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ABSTRACT

This report deals with the results of the “post-test analysis” of the test BL-06
performed in the LOBI/MOD2 test facility.
LOBI/MOD?2 is an integral test facility that represents, at approximately 1:712 scale, a-
four loop (KWU design, 1300 MWe) PWR.
The test BL-06 simulates a 1% cold leg break LOCA, with the main coolant pumps
switched off very late in the transient.
The calculations have been realized with the code Relap5/Mod3.2.1. The uncertainty
evaluation of the calculation result has been performed using a specific method
developed by Pisa University.
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1. INTRODUCTION

The present work deals with the post-test analysis of the test BL-06 realized at
LOBI/MOD2 facility.
The test BL-06 was defined to simulate the phenomena characterized by a cold leg
small (1%) break LOCA. The programmatic objectives consisted in the acquisition of
the experimental data for the study of the physical phenomena and for the assessment
of the predictive capabilities of system codes used in the safety evaluation of LWR.
In particular test BL-06 was projected to analyze the influence of main coolant pumps
operation mode during small break LOCAs in PWRs. The operational procedures
foresee that for accidents of this type the arrest of pumps happens following the scram
signal and therefore within a few seconds after the accidental event. In test BL-06 the
pump trip was delayed and was generated on high heater rods surface temperature.
Phenomena of great importance analyzed during the evolution of test BL-06 included
among others:
- depletion and distribution of primary system mass;
- performance of the pumps in presence of two-phase flow;
- phase separation in the core region;
- break mass flowrate;
- core uncover and dryout;
- accumulator performance and core reflood.
LOBI/MOD2 test BL-12 was the reference test case for test BL-06 with respect to
main coolant pump operation mode. In fact test BL-06 was specified preserving as
much as possible, the initial and boundary conditions adopted in test BL-12 (which
mainly differed in the early trip of the main coolant pumps). In order to ensure the
occurrence of core dryout and the influence of main coolant pump operation, both tests
were specified assuming the high pressure safety system not available.
The principal purpose of this report is to evaluate the performances of the code
Relap5/Mod3.2.1 in the simulation of this accident. _
The performance assessment and validation of large thermal-hydraulic codes and the
accuracy evaluation of the safety margins for Light Water Reactors (LWR) are among
the objectives of international cooperative programs, such as the Code Applications
and Maintenance Program (CAMP).
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2. DESCRIPTION OF THE EXPERIMENT

2.1 DESCRIPTION OF THE LOBI FACILITY

The LOBI/MOD2 was a high pressure integral system test facility and
represented, at approximately 1:712 scale, a four-loop PWR, (1300 MWe, KWU
Design). This facility was designed and realized at the Joint Research Centre (JRC) of
the European Community in Ispra.

The purpose of the LOBI/MOD2 facility was to evaluate the performances of the safety
systems of nuclear power plant in transient and accidental conditions.

-A sketch of the primary and secondary circuit of the facility is reported in Fig. 2.1 and
2.2 respectively.

LOBI/MOD?2 primary circuit had two loops, the intact loop representing three loops of
the reference NPP and the broken loop representing the loop of the NPP where was
located the break.

Each primary loop contained a main coolant circulation pump (MCP) and a steam
generator (SG). The two pumps were equal but they ran at different speed to achieve
rightly scaled flowrates.

The simulated core consisted of a directly electrically heated 64 rod bundle arranged in
a 8 x 8 square matrix inside the pressure vessel; nominal heating power was 5.3 MW.
Each heater rod consisted of an internally pressurized hollow tube with an active
heated length of 3.9 m. The wall thickness was varied in 5 steps to provide a cosine
shaped axial heat flux distribution.

The primary cooling system operated at normal PWR conditions: approximately 15.8
MPa and 567-599 K pressure and temperature, respectively.

Each steam generator contained components such as inverted U-tubes, an annular
downcomer and coarse and fine steam separators modelling the geometry of the
reference plant. The exchanged power in the two steam generators, at the nominal
operating conditions, was of 1.32 MW (8 U-tubes) and 3.96 MW (24 U-tubes) for the
broken and the intact loop respectively.

Heat was removed from the primary loops by the secondary cooling system containing
a condenser and a cooler, the main feedwater pump and the auxiliary feedwater system.
The normal operating conditions of the secondary cooling system were approximately
483 K feedwater temperature and 6.45 MPa pressure.

The pressurizer design was similar to that of the reference plant. It was scaled in
volume but not in height. The pressurizer surgeline was connectable to either the intact
or broken loop. Simulation of power operated relief valves (PORVs) was provided in
the pressurizer relief line.

The LOBIYMOD2 Emergency Core Cooling System (ECCS) included: the High
Pressure Injection System (HPIS), the Low Pressure Injection System (LPIS) and the
Accumulator (ACC).

Description of the experiment-2
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A process control system allowed the simulation of the main coolant pump hydraulic
behavior (speed control), of the decay and stored heat (power control to the electrically
heated rod), of the high pressure injection system and auxiliary feedwater system mass
flow rates.

Table 2.1 summarizes the principal characteristics of the facility.

CHARACTERISTIC VALUE
Nominal pressurizer pressure (MPa) 154
Core active fluid temperature (K) 599
Number of fuel rods 64

Core active height (m) ' 3.9
Fluid volume (V) (m®) 0.64
Core power (P) (MW) 5.28
Core inlet flow (kg/s) 0.026
Hot leg diameter (Intact loop) (m) 7.37-10
Hot leg diameter (Broken loop) (m) 4.60-10"
Hot leg length (Intact loop) (m) 5.475
Hot leg length (Broken loop) (m) 5.511
Number of loops 2
Number of tubes in steam generator (IL) 24
Number of tubes in steam generator (BL) 8

Tab. 2.1 - Significant parameters of the LOBI/MOD?2 facility

The scaling criteria used in the LOBI/MOD2 facility brought to the following

characteristics:

1) volume, primary circuit coolant mass flow and power input were scaled down from
the reference reactor values by a factor of 712;

2) to preserve the gravitational effects, the absolute heights and the relative elevations
of the different system components were kept at reactors values with the exception
of pressurizer which was shorter, in order to preserve the scaling ratio and to
maintain, at the same time, an acceptable flow area.

The LOBI test facility was initially designed to simulate the thermal-hydraulic

scenarios in a pressurized water reactor during the large break loss-of-coolant

accidents. Subsequent modifications to the original configuration made LOBI/MOD2
facility able to simulate a wide variety of small break LOCA and special transient.

Description of the experiment-5



2.2 SYSTEM CONFIGURATION AND TEST OVERVIEW

To realize the test BL-06, the LOBI/MOD?2 test facility was predisposed in the
basic configuration for cold leg break loss-of-coolant experiments.
Geometrical and operational data of certain subsystems required to meet test specific

objectives are summarized in Tab. 2.2.

Break - Cold leg break between MCP and

- Position vessel inlet

- Size - Break orifice 3.0 mm

- Type - Communicative, side oriented

Upper head Connected to upper plenum and upper
downcomer

Pressurizer Connected to intact loop hot leg

PORYV

On-Off valve - orifice 2.74 mm

DN-15 Control valve

Accumulator Injection System

- Injection position - Intact Loop cold leg

- Injection line orifice - 3.5mm

- Liquid volume - 0.137 m®

- Gas volume - 0143 m’

Low Pressure Injection System

- Injection position - Intact Loop cold leg

- Injection rate - 0.4kg/s

Main Coolant Pump

- Seal water drainage - Before rupture: from upper plenum

- Locked rotor resistance simulator

- After rupture: from lower plenum

- Intact Loop:  nonused

- Broken Loop: inserted 4s after
pump zero speed

Secondary side
- SRV set point

- to follow BL-12 secondary side 4
pressure curve

Tab. 2.2 - System configuration for the test BL-06

From the table, it should be noticed that some components, although not reactor
typical, were anyway required for either operational reasons or simulation

requirements.
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The heat loss of the LOBI/MOD2 test facility in nominal conditions are given in Tab.
2.3. The operational set points are listed in Tab. 2.4.

Primary System Heat Loss

- Intact loop 29 kW

- Broken loop 29 kW

- Vessel and upper head 27 kW

- Pressurizer 2kW

87 kW

Secondary System Heat Loss

- Intact loop 6.8 kW

- Broken loop 5 kW

- Steam lines 3.2kW

15.0 kW

Tab. 2.3 - System heat loss for test BL-06

ACTION REFERENCE SET POINT
break opening time 0.s
scram up. head press. (pr21) <13.1 MPa
AUXFEED initiation time after scram 72s
HPIS unavailable

MCP trip Rod clad temp (K) >685
end MCP coast down time 2s
ACC actuated time after pump stop 50s
1° PRZ PORYV opening rod clad temp after ACC quenching 646 K
2° PRZ PORY opening rod clad temp after ACC quenching 704 K
LPIS initiation rod clad temp after ACC quenching 745K
PRZ PORVs closing time after LPIS on 25s

Tab. 2.4 - Operational set points

The test was initiated by opening the break valve located in the cold leg of the broken
loop. Because of mass loss through the break, the primary system depressurized.
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When the primary pressure dropped to 13.1 MPa, the scram signal was generated.
Thereafter the secondary system was isolated and the core power started decreasing
based on a defined decay curve. The auxiliary feedwater was injected into the
secondary side 72 s after scram signal.

The main coolant pumps were kept running at the nominal speed until the core
temperature reached 685 K. Then they started to coast down and after 2 s the pumps
speed was zero.

The accumulator injection started 50 s after the pump stop (primary system pressure
was about 4.1 MPa). When the available mass (about 125 kg) was depleted, the
accumulator injection terminated.

Then, due to the mass still loosing from the primary system, the rod temperature
reached again values of the order of 643 K. Since the pressure in the primary system
was too high to allow the injection of the low pressure injection systems (LPIS), the
primary system was depressurized through the PORV using also an additional safety
valve. Nevertheless the relief capability was not sufficient to depressurize the RCS up
to P=1 MPa, and the LPIS was anyway activated at P=1.8 MPa in order to prevent
excessive core temperature rise. The test finished at t=6900 s after that the emergency
system LPIS had quenched the core.

The specified system initial conditions are listed in Tab. 2.5.

Descripﬁon of the experiment-8



Experimental Units
Primary System
Upper Plenum Pressure 15.87 MPa
Core Power 5.31 MW
Intact Loop
- Mass flow 21.0 kg/s
- Vessel Inlet Temperature 569 K
- Vessel Outlet Temperature 601 K
Broken Loop
- Mass flow 7.2 kg/s
- Vessel Inlet Temperature 570 K
- Vessel Outlet Temperature 603 K
Pressurizer
- Water Level c.5.1 m
- Temperature 621 K
MCP Seal Water Injection
- Intact loop 0.01 kg/s
- Broken loop 0.005 kg/s
- Temperature c. 303 K
Secondary System
SG Intact Loop
‘- Steam dome pressure 6.46 MPa
- Mass Flow 2.1 kg/s
- Inlet Temperature 486 K
- Outlet Temperature 553 K
- Downcomer Water Level 8.0 m
- Recirculation ratio c.64
SG Broken Loop
- Steam dome pressure 6.45 MPa
- Mass flow 0.75 kg/s
- Inlet Temperature 482 K
- Outlet Temperature 553 K
- Downcomer Water Level 8.34 m
- Recirculation ratio c.43 -

Tab. 2.5 - Operational initial conditions for the test BL-06

Description of the experiment-9







2.3 ANALYSIS OF THE TEST DATA

From a phenomenological point of view the accident can be divided in three
phase:
Phase 1: from the opening of the break to the pumps arrest;
Phase 2: from the pumps arrest to the end of the accumulator injection;
Phase 3: from the end of the accumulator injection to the final core rewetting.

a) Phase 1 : From the opening of the break to the pumps arrest (0-2790 s);

The initial period of the transient is characterized by a fast depressurization of
the primary system (Fig. 2.3) due to mass loss through the break (Fig. 2.4). At about
t=36 s the primary pressure becomes lower than P=13.1 MPa and the scram is actuated -
and the MSIVs are closed. From that instant the generated power follows the decay
heat curve.

