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Description and RELAP5 Assessment 
of the PMK-2 CAMP-CLB Experiment 

ABSTRACT 

There is a general interest to validate best estimate (BE) reactor safety system codes for VVER
type reactors. The OECD-VVER code validation matrix is Used for the selection of tests in 
support of accident management (AM) and to eliminate "white spots" in the matrix. Based on 
this matrix - test types not yet covered - a proposal was made at the 12th (Spring '98) CAMP 
meeting in Ankara: 

"* perform VVER-440/213 related experiment on the Hungarian PMK-2 test facility 
"* validate RELAP5/mod 3.2 code.  

The CAMP-CLB test is an AM-type experiment with small leak in the primary coolant system 
needing secondary side heat removal. The break size is 2 %, heat removed by break is 
insufficient to depressurise primary circuit below secondary pressure. Steam dump valve to 
atmosphere regulates secondary pressure until - as an AM action - secondary bleed is started 
following core fuel rod simulator overheating which is a consequence of unavailability of the 
high pressure injection systems.  

Report presents a short description of the PMK-2 facility, the initial and boundary conditions of 
the test followed by an evaluation of the results by measured parameters. After reviewing 
modelling aspects and results of post-test calculations by RELAP5/mod3.2.2Gamma a sensitivity 
study is described. The "bifurcation type" behaviour encountered in parametric studies could be 
the result of the code calculating by different constitutional models depending on the time step or 
secondary heat losses. This behaviour needs further investigation and it is reported as a new 
RELAP5 User Problem.
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1. INTRODUCTION 
There is a general interest to validate best estimate (BE) reactor safety system codes for VVERs.  
As it was reported in Refs. [1] and [2] the OECD-VVER code validation matrix is used for the 
selection of tests in support of accident management (AM) and to eliminate "white spots" in the 
matrix. Based on this matrix - test types not yet covered - a proposal was made at the 12th (Spring 
'98) CAMP meeting in Ankara: 

"* perform VVER-440/213 related experiment on the Hungarian PMK-2 test facility 
"* validate RELAP5/mod 3.x code 

as an in-kind contribution of Hungary.  

The proposed time table was: 
"* Test definition and pre-test analysis: October 1998 
"* Experiment execution: October 1999 
"* Post-test analysis with RELAP5/mod3.2.2: October 2000 

The CAMP-CLB test is an AM-type experiment with the main features (as specified at the Fall 
'98 CAMP meeting [10]) as follows: 

"* small leak in the primary coolant system needing secondary side heat removal; 
"* break size: 2 % (nozzle diameter = 1.3 mm), heat removed by break should be 

insufficient to depressurise primary circuit below secondary pressure; 
"* unavailability of high pressure injection systems (HPIS); 
"* two of four hydroaccumulators (HA) are available, both injecting to the downcomer; 
"* secondary coolant system (steam lines and feed water) is isolated, 
"* steam dump valve to atmosphere (labelled BRU-A) regulates secondary pressure 
"* HA starts to inject at 6 MPa and stops, when primary pressure stagnates 
"* HA injection cannot compensate coolant loss: hot and cold leg loop seals clear and 

core uncovers 
"* as an AM action secondary bleed is started following rod overheating 
"* steam dump valve is used for bleed 
"* HA injection induced by secondary depressurisation assures reflood of the core 

In Section 2 a short description of the PMK-2 facility is provided to help the understanding of the 
test results.  

In Section 3 a definition of the test is given to outline the most important features of the test. In 
the other part of this Section the objectives of the test are shortly described.  

Section 4 specifies the initial and boundary conditions of the test followed by an analysis of the 
results in Section 5.  

Section 6 presents modelling aspects and results of post-test calculations by RELAP5/mod3.2.2.  
The sensitivity studies being described in Section 7.  

The main conclusions are presented in Section 8.
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2. THE PMK-2 TEST FACILITY 
The Paks Nuclear Power Plant is equipped with four VVER-440/213-type reactors. Such plants 
are slightly different from PWRs of usual design and have a number of special features, viz.: 6
loop primary circuit, horizontal steam generators (SG), loop seal in hot and cold legs, set-point 
pressure of hydroaccumulators (HA) higher than secondary pressure, the coolant from HAs is 
directly injected to the upper plenum and downcomer, etc. As a consequence of the differences 
the transient behaviour of such a reactor system should be different from the usual PWR system 
behaviour.  

The PMK-2 facility at the KFKI-AEKI, Budapest, is a full pressure, scaled down model of the 
primary and partly the secondary circuit of the Paks NPP [3]. The PMK-2 was primarily designed 
for the investigation of operational and off-normal transient processes and of small-break loss of 
coolant accidents (SBLOCA) of VVER-440/213 plants. The volume and power scaling ratios are 
1:2070. Due to the importance of gravitational forces in both single- and two-phase flow the 
elevation ratio is 1:1 except for the lower plenum and pressuriser (PRZ). The six loops of the 
plant are modelled by a single active loop. The coolant is water under the same operating 
conditions as in the nuclear power plant, i.e. transients can be started from nominal operating 
conditions.  

The first design of the PMK-NVH facility only modelled the primary circuit of the plant. This 
version was used until 1990. The PMK-2 facility is an upgraded version (first of all by addition 
of a controlled secondary heat removal system) extending the capability of the test loop to 
modelling transient processes initiated by secondary circuit disturbances or including accident 
sequences in support of AM procedures.  

During the 15 operational years - from May 1986 onwards with the first of four IAEA-SPE tests 
[4] - 48 different experiments, including cold and hot leg break LOCA, leakage from primary to 
secondary (PRISE), loss of flow, loss of feedwater, disturbances of natural circulation, etc. tests, 
were performed on this integral type test facility [5], [6], [7].  

2.1 System components description 

The main characteristics of the PMK-2 facility is given in Table 2.1. The flow diagram of the 
facility is presented in Fig. 2.1, while the component layout and elevations are shown in Fig.  
2.10. Table 2.2. gives the identification of valves with reference to Fig.2.1, including their the 
location, type and function. Figs. 2.2 to 2.9 show the main components of PMK-2.  

