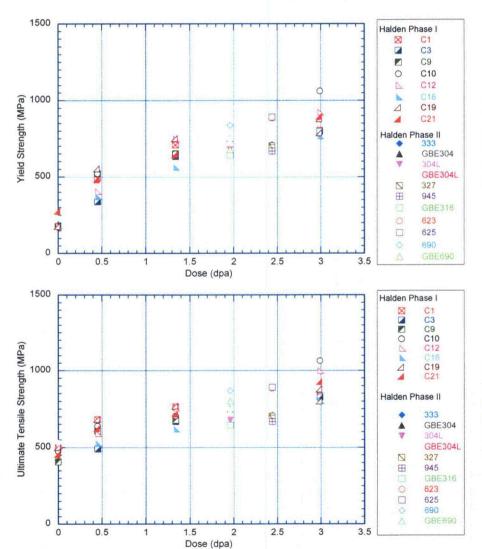


Figure 26. Variation in yield strength with irradiation dose in high-DO water at 289°C.

Figure 27. Variation in ultimate tensile strength with irradiation dose in high-DO water at 289°C.

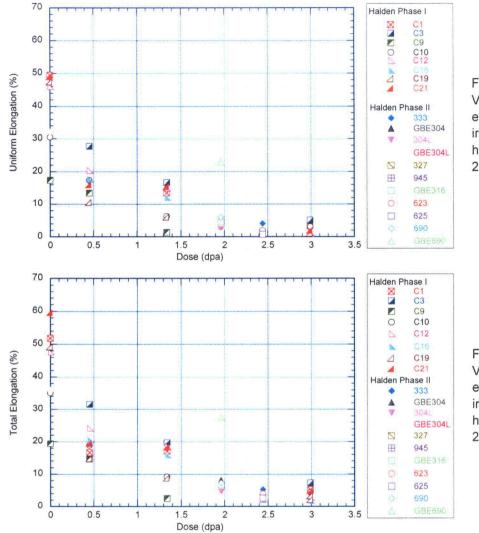
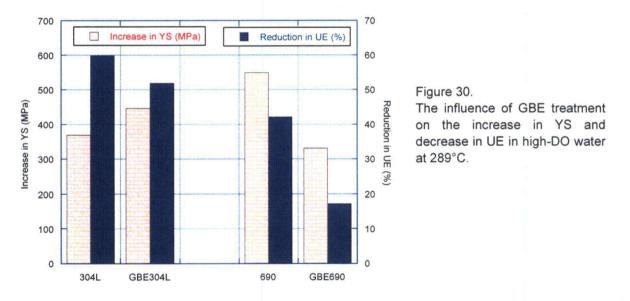


Figure 28. Variation in uniform elongation with irradiation dose in high-DO water at 289°C.

Figure 29. Variation in total elongation with irradiation dose in high-DO water at 289°C.

4.1.2 Influence of GBE Processing on the SSRT Behavior


The GBE processing is a thermomechanical treatment that increases the population of low Σ number CSL boundaries in the materials. Typically, a GBE treatment involves application of one or several iterations of strain-anneal or recrystallization-anneal schedules.²⁹ Thus, in addition to having a different grain boundary structure, the mechanical properties of GBE materials are also different from their baseline materials because of the thermomechanical treatment. The influence of GBE treatment on SSRT behavior is shown in Fig. 4. The SSRT curves on GBE materials are in red, and the SSRT curves for the baseline or similar materials are plotted in the same figure. As shown in Fig. 4, the YS and UTS of Type 304 SS with and without GBE treatment are very similar, but the elongation of GBE Type 304 SS is slightly larger. For Type 304L SS, both the YS and UTS of GBE material are somewhat higher, while their elongations are comparable. For Alloy 690, the YS of GBE material is lower, but the UTS is similar in both materials. The GBE Alloy 690 retains more strain hardening capability after irradiation. This condition leads to a significantly higher elongation compared to the alloy without GBE treatment.

Although four GBE materials were irradiated in the Halden Phase-II study, in only two cases do the baseline alloys, Type 304L SS and Alloy 690, have chemical compositions either identical or very close to their GBE counterparts (Table 1). To isolate the effect of the GBE process, the SSRT properties and tensile properties before irradiation of the baseline alloys and their GBE counterparts were compared.* Table 6 and Fig. 30 summarize the results of this comparison. While the increase in YS can be considered as to be the result of irradiation hardening, the reduction in UE is attributed to both the irradiation embrittlement and cracking behavior in the high-DO aqueous environment. Whether or not the GBE treatment affects irradiation hardening is unclear from the current results. For the Type 304 SS the increase in YS is greater for the GBE material; for Alloy 690 the increase in YS is smaller for the GBE material. For both alloys, the GBE process does appear to result in a smaller reduction in UE in high-DO water, but this effect is more significant in Alloy 690.

Table 6.	Comparison of SSR	F results with tensile prope	erties obtained before irradiation.

	Non-irr. in	n Air at Roon	n Temp. ^a	Irr. in High	n-DO Water	at 289°C			
Materials	YS (MPa)	UTS (MPa)	UE (%)	YS (MPa)	UTS (MPa)	UE (%)	ΔYS (MPa)	ΔUTS (MPa)	ΔUE (%)
304L	308	609	62	677	677	2.18	369	68	59.82
GBE304L	301	634	53	747	747	1.11	446	113	51.89
690	288	654	48	837	868	5.94	549	214	42.06
GBE690	346	697	40	677	801	22.8	331	104	17.20

^aProvided by the supplier of the GBE materials.

4.1.3 Influence of Alloying Elements on the SSRT Behavior of Austenitic SSs

As discussed in Section 4.1.1, the increase in YS and UTS in a SSRT test is primarily due to the irradiation hardening, but the loss of ductility results from both irradiation embrittlement and stress corrosion cracking (SCC). To illustrate the influence of alloy elements on IASCC behavior, elongation is the more relevant parameter. Thus, the UE of SSRT specimens tested in the high-DO aqueous environment will be the focus of the remainder of this section.

^{*}Provided by the supplier of the GBE materials.

Figure 31 plots the UE of the Halden Phase-II specimens as a function of several alloying elements. The Type 304 and 316 SSs are represented by circles and squares, respectively. All open symbols are for alloys without GBE treatment, while the closed symbols are for GBE alloys. For major alloying elements such as Chromium (Cr) and Nickel (Ni), no correlation between the UE and the bulk levels of the elements is evident. For the non-GBE alloys, although the data scatter is fairly large, there does seem to be some trend for the UE to increase with the Manganese (Mn) content. The most obvious correlation of the UE with an alloying element is with Carbon (C). As shown in Fig. 31d, there appears to be a nearly linear correlation between C content and the UE for C below 0.06 wt.%. A low-C content is generally associated with poor ductility in high-DO water at the dose level of ≈ 2 dpa, irrespective of whether the material is Type 304 SS or Type 316 SS, with or without GBE treatment.

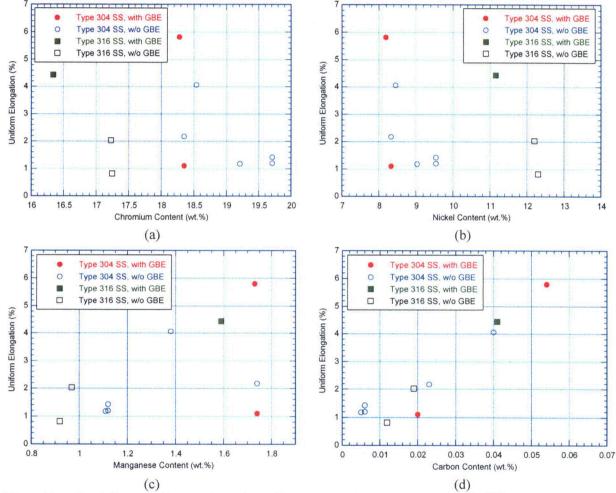
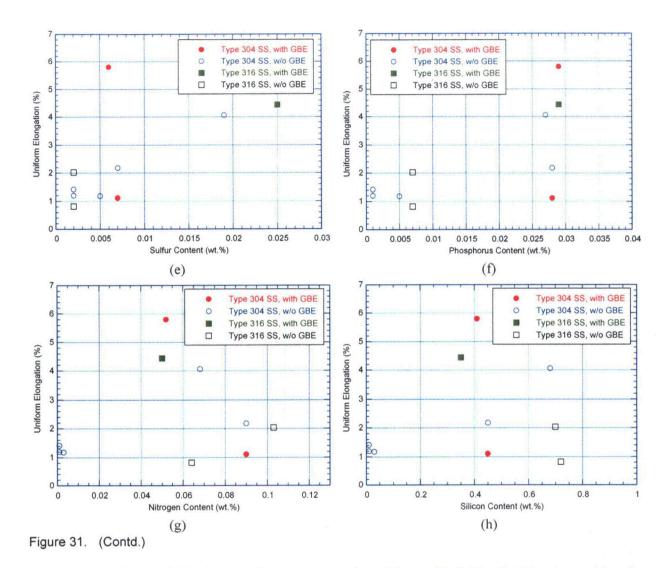



Figure 31. The influence of alloy elements on the uniform elongation for austenitic SSs with and without GBE treatment.

The correlation of UE with impurity elements, such as Silicon (Si), Sulfur (S), Phosphorus (P) and Nitrogen (N), is more complex due to the interdependence among alloying elements. For example, the austenitic SSs in the Halden Phase-II study with high-Si content usually contain more N, and the high-S or -P contents are typically associated with the high-C content as well. The apparent correlations between the UE and S or P content among non-GBE SSs may be due to the effect of C, as discussed above. More effort is needed to determine the influence of S and P on the SSRT behavior of austenitic SSs in high-DO water.

4.2 Fractographic Analyses

4.2.1 Influence of Irradiation and High-DO Water on the Fracture Morphology

The fractographic observations on the GBE Type 304L SS specimens tested in air and water environments (Fig. 25) illustrate the impact of irradiation and environment on the cracking behavior. The cross sections of the fractured specimens are shown in Figs. 5, 6, and 12. The fracture surface of the nonirradiated GBE Type 304L SS is entirely ductile, although the test was conducted in high-DO water (Fig. 5). The fracture surface of the irradiated GBE Type 304L SS also appears to be completely ductile

when tested in air (Fig. 6). Only on the fracture surface of the irradiated GBE Type 304L SS tested in high-DO water is a considerable amount of IG cracking observed (Fig. 12). The comparisons among these fracture specimens with identical chemical composition show that all three elements—irradiation, corrosive environment, and straining—are required for the occurrence of IASCC.

Necking occurred in all three GBE Type 304L SS specimens discussed above. Figures 7 and 13b show the gauge surfaces of these specimens close to the necked area. Roughness on the gauge surface resulting from large plastic deformation can be seen in the nonirradiated specimen tested in high-DO water (Fig. 7a) and in the irradiated specimen tested in air (Fig. 7b). In contrast, the gauge surface of the irradiated specimen tested in high-DO water is relatively smooth (Fig. 13b). Also, the SEM observations show that the visible deformation area is narrow for irradiated specimens tested in water or air. The difference in the plastic flow visible on the gauge surfaces may indicate localized deformation in irradiated specimens. Small surface cracks can also be seen on the gauge surface of the irradiated specimen tested in high-DO water.

4.2.2 IASCC Susceptibility of Halden Phase-II Specimens

The IASCC susceptibility of the Halden Phase-II specimens can be characterized from the fractographic analysis and SSRT results. Figure 32 shows the area fractions of both IG and TG cracking among Halden Phase-II materials, and Fig. 33 shows the UE from the SSRT tests. The GBE Type 304L SS has the largest IG fraction, while GBE Type 316 SS shows the largest amount of TG cracking. Chung and Shack²¹ argue that such TG cracking is a precursor to IG cracking, which can be triggered by small changes in conditions (e.g. lower strain rate, higher irradiation level, higher potential, etc). Compared to Type 316 SSs and Alloy 690, Type 304 SSs are more vulnerable to IG cracking when tested in high-DO water. At the dose level of \approx 2 dpa, more than 20% IG cracking can occur during SSRT tests among the susceptible heats of Type 304 SSs. In contrast, failures in Type 316 SSs show mainly TG cracks, which may or may not originate from IG sites. For Alloy 690, the failure appears to be primarily ductile at this dose level, and very little IG cracking is observed.

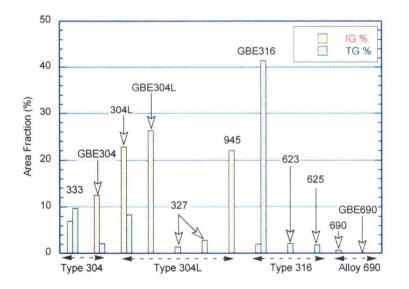


Figure 32.

Fraction of IG and TG fracture in the Halden Phase-II specimens tested in high-DO water at 289°C. The identifiers above the bars are the heat IDs.