In order to have boundary conditions as close as possible to LOBI test BL-12 the
secondary pressure was regulated through the relief valves.

The fast depressurization of the primary system, after the break opening, is reduced
when saturation conditions are reached in the hot leg. The primary pressure restarts
decreasing when the core power starts to decrease due to the scram.

About 30 s after the scram signal, the pressure is governed by the behavior of the
secondary side pressure, since the power lost through the break is not sufficient to
remove the residual heat produced in the core. As a consequence, the primary and
secondary side are coupled for a while (Fig. 2.5). When the tubes of the SG are empty
the heat exchange between primary and secondary side is negligible and the related
pressures assume independent trends.

The behavior of the main coolant pumps is of particular interest for this test. In Figs.
2.6 e 2.7 is presented the pump head and void fraction at the inlet of the main coolant
pumps. It is clear from those figures that after 700 s the pumps have almost completely
lost their efficiency.

The loss of efficiency is connected with the presence of the two-phase flow at the
pump inlet. For the intact loop the degradation begins when the inlet void fraction is
about 0.1 at about 120 s, while the complete degradation occurs when the void fraction
is about 0.5. In the broken loop the degradation begins when the void fraction is about
0.18 but the diminution of efficiency is much greater.

Even if the efficiency is reduced, the pump of the intact loop causes a flow sufficiently
high that determines an accumulation of liquid at the entry of the steam generator
(CCFL) (Fig. 2.8); this is not occurred in the broken loop because of the stronger pump
degradation. That means that the two primary circuits have an asymmetrical behavior
(Fig. 2.9).

The decreasing rate of the collapsed liquid level is slow until =570 s (Fig. 2.10). At
that time the pump degradation occurs and the collapsed liquid level has a fast
reduction, but it remains above the top of the active fuel zone.
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The core dryout is determined by the mixture level in the core. In Fig. 2.10 is possible
to observe that as soon as the mixture level is become lower then the top of active fuel
zone, the dryout is being occurred.

The Figs. 2.11 and 2.12 show the behavior of rod clad temperature at different levels.

It is possible to note that:

- the dryout begins before the arrest of the pumps;

- the thermal behavior is asymmetrical, in fact the heater rods placed at the same level
don't reach the dryout in the same instant;

- the core uncover mode is top-down; in fact in the higher levels the excursion of
temperature begins at about t=2400 s while in the lower levels it begins at about
t=2800 s;

- the bottom part of the core doesn't experiment dryout (Fig. 2.12).

b) Phase 2: From the pumps stop to the end of the accumulator injection (2790-
3830 s)

The arrest of the main coolant pumps determines a redistribution of primary
system mass inventory. In particular the core mixture level decreases about 1 m (Fig.
2.10), while the downcomer collapsed level immediately increases (Fig. 2.13).

Besides, when the pumps are stopped, in the intact loop the water located at the entry
of steam generator flows back to the core, determining a temporary quenching of the
related side of the core (Figs. 2.14, 2.15). The central fuel bundle shows a reduction at
the core heat-up rate, but it is not quenched, while in the broken loop side the clad
temperature continues to increase, and even at a faster rate (Figs. 2.14, 2.15).
. Due to the pumps stop, the primary pressure increases at first, then restarts decreasing
because of primary mass loss (Fig. 2.5). At t=2840 s the primary pressure becomes
4.12 MPa and the accumulator is allowed to inject into the primary system.
As a consequence of the accumulator injection, the primary side pressure decreases
(Fig 2.5), the primary system mass inventory increases (Fig. 2.16) and, in particular,
the core level increases determining core rewetting at t=3050 s. The core rewetting
occurs from the lower part to the high part (Fig. 2.14).

¢) Phase3: From the end of the accumulator injection to the final core
rewetting (3850-6900 s)

When the accumulator is stopped the primary system restarts pressurizing (Fig.
2.5) because the energy lost through the break is not sufficient to compensate the net
input power into the RCS.
However, due to the loss of inventory, the core level restarts to decrease again (Fig.
2.10) and at t=5500 s the core experiments a second core dryout.
When the rod clad temperature reaches 623 K (Fig. 2.17) a valve smulatmg three
PORVs is opened in the pressurizer in order to cause a depressurization of RCS and
allow the intervention of the LPIS at P=1 MPa. Being the depressurization rate too low
(Fig. 2.18) it has been necessary to modify the operational procedure and to open
another valve.
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The combined action of the two valves allows a faster depressurization of the primary
system. At t=6382 s, with a primary pressure P=1.7 MPa, the LPIS is activated because
the temperature of the heater rods has reached 745 K. The intervention of the LPIS
determines the core quenching and therefore the end of the test.
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3. ADOPTED CODE AND NODALIZATION

3.1 CODE RELAP5/MOD3.2

The Relap5/Mod3.2 is a transient analysis code for complex thermal-hydraulic
systems. The fluid and energy flow paths are approximated by a one-dimensional
stream tube and conduction model. The code contains models peculiar to western light
water reactors. In particular the neutronics is simulated by a point kinetics model; other
specific models are related to pump turbines, jet pumps, valves, accumulator and
separator; the reactor control system can also be simulated.

The code is based on a non-homogeneous non-equilibrium set of 6 partial derivative
balance equations for the steam and liquid phases. A non-condensable component in
the steam phase and a non-volatile component (boron) in the liquid phase are also
treated by the code.

A fast, partially implicit numeric scheme is used to solve the equation inside control
volumes connected by junctions. '
A direction, associated to the control volume, it's positive from the inlet to the outlet.
The fluid scalar properties such as pressure, energy, density, and void fraction are
represented by the average fluid conditions and are considered located at the control
volume center. The fluid vector properties, i.e. velocities, are located at the junctions
and are associated with mass and energy flow between control volumes.

The heat flow is 1-D modeled. The heat conductor or heat structure is thermally
connected to the hydrodynamic control volumes through a heat flux . The heat
structures are used to simulate pipe walls, heater elements, nuclear fuel pins and heat
exchanger surfaces. A specialized two-dimensional heat conduction solution method
with an automatic fine mesh rezoning is used for low pressure reflood.

The kinetics model consists of a system of ordinary differential equations that are
integrated using a modified Runge-Kutta technique. The feedback effects of fuel
temperature, moderator density and boron concentration in the moderator are evaluated
using averages over the hydrodynamic control volumes and associated heat structures
that represent the core. The averages are weighted averages that are established a priori
such that they are representative of the effects on total core power.

Certain non linear or multidimensional effects due to spatial variations of the feedback
parameters cannot be accounted for with such a model. Thus, the user must judge
whether or not the model is a reasonable approximation to the physical situation being
modeled.
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3.2  DESCRIPTION OF THE ADOPTED NODALIZATION

The Relap5/Mod3.2.1 LOBI/MOD2 nodalization reproduces in detail the
primary and secondary systems, it is shown in Fig. 3.1.
The correspondence between the zones of the facility and the nodes of the code model
and relevant input values related to the hydraulic volumes are summarized in Tab. 3.1.
In the Tab. 3.2 are summarized the relevant input value related to the connecting
junctions of the nodalization.
The following items can be added to clarify Fig. 3.1 and the mentioned tables:

- the nodes 100, 105, 110 represent the intact loop cold leg which is connected with the
steam generator through the junction 115 and with the vessel through the junction
350-02, the equivalent for the broken loop are the nodes 200, 203, 206 and the
junctions 208 and 350-03. Besides to the node 105 is also connected the pressurizer
surge line through the junction 105-03;

- the nodes 120 and 210 represent the steam generator U-tubes of the intact and broken
loop respectively. The number of the volumes of the node 120 it is double in
comparison to that of the node 210 for allowing a more accurate heat exchange
between primary and secondary side;

- the nodes 130 and 133 represent the loop seal of the intact loop, the correspondent for
the broken loop are the nodes 220 and 223;

- the two pumps are simulated by the nodes 135 and 225;

- the intact loop cold leg is simulated by nodes 137,140,145 and is connected to the
vessel through the junction 305-01, the equivalent for the broken loop are the nodes
230,240,250,260 and the junction 305-02;

- the vessel has been divided into the five zones:
1) downcomer (simulated by the nodes 300, 305, 310) connected to the upper
head through the branch 363;
2) lower plenum (simulated by the nodes 315 and 320) connected to the

downcomer and to the core;

3) core region (represented by the nodes 325 and 335; among these, the nodes
335-01 to 335-06 constitute the active region). The junction 340 connects the
core to the upper plenum;
4) upper plenum (represented by the nodes 345, 350, 355) connected to the upper
head through the branch 380;
5) upper head (simulated by the volumes 370, 375);

- the junctions 352 and 353 represent the bypass flow between downcomer and upper
plenum. They respectively represent the two holes of 5 mm diameter each connecting
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downcomer and upper plenum at the uppermost elevation and the gap around hot leg
nozzles; :

- the two accumulators and the respective feed lines are represented by the nodes
numbered with the seven hundred; They are connected with the cold legs of the two
intact loops; ’

- in the broken loop the pump locked-rotor resistance simulator is represented through
the valve 235;

- the time dependent volumes 226, 136, 360 and 361 connected with the primary
system through the time dependent junctions 224, 134, 358 and 359, simulate the two
pump seal cooling system. During the steady state the fraction of seal water entering
the primary system is drained from the upper plenum, while during the transient
period is drained from the lower plenum;

- the pressurizer and his surge line is represented by the nodes 409, 410, 420, 400. An
additional system can be noted in the pressurizer nodalization, it allows the primary
side pressure to remain constant in the steady-state period and is represented by the
time dependent volume 430 and related trip valve 425;

- the two valves 440 and 441 and the related time dependent volumes 910 and 901,
connected to the top of the pressurizer, simulate the PORV system;

- the two steam generators have similar secondary side nodalization even if in the intact
loop the number of the volumes of the node that represent the zone including the U-
tubes is double in comparison to that of the broken loop. Each steam generator can be
divided in five zones:

1) the downcomer (simulated by the nodes 510, 500, 555 for the intact loop and
by the nodes 610, 600, 655 for the broken loop);
2) the riser zone including the spacer grids (represented by the volumes 530 and
545 for the intact loop and by the volumes 630, 645 for the broken loop);
3) the top of the steam generator including the separator, the dryer and the steam
dome region (represented from the volumes 550, 552, 560 forthe intact loop
and from the volumes 650, 652, 660 for the broken loop). The two
separators are necessary in the code model in order to achieve quality equal
to one in the steam dome;
4) the steam line downstream the dome of each steam generator (simulated
through the volumes 564 for the intact and 664 for the broken). These two
volumes are connected to the volume 565 which in it turn is connected to the
condenser, vol. 582, through the valve 580;
5) the feedwater line connected to the top of downcomer (simulated with the
time dependent junction 570 and the time dependent volume 572);

- connected to the steam generator there are different control volumes:
a) auxiliary feed water: TDV 576 (IL) and 676 (BL) and TDJ 574 (IL) and 674

(BL);
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b) the TDVs 567 (IL) and 667 (BL) together with the valves 563 (IL) and 663
(BL) condition the pressure in the secondary side to have the same pressure  of
the test BL-12;

