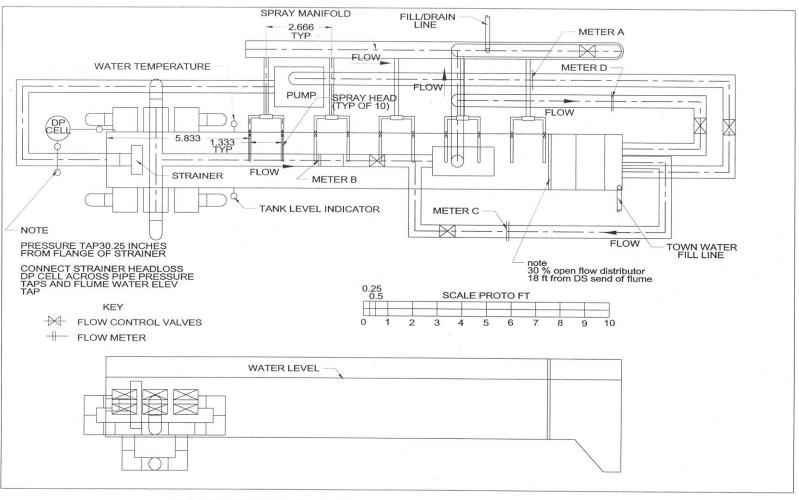
BRIEFING ON GSI-191 FLUME TESTING

FRAMATOME-ANP


ALDEN RESEARCH LABORATORY, INC.

PERFORMANCE CONTRACTING, INC.

MARCH 17, 2005

➢Purpose of Test

- Outline test series to evaluate PCI Sure-Flow[™] performance with various debris mixes
- Establish basis to take advantage of lower actual head loss resulting with very low approach velocities in PWRs
- Define "Near-Field" effect on head loss
- Testing Conducted as Safety Related
 - Approved test plan
 - Oversight by Framatome-ANP QA

27 INCH WIDE BY 39 INCHES DEEP BY 20 FT 9 IN LONG TEST FLUME

BASIC SCALING FACTORS

- Strainer Size: 13.2 ft²
- ➤Test Flows: 30, 60, 90, 120 gpm

(equates to 0.005 ft/s - 0.02 ft/s approach velocity)

Overhead Sprays Simulate Pool Disturbance From Break

≻Example:

- Scaled Strainer (13.2 ft²) @ 30 gpm Represents 0.005 ft/sec Approach Velocity
- Corresponds to 2,500 ft² Strainer Flow Rate 5,680 gpm

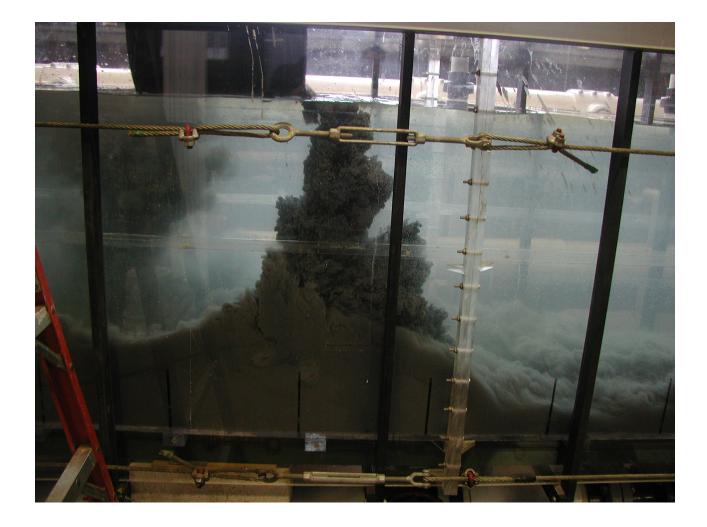
RESULTS OVERVIEW

- Low strainer approach velocity displays much lower head loss than NUREG 6224 calculations
- "Near-Field" effect:
 - Debris Transport in Vicinity of Strainer
 - Debris Loading on Strainer
- Results in more reasonable passive strainer arrangements
- Extreme amounts of fiber and particulate do not significantly increase head loss until much higher approach velocities introduced
- Testing for Solutions... *Not* Developing Alternative Methodology or Correlation at this Time

Sure-Flow[™] Strainer Features

In general, the tests at ARL in March demonstrated the following:


- > The "Near-Field" effect involves:
 - The Debris Transport in the Vicinity of Strainer
 - The Debris Porosity & Loading on the Strainer
- The SFS4 strainer was tested at approach velocities through the screen surface area of 0.005 fps through 0.020 fps.
- The measured head loss of the SFS4 strainer was significantly lower through the mixed fibrous / particulate laden debris bed than is predicted using the NEI 04-07 (Reference 2) methodology, which applies head loss correlations of NUREG/CR-6224 (Reference 3).
- At the tested flow approach velocities, the SFS4 strainer did not form a dense debris bed. In consequence, the head loss across the debris was significantly lower than predicted using the NEI 04-07 (Reference 2) methodology.


WHAT IS BEING TESTED TODAY

Test 1:	Thin Bed Effect - Particulate Loading As Noted	30 gpm	No Sprays
Test 2:	Thin Bed - Same Particulate Loading	30 gpm 60 gpm	Sprays Running
Test 3:	<i>High Fiber Content - Add Fiber ; Same Particulate Loading</i>	30 gpm	No Sprays
Test 4:	High Fiber Content - Same Particulate Loading	30 gpm 60 gpm	Sprays Running