The reactor vessel model consists of the reactor model and the external annular downcomer (Fig.  
2.8). The core is modelled by 19 electrically heated rods with uniform power distribution. The 
nominal initial value is given in each test. After the reactor scram the non-dimensional decay heat 
- time curve is modelled, while from 1000 s a constant value is used. In the core the heated 
length, spacer type and elevations, as well as the channel flow area are the same as in the Paks 
NPP (Fig. 2.3).  
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Cold and hot legs are volume scaled and care was taken to reproduce the correct elevations of the 
loop seals in both the cold and the hot legs. Cold and hot leg cross section areas if modelled 
according to volume scaling principles would have produced much too high pressure drops.  
Since, for practical reasons, length could not be maintained 1:1, relatively large cross sections 
were chosen for the PMK-2 loop. On the one hand this results in smaller cold and hot leg 
frictional pressure drops than in the NPP, on the other hand, however, it improves the relatively 
high surface to volume ratio of the PMK-2 pipework. As to the former effect, the small frictional 
pressure drop of the PMK-2 cold and hot legs have a negligible effect on small-break processes.  
Since, the pressure drop is increased using orifices around the loop. The upper head and the hot 
leg with pressuriser surge line are presented in Figs. 2.6 and 2.7.  

For the pressuriser the volume scaling, the water to steam volume ratio and the elevation of the 
water level is kept. For practical reasons the diameter and length ratios cannot be realised. The 
pressuriser is connected to the lower part of the hot leg as in the reference system. Electrical 
heaters are installed in the model and the provision of the spray cooling is similar to that of Paks 
NPP (Fig. 2.9).  

The main circulating pump of the PMK-2 serves to produce the nominal operating conditions 
corresponding to that of the NPP as well as to simulate the flow coast-down following pump trip 
early in the transient. In order to avoid operation of the pump in two-phase condition, it is 
accommodated in a by-pass line. Flow coast-down is modelled by closing a control valve in an 
appropriate manner and if flow rate is reduced to that of natural circulation, the valve in the by
passed cold leg part is opened while the pump line is simultaneously closed.  

The horizontal design of the VVER-440 steam generator is modelled by horizontal heat transfer 
tubes between hot and cold collectors in the primary side (Figs. 2.4 and 2.5). This horizontal 
design affects the primary circuit behaviour during a small break LOCA in quite a different way 
to the usual vertical steam generators. In the modelling the tube diameter, length and number 
were determined by the requirement of keeping the 1:2070 ratio of the product of the overall heat 
transfer coefficient and the equivalent heat transfer area. The elevations of tube rows and the 
axial surface distribution of tubes are the same as in the reference system. On the secondary side 
the water level and the steam to water volume ratios are kept.  

From the emergency core cooling systems (ECCS) the four hydroaccumulators of the Paks NPP 
are modelled by two vessels with prescribed initial and minimum (empty in the plant) coolant 
levels. They are connected to the downcomer and upper plenum similar to those of the reference 
system. The high and low pressure injection systems (HPIS and LPIS) are modelled by use of 
piston pumps. The flow rates measured during the start-up period of the Paks NPP are used to 
control this pumps.
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Fig. 2.1 Flow diagram of PMK-2 test facility

Fig. 2.2 Break flow unit (length of orifice is 15 mm)
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Table 2.1 

PMK-2 Test Facility Characteristics 

Reference NPP: 
Paks Nuclear Power Plant with VVER-440/213 reactors 
1375 MWt - hexagonal fuel arrangement 
6 loops - horizontal steam generators 

General Scaling factor: 
Power, volumes: 1/2070, loop: 1/345 (1 loop representation) 
Elevations: 1/1 

Primary coolant system: 
- Pressure: 12.4 MPa (nominal), 16 MPa (max.) 
- Nominal core inlet temperature: 540K 
- Nominal core power: 664 kW 
- Nominal flow rate: 4.5 kg/s 

Special features: 
- 19 heater rods, uniform axial and radial power distribution 
- 2.5 m heated length 
- External downcomer 
- Horizontal SG heat transfer tubes 
- Pump is accommodated in by-pass line 

-- flow rate 0 to nominal value 
-- NPP pump coastdown simulation 

- Loop piping: 46 mm ID 

Secondary coolant system: 
- Pressure: 4.6 MPa 
- Feed wate? temperature: 493 K 
- Nominal steam mass flow: 0.36 kg/s 

Special features: 
- Vertical part of horizontal steam generator 
- Controlled heat removal system 

Safety injection systems: 
- HPIS 
- LPIS 
- SITs 
- Emergency feed water 

Control system: 
- Automatic control of sequences by computer 
- Control desk 

CAMPNRC.DOC 5
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Table 2.2
Valve description

Item Identif. Position Type Function Size Comments 
No. No. * Nom.I.D.  

Fig.2.1 (mm) 
1 PV 1I Pump delivery line 1 Flow control, pump coast down 50 

(see Section 4) 
2 MV 1I Cold leg loop seal 2 Pump cost down 50 

(see Section 4) 
3 MV12 Pump suction line 2 Isolation of by-pass for pump after 100 

pump trip (see Section 4) 
4 PV 12 Pressuriser spray line 1 Control of spray cooling in pressuriser 15 Closed after transient 

initiation 

5 PV21 Feedwater line 1 Control of feedwater 15 closing time 3s 
6 PV22 Steam line 1 Control of steam 25 closing time 3s 
7 PV23 Steam generator 1 Secondary side steam relief valve 25 diameter of orifice 4 mm 

(BRU-A) opening/closing time 3 s 
8 PV31 HPIS line 1 Modelling of the HPIS system 15 
9 PV32 LPIS line 1 Modelling of the LPIS system 15 
10 MV31 Break location 2 Break valve 25 diameter of orifice 1.3 mm 
11 MV91 SIT line 2 Actuation of SIT 15 
11 MV92 SIT line 2 Actuation of SIT 15 
12 PV71 Pressuriser I Pressuriser safety valve 25 diameter of orifice 1 mm 

1 - Honeywell control valve 

2 - Motor valve from Paks NPP
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Fig. 2.5 Steam generator pipeworks
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Fig.2.7 Hot leg with pressuriser surge line

CAMPNRC.DOC
11

KFKI AEKI CAMP



KFKI AEKI

A-A 
046 

O 0OE 

004 

Ul) 

Fig. 2.8 External downcome~r

CAMPNRC.DOC 
12

CAMP



KFKI AEKI

7.800(m 

C0 

CAMPNRC.DOC

240 

Fig. 2.9. Pressuriser

Heater max.3.2 kW

13

I 
014x2,_ II

CAMP



KFKI~~ AEIMP

- 10

-9

-7

7-5 

"4 

-3

-1 

-0

- -1 Fig. 2.10 Elevation diagram

CAMPNRC.DOC 
14

KFKI AEKI (•AN!IP

10.2



2.2 Basic instrumentation and specific data to the test 

The basic instrumentation of the PMK-2 facility is given in the Handbook [ 3 ]. Since specific 
data are needed, some additional, specific instruments are to be installed.  