- the active structures that simulate the hot rods are divided in 5 radial meshes.
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node volume height/length type zone
(m’x10°) (m)
INTACT LOOP
100-01 3.1398 0.736 snglvol
105-01 3.1782 0.745 branch hot leg
110-01 6.8256 1.6 pipe
110-02 2.679 0.628
120-01 19.28 1.763 pipe
120-02 9.932 0.306
120-03...06 1.0681 0.1475
120-07...10 0.90516 0.125
120-11...14 1.8103 0.25
120-15...22 3.6206 0.5
120-23,24 7.3487 1.015 primary side
120-25...32 3.6206 0.5 steam
120-33...36 1.8103 0.25 generator
120-37...40 0.90516 0.125
120-41...44 1.0681 0.1475
120-45 9.932 0.306
120-46 19.28 1.763
130-01 4394 1.03 pipe
130-02 3.2806 0.769
130-03 6.8725 1.611 loop seal
130-04 2.6662 0.625
130-05 6.8725 1.611
133-01 3.2806 0.769 branch
135-01 1.9999 0.6027 pump pump
136-01 1m’ 1 tmdpvol seal water
138-01 1.5 5.0 branch
137-01 3.1526 0.739 branch
140-01,02 49571 1.162 pipe cold leg
145-01 3.5877 0.841 branch
BROKEN LOOP
200-01 1.2502 0.749 snglvol
203-01 1.4438 0.865 branch
206-01 1.1116 0.666 pipe hot leg
206-02 1.1116 0.666
206-03 1.145 0.686
210-01 6.9228 1.884 pipe
210-02 2.7009 0.192

Tab. 3.1 - Details of nodes geometry in the Relap5 nodalization - correspondences
between code nodes and hydraulic zones (cont’ed)
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210-03,04 0.67586 0.28
210-05,06 0.60345 0.25
210-07,08 1.2069 0.5 primary side
210-09...12 24138 1.0 steam
210-13,14 2.4435 1.012 generator
210-15...18 24138 1.0
210-19,20 1.2069 0.5
210-21,22 0.60345 0.25
210-23,24 0.67586 0.28
210-25 2.7009 0.192
210-26 6.9228 1.884
220-01 1.7392 1.042 pipe
220-02 1.9245 1.153
220-03 1.2368 0.741
220-04 1.2218 0.732 loop seal
220-05 1.2368 0.741
223-01 1.9245 1.153 branch
225-01 2.000935 0.603 pump pump
226-01 1m’ 1.0 tmdpvol seal water
228-01 1.5 5.0 branch
230-01 1.4354 0.86 branch
240-01 2.1081 1.263 branch cold leg
250-01 1.5189 091 snglvol :
260-01 1.175 0.704 branch
PRESSURE VESSEL
300-01 3.5627 0.315 branch
305-01 5.508 0.487 branch
310-01,02 6.786 0.6 annulus
310-03 8.3694 0.74
310-04 7.4985 0.663 downcomer
310-05,06 9.8963 0.875 region
310-07 7.4985 0.663
310-08 6.9217 0.612
310-09 44109 0.39
310-10 6.967 0.616
315-01 13.379 0.175 branch lower plenum
320-01 13.379 0.175 branch
325-01 14.817 0.616 pipe
325-02 8.9813 0.39
335-01 4.9665 0.612 pipe core region
335-02 5.3804 0.663
335-03,04 7.1008 0.875
335-05 5.3804 0.663
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Tab. 3.1 - Details of nodes geometry in the Relap5 nodalization - correspondences
between code nodes and hydraulic zones (cont’ed)

335-06 4.9665 0.74 core region
345-01,02 14.989 0.6 pipe
350-01 12.166 0.487 branch upper plenum
355-01 7.8693 0.315 branch
360-01 0.5m’ 0.5 tmdpvol seal water
361-01 0.5m’ 0.5 tmdpvol drain
363-01 0.44485 1.416 branch
365-01 0.99557 3.169 branch
370-01,02 9.67 0.855 pipe upper head
375-01 9.67 0.855 branch
380-01 0.44485 1.416 branch
PRESSURIZER
400-01 0.23675 1.73 pipe
400-02 0.35581 2.6 surge line
400-03 0.38318 2.8
409-01 10.327 0.898 branch
410-01 10.92 0.9 pipe pressurizer
410-02...06 10.939 0.9 vessel
410-07 4.6636 0.585
420-01 6.3634 0.79 branch pressurizer
430-01 11.5 1.0 tmdpvol bottom
901-01 lm’ 1.0 tmdpvol PORVs
910-01 1m’ 1.0 tmdpvol
SECONDARY SIDE
STEAM GENERATOR INTACT LOOP
500-01 16.755 1.402 branch
510-01...08 5.9755 0.5 annulus
510-09...12 2.9877 0.25 downcomer
510-13...20 1.4939 0.125
530-01...08 3.7381 0.125 pipe
530-09...12 7.4763 0.25 riser section
530-13...20 14.953 0.5
545-01 62.848 1.402 branch
550-01 34.766 1.105 snglvol upper plenum
552-01 185.6 1.1 branch separator
560-01 101.6 0.593 branch steam dome
564-01 24.232 6.5 snglvol
565-01 9.0 20 branch steam line
582-01 0.5 m’ 0.5 tmdpvol
567-01 0.5 m’ 0.5 tmdpvol
572-01 0.5m’ 0.5 tmdpvol main feedwater
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Tab. 3.1 - Details of nodes geometry in the Relap5 nodalization - correspondences
between code nodes and hydraulic zones (cont’ed)

576-01 0.5m’ 0.5 tmdpvol auxiliary
feedwater
STEAM GENERATOR BROKEN LOOP
600-01 5.1618 1.304 branch downcomer
610-01...04 3.9584 1.0 annulus
610-05,06 1.9792 0.5 downcomer
610-07...10 0.9896 0.25
655-01 37.8 1.128 snglvol
630-01...01 2.3737 0.25 pipe
630-05,06 4.7474 0.5 riser section
630-07...10 9.4947 1.0
645-01 23.064 1.304 branch
650-01 12.309 1.128 snglvol upper plenum
652-01 59.052 1.1 branch separator
660-01 38.991 0.681 branch steam dome
664-01 8.4622 5.8 snglvol steam line
667-01 0.5m*> 0.5 tmdpvol
672-01 0.5m’ 0.5 tmdpvol " main feedwater
676-01 0.5m’ 0.5 tmdpvol auxiliary
feedwater
ACCUMULATOR
710-01 267.0568 5.505 accumulator accumulator
720-01 0.4831 1.0 branch dividing branch
724-01 1.8551 3.84 pipe intact loop
724-02 0.71016 1.47 hot leg
728-01 1.8696 3.87 pipe feed line
734-01 1.8551 3.84 pipe intact loop
734-02 0.628 13 cold leg
738-01 1.5725 3.255 pipe feed line
750-01 94.3761 4.924 accumulator accumulator
760-01 0.4022 2.0 branch dividing
branch
764-01 0.54257 2.698 pipe broken loop
764-02 0.17134 0.852 hot leg
768-01 0.37606 1.87 pipe feed line
768-02 0.13077 1.845
774-01 0.54257 2.698 pipe broken loop
774-02 0.17134 0.852 cold leg
778-01 0.57716 2.87 pipe feed line
800-01 1 m’ 1.0 tmdpvol LPIS
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[ 900-01 | 1m’ | 1.0 |  tmdpvol | BREAK |

Tab. 3.1 - Details of nodes geometry in the Relap5 nodalization - correspondences
between code nodes and hydraulic zones
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SIGNIFICANT |FLOW AREA k, Ky POSITION
JUNCTION m’
115 42.66e-2 0.0 0.0 SG inlet IL
125 42.66e-2 0.0 0.0 SG suction leg IL
134 3.0e-4 seal water TDJ IL
208 16.691e-4 0.35 0.16 SG inlet BL
215 0.7288e-3 0.0 0.0 SG suction leg BL
235 16.691e-4 0.3 03 penta valve
224 3.0e-4 seal water TDJ BL
305-01 42.66e-2 3.55 3.55 core inlet IL
305-02 16.691e-4 3.24 3.24 core inlet BL
350-02 42.66e-2 0.94 0.94 core outlet IL
350-03 16.691e-4 1.54 1.54 core outlet BL
352 1.131e-2 bypass
353 1.131e-2 bypass
358 6.0e-4 exit seal water
359 6.0e-4 :
440 5.896e-6 1.5 1.5 PORV
441 4.3043e-6 1.5 1.5 PORV
563 1.5¢-3 1.5 1.5 relief valve
570 1.5e-3 main feedwater inlet valve
574 1.4589%¢-3 aux. feedwater inlet junction
580 4.5e-3 0.0 0.0 SG common discharge valve
663 5.0e-4 1.5 L5 relief valve
670 6.0e-4 main feedwater inlet valve
674 6.3794e-4 aux. feedwater inlet junction
722 4.831e-4 0.0 0.0 IL acc. inje. valve to hot leg
732 9.616¢-6 0.0 0.0 IL acc. inje. valve to cold leg
762 2.011e4 0.0 0.0 IL acc. inje. valve to hot leg
2.011e4 0.0 0.0 IL acc. inje. valve to cold leg
810 1.131e-4 LPIS
950 7.0686¢-6 1.25 1.25 break valve

Tab. 3.2 - Details of relevant junction related parameters of nodalization
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4. ANALYSIS OF POST-TEST CALCULATIONS RESULTS

The post-test analysis has been characterized by the following three phases:

1) implementation of a model consistent with the geometric configuration of the
experimental facility and with the process data registered in the pre-test phase;

2) definition and execution of a reference calculation on the basis of the model
determined in the phase 1 and of the operational procedures that have characterized
the experiment;

3) perform sensitivity calculations relating to specific process parameters.

4.1 STEADY STATE CALCULATIONS (PHASE 1 OF THE POST-TEST
ANALYSIS)

The model of LOBI-MOD?2 test facility used for the post-test calculation was
realized starting from an input deck provided by the JRC of Ispra [8] and adapting it to
the specific test characteristics. '

A first series of calculations was aimed to reproduce, during the steady state, the

experimental values of the pressure in the primary and secondary circuits, the curve of

heating power, the mass flowrate in the intact and in the broken loop, etc..

In order to get this result the following operations have been performed on the model

provided by JRC-Ispra:

- insertion of TDV to force the primary and secondary pressures to the initial values
before the opening of the break valve;

- change of heat transfer coefficients to get the experimental heat losses of the primary
and secondary circuits (Tab. 2.3);

- modification of the electrical power control curve;

- modification of the pumps speed arrest curve;

- adaptation of the trips that control: the opening of the break valve, the intervention of
the scram, the intervention of the auxiliary feedwater, the arrest of the pumps, the
intervention of the accumulator, the opening of the PORVs and finally the
intervention of the LPIS. ,

- activation of the CCFL option on the junction 115 and 208.

The steady state calculation results are shown in Tab. 4.1.