A higher area fraction of IG or TG is usually associated with a lower uniform elongation, as seen by comparing Figs. 32 and 33. In Fig. 34, the IG fractions of the Halden Phase-II specimens and similar results from the Halden Phase-I specimens²¹ are plotted as a function of the SSRT uniform elongation. For UE greater than $\approx 10\%$, the corresponding IG fractions are small. So, the materials that are highly resistant to IGSCC can be differentiated from the more susceptible ones by using the UE information. However, UE is not a good indicator of IGSCC susceptibility for UE < $\approx 10\%$, as shown in Fig. 34.

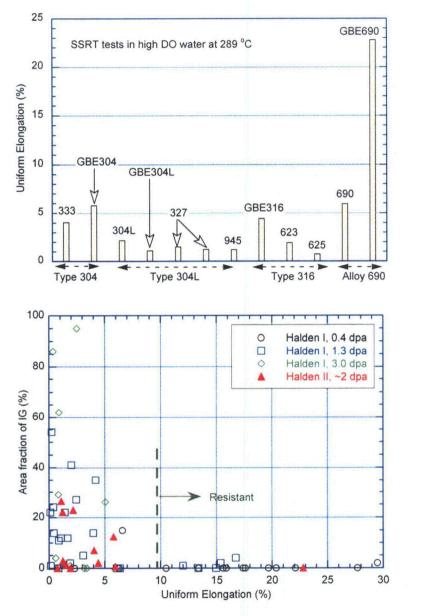


Figure 33.

Uniform elongations of the Halden Phase-II specimens tested in high-DO water at 289°C. The identifiers above the bars are the heat IDs.

Figure 34. Correlation between IG fraction and UE among Halden Phase-I and Phase-II specimens.

Figure 35 shows the number of IG and TG cracks observed in Halden Phase-II specimens. Very often, multiple IG cracks are present in a specimen. If the IG cracks on the gauge surface are assumed to occur randomly, then the number of IG cracks observed along the periphery of a fracture surface can be considered a measure of susceptibility to IG crack initiation. The more IG cracks observed in a SSRT specimen, the more likely an IG crack can initiate in the material. Because the IG crack initiation is time dependent, a longer SSRT test may allow more IG cracks to initiate; thus, the normalized number of IG cracks is a better representation for the likelihood of IG crack could start. In our constant strain rate test, this time period is equivalent to the UE. Thus, the number of IG cracks normalized by the UE, plotted in

Fig. 36, is a measure of the likelihood of IG crack initiation. As shown, the high-purity Type 304L SS with high-O content (Heat 945) is the most susceptible material for IG crack initiation among all Halden Phase-II specimens. The GBE Type 304L SS also shows a high possibility of IG crack initiation. The likelihood of IG crack initiation is more or less the same for all the other materials (i.e. IG cracking occurs in SSRT tests).

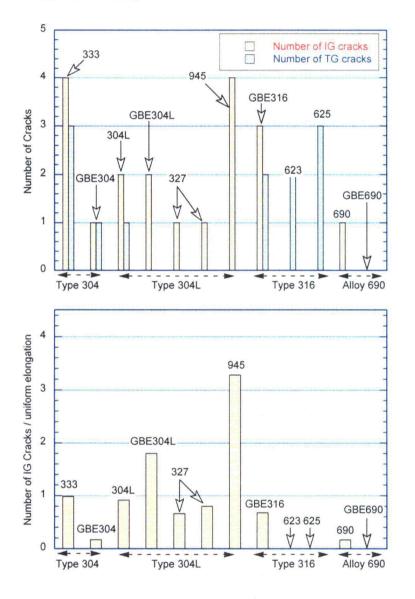


Figure 35.

Number of IG and TG cracks observed in Halden Phase-II specimens. The identifiers above the bars are the heat IDs.

Figure 36.

Number of IG cracks normalized by the UE in Halden Phase-II specimens. The identifiers above the bars are the heat IDs.

4.2.3 Effect of GBE Process on the IASCC Behavior

Since the concept of grain boundary design was introduced in the early 1980s,²⁸ many studies have shown the improved resistance of GBE materials to various forms of degradation involving intergranular phenomena,²⁸⁻³⁴ including SCC in Ni alloys ²⁷ and austenitic SSs.²⁵ The GBE process increases the population of CSL boundaries. Due to the geometrical symmetry around these boundaries, the free energies of CSL boundaries are much lower than those of random high-angle boundaries. The low CSL boundary energy decreases the driving force for grain-boundary segregation and, therefore, reduces Cr

depletion at the boundaries. One objective of the Halden Phase-II study was to investigate the effect of GBE treatment on the IASCC behavior of neutron-irradiated austenitic SSs and Alloy 690. The percentages of CSL boundaries for these materials, provided by the vendor, are shown in Table 7.

	Boundary Type (Σ)																
Heat ID	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	≤29	>29
GBE 304	1.7	52.0	0.3	0.7	5.3	0.7	0.3	0.3	0.3	0.1	0.2	0.2	0.5	2.7	1.6	66.9	33.1
GBE 304L	1.5	49.3	0.2	0.3	6.0	0.5	0.3	0.2	0.2	0.3	0.2	0.1	0.3	2.6	3.9	66.1	33.9
GBE 316	1.8	52.3	0.5	0.2	4.9	0.5	0.3	0.6	0.1	0.2	0.5	0.2	0.1	2.3	2.0	66.4	33.6
GBE 690	1.2	52.3	0.1	0.2	5.6	0.8	0.3	0.1	0.2	0.1	0.4	0.1	0	3.1	6.0	70.7	29.3

Table 7. Percentages of CSL boundaries (Σ) in GBE materials irradiated in Halden Phase-II study.

Figure 32 shows that the IG fractions of GBE Type 304 SS and GBE Type 304L SS are about the same as those of their non-GBE counterparts (Heat 333 and Type 304L). The slightly higher values of UE for GBE materials (Fig. 33) are associated with the significantly smaller amounts of TG fracture in these materials compared to the baseline materials. Also, the non-GBE materials (Heat 333 and Type 304L) show a somewhat greater likelihood of IG crack initiation, as illustrated in Fig. 36. However, at this dose level (\approx 2 dpa), overall, the IASCC susceptibility in high-DO water of GBE and non-GBE Type 304 or 304L SSs does not seem to be significantly different.

For the GBE Type 316 SS, the IG fraction is significantly lower than that observed in either the GBE or baseline Type 304 SSs. The major non-ductile fracture mode is TG in the GBE Type 316 SS, although more IG cracks are initiated. However, a direct comparison between GBE and non-GBE Type 316 SSs is not possible because a reference non-GBE Type 316 SS from the same heat or a heat with comparable chemical composition is not available.

For Alloy 690, the difference in the UE of the GBE and non-GBE alloys is considerably larger, as also shown in Fig. 33. Intergranular cracking appears in Alloy 690 but is absent in its GBE counterpart. At \approx 2 dpa, the GBE treatment appears to significantly increase the IASCC resistance of Alloy 690 in high-DO water.

The reason for the apparent relatively small effect of the GBE process on IASCC susceptibility of austenitic SSs is unclear at present. The effect of CSL boundaries on the IASCC resistance may be overwhelmed by other stronger effects. It is possible that the influence of the GBE process on the IASCC of austenitic SSs may be underestimated in our study. The starting condition of the non-GBE materials can also contribute to the resulting grain-boundary structure after GBE processing.³⁴ The original fraction of CSL boundaries in our test materials is unknown. With only the information of CSL population after GBE treatment, we can only conclude that the current CSL population (~67% for $\Sigma \leq 29$) is insufficient to reduce the IASCC susceptibility for austenitic SSs. The current GBE treatment for Alloy 690 (~71% for $\Sigma \leq 29$) appears to result in a higher resistance to IASCC in high-DO water.

4.2.4 Effects of Alloying Elements on the IASCC Behavior of Austenitic SSs

4.2.4.1 Effects of Mo and O

The beneficial effect of Mo on the IASCC behavior of austenitic SSs can be illustrated by comparing the SSRT test results from Type 304 and 316 SSs. Figure 37 compares the IG cracking behavior of Type 304 and 316 SSs. Despite the variability among the same type of SS, the IG cracking in Type 304 SSs appears to be much more extensive than in Type 316 SSs. The IG area fractions of all Type 304 SSs, except the high-purity Type 304L SS with low-O content (Heat 327), are at least a factor

of three higher than those in Type 316 SSs. In the present study, only one out of three Type 316 SSs (GBE Type 316 SS) showed IG fracture, and the resulting IG area fraction was about the same as the lowest fraction observed for Type 304 SS. However, in terms of susceptibility to IG crack initiation, the difference between Type 304 SS and GBE Type 316 SS is less significant. The number of IG cracks per unit UE in GBE Type 316 SS is about the same as in most Type 304 SSs.

Since the main difference between Type 304 and 316 SSs is their Mo content, the difference in IASCC behavior is attributed to the Mo addition in Type 316 SSs. Jenssen et al. ³⁵ observed the same beneficial effect of Mo in a dose range (\approx 1.5 dpa) similar to this study. At a higher dose level (\approx 15 dpa), the beneficial effect on IASCC resistance is lost. Grain-boundary microchemical analysis indicates that Mo helps to retain Cr at the grain boundaries ^{35,36} and, therefore, improves the IASCC resistance of the austenitic SSs. The Mo enrichment at grain boundaries before irradiation is believed to be responsible for the IASCC mitigation. Sufficiently high levels of neutron irradiation reduce or completely remove Mo enrichment at the grain boundaries. This condition allows Cr depletion to occur.

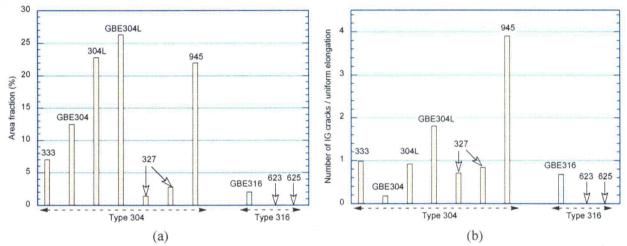


Figure 37. Comparisons of Type 304 and 316 SSs for (a) the IG area fraction and (b) the number of IG cracks normalized by uniform elongation.

The influence of O on the IASCC behavior can be determined by comparison of two heats of highpurity Type 304 SS with different bulk O contents, Heats 327 and 945. The O contents of these two steels are 0.008 and 0.047 wt.%, respectively. As shown in Fig. 37, the combination of IG area fraction and the number of IG cracks per unit UE is much higher in the high-O SS (Heat 945). This finding suggests a deleterious effect of O on the IASCC performance and is consistent with earlier studies with proton irradiation by Cookson et al. ³⁷ and with neutron irradiation by Chung et al.^{38,39} The easy crack initiation at the oxide particles is considered responsible for the increased susceptibility of IASCC in high-O SS.³⁷

4.2.4.2 Effects of Cr and Ni

The chemical compositions of Type 304 and Type 316 SSs differ significantly in Cr and Ni contents. However, as previously noted, Mo is the key alloying element that distinguishes Type 316 SS from Type 304 SS. To single out the effects of Cr or Ni, the IG cracking behavior should be compared within the same type of austenitic SS. Figure 38 shows the variations of the IG area fractions and numbers of IG cracks with Cr and Ni contents for Type 304 and 316 SSs. The data sets for the two steels are well apart because of the Mo addition in the Type 316 SS. For the variation in Cr or Ni that occurs

within the specification of a single type of steel, the effects of Cr or Ni on IG cracking are ambiguous. A decreasing trend in IG area fraction may exist with an increase in Cr or Ni content for Type 304 SS (Figs. 38a and 38c). No correlation is apparent between the Cr or Ni contents and the likelihood of IG crack initiation, as represented by the number of IG cracks per unit UE (Figs. 38b and 38d). As suggested in literature²³, greater resistance to IASCC in high-Cr or -Ni SSs could be possible due to the changes in the deformation processes in these materials with increasing Cr and Ni contents.

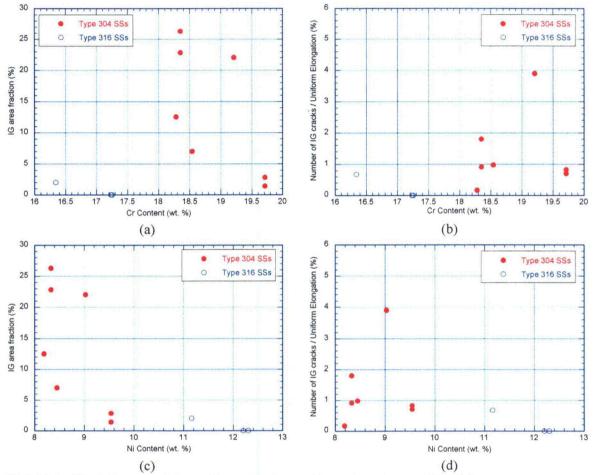


Figure 38. The influence of Cr and Ni content on the IG cracking for austenitic SSs.