The test specific break flow unit with a break orifice of 1.3 mm diameter is presented in Fig. 2.2.  

The reference level for elevation is the bottom plate of the lower plenum. To facilitate the 
interpretation of the liquid levels a simple elevation diagram is provided in Fig. 2.10, giving the 
heights from the 0.00 m reference level.  

Coolant levels are measured by DP-type transducers, therefore the levels are collapsed levels.  
Collapsed levels in the data base are derived from the signals of the DP-type transducers, 
together with the necessary corrections, which are related to the density differences 

An important part of the instrumentation is the local void (LV) measurement system consisting 
of needle shaped conductivity probes developed at Forschungszentrum Rossendorf e. V, 
Germany. The location of the needle probes in the PMK facility is shown in Fig. 2.13. There are 
three probes in the reactor model. One of them is located near to the core outlet (LV25). The 
other probe is at the reactor outlet (LV21). The third (LV22) is placed into the top of upper 
plenum. There are four probes in the inclined section of the hot leg loop seal (LV30, LV32, 
LV35, LV34). The probes LV33 and 41 are placed at the bottom of the loop seal and at the inlet 
of the steam generator, respectively. LV51 and 52 are mounted into the cold leg loop seal. The 
LV71 is located at the bottom of pressuriser. The error of the measured value reaches maximum 
values at medium void fraction. At 0% and 100% voids the probes give always the right signal 
for water or steam.  

The location and main characteristics of the instrumentation with data of measurement 
parameters is given in Figs. 2.11 to 2.13. and in Table 2.3 where the last three columns have the 
following meanings: 

C additional constant in engineering units (for absolute and differential pressure measurements 
this value is the hydraulic head, for temperatures this is a calibration constant) 

A absolute maximum error of the measurement in % or in engineering units 
(T standard deviation of the measurement in % or in engineering units 

Identification of the measured parameters are as follows: 

Pressure : PR 
Differential pressure : DP 
Temperature : TE 
Level : LE 
Flow : FL 
Integrated flow rate : MA 
Density : DE 
Local void : LV 
Power : PW 
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Table 2.3 Data of the measurement transducers

Identi- Location and type Elevation Unit Min. Max. C A j6 
fication (in) + + 
TEl0 Heater rod surface (10), THC 1.044 K 273.15 1273.15 0.0 1.96 1.30 
TEll Heater rod surface(2), THC 1.494 K 273.15 1273.15 0.20 1.96 1.30 
TE12 Heater rod surface(8), THC 1.994 K 273.15 1273.15 0.0 1.96 1.30 
TE13 Heater rod surface(9), THC 2.494 K 273.15 1273.15 -0.20 1.96 1.30 
TE14 Heater rod surface(6), THC 2.994 K 273.15 1273.15 0.20 1.96 1.30 
TE15 Heater rod surface(11), THC 3.444 K 273.15 1273.15 -0.20 1.96 1.30 
TE16 Heater rod surface(l), THC 3.444 K 273.15 1273.15 -3.0 1.96 1.30 
TE17 Heater rod surface(16), THC 3.444 K 273.15 1273.15 -5.0 1.96 1.30 
TE18 Heater rod surface(2), THC 3.444 K 273.15 1273.15 -4.0 1.96 1.30 
TE19 Heater rod surface(3), THC 3.444 K 273.15 1273.15 -4.20 1.96 1.30 
TE22 Upper plenum temperature, PTR 4.664 K 273.15 673.15 2.20 1.67 1.16 
TE23 Wall in upper plenum, THC 6.225 K 273.15 1273.15 0.00 1.96 1.30 
TE24 Upper plenum temperature, PTR 8.315 K 273.15 673.15 0.00 1.67 1.16 
TE41 SG primary coolant inlet, PTR 5.925 K 273.15 673.15 6.1 1.67 1.16 
TE42 SG primary coolant outlet, PTR 5.925 K 273.15 673.15 9.4 1.67 1.16 
TE43 Heat transfer tube inlet 1, THC 8.163 K 273.15 1273.15 0.00 1.96 1.30 
TE44 Heat transfer tube outlet 1, THC 8.163 K 273.15 1273.15 0.00 1.96 1.30 
TE45 Heat transfer tube inlet 2, THC 7.591 K 273.15 1273.15 0.00 1.96 1.30 
TE46 Heat transfer tube outlet 2, THC 7.591 K 273.15 1273.15 0.00 1.96 1.30 
TE47 Heat transfer tube inlet 3, THC 6.385 K 273.15 1273.15 0.00 1.96 1.30 
TE48 Heat transfer tube outlet 3, THC 6.385 K 273.15 1273.15 0.00 1.96 1.30 
TE61 Coolant downcomer inlet, PTR 4.520 K 273.15 673.15 1.0 1.67 1.16 
TE62 Wall in downcomer, THC 4.995 K 273.15 1273.15 0.00 1.96 1.30 
TE63 Coolant at core inlet, PTR 0.190 K 273.15 673.15 3.0 1.67 1.16
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Table 2.3 cont.

Identi- Location and type Elevation Unit Min. Max. C A 6 
fication (m) _ + 
TE70 Surge line temperature, THC 5.325 K 273.15 1273.15 +6.62 1.96 1.30 
TE80 Sec. water hot coll. 1, THC 8.163 K 273.15 1273.15 0.00 1.96 1.30 
TE81 Feedwater temperature, PTR 5.475 K 273.15 673.15 0.0 1.67 1.16 
TE82 Sec. water hot coll. 2, THC 7.591 K 273.15 1273.15 0.00 1.96 1.30 
TE84 Sec. water hot coll. 3, THC 6.385 K 273.15 1273.15 +1.52 1.96 1.30 
TE83 Sec. water middle 1, THC 8.163 K 273.15 1273.15 +4.61 1.96 1.30 
TE85 Sec. water middle 2, THC 7.591 K 273.15 1273.15 -4.61 1.96 1.30 
TE87 Sec. water middle 3, THC 6.385 K 273.15 1273.15 0.00 1.96 1.30 
TE86 Sec. water cold coll. 1, THC 8.163 K 273.15 1273.15 -3.79 1.96 1.30 
TE88 Sec. water cold coll. 2, THC 7.591 K 273.15 1273.15 -2.81 1.96 1.30 
TE89 Sec. water cold coll. 3, THC 6.385 K 273.15 1273.15 +6.62 1.96 1.30 
TEOl Break flow temp., THC 4.825 K 273.15 1273.15 0.00 1.96 1.30 
TE02 BRU-A flow temp., THC 9.213 K 273.15 1273.15 0.00 1.96 1.30 
PROl Break back pressure 4.825 MPa 0.0 1.0 0.01 0.065 0.048 
PR02 Back pressure behind BRU-A 9.213 MPa 0.0 1.0 0.01 0.065 0.048 