From the table results evident the general good agreement between the calculated and

experimental values. '
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CALC. EXP.
Primary System
Upper Plenum Pressure (MPa) 15.9 15.87
Core Power MWw) 5.31 531
Intact Loop
- Mass flow (kg/s) 21.0 21.0
- Vessel Inlet Temperature X 567.2 569
- Vessel Outlet Temperature x) 598.5 601
Broken Loop
- Mass flow (kg/s) 7.2 7.2
- Vessel Inlet Temperature X) 567.3 570
- Vessel Outlet Temperature X) 599.4 603
Pressurizer
- Water Level (m) 438 4.8
- Temperature X) 617 621
MCP Seal Water Injection
- Intact loop (kg/s) 0.01237 0.01
- Broken loop (kg/s) 0.00724 0.005
- Temperature X) 298 c. 303
Secondary System
SG Intact Loop
- Steam dome pressure (MPa) 6.49 6.46
- Mass Flow (kg/s) 2.07 2.1
- Inlet Temperature X 486 486
- Outlet Temperature X) 553.7 553
- Downcomer Water Level (m) 6.6 8.0
- Recirculation ratio 6.2 c.64
- Heat exchange power Mw) 3.91 3.96
SG Broken Loop i
- Steam dome pressure (MPa) 6.49 6.45
- Mass Flow (kg/s) 0.7 0.75
- Inlet Temperature X 482 482
- Outlet Temperature (X) 553.7 553
- Downcomer Water Level (m) 7.64 8.34
- Recirculation ratio 43 c.4.3
- Heat exchange power MW) 1.317 1.32

Tab. 4.1 - Comparison between experimental and calculated initial conditions
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4.2 REFERENCE CALCULATION RESULTS

It is necessary to specify that in the post-test calculations the pressure of the
secondary side was forced by a TDV to the experimental values. Besides, during the
test, the secondary pressure was been conditioned (through an operational procedure)
in order to reproduce the recorded pressure in the test BL-12.

The comparison between the experimental and calculated chronology of the
principal events is shown in Tab. 4.2.

From the analysis of the Tab. 4.2, it can be observed:

- all the events have been reproduced in the simulation;

- in the simulation the significant events are slightly delayed in the first part of the test
(up to the accumulator emptying), while in the next phase they are anticipated;

- the timing of the events has been well reproduced; in fact the maximum difference
(around 300 s) it has registered at the time of the accumulator emptying, while for the
other events it is lower than fifty seconds.

Concerning the core power (Fig. 4.1) it was forced to the experimental values.

Besides, it has to be considered that the delay of the PORVSs intervention is not due to a

bed PORVs action but it is due to the delay of the second dryout.

Aiming to make more meaningful the description of the results of the post-test

calculations, the transient has been divided into three phases as it has been done in the

paragraph 2.3.

CHRONOLOGY OF THE EVENTS :
EVENTS EXP (s) CALC (s)

Break valve open 0. 0.

SG isolation start 0. 0.

Break valve fully open 2 2

SCRAM 35.8 34.7
Emergency feedwater 107.8 106.7
1° dryout 2414 2506
Pump coast down (start) 2790 2820
ACC initiation 2840 2870
ACC empty : 3850 ' 4050
2° dryout 5400 5045
1° PRZ PORYV opening 6035 5469
2° PRZ PORYV opening 6262 5661
LPIS initiation 6382 5843
PRZ PORVs off 6466 5903
end of Test : 69500 6900
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"Tab. 4.2 - Chronology of the events

4.2.1 Phase 1: From the opening of the break to the pumps arrest (0-2820 s)

The phenomena that have characterized this phase have been:
- loss to the break;
- primary side depressurization;
- pumps degradation;
- dryout;
- CCFL at the inlet of the intact loop steam generator.
All these phenomena have been well reproduced by the code simulation.
The major results of the most meaningful parameters will be shortly described in the
following:

Primary pressure

In Fig. 4.2 the calculated and experimental values of the primary pressure are
compared. A good agreement can be observed between the calculated and experimental
data; after the decoupling between primary and secondary pressures, the calculated data
show an higher primary side depressurization; this means that the combined effect of
the enthalpy lost through the break and the heat losses is overestimated in the
calculation. The depressurization rate remains constant for the remaining time.

Break flowrate

The break flowrate, Fig. 4.3, is well simulated except for the two-phase period where it
is underestimated; the comparison of the integral break flowrate (Fig. 4.4), shows much
~ better agreement.

Pumps degradation

Relating to the pumps performances, from Figs. 4.5 and 4.6, with a given 2phase
multiplier, it can be observed that both begins to lose their efficiency when the void
fraction is around 0.1 and their degradation is complete when the void fraction is equal
to 0.5. However, the pump of the broken loop degrades about 200 s before than in the
intact loop. In comparison to the experimental data the complete degradation of the
pumps is delayed of about 400 s (Fig. 4.7).

CCFL

The accumulation of mass at the inlet of the steam generator of the intact loop (Fig.
4.8) is well predicted by the code. '

Fig. 4.9 shows that it doesn't happen in the broken loop. In that way the code has
reproduced the asymmetrical behavior of the primary circuits as recorded in the test.

Vessel levels

In Fig. 4.10 it is evident the effect of the pumps degradation on the collapsed liquid
level in the downcomer.

In particular, the increase of the collapsed liquid level corresponding to the pumps
degradation is qualitatively well reproduced by the code.
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The collapsed liquid level in the riser (Fig. 4.11) is well reproduced only after about
1500 s. Particularly in the first part of the transient (up to about 800 s) the simulation is
rather approximate.

Mass inventory

The primary side mass inventory (Fig. 4.12) is well predicted by the code except for
the first time period of the transient. Anyway in that time period the measured mass
inventory is not significant because experimental data are distorted by the high fluid
velocity. '

Rod surface temperature

The rod surface temperature is shown in Figs. 4.13,4.14,4.15.

It is proper to observe that the code Relaps5 it is not able to reproduce the asymmetrical
behavior of the rods at the same level because it is a mono-dimensional code; besides
the nodalization is such that every thermal structure includes portions of rods in which
are inserted thermocouple at different height.

So, inevitably, there will be a difference between experimental and calculated data.
Observing the calculated data it’s evident that:

- the dryout is deferred of about 100 s;

- the beginning of the dryout happens (like in the test) before the pumps stop;

- the core uncovering is of top-down type.

In conclusion therefore the good achievement between experimental and calculated
data can be observed.

Fluid temperature
The inlet and outlet vessel fluid temperatures are well predicted by the code (Figs. 4.16
and 4.17).

4.2.2 Phase 2: From the pumps stop to the end of the accumulator injection
(2820-4050 s)

The phenomena that have characterized this phase have been:
- redistribution of the primary system mass inventory;
- partial and temporary rods rewetting;
- accumulator injection;
- rods thermal excursion;
- the primary side depressurization;
- break mass loss.
All these phenomena have been well reproduced by the code and particularly the
asymmetrical behavior of the two primary circuits has been simulated.
The characteristic of mono-dimensionality of the code has not allowed to represent the
diversified behavior of the rods, but the code is able to reproduce the effect of the mass
drained from the intact loap hot leg on the rods thermal excursion.
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As far as it concerns the specific simulation of most meaningful variables, it can be
observed as following:

Primary pressure

Fig 4.18 shows the good achievement between the experimental and calculated data
with the only exception in the interval 3150-3400 s. In such interval in fact the
experimental values show a constant decreasing, while in the calculated data the
pressure remains quite constant. This could be due to the overestimation of the
calculated condensation associated to the accumulator injection; that determines
accumulator flowrate higher than the experimental value (Figs. 4.19 and 4.20). The
temporary great depressurization is then compensated by a lower flowrate to which is
associated a slower depressurization.

Rod surface temperature

The heater rod temperature is qualitatively well simulated (Figs. 4.13, 4.14, 4.15)
during this phase. Particularly it can be observed that as in the test, the phenomenon of
dryout doesn't interest the bottom levels (Fig. 4.15).

As in the test, core rewetting is bottom up type.

The difference between the experimental and calculated values of the peak clad
temperature is ranging in the interval 40-80 K while the core rewetting is ranging in the
interval 130-200 s.

CCFL

The code has also correctly simulated the end of CCFL conditions and the consequent
back flow to the core of liquid mass (Figs. 4.8 and 4.21). As a consequence of that a
reduction of the core heat-up rate it is observed (Fig. 4.22).

Accumulator injection

The accumulator flowrate is qualitatively well simulated (Fig. 4.19) even if the time for
emptying is about 200 s higher.

However the core rewetting occurs at about t=3200 s.

A disagreement between the - experimental and calculated data is that the injected
accumulator mass is directed to the loop seal (Fig. 4.23).

Vessel levels

The figures 4.10 and 4.11 show the calculated and experimental data of the downcomer
and riser level respectively.

In particular the Fig. 4.10 shows the good performance of the code also from the
quantitative point of view since it reproduces the level increase consequent to the
pumps arrest.

The riser level is qualitatively good and particularly it is well simulated the liquid level
decreasing following the pumps stop.

The sensitive difference of the level in the riser can be partly explained with the fact
that, contrarily than happened in the test, the injected accumulator mass flows in the
vessel, but also in the loop seal. This is showed by the Figs. 4.24 and 4.23.

Mass inventory
The Fig. 4.12 shows the good agreement between the expenmental and calculated data.
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Break flowrate
In this phase, the break flowrate is well simulated by the code (Figs. 4.2 and 4.3).
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4.2.3 Pbase 3: From the end of the accumulator injection to the final core
rewetting (4050-6900 s)

The phenomena that have characterized this phase have been:
- repressurization of the primary circuit;
- break mass loss;
- core dryout;
- PORVs opening and LPIS injection,;
- core rewetting.
Also this phase has been well reproduced by the code even if the dryout is earlier by
about 350 s. This is essentially due to the fact that, in the simulation, the accumulator
mass injected into the vessel is lower in comparison to that injected in the experiment.
As a consequence of the earlier occurrence of the second core dryout both the PORVs
and LPIS are activated earlier. However, from the table 4.2, it’s evident that the time
periods of intervention result to be almost the same.
As far as it concerns the specific simulation of most meaningful variables, it can be
observed as following:

Primary pressure

The repressurization (Fig. 4.1) following the end of the accumulator injection is well
represented by the code.

The depressurization following the PORVs intervention is also well reproduced.

Break mass flowrate
The break mass flowrate increase consequent to the activation of the system LPIS is
reproduced by the code (Fig. 4.2).

Rods temperature

Even if the second core dryout is earlier in the calculated data, it has been reproduced
with the same modality of the test (Figs. 4.13, 4.14, 4.15). The difference between
calculated and test peak clad temperature is ranging in the interval 5-80 K.

Mass inventory
The primary side mass inventory (Fig. 4.12) is very well simulated except for the phase
of filling.

Vessel levels

The riser collapsed liquid level has a trend similar to experimental one even if in
absolute value it results lower of about one meter (Fig. 4.11). In the downcomer the
calculated collapsed liquid level has a most rapid diminution in comparison to the
experimental one even if the initial absolute values are equal (Fig. 4.10).

In conclusion it can be stated that the simulation of these variables is quite good.
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4.3  SENSITIVITY CALCULATIONS

The reference calculation was aimed to best reproduce the initial and boundary
conditions. ‘
The sensitivity calculations have been realized in order:

- to improve the simulation of specific aspects;

- to evaluate the effect of specific parameters changing.
Based on the reference calculation some sensitivity calculations (Tab. 4.3) were
realized in order to improve the break flowrate, to verify the on set of the CCFL
phenomena, to improve the time of intervention of the second core dryout.

CODE CHARACTERISTIC/VARIED MAIN RESULTS
RUN PARAMETERS
RO1 -two phase discharge coefficient equal to | - two phase break flowrate higher
1.10 - less primary mass inventory
-accumulator pressure equal to 3.83 MPa | - earlier occurrence of the dryout
- earlier occurrence of the following
events
RO2 - in junctions 115 and 208, gas intercept |- CCFL only in IL
coefficient equal to 0.48 - more water flows back to the core
-reduction in the core heat-up rate
RO3 - in junction 145, reverse flow energy |- loop seal filling delayed
loss coefficient equal to 10° - more water in the vessel
- accumulator flowrate more similar
to experimental one
- increase of outlet vessel mass
flowrate
- earlier occurrence of the 2° dryout
R04 -intact loop steam generator nodalization |- increase of secondary circuit
change thermal dispersions
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431 RO1-case

From the analysis of the reference calculation, it is observed that the calculated
break mass flowrate during the two-phase regime is lower than the experimental one.
So a sensitivity calculation was realized with two phase discharge coefficient equal to
1.1 instead of 0.95. The consequence of this modification is a great flowrate (Fig. 4.25)
and therefore the mass losses through the break is increased (Fig. 4.26). As a
consequence the primary side depressurization is increased and the pumps arrest is
occurred about 200 s earlier (Fig. 4.27). That is due to the anticipation of the rod
thermal excursion (Fig. 4.30) determined by the lower mass inventory in the primary
circuit (Fig. 4.28) and in the vessel (Fig. 4.29). The earlier occurrence of the first
dryout makes all the following events suffering of the same advancing (Figs. 4.30 and
4.31).