4.2.4.3 Effects of C and S

The influence of C content on the IG cracking behavior is illustrated in Fig. 39. Both the IG area fraction and IG crack initiation decrease with an increase in C content, except for the heat of high-purity Type 304L SS with low O. The beneficial effect of C on the resistance to IG cracking is consistent with the results in the SSRT tests, where the UE increases with C content, as shown in Fig. 31d. Halden Phase-I²¹ and several other studies^{40,41} reported a similar behavior (i.e., a minimum C content is required for improved resistance to IASCC). Typically, austenitic SSs with more than 0.04 wt.% C exhibit better IASCC resistant than low-C SSs.

The deleterious effect of S on the IASCC susceptibility of austenitic SSs was discussed in the Halden Phase-I study.²¹ At a dose of ≈ 3 dpa, the percent IG cracking sharply increased in austenitic SSs

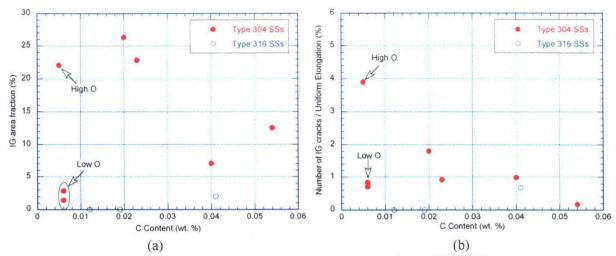


Figure 39. The influence of C content on the IG cracking behavior for austenitic SSs.

for S contents > ≈ 0.002 wt %. In Fig. 40a, the IG area fraction and the number of IG cracks are plotted against the S content for the Halden Phase-II specimens (irradiated to ≈ 2 dpa). A steep rise in IG area fraction with S content is indeed observed for the Type 304 SSs; the only exception is the data point for Heat 333 (with 0.019 wt.% S). Unfortunately, no specimens in the Halden Phase-II irradiation have S content below 0.002 wt.%. As a result, the IASCC resistance for the S content below <0.002 wt.% cannot be verified. The effect of S content on IG crack initiation is less obvious (Fig. 40b).

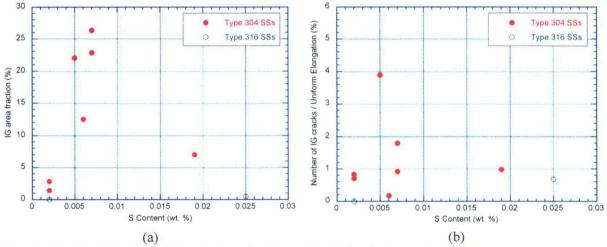


Figure 40. The influence of S content on the IG cracking behavior for austenitic SSs.

In addition to reporting a significant effect of S and C contents on IASCC behavior, the Halden Phase-I study concluded that there was a strong interaction between these elements. A minimum C content was required to suppress IASCC susceptibility even with the S content below 0.002 wt.%.

In the report on the Phase-I work, the strong effects of C and S contents on IASCC behavior and their potential interaction led to the development of the S-C map shown in Fig. 41,²¹ which can be used to determine the IASCC susceptibility for different compositions of austenitic SSs. In Fig. 42, the data from the Halden Phase-II study are also plotted on an S-C map. The line that separates the resistant and susceptible regimes is based on the result of Ref. 21. Although the data are limited in our current study,

they seem consistent with the conclusion of Ref. 21 that the IASCC-resistant regime is located at the low-S and high-C corner of the S-C map. Note that the IASCC-resistant regime in Fig. 42 is based on the data for a 3-dpa irradiation dose, and the position of the boundary could be dose dependent.

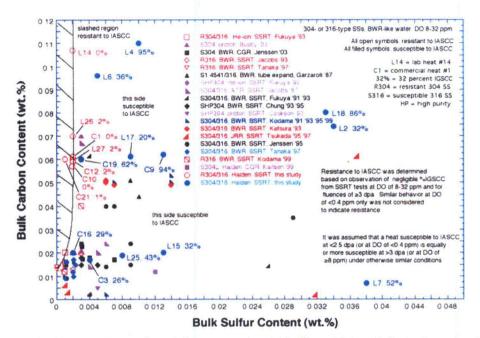


Figure 41. Range of bulk S and C contents in which Type 304 or 316 steels are resistant or susceptible to IASCC in BWR-like oxidizing water.

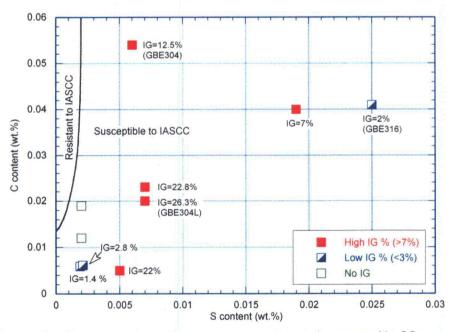


Figure 42. Ranges in the sulfur-carbon content map that austenitic SSs are resistant and susceptible to IASCC in high-DO aqueous environment.

4.2.4.4 Effects of Other Alloying Elements

Figure 43 shows the variation of IG area fraction and normalized number of IG cracks with P content. Neither IG area fraction nor the IG crack initiation seems to correlate with P content in the present study. This observation is consistent with earlier results by Chung et al.,³⁹ Busby and Was,²³ Briant and Andresen.⁴² Detailed analysis of the grain-boundary segregation by Briant ⁴³ shows that P could contribute to the IG cracking indirectly by a competitive segregation mechanism between P and S, and P and Sb. This competitive mechanism suggests a beneficial effect of P and may be responsible for the slightly increase in the UE with P content as seen in Fig. 31f. Nevertheless, the potential effect of P on IASCC is clearly secondary and is observed in neither the IG area fraction nor normalized number of IG cracks (Fig. 43).

Figure 44 shows the influence of Mn content on IG cracking in austenitic SSs. Because of the potential effect of O content on the cracking behavior, alloys with high- and low-O content are identified in the plots. If the data point for the high-O content Type 304L SS is excluded, the results suggest an increase of IG area fraction with Mn content (Fig. 44a). The variation in the number of IG cracks, however, is too small to be used to reliably assess any effect of Mn on IG crack initiation.

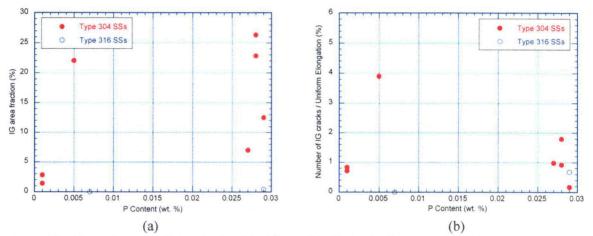


Figure 43. The influence of P content on the IG cracking behavior for austenitic SSs.

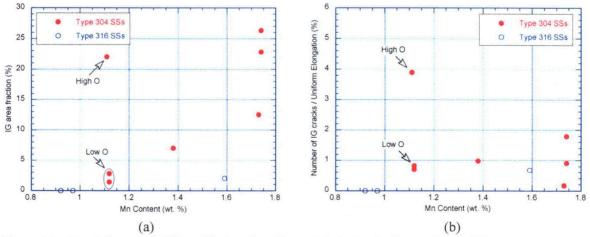


Figure 44. The influence of Mn content on the IG cracking behavior for austenitic SSs.

Figure 45 shows the influence of N content on the IG cracking behavior. With an increase in the N content, the IG area fraction and number of IG cracks both seem to increase for Type 304 SSs, except for the high-O Type 304 SS (Fig. 45a). A similar deleterious effect of N has also been noted by Jacobs⁴⁵ for Type 348 SS. The increase in IG cracking may be related to an increase in the tensile strength of SSs with N addition. The influence of N content on IG initiation is not clear as shown in Fig. 45b.

Figure 46 shows the IG cracking behavior with respect to the Si contents. No obvious dependence can be seen between the IG area fraction and number of IG cracks with Si content. The influence of Si on IG cracking has been an open question. Conflicting results have been reported on the role of Si in IASCC behavior.^{21,23,44,45} Silicon is a major impurity in austenitic SSs and can segregate extensively to the grain boundaries during irradiation. The bulk content of Si cannot characterize the microchemistry at the grain boundaries. This problem might contribute to the conflicting results regarding the influence of Si on IASCC susceptibility.

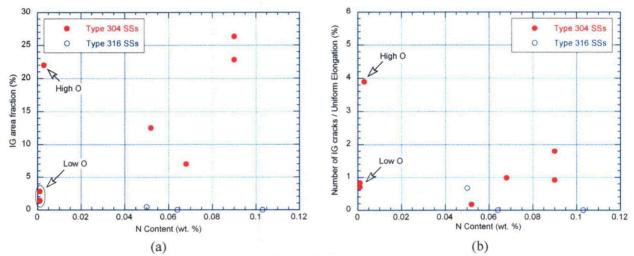


Figure 45. The influence of N content on the IG cracking behavior for austenitic SSs.

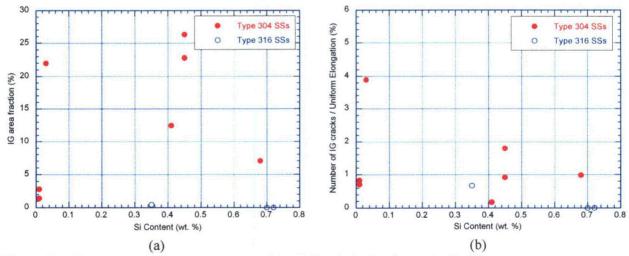


Figure 46. The influence of Si content on the IG cracking behavior for austenitic SSs.

Type 316LN SSs with and without Titanium (Ti) addition (Heat 623 and 625) were investigated in this study to determine the effect of Ti on IASCC susceptibility. The elongation of the Ti-doped Type 316LN SS was slightly lower than that of the base material, as shown in Fig. 4c. Because neither material showed IG cracking, the tests provide no insight on the influence of Ti additions on IASCC behavior. This finding is consistent with the results of Busby and Was.²³ Although Busby and Was²³ found a potential beneficial effect of Ti in reducing RIS, they also found that Ti addition does not change the IASCC behavior of austenitic SSs.

4.2.5 Irradiation Dose and IASCC Behavior

The IASCC behavior is affected by irradiation hardening, embrittlement, radiation-induced microchemistry changes, and radiolysis. All of these processes are dose dependent; and therefore, IASCC behavior varies with irradiation dose as well. The influence of neutron dose on SSRT properties was discussed in Section 4.1.1. Both irradiation hardening and embrittlement respond rapidly to irradiation dose in low dose region. The increase in YS and UTS is evident at ≈0.45 dpa as shown in Figs. 26 and 27. The YS and UTS continue to rise with irradiation dose and are not saturated at 3 dpa. Similarly, the elongation also reduces significantly at ≈ 0.45 dpa and continues to drop with neutron fluence. In contrast to these steep changes of strength and elongation at low doses, the occurrence of IASCC requires some dose accumulation or a threshold dose. Figure 47 shows the variation of IG area fraction as a function of irradiation dose for the Halden Phase-II specimens and commercial heats from the Halden Phase-I study. Intergranular cracking is not observed at ≈ 0.45 dpa for the commercial heats of austenitic SSs from the Halden irradiations. Beyond ≈ 0.45 dpa, IG cracking can occur in the most susceptible steels, and the IG area fraction increases gradually with increasing irradiation dose. The SSRT results from the Halden phase I and II study show that IG cracking starts to occur between 0.45 and 1.3 dpa for most austenitic SSs. This dose range seems to be consistent with the threshold value of 0.75 dpa reported by other researchers.^{9,10} However, the Halden SSRT data set is insufficient to determine precisely the IASCC threshold dose at present.

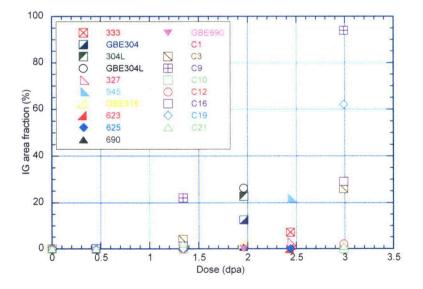
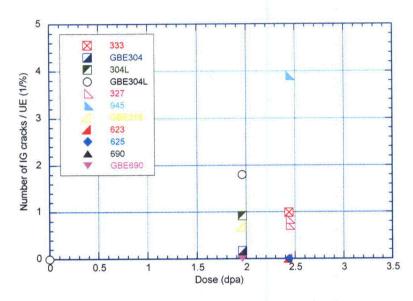



Figure 47.

Dose dependence of IG area fraction for Halden Phase-I and Phase-II specimens tested in high-DO water at 289°C.

As discussed in Section 4.2.2, the number of IG cracks per unit UE can be used as a measure of the likelihood of IG crack initiation. The likelihood of initiating an IG crack is expected to increase with increasing irradiation dose. Figure 48 shows that the number of IG cracks varies with irradiation dose.

However, the data are also inadequate to use this measure to independently identify a threshold for IG crack initiation.

Dose dependence of number of IG cracks per UE for Halden Phase-II specimens tested in high-DO water at 289°C.