valve 
PR21 Upper plenum pressure 3.764 MPa 0.0 16.0 0.01 0.005 0.004 
PR71 Pressuriser pressure 9.955 MPa 0.0 16.0 0.01 0.051 0.045 
PR81 SG secondary 10.010 MPa 0.0 10.0 0.01 0.032 0.028 
PR91 SIT-1 10.350 MPa 0.0 10.0 0.01 0.032 0.028 
PR92 SIT-2 10.350 MPa 0.0 10.0 0.01 0.032 0.028 
LE 11 Reactor model 0.190/8.315 kPa -60.0 100.0 79.71 0.563 0.458 
LE21 Upper plenum part 1, DP 6.750/8.315 kPa 0.0 38.0 15.21 0.134 0.109 
LE22 Upper plenum part 2, DP 4.683/6.750 kPa 0.0 10.0 20.61 0.035 0.029
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Table 2.3 cont.  

Identi- Location and type Elevation Unit Min. Max. C A 6 
fication (m) + + 

LE23 Upper plenum part 3, DP 3.764/4.683 kPa 0.0 16.0 8.83 0.051 0.045 
LE31 Hot leg loop seal, DP (reactor 4.802/6.225 kPa 0.0 16.0 13.96 0.051 0.045 

side) 
LE44 Cold leg part 2, DP 5.920/4.802 kPa 0.0 16.0 11.18 0.051 0.045 
LE45 SG primary, hot leg, DP 4.802/8.997 kPa 0.0 100.0 41.03 0.352 0.286 
LE46 SG primary, cold leg, DP 2.785/8.997 kPa 0.0 186.0 60.65 0.655 0.532 
LE51 Cold leg part 1, DP 2.785/5.920 kPa 0.0 38.0 31.10 0.134 0.109 
LE52 Cold leg pressure drop, reactor 3.605/4.825 kPa 0.0 25.0 12.07 0.090 0.072 

side 
LE60 Downcomer head, DP 4.505/5.355 kPa 0.0 7.50 8.29 0.016 0.013 
LE61 Downcomer, DP 0.190/4.825 kPa 0.0 60.0 45.47 0.211 0.172 
LE71 Pressuriser, DP 8.010/9.990 kPa 0.0 40.0 25.06 0.141 0.114 
LE72 Pressuriser surge line, DP 4.802/8.010 kPa 0.0 38.0 30.88 0.134 0.109 
LE81 SG secondary, DP 6.565/10.010 kPa 0.0 40.0 33.92 0.141 0.114 
LE91 SIT-i level, DP 8.13/10.35 kPa 0.0 40 21.78 0.141 0.114 
LE92 SIT-2 level, DP 8.13/10.35 kPa 0.0 40 21.78 0.141 0.114 
FL52 Core outlet, normal, venturi 5.504 kPa 0.0 60.0 0.0 0.211 0.172 
FL51 Core outlet, low flow, venturi 5.504 kPa 0.0 2.5 0.0 0.008 0.005 
FL53 Cold leg, normal, venturi 4.825 kPa 0.0 60.0 0.0 0.211 0.172 
FL54 Cold leg, low flow, venturi 4.825 kPa 0.0 2.5 0.0 0.008 0.005 
FL81 Feedwater flow, venturi 4.990 kPa 0.0 100.0 0.0 0.352 0.286 
FLO0 Break flow, venturi 4.825 MPa 0.0 1.0 0.0 0.381 0.282 
FL02 Secondary bleed flow, venturi 9.213 kPa 0.0 100.0 0.0 0.381 0.282 

MAO1 Total mass break outflow, DP - kPa 0.0 16.0 0.0 0.053 0.053 
MA02 Total mass BRU-A outflow, DP - kPa 0.0 16.0 0.0 0,053 0.045 
PW01 Electrical power - kW 0.0 1000.0 0.0 
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Table 2.3 cont.

Identi- Location and type Elev. Unit Min. Max. C A 6 
fication (i) _+ + 

LV21 Local void in upper plenum, VP 6.225 
LV22 Local void in upper plenum VP 7.635 
LV25 Local void in upper plenum VP 4.440 
LV30 Local void in hot leg, VP 6.225 
LV32 Local void in hot leg loop seal, VP 5.400 
LV33 Local void in hot leg loop seal, VP 4.802 
LV34 Local void in hot leg loop seal, VP 4.945 
LV35 Local void in hot leg loop seal, VP 5.178 
LV41 Local void in SG hot collector, VP 5.995 
LV42 Local void in SG cold collector, VP 5.995 
LV51 Local void in cold leg, VP 3.525 
LV52 Local void in cold leg, VP 3.525 
LV71 Local void PRZ bottom, VP 7.800

Abbreviations: 

PTR = platinum resistance 
THC = thermocouple 
VP = void probe
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Fig. 2.11 Measurement locations (1)

Fig. 2.12 Measurement locations (2)
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Fig. 2.13 Measurement locations (3)

3. TEST DEFINITION AND OBJECTIVES 
The CAMP-CLB test primarily addresses the question whether the secondary bleed is effective to 
recover the core without the availability of the HPI systems if the break is too small to 
depressurise primary system below secondary pressure.  

The specific features of the experiment are as follows: 
"* The test begins from a steady-state condition with nominal parameters.  
"* The break location is in the cold leg (at downcomer head), with a size of 2%. In the PMK-2 

the nozzle diameter is 1.3 mm.  
"* 2 HAs are available in the test modelled by one safety injection tank (SIT) injecting to the 

downcomer, the water temperature is 293 K.  
"* No HPIS applied to the test.  
"* Scram is initiated low primary pressure of 11.3 MPa (the decay heat is stabilised at 32.5 kW).  
"* Secondary side is isolated 10 s after scram.  
"* The pump coast-down begins by high containment pressure signal - 0.11 MPa - supposed at 

t=80 s.  
"* The secondary bleed is modelled by the BRU-A valve (PV23). In the PMK-2 the nozzle 

diameter is 4.0 mm.  
"* No secondary feed is modelled.  

The main objective of the test is to study the following phenomena: 
"• effect of hot leg loop seal behaviour on primary flow, steam generator heat transfer, 

hydroaccumulator injection 
"* substantial core heat-up due to loop seal effects
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* effectiveness of secondary side bleed to recover the core and reinitiate hydroaccumulator 
injection.  