4.3.2 R02-case

To verify the physical borders for the activation of the CCFL model in the two

junctions 115 and 208, the parameter ¢ (gas intercept) was increased from 0.4 to 0.48.
From the results, it is observed that the CCFL is only verified in the junction 115 of the
intact loop (Fig. 4.32) (in fact in the junction 208 of the broken loop, water is present in
both the volumes connected by the junction (Fig. 4.33)).
The water that flows back to the core is increased in comparison to the base case (Fig
4.34). This has determined a reduction in the core heat-up rate (Fig 4.35). Besides it is
observed that, a little bit earlier of pumps stop, the primary pressure is higher than the
base case (Fig. 4.36) of about 0.5 Pa.

433 ) R03-case

In the reference case it is observed that part of the accumulator injected water

does not go into the core but in the loop seal of the intact loop. Then it was realized a

sensitivity case in which the reverse flow energy loss coefficient of the volume in

which injects the accumulator, was set equal to 10°. The consequences of this are:

1) the filling of the loop seal is delayed (Figs. 4.37, 4.38, 4.39);

2) more water goes into the vessel (in fact the collapsed levels are higher (Figs. 4.40
and 4.41));

3) the accumulator injection is shorter and the mass flowrate is more close to the
experimental one (Fig. 4.42); as a consequence the core rewetting is about 100 s
earlier (Fig. 4.43) respect to the reference calculation and practically at the same
instant in which it is observed in the test;
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4) the outlet vessel mass flowrate is increased (Figs. 4.44 and 4.45); that determines an
earlier occurrence of the second core dryout.

434 R04-case

This sensitivity was realized to verify the influence of the degree of the mesh
size of the steam generator. The selected steam generator was intact loop one because it
is representative of three steam generators; the size number of its volumes was halved
both in the primary side and in the secondary side. However substantial changes are not
recorded in the general course. The only sensitive change concemns the thermal
dispersions of the secondary circuit that is increased (Fig. 4.46). It is not noticed,
instead, variation of the heat exchanged power (Fig. 4.47).
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4.4 QUANTITATIVE ACCURACY EVALUATION

A particular methodology, developed at University of Pisa, it was applied to the
different realized calculations in order to evaluate their quantitative accuracy. The
methodology is based upon the use of the Fast Fourier Transforms; its main features
are detailed in App. 6.

As mentioned in the appendix the application of FFT is characterized by performing
several steps and/or verifying certain conditions. In our case we have implemented a
simplified application of FFT since many of the steps or conditions can be considered a
priori satisfied. That is because both the LOBI facility and the nodalization can be
considered qualified.

The results of the application of the methodology are given in Tab. 4.4 and 4.5. From
the Tab. 4.4 it can be observed that for the reference calculation is satisfied the
criterion of acceptability, AA,, <0.4, therefore the calculation is good.

Following some comments are given on the results obtained.

a) Reference calculation

The high values for AA,, (difference of pressure in the ascending side of the loop seal
of the BL) AA,, (difference of pressure in the ascending side of the loop seal of the IL)
AA,, (difference of pressure in the descending side of the loop seal of the BL) are due
to the uncorrected simulation of the loop seal inventory.

The high value of AA,, (integrated mass injected in the primary system from the
emergency systems) is due to the earlier of the second core dryout that implicates the
earlier intervention of the LPIS. This is testified by the fact that in the temporal
window 0-4900 s the parameter AA,, is 0.06.

b) Sensitivity calculation, RO1

Compared to the base-case, in R01-case the value of AA, (pressure in the primary side)
is already higher in the temporal window 0-4900. This is due to the increase of the
depressurization following to the increase of the break flowrate. The further worsening
suffered in the next window is due to the earlier occurrence of the second core dryout.

The doubling of the value of AA, (pressure in the accumulator) is due to the earlier
injection of the accumulator consequently to the earlier pumps arrest (of about 180 s).

The value of AA, (fluid temperature at the core inlet) is increased in the temporal
window 0-4900 s. 70 s -after the beginning of the test, the primary system reaches the
saturation conditions so the fluid temperature (Fig. 4.48) has the same course of the
primary pressure, therefore the fluid temperature at the core inlet has the same error of
the primary pressure (there is same proportionality in the variations of AA, and AA,).

Analysis of post-test calculations results-46



While the further worsening in the following window is due to the earlier occurrence of
the second core dryout.

Analysis of post-test calculations results-47



BASE [BASE KO1 ROT RO2 RO2 RUS KO3 R0O4 RO4
WF AA WF AA WF |AA7 T T|WF AA WF |AA
1|Primary pressure TT0.02T) 0.0697]  0.023] 0.097Z] 0.023| 0.0754|  0.022| 0.0813] 0.021| 0.0693
2|Secondary pressure 0.046| 0.0128] 0.046] 0.0728] 0.046] 0.0128 0.046| 0.0728| 0.046| 0.0128|
3|ACC pressure 0.012] 0.0647 0.01 0.1371 0.013] 0.0526 0.012] 0.0634 0.011] 0.0691
4{core inlet fluid temperature 0.036] 0.1536 0.037] 0.2182 0.036] 0.1565 0.038] 0.2768 0.036] 0.1516
5|core outlet fluid temperature 0.017] 0.3329 0.017] 03747 0.076| 0.3396 0.017] 0.3044 0.018] 0.3642
~ 6|upper head fluid temperature 0.023] 0.2104]  0.017 0194 0.027{ 0.2007| 0.021] 0.1924| 0.024] 0.2153
7{inlegral break flow rate 0.046| 0.1624 0.044] 0.3094] 0.046| 0.1693 0.044| 0.3509 0.046] 0.1621
8[SG DC bottom fiuid temperature 0.034] 0.1403 0.034] 0.1421 0.034|0.1404| * 0.035| 0.1688 0.0357 0.1425
9ibreak flow rate 0.061 1.1814 0.056] 1.3351 0.061 1.1873 0.057] 1.2735 0.061 1.7717
10|ECCS integral flow rate 0.04] 0.8712 0.04] 1.3474 0.04] 09116 0.039] 1.4994 0.04] 0.8711
¥1irod temperature bottom lavel 0.011] 0.0845 0.014 0.099 0.011] 0.0857 0.03[ 0.1309 0.01] 0.0842
12|rod temperature middie level 0.013[ 0.7555 0.014] 0.6804 0.013[ 0.7825 0.013] 0.70257 0.013] 0.7304
13|rod temperature high level 0.012] 08797 0.013] 0.7922| 0.012 0.867 0.012] "0.829| 0.013] 0.8784
14iprimary side total mass 0.035|70.4217{ 0.035] 0.5587| 0.035] 0.4412 0.036 05955/ 0.036{ 0431
15]|core level 770.024] 0.7421 0.022| 0.7728 0.024] 0.7479 0.022| 0.7593| 0.024| 0.7057
16|SG DClevel (IL) 0.0 0.2544 0.029] 0.2548 0.029] 0.2544 0.032| 0.2621 0.03] 0.2588
T7{DP in-out SG (IL) 0.016] 0.2729 0.023] 04162 0.016] 0.2682 0.046] 0.8458 0.017] 0.2039
18|core power 0.064| 0.0635 0.042] 0.1483 0.059] 0.0718 0.044] 0.13%4 0.051] 0.0884
~19|DP Toop seal BL -ascending side 0.019| 0.9168 0.021 09115 0.02| 0.9282 0.02|0.8967 0.027 0.9259
20|DP loop seal IL -ascending side 0.025( 1.1916 0.026] 1.2197| 0.025] 1.195 0.022| 1.0329| 0.028( 1.4242
~21|DPloop seal BL -descending side 0.03] 1.0017] 0.029] 1.1436 0.029] 1.1383 0.028 1.204 0.03[ 1.0978
- [ 22]PRZ level 0.035] 0.1535 0.018] 0.1507 0.035] 0.1535 0.033] 0.1531 0.035| 0.1524
23[DP SG inlet plenum Utebes fop BL 0.027] 0.4461 0.029] 0.4354 0.027] 0.4523 0.027] 0.4488 0.028] 0.4451
24|DP SGinlet plenum Utebes top IL 0.022]  0.2521 0.0257  0.2697 0.022] 0.2472 0.048[ 0.6309 0.045] 0.3106
25|DP across DC-UH bypass 0.019f 0.4308 0.02| 04318 0.021] 04701 = 0.02| 0.4566 0.02] 0439
TOT 0.02621| 0.3487| 0.02524| 0.3888| 0.0259| 0.3537| 0.02776| 0.4074| 0.02657| 0.3546|

Tab. 4.4 - Summary of results obtained by application of FFT method on all transient
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FINESTRA U-48U0 BASE |BASE RU1 RUT RUZ RUZ RU3 KU3 RU4 RU4
WF AA WF AA WFE AA WF AA WF AA

T[Primary pressure 0.053] 0.0469 0.038] 0.0683 0.053 0.0485 0.053] 0.0493 0.052( 0.0485
2|Secondary pressure 0.056] 0.0154 0.006] 0.0152 0.056| 0.0152| 0.056| 0.0152 0.056] 0.0152
3[ACC pressure 0.014 0.057 0.011] 0.7298 0.014{  0.0550 0.014] 0.0561 0.013[ 0.0612]
4]core infet fluid temperature 0.036] 0.0553] 0.025[ 0.077] 0.037| 0.0585| 0.041] 0.064T| 0.038| 0.0505
core outlet fiuid temperature 0.02] 0.2083 0.018] 0.248/ 0.02] 0.213%5 0.025] 0.1639 0.023| 0.2054
G|upper head fluid temperature 0.041] 0.2041 0.041] 0.2081 0.041] 0.2083] 0.041] 0.2131 0.041 0.2085
7integral break flow rate 0.03] 0.041 0.073] 0.0248] 0.028] 0.0394| 0.029] 0.0392 0.03] 0.0409
8]5G DC bottom fluid temperature 0.039] 0.1575 0.039] 0.1645 0.039 0.157] 0.039] 0.1576 0.041] 0.1643
9[break flow rate 0.074 0.812 0.074] 0.808 0.074] 0.8119 0.074] 0.87128 0.074] 0.8161
TO[ECTS integral flow rafe 0.018] 0.0613 0.018] 0.1012 0.021] 0.0558 0.027| 0.0622 0.017] 0.0631]
T1|rod temperature bottom level 0.0 0.0545 0.025]0.0702 0.03] 0.0572 0.031] 0.0602 0.031] 0.0568
12jrod temperature middie fevel 0.07 0.5798 0.012] 0.52/1 0.07 0.6498 0.012] 0.5299 0.011 0.283
13[rod temperature high level 0.07| 0.6665 0.015| 0.446 0.01] 0.6587 0.012] 0.5654 0.077] 0.6389|
T14|primary side total mass 0.03 0.245 0.034| 0.2636 0.031] 0.2469 0.033 0.258 0.029] 0.2269
15]|core level 0.039] 0.4061 0.045] 0.48 0.039] 0.4133 0.040] 0.4527 0.04] 0.3934
16{5G DC level (IL) 0.049] 0.3091 0.049| 0.3096 0.049] ~ 0.3089 0.049 0.309 0.05] 0.3152
T71DP in-out SG (IL) 0.024] 0.2525 0.028] 0.358 0.024] 0.2448 0.023] 0.2553 0.025] 0.2377
1Bjcore power 0.097| 0.0544] 0.062| 0.0946 0.093] 0.0526 0.097] 0.0500 0.096] 0.0499]
T9|DP loop seal BL -ascending side 0.023] 0.7635 0.025] 0.7621 0.024] 0.7459 0.023] 0.7798 0.024f 0.7953
20[DP Toop seal IL -ascending side 0.035 0.9402 0.035] 0.95898 0.036] 0.932Z| 0.037| 0.889%6 0.036] 1.1852
Z21|DPloop seal BL -descending side 0.038] 0.7283 0.039] 0.6753 0.038] 0.7242 0.037] 0.7176 0.038] 0.7764
221PRZ level 0.041) 0.7477 0.047| 0.1465 0.041] 0.14/1 0.04] 0.1471 0.041] 0.1462
23|DP SG inlet plenum Utebes top BL 0.031] 0.4359 0.032] 0476 0.031] 0.4386 0.031 0.438 0.031f 0.4318
24|DP SG inlet plenum Utebestop IL | 0.025| 0.248 0.029] 0.25/9 0.026] 0.2428 0.026 0.245 0.056( 0.3108
25|DP across DC-UH bypass 0.036] 0.4629 0.036| 0.4607| 0.035] 04617 0.035] 0457 0.035] 0.4791
10T 0.032] 0.2419 0.029| 0.2404| 0.0327| ~ 0.244|0.03409| 0.2291| 0.03365| 0.24336