5 Summary

The IASCC behavior of several austenitic SSs and Alloy 690 has been investigated using flat dogbone tensile specimens irradiated in the Halden heavy boiling water reactor to ≈ 2 dpa. The SSRT tests were conducted in high-DO water at 289°C. Fractographic analyses of the SSRT specimens were performed with an SEM to characterize the fracture morphology and determine the area fraction of brittle fracture (i.e., IG plus TG fracture). The uniform elongation of the SSRT specimens and the fracture characteristics were used to evaluate the IASCC susceptibility of the alloys. The significant results from the present study are summarized as follow:

- (a) Irradiation hardening and embrittlement occurred in all irradiated materials. For austenitic SSs, a small amount of strain hardening remained in the normal-C Type 304 and 316 SSs, but no strain hardening was observed in the low-C SSs (e.g. <0.02 wt.%). For Alloy 690, a considerable amount of strain hardening remained in the GBE alloy, whereas only limited strain hardening occurred in the non-GBE alloy. IG cracking starts to occur between 0.4 and 1.3 dpa for most austenitic SSs in the Halden irradiation programs.</p>
- (b) At a dose of ≈2 dpa, a lower C content is usually associated with poor ductility in high-DO water for all austenitic SSs, with or without GBE treatment. The UE obtained from SSRT tests in high-DO water increases linearly with C content below 0.06 wt.%.
- (c) A general correlation appeared to exist between the UE and percent IG fracture. The UE can be correlated with the IASCC susceptibility, but it is not sensitive enough at the low strain range. The IG area fraction and the number of IG cracks per unit UE can be used to assess the IASCC behavior.
- (d) Intergranular cracks initiate on the surface of a SSRT specimen and then extend into the specimen under stress. Transgranular cracks observed in the SSRT specimens may or may not originate from IG crack sites.
- (e) The GBE process used in this study increases the CSL boundaries (Σ<29) to about 66% for austenitic SSs and to about 70% for Alloy 690. For Alloy 690, the GBE treatment results in a smaller reduction in UE caused by irradiation and reduces the IASCC susceptibility in high-DO water at ≈2 dpa. However, little benefit of the GBE process used in this study was observed for Type 304 or 304L SSs.
- (f) Type 316 SSs are generally more resistant to IASCC than Type 304 SSs. The presence of Mo or the higher Ni concentrations in Type 316 SSs may be responsible for the difference in IASCC susceptibility between Type 304 and 316 SSs.
- (g) The O content is critical for IASCC susceptibility; high-O content contributes to IASCC susceptibility by enhancing IG crack initiation.
- (h) Low-C austenitic SSs are more susceptible to IASCC than the normal-C SSs. An S content below 0.002 wt.% is also a critical requirement for IASCC resistance in austenitic SSs. A minimum C content is needed to suppress IASCC susceptibility in the low-S steels. Thus, there may be a trade-off in minimizing susceptibility to IASCC and minimizing susceptibility to IGSCC resulting from conventional SS sensitization.

. . .

References

- 1. NRC Generic Letter 94-03, "Intergranular Stress Corrosion Cracking of Core Shrouds in Boiling Water Reactors," U.S. Nuclear Regulatory Commission, July 25, 1994.
- 2. NRC Information Notice 92-57, "Radial Cracking of Shroud Support Access Hole Cover Welds," U.S. Nuclear Regulatory Commission, August 11, 1992.
- 3. NRC IE Bulletin No. 80-07, "BWR Jet Pump Assembly Failure," U.S. Nuclear Regulatory Commission, April 4, 1980.
- 4. NRC Information Notice 93-101, "Jet Pump Hold-Down Beam Failure," U.S. Nuclear Regulatory Commission, December 17, 1993.
- 5. NRC Information Notice 97-02, "Cracks Found in Jet Pump Riser Assembly Elbows at Boiling Water Reactors," U.S. Nuclear Regulatory Commission, February 6, 1997.
- 6. NRC Information Notice 95-17, "Reactor Vessel Top Guide and Core Plate Cracking," U.S. Nuclear Regulatory Commission, March 10, 1995.
- 7. NUREG-1544, "Status Report: Intergranular Stress Corrosion Cracking of BWR Core Shrouds and Other Internal Components," U.S. Nuclear Regulatory Commission, March 1996.
- 8. NRC Information Notice 98-11, "Cracking of Reactor Vessel Internal Baffle Former Bolts in Foreign Plants," U.S. Nuclear Regulatory Commission, March 25, 1998.
- Jacobs, A. J., G. P. Wozadlo, K. Nakata, T. Yoshida, and I. Masaoka, "Radiation Effects on the Stress Corrosion and Other Selected Properties of Type-304 and Type-316 Stainless Steels," Proc. 3rd Intl. Symp. Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, G. J. Theus and J. R. Weeks, eds., The Metallurgical Society, Warrendale, PA, pp. 673-680, 1988.
- Gordon, G. M. and K. S. Brown, "Dependence of Creviced BWR Component IGSCC Behavior on Coolant Chemistry", Proc. 4th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, NACE, Houston, TX, pp. 1.4.46-14.62, 1990.
- 11. Garzarolli, F., D. Alter, P. Dewes, and J. L. Nelson, "Deformability of Austenitic Stainless Steels and Ni-Base Alloys," Proc. 3rd Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, G. J Theus and J. R. Weeks, eds., The Metallurgical Society, Warrendale, PA, pp. 657-664, 1988.
- Chung, H. M., R. V. Strain, and R. W. Clark, "Slow-Strain-Rate-Tensile Test of Model Austenitic Stainless Steels Irradiated in the Halden Reactor," Environmentally Assisted Cracking in Light Water Reactors Semiannual Report July 2000-December 2000, NUREG/CR-4667, Vol. 31, ANL-01/09, pp. 22-32, 2002.
- 13. Bruemmer, S. M., and Gary S. Was, "Microstructural and Microchemical Mechanisms Controlling Intergranular Stress Corrosion Cracking in Light-Water-Reactor Systems," J. Nucl. Mater., **216**, 348-363, 1994.

- 14. Scott, P., "A Review of Irradiation Assisted Stress Corrosion Cracking," J. Nucl. Mater., 211, 101-122, 1994.
- 15. Osozawa, K., and H. J. Engell, "The Anodic Polarization Curves of Iron-Nickel-Chromium Alloys," Corr. Sci., 6, 389-393, 1966.
- 16. Tedmon, C. S., Jr., D. A. Vermilyea, and J. H. Rosolowski, "Intergranular Corrosion of Austenitic Stainless Steel," J. Electrochem. Soc., **118**, 192-202, 1971.
- 17. Bruemmer S. M., L. A. Charlot and D. G. Atteridge, "Sensitization Development in Austenitic Stainless Steel: Measurement and Prediction of Thermomechanical History Effects," Corrosion, 44, 427, 1987.
- Andresen, P. L., F. P. Ford, S. M. Murphy, and J. M. Perks, "State of Knowledge of Radiation Effects on Environmental Cracking in Light Water Reactor Core Materials," Proc. 4th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, NACE, Houston, TX, pp. 1.83-1.121, 1990.
- Chung, H. M., W. R. Ruther, and R. V. Strain, "Irradiation-Assisted Stress Corrosion Cracking of Model Austenitic Stainless Steels Irradiated in the Halden Reactor," NUREG/CR-5608, ANL-98/25, March 1999.
- 20. Chung, H. M., W. R. Ruther, R. V. Strain, and W. J. Shack, "Irradiation-Assisted Stress Corrosion Cracking of Model Austenitic Stainless Steel Alloys," NUREG/CR-6687, ANL-00/21, Oct. 2000.
- Chung, H. M. and W. J. Shack, "Irradiation-Assisted Stress Corrosion Cracking Behavior of Austenitic Stainless Steels Applicable to LWR Core Internals," NUREG/CR-6892, ANL-04/10, Jan. 2006.
- 22. Chung, H. M., and R. W. Strain, "Slow-Strain-Rate-Tensile Test of Model Austenitic Stainless Steels Irradiated in the Halden Reactor," Environmentally Assisted Cracking in Light Water Reactors, Annual Report, January-December 2003, NUREG/CR-4667, Vol. 34, ANL-05/17, May 2006.
- 23. Busby, J. T., and G. S. Was, "Irradiation-Assisted Stress Corrosion Cracking in Model Alloys with Solute Additions," Proc. of the 11th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, NACE, Houston, TX, pp. 995-1014, 2003.
- 24. Was, G. S., "Recent Developments in Understanding Irradiation Assisted Stress Corrosion Cracking," Proc. 11th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, NACE, Houston, TX, pp. 965-985, 2003.
- Gertsman, V. Y., and K. Tangri, "Grain Boundary Distributions, Texture and Orientation Correlations in Austenitic Stainless Steels," Scripta Metallurtica et Materialia, 33 (7), 1037-1042, 1995.
- Lin, P., G. Palumbo, U. Erb, and K. T. Aust, "Influence of Grain Boundary Character Distribution on Sensitization and Intergranular Corrosion of Alloy 600," Scripta Metallurtica et Materialia, 33 (9), 1387-1392, 1995.

- 27. Was, G. S., B. Alexandreanu, P. Andresen, and M. Kumar, "Role of Coincident Site Lattice Boundaries in Creep and Stress Corrosion Cracking," Interfacial Engineering for Optimized Properties III, Materials Research Society Symposium Proceedings, Vol. 819, pp. 87-100, 2004.
- 28. Watanabe, T., "Approach to Grain Boundary Design for Strong and Ductile Polycrystals," Res. Mechanica: Inter. J. Struct. Mech. Mater. Sci., 11 (1), 47-84, 1984.
- 29. Randle, V., "Twinning-Related Grain Boundary Engineering," Acta Materialia 52, 4067-4081, 2004.
- 30. Kim, H. M., and J. A. Szpunar, "The Effect of Texture and Grain Boundary Structure on the Intergranular Corrosion of Stainless Steel," Mat. Sci. Forum, **157-162**, 1997-2004, 1994.
- 31. Palumbo, G., E. M. Lehockey, and P. Lin, "Applications for Grain Boundary Engineered Materials," JOM, 50 (2), 40-43, 1998.
- 32. Was, G. S., V. Thaveeprungsriporn, and D. C. Crawford, "Grain Boundary Misorientation Effects on Creep and Cracking in Ni-Based Alloys," JOM, 50 (2), 44-49, 1998.
- 33. Randle, V., and G. Owen, "Mechanisms of Grain Boundary Engineering," Acta Materialia 54, 1777-1783, 2006.
- 34. Randle, V., "Twinning-Related Grain Boundary Engineering," Acta Materialia, 52, 4067-4081, 2004.
- 35. Jenssen, A., L. G. Ljungberg, J. Walmsley, and S. Fisher, "Importance of Molybdenum on Irradiation-Assisted Stress Corrosion Cracking in Austenitic Stainless Steels," Corrosion, 54 (1), 48-60, 1998.
- 36. Cole, J. I., T. R. Allen, G. S. Was, Y. Wang, and E. A. Kenik, "The Effect of Bulk Composition on the Radiation-Induced Microstructures and Segregation Behavior in Model Austenitic Stainless Steel Alloys: A Proton Irradiation Study," Proc. Tenth Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactor, NACE, Houston, TX, 2001.
- 37. Cookson, J. M., G. S. Was, and P. L. Andresen, "Oxide-Induced Initiation of Stress Corrosion Cracking in Irradiated Stainless Steels," Corrosion, 54 (4), 48-60, 1998.
- Chung, H. M., W. E. Ruther, J. E. Sanecki, and T. F. Kassner, "Irradiation-Induced Sensitization and Stress Corrosion Cracking of Type 304 Stainless Steel Core: Internal Components," Proc. of the 5th Int. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, D. Cubicciotti, ed., NACE, Houston, TX, p. 795, 1992.
- 39. Chung, H. M., W. E. Ruther, J. E. Sanecki, A. Hins, N. J. Zaluzec, and T. F. Kanssner, "IASCC of Austenitic Stainless Steels: Recent Progress and New Approaches," J. Nucl. Mater., 239, 61-79, 1996.
- 40. Tsukada, T., and Y. Miwa, "Stress Corrosion Cracking of Neutron Irradiated Stainless Steels," Proc. 7th Int. Symp. on Environmental Degradation of Materials in Nuclear Power System--Water Reactors, August 7-10, 1995, Breckenridge, CO, G Airey et al., eds., NACE, Houston, TX, pp. 1009-1018, 1995.