4. TEST DESCRIPTION 

The CAMP-CLB experiment - as specified in Section 3 - is presented in detail below [11].  

4.1 Initial conditions 

The initial steady state conditions of the test are summarised in Table 4.1 (for last column see 
Section 6). The parameters are nearly the same as the nominal operating parameters of the plant 
considering the scaling ratio.  

Table 4.1 
Unit Nominal Test Calculation 

Primary pressure MPa 12.3 12.28 12.325 
Core inlet temperature K 541 539.6 538.17 
Primary loop flow rate kg/s 4.5 4.4 4.4 
Core power kW 664 663 661.1 
Pressuriser level m 9 8.868 8.865 
Hydroaccumulator level m 9.65 9.663 9.665 
Hydroaccumulator pressure MPa 5.9 6 6 

Secondary pressure MPa 4.6 4.5 4.49 
Secondary flow rate kg/s 0.36 0.47 0.55 
Feedwater temperature kg/s 496 471.2 471.2 
Steam generator level m 8.4 8.43 8.159 

4.2 Boundary conditions 

The boundary conditions are listed in Table 4.2.  

Table 4.2 
Unit Nominal Test Calculation 

Break opening at s 0 0 0 
Scram by low primary pressure MPa 11.3 11.18 11.15 
Secondary side isolated (scram +) s 10 9 10 
Pump coast-down initiated at s 80 80 80 
Duration of pump coast-down s 148 138 150 
SIT injection starts MPa 5.9 6 6 
Steam dump opens MPa 5.3 5.35 5.35 
Steam dump closes MPa 4.9 4.915 4.92 
Secondary bleed initiated Tclad K 730 731 1505. s* 
SIT empty m 8.25 8.27 8.27 
Test terminated s 3600 3596 3600

*synchronised boundary condition
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4.3 Sequence of major events 

The measured sequence of major events of the test are presented in Table 4.3.

Table 4.3

Test

Break opening 
Scram generated 
Secondary side isolated 
Pressuriser emptied 
Pump coast-down initiated 
SIT injection starts 
End of pump coast-down 
Vessel level at hot leg elevation 
Hot leg loop seal clearing 
Steam dump first opens 
Steam dump first closes 
Steam dump opens again 
Steam dump closes 
Rod temperatures begin to rise 
Cold leg loop seal opening 
First peak rod temperature

0. S 
28. s 
37. s 
43.s 
80. s 

159. s 
218. s 
240. s 
352. s 
469. s 
504. s 
897. s 
946. s 

1115.s 
1150.s 
1179.s 
711. K 

1260. s 
712. K 

1410. s 
1504. s 
1514. s 
742. K 

2548. s 
3596. s

"* Second peak rod temperature 

"* Temperatures escalate again 
"* Secondary bleed initiated 
"* Maximum rod temperature

SIT empty 
Test terminated

Calculation 

0. S 

21. s 
32. s 
34. s 
80. s 

118.s 
230. s 
216. s 
344. s 
495. s 
515. s 
847./1226. s 
887./1264. s 

1036. s 
1038. s 
1046. s 
596. K 

1460. s 
1505. s 
1526. s 
726. K 

2481. s 
3600. s

4.4 Results of the test 

The time history of the measured parameters characterising the transient process and the 
phenomena under consideration are plotted on Figs. 4.1 - 4.30 (on the figures TS01 and TS02 are 
the saturation temperatures derived from the primary and secondary pressures). The first 20 
minutes are presented in zoomed graphs: Figs. 4.1z - 4.30z. Results of local void probe 
measurements in comparison to the measured levels are shown in Figs. 4.31 to 4.37. (The 
position of 50 % void corresponds to the elevation of the probe). The figures are shown in 
Appendix 1.  

4.5 Reproducibility of the test 

In general an experiment must be repeated several times to get the expected transient and 
accurate database for code validation. This offers the opportunity to answer the question to what 
extent a test at the PMK-2 facility is reproducible. Since in the case of the CAMP-CLB test only

0 

S
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the third experiment (marked with exp.2) was declared as a successful one (and described in this 
paper) it is worth presenting some comparison plots with the results of the second one (exp.1) 
which had been rejected because of failure of recording the void probe data.  

The main deviations in initial conditions were: exp. 1 exp.2 
primary pressure 12.50 MPa 12.28 MPa, 
secondary pressure 4.44 MPa 4.50 MPa, 
core inlet temperature 538.6 K 539.6 K.  

As a consequence of this differences the scram was in exp. 1 at 50 s against 28 s. Nevertheless the 
main characteristics of the two tests are very similar - because of the close initial state of the 
facility and the same boundary conditions - as shown in Appendix 1 by Figs. 4.38 - 4.40. The 
main parameter of exp. 1, the peak cladding temperature is 697 K at 1509 s against 742 K at 1514 
s for the exp.2.  

5. EVALUATION OF TEST RESULTS 
The transient is initiated by opening the break. The system pressures in Fig. 4.1z show a 
characteristics typical to that of small break LOCA accidents: in early phase of the transient the 
primary pressure and pressuriser level decreases rapidly. The primary pressure (PR21) begins to 
stagnate as soon as upper head and SG hot collector reach saturation (Fig. 4.14z - TE24) and start 
voiding.  

Scram is generated by low primary pressure of 11.18 MPa and from 28 s the core power reduces 
to decay heat level (see Fig. 4.30z). The pressuriser level decreases from its initial value (Fig.  
4.7z - LE7 1), after the scram this becomes more rapid and the PRZ is empty at 41 s.  

After secondary side isolation (scram + 9 s) the secondary pressure (PR81) quickly increases 
(Fig. 4. 1 z), but up to 469 s does not reach the steam dump set-point due the decrease of hot leg 
temperatures (Fig. 4.14z - TE22 and Fig. 4.15z - TE41).  

MCP coast down begins at 80, at the end of pump run out natural circulation is established as can 
be seen in Fig. 4.24z. After 850 s there is no natural circulation, below 0.2 kg/s value of flow rate 
the curve of narrow range measurement (FL54) is valid.  

Two HAs (modelled by one vessel) are available and the injection is actuated at a primary 
pressure of 6.0 MPa at the transient time of 159 s, but injection is immediately stopped by the 
increasing primary pressure (Fig. 4.2z - PR91 and Fig. 4.8 - LE91). The pressure and level 
increase are not limited because the check valve of the SIT is not modelled in PMK-2.  