Tab. 4.5 - Summary of results obtained by application of FFT method (0-4900 s)
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The same reason can explain for the value of AA,, (rod temperature at the bottom
level).

The earlier intervention of the emergency system LPIS, is also reflected on the value of
AA, (integral break flowrate) since following this intervention the integral break
flowrate increases notably. However it can be observed that in the temporal window 0-
4900 the value of AA, is lower than the base case therefore the purpose of this
sensitivity calculation, improving the break flowrate during the two-phase flow, has
been reached even if this has a negative consequences in the rest of the test.

The same evaluation are valid for the value of AA, (break flowrate).

The parameter that is affected by the earlier intervention of the LPIS is AA,, (integrated
mass injected in the primary system from the emergency systems).

The values of AA,, (rod temperature at middle level) and AA,; ( rod temperature at
high level) are decreased since the earlier pumps stop determines the earlier
accumulator injection and then the core rewetting coincides with the experimental time
(Figs. in Appendixes). '

The high value of AA,, (mass in the primary circuit) is due to the earlier intervention of
the LPIS; in fact in the temporal window 0-4900 the value of AA,, is not different from
the value of the reference calculation.

¢) Sensitivity calculation, R03

The high value of AA, (pressure in the primary side) is due to the earlier occurrence of
the second core dryout that in turn determines the earlier operation of depressurization.
In fact in the temporal window 0-4900 the value of AA, is not different from that of the
reference calculation.

Higher values for AA, (integral break flowrate), AA, (break flowrate) and AA,,
(integrated mass injected in the primary system from the emergency systems) are due
to earlier intervention of the LPIS. In fact owing to the intervention of the system LPIS
the break flowrate suffers a noticeable increase and, therefore, also the integral break
flowrate is affected. This assumption is confirmed by the fact that they remain
unchanged in the temporal window 0-4900.

The high value of AA,; (pressure difference between the inlet and the outlet of the
intact loop steam generator) is due to an accumulation of liquid in the ascending part of
the U-tubes (Fig. 4.49); that is also shown by the high value of AA,, (pressure
difference at the inlet plenum of the U-tubes in the intact loop steam generator).

The purpose of this sensitivity case was to avoid the accumulation of liquid in the loop
seal during the injection of the accumulator. Partly this purpose has been reached; in
fact AA,, (pressure difference in the ascending side of the loop seal of the intact loop)
is lower than the base case in the temporal window 0-4900 s.

d) Sensitivity calculation, R04

The spike registred at about 200 s determines the high value of AA,, (pressure
difference in the ascending side of the loop seal of the intact loop).
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e) General observations

Case R03 has the lowest value of AA,, (pressure difference in the ascending side of the
loop seal of the intact loop); in fact in R03 being higher the void fraction in the loop
seal the pressure difference is lower, and then it is more close to the experimental
values.

For the values of AA, (integral break flowrate) case R03 has the highest value, and
following it R01, R02, R04. This order is due to the earlier intervention of the system
LPIS, in fact the case with earliest intervention has the highest value of AA, (Fig.
4.51). The same order should be observed for AA, (break flow rate), but it is observed
that the case R01 has the highest, and following R03, R02, R04. The exchange of
position between R03 and RO1 is probably due to spikes (Fig. 4.52) during the
accumulator injection. These loss have canceled the improvement obtained during the
two-phase flow period.

The influence of the fluctuations on the values of AA is noticeable so it can be
observed that in the quantitative analysis the presence of spurious peak results more
important than in the qualitative analysis.
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Fig. 4.2 : Primary system pressure

Analysis of post-test calculations results-52



1.00 1 i I 1 1§ | | | ] 1 | ] ] I
80 L XXX BASE MFLOWJS50000000 ﬂ
' YYY V7=SMOOTH(V6.5)
. e L 4
@
(=]
5 - -
£
[ 40 L -
£ i i
[ 4
£ 20
£ 2| r)? A
0 XY MWM&-‘“-*“‘JLE»&.JI
-20 1 1 ] 1 1 1 ) ) 1 [T 2 [ |
-1000. 0 1000. 2000. 3000.  4000. 5000. 6000. 7000.

Fig. 4.3 : Break mass flow rate

800

700 |- -
XXX V4=INT(V3)
€00 - YYY ELO6 QLOSEWT
s00 |-

400 L.

Mass (k)

200 |-

100 |-

100 1 1 1 1 1 1 1 1 i | 1 1 I 1
-1000. 0 1000. 2000. 3000. 4000. 5000. 6000. 7000.
Time (s}

Fig. 4.4 : Break integral flow rate

Analysis of post-test calculations results-53



WinGrat 2.4 - 04-27-1098 x10
1.40 T T T T T I L I 4
1.20 = — 3-5
e XY XXX BASE VOIDG133010000
Q‘W\ YYY BASE PMPHEAD135
3
100 L
25
80 |-
g —
3 2 E
2 .60 | -]
e 15 2
] T
> 4 b
1
20 L
5
(] X 0
-20 1 1 1 1 1 1 1 ! -5
-400.  -200. 200. 400. 600,  800.  1000. 1200. 1400.  1500.
Time (s)
Fig. 4.5 : Void fraction at pump inlet and pump head (IL)
[
WWinGrat 2.4 - 04-27.1098 x10
140 T T L T | T T 4
1.20 _———-——-“————3’——‘0/%\ XXX BASE VOIDG223010000 | 35
YYY BASE PMPHEAD225
1.00 |- \( i
N Jd 2s
80 L \
5 £
3 h ¢ - 2 E
[ B0 |- 3
- 3
% -{ 1.5 T
> 40 L
\Y\%!\ 1
P /
F N 4 5
0 X X ] \Y‘_x-. (]
=20 1 ] 1 1 1 1 i -5
400.  -200. 0 200. 400, 600. 800. 1000.  1200. 1400

Time (3)

Fig. 4.6 : Void fraction at pump inlet and pump head (BL)

Analysis of post-test calculations results-54



1.20 I

100 L xxX BASE vOIDG133010000
YYY BASE VOIDG223010000
- Zzz ELO6 VOID14
80 L VW EL06 vOID24
_5 .60 L
5 EXP BL
g -
-}
; 40 L.
20 |
0 X ¥ BV.2C
«20 1 1 1 1 1 1 1
500. -250. 0 250. 500. 750. 4000.  4250.  1500.  1750.

Time (s)

120 |- X0 BASE VOIDG110020000 =
YYY BASE VOIDG120010000
1.00 ZZZ BASE VOiIDG120020000 5

60 L.

Vold fraction

40

;

-1000. [ 1000. 2000. 3000. 4000. §000. €000. 7000.

Fig. 4.8 : Void fraction at steam generator inlet (IL)

Analysis of post-test calculations results-55



1.40

120 |- xxx BASE VOIDG206030000 .
YYY BASE VOIDG210010000
27z BA

VoID )
100 L SE VOIDG21902000

Void fraction

’ -1000. 0 1000. 2000. 3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.9 : Void fraction at steam generator inlet (BL)

10.00

9.00 L -

XXX BASE CNTRLVAR315
YYY ELOS8 CL2DYZ

3.00 |-

700 L

8.00 |-

500 |-

Collapsed level (m)

400 |

300 |

200 L

1.00 - 1 1 ) 1 1 ] [ | 1 1 1 ] 1
-1000. 0 1000. 2000. 3000. 4000. - 5000. 6000. 7000.
Time (s)

Fig. 4.10 : Collapsed level in the downcomer

Analysis of post-test calculations results-56



Collapsed level (m)

10.00

WinGraf 2.4 - 04.27-1958

9.00 L

800 |-

700 |

6.00 |-

500 |-

400 |

300 |-

200 L.

1.00

[

XXX BASE CNTRLVAR336
YYY ELO6 CL3RYZ

-1000.

Fig. 4.11 : Collapsed level in the riser

Mass (kg)

850

3000.
Time (s)

500 -

450 |-

350 |-

300 |

250 L.

200 |-

150 |-

100 |-

80

I J ) J 1 J ] 1 ¥

XXX BASE CNTRLVARS99
YYY ELO6 CIPRIM

-1000.

Fig. 4.12 : Primary system mass inventory

Analysis of post-test calculations results-57



Temperature (C)

§00

550 |~

500 |-

450 |-

400 |-

350 L

300 |-

250 |

200 |-

150

XXX BASE HTTEMP335600105
YYY ELO6 THMEAN11
2Z2Z ELOS THMEAN12 =

-1000.

0

1000.

2000.

3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.13 : Rod surface temperature (high level)

Tempoerature (C)

650
600 |-
550 o

500 L.
400 |
350 |

300 L

200 L

150

XXX BASE HTTEMP335300205
YYY ELO68 THMEANO?7 -1
ZZZ ELO8 THMEANCS

| B | 1 1 1 1

<1000.

3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.14 : Rod surface temperature (middle level)

Analysis of post-test calculations results-58



350

Z-] XXX BASE HTTEMP335200105
320 | XX YYY ELO6 THMEANO3 -
ZZz ELO6 THMEANOA

300 |-

-
]

Temperature (C)
2 B
T T

200 |-

180 L

160 1 1 1 1 1 2 1 1 L Il 1 1 1
-1000. 0 1000. 2000. 3000. 4000. §000. €000. 7000.

40 ¥ | ¥ ] T I { 1 ] 1 1 1 | i

320 | _
XXX BASE TEMPF325010000

300 |- YYY ELO6 TF35V135 : -

280 |-

Temperature (C)
T

B

180 |-

160 L.

140 1 1 1 1 1 1 1 1 1 [ 1 1 1 1
-1000. 0 4000. 2000. 3000. 4000. §000. 6000. 7000.
Time (s)

Fig. 4.16 : Core inlet fluid temperature

Analysis of post-test calculations results-59



375 |
350 |-
325 |-
300 |-

275 |-

Temperature (C)

250 |

225 |-

200 |-

175

.t

XXX BASE TEMPF350010000
YYY BASE TEMPG350010000
ZZZ ELO6 TF38HO00 =

-1000.