- 41. Fukuya, K., S. Shima, K. Nakata, S. Kasahara, A. J. Jacobs, G. P. Wozadlo, S. Suzuki, and M. Kitamura, "Mechanical Properties and IASCC Susceptibility in Irradiated Stainless Steel," Proc. 6th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, August 1-5, 1993, San Diego, CA, R. E. Gold and E. P. Simonen, eds., The Minerals, Metals, and Materials Society, Warrendale, PA, pp. 565-572, 1993.
- 42. Briant, C. L., and P. L. Andresen, "Grain Boundary Segregation in Austenitic Stainless Steels and Its Effect on IG Corrosion and SCC," Met. Trans A., **19A** (3), 495-504, 1988.
- 43. Briant, C. L., "Competitive Grain Boundary Segregation in Fe-P-S and Fe-P-Sb Alloys," Acta Metallurgica, 36 (7), 1805-1813, 1988.
- 44. Tsujada, T., Y. Miwa, and H. Nakajima, "Stress Corrosion Cracking of Neutron Irradiated Type 304 Stainless Steels," Proc. 7th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactor, G. Airey et al., eds., NACE, Houston, TX, pp. 1009-1019, 1995.
- 45. Jacobs, A. J., R. E. Clausing, M. K. Miller, and C. Shepherd, "Influence of Grain Boundary Composition on the IASCC Susceptibility of Type 348 Stainless Steel," Proc. 4th Intl. Symp. on Environmental Degradation of Materials in Nuclear Power Systems--Water Reactors, NACE, Houston, TX, pp. 14.21-14.45, 1990.

Appendix A

Appendix A

Test ID		SSRT001							<u>/</u>
Specimer	ı ID	GBE304-0	2	Test Temp.	289°C	Yield Stre	ength (MPa)		750
Heat ID		GBE304		Test Env.	High-DO Wa		Tensile Stren	gth (MPa)	750
Material	Description	GBE Type	304 SS	Strain Rate	3.31E-7 1/s		Elongation (%		5.80
Dose		1.96 dpa				Total Elo	ngation (%)		8.22
		. <u>.</u>							
		Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	_
0.	.000	0.000	0.166	292.656	2.313	732.661	6.073	734.514	
0.	.082 1	44.197	0.181	318.048	2.420	731.178	6.175	734.514	
0.	.082 1	44.382	0.192	337.695	2.514	733.217	6.278	734.329	
· 0.	.081 1	42.899	0.200	361.975	2.613	734.143	6.390	731.363	
0.	.082 1	44.382	0.219	384.587	2.724	731.549	6.491	731.549	
0.	.082 1	44.011	0.233	408.681	2.818	733.587	6.592	731.734	
0.	.082 1	44.753	0.249	432.405	2.926	732.105	6.693	732.105	
0.	.082 1	44.011	0.263	456.314	3.019	734.514	6.806	728.954	
0.	.082 1	44.197	0.268	483.004	3.125	733.217	6.912	727.842	
0.	.082 1	44.011	0.285	506.172	3.227	733.217	7.016	727.286	
0.	.082 1	44.011	0.291	532.490	3.325	734.329	7.125	725.432	
0.	.082 1	44.938	0.303	557.141	3.426	734.514	7.231	724.135	•
0.	.082 1	44.938	0.314	581.977	3.532	733.217	7.350	719.501	
0.	.082 1	44.567	0.309	611.261	3.630	734.514	7.454	718.760	
0.	.083 1	46.421	0.317	637.209	3.735	733.402	7.579	712.458	
0.	.085 1	48.645	0.324	663.157	3.834	734.329	7.702	706.713	
0.	.084 1	47.348	0.350	683.915	3.936	734.329	7.858	691.885	•
0.	.084 1	48.274	0.368	706.898	4.037	734.514	8.033	671.868	
0.	.085 1	49.572	0.406	724.506	4.144	733.031	8.268	635.170	
0.	.086 1	51.054	0.451	740.074	4.239	734.885	8.561	582.904	
0.	.087 1	53.464	0.523	748.044	· 4.340	735.070	10.733	14.827	
0.	.087 1	52.723	0.621	749.341	4.443	734.699	10.835	14.827	
0.	.089 1	55.688	0.764	738.036	4.538	736.738	10.942	13.530	
0.	.090 1	58.839	0.870	736.738	4.650	733.958	11.045	12.974	
0	.091 1	59.951	0.981	734.329	4.748	735.070	11.147	13.159	
0.	.093 1	62.916	1.085	733.587	4.851	734.514	11.252	12.047	
0	.094 1	65.326	1.195	731.549	4.951	735.255	11.354	12.047	
0	.096 1	69.033	1.290	733.217	5.056	734.329	11.449	13.901	
0	.096 1	69.589	1.397	731.919	5.155	735.070	11.550	14.086	
0	.101 1	77.744	1.498	732.105	5.258	734.699	11.660	12.047	
0	.103 1	80.709	1.602	732.105	5.357	735.441			
0		88.308	1.706	731.549	5.460	735.255	. ·		
0	.116 2	.04.619	1.804	732.475	5.564	734.514			
		16.666	1.905	732.846	5.667	734.143			
		32.976	2.007	732.661	5.763	735.811		. · ·	
		51.881	2.113	731.549	5.870	734.329			
		70.971	2.211	732.475	5.973	733.958			_

A-1

Test ID	SSRT002									
Specimen ID	304L-02		Test Temp.	289°C	Yield St	trength (MPa)		677		
Heat ID 304L		Test Env.	High-DO	Water Ultimat						
Material Descri	ption Type 304L	, SS	Strain Rate	3.31E-7 1/	's Uniforn	n Elongation ((%)	2.1		
Dose	1.96 dpa					longation (%)		4.6		
						0				
Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	-		
0.000	0.000	0.180	316.010	0.661	667.235	3.354	517.107	•		
0.074	129.740	0.187	328.984	0.730	663.898	3.460	505.245			
0.074	130.111	0.191	335.471	0.794	661.860	3.589	488.193			
0.074	130.296	0.170	350.669	0.847	662.416	3.764	460.763			
0.074	130.111	0.187	359.380	0.902	662.230	3.887	445.194			
0.074	129.925	0.200	369.018	0.961	661.489	4.077	414.056			
0.075	132.150	0.208	379.953	1.015	661.674	4.295	376.802			
0.075	131.964	0.222	389.220	· 1.067	662.416	4.539	333.432			
0.076	133.447	0.234	399.229	1.130	660.377	5.982	14.827			
0.077	135.300	0.239	410.720	1.187	661.118	6.045	12.789			
0.078	136.968	0.246	421.655	1.242	661.118	6.108	10.935			
0.078	137.524	0.252	432.961	1.314	657.041	6.162	11.306			
0.079	138.822	0.269	441.672	1.372	656.485	6.220	10.565			
0.080	140.119	0.268 ,	454.461	1.448	651.666	6.273	11.121			
0.081	142.158	0.267	467.250	1.520	647.588	6.333	9.823			
0.083	145.494	0.272	478.741	1.633	634.429	6.385	10.565			
0.084	148.274	0.286	488.193	1.695	632.761	6.438	10.935			
0.086	151.981	0.200	499.685	1.779	626.088	6.498	9.823			
0.090	158.468	0.286	513.400	1.899	611.076	6.552	10.194			
0.090	164.399	0.293	524.520	1.980	605.145	6.609	9.638			
0.097	169.959	0.305	534.344	2.048	602.179	6.662	10.009			
0.100	176.446	0.296	548.986	2.119	598.658	6.728	7.599			
0.105	184.231	0.313	557.697	2.115	595.878	6.786	6.858			
0.103	190.718	0.313	571.227	2.130	596.619	6.831	9.267			
				1		0.051	9.207			
0.112	197.205	0.325	580.123	2.300	594.765					
0.117	205.731	0.330	591.615	2.368	591.800					
0.122	214.627	0.332	603.847	2.429	590.503					
0.127	223.338	0.345	613.485	2.491	588.834					
0.131	231.123	0.362	622.196	2.563	584.942					
0.136	239.092	0.352	637.024	2.637	580.679					
0.141	247.062	0.366	646.476	2.722	573.822					
0.145	255.032	0.391	653.334	2.794	569.930					
0.150	264.299	0.401	663.713	2.898	558.624					
0.158	277.088	0.425	670.941	2.969	554.917					
0.163	287.096	0.457	676.131	3.093	539.163					
0.171	299.885	0.515	675.390	3.156	537.309					
0.175	307.669	0.610	<u>666.308</u>	3.288	519.516	1				

SSRT002

Test ID

A-2

Specimen ID	GBE304	L-06	Test Temp.	289°C	Yield St	trength (MPa)		747
Heat ID	GBE304	L	Test Env.	High-DO Wate	r Ultimat	e Tensile Strer	ngth (MPa)	743
Material Descrip	tion GBE Typ	oe 304L SS	Strain Rate	3.31E-7 1/s	Uniform	n Elongation (%)	1.1
Dose	1.96 dpa				Total El	ongation (%)		2.2
Strain	Stress	Strain	Stress		Stress	Strain	Stress	•
(%)	(MPa)	(%)	(MPa)		(MPa)	(%)	(MPa)	
0.000	0.000	0.069	121.400		95.166	0.518	741.742	
0.069	120.658	0.070	122.512		06.101	0.570	746.561	
0.069	120.658	0.070	123.809		18.334	0.662	741.186	
0.069	120.473	0.071	124.736		30.752	0.731	741.742	
0.069	120.473	0.071	125.292	0.139 24	45.209	0.798	743.040	
0.068	120.288	0.071	124.736	0.146 2:	56.885	0.873	742.113	
0.069	120.473	0.071	125.292	0.155 2	72.083	0.969	735.626	
0.069	120.473	0.071	125.663	0.162 2	84.316	1.037	736.367	
0.069	120.844	0.071	125.106	0.170 2	98.958	1.117	734.143	
0.069	120.473	0.072	126.033	0.153 3	17.678	1.192	733.217	
0.069	120.658	0.071	125.477	0.170 3	31.764	1.253	735.811	
0.069	120.844	0.071	125.292	0.178 3	48.074	1.335	733.031	
0.069	121.214	0.072	126.219		61.975	1.420	729.510	
0.069	120.658	0.071	125.477	0.208 3	77.358	1.528	719.872	
0.069	120.844	0.072	126.960		95.336	1.600	719.687	
0.069	120.844	0.073	127.701		03.677	1.715	708.381	
0.069	120.844	0.073	128.257		19.431	1.836	695.592	
0.069	120.844	0.073	128.628	1	36.483	1.972	678.540	
0.069	121.029	0.074	129.555		54.090	2.145	652.222	
0.069	120.658	0.074	129.369	0.267 4	73.181	2.310	627.757	
0.069	120.658	0.074	129.369	1	86.711	4.722	19.090	. •
0.069	120.473	0.074	129.740		05.616	4.801	17.237	
0.068	120.288	0.074	129.740		24.150	4.882	14.457	
0.068	120.288	0.074	130.296		33.046	4.964	11.677	
0.069	120.473	0.074	130.111	1	50.283	5.021	15.569	
0.068	120.102	0.074	130.852		74.934	5.091	15.939	
0.069	120.473	0.074	130.296		87.722	5.167	14.642	
0.069	120.658	0.075	131.964		07.925	5.257	9.638	
0.069	120.658	0.076	133.076		24.235	5.307	15.383	
0.069	120.033	0.076	134.188		40.731	5.373	16.681	
0.069	120.473	0.078	137.154		58.153	5.471	9.638	
0.068	120.288	0.080	140.305		75.575	5.517	16.310	
0.069	120.658	0.083	146.050		89.661	5.591	15.569	
0.069	120.038	0.087	152.352		97.816	5.667	14.457	
0.069	120.844	0.087	160.322		11.346	5.737	14.437	
0.069	120.288	0.091	171.813		30.807	5.822	11.121	
0.069	120.658	0.105	184.231	4	37.850	2.022	11.141	

Test ID

SSRT003

Test ID)	SSRT004	ļ							
Specime	en ID	333-04		Test Temp.	289°C		Yield S	trength (MP:	a) [′]	711
Heat ID		ABB 333		Test Env.	High-DO	Water	Ultimat	e Tensile Str	ength (MPa)	711
Material	1 Descript		SS from ABB		3.31E-7			n Elongation		4.06
Dose	-	2.44 dpa						longation (%	• •	5.34
		•							2	
	Strain	Stress	Strain	Stress	Strain	Stre		Strain	Stress	•
	(%)	(MPa)	(%)	(MPa)	(%)	(MP		(%)	(MPa)	
	0.000	0.000	0.171	299.885	1.273	706.7		3.917	704.859	
	0.069	120.844	0.179	314.342	1.349	705.4		3.980	706.898	
	0.070	122.882	0.187	328.057	1.422	704.8	859	4.054	706.342	
	0.071	123.994	0.196	343.811	1.496	704.1	18	4.125	706.342	
	0.071	125.663	0.205	360.492	1.569	703.5		4.197	706.157	
	0.072	126.775	0.212	371.983	1.644	702.4	50	4.265	707.083	
	0.073	127.701	0.220	386.811	1.711	703.7	747	4.341	705.601	
(0.073	127.887	0.231	402.750	1.786	702.6		4.411	706.157	
(0.073	128.443	0.234	421.655	1.853	703.9	32	4.485	705.230	
(0.073	129.184	0.251	436.483	1.921	704.8	859	4.561	704.674	
(0.074	129.925	0.265	452.422	1. 991	705.0)45	4.633	704.488	
(0.075	131.223	0.272	470.400	2.069	703.3	376	4.712	702.264	
(0.076	133.076	0.277	488.564	2.137	704.1	18	4.798	698.372	
	0.077	135.300	0.286	505.986	2.208	704.3		4.878	695.963	
	0.077	135.671	0.289	524.706	2.277	704.8		4.961	692.627	
	0.078	137.710	0.301	541.201	2.350	704.4		5.057	685.769	
	0.079	139.749	0.317	556.585	2.414	706.3		5.148	680.209	
	0.081	142.899	0.323	574.748	2.488	705.6		5.245	673.166	
	0.079	139.378	0.340	589.761	2.562	705.0		(5.348	664.269	
	0.082	144.197	0.352	606.071	2.632	705.4		5.459	653.334	
	0.084	147.162	0.363	623.123	2.701	705.9		5.585	638.321	
	0.087	153.649	0.367	641.657	2.775	705.0		6.774	328.428	
	0.091	160.136	0.374	659.450	2.845	705.4		7.979	14.457	
	0.094	165.697	0.385	676.131	2.913	706.3				
	0.097	169.774	0.415	687.622	2.991	704.6				
	0.100	175.890	0.433	702.264	3.066	703.5				
	0.104	182.563	0.484	708.010	3.126	706.5				
	0.107	188.679	0.547	710.419	3.200	705.7				
	0.111	194.610	0.626	708.195	3.270	706.1				
	0.117	205.731	0.703	706.527	3.346	705.0				
	0.122	214.442	0.775	706.342	3.418	703.0				
	0.122	223.153	0.851	705.045	3.488	704.0				
	0.127	236.312	0.921	705.415	3.556	705.9				
	0.134	230.312	0.921	705.971	3.632	703.5				
	0.141	248.730 262.260	1.073	702.820	3.695	704.0				
	0.149	274.678	1.133	702.820	3.771	705.6				
	0.150	287.096	1.205	705.786	3.839	705.0				