At 88 s the vessel level starts to decrease (Fig. 4.3z - LEl and Fig. 4.4z - LE21) and at 240 s 
drops to the hot leg elevation and begins to stagnate. The hot leg loop seal clearing process is 
started at about 280 s (Fig. 4.5z - LE31 and Fig. 33). As a consequence, primary pressure 
increases and vessel level is depressed again, while loop flow rate (Fig. 4.24z) is decreasing.  

At 352 s the hot leg loop seal (HLLS) starts to vent steam, as evidenced by the decreasing SG hot 
collector level (Fig. 4.5z - LE45) and void measurement (Fig. 34). This involves: 
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"* recovering loop flow rate (Fig. 4.24z); 
"* enhanced SG heat transfer (see secondary pressure increase in Fig. 4.1 z); 
"* decreasing primary and increasing secondary pressures leading to steam dump opening at 469 

s, closing at 504 s (Fig. 4.28z); 
"* recovery of the vessel level (Fig. 4.3z); 
"* renewed SIT injection (Fig. 4.8z); 
"• the SG side of the cold leg loop seal (CLLS) starts to empty (Fig. 4.6z - LE46).  

However, due to the fact that the break cannot remove the energy produced by the core, the 
primary pressure stabilises and SIT injection stops at about 600 s. This leads to further decrease 
of the primary mass inventory: 
"* vessel and SG collector levels are decreasing (Figs. 4.3z and 4.5z); 
"* loop flow decreases (Fig. 4.24z) 
"* heat transfer to secondary side deteriorates, secondary pressure increases only slowly.  

At 897 s the steam dump opens again (Fig. 4.28z), resulting in temporarily improved primary to 
secondary heat transfer, increased loop flow and vessel level (Fig. 4.3z). However, stagnation 
conditions soon prevail, the SG side of the CLLS continues to empty (Fig. 4.6z - LE46) and 
opens at 1150 s.  

When the core collapsed level drops to about 3 m fuel rod imitator temperatures begin to rise 
(1115 s) not only at core outlet (Fig. 4.12z), but at an elevation 0.45 m below as well (Fig.  
4.11z). The first peak is limited to 711 K at 1179 s (Fig. 4.13z) due to partial opening of the 
CLLS: steam vented via the CLLS to the break results in core level recovery (Fig. 4.3z) and 
partial rewetting of heater rods (Fig. 4.1 lz).  

Oscillatory behaviour can be observed for about 200 s in loop flow (Fig. 4.24 - FL54), cold leg 
(Fig. 4.36 - LE52) and vessel levels (Fig. 4.3) that limits the second maximum of heater rod 
temperatures (712 K at 1260 s). Finally, as loop parameters tend to stabilise and mass inventory 
further decreases, core temperatures again escalate from 1410 s (Figs. 4.12z and 4.13z).  

At a heater rod temperature of 730 K secondary bleed is started (Fig. 4.28). Condensation on the 
SG primary side quickly reduces primary pressure (Fig. 4.1), enhances loop flow temporarily 
(Fig. 4.24 - FL54) and allows core level to recover: as a consequence, heater rods are rewetted 
after a maximum temperature of 742 K at 1514 s (Fig. 4.13z - TEl9). SIT injection is activated, 
leading to increasing vessel inventory.  

As a consequence of the secondary bleed without feed the level in SG is decreasing (Fig. 4.9) and 
some of the temperature sensors (thermocouples) in the SG secondary side show superheated 
steam after 2000 s, as can be seen in Fig. 4.20 (TE80, TE82), Fig. 4.21 (TE83, TE85) and Fig.  
4.22 (TE86).  

At 2548 s the SIT runs empty (injection is stopped by level criterion, see Fig. 4.8) that again 
leads to decreasing mass inventory. Repeated core temperature increase after some 2000 s later 
should be limited by the low pressure injection. The set-point of low pressure ECCS was not 
reached during the one hour of the transient.
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6. POST TEST ANALYSIS 

6.1 Modelling aspects of RELAP5 analyses 

The RELAP5/MOD3 code was the tool for most of the pre-test and post-test analyses of PMK-2 
tests with good experiences. The short summary of the RELAP5 input model and nodalisation is 
given below.  

A general RELAP5 model for the PMK-2 facility has been developed and validated already for 
the analyses of different IAEA Standard Problem Tests [4] and in the different EU-PHARE 
projects (pre- and post-test calculations) [9]. RELAP5 model has been continuously upgraded 
during the last decade on the basis of experiences of different PMK tests and taking into 
consideration requirements of the new RELAP5 versions. The standard PMK-2 nodalisation is 
given in Fig. 6. The nodalisation scheme consists of 119 volumes including 14 time dependent 
volumes, 128 junctions including 5 time dependent junctions and 92 heat structures with 395 
mesh points. Some details are given in Table 6.1.  

As the main character of the input model the core is represented by nine control volumes in one 
channel, seven from them covering the active lengths of the heated core. The steam generator 
heat transfer tube bundle is simulated by three horizontal channels, with three control volumes in 
each, while in the secondary side there are three vertical channels.  

Table 6.1 
PMK-2 nodalisation 

GROUPS OF COMPONENTS COMPONENT NUMBER 
NUMBERS OF NODES 

Hot leg 100-112 7 
Primary side of steam generator 120-156 19 
Cold leg from steam generator collector to pump 160-164 3 
simulator bypass 
Pump simulator bypass valves MV11, MV12, PV11 190-192 
Pump simulator bypass tubes 166-176 6 
Cold leg from pump simulator tubes to downcomer 178-186 5 
Reactor vessel 200-250 26 
LPIS system 620-623 2 
HPIS system 624-625 1 
Accumulators SIT-1 and SIT-2 660-682 4 
Pressuriser, surge line, spray line, safety valve 400-450 14 
Break simulator 618-619 1 
Feedwater simulation 580-592 4 
Secondary side of steam generator 500-560 15 
Safety, relief and steam dump valves 598-628 4
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Fig. 6 
PMK-2 nodalisation scheme for RELAP5/mod3.2 

6.2 Initial and boundary conditions 

The nominal and the measured initial conditions together with the data from the post test 
calculation (after 100 s steady-state run) are presented in Table 4.1. The scenario of the actions 
representing the boundary conditions are shown in Table 4.2 (Tables are in Section 4).  

6.3 Run parameters and critical flow options 

In the post-test calculation a time step limit of 0.01 s was chosen. For the heat losses from 
primary to the environment 4 W/m2K, from SG 8 W/m2K as heat transfer coefficients were used.  
At the break and the steam dump valve the Henry-Fauske critical flow model was applied, the
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discharge coefficient was set to 0.85, while the thermal nonequilibrium constant to 0. 14.  