0

2000. 3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.17 :Core outlet fluid temperature

5.00

WinGraf 2.4 - 05-11-1908

450 |-

a00 |

3.50

3.00

Pressure (MPa)

2.50

2.00

1.50

1.00

XXX BASE P350010000
YYY ELO8 PA33

2600.

2800.

3000.

3200. 3400. 3600. 3800. 4000. 4200, 4400.
Time (s)

Fig. 4.18 : Primary system pressure

Analysis of post-test calculations results-60



3 T T T T 1 T — T T T
20 |
BASE MFLOWJ740000000
18 V49=SMOOQOTH(V48,5)
a5 L -
)
g A3 - -
k]
[ A0 - -
3
.o | -
H
= s L -
03 -
o VAT O AR TR SN XYLV X WK X XY Koo Vo e Ag
-03 L 1 1 ] 1 1 1 1 1 1 1 1 1
-1000. 0 1000. 2000. 3000. 4000. 5000, 6000. 7000.
Time (s)

160

140

120 |-

100 |-

80 |

60 |-

Mass (kg)

X0 V48=INT(V43)
YYY V47=139.9-Va4

XYy

N XYY

-1000.

1000. 2000. 3000. 4000. 5000. 6000. 7000.

Time (5)

Fig. 4.20 : Integral accumulator system mass flow rate

Analysis of post-test calculations results-61



10 L T T T T T T | T 1 T 1 T T
05 =~ B0 -
\\ . ¥ q‘ rgl \x Y
= i va\a“/ "1" VT % Y, Y A -
X v
Tt [ i
£ .05 | -
3
8 L. -
3
2 -10 L J
2
2 B XXX BASE MFLOWJ350020000 T
-15 L YYY BASE MFLOWJ350030000 .
=20 | X -
.25 1 1 1 1 1 ) 1 1 1 1 ) 1 !
2600. 2800, 3000. 3200. 3400. 3600, 3800. 4000.
Time (s)

Fig. 4.21 : Mass flow rate of junctions that connect the vessel to the hot leg

500 |-

S50 |- zzz

)
500 £ Lim

Temperature (C)

300’-

BASE HTTEMP335100105
BASE HTTEMP335200105
BASE HTTEMP335300105
BASE HTTEMP335300205
BASE HTTEMP335500105
BASE HTTEMP335600105

250 |-

200 1

2200.

2400. 2600.

Fig. 4.22 : Heater rod temperature

2800. 3000. 3200. 3400. 3600.
Time (s)

Analysis of post-test calculations results-62



40 1 L 1 I 1 1 ] 1 i ] [ 1 ] i )
30 | XXX BASE MFLOWJ140010000 =~
B YYY BASE MFLOWJ740000000 i
20 = .
g . > -
[-
& .10 -
: A v—.v\x_y.__.y\x/_y,_x__x_\
H P A [\ om X \
; \Xj V V ¥ D
® -
=
-10 L -
20 | 4
.30 1 I R S | 11 I R | 1 11 L1
2600, 2800. 3000. 3200. 3400. 3600. 3800. 4000. 4200.

Time (s)

Fig. 4.23 : Accumulator mass flow rate and mass flow rate of the inlet junction of the
volume in which the accumulator injects

1.40 T T T T 1 T T T T T T T T T
120 |- XXX BASE VOIDG 133010000 -
YYY ELO6 VOID14
1.00 ‘Y-AL—L—W—Lﬁ-
80 -
-
%
& 60 -
b2}
©
> A0 -
20 -
0 LY X X X X X X X X X
-20 1 | 1 1 | 1 1 1 1 | | 1 1 1
-1000. ] 1000. 2000, 3000, 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.24 : Void fraction at the pump inlet of the IL

Analysis of post-test calculations results-63



1.00 | T T T T T T T T T 1 T 1 T
=3 -
80 | 4
XXX BASE MFLOWJ950000000
= ¢ YYY RO1 MFLOWJ950000000 i
22z V68=SMOOTH(VE7,5)
.60 |- -

Mass flow rate (kg/s)
8
T

L [ i ] 1

-1000. 0 1000.

Fig. 4.25 : Break mass flow rate

900

2000. 3000. 4000,
Time (8)

800 L.

700 |

600

400

Mass (kg)

300

200

100

XXX
YYy
zzz

VB3=INT(V62)
V65=INT(VS4) N
ELOS QLOSEWT /

-100 1 1

- | 1 1 1 1

-1000. 0 1000.

Fig. 4.26 : Break integral flow rate

2000. 3000. 4000.
Time (s)

6000. 7000.

Analysis of post-test calculations results-64



700 1 ! 1 i ) 1 1 I 1 ] I 1 1 T
600 | 4
XXX BASE PMPVEL135
500 w vy v v v YYY RO1 PMPVEL135
ad § -
i
S a0 | -
£
£ | 4
2
[
>
£ 20 | -
=
a
100 |- 4
0 vle s % w w X w X XX x|
<100 1 ] 1 1 1 1 1 1 ] 1 1 L 1 1
-1000. 0 1000. 2000. 3000. 4000. 5000. 6000. 7000.

Time (s)

Fig. 4.27 : Main coolant pumps speed

550

500 - XXX BASE CNTRLVAR999
YYY RO1 CNTRLVAR999

450 |-

400 |-

350 L

300 L.

Mass (kg)

250 |-

200 L.

150

100 |-

50 1 1 1 1 | [ B S T | L3 |
-1000. ] 1000. 2000. 3000. 4000. §000. 6000. 7000.

Fig. 4.28 : Primary system mass inventory

Analysis of post-test calculations results-65



WinGrat 2.4 - 04-27-1098
10.00

] ] ] ] ] 1 L 1

s.00 |
300 |- o
700 |
600 |

5.00 |

Collapsed level (m)

4.00 |

3.00 |-

200 |-

4.00 1 1 1

BASE CNTRLVAR338 _J
RO1 CNTRLVAR338

" 1000, ) 1000. 2000, 3000.

Time (s)

Fig. 4.29 : Collapsed level in the riser

700

500 L.

Temperature (C)

200

A 1 I

100 1 1 | B B |

-

BASE HTTEMP335500108-
BASE HTTEMP335600105
RO1 HTTEMP335500105-
RO1  HTTEMP335600105

R3¢

-1000. 0 1000. 2000.

3000.
Time (s)

Fig. 4.30 : Rod surface temperature (high level)

Analysis of post-test calculations results-66



20.0

180 | i

160 | xvzl XXX BASE P350010000 i
YYY RO1 P350010000

140 L ¢ ZZZ EL06 PA33 A

120 [ -~
100 |- - -

80 L

Pressure (MPa)

60 |-

40 |-

20 |

-1000.
Time (s)

Fig. 4.31 : Primary system pressure

1.40

120 | ) .
XXX BASE VOIDG120010000
YYY R02 VOIDG120010000

1.00 |-

20 L

60 L

Volid fraction

<1000. o 4000. 2000. 3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.32 : Void fraction at steam generator inlet (IL)

Analysis of post-test calculations results-67



1.20 T | T T T T T
1.00
.80 .
5 50 L
=
[r
2 =
3 4 1 .
> " % XXX BASE VOIDG210010000 .
' YYY BASE VOIDG206030000

2 | } Zzz RO2 VOIDG210010000 |
» VW R02 VOIDG206030000

0 YZAY.

.20 1 t 1 L ] 1 1
-500. 0 500. 1000. 1500. 2000. 2500. 3000. 3500. 4000.

Time (s)

Fig. 4.33 : Void fraction at the upstream and downstream volumes of the junction 208

WinGref 2.4 - 04-27-1008

30 ) 1 1 1 LI} 1 1L I i

20 XXX BASE MFLOWJ350020000 |
YYY R02 MFLOWJ350020000

2 -J

0 Z e

4

-10 |

-20 L

Mass flow rate (kg/s)

-50 1 1 1 1 1 L 1 1 1
26750 27000 27250 27500 27750 2800.0 282350 2850.0 2875.0 2900.0 2925.0

Time (s)

Fig. 4.34 : Mass flow rate of junction that connects the vessel to the hot leg of intact
loop

Analysis of post-test calculations results-68



650

600

850

500

450

350

Temperature (C)
&

300

250

200

150

L JJJ

XXX BASE HTTEMP335300205
YYY BASE HTTEMP335500105
~22Z BASE HTTEMP335600105
VW R02 HTTEMP335300205
R02 HTTEMP335500105
HHH R02 HTTEMP335600105

! ) I 1 I I 1 ] ] ! 1

Fig. 4.35 : Heater rod temperature

4.10

4.00

.90

3.80

3.70

Pressure (MPa)

3.€0

3.50

3.40

3.30

XXX BASE P350010000
YYY R02 P350010000 -

I 1 1 1 1 1 [ 1 ] ] i | 1

2550.0

2600.0

2650.0 2700.0 2750.0 28000  2850.0 2900.0 2950.0
' Time (s)

Fig. 4.36 : Primary system pressure

Analysis of post-test calculations results-69



1.20

1.00 B
80 |

Void fraction

XXX BASE VOIDG130050000 "
YYY RO3 VOIDG130050000 .|

1 1 1 ]

0

2000. 3000. 4000. 5000. §000. 7000.
Time (s)

Fig. 4.37 : Void fraction in the loop seal (vol. 13005)

1.20

1.00

80 |-

Void fraction

) ] L] 1 ] ! J ] | ]

XXX BASE VOIDG130040000
YYY RO3 VOIDG130040000 m

-20

-1000.

1000.

2000. 3000. 4000. 5000. 6000. 7000.
Time (s)

Fig. 4.38 : Void fraction in the loop seal (vol. 13004)

Analysis of post-test calculations results-70



WinGraf 2.4 - 04-27-1998

140 | 1 ] 1 1 1 i I 1 I ] T 1 1
120 | XXX BASE VOIDG130030000
YYY R03 VOIDG130030000
100 | ) o ma¥n Y
' rra‘*«lﬁwmeﬁY PRI,
80 | i ~
s VoY
g .60 | ] -
] x¥ 3
3 / }
> 4 L ’// ‘Y -
J \
Y
2 |- X i -
7 :
/ ‘x )‘
() XY VXX M X X x % X
«20 1 1 1 (] 1 1 1 1 1 1 1 1 1 1
-1000. ° 1000. 2000. 3000.  4000. 5000. 6000. 7000.
Time (s)
Fig. 4.39 : Void fraction in the loop seal (vol. 13003)
WinGraf 2.4 - 04-27-190%8
8.00 ! I 1 { I I 1 T I { ' § ] 1 I
700 L 4
XXX BASE CNTRLVAR31S
~  YYY R03 CNTRLVAR315 -
6.00
3
T 500
kS
b -]
®
£ 400
]
s
(3]
3.00
2.00
1.00 1 1 1 1 1 i 1 1 I 1 1 1 1 11
2500. 2750. 3000. 2250, 3500. 3750. 4000. 4250. 4500,

Time (s)

Fig. 4.40 : Collapsed level in the downcomer

Analysis of post-test calculations results-71



550 |-

XXX BASE CNTRLVAR336

s00 L YYY RO3 CNTRLVAR33

450 L

400 |-

350 |

Collapsed level (m)

300

250 |-

200 |

N ]

1.50 1 1 1

4 1 1 )

2500. 2750. 3000.

Fig. 4.41 : Collapsed level in the riser

3250.

3500. 3750. 4000. 4250.
Time (s)

4500.