Test ID	SSRT005							
Specimen ID	690-01		Test Temp.	289°C	Yield St	trength (MPa)		837
Heat ID	690		Test Env.	High-DO Water	Ultimate	e Tensile Strer	ngth (MPa)	868
Material Descrip	ption Alloy 690		Strain Rate	3.31E-7 1/s		n Elongation (5.94
Dose	1.96 dpa					ongation (%)	,	7.29
		· · .						
Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)		tress MPa)	Strain (%)	Stress (MPa)	-
0.000	0.000	0.074	146.792		0.724	4.561	847.388	
0.065	129.925	0.077	153.835		4.616	4.699	837.194	
0.066	130.481	0.083	165.326		7.026	4.772	845.349	
0.066	130.481	0.090	178.300		7.026	4.860	849.241	
0.066	130.667	0.096	191.274		8.879	4.957	850.724	
0.066	130.667	0.103	204.433		2.586	5.082	844.052	
0.066	130.481	0.112	221.670		2.771	5.176	846.276	
0.066	130.667	0.118	235.200		7.034	5.303	839.233	
0.066	130.852	0.128	254.105		2.401	5.389	843.496	
0.066	130.852	0.137	273.010		2.401	5.494	842.754	
0.066	131.408	0.148	294.510		5.366	5.638	830.892	
0.066	131.037	0.159	315.083		0.370	5.717	837.379	
0.066	131.223	0.168	333.432	1	9.814	5.805	841.272	
0.066	131.223	0.178	352.893		1.659	5.914	839.233	
0.067	132.335	0.188	374.207		9.621	6.007	841.642	
0.067	133.632	0.200	397.375		5.366	6.112	840.716	
0.067	133.818	0.212	419.987		5.366	6.256	828.668	
0.068	134.930	0.223	443.155		4.069	6.362	827.742	
0.068	135.300	0.234	465.211		7.396	6.459	829.039	
0.068	135.300	0.245	487.267		8.694	6.532	837.194	
0.069	136.042	0.254	509.322		6.108	6.713	814.768	
0.069	136.227	0.264	535.270		0.362	6.775	825.888	
0.069	136.968	0.286	557.697	2.996 85	7.582	6.878	825.703	
0.069	137.710	0.299	582.904	3.098 85	7.582	7.013	816.250	
0.070	138.822	0.305	609.964	3.223 85	1.095	7.142	808.651	
0.070	139.193	0.317	635.356 ·	3.306 85	6.284	7.282	797.716	
0.071	140.119	0.329	660.933	3.397 85	9.435	7.430	784.742	
0.071	140.490	0.345	685.213	3.503 85	8.323	7.586	769.544	
0.071	140.305	0.359	710.049	3.640 84	8.129	10.347	17.422	
0.070	139.934	0.370	735.626	3.696 86	51.103			
0.071	140.861	0.400	756.014		9.250			
0.071	141.046	0.418	779.738		8.129			
0.071	141.417	0.457	797.345		51.651			
0.072	143.270	0.501	813.655	1	8.694	1		
0.071	141.046	0.555	827.371		3.690			
0.072	142.343	0.617	838.491		6.470			
0.073	144.011	0.699	844.052		7.396			

Specimen ID	GBE690		Test Temp.	289°C		Strength (MPa)		677
Heat ID	GBE690		Test Env.	High-DO Wate	er Ultima	te Tensile Stre	ngth (MPa)	801
Material Description	GBE All	oy 690	Strain Rate	3.31E-7 1/s	Unifor	n Elongation (%)	22.
Dose	1.96 dpa				Total E	longation (%)		27.
<u> </u>								-
Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)		Stress (MPa)	Strain (%)	Stress (MPa)	
0.000	0.000	4.216	736.182		(1917 <i>a)</i> 769.544	20.618	789.561	-
	33.076	4.419	738.592		71.212	20.826	789.501	
	37.339	4.612	743.596		71.212	21.008	798.457	
	45.124	4.851	737.665		76.402	21.000	799.013	
	51.796	5.053	740.445		71.768	21.496	784.371	
	58.468	5.269	739.889		71.027	21.659	796.233	
	69.218	5.458	745.820	1	69.544	21.908	788.078	
	87.196	5.679	743.967	1	74.548	22.098	793.453	
	206.657	5.906	741.001		73.807	22.330	789.190	
	230.011	6.105	744.337		77.699	22.511	796.975	
	258.739	6.302	748.415		76.587	22.769	786.595	
	96.919	6.531	745.449		80.850	22.950	794.194	
	52.152	6.734	748.044		78.255	23.156	796.233	
	85.699	6.939	750.083		87.337	23.386	792.341	
	24.621	7.159	748.600		79.367	23.586	796.233	
	65.211	7.387	745.264		81.962	23.823	790.858	
	512.473	7.568	752.863		88.263	24.046	788.820	
	56.399	7.761	757.867		79.367	24.276	784.927	
	503.847	7.998	752.307		83.630	24.500	782.703	
	540.916	8.180	759.721		86.039	24.698	786.410	
	67.605	8.430	751.380		81.591	24.902	788.634	
	582.803	8.594	763.057		85.483	25.113	789.190	
	592.997	8.831	757.682		84.371	25.362	781.035	
	596.704	9.042	758.238	1	94.380	25.590	777.884	
	703.006	9.254	758.609		89.746	25.808	776.772	
	707.454	9.434	766.949		81.035	26.046	771.212	
	709.122	9.692	756.570		88.263	26.234	777.143	
	15.980	9.897	758.609		84.927	26.484	768.988	
	716.350	10.059	770.841		87.707	26.693	769.915	
	17.092	10.327	758.238		786.966	26.939	762.501	
	719.131	10.536	759.350		86.781	27.170	758.423	
	723.393	10.732	763.428		88.078	27.442	744.893	
	20.057	10.923	768.802		786.039	27.729	727.842	
	725.432	11.125	771.583		786.039	28.015	710.975	
	26.359	11.355	767.690		81.035	31.176	24.465	
	27.656	11.559	770.100		96.048	31.396	22.983	
	736.367	11.799	763.984		805.130	31.608	23.353	
	732.475	11.990	769.173		97.345			
	730.993	12.221	765.281		91.600			

Test ID

SSRT006

Specimen ID	GBE304		Test Temp.	289°C	Yield Str	ength (MPa)		231
Heat ID	GBE304	L	Test Env.	High-DO Wat	er Ultimate	Tensile Strer	gth (MPa)	532
Material Descrip	tion Non-Irr.	GBE304L	Strain Rate	3.31E-7 1/s	Uniform	Elongation (%)	32.2
Dose	-			(8.15E-7 1/s)	Total Elo	ngation (%)		36.
Strain	Stress	Strain	Stress	Strain	Stress	Strain	Strong	-
(%)	(MPa)	(%)	(MPa)	(%)	(MPa)	(%)	Stress (MPa)	
0.000	0.000	9.187	402.936		494.310	27.177	524.150	-
0.074	129.369	9.531	406.828	19.781	495.051	27.372	524.891	
0.076	133.818	9.887	410.164	19.968	496.163	27.594	524.335	
0.078	136.968	10.243	413.500	20.187	495.792	27.809	524.150	
0.083	145.680	10.575	417.948	20.358	497.646	28.012	524.520	
0.090	157.541	10.896	422.953	20.544	498.758	28.230	524.150	
0.099	173.296	11.240	426.845	20.743	499.314 🇯	28.417	525.633	
0.110	192.942	11.600	429.996	20.930	500.426	28.652	524.520	
0.011	212.403	11.960	433.146	21.105	502.094	28.787	528.042	
0.200	223.524	12.324	436.112	21.339	500.982	28.957	529.895	
0.389	234.644	12.672	439.819	21.490	503.762	29.208	528.042	
0.677	241.131	13.096	440.004	21.712	503.206	29.486	524.891	
0.869	252.252	13.317	449.642	21.928	503.391	29.673	526.003	
1.086	262.075	13.697	451.866	22.075	506.357	29.867	526.745	
1.430	265.967	14.021	456.685	22.281	506.542	29.967	531.934	
1.679	274.308	14.425	457.797	22.500	506.172	30.289	526.745	
1.904	283.760	14.809	459.836	22.559	513.215	30.440	529.525	
2.272	286.540	15.117	465.396	22.766	513.400	30.682	528.042	
2.510	295.437	15.533	465.952	22.984	513.029	30.885	528.783	
2.795	302.109	15.838	471.698	23.131	515.995	31.060	530.451	
3.139	306.001	16.057	471.883	23.692	499.685	31.278	530.081	
3.391	314.156	16.254	471.142	23.513	517.848	31.437	532.490	
3.767	316.566	16.398	472.810	23.711	518.404	31.592	535.085	
4.004	325.462	16.531	475.034	23.947	517.663	31.878	531.564	
4.368	328.428	16.676	476.702	24.134	518.775	32.117	530.266	
4.720	331.949	16.833	477.814		519.516	32.212	535.641	
4.945	341.402	17.009	477.999		520.628	32.387	537.309	
5.249	347.147	17.358	480.409		520.628	32.804	527.671	
5.570	352.152	17.521	482.633	24.920	521.370	32.860	534.900	
5.878	357.712	17.712	483.560		522.667	33.043	536.197	
6.230	361.233	17.898	484.672		521.555	33.412	528.783	
6.499	368.647	18.093	485.413		520.628	33.595	530.081	
6.873	371.242	18.296	485.784		522.296	33.837	528.598	
7.161	377.729	18.435	489.120		521.555	34.163	523.223	
7.529	380.509	18.621	490.232	1	524.150	34.605	512.473	
7.849	385.513	18.832	490.232		520.258	34.887	509.137	
8.165	390.703	19.007	491.900		524.150	35.507	490.047	
8.502	394.966	19.178	493.754		524.150	45.682	25.763	
8.847	398.858	19.396	493.383		523.223	45.932	23.909	