The post-test was calculated using the developmental code version RELAP5/mod3.2.2Gamma 
[8] on a PC Pentium 1I 350 computer under Windows-NT with performances: CPU 
time/transient time = 18 887s/3700s = 5, advancements = 548185 and emass/system mass = 0.045 
kg/1002.7 kg.  

6.4 Sequence of major events 

The results of the post-test calculation in term of the sequence of major events are presented in 
Table 4.3. The time history of the characteristic parameters are displayed on comparison figures 
in Appendix 2 by Figs. 6.1 - 6.20.  

Although the agreement between the measured and calculated curves is fairly good some remarks 
must be added to the figures: 

"* Figs. 6.2 and 6.9: the steam dump valve opens three times in the calculation instead of two as 
in the test (in the calculation the pressure controlled operation of the BRU-A and the operator 
initiated bleed are modelled by two valves: 600 and 602 - see Fig. 6).  

"* Figs. 6.3, 6.4 and 6.9: the critical flows seem to be low, but higher discharge coefficient leads 
to loss of the core heat-up (see Chapter 7); 

"• Figs. 6.7 and 6.8: the pressure and level increase in the calculation is limited because the 
check valve in RELAP accumulator model is included; 

"* Figs. 6.11, 6.13 and 6.14: the hot leg loop seal behaviour is good (compare LEll and RV 
calculated levels on Fig. 6.11), but there is no stagnation after HILLS clearing, so the cold leg 
loop seal opens earlier by about 120 s, an oscillation appears after this as it was in the test 
because of incomplete loop seal clearing; 

"* Fig. 6.11: the minimum collapsed level in RV is predicted deeper than the measured level by 
about 0.5 m 

"* Figs 6.15 and 6.16: the effect of SIT injection on the cold part temperatures is higher in the 
test, after the termination of the injection (2500 s) the decrease of TE63 continues 
unexplainable; 

"• Fig. 6.20: the first core heat-up in the calculation is very short because total rewetting occurs 
before oscillatory behaviour can be observed.  

7. SENSITIVITY CALCULATIONS 

During the post-test analysis it was found, that the core heat-up is very sensitive to small changes 
in some parameters leading to suppression of the temperature excursions. Two types of 
sensitivity study were performed to see the effect of two input parameters: the requested 
(maximum) time step and the heat loss (i.e. heat transfer coefficient to the environment) of the 
steam generator.  

7.1 Study on the Maximum Time Step 

In first series four calculations were made with time step limitations as follows:
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dt = 0.1 s, 0.05 s, 0.01s and 0.001s.  

The results are presented by curves of some sensitive output parameters: the timing of steam 
dump valve operation and the heater rod temperature escalation as well as by secondary pressure 
and reactor vessel level (Figs. 7.1 - 7.4). In Figs. 7.1 and 7.2 can be seen that with dt = 0.001 and 
0.01 s in time period of 400 - 800 s the first BRU-A opening and the secondary pressure is very 
close to the measured one, but later, at 1200 s a third actuation occurs due to the quicker pressure 
increase. Using higher time step limit the first opening shifted near to 700 s and the third action 
is disappeared. The rod temperature peak at 1500 s is the highest with dt = 0.05 s and lowest with 
0.001 s time step. Finally the first small temperature increase disappears totally with dt = 0.1 s 
time step.  

To investigate the changes between dt = 0.05 and 0.01 s new runs with requested time step = 
0.02 and 0.025 s were performed. In both cases the results are very close together but 
unexpected: Figs. 7.5 - 7.7 present surprising changes in timing of valve operations (those aren't 
between dt = 0.05 and 0.01 s but between 0.1 and 0.05 s), in RV collapsed level (it increases at 
1085 s above 3.0 m and sharply oscillates between 1100 and 1500 s of transient time), finally in 
rod temperature (its increase disappeared totally as a consequence of oscillation).  

7.2 Study on the SG Heat Losses 

The heat transfer coefficient to the environment at SG was varied between 6 and 15 W/m2K. The 
results are shown in Figs. 7.8 - 7.14. As shown in Figs. 7.8 - 7.9 if the value is 12 or greater the 
BRU-A valve opens only two times. There is no effect on the SG cold collector level history 
(Fig. 7.9), still at the other side of the CLLS (Fig. 7.11), as well as at the RV level (Fig. 7.12) the 
oscillation like in Fig. 7.6 turns up. Simultaneously the temperature excursion disappears (Fig.  
7.14).  

7.3 Study on discharge coefficient 

The discharge coefficient of HF critical flow model was varied between 1.0 and 0.85. The results 
for values of 0.85 (the presented calculation) and 0.90 are shown in Figs. 7.15 - 7.22. (Using 
discharge coefficients of 0.95 and 1.0 resulted in the same behaviour as for 0.90). The history of 
displayed parameters shows similar changes - a strong oscillation (see Figs. 7.18 and 7.20) and the 
absence of the temperature excursion (see Fig. 7.22) - as in the cases of time step and heat loss 
variations.  

The "bifurcation type" behaviour encountered in parametric studies could be the result of the 
code calculating by different constitutional models depending on the maximum time step or 
secondary heat losses. Because there is no explanation of the strong oscillation during the partial 
clearing of the cold leg loop seal till now this was reported as a new RELAP5 User Problem.
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8. CONCLUSIONS 

The 2 % SBLOCA test was performed according to the test definition. The test results show a 
number of important phenomena: 
"* effect of hot leg loop seal behaviour on primary flow, steam generator heat transfer, 

hydroaccumulator injection 
"* inefficiency of hydroaccumulators on the downcomer side if the break is too small to 

depressurise below secondary pressure 
"* substantial core heat-up due to loop seal effects 
"* effectiveness of secondary bleed to recover the core and reinitiate hydroaccumulator 

injection.  

The test may be quite demanding for code validation in the following aspects: 
"* partial clearing of the loop seals 
"* vapour condensation in the horizontal, parallel tubes of the SG 
"* effect of condensation in the SG on primary mass inventory distribution (i.e. vessel and loop 

levels) 
"* prediction of the oscillatory behaviour during partial clearing of the CLLS, including repeated 

core heat-up.  

Results of post-test analysis with RELAP5/mod3.2.2Gamma show quite good agreement 
regarding the main system parameters and partly the important phenomena as presented in the 
previous chapters.  

The "bifurcation type" behaviour encountered in parametric studies could be the result of the 
code calculating by different constitutional models depending on the maximum time step or 
secondary heat losses. This behaviour needs further investigation. It was discussed with the code 
developers and it was taken as a new RELAP5 User Problem.
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PMK-2 CAMP EXPERIMENT 

Fig. 4.1 Primary (UP) and Secondary Pressures 
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PMK-2 CAMP EXPERIMENT

Fig. 4.2 Pressurizer and Hydroaccumulator Pressures
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PMK-2 CAMP EXPERIMENT 

Fig. 4.3 Collapsed level in the Vessel 
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Fig. 4.3z Collapsed level in the Vessel 
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PMK-2 CAMP EXPERIMENT

Fig. 4.4 Levels in the Vessel
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PMK-2 CAMP EXPERIMENT

Fig. 4.5 Hot Leg Loop Seal Level
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PMK-2 CAMP EXPERIMENT 

Fig. 4.6 Cold Leg Loop Seal Levels
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Fig. 4.6z Cold Leg Loop Seal Levels
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PMK-2 CAMP EXPERIMENT

Fig. 4.7 Pressurizer and Surge Line Level
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PMK-2 CAMP EXPERIMENT 

Fig. 4.8 Hydroaccumulator Level 
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Fig. 4.8z Hydroaccumulator Level 
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PMK-2 CAMP EXPERIMENT 

Fig. 4.9 SG Secondary Level
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PMK-2 CAMP EXPERIMENT 

Fig. 4.10 Heater Rod Temperatures 
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Fig. 4. 1Oz Heater Rod Temperatures 
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PMK-2 CAMP EXPERIMENT

Fig. 4.11 Heater Rod Temperatures
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PMK-2 CAMP EXPERIMENT

Fig. 4.12 Heater Rod Top Temperatures
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PMK-2 CAMP EXPERIMENT 

Fig. 4.13 Heater Rod Top Temperatures
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Fig. 4.13z Heater Rod Top Temperatures
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PMK-2 CAMP EXPERIMENT 

Fig. 4.14 Vessel Temperatures 
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PMK-2 CAMP EXPERIMENT

Fig. 4.15 SG Inlet and Outlet Temperatures
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Fig. 4.16 Cold Leg Temperatures
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Fig. 4.16z Cold Leg Temperatures 
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Fig. 4.17 Upper Plenum and Downcomer Wall Temperatures
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Fig. 4.17z Upper Plenum and Downcomer Wall Temperatures 
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PMK-2 CAMP EXPERIMENT

Fig. 4.18 SG Hot Collector Temperatures
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Fig. 4.18z SG Hot Collector Temperatures
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PMK-2 CAMP EXPERIMENT

Fig. 4.19 SG Cold Collector Temperatures

Temperature (K) 
Ann I] ...

500 1000 1500 2000 2500 3000 3500

Time (s)

PMK-2 CAMP EXPERIMENT

Fig. 4.19z SG Cold Collector Temperatures

Temperature (K) 
Ann . I

200 400 600 

Time (s)

800 1000 1200

CAMPNRC.DOC 51

VVVJJ ................ I .... I ............................... I 
"te44 
te46 
te48 -----
tes 1 ----------

--- L -- -

,,,

580 

560 

540 

520 

500 

480 

460
0

590 

580 

570 

560 

550 

540 

530

te44 .  
te46 
te48 ---- 
"tesl ...........  

.o°°°'-----------

•o°..~o*°°'°°•U97

0

KFKI AEK1 CAMP

VVV _



T17TTL'UT A T7
xxx mCAMP 

PMK-2 CAMP EXPERIMENT 

Fig. 4.20 SG Secondary Temperatures at Hot Collector 

Temperature (K) 55 - -- - _--
540 ... te82 •-- 

520 

510 

5e0 

490 

488 

53--------- t8------...  
470s2......  

0 500 1000 1500 2000 2500 3000 3500 

Time (s) 

PMK-2 CAMP EXPERIMENT 

Fig. 4.20z SG Secondary Temperatures at Hot Collector 
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PMK-2 CAMP EXPERIMENT 

Fig. 4.21 SG Secondary Temperatures in Axis 
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Fig. 4.21z SG Secondary Temperatures in Axis 
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PMK-2 CAMP EXPERIMENT

Fig. 4.22 SG Secondary Temperatures at Cold Collector
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PMK-2 CAMP EXPERIMENT 

Fig. 4.23 Temperature in Surge Line 
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Fig. 4.23z Temperature in Surge Line 
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Fig. 4.24 Cold Leg Mass Flow Rate
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Fig. 4.24z Cold Leg Mass Flow Rate
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PMK-2 CAMP EXPERIMENT

Fig. 4.25 Break Flow
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PMK-2 CAMP EXPERIMENT

Fig. 4.26 Break Outflow
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Fig. 4.27 BRU-A Pressure
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Fig. 4.29 BRU-A Outflow
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Fig. 4.31 Levels in the Vessel
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Fig. 4.33 Hot Leg Loop Seal Level
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Fig. 4.35 SG Cold Collector Levels

Level (m)
9 

8 

7 

6 

5 

4 

3

PMK-2 CAMP EXPERIMENT

Fig. 4.36 Cold Leg Levels

Level (m) 
6 --

0 200 400 600 800 1000 1200 1400 1600 1800 
Time (s)

CAMPNRC.DOC

le46 
le51 
lv42 
lv51 ----------

------------------

0 200 400 600 800 1000 1200 1400 1600 1800 

Time (s)

5.5 

5 

4.5 

4 

3.5 

3

KFKI AEKI CAMP

65



PMK-2 CAMP EXPERIMENT

Fig. 4.37 Pressurizer and Surge Line Level 
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Fig. 4.39 Down-comer Temperature
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Fig 6.3 Break Mass Flow Rate
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Fig 6.7 Hydroaccumulator Pressure
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Fig 6.9 Steam Dump Mass Flow
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Collapsed Level in Reactor Vessel
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Fig 6.15 Down Comer Temperature
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Fig 6.19 Cladding Temperatures at 3 m
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Fig 7.1 Steam Dump Mass Flow
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Fig 7.3 Collapsed Level in Reactor Vessel
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Fig 7.5 Steam Dump Mass Flow
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Fig 7.7 Cladding Temperature 
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Fig 7.9 Secondary Pressure 
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Fig 7.11 Collapsed Level in CLLS Vessel Side 
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Fig 7.15 Break Mass Flow
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Fig 7.17 Secondary Pressure
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Fig 7.19 Collapsed Level in CLLS SG Side
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Fig 7.21 Primary Mass Flow
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