A0 |-

oo‘ p—

Mass flow rate (kg/s)

05 -

XXX BASE MFLOWJ740000000
YYY R03 MFLOWJ740000000™

" -1000. )

Fig. 4.42 : Accumulator mass flow rate

Analysis of post-test calculations results-72

7000.



WinGraf 24 - 04-27-1998
€00

850 xxx BASE HTTEMP335300205
YYY BASE HTTEMP335500105
500 |22Z BASE HTTEMP335600105
VW RO3 HTTEMP335300205
JJ RO3 HTTEMP335500105
450 |-HHH RO3 HTTEMP335600105

400 L

350 |-

Temperatura (C)

300 |

250 |<

200 L -

150 1 1 1 1 i A 1 [ 1 } 1 1 1
2200. 2400. 2600. 2800. 3000. 3200. 3400. 3600.

Fig. 4.43 : Heater rod temperature

WinGraf 2.4 - 04-27-1898

40 T T T T T T T T T T

30 L XXX BASE MFLOWJ350020000
1 YYY RO03 MFLOWJ350020000

20 | -

A0 L

Mass flow rate (kg/s)
o
>
<t.“7¢
A
1

-20 |
=30 |- -
40 1 L 1 1 1 1 1 1 1 1 1

1000. 1500. 2000. 2500. 3000. 3500. 4000.

Time (s)

Fig. 4.44 : Mass flow rate of junction that connects the vessel to the hot leg of intact
loop

Analysis of post-test calculations results-73



WinGraf 2.4 - 04-27-1508

70 T T T T 1 T 1 T 1 T 1 R T
60 L .
XXX BASE MFLOWJ350030000
50 L YYY R03 MFLOWI350030000 -
40 |- -
=
3_’ 30 | N
2
[ 2 |
2
- 10 L A
* . h
] Tl i
= %&W
T
-10 i .
i!
-20 |- J -
=30 1 1 1 1 1 1 1 1 ! I 1 1 1
1000. 1500. 2000. 2500. 3000. 3500. 4000. 4500.

Time (s)

Fig. 4.45 : Mass flow rate of junction that connects the vessel to the hot leg of broken

loop
WinGraf 2.4 - 04-27-1998
1590 ] ] 1 LI i 1 ] 1 ! 1 1 ] 1
7000 |- P XXX BASE CNTRLVARS2 .
v N Y\ YYY R04 CNTRLVARS2
4 N
6500 | 4
2 R .
H 6000
3 "
3 5 -
kS
5500 |- 4
o -l
5000 |- 4
4500 1 1 1 [ I L ) | IS NN NN NN B 1
-1000. 0 1000.  2000.  3000.  4000. 5000.  6000. 7000,

Time {(s)

Fig. 4.46 :Heat loss of the secondary system of the steam generator (IL)

Analysis of post-test calculations results-74



x10 6

WInGraf 2.4 - 04-27-1808

0 v

XY X R R R R R LR ]

XY X

-

’
-
!

Heat losses (W)
[
T

&
T

| —| 1 1

XXX BASE CNTRLVAR22
YYY R04 CNTRLVAR22 -

1000. 2000.

3000. 4000. 5000. 6€000. 7000.
Time (s)

Fig. 4.47 : Heat transfer exchange power for the intact loop steam generator

350

325 |-

300 |-

215 |-

250 L

Temperature (C)

175 |-

150 |

125 1 1 1 ] 1

XXX BASE TEMPF325010000
YYY RO1 TEMPF325010000 -

ZZZ ELO6 TF35V135

1 1 1 1 1 L L 1

-1000. 0 1000. 2000.

Fig. 4.48 : Core inlet fluid temperature

3000. 4000. 5000. 6000. 7000.
Time (8)

Analysis of post-test calculations results-75



1.40

1 ) L 1 I ! 1 I ¥ 1 I 1 ]

120 | XXX RO3 VOIDG120080000 -
YYY RO03 VOIDG120020000

1.00 L N - KN XN NN NK -
80 |- -~
60 L -~
! .
4
r ¥

Void fraction

40 - |

20 | l -
\
0 Xy Y
-20 1 1 1 1 1 | 1 1 1 L 1 1 1 1
-1000. [ 1000. 2000. 3000, 4000, 5000. 6000. 7000.

Time (s)

Fig. 4.49 : Void fraction in the U-tubes

.07

I 1 L T T T T 1 T T T
.06 | ]
XXX V18=V17/1000000
05 YYy V20=V19/1000000
- T Caso R04 Z2Z ELOE PD1714 -

g
'
1

Diff. Pressure (MPa)
T T
2
1‘ rom "
g
°
1

01 | -
0 2 Z .z Z2 2 2 Z 2 2Z j
-.01 1 1 1 1 1 1 1 1 1 1 1 [ | [
-1000. 0 1000. 2000. 3000. 4000. 5000. 6000. 7000.
' Time (s)

Fig. 4.50 : Pressure diﬁ'erence in the ascending side of the loop seal (IL)

Analysis of post-test calculations results-76



A4S T T T T T T T T T T T
., S, 4
4 bxx RO1 MFLOWJIS10000000 29
YYY RO2 MFLOWJ810000000
35 |ZZZ ROZ  MFLOWJB10000000 ; -
VW R04 MFLOWJ810000000
30 |[JW BASE MFLOWJE10000000 A
)
g 25 |- -
&
[ 20 |- -t
A | 3 -
[
&
= w0l 4
05 |- -
0 X ¥ X ¥ ¥ ¥ X ly ¥ ¥y J
-05 1 1 1 1 1 1 ] 1 1 1 1
5000. §200. §400. §600. 5§800. 6000. 6200.
Time (s)

Fig. 4.51 : LPIS mass flowrate

. WinGrat 2.4 - 04-30-1958
A4

1 I I i ] ) L] |
a2 L -
XXX RO1 MFLOWJS50000000
YYY RO3 MFLOWJS50000000
10k zzz V11=SMOOTH(V10,5)
2 .
&
£
g 06
2
-4 .04
[}
=
.02
0
-02 1 1 1 1 1 1 1 1
2400.  2600.  2800.  3000.  3200. 3400.  3500.  3800.  4000.  4200.

Time (s)

Fig. 4.52 : Break mass flow rate

Analysis of post-test calculations results-77



5. CONCLUSIONS

Conclusion can be considered from two separate points of view:

1 - experimental evidences

2 - performances of the code

With reference to the point 1 it can be observed that:

- the recession of the CCFL conditions determines a reduction in the core heat-up rate;

- in the given scenario, the accumulator is able to terminate the core temperature
excursion bringing core in saturation conditions;

- after the emptying of the accumulator, the primary system repressurizes preventing
the LPIS actuation and causing a second core dryout;

- the actuation of the LPIS determines the long term quenching of the heater rods.

Regarding to the performances of the code it can be observed that in general all the

main phenomena are well reproduced and the timing of the events is good too.

In particular have been simulated:

- primary and secondary side thermal coupling;

- the first core dryout together with the CCFL effect on temperature excursion;

- the asymmetrical loops behavior for the CCFL and pumps degradation;

- the accumulator injection.

The greatest discrepancies have been identified in the break flowrate and in the

simulation of the loop seal.

The quantitative analysis has confirmed the goodness of the results showing a best

accuracy in the temporal window 0-4900. '

The sensitivity calculations present an improvement of the simulation limited to

specific and partial aspects. The calculation more accurate is the base case and that is

confirmed by the related FFT results.

The FFT method has been applied in order to get quantitative and qualitative

evaluations of the code performance.

Based on the FFT results it can be stated that:

- the analytical evaluation of the code performance done comparing the experimental
data with the calculated date has been confirmed by the FFT results;

- the FFT is very effective as a tool for a fast screening of the code performances.
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LIST OF ABBREVIATIONS

AUXFEED Auxiliary feedwater

AA
ACC
BL
CCFL
CSNI
DC
DP
ECCS
FFT
IL
LPIS
MCP
MSIV
PORV
PRZ
PWR
RCS
SG
TDJ
TDV
UMAE
WF

Average amplitude

Accumulator

Broken Loop

Counter Current Flow Limitation
Committee on the Safety of Nuclear Installations
Downcomer

Pressure Drop

Emergency Core Cooling Systems
Fast Fourier Transform

Intact Loop

Low Pressure Injection System
Main Coolant Pump

Main Steam Isolation Valve
Pressurizer Operated Relief Valve
Pressurizer

Pressurized Water Reactor
Reactor Coolant System

Steam Generator

Time Dependent Junction

Time Dependent Volume

Uncertainty Methodology based on Accuracy Extrapolation

Weighted Frequency
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Short overview of the UMAE basic principles

Different methods have been proposed to quantify the accuracy of
thermal-hydraulic codes. Although these methods were able to give
information about the accuracy, some were not considered satisfactory
because they involved some empiricism and were lacking of a precise
mathematical meaning. Besides, engineering subjective judgment is almost
always present in these methods.

Generally, the starting point of each method is an error function, through

which the accuracy is evaluated. The error function should respond to

these requirements:

1) to be independent upon the transient duration;

2) its values should be normalized;

3) at any time of the transient this function should remember the previous

history;

4) engineering judgment should be avoided or reduced;

5) the mathematical formulation should be simple and the function should

be non-dimensional.

The UMAE (Uncertainty Methodology based on Accuracy Extrapolation)

is a methodology suitable for evaluating the uncertainty in the prediction

of transient scenarios in nuclear reactors when carried out by thermal-

hydraulic system codes. It is based on the extrapolation of the accuracy

resulting from a comparison between code results and relevant

experimental data obtained in small scale facilities.

To apply the UMAE must be verified the following conditions:

- the code must be qualified;

- the experimental data have to reproduce the same phenomena expected in
the real plant;

- the nodalizzation has to be qualified;

- the experimental data has to be relative to facility of different scale, but
characterized by the same scaling philosophy;

- the experiments must be qualified.

As already tells, the basic idea of the UMAE methodology, is to get the

uncertainty from considering the accuracy.

The simplest formulation about the accuracy of a given code calculation,

with reference to the experimental measured trend, is obtained by the

difference function
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AF(t) = Fcak(t)—Fexp(t)
(M)

To get a limited number of values that give an overall judgment about
accuracy, it should be resorted to the integration of the function (1). Such
integration however it would give a partial information because some
interesting details could be lost, for example the presence of perturbations
would be hidden for effects of compensation. So it may be useful to study
the same phenomenon from other points of view, time independent.

A mathematical algorithm that can translate a given time function, in a
corresponding complex function is the Fourier transform.

For the calculation of Fourier transform exists a specific procedure of
calculation call FFT (Fast Fourier Trasform).

The FFT procedure is a mathematical tool through which is possible to
analyze and to compare, in objective manner, calculated and experimental
quantity that are time functions passing in the frequency domain.

In particular, the FFT methodology, applied to the error function AF(s),
defined from the equation (1), defines two values characterizing each
calculation:

¢ a dimensionless average amplitude

2.

Y BF(f,)
Ad=2

D F ()

n=0

¢ a weighted frequency

Y|BFL)- f,
WF = 20

2IAF ()

n=0

The AA factor can be considered a sort of “average fractional error”, it
represents the relative magnitude of the discrepancy deriving from the
comparison between the calculated and the corresponding experimental
trend of each parameter.
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The weighted frequency WF gives an idea of the frequencies related with
the inaccuracy so it represents the type of error. A small value for WF
means that the discrepancy between the measured and calculated trends is
more important at low frequencies; when WF is large, the discrepancy
comes from various kinds of noise and consequently is less important. So
better accuracy is realized for low values of AA associated to large values
of WF. ,

Trying to give an overall picture of the accuracy of a given calculation, it
is required to combine the information obtained for the single parameters
into average indexes of performance.

This is obtained by defining the following quantities:

N var
(44),,, = D (44),-(