Test ID

SSRT007

A-7

 $\cdot r_i$

							•	
To at ID		00	:					
Test ID	SSRT0							
Specimen ID	GBE316	-12	Test Temp.	289°C	Yield St	rength (MPa)	ł	640
Heat ID	GBE316	i	Test Env.	High-DO	Water Ultimate	e Tensile Stre	ngth (MPa)	644
Material Descrip	ption GBE Ty	pe 316 SS	Strain Rate	3.31E-7 1/		Elongation (%)	4.4
Dose	1.96 dpa	-				ongation (%)		6.8
					-			_
Strain	Stress	Strain	Stress	Strain	Stress	Strain	Stress	
(%)	(MPa)	(%)	(MPa)	(%)	(MPa)	(%)	(MPa)	-
0.000	0.000	0.303	530.081	2.074	652.407	4.289	663.898	
0.092	161.248	0.305	544.723	2.137	651.851	4.351	663.713	
0.087	152.352	0.312	558.438	2.192	653.334	4.409	664.640	
0.090	157.541	0.319	571.968	2.258	652.222	4.471	664.269	
0.093	163.472	0.328	585.128	2.322	651.480	4.526	665.752	
0.098	171.813	0.340	597.175	2.375	653.334	4.584	666.679	
0.102	179.041	0.356	608.481	2.437	653.334	4.649	665.566	
0.107	187.567	0.370	620.343	2.503	652.036	4.715	664.269	
0.111	195.907	0.392	629.981	2.557	653.890	4.768	666.308	
0.114	201.282	0.423	637.394	2.614	654.817	4.838	664.269	
0.119	209.808	0.476	639.433	2.681	653.334	4.902	663.342	
0.125	219.075	0.526	642.213	2.739	654.446	4.979	659.450	
0.130	229.084	0.579	644.252	2.798	655.002	5.050	657.041	
0.135	237.980	0.635	645.549	2.857	655.558	5.139	650.183	
0.142	249.472	0.696	645,549	2.921	654.817	5.221	644.808	
0.148	260.592	0.761	644.623	2.982	654.817	5.321	635.170	
0.154	270.045	0.815	646.291	3.039	655.743	5.427	623.864	
0.159	280.424	0.876	646.291	3.093	657.597	5.572	603.106	
0.167	292.842	0.932	647.774	3.160	656.114	5.741	576.231	
0.172	301.738	0.991	648.144	3.217	657.041	5.895	552.878	
0.178	312.859	1.055	647.403	3.274	658.153	6.035	533.417	
0.184	323.609	1.120	646.476	3.342	656.485	6.168	515.253	
0.191	335.471	1.169	649.442	3.399	657.411	6.301	497.460	
0.198	347.703	1.235	648.330	3.453	659.079	6.448	475.961	
0.205	359.936	1.294	648.886	3.519	657.967	6.641	443.155	
0.212	373.281	1.367	645.735	3.577	658.709	6.831	410.905	
0.218	383.845	1.416	648.886	3.628	661.118	8.537	0.927	
0.218	398.858	1.472	650.183	3.690	661.118	8.602	0.000	
0.236	409.793	1.536	649.442	3.754	660.192	8.664	-0.371	
0.237	424.806	1.598	649.256	3.808	662.045	8.716	2.039	
0.252	436.112	1.652	650.924	3.877	660.006			
0.251	451.681	1.715	650.368	3.931	661.860			
0.264	463.728	1.771	651.851	3.989	662.601			
0.271	477.073	1.832	651.851	4.049	662.786			
0.280	490.047	1.901	649.812	4.113	662.045			
0.286	503.762	1.972	647,403	4.177	661.489			
0.290	518.033	2.023	649.812	4.233	662.786	1		

Test ID	SSRT010) -						
Specimen ID	945-02		Test Temp.	289°C	Yield Stre	ength (MPa)		666
Heat ID	945		Test Env.	High-DO V	Water Ultimate	Tensile Stree	ngth (MPa)	666
Material Desc	ription High-Puri SS with H	ty Type 304L ligh-O	Strain Rate	3.31E-7 1/s	s Uniform	Elongation (%)	1.22
Dose	2.44 dpa	<u> </u>			Total Elo	ngation (%)		2.20
								_
Strain (%)_	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	
0.000	0.000	0.116	203.507	0.259	461.504	0.785	580.679	-
0.076	134.188	0.120	210.920	0.266	468.362	0.826	579.197	
0.077	134.744	0.123	216.666	0.268	476.517	0.868	577.343	
0.077	135.300	0.126	221.855	0.265	485.784	0.909	575.675	
0.077	135.856	0.130	227.786	0.264	494.866	0.946	575.119	
0.077	135.856	0.133	234.088	0.268	502.465	0.987	573.451	•
0.078	136.783	0.136	239.278	0.270	510.620	1.021	573.636	
0.078	137.710	0.139	244.653	0.268	519.702	1.064	571.598	
0.079	138.822	0.142	249.472	0.273	526.930	1.096	572.154	
0.080	140.119	0.146	257.071	0.274	535.456	1.139	570.115	
0.081	141.602	0.151	265.226	0.280	542.499	1.178	569.003	
0.082	144.938	0.155	272.454	0.290	548.615	1.219	567.520	
0.084	148.089	0.159	278.941	0.295	556.214	1.259	566.037	
0.086		0.163	286.911	0.303	562.701	1.295	565.667	
0.087		0.167	293.027	0.312	569.188	1.339	563.443	
0.089		0.171	300.441	0.302	580.309	1.382	561.404	
0.090		0.175	307.855	0.302	588.834	1.424	559.365	
0.083		0.179	314.156	0.306	596.434	1.468	557.141	
0.084		0.183	321.941	0.306	605.145	1.511	554.917	
0.084		0.186	327.686	0.307	613.670	1.552	553.434	
0.085	149.757	0.190	334.173	0.312	620.899	1.600	550.098	
0.086		0.189	340.660	0.309	630.351	1.652	545.650	
0.087		0.199	346.962	0.315	637.394	1.705	541.201	
0.088		0.198	355.858	0.314	646.476	1.754	537.494	
0.090		0.194	365.496	0.317	654.261	1.817	530.451	
0.091	160.136	0.196	373.466	0.326	660.562	1.884	522.482	
0.091	160.692	0.211	378.285	0.342	665.196	1.956	513.215	
0.093		0.219	384.957	0.351	666.493	2.015	507.098	
0.095		0.230	390.888	0.352	666.864	2.081	499.129	
0.096		0.233	398.858	0.594	606.998	2.153	489.861	
0.098		0.239	406.086	0.650	593.468	2.223	481.150	
0.100		0.240	414.241	0.651	593.839	2.322	465.025	
0.102		0.248	421.099	0.663	591.244	4.118	25.577	
0.105		0.248	429.625	0.676	588.464	4.162	23.168	
0.108		0.249	438.151	0.673	589.947	4.198	22.797	
0.110		0.253	445.750	0.690	587.166	4.236	22.056	
0.114		0.248	455.573	0.741	583.089	4.274	21.129	

Test I		SSRT011							
-	nen ID	327-01		Test Temp.	289°C		ength (MPa)		703
Heat II	D	327	T 2041	Test Env.	High-DO Water	Ultimate	Tensile Streng	th (MPa)	703
Materi	al Description	SS with Lov	Type 304L w-O	Strain Rate	3.31E-7 1/s	Uniform	Elongation (%))	1.5
Dose		2.44 dpa				Total Elc	ongation (%)		3.1
-	Strain	Stress	Strain	Stress	Strain	Stress	Strain	Stress	-
_	(%)	(MPa)	(%)	(MPa)		(MPa)	(%)	(MPa)	
-	0.000	0.000	0.120	210.550		523.408	0.830	607.739	_
	0.081	143.270	0.124	218.149	0.302	533.417	0.897	600.696	
	0.082	144.197	0.128	224.265	0.303	544.723	0.954	596.434	,
	0.083	145.124	0.132	231.864	0.314	553.249	1.005	594.024	
	0.083	145.124	0.136	238.351	0.317	563.999	1.056	591.429	
	0.083	145.494	0.140	245.579	0.325	573.451	1.107	588.834	
	0.083	146.050	0.144	253.364		583.274	1.161	585.498	
	0.083	146.236	0.148	260.778	0.341	592.171	1.211	583.274	
	0.084	146.977	0.152	267.821	0.344	503.106	1.264	580.123	
,	0.083	146.606	0.156	275.049		512.929	1.316	577.529	
	0.083	146.606	0.162	284.501		524.235	1.370	574.007	
	0.084	147.348	0.165	290.432		532.390	1.420	571.783	
	0.084	147.718	0.170	298.402		643.696	1.473	568.817	
	0.084	147.904	0.175	307.669		553.705	1.531	564.369	
	0.084	147.718	0.180	316.195		663.157	1.590	559.550	
		147.718	0.183	322.497	1 .	671.868	1.640	557.326	
	0.084	147.718	0.189	331.579		582.803	1.699	552.693	
	0.084	148.274	0.193	339.548		589.290	1.761	546.947	
	0.084	148.274	0.198	347.518		59 7 .631	1.815	543.796	
	0.084	148.274	0.203	356.229		703.562	1.878	537.865	
	0.084	147.718	0.208	365.496	1	703.562	1.936	533.417	
	0.085	148.645	0.213	374.763		703.562	1.996	528.227	
	0.085	149.016	0.215	383.845		703.747	2.068	520.072	
	0.085	151.425	0.210	391.259		704.488	2.133	513.585	,
	0.087	153.835	0.228	400.526		704.118	2.200	506.728	
	0.089	156.800	0.228	409.793		704.488	2.200	498.387	
	0.091	159.580	0.233	418.134		703.932	2.351	488.193	
	0.092	162.360	0.238	427.215		704.488	2.331	479.853	
	0.092	166.994	0.245	436.853		704.118	2.501	469.659	
	0.095	170.515	0.248	430.835		700.411	2.579	409.059	
		174.037	4	445.935		515.339	2.579	439.030	
			0.259				2.081	443.133 429.996	
	0.102 0.104	178.856	0.264	464.840		512.929		429.996 414.241	
		183.490	0.269	473.551		511.446	2.869		
	0.107	187.938	0.276	484.486		510.149	2.974	396.634	•
	0.111	194.981	0.280	493.012		509.037	3.096	374.578	
	0.114	200.541	0.287	502.835		507.925	4.479	3.336	
	0.117	204.989	0.291	513.400	0.822	608.110	4.525	2.039	

SSRT011

A-10

Test l	D .	SSRT012						1	
Specir	nen ID	623-01		Test Temp.	289°C	Yield Stren	igth (MPa)		883
Heat I	D	623		Test Env.	High-DO Water	Ultimate T	ensile Streng	gth (MPa)	6883
Materi	al Descripti	ion Type 316L	N SS	Strain Rate	3.31E-7 1/s	Uniform E	longation (%	6)	1.94
Dose		2.44 dpa				Total Elon	gation (%)		4.00
		<u> </u>		· <u>·</u> ·. , · · · · · · · · · · · · · · · · · ·					
-	Strain	Stress	Strain	Stress	Strain	Stress	Strain	Stress	
-	<u>(%)</u> 0.000	(MPa)	(%) 0.201	(MPa)		(MPa)	(%)	(MPa)	-
		0.000	0.201 0.207	353.078		334.970 346.647	2.450	859.064	
	0.072	127.331		364.570			2.511	857.026	
	0.076	134.374	0.214	375.875		353.504	2.569	856.099	~
	0.077	134.930	0.221	388.108		866.478	2.628	854.616	
	0.077	134.744	0.227	398.858		370.185	2.696	850.724	
	0.077	134.930	0.234	410.535	1	374.633	2.752	849.983	
	0.077	134.930	0.241	423.509		380.564	2.813	848.129	
	0.077	134.559	0.247	434.629		376.672	2.880	844.422	
	0.077	136.227	0.254	446.676	0.801 8	379.823 ·	2.939	842.940	
	0.077	135.671	0.261	459.094	0.865 8	377.043	3.006	839.233	
	0.080	139.934	0.270	473.922	0.931	373.521	. 3.073	835.526	
	0.079	139.193	0.277	486.896	0.985	373.707	3.135	833.116	
	0.079	139.378	0.285	501.723	1.050 \$	370.556	3.197	830.707	
	0.080	140.490	0.292	514.141		869.258	3.257	829.224	
	0.083	145.865	0.300	528.227		868.702	3.326	824.591	
	0.086	150.684	0.308	541.016		368.888	3.396	819.957	
	0.090	159.024	0.315	553.805		370.926	3.462	816.621	
	0.095	166.253	0.321	563.999		369.814	3.522	814.953	
	0.100	175.520	0.340	574.192		869.258	3.597	808.651	
	0.103	181.265	0.336	591.800		369.814	3.661	805.686	
	0.109	190.903	0.345	605.515		370.000	3.733	800.311	
	0.113	199.244	0.351	620.157		372.038	3.801	796.419	
	0.113	208.140	0.357	634.985		372.038 370.000	3.864	793.824	
	0.118	217.778	0.357	650.739		370.000 368.332	3.935		
								788.634	
÷	0.128	224.636	0.375	662.416		865.551	4.008	783.074	
	0.134	235.200	0.387	675.204		368.332	4.083	776.772	
	0.139	243.541	0.392	690.402		368.702	4.167	768.061	
	0.144	253.178	0.385	708.937		367.405	4.246	760.462	
	0.149	261.148	0.401	720.428		866.478	4.375	738.036	
	0.155	272.639	0.405	735.997		866.108	6.886	-6.487	
	0.159	279.868	0.420	747.673		865.181	6.941	-6.672	
	0.165	290.247	0.436	759.350		865.366			
	0.170	298.402	0.444	773.621	2.166	862.771			
	0.177	310.449	0.453	787.337	2.214	864.625			
	0.181	318.975	0.461	801.237	2.277	862.030			
	0.188	331.393	0.481	811.802	2.327	863.327			
	0.194	341.031	0.492	824.961	1	859.250	1		

SSRT012

Test ID		SSRT013	,				1		
Specimen II)	625-01		Test Temp.	289°C	Yield Stre	ngth (MPa)		890
Heat ID		625		Test Env.	High-DO Water	r Ultimate 7	Tensile Streng	th (MPa)	890
Material Des	scription	Type 316L1	N, Ti doped	Strain Rate	3.31E-7 1/s		Elongation (%)	0.7
Dose		2.44 dpa	_			Total Elon	igation (%)		2.5
	<u>.</u>	~	~ .					~	_
Stra		Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MBc)	
0.00		0.000	0.075	132.520			0.971	(MPa) 880.194	_
0.00		18.249	0.073	132.320		481.521 495.051	1.010	885.194 885.198	
0.06		18.990	0.078	134.339		508.210	1.010	886.681	
0.00		19.546	0.078	137.539	1	508.210 522.667	1.144	879.267	
0.00		19.732	0.078	137.324	1	537.309	1.144	879.207 882.788	
0.00		20.288	0.084	141.231			1.188	875.189	
0.06		20.288 20.473	0.084	147.904 153.835		551.025 566.964	1.271	872.224	
0.00									
		20.102	0.092	161.063		579.567	1.401	870.185	
0.00		20.844	0.096	168.662		593.653	1.476	864.995	
0.00		21.214	0.100	175.334		608.110	1.548	860.362	
0.07		22.512	0.104	182.377		623.494	1.622	855.358	
0.07		22.326	0.108	189.420		635.541	1.703	848.315	
0.07		22.326	0.112	197.390	•	652.222	1.775	843.866	
0.07		22.697	0.117	205.175		665.381	1.857	836.453	
0.07		22.697	0.123	216.666		676.872	1.935	830.336	
0.07		22.697	0.128	225.562		686.881	2.021	821.996	
0.07		23.068	0.134	235.942		700.411	2.098	816.065	
0.07		23.438	0.139	244.282		711.346	2.185	807.354	
0.07		24.736	0.146	256.515		720.243	2.265	800.496	
0.07		25.663	0.151	265.596		735.997	2.350	792.341	
0.07		26.775	0.157	276.161		752.492	. 2.434	784.371	
0.07		27.145	0.164	288.394		767.505	2.501	781.220	
0.07		27.516	0.171	299.885		781.406	2.569	77 8 .070	
0.07		28.443	0.177	311.005		803.462	2.663	767.320	
0.07		27.701	0.183	322.126		814.768	2.759	755.828	
0.07		28.443	0.189	331.764		826.629	2.869	740.630	
0.07		28.257	0.195	342.143		837.009	2.980	725.062	
0.07		28.813	0.201	353.078		850.909	5.502	18.349	
, 0.07		29.555	0.207	363.643		860.733	5.560	17.793	
0.07		30.296	0.213	374.022		866.478	5.621	16.681	
0.07		30.481	0.221	388.849		873.521	5.681	15.569	
0.07		31.037	0.223	399.043	0.641	877.784	5.737	15.569	
0.07	75 1	31.037	0.227	413.871	0.688	880.379	5.794	15.383	
0.07	75 1	32.150	0.241	426.289	0.711	890.202	5.854	14.457	
0.07	76 1	34.003	0.248	440.375	0.772	888.719	5.907	15.569	
0.07	79 1	38.080	0.263	452.237	0.822	890.573	5.968	14.086	
0.07	76 1	33.262	0.271	465.952	0.892	886.681	6.021	15.198	

Specimen ID	327-03		Test Temp.	289°C	Yield Stre	ngth (MPa)		690
Heat ID	327		Test Env.	High-DO Water		Tensile Streng	gth (MPa)	690
Material Descriptio		7 Type 304L	Strain Rate	3.31E-7 1/s	Uniform I	Elongation (%	6)	1.25
Dose	SS with Lo 2.44 dpa	w-0				ngation (%)	-7	2.59
	2.11 4pt				100012101	iguiton (70)		
Strain	Stress	Strain	Stress		Stress	Strain	Stress	
(%)	(MPa)	(%)	(MPa)		MPa)	(%)	(MPa)	_
0.000	0.000	0.100	176.076		47.047	0.727	593.468	
0.076	134.003	0.102	179.041		55.758	0.796	585.869	
0.076	134.188	0.105	184.416		66.508	0.848	582.904	
0.076	133.818	0.108	189.606		74.663	0.900	579.753	
0.076	134.003	0.110	194.239	0.276 4	83.930	0.951	576.973	
0.076	133.818	0.114	199.985	0.284 4	92.827	1.005	573.451	
0.076	134.374	0.117	206.472	0.288 5	02.835	. 1.055	571.042	
0.076	134.003	0.121	212.588	0.295 5	11.917	1.109	567.335	
0.076	134.188	0.125	219.446	0.298 5	22.111	1.159	564.925	
0.076	133.632	0.128	225.006	0.306 5	30.822	1.215	560.662	
0.076	133.447	0.131	230.752	0.308 5	41.387	1.269	557.141	
0.076	133.818	0.136	238.536	0.311 5	51.581	1.328	552.137	
0.076	134.188	0.139	244.838	0.313 5	62.145	1.386	547.688	
0.077	134.559	0.143	251.140		72.524	1.440	543.981	
0.077	135.115	0.146	256.700		82.718	1.496	539.904	
0.077	135.671	0.150	263.002		93.283	1.550	536.197	
0.077	135.486	0.154	271.157		09.778	1.614	530.081	
0.077	135.486	0.159	278.941		20.899	1.677	523.964	
0.077	136.042	0.163	286.169		33.687	1.734	519.702	
0.077	135.486	0.168	294.695		42.584	1.811	509.878	
0.078	136.783	0.172	302.294		50.924	1.884	501.167	
0.080	139.934	0.172	302.294		58.523	1.960	491.529	
0.080	142.714	0.170	318.234		69.644	2.040		
0.081	144.382						480.965	
		0.186	327.316		75.575	2.117	471.142	
0.083	145.124	0.190	334.359	1	84.657	2.222	453.905	
0.083	146.606	0.195	342.328		87.252	2.349	430.552	
0.084	147.348	0.199	350.669		87.993	2.492	402.750	
0.084	147.904	0.203	356.970		88.178	3.996	7.599	
0.084	148.089	0.208	365.867		89.661	4.040	6.672	
0.085	148.830	0.214	375.875		90.217	4.085	5.746	
0.085	150.313	0.218	383.475	1	89.846	4.124	6.116	
0.087	153.279	0.224	393.854		89.661	4.167	5.375	
0.089	156.429	0.228	401.638	1	90.032	4.203	6.672	
0.091	159.766	0.233	410.349	0.360 6	89.290	4.246	6.116	
0.093	162.916	0.238	418.134	0.668 6	06.813	4.288	5.931	
0.095	166.809	0.241	427.586	0.697 5	99.399	4.328	5.931	
0.097	170.330	0.243	437.965	0.708 5	96.990	4.370	5.560	

.

		Specimen ID GBE304L-07		Test Temp.	290°C	Yield Strength (MPa)			750
Material 1	Heat ID GBE304L			Test Env.	Air	Ultimate Tensile Strength (MPa)			750
Material Description GBE Type 304L SS			Strain Rate	3.31E-7 1/s	Uniform Elongation (%)			9.41	
Dose		1.96				Total Elongation (%)			11.3
		A .		~	~				
	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	Strain (%)	Stress (MPa)	
	<u>(70)</u>).000 .	0.000	0.063	110.300	1.665	712.600	5.511	721.400	
	.000	-0.700	0.080	141.200	1.729	724.700	5.585	730.600	
).000	0.700	0.089	155.900	1.884	709.700	5.726	719.700	
	0.000	0.400	0.102	179.400	1.951	721.200	5.838	717.500	
	0.000	0.700	0.115	202.800	2.081	713.600	5.906	728.400	
	0.001	2.400	0.128	224.800	2.169	718.600	6.023	724.700	
	0.001	1.900	0.141	248.700	2.282	716.000	6.159	715.600	
	0.000	0.400	0.152	272.100	2.387	716.000	6.226	726.700	
	0.000	-0.200	0.154	302.700	2.477	720.200	6.326	728.200	
	0.000	0.700	0.191	322.900	2.603	713.900	6.513	715.200	
).001	2.600	0.175	358.800	2.666	726.400	6.582	726.000	
).001	2.200	0.215	377.900	2.813	713.800	6.661	733.600	
	0.000	0.000	0.202	413.100	2.870	728.000	6.850	717.500	
·	0.000	0.700	0.245	429.600	3.027	712.500	7.117	714.900	
0	0.001	1.900	0.238	433.500	3.098	722.500	7.354	721.000	
C).001	2.200	0.210	459.500	3.232	713.900	7.578	731.200	
C).001	2.200	0.258	476.300	3.296	726.000	7.834	731.500	
C	000.	0.400	0.233	515.100	3.435	715.600	8.128	720.800	
0	0.001	0.900	0.274	534.000	3.502	726.900	8.394	718.600	
0	0.001	2.200	0.261	569.000	3.621	722.700	8.620	729.500	
C	0.000	0.700	0.283	593.800	3.733	720.600	8.900	722.800	
C	0.002	3.000	0.299	620.300	3.850	716.900	9.183	715.400	
(0.001	2.200	0.314	646.800	3.921	727.100	9.437	716.400	
	0.001	1.100	0.330	673.400	4.065	715.200	9.667	724.700	
	0.001	0.900	0.341	701.300	4.177	713.200	9.924	724.900	
	0.005	8.900	0.391	717.500	4.245	723.900	10.238	708.400	
	0.007	11.900	0.416	741.400	4.335	728.400	10.529	698.600	
	0.007	12.400	0.583	722.700	4.464	721.200	10.784	699.300	
	0.012	21.900	0.663	730.300	4.586	716.000	11.153	666.300	
	0.015	25.600	0.818	715.400	4.647	729.100			
	0.014	23.900	0.903	721.200	4.772	723.000			
	0.020	35.000	1.033	713.800	4.904	714.900			
	0.028	49.300	1.107	722.800	4.967	727.300			
	0.030	52.500	1.258	709.100	5.109	716.200			
).035	62.300	1.305	726.400	5.205	718.900			
).043).058	75.100 102.100	1.456 1.519	712.500 724.900	5.278 5.420	728.400 717.100	×		

	and Addendum Numbers, if any.)
BIBLIOGRAPHIC DATA SHEET	
(See instructions on the reverse)	NUREG/CR-6965
TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED
Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 fi halden Phase-II Iradiations	rom Month year
	September 2008
	4. FIN OR GRANT NUMBER
AUTHOR(S)	6. TYPE OF REPORT
Y. Chen, O. K. Chopra, W. K. Soppet, N. L. Dietz Rago and W. J. Shack	6. THE OF REPORT
r. Chen, O. K. Chopra, W. K. Soppel, N. L. Dietz Rago and W. J. Shack	Technical
	7. PERIOD COVERED (Inclusive Dates)
PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory	Commission, and mailing address; if contractor,
provide name and mailing address.)	
Arronno Notional Laboratory	
Argonne National Laboratory 9700 South Cass Avenue	
Argonne, II 60439	
SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, O	ffice or Region, U.S. Nuclear Regulatory Commissio
and mailing address.)	•
Division of Engineering Office of Nuclear Regulatory Research	
US Nuclear Regulatory Commission	
Washington, DC 20555-0001	
SUPPLEMENTARY NOTES	
Appajosula S. Rao, Program Manager	<u></u>
This work is an ongoing effort at Argonne National Laboratory on the mechanistic study of i cracking (IASCC) in the core internals of light water reactors. Phase II in this effort focused grain boundary engineering (GBE), alloying elements, and neutron dose on the IASCC susses steels (SSs) and Alloy 690. Flat dog-bone specimens irradiated in the Halden boiling heaver ~2 displacements per atom (dpa) were subjected to slow strain rate tensile (SSRT) tests in 289ÇC. The areas of the fracture surfaces with brittle fracture morphology (intergranular arwere measured with a scanning electron microscope. All materials showed significant irrad ductility. Some strain hardening was observed in the normal-Carbon (C) content SSs (Types not in the low-C content SSs (Types 304L and 316L). The area fraction of the intergranular uniform elongation and was used to rank the IASCC susceptibility of the alloys. The GBE p significant effect on the IASCC behavior of Type 304 and 304L SSs, at least at a dose level cracking behavior of Alloy 690. A minimum-C content and a low-sulfur (S) content (<0.002 resistance. By analysis of the results from the Halden Phase-II specimens along with previse specimens, the effect of neutron dose on IASCC behavior was determined. While irradiation below 0.4 dpa, IG cracking appears between 0.4 and 1.3 dpa for most commercial austenities.	d on determining the influence of ceptibility of austenitic stainless y water reactor to neutron doses of high dissolved oxygen water at nd transgranular cleavage cracking diation hardening and loss of es 304 and 316) and Alloy 690, but r cracking increased with decreasin process did not seem to have a I of about ~2 dpa, but did affect the wt.%) may be required for IASCC ious results on Halden Phase-I on hardening and embrittlement sta
. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILABILITY STATEMENT
Irradiation assisted stress corrosion cracking (IASCC), Stainless steels, irradiation hardenin	ng, Inter unlimited
granular cracking	(This Page)
	unclassified
	(This Report)
	unclassified
	15. NUMBER OF PAGES

Irradiation-Assisted Stress Corrosion Cracking of Austenitic Stainless Steels and Alloy 690 from Halden Phase-II Irradiations

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS