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ABSTRACT

This document provides guidance on how to treat uncertainties associated with probabilistic risk
assessment (PRA) in risk-informed decision making.  The objectives of this guidance include
fostering an understanding of the uncertainties associated with PRA, the impact of the uncertainties
on the results of the PRA, and the uncertainties in the context of the decision making.  The
guidance in this document focuses on the use of PRA insights and results and ways to address the
associated uncertainties.  Consequently, the scope of the guidance contained in this report is
limited to addressing the uncertainties associated with the use of the results of risk models.

In implementing risk-informed decision making, the US Nuclear Regulatory Commission expects
that appropriate consideration of uncertainty will be given in analyses and interpretation of findings.
Such consideration should include using a program of monitoring, feedback, and corrective action
to address significant uncertainties.  To meet this objective, it is necessary to understand   the role
that PRA results play in the context of the decision process.  Defining the context includes providing
an overview of the risk-informed decision making process itself.

With the context defined, the characteristics of a risk model and, in particular, a PRA need to be
understood.  This understanding includes a recognition of the different forms of uncertainty which
include aleatory and epistemic.  A PRA, as a probabilistic model already characterizes aleatory
uncertainty.  The focus of this document is epistemic uncertainty.  Therefore, guidance is given on
 identifying and describing the different types of sources of epistemic uncertainty including the
different ways that they are treated.  The different types of epistemic uncertainty include parameter,
model, and completeness uncertainties.

The final part of the guidance includes addressing the uncertainty in PRA results in the context of
risk-informed decision making and, in particular, the interpretation of the results of the uncertainty
analysis when comparing PRA results with the acceptance criteria established for a specified
application.  In addition, guidance is provided for addressing the other elements contributing to
completeness uncertainty in risk-informed decision making (e.g., unknown phenomena that have
not been recognized or factors that have been identified but for which there is no agreed on method
for addressing them in PRAs).
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FOREWORD

In its safety philosophy, the U.S. Nuclear Regulatory Commission (NRC) has always recognized
the importance of addressing uncertainties as an integral part of its decision making.  Two
fundamental elements of the NRC’s safety philosophy for addressing uncertainties are defense in
depth and safety margins.  These elements are more directly coupled with the uncertainties
associated with the NRC’s traditional deterministic approach, that is, to address the uncertainties
associated with the state of knowledge regarding design, materials, fuel, and other issues.  With
the increase use of probabilistic risk assessment (PRA) in the NRC’s risk-informed decision making,
the uncertainties associated with the PRA need to be considered.  These uncertainties, and their
potential impact on the comparison of PRA results with acceptance criteria, need to be understood
so that informed decisions are made.  When dealing with completeness uncertainties, the use of
bounding analyses to address potential risk contributors not included in the PRA needs to be
understood.  This document provides guidance on how to treat uncertainties associated with PRA
in risk-informed decision making.  The Electric Power Research Institute (EPRI), in parallel with the
NRC, has been developing guidance documents on the treatment of uncertainties.  The activities
of the NRC and EPRI are meant to be complementary.

This draft NUREG is being issued for public review and comment.

Paper work Reduction Act Statement

This NUREG does not contain information collection requirements and, therefore, is not subject to
the requirements of the Paperwork Reduction Act of 1995 (44 U.S.C. 3501 et seq.)

Public Protection Notification

The NRC may not conduct or sponsor, and a person is not required to respond to, a request for
information or an information collection requirement unless the requesting document displays a
currently valid OMB control number.
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1. INTRODUCTION

1.1 Background and History

In its safety philosophy, the U.S. Nuclear Regulatory Commission (NRC) has always recognized
the importance of addressing uncertainties as an integral part of its decision making.  Two
fundamental elements of the NRC’s safety philosophy are defense-in-depth and safety margins.

In a 1995 policy statement [NRC,1995a], the NRC encouraged the use of probabilistic risk
assessment (PRA) in all regulatory matters.  The policy statement declares that “the use of PRA
technology should be increased to the extent supported by the state of the art in PRA methods and
data and in a manner that complements the NRC’s deterministic approach.…PRA and associated
analyses (e.g., sensitivity studies, uncertainty analyses and importance measures) should be used
in regulatory matters.…”  The Commission further notes in the policy statement that the “treatment
of uncertainty is an important issue for regulatory decisions.  Uncertainties exist…from knowledge
limitations.…A probabilistic approach has exposed some of these limitations and provided a
framework to assess their significance and assist in developing a strategy to accommodate them
in the regulatory process.”

In a white paper entitled “Risk-Informed and Performance-Based Regulation” [NRC,1999a], the
Commission defined the terms and described its expectations for risk-informed and
performance-based regulation.  The Commission indicated that a “risk-informed” approach explicitly
identifies and quantifies sources of uncertainty in the analysis (although such analyses do not
necessarily reflect all important sources of uncertainty) and leads to better decision making by
providing a means to test the sensitivity of the results to key assumptions.

Since the issuance of the PRA policy statement, the NRC has implemented or undertaken many
uses of PRA, including modification of the NRC’s reactor safety inspection program and initiation
of work to modify reactor safety regulations.  Consequently, confidence in the information derived
from a PRA is an important issue.  The technical content must be of quality sufficient to justify the
specific results and insights to be used to support the decision under consideration.  The treatment
of the uncertainties associated with the PRA is an important factor in establishing this quality.

Regulatory Guide (RG) 1.174 [NRC, 2002a], RG 1.200 [NRC, 2007a], and the national PRA
consensus standard [ASME, 2005a] all recognize the importance of the identification and
understanding of uncertainties that are part of PRA (and of any deterministic analysis as well), and
these references provide guidance on this subject to varying degrees.  However, they do not
provide explicit guidance on the treatment of uncertainties in risk-informed decision making.

RG 1.174 states that a PRA should include a full understanding of the impacts of the uncertainties
through either formal quantitative analysis or more simple bounding or sensitivity analyses.  The
guidance also maintains that the decisions “must be based on a full understanding of the
contributors to the PRA results and the impacts of the uncertainties, both those that are explicitly
accounted for in the results and those that are not.”
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RG 1.200 states that a full understanding of the uncertainties and their impact is needed (i.e.,
sources of uncertainty are to be identified and analyzed).  Specifically, RG 1.200 notes the
following:

“An important aspect in understanding the base PRA results is knowing what are the
sources of uncertainty and assumptions and understanding their potential impact.
Uncertainties can be either parameter or model uncertainties, and assumptions can
be related either to PRA scope and level of detail or to model uncertainties.  The
impact of parameter uncertainties is gained through the actual quantification
process.  The assumptions related to PRA scope and level of detail are inherent in
the structure of the PRA model.  The requirements of the applications will determine
whether they are acceptable.  The impact of model uncertainties and related
assumptions can be evaluated qualitatively or quantitatively.  The sources of model
uncertainty and related assumptions are characterized in terms of how they affect
the base PRA model (e.g., introduction of a new basic event, changes to basic event
probabilities, change in success criterion, introduction of a new initiating event).”

The national consensus standard on PRA requires that sources of model uncertainty in the base
PRA be identified and provides requirements for the identification and characterization of both
parameter and model uncertainties, both parameter and the model.  However, the standard
provides requirements on “what to do” and not “how to.”

In a letter dated April 21, 2003 [ACRS, 2003a], the Advisory Committee on Reactor Safeguards
(ACRS) provided recommendations for staff consideration in Draft Guide 1122 (now RG 1.200).
One recommendation was to include guidance on how to perform sensitivity and uncertainty
analyses.  In its letter, the ACRS noted the following:

“…a systematic treatment should include rigorous analyses for parametric
uncertainties, sensitivity studies to identify the important epistemic uncertainties, and
quantification of the latter.  In a risk-informed environment, the proper role of
sensitivity studies is to identify what is important to the results, not to replace
uncertainty analyses.”  

In its response [NRC, 2003a], the staff noted that the standard provides requirements for the
performance of sensitivity and uncertainty analyses.  However, the staff agreed to examine the
requirements in more detail to identify where additional guidance may be needed. 

In a subsequent letter dated May 16, 2003 [ACRS, 2003b], the ACRS provided recommendations
to improve the quality of risk information for regulatory decision making.  One recommendation was
for the staff to develop guidance for the quantitative evaluation of model uncertainties.  In its letter,
the ACRS noted the following:

• If methods other than PRAs are used to compensate for missing scope items, they can
result in nonconservative decisions.

• Models that are included in the PRAs can be important sources of uncertainty.  For
example, using only one of the several models for human performance yields results with
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unknown uncertainties, since the use of another model could produce different results.  Yet
this model uncertainty is rarely considered.

• Most licensees have not included a systematic treatment of uncertainties in their PRAs.  A
systematic treatment would include analyses of parametric uncertainties, sensitivity studies
to identify the important model uncertainties, and quantification of the latter.

• Tools for performing analyses of parametric uncertainties are readily available and are
included in most of the widely used PRA software.  The disciplined use of sensitivity studies
to address model uncertainties is not as well understood.  Developing guidance for
quantifying model uncertainty is not infeasible.  Such an effort would build on past practice
and the literature.

• More guidance regarding sensitivity and uncertainty analyses would contribute greatly to
confidence in risk-informed regulatory decision making.  Such guidance should include a
clear discussion of the roles of sensitivity and uncertainty analyses, as well as practical
procedures for performing these analyses.  It should address not only how uncertainties
should be treated in the PRA, but, also, how they impact decision making with examples to
show the pitfalls if uncertainties are inadequately addressed.

In response to the ACRS [NRC, 2003b], the NRC agreed that guidance is needed on the treatment
of uncertainties in risk-informed decision making (i.e., the role of sensitivities and uncertainty
analyses), specifically guidance regarding acceptable characterization of other methods, such as
bounding analyses, to ensure that reasonable approaches are used.  This report provides the
needed guidance.

1.2 Objectives and Scope

This document provides guidance on how to treat uncertainties associated with PRA in risk-
informed decision making.  The objectives of this guidance include fostering an understanding of:

• the uncertainties associated with PRA
• the impact of the uncertainties on the results of the PRA
• the uncertainties in the context of the decision making

The Commission has defined risk-informed decision making as an integrated process whereby risk
insights are considered together with other factors to better focus both licensee and regulatory
attention on design and operational issues commensurate with their importance to public health and
safety.  These factors are the key principles identified and described in detail in RG 1.174 and
include the following:

• meeting current regulations
• consistency with defense-in-depth philosophy
• maintenance of safety margins
• use of PRA insights and results
• use of performance measures to monitor impact of decision
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The guidance in this document focuses on the use of PRA insights and results and ways to address
the associated uncertainties.  Consequently, the scope of the guidance contained in this report is
limited to addressing the uncertainties associated with the use of the results of risk models.

The guidance is intended to be consistent with the NRC’s PRA policy statement and subsequent,
more detailed guidance in RG 1.174 and RG 1.200.  It is also intended to support these documents
and other NRC documents that address risk-informed activities including, at a minimum, the
following:

• RG 1.201, “Guidelines for Categorizing Structures, Systems, and Components in Nuclear
Power Plants According to Their Safety Significance” [NRC, 2006a]

• RG 1.205, “Risk-Informed, Performance-Based Fire Protection for Existing Light-Water
Nuclear Power Plants” [NRC, 2006b]

• RG 1.206, “Combined License Applications for Nuclear Power Plants (LWR Edition)” [NRC,
2007b]

• Standard Review Plan, Section 19.0, “Probabilistic Risk Assessment and Severe Accident
Evaluation for New Reactors,” Revision 2; Section 19.1, “Determining the Technical
Adequacy of Probabilistic Risk Assessment Results for Risk-Informed Activities”;
Section 19.2, “Review of Risk Information Used to Support Permanent Plant-Specific
Changes to the Licensing Basis: General Guidance”  [NRC, 2007c]

• regulatory guides for specific applications such as for inservice testing, inservice inspection,
and technical specifications [NRC, 1998a, NRC, 2003c; NRC, 1998c]

The guidance is also intended to support guidance provided by standards-setting and nuclear
industry organizations [NEI, 2005a; NEI, 2006a; NEI, 2006b].  In particular, the Electric Power
Research Institute (EPRI), in parallel with the NRC, has been developing guidance documents on
the treatment of uncertainties.  This work is meant to complement the guidance in this document.
Where possible the NRC guidance will refer to the EPRI work for acceptable treatment of
uncertainties [EPRI, 2004a; EPRI, 2006a].

1.3 Approach Overview

In implementing risk-informed decision making, the NRC expects that appropriate consideration of
uncertainty will be given in analyses and interpretation of findings.  Such consideration should
include using a program of monitoring, feedback, and corrective action to address significant
uncertainties.  To meet this objective, it is necessary to understand the context that the role of
uncertainties play in the decision process.  Defining the context includes providing an overview of
the risk-informed decision making process itself.

With the context understood, the characteristics of a risk model and, in particular, a PRA need to
be defined.  This definition understanding the different forms of uncertainty which include aleatory
and epistemic.  A PRA, as a probabilistic model already characterizes aleatory uncertainty.  The
focus of this document is epistemic uncertainty.  Therefore, the definition includes identifying and
describing the different types of sources of epistemic uncertainty including the different ways that
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they are treated.  The different types of epistemic uncertainty include parameter, model, and
completeness uncertainties.

Parameter uncertainty — Guidance is provided on how to address parameter uncertainty in the
use of PRA results for decision making.  This guidance involves characterization of parameter
uncertainty, propagation of uncertainty, assessment of the significance of the state-of-knowledge
correlation, and comparison of results with acceptance criteria.

Model uncertainty — Guidance is provided for identifying and characterizing model uncertainties
in PRAs.  This guidance involves assessing the impact of model uncertainties on insights used for
risk-informed applications.  It is provided in the context of two different types of applications:

(1) The base PRA is used in a regulatory application, for example, to evaluate various design
options or to determine the baseline risk profile as part of a license submittal for a new
plant.

(2) The base PRA is used as input to evaluating proposed changes to a plant’s licensing basis,
for example, by using RG 1.174, and the emphasis is on the change in risk due to the
proposed plant changes.

Completeness uncertainty — Guidance is provided on addressing one aspect of completeness
uncertainty (i.e., missing scope) in risk-informed applications.  This guidance involves the
performance of a conservative or bounding analysis as one means to address items missing from
a plant’s PRA scope.

The final part of the guidance includes addressing the uncertainty in PRA results in the context of
risk-informed decision making and, in particular, the interpretation of the results of the uncertainty
analysis when comparing PRA results with the acceptance criteria established for a specified
application.  In addition, guidance is provided for addressing the other elements contributing to
completeness uncertainty in risk-informed decision making (e.g., unknown phenomena that have
not been recognized or factors that have been identified but for which there is no agreed on method
for addressing them in PRAs).

1.4 Report Organization

The remainder of this report is divided into the following chapters:

• Chapter 2 — Provides an overview of the overall approach used to address uncertainties
in risk-informed decision making, which includes the context of the uncertainties and an
overview of the risk-informed decision making process itself.  This chapter serves as a
roadmap to the rest of the report.

• Chapter 3 — Defines the characteristics of a risk model (in particular, a PRA) and the
sources and types of uncertainty.

• Chapter 4 — Provides the guidance for the treatment of parametric uncertainty.

• Chapter 5 — Provides the guidance for the treatment of model uncertainty.
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• Chapter 6 — Provides the guidance for the treatment of completeness uncertainty.

• Chapter 7 — Provides guidance on addressing the uncertainty in PRA results in the context
of risk-informed decision making.

• Chapter 8 — Provides the references.

• Appendix A — Provides the staff position on EPRI guidance documents on treatment of
uncertainties in risk-informed regulatory applications (to be written)
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2. OVERALL APPROACH

The purpose of this chapter is to provide an overview of the guidance provided in the subsequent
chapters of this report to address the treatment of uncertainties in risk-informed decision making.
The proposed approach focuses on providing an understanding of the decision making process,
the role of the PRA model in the process, the uncertainties associated with the risk model and their
impact on the model, and ultimately, the treatment of the uncertainties in the decision making.

2.1 Risk-Informed Decision Making Process

In its white paper “Risk-Informed and Performance-Based Regulation,” [NRC, 1999a] the
Commission defined risk-informed regulation as an approach to regulatory decision making that
represents a philosophy whereby risk insights are considered together with other factors to
establish requirements.  The requirements thus established focus licensee and regulatory attention
on design and operational issues commensurate with their importance to public health and safety.
This philosophy was elaborated in RG 1.174 [NRC, 2002a] to develop a risk-informed decision
making process for licensing changes.

In developing this process, the NRC defined in RG 1.174 a set of key principles that it expects to
be followed for decisions regarding licensing changes.  For the most part, the principles are global
in nature and can be generalized to all applications that are the subject of risk-informed decision
making as shown in the following examples:

• Principle 1:  RG 1.174 states, “Change meets current regulations unless it is explicitly
related to a requested exemption or rule change.”  This principle can be generalized to
“Current Regulations Met.”

• Principle 2:  RG 1.174 states, “Change is consistent with defense-in-depth philosophy.  This
principle is already a general principle, “Maintenance of Defense-in-Depth.”

• Principle 3:  RG 1.174 states, “Maintain sufficient safety margins.”  This principle is already
a general principle, “Maintenance of Safety Margins.”

• Principle 4:  RG 1.174 states, “Proposed increases in CDF or risk are small and are
consistent with the Commission’s Safety Goal Policy Statement.”  This principle in essence
is requiring the performance of a risk assessment demonstrating acceptable risk be
performed.  It can be generalized to “Acceptable Risk Analysis.”

• Principle 5:  RG 1.174 states, “Use performance-measurement strategies to monitor the
change.”  This principle can be generalized to “Monitor Performance.”

Figure 2-1 illustrates the five principles of risk-informed decision making.  Of the five principles,
Principle 4, Risk Analysis, introduces uncertainties.  Consequently, Principle 4 is of most interest
to this report with its focus on providing guidance for an acceptable treatment of uncertainty in a
risk analysis.  To address the uncertainties associated with the risk analysis, an understanding is
needed of the use of all these principles in decision making. 
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Figure 2-1 Principles of Risk-Informed Decision Making

The principles themselves, although expected to be observed, are not the process or approach that
is used in risk-informed decision making.  RG 1.174 presents an approach that ensures the
principles will be met for risk-informed decision making involving licensing changes.  This approach
can be generalized and applied to all risk-informed decision making.

The approach, generalized from RG 1.174, is a structured process that integrates all the insights
and requirements that relate to the safety or regulatory issue of concern.  These insights and
requirements include recognition of any mandatory requirements resulting from current regulations,
as well as the insights from deterministic and probabilistic analyses performed to help make the
decision.  It also includes provisions for implementing the decision and for monitoring the results
of the decision.  The approach includes the five following elements:

(1) define the decision

(2) identify and assess the applicable requirements

(3) perform a risk-informed analysis

(4) define an implementation and monitoring program

(5) integrate the above into a decision

The elements of this integrated process, as illustrated in Figure 2-2, are described below.
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Figure 2-2 Elements of Integrated Risk-Informed Decision Making Process

Element 1:  Define the decision under consideration.  The first step is to define the issue to be
addressed by the decision making process.  Examples of the types of issues that the NRC would
need to address include the following:

• decisions related to the design or operation of the plant

• the plant technical specifications/limits and conditions for normal operation

• the periodicity of inservice inspection, inservice testing, maintenance, and planned outages

• the allowed combinations of safety system equipment that can be removed from service or
configuration control during power operation and shutdown modes

•  the emergency operating procedures and accident management methods 

Element 2:  Identify and assess the applicable existing requirements.  A review will be needed
to determine the current requirements that apply to the decision under consideration.  This review
must be followed by a determination of the effect of the decision on these requirements.  This
element implements Principle 1 of risk-informed decision making shown in Figure 2-1.

Element 3:  Perform a risk-informed analysis to support the decision.  In this step, an
assessment is made, in terms of a risk-informed analysis, to obtain insights regarding the decision.
The risk-informed analysis includes both deterministic and probabilistic components, which will of
necessity involve uncertainties. The appropriate treatment of the uncertainties in the probabilistic
analysis is implicitly required to implement Principle 4 of risk-informed decision making shown in
Figure 2-1.  Treatment of these uncertainties is the focus of this report, as discussed below.  
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Element 4:  Make provisions for implementing the decision and monitoring the results.  A
part of the decision making process is looking ahead to the implementation of a positive decision
in terms of needed changes and required effort.  In addition, consideration should be given to a
performance-based means of monitoring the results of the decision.  This monitoring will allow
future assessment of whether the decision has been implemented effectively and if there are any
adverse effects.  This element implements Principle 5 of risk-informed decision making as shown
in Figure 2-1.

Element 5:  Make the decision.  Here the inputs from Elements 1 through 4 are integrated, and
the decision is made whether to accept or reject a proposed design, plant change, regulatory
change, or etc.  This requires that the individual insights obtained from the other parts of the
decision process are weighted and combined to reach a conclusion.  In integrating the inputs from
the elements, an essential aspect is the consideration of uncertainties, including those associated
with the PRA.

PRAs can address many uncertainties explicitly.  These uncertainties are the epistemic
uncertainties (i.e., uncertainties arising from limitations in or lack of knowledge).  However, there
is a specific type of uncertainty that risk analyses, whether deterministic or probabilistic, cannot
address.  This type of uncertainty involves the incompleteness of the state of knowledge concerning
potential failure modes or mechanisms.  Because these failure modes or mechanisms are
unknown, they cannot be addressed analytically (whether the analysis be deterministic or
probabilistic).  Other principles of safety, such as defense in depth, safety margins, and
performance monitoring, address these uncertainties.  However, the focus of this report is on the
treatment of the uncertainties associated with the PRA.

To address the treatment of uncertainties associated with a PRA in the risk-informed decision
making process, it is necessary to understand the role the PRA plays in the decision, the different
sources of uncertainties, and the impact of the uncertainties.  This process is shown in Figure 2-3.
The figure also shows the arrangement of the remaining chapters of this report.

Figure 2-3 Steps Needed for the Treatment of Uncertainties

Subsequent sections of this chapter provide an overview of the process for treating uncertainties.
Later chapters provide the detailed guidance.
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2.2 Understanding the PRA Model

To address the treatment of uncertainties inherent in a PRA model in decision making, a thorough
understanding of the model is required.  This understanding will identify the underlying assumptions
and limitations, thereby indicating the sources of uncertainty, the parts of the PRA model that could
be affected, and ultimately the results from the PRA model that may be impacted.

PRA models that are developed to predict the performance of nuclear power plants in terms of their
risk1 are complex models consisting of many elements.  Each element may involve the
development of a logic structure (e.g., fault trees), input to the structure (e.g., failure data), or both.
Both the structures and input can introduce uncertainties that could have a significant impact on
the predictions of the PRA model, and these uncertainties must be addressed.  Examples of
sources of uncertainty include the following:

• Uncertainty about the capability of some systems to perform their function under the
conditions specified by the developed scenarios.  This capability uncertainty leads to
uncertainty in characterizing the success criteria for those functions.  This, in turn, has an
impact on the logic structure of the overall PRA model.

• For some basic events, there can be uncertainty in the characterization of failures, which
results in uncertainties in the probabilities of those failures.

• Because most of the events for which data are needed (e.g., initiating events, operator
errors, and equipment failures) are rare, the data are generally scarce.  Thus, statistical
uncertainties may occur in the parameter estimations (e.g., uncertainty in the computational
approach chosen to estimate the event probability).

• Some events for which the computational approach is generally agreed on may have
uncertainties associated with interpreting the data to be used for estimation. 

 
Therefore, the uncertainty associated with the structure of, and input to, the PRA model could
reside in the choice of the logic structure, in the computational approach, or in the values of the
parameters.  

While uncertainties in the PRA model have different sources, there are two basic forms of
uncertainties, aleatory and epistemic.  Aleatory uncertainty is associated with the random nature
of events such as initiating events, and is implicit in the structure of the PRA model.  The guidance
provided in this report on the treatment of uncertainties pertains to epistemic uncertainties.
Epistemic uncertainties arise because of limitations in the knowledge of the analysts carrying out
the PRA.  The epistemic uncertainties relate to the degree of belief that the analysts have in the
model itself and the predictions of the model; that is, how well the model reflects the design and
operation of the plants and, therefore, how well it predicts the performance of the plant.  The three
types of epistemic uncertainties found in a PRA are parameter uncertainty, model uncertainty, and
completeness uncertainty.  The understanding, identification, and treatment of these three types
of epistemic uncertainties found in a PRA are the principal subject of the remainder of this report.
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The focus of Chapter 3 is the role uncertainties play in the decision process.  The purpose of
Chapter 3 is to provide an overview of the PRA model’s characteristics and the different sources
of uncertainty associated with the model. 

2.3 Identifying and Characterizing Epistemic Uncertainties

The following is an overview of the treatment of the three different types of epistemic uncertainties
(parameter, model, and completeness).  Chapters 4, 5, and 6, respectively, provide detailed
guidance on these three uncertainty types. 

2.3.1 Parameter Uncertainty

Parameter uncertainty relates to the uncertainty in the computation of the parameter values for
initiating event frequencies, component failure probabilities, and human error probabilities that are
used in the quantification process of the PRA model.  These uncertainties can be characterized by
probability distributions that relate to the analysts’ degree of belief in the values that these
parameters could take.  Most of the PRA software in current use has the capability to propagate
these uncertainties through the analysis and calculate the probability distribution for the results of
the PRA.  To make a risk-informed decision, the numerical results of the PRA, including their
associated uncertainty, must be compared with the appropriate decision criteria.

Chapter 4 discusses the treatment of parameter uncertainty at length.  The purpose of Chapter 4
is to provide guidance on how to address parameter uncertainty in the use of PRA results for
decision making.  The chapter includes characterization of parameter uncertainty, propagation of
uncertainty, and comparison of results with decision criteria.

2.3.2 Model Uncertainty

Model uncertainty relates to the uncertainty in the assumptions made in the analysis and the
models used.  Examples of model uncertainty include the assumptions made as to how a reactor
coolant pump in a pressurized-water reactor would fail following loss of seal cooling and/or
injection, the approach used to address common cause failure in the PRA model, and the approach
used to identify and quantify operator errors.  In general, model uncertainties are addressed by
studies to determine the sensitivity of the results of the analysis if different assumptions are made
or different models are used.

The treatment of model uncertainty in decision making depends on how the PRA will be used.  The
expectation is that the focus will be on identifying and evaluating sources of uncertainty that are
relevant to the specific application at hand.  The applications for which the treatment of sources of
uncertainties that could impact a risk-informed decision is needed generally are of two types:

(1) The base PRA is used in a regulatory application, for example, to evaluate various design
options or to determine the baseline risk profile as part of a license submittal for a new
plant.

(2) The base PRA is used as input to evaluating proposed changes to a plant’s licensing basis,
for example, by using RG 1.174, and the emphasis is on the change in risk due to the
proposed plant changes.
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Chapter 5 focuses on the treatment of model uncertainty.  The purpose of Chapter 5 is to provide
guidance for identifying and characterizing model uncertainties in PRAs and then assessing the
possible impact of those uncertainties on insights about risk-informed applications.

2.3.3 Completeness Uncertainty

Completeness uncertainty, in the context of this report, relates to contributions to risk that have
been excluded from the PRA model.  This class of uncertainties may have a significant impact on
the predictions of the PRA model and must be addressed.  Examples of sources of incompleteness
include the following:

• The scope of the PRA does not include some classes of initiating events, hazards, or
modes of operation.

• There is no agreement on how the PRA should address certain  elements, such as the
effects on risk resulting from aging or organizational factors.

• The analysis may have omitted phenomena, failure mechanisms, or other factors because
their relative contribution is believed to be negligible.

When a PRA is used to support an application, its scope and level of detail must be examined to
determine if they match what is required for the risk-informed application.  If the scope or level of
detail of the existing base PRA is incomplete, then the PRA must be upgraded to include the
missing piece(s), or it must be demonstrated that the missing elements are not significant risk
contributors.  Conservative or bounding type analyses are used to demonstrate the risk significance
and the associated uncertainty. 

Chapter 6 focuses on the treatment of completeness uncertainty.  The purpose of Chapter 6 is to
provide the guidance for the performance of conservative or bounding analysis to address items
missing from a plant’s PRA scope or level of detail.

2.4 Understanding the Impact of the Uncertainties

In making an integrated decision, the decisionmaker must consider each of the elements in
Figure 2-2.  When the risk analysis element is considered, the uncertainties in the results of that
analysis need to be addressed to understand the robustness of the conclusions of the analysis.
Depending on their significance, the impacts of the uncertainties could influence the decision under
consideration.  Under the best circumstances, the impact of the uncertainties can be directly
quantified, and the analyst can determine whether the planned defense-in-depth measures, the
safety margins, and other factors adequately address the uncertainties and then make his or her
decision accordingly. 

However, in some cases, no agreed upon theoretical or empirical basis for representing the impact
of a change on the plant exists, so the effect on risk cannot be quantified without some degree of
arbitrariness.  In such a case, one solution may be an increased reliance on the performance
monitoring element.  The adoption of a performance monitoring strategy can ensure that the
subsequent observed changes in plant performance are no greater than those assumed in the risk
analysis supporting the change.  
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In other cases, an analyst may decide not to use a PRA model to address a potentially significant
contributor to risk.  This decision may be made because of resource limitations, for example.  One
way of quantitatively addressing the uncertainty in the PRA results that arises from using an
incomplete PRA model is to use bounding approaches demonstrating that a missing PRA scope
contributor to risk is not significant.  However, when the missing contributors cannot be
demonstrated to be insignificant to the decision, an alternative approach is needed.  One possibility
is to impose conditions on the implementation of the decision to compensate for the uncertainty by
essentially arguing that the implementation does not affect the unquantified portion of risk.
Chapter 7 treats all of these cases in some depth.

Chapter 7 discusses in detail the integration of the risk-informed analysis within the risk-informed
decision making process.  The purpose of that chapter is to give guidance on addressing the
uncertainty in PRA results in the context of risk-informed decision making and in particular on
interpreting the results of the uncertainty analysis when comparing PRA results with the acceptance
criteria established for a specified application.  Since the risk information required will depend on
the formulation of the acceptance criteria against which the information will be compared, Chapter 7
also discusses the coordination of the development of the risk information with the acceptance
criteria.
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3. UNDERSTANDING THE PRA MODEL

The purpose of Chapter 3 is to provide an overview of the characteristics of the PRA model and the
different sources of uncertainty associated with a PRA model.  The discussion focuses on the
nature of the model used to characterize risk (i.e., a PRA model), defines the types of uncertainty
that result from the modeling process, and briefly describes how these uncertainties are addressed.

3.1 The Risk Model

In general terms, a model can be described as an analyst’s attempt to represent a “system.”  A
system model in the physical sciences or engineering disciplines is usually a mathematical model,
which is to say that it has a mathematical structure that can be used to produce numerical results
that represent certain aspects of the system’s behavior.  Such a mathematical model will generally
have several parameters, which require numerical estimates.  

In general, since it is not possible to capture all the subtleties of the system behavior in a tractable
mathematical form, most models are approximations.  Therefore, uncertainties are associated with
the formulation of the model and with its predictions.  For some models, however, this uncertainty
is so small that it can essentially be ignored.  For example, the mathematical formulation of many
of the models created by physicists to explain natural phenomena are well supported or verified
such that the models are very precise in their predictions, and their uncertainty is sufficiently small
to be ignored.  An example of one such model is Newtonian mechanics and Newton's law of gravity.
This model is capable of very accurately predicting such things as planetary motion and can be
used to define the trajectories of planets or space vehicles with great accuracy.

PRA models are used to perform risk analysis of complex systems such as nuclear power plants.
A PRA of a nuclear power plant is not as precise as the well-established physical models as in the
above example for a number of reasons.  For example, PRA models are probabilistic models that
predict the occurrence of rare events and their predictions cannot be verified directly.  Further, the
phenomena arising from a severe accident and the equipment behavior under adverse conditions
are not always well understood.  These factors result in a PRA model involving varying degrees of
approximation, and based on a number of assumptions.  The uncertainties associated with a PRA
can range from being very small to having a significant effect on the calculated results.

To ensure that the decisionmaker is making an informed decision, an understanding of the
uncertainties associated with the PRA model is essential.  The analyst must understand the
different kinds of uncertainties, identify the uncertainties, and then determine their impact on the
results.  Essential to this understanding is knowledge of the characteristics of a PRA model,
including the structure of the model, the underlying assumptions made in developing the model, and
the scope and level of detail of the model.

The analyst constructing the PRA model determines its scope and level of detail.  Therefore, these
two characteristics can vary to the extent that the PRA addresses significant contributors to a risk-
informed decision.  However, for some risk contributors, alternate approaches, other than inclusion
in the PRA model, may be used, particularly for items that are not significant contributors to the
decision.  In the context of risk-informed decision making, these alternate approaches should be
capable of producing estimates of risk, and therefore, they are typically conservative or bounding
models.  Such alternate models (as discussed in Chapter 6) will have some characteristics of fully
developed PRA models.  Therefore, the discussion in Section 3.3 is applicable to the extent that
the alternate model reflects the characteristics of a PRA model.
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3.2 Characteristics of a PRA Model

The characteristics of a PRA model include the structure of the model, the underlying assumptions
made in developing the model, the scope of the model, and the level of detail of the model.  The
following sections describe each of these characteristics.

3.2.1 The Structure of a PRA Model

A PRA model is a complex model consisting of many elements.  The structural basis of the PRA
model is a logic model, which is constructed using logic structures such as event trees and fault
trees.  The event trees identify the different plant responses that could occur given an initiating
event.  The fault trees identify the different combinations of more elementary events, called basic
events, that could lead to undesired system states.  These logic models represent a simplification
(discretization) of the potentially unlimited range of scenarios into a manageable set that is
supposed to be representative of, and encompass the range of consequences of, that larger set.

The types of basic events found in PRAs include events that represent the following:

• occurrence of initiating events

• the states of unavailability or failure of systems, structures, or components

• the human failures that contribute to the failure of the systems designed to protect against
the undesirable consequences should an initiating event occur  

A frequency is estimated for an initiating event occurrence, while probabilities are estimated for the
other basic events.  These frequencies and probabilities are derived from the basic event models.
For example, the occurrence of an initiating event is modeled as a random process with an
associated frequency of occurrence.  The other basic events discussed above are typically events
such as the failure of a pump to start, the failure of a pump to run for 24 hours, and the failure of
an operator to take the appropriate actions to prevent system damage.  Usually, these basic events
are also regarded as resulting from random occurrences with respect to the demand created by the
initiating event.  They are described by simple probabilistic models, such as the constant probability
of failure on demand (the binomial process) or a constant failure rate (the Poisson process).  

While the above examples are representative of most of the basic events in the models, other types
of basic events are also included.  For example, when analyzing reactor coolant pump (RCP) seal
loss-of-coolant accidents (LOCAs), there may be events that delineate the different sizes of LOCAs.
Furthermore, PRA models used to analyze the risk from fires or internal floods may also include
events that are used to represent the occurrence of certain states of fire/flood damage.  The
probabilities of these events are derived from more complex models.  For example, the occurrence
of a fire damage state may be evaluated from the interplay between a model of fire growth and a
model of fire detection and suppression.

3.2.2 Assumptions

The development of any model is generally based on a number of assumptions, and a PRA model
is no exception.  An assumption is a decision or judgment that is made in the development of the
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PRA model.  An assumption is either related to a source of model uncertainty or related to scope
or level of detail.

An assumption related to a model uncertainty is made with the knowledge that a different
reasonable alternative assumption exists.  A reasonable alternative assumption is one that has
broad acceptance in the technical community and for which the technical basis for consideration
is at least as sound as that of the assumption being made.  This is discussed briefly in Section 3.4
and in more detail in Chapter 5. 

By contrast, an assumption that is related to scope or level of detail is one that is made for modeling
convenience.  Such assumptions result in defining the boundary conditions for the PRA model.
Sections 3.2.3 and 3.2.4 address this topic.

3.2.3 Scope of a PRA Model

The scope of the PRA is defined in terms of (1) the metrics used to evaluate risk, (2) the plant
operating states for which the risk is to be evaluated, and (3) the types of initiating events that can
potentially challenge and disrupt the normal operation of the plant and, if not prevented or mitigated,
would eventually result in core damage and/or a large release.

Risk metrics are the end-states quantified in a PRA to evaluate risk.  In a PRA, these end-states
or risk metrics are generally defined as a Level 1, limited Level 2, Level 2, or Level 3 analysis.
These metrics are defined as follows:

• Level 1 PRA — involves the evaluation and quantification of the frequency of the sequences
leading to core damage

• Limited Level 2 PRA — involves the evaluation and quantification of the mechanisms, and
probabilities of subsequent radioactive material releases leading to large early releases
from containment

• Level 2 PRA — involves the evaluation and quantification of the mechanisms, amounts, and
probabilities of all the subsequent radioactive material releases from the containment

• Level 3 PRA — involves the evaluation and quantification of the resulting consequences to
both the public and the environment from the radioactive material releases

Plant operating states (POSs) are used to subdivide the plant operating cycle into unique states,
such that the plant response can be assumed to be the same for all subsequent accident initiating
events.  Operational characteristics (such as reactor power level; in-vessel temperature, pressure,
and coolant level; equipment operability; and changes in decay heat load or plant conditions that
allow new success criteria) are examined to identify those relevant to defining POSs.  These
characteristics are used to define the states, and the fraction of time spent in each state is
estimated using plant-specific information.  The risk perspective is based on the total risk
associated with the operation of the reactor, which includes not only full-power operation, but also
low-power and shutdown conditions.

Initiating events have the ability to challenge the condition of the plant.  These events include
failure of equipment from either internal plant causes (such as hardware faults, operator actions,
floods, or fires) or external plant causes (such as earthquakes or high winds).
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The scope of the model may be limited on the assumption that a certain challenge or challenges
do not significantly affect the risk.  On the other hand, the analyst may simply choose not to model
a certain contributor and to deal with it in another manner, as discussed in Chapter 7. 

3.2.4 Precision and Level of Detail

The level of detail of a PRA is defined in terms of the degree to which (1) the logic models are
discretized and (2) plant representation is modeled.  Ultimately, the degree of detail required of the
PRA is determined by how it is intended to be used.
  
The logic models of a PRA (i.e., the event trees and fault trees) are a simplified representation of
the complete range of potential accident sequences.  For example, modeling all the possible
initiating events or all the ways a component could fail would create an unmanageable and
unwieldy model.  Consequently, simplifications are achieved by making approximations.  For
example, in developing an accident sequence timeline, a representative sequence is generally
chosen that assumes that all the failures of the mitigating systems occur at specific times (typically
the time at which the system is demanded).  However, in reality, the failures could occur over an
extended time period (e.g., the system could fail at the time demanded or could fail at some later
time).  Developing a model that represents all the possible times the system could fail and the
associated scenarios is not practical.  The time line is used to provide input to the human reliability
analysis.  Typically, a time is chosen that provides the minimum time for the operator to receive the
cues and to complete the required action.  This minimized time maximizes the probability of failure.
This simplification, therefore, leads to an uncertainty in the evaluation of risk which is essentially
unquantifiable without developing more detailed models that more explicitly model different
timelines.  The assumption is that the simplification is adequate for the purpose for which the model
is being developed.  It is also generally assumed that the simplification results in a somewhat
conservative assessment of risk.

The degree to which plant performance is represented in the PRA model also has an effect on the
precision of the evaluation of risk.  For each technical element of a PRA, the level of detail may vary
by the extent to which the following occur:

(1) Plant systems and operator actions are credited in modeling the plant design and operation.
(2) Plant-specific experience and the operating history of the plant’s structures, systems, and

components are incorporated into the model.
(3) Realism is incorporated in the deterministic analyses to predict the expected plant

responses.

The level of detail in the way the logic models are discretized and the extent to which plant
representation is modeled is at the discretion of the analyst.  The analyst may screen out initiating
events, component failure modes, and human failure events, so that the model does not become
encumbered with insignificant detail.  For example, not all potential success paths may be modeled.
However, there is a certain level of detail implicit in the requirements of the PRA standard.  While
an analyst chooses the level of detail, the PRA model must be developed enough to correctly model
the major dependencies (e.g., those between front line and support systems) and to capture the
significant contributors to risk.  Nonetheless, this discretion in choosing the level of detail chosen
leads to a lack of precision, which results in uncertainty with respect to the predictions of the model.
The generally conservative bias that results could be removed by developing a more detailed
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model.  The need to do so would be driven by a particular application.  The purpose of Chapters
4, 5, and 6 of this document is not to address this issue but to address the uncertainty in the
formulation of the model constructed under the boundary conditions created by the discretization
and level of detail.  

3.2.5 Results of the PRA (Aggregation of the Results)

Typically, the results produced by the PRA model include the following:

• core damage frequency (CDF)
• large early release frequency (LERF)
• identification of the relative importance of various contributors including

— initiating events
— accident sequences
— component failures or unavailabilities
— human failure events

For many applications it is necessary to sum the contributions from all the contributors to a specific
risk metric such as CDF, LERF, or an importance measure.  This summation has sometimes been
referred to as “aggregation.”  Since the initiating events are independent, addition of the
contributions is mathematically correct.  However, there are several issues that should be
considered when aggregating PRA results.  First, it is important to note that, when combining the
results of PRA models for several risk contributors (e.g., internal initiating events, internal fires,
seismic events), as required by many acceptance criteria, the level of detail and level of
approximation may differ from one contributor to the next, with some being more conservative than
others.  This modeling difference is true even for an internal events, at-power PRA.  For example,
the evaluation of room cooling and equipment failure thresholds can be conservatively evaluated
leading to a conservative time estimate for providing means for alternate room cooling.
Furthermore, at-power PRAs follow the same general process as used in the analysis of other
contributors with regard to screening: low risk sequences can be modeled to a level of detail
sufficient to prove they are not important to the results. 

Significantly higher levels of conservative bias can exist in PRAs for external events, lower power
and shutdown (LPSD), and internal fire PRAs.   These biases result from several factors including
the unique methods or processes and the inputs used in these PRAs, as well as the scope of the
modeling.  For example, the fire modeling performed in a fire PRA can use simple scoping models
or more sophisticated computer models and may not mechanistically account for all factors such
as the application of suppression agents.  Further, fire PRAs do not always credit all mitigating
systems in an effort to reduce the number of cables that have to be located.  To a certain level,
conservative bias will be reduced by the development of PRA standards, detailed models, and
corresponding guidance for the analysis of external events, fires, and LPSD that will provide a
similar level of rigor currently used in at-power PRAs.  However, as with internal at-power PRAs,
the evaluation of every aspect of these other contributors will likely include some level of
conservatism that may influence a risk-informed decision.

The level of detail, scope, and resulting conservative biases in a PRA introduces uncertainties in
the PRA results.  Since conservative bias can be larger for external events, fire, and LPSD risk
contributors, the associated uncertainties can be larger.   The propagation of parametric
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uncertainties through the model and the use of mean CDF and LERF values can account for
parameter uncertainty.  Model uncertainty should be addressed using the guidance provided in
Chapter 5.  The outcome of that effort is that more model uncertainties will be identified and have
to evaluated in order to support a risk-informed application.  However, a higher level of uncertainty
does not preclude the aggregation of results from different risk contributors; but it does require
consideration of all uncertainties that have a significant impact on the risk-informed application.

Finally, it is important to note that the process of aggregation can be influenced by the type of risk-
informed application.  For example, it is always possible to add CDF and LERF, and changes in
CDF and LERF contributions from different risk contributors for comparison against corresponding
criteria.  However, in doing so, one should always consider the influence of known conservatism
when comparing the results against the criteria, particularly if they mask the real risk contributors
or result in exceeding the criteria.  If the criteria are exceeded due to a conservative analyses, then
it is always possible to perform a more detailed, realistic analysis to reduce the conservatism and
uncertainty, or address the issue in another way, such as taking compensatory measures to
address the cause of conservatism.  For applications that use risk importance measures to prioritize
specific actions (e.g., special treatment), a conservative bias can significantly impact the identified
risk ranking.  Furthermore, some importance measures can not be added together from different
analyses and thus would require a true integration of the different risk models in order to evaluate
them.  

Chapter 7 provides guidance on how to aggregate the result from different risk contributors for use
in risk-informed decision making.   To facilitate this effort, it is best that results and insights from all
of the different risk analyses relevant to the application be provided to the decision maker in
addition to the aggregated results.  This information will allow for consideration of all conservatism
associated with any of the risk contributors and will help focus the decision-maker on those aspects
of the analysis that have the potential to influence the outcome of the decision.

3.3 PRA Models and Uncertainty

PRA models are constructed as probabilistic models to reflect the random nature of the constituent
basic events such as initiating events and component failures.  Randomness is one manifestation
of a form of uncertainty that has come to be called aleatory uncertainty.  A PRA is, therefore, a
probabilistic model that characterizes the aleatory uncertainty associated with accidents at nuclear
power plants.  The focus of this document is guidance in dealing with another area of uncertainty,
namely epistemic uncertainty.  This uncertainty is associated with the incompleteness in the
analysts’ state of knowledge and has an impact on the results of the PRA model.  The following
sections identify and describe examples of sources of epistemic uncertainty.

3.3.1 Examples of Epistemic Uncertainty in PRA

Uncertainties in the PRA models arise for many different reasons, including the following:

• For many of the basic events of the PRA model, there are generally accepted probability
models.  These models are typically simple, with only one or two parameters.  Examples
include the simple constant failure rate reliability model, which assumes that the failures of
a component while it is on standby occur at a constant rate, and the uniformly distributed
(in time) likelihood of an initiating event.  The model for both these processes is the well-
known Poisson model.  The parameter(s) of such models can be estimated using
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appropriate data, which in the examples above comprise the number of failures observed
in a population of like components in a given time, and the number of occurrences of a fire
scenario in a given time, respectively.  Statistical uncertainties are associated with the
estimates of the parameters of the model.  Since most of the events that constitute the
building blocks of the risk model (e.g., some initiating events, operator errors, and
equipment failures) are relatively rare, the data are scarce, and the uncertainties can be
relatively significant.

• For some events, while the basic probability model is generally agreed on, uncertainties
may be associated with interpreting the data to be used for estimation.  For example, when
collecting data on component failures from maintenance records, it is not always clear
whether the failure would have prevented the component from performing the mission
required of it to meet the success criteria assumed in the risk model.

• For some basic events, there can be uncertainty as to how to model the failures, which
results in uncertainties in the probabilities of those failures.  One example is the behavior
of RCP seals on loss of cooling.  Another example is the modeling of human performance
and the estimation of the probabilities of human failure events.

• There can be uncertainty about the capability of some systems to perform their function
under the conditions specified by the developed scenarios.  This leads to uncertainty in
characterizing the success criteria for those functions, which has an impact on the logic
structure of the model.

 
As seen in these examples, the uncertainty associated with the structure of and input to the PRA
model can be in the choice of the logic structure, the mathematical form of the models for the basic
events, or it can be in the values of the parameters of those models, or it can be in both.  To the
extent that changes in parameter values are little more than subtle changes in the form of the
model, it can be argued that there is really no precise distinction between model uncertainty and
parameter uncertainty.  However, as discussed below, parameter uncertainties and model
uncertainties are dealt with differently.  It should also be noted that, while the Poisson and binomial
models are typically adopted for the occurrence of initiating events and for equipment failures, these
are assumptions and may not be appropriate for all situations.

3.3.2 Types of Epistemic Uncertainty

As noted above, it is helpful to categorize uncertainties into those that are associated with the
parameter values and those that involve aspects of models.  This categorization is primarily
because the methods for the characterization and analysis of uncertainty are different for the two
types.  However, a third type of uncertainty exists, namely uncertainty about the completeness of
the model.  While this type of uncertainty cannot be handled analytically, it must be considered
when making decisions using the results of a risk analysis.

Parameter Uncertainty:  Parameter uncertainty is the uncertainty in the values of the parameters
of a model, given that the mathematical form of that model has been agreed to be appropriate.
Current practice is to characterize parameter uncertainty using probability distributions on the
parameter values [SNL, 2003a].  When the parameters are combined algebraically to evaluate the
PRA numerical results, or some intermediate result such as a basic event probability, these
uncertainty distributions can be mathematically combined in a simple way to estimate the
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uncertainty of those numerical results.  When there is uncertainty as to which model to use to
estimate the probability of the basic events, this is more appropriately addressed as a model
uncertainty.
 
Model Uncertainty:  Model uncertainty is related to an issue for which there is no consensus
approach or model and where the choice of approach or model is known to have an effect on the
PRA model (e.g., introduction of a new basic event, changes to basic event probabilities, change
in success criterion, introduction of a new initiating event).  A model uncertainty results from a lack
of knowledge of how systems, structures, and components behave under the conditions arising
during the development of an accident.  A model uncertainty can arise for the following reasons:

• The phenomenon being modeled is itself not completely understood (e.g., behavior of
gravity-driven passive systems in new reactors, crack growth resulting from previously
unknown mechanisms).

• In a subset of the preceding item, some data or other information may exist, but it must be
interpreted to infer behavior under conditions different from those in which the data were
collected (e.g., RCP seal LOCA information).

• The nature of the failure modes is not completely understood or is unknown (e.g., digital
instrumentation and controls).

As indicated in Section 3.3.1, model uncertainty may be manifested in uncertainty about the logic
structure of the PRA model or in the choice of model to estimate the probabilities associated with
the basic events. 

Completeness Uncertainty:  Completeness is not in itself an uncertainty, but a reflection of a
limitation in the scope of the model.  The result is, however, an uncertainty about where the true
risk lies.  This can also be thought of as a type of model uncertainty.  However, completeness
uncertainty is discussed separately because it represents a type of uncertainty that cannot be
quantified and because it represents those aspects of the system that are, either knowingly or
unknowingly, not addressed in the model. 

The problem with completeness uncertainty in PRAs is that, because it reflects an unanalyzed
contribution, it is difficult (if not impossible) to estimate its magnitude.  Incompleteness in the model
can be thought of as arising in two different ways:

• Some contributors/effects may be knowingly left out of the model for a number of reasons.
For example, methods of analysis have not been developed for some issues, and these
gaps have to be accepted as potential limitations of the technology.  Thus, for example, the
impact on actual plant risk from unanalyzed issues such as the influences of organizational
performance cannot now be explicitly assessed.  As another example, the resources to
develop a complete model may be limited, leading to a decision not to model certain
contributors to risk (e.g., seismically induced fires).

• Some phenomena or failure mechanisms may be omitted because their potential existence
has not been recognized.
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3.3.3 Assessing the Impact of Uncertainty

While there may be many sources of uncertainty in a PRA, they do not all have an impact on a
particular decision.  Those that can affect the results used to support a decision are identified as
key sources of uncertainty, and these demand attention.  The way that the uncertainties are
assessed is a function of the way the acceptance criteria (or acceptance guidelines) for the decision
are defined and the way that the uncertainties are characterized with regard to the acceptance
guidelines.
  
For example, in the context of RG 1.174 [NRC, 2002a], the acceptance guidelines are defined to
demonstrate, with reasonable assurance, that the risk change is small.  This decision must be
based on a full understanding of the contributors to the PRA results and the impacts of both the
uncertainties that are explicitly accounted for in the results and those that are not.  This process is
somewhat subjective, and the reasoning behind the decisions must be well documented.  The
acceptance guidelines of RG 1.174, for example, are not intended to be interpreted as being overly
prescriptive.  They are intended to indicate in numerical terms what is considered acceptable.
RG 1.174 uses the term “acceptance guidelines” rather than “acceptance criteria” primarily to
recognize that the numerical results do not capture all of the analysis uncertainty.

The following provides an overview of the assessment of each type of uncertainty (parameter,
model, and completeness).  Detailed guidance appears in Chapters 4, 5, and 6, respectively.

Parameter Uncertainty:  For many parameters (e.g., initiating event frequencies, component
failure probabilities or failure rates, human error probabilities) the uncertainty may be characterized
as subjective probability distributions.  Chapter 4 discusses the methods for propagating these
uncertainties through the analysis to characterize the uncertainty in the numerical results of the
analysis.  In this manner, the impact of the parameter uncertainties on the numerical results of the
PRA can be assessed integrally.  However, many of the acceptance criteria or guidelines used in
regulatory decision making (e.g., the acceptance guidelines of RG 1.174) are defined such that the
appropriate measure for comparison is the mean value of the uncertainty distribution on the
corresponding metric.  In this case, as discussed in Chapter 4, the primary issue with parameter
uncertainty is its effect on the calculation of the mean, and specifically, on the relevance and
significance of the state-of-knowledge correlation.

Model Uncertainty:  While the analysis of parametric uncertainty is fairly mature and is addressed
adequately through the use of probability distributions on the values of the parameters, the analysis
of the model and completeness uncertainties cannot be handled in such a formal manner.  The
typical response to a modeling uncertainty is to choose a specific modeling approach to develop
in the PRA model.  While it is possible to embed a characterization of model uncertainty into the
PRA model by including several alternate models and providing weights (probabilities) to represent
the degree of credibility of the individual models, this is not usual.  Therefore, when using the
results of the model, it is necessary to demonstrate that, for the key uncertainties, reasonable
alternative hypotheses, adjustment factors, or modeling approximations or methods would not
significantly change the assessment.  Chapter 5 discusses methods for performing such
demonstrations.  

In dealing with model uncertainties, it is helpful to identify whether the model uncertainties can alter
the logic structure of the PRA model, or whether their primary impact is on the probabilities of the
basic events of the logic model.  For example, an uncertainty associated with the establishment of
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the success criterion for a specific system can result in an uncertainty as to whether one or two
pumps is required for a particular scenario.  This uncertainty would be reflected in the choice of the
top gate in the fault tree for that system.  On the other hand, those model uncertainties that are
associated with choosing the model to estimate the probabilities of the basic events do not alter the
structure of the model.  Because of this, tools such as importance analyses can be used to explore
the potential impact of these uncertainties in a way not possible for the former.

One approach to dealing with a specific model uncertainty is to adopt a consensus model, which
essentially removes that uncertainty from having to be addressed in the decision making.  In the
context of regulatory decision making, a consensus model can be defined as follows:

Consensus model: in the most general sense, as a model that has a publicly
available published basis and has been peer reviewed and widely adopted by an
appropriate stakeholder group.  In addition, widely accepted PRA practices may be
regarded as consensus models.  Examples of the latter include the use of the
constant probability of failure on demand model for standby components and the
Poisson model for initiating events.2  For risk-informed regulatory decisions, the
consensus model approach is one that the NRC has utilized or accepted for the
specific risk-informed application for which it is proposed.

The definition given here ties the consensus model to a specific application.  This restriction is
because models have limitations that may be acceptable for some uses and not for others.  In some
cases (e.g., the Westinghouse Owners’ Group 2000 RCP seal LOCA model), this consensus is
documented in a safety evaluation report (SER) [NRC, 2003d].  In such cases, the tendency is for
the model to be considered somewhat conservative.  While no further analysis of the model
uncertainty is typically needed, it is important to recognize the potential for conservatism if it could
mask other contributors that may be important to a decision.  Many models can already be
considered consensus models without the issuance of an SER.  For example, the Poisson model
for initiating events has been used since the very early days of PRA.

Completeness Uncertainty:  The issue of completeness of scope and level of detail of a PRA can
be addressed for those scope and level of detail items for which methods are available and,
therefore, some understanding of the contribution to risk exists.  For example, the out-of-scope and
level of detail items can be addressed by supplementing the PRA with additional analysis to enlarge
the scope or increase the level of detail, or by bounding analyses to demonstrate that, for the
application of concern, the out-of-scope or level of detail contributors are not significant.  Chapter 6
discusses these approaches.  An alternative is to design the proposed change such that the major
sources of uncertainty will not have an impact on the decision making process, as discussed in
Chapter 7.
  
The true unknowns (i.e., those related to issues whose existence is not recognized) cannot be
addressed analytically.  However, in the interests of making defendable decisions, these unknowns
must still be addressed during the decision making as discussed in Chapter 2.  The principles of
safety margins and defense in depth play a critical role in addressing this source of uncertainty.
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4. PARAMETER UNCERTAINTY

The purpose of this chapter is to provide guidance on how to address parameter uncertainty in the
use of PRA results for decision making.  Guidance is provided for the characterization of parameter
uncertainty, propagation of parameter uncertainty, and the treatment of parameter uncertainties in
comparison of PRA results with acceptance criteria. 

RGs 1.174 [NRC, 2002a] and 1.200 [NRC, 2007a] and the ASME PRA Standard [ASME, 2005a]
all recognize the importance of the identification and understanding of the uncertainties in a PRA.
More specifically, the ASME PRA Standard (as endorsed by the staff in RG 1.200) requires that
uncertainties in the PRA are characterized, and that sources of model uncertainty and related
assumptions are identified and their impact on the results understood.  In addition, there are
specific requirements for characterization of parameter uncertainties.  The standard (and as
endorsed by RG 1.200) requires either (1) an estimate of the uncertainty interval of the overall CDF
results associated with the parameter uncertainties, or (2) the propagation of the parameter
uncertainties (and those model uncertainties explicitly characterized by a probability distribution).
The specific parameter uncertainties to be characterized are also identified in the standard and
include the basic events of initiating event frequencies, component failures and unavailabilities, and
human-error probabilities (HEPs).  For each of the basic events, the standard requires the
characterization of the uncertainty interval on the parameter values used to estimate the basic
event probability.  This approach allows the uncertainty in the final risk metric to be quantified.

The requirements described above are the extent of the level of detail provided in the standard.
This chapter provides more detailed guidance on the characterization, propagation, and treatment
of parameter uncertainties.  Accordingly, this chapter has three main sections:

• Characterization of Parameter Uncertainty for Basic Events — This section discusses the
characterization of uncertainty on the parameters used to quantify the basic event
probabilities.

• Propagation of Uncertainty — This section discusses the propagation of the uncertainties
on the input parameters to provide an assessment of the uncertainty on the quantitative
results of the PRA (e.g., accident sequence frequencies, CDF).

• Treatment of Parameter Uncertainties — This section describes how the resultant
uncertainty in the PRA results is used in comparison with acceptance criteria or guidelines
associated with an application.

4.1 Characterization of Parameter Uncertainty for Basic Events

Guidance is provided in this section for the characterization of the parameter uncertainties.  The
parameter uncertainties are characterized by the probability distributions used for the parameters
of the basic event model.  There are two statistical approaches used for this characterization,
namely the frequentist and Bayesian methods, but usually the latter is used.  In some cases,
however, detailed analyses and evidence (i.e., data) about the event are very limited or unavailable.
In these cases, it is not feasible to use a mathematical model, and it is necessary to rely on the
knowledge of experts in the specific technical field associated with the basic event.  Accordingly,
the guidance involves the following:
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• General Considerations — This section discusses general considerations for characterizing
parameter uncertainty of basic events and compares the two statistical approaches. 

• Bayesian Estimation of Parameter Uncertainty — This section presents the fundamental
principles of the use of Bayes’ Theorem for estimating parameter uncertainty distributions.

• Additional Issues — This section provides two other topics for consideration when
characterizing parameter uncertainty.

4.1.1 General Considerations

This section discusses general considerations for characterizing parameter uncertainty of basic
events and compares the two statistical approaches used for this characterization, namely the
frequentist and Bayesian methods.  As described below, for practical reasons the Bayesian
approach is the one that is most commonly used. 

The process for estimating the probability of occurrence of a basic event comprises two major
steps:

(1) Determine the appropriate probability model to represent the basic event.  These probability
models typically have one or more parameters.

(2) Estimate the values of these parameters.  This estimation is based on the most applicable
and available data.

Both steps introduce some uncertainty into the PRA model.3  For many of the basic events of the
PRA model, however, there are generally accepted basic event models (i.e., probability models),
which are typically simple.  Examples include the simple constant failure rate reliability model, which
assumes that the failures of a component while it is in standby occur at a constant rate, and the
uniformly distributed (in time) likelihood of an initiating event.  The model for both these processes
is the well-known Poisson model.  The parameter(s) of such models can be estimated using
appropriate data, which in the examples above comprise the number of failures observed in a
population of like components in a given time and the number of occurrences of an initiating event
in a given time, respectively. 

There is a statistical uncertainty associated with the estimation of parameters based on data.  This
chapter discusses this kind of uncertainty.  Since most of the basic events that constitute the
building blocks of the risk model (e.g., some initiating events, and equipment failures) are relatively
rare events, the data for estimating the parameters for each basic event consist only of a relatively
small set of randomly generated data or are even unavailable.  Therefore, this uncertainty can be
significant.

Usually an analyst associates a basic event model (i.e., a probability distribution) with each basic
event.  For example, initiating events are typically modeled by a Poisson process, so the number
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of occurrences X during some fixed exposure time t is a Poisson distributed random variable, and
the probability of x initiating events in time t is

Pr(X=x) = e-λt (λt)x / x! Equation 1

where λ, the event frequency, has units of events per unit time.  This Poisson distribution is a basic
event model and has one parameter, λ.  In this model, the exposure time t is treated as fixed, and
the number of events is treated as random.4

As noted above, there are two basic statistical approaches for estimating parameters and their
associated uncertainty—the frequentist, or classical, method and the Bayesian method.  These two
methods and a comparison of them are discussed below.

Frequentist Approach

In the frequentist approach, the probability of a random event is defined as the long-term fraction
of times that the event would occur in a large number of trials.  Probabilities are used only for
random quantities, the possible data values.  Probability distributions are never used to describe
parameters because parameters are not considered to be random.

The primary use of the frequentist approach is to conduct a preliminary examination of the data,
to check the correctness of model assumptions, and to decide which model to use.  For example,
frequentist methods can help the analyst decide whether data sets may be pooled or whether a
trend is present.  Goodness-of-fit tests and calculation of statistical significance are commonly used
frequentist tools in this context.

Bayesian Approach

In the Bayesian approach, probability is a measure of uncertainty, a quantification of degree of
belief.  The Bayesian methodology is used to modify uncertainty in a logically coherent way, so that
“degree of belief” is rational, not merely personal opinion.

When estimating a parameter and associated uncertainty for PRA, data from reliable equipment
are typically sparse, with few or even zero observed failures.  In such cases, it is reasonable to
draw on other sources of information.  The Bayesian approach provides a mechanism for
incorporating such information as prior belief.  It also allows straightforward propagation of basic
event uncertainties through a logical model to produce an uncertainty on the frequency of the
undesirable end state, such as core damage.  To do this, an analyst estimates a probability
distribution for each of the unknown parameters and typically enters the distributions of the
parameters into a PRA computer code.  The code then draws a random sample from each
distribution and constructs the corresponding sample for the frequency of the undesirable end state.
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PDFs used in PRAs to characterize uncertainty include, in alphabetical order, beta, gamma,
inverted chi-squared, logistic-normal, log-normal, maximum entropy, normal, Poisson, and uniform.
The properties and parameters of all these PDFs are presented in statistical textbooks and in
reports providing guidance for conducting a PRA.  In particular, NUREG/CR-6823 [SNL, 2003a] is
a handbook on estimating parameters and their associated uncertainty.  Appendix A of that
NUREG/CR provides the basics of probability theory and useful properties of several probability
distributions commonly used in PRAs.

Frequentist and Bayesian Comparison

The frequentist method considers that a parameter is a constant that is fixed.  On the other hand,
the Bayesian approach considers that a parameter is a constant, but it is assigned a probability
distribution, measuring the current state of belief.  Accordingly, the two approaches differ in the way
they treat uncertainty of unknown parameters.  Therefore, the way the uncertainty of an unknown
parameter is characterized depends on the method used to assess the parameter and its
uncertainty.  

Since the frequentist approach cannot handle complicated propagation of uncertainties except by
rough approximations for estimating a parameter and associated distribution and uncertainty, the
Bayesian approach works better.

Frequentist estimates are often simpler to calculate than Bayesian estimates and therefore are
useful for rough approximate calculations.

The characteristics of these two methods for assessing the uncertainty of unknown parameters in
a PRA are summarized in Table 4-1, extracted from Appendix B to the Data Handbook.

Table 4-1 Characteristics of Methods for
Assessing Parameter Uncertainty

Bayesian Approach Frequentist Approach

Because Bayesian probability intervals can be
interpreted as probability statements about a
parameter, they are easily combined with
other sources of uncertainty in a PRA using
the laws of probability.

A confidence interval cannot be directly
interpreted as a probability that the parameter
lies in the interval.

Bayesian distributions can be propagated
through fault trees, event trees, and other
logic models. 

It is difficult or impossible to propagate
frequentist confidence intervals through fault
and event tree models common in PRA to
produce corresponding interval estimates on
output quantities of interest.

For the reasons mentioned above, the frequentist approach is not commonly used for assessing
the uncertainty of a parameter as part of a PRA; hence, it is not discussed further in this chapter.
An overview of the use of the Bayesian method for estimating an unknown parameter and its
associated uncertainty is provided.



4.   Parameter Uncertainty

5An example of other relevant failures is the occurrence of a LOCA due to the failure of the seals of the
RCPs of a pressurized-water reactor (PWR).  An example in a level-2 PRA is the failure of the containment.

Draft for Comment NUREG-18554-5

In addition, it is important to understand that the way that the uncertainty of each basic event is
characterized is dependent on the type of basic event.  The types of basic events generally found
in PRAs include events that represent the following:

• initiating events

• failures to start or change state of components

• failures to run or maintain state of components

• unavailabilities of components from being out of service

• failures to recover structures, systems, and components (SSCs), such as failure to recover
offsite power within a certain time

• common-cause failures (CCFs) of components

• human errors that contribute to the occurrence of initiating events or failure of the mitigating
SSCs

• other relevant failures5

Although the guidance provided in concept applies to all the types of basic events listed above, for
the latter three, the reader is advised to use specific guidance and therefore consult other sources,
such as the following:

CCFs of components
• NUREG/CR-5497 [INL, 1998a]
• NUREG/CR-6268 [INL, 1998b]
• NUREG/CR-5485 [INL, 1998c]
• NUREG/CR-4780 [EPRI, 1988a]
• EPRI NP-3967 [EPRI, 1985a]

Human errors
• NUREG-1792 [NRC, 2005a] 

Other relevant failures
• uncertainty related to these failures may be estimated using expert judgment elicitation.
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4.1.2 Bayesian Estimation of Parameter Uncertainty

This section presents the fundamental principles of the use of Bayes’ Theorem for estimating
parameter uncertainty distributions.  This overview is mainly based on Appendices A and B to the
Data Handbook; the reader is advised to see this handbook or other reputable document for a more
complete discussion on this method.  In addition, Siu and Kelly [Siu, 1998a] give a thorough
introduction to Bayesian estimation for PRA.  

Bayesian estimation of parameter uncertainty incorporates degree of belief and information beyond
that contained in the data sample.  The prior belief about a parameter’s value is contained in what
is referred to as the prior distribution, which describes the state of knowledge (or subjective
probability) about the parameter, prior to obtaining the data sample.  Therefore, in the Bayesian
approach, the parameters of the sampling distribution have probability distributions.  These
probabilities do not model random variability of the parameters but the analyst’s degree of belief
about the true values of the unknown parameters.  The distributions are sometimes called
uncertainty distributions.  A Bayesian uncertainty distribution satisfies all the rules of a probability
distribution.

The Bayesian method uses Bayes’ Theorem, which is given here for continuous PDFs.  Suppose
X is a discrete or continuous random variable, with PDF depending on parameter θ, and with
conditional PDF of X, given θ, specified by f(x/θ).  Also suppose that θ has a continuous probability
distribution with PDF g(θ).  In the case of parameter estimation, θ is an uncertain parameter with
a subjective uncertainty distribution.  Call g(θ) the prior PDF.  Then for every x such that f(x) > 0
exists, the posterior PDF of θ, given X = x, is

Equation 2g x f x g
f x

( / ) ( / ) ( )
( )

θ θ θ=

where
Equation 3

is the marginal PDF of X.  The prior and posterior PDFs can be used to represent the probability
of various values θ prior to and posterior to observing a value of another random variable X. 

Bayesian estimation consists of two main areas, both of which use the notion of subjective
probability.  The first area involves using available data to assign a subjective, prior distribution to
a parameter, such as a failure rate.  The degree of belief about the uncertainty in a parameter value
is expressed in the prior distribution.  This assignment of a prior distribution does not involve the
use of Bayes’ Theorem.  The second area of Bayesian estimation involves using additional or new
data to update an existing prior distribution.  This is called Bayesian updating and directly uses
Bayes’ Theorem. 

Bayes’ Theorem can be seen to transform the prior distribution by the effect of the sample data
distribution to produce a posterior distribution.  The sample data distribution, f(x/θ), can be viewed
as a function of the unknown parameter, instead of the observed data, xi, producing a likelihood
function.

f x f x g d( ) ( / ) ( )= ∫ θ θ θ
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Using the likelihood function, the fundamental relationship expressed by Bayes’ Theorem is

Posterior Distribution =  
(Prior Distribution) (Likelihood)

Marginal Distribution

The marginal distribution serves as a normalizing constant.  

In Bayesian updating, the sampling distribution of the data provides new information about the
parameter value.  Bayes’ Theorem provides a mathematical framework for processing new sample
data as they become sequentially available over time.  With the new information, the uncertainty
of the parameter value has been reduced, but not eliminated.  Bayes’ Theorem is used to combine
the prior and sampling distributions to form the posterior distribution, which then describes the
updated state of knowledge (still in terms of subjective probability) about the parameter.  Point and
interval estimates of the parameter can then be obtained directly from the posterior distribution,
which is viewed as containing the current knowledge about the parameter.  This posterior
distribution can then be used as the prior distribution when the next set of data becomes available.
Thus, Bayesian updating is successively implemented using additional data in conjunction with
Bayes’ Theorem to obtain successively better posterior distributions that model a plant-specific
parameter. 

Bayesian point and interval estimates are obtained from both the prior and posterior distributions.
The interval estimates are subjective probability intervals, or credible intervals.  The terminology
is not yet universally standard.  A credible interval can be interpreted as a subjective probability
statement about the parameter value, unlike classical interval estimates.  That is, the interpretation
of a 95 percent Bayesian posterior probability interval (a, b) is that, with 95 percent subjective
probability, the parameter is contained in the interval (a, b), given the prior and sampling
distributions.  

Bayesian parameter estimation involves four steps.  The first step is identification of the
parameter(s) to be estimated, which involves consideration of the assumed distribution of the data
that will be collected.  The second step is development of a prior distribution that appropriately
quantifies the state of knowledge concerning the unknown parameter(s).  The third step is collection
of the data sample.  The fourth and final step is combining the prior distribution with the data
sample using Bayes’ Theorem to produce the desired posterior distribution.

For PRA applications, determining the prior distribution is usually based on generic data and the
data sample usually involves site-specific or plant-specific operating data.  The resulting posterior
distribution would then be the site-specific or plant-specific distribution of the parameter.

The plant-specific data collected are assumed to be a random sample from an assumed sampling
distribution.  The data are used to update the prior distribution, producing the posterior distribution.
Point estimates, such as the most likely value (the mode), the median, or (most commonly) the
mean value, and probability interval estimates of the parameter can then be obtained.  Other
bounds and other point values can also be obtained with the Bayesian approach because the
posterior parameter distribution is entirely known and represents the available knowledge about the
parameter.
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Using the posterior PDF, a symmetric 100(1 - γ) percent two-sided Bayes probability interval
estimate of the parameter is obtained by solving the two equations for the lower limit θL and the
upper limit θU.

Equation 4

Equation 5

The interval estimate (θL, θU) would then be such that

 Pr(θL < θ < θU / x) = 1 - γ  

The Bayes interval estimate is an explicit probability statement of the true parameter contained in
the interval.  For example, if γ = 0.05, there is a 0.95 probability that this interval really includes the
unknown parameter. 

Thus, the uncertainty in θ is expressed by the posterior distribution, which is a probability
distribution.  The distribution’s mean and width are the best estimate of θ and a measure of the
uncertainty in θ, respectively.  A wide or narrow distribution represents large or small uncertainty
in the true value of θ, respectively.

4.1.3 Additional Issues

There are other issues that need to be considered when characterizing parameter uncertainty.
Parameter uncertainty gets larger with increasing scarcity of data.  However, uncertainty associated
with these data may also be relevant — uncertainty from the nonrepresentativeness of the data
sources and uncertainty in the data counts themselves.

One issue to consider is that the data are sometimes from settings that do not perfectly match the
problem of interest.  For example, suppose one situation is of interest, but the data are from
equipment with a different manufacturer or different design, or from equipment operated under
different conditions, or maintained with different practices.  It is then difficult to quantify the
relationship between the data and the problem of interest.  Engineering judgment is used, and, to
be conservative, the uncertainty distribution is often assigned a larger uncertainty than would be
called for by the data alone.

If a case can be made that the data are somewhat representative, then the situation becomes more
tractable.  One example is uncertainty of the value of a parameter for one data source (such as one
nuclear power plant (NPP)) when data are available from many similar but not identical data
sources (other NPPs).  This case can be formulated in terms of a hierarchical model and analyzed
by empirical Bayes or hierarchical Bayes methods, as discussed in Chapter 8 of the Data
Handbook.

g x dL ( / )θ θ γθ
=

− ∞∫ 2

g x d
U

( / )θ θ γ
θ

=
∞

∫ 2
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There can be uncertainty in the data counts themselves.  For example, it may be unclear whether
a particular event should be counted as a failure, or the number of demands may not be known
exactly.  A Bayesian method for dealing with uncertainty in PRA data was first proposed by Siu and
Apostolakis [Siu, 1984a; Siu, 1986a] and has been used by several authors, including Mosleh
[Mosleh, 1986a], EPRI [EPRI, 1988a], and Martz and Picard [Martz, 1995a].  As outlined by Atwood
and GentilIon [Atwood, 1996a], uncertainty in classifying the data yields a number of possible data
sets, each of which can be assigned a subjective probability.  One approach is to use an “average”
data set, a “best estimate” of the data, and analyze it.  The uncertainty in the data is ignored, lost,
at that point.  A second approach is to analyze each data set and combine the results.  Each
analysis produces a Bayesian distribution for the unknown parameter(s), and the final result is a
mixture of these distributions.  This approach includes the data uncertainty in the analysis and
results in wider uncertainty intervals than the first approach.  A third approach is to perform
sensitivity analyses using the sets of data separately to see if there are significant differences in
the results.

4.2 Propagation of Uncertainty

Guidance is provided in this section for the propagation of the uncertainties on the input parameters
through the analysis to the PRA results. 

It is necessary that the uncertainties of the parameters of the PRA basic events be expressed in
a way that allows them to be combined to estimate the uncertainty of the risk metrics of the PRA,
such as the CDF, the LERF, or some intermediate result such as the frequency of an accident
sequence.  In other words, the uncertainty in the parameters of the basic event models should be
quantified in a way that allows the uncertainty in the final risk metric to be quantified.  In this way,
the uncertainty in the parameters of these models can be propagated to the intermediate results
and to the plant-level measures of risk, such as the CDF.  Therefore, the impact of the parameter
uncertainties on these measures can be assessed in an integral manner.  Finally, the top-level
results, such as CDF and LERF, including their assessed uncertainties, can be compared against
acceptance guidelines to use these risk metrics for decision making.

As discussed in Section 4.1, each basic event probability is treated as a random variable with an
associated uncertainty (i.e., probability, distribution).  Since a risk metric such as CDF is a function
of these random variables, it is itself a random variable.  The term “propagation of uncertainty”
refers to the process of determining the distribution of a risk metric (or of another intermediate
result, such as the probability of a top event) from the individual distributions of the basic events.
This propagation is needed to provide an assessment of the uncertainty on the quantitative results
of the PRA (e.g., accident sequence frequencies, CDF).  This guidance covers the following:

• Monte Carlo — This section discusses the most fundamental approach for propagating
uncertainty — repeated quantification of the probabilistic metric of interest.

• Latin Hypercube Sampling (LHS) — This section discusses a stratified sampling technique
that tries to improve on the accuracy and precision of the Monte Carlo approach.

• Interpretation of Uncertainty of Risk Metric — This section discusses the representation and
interpretation of the uncertainty measures obtained with the above two methods.
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• State-of-Knowledge Correlation (SOKC) — This section discusses an issue for risk
calculations that, under some circumstances, can result in incorrect estimates of the mean
and uncertainty of the distribution of a risk metric.

 
4.2.1 Monte Carlo

 Monte Carlo simulation consists of making repeated quantifications of the probabilistic metric of
interest.  For each quantification or Monte Carlo run, the following steps are automatically carried
out by a computer code — (1) for each basic event model of the PRA, the probability distribution(s)
of its parameter(s) are sampled using a random number generator, (2) the basic event models of
the PRA are then evaluated using their corresponding parameters, and (3) the risk metric is
calculated using the resulting values from these models.  This procedure is repeated a
predetermined number of times, and the various outcomes of the risk metric are used to obtain
empirical estimates of the desired attributes of this metric, such as mean and variance.  

As a risk metric is evaluated using more and more Monte Carlo samples, the precision of the
empirical estimates of the distribution of this metric improves.  However, Martz et al. [LANL, 1983a]
point out that the rate of convergence to the true distribution tends to decrease as the number of
samples increases.  

A “random number seed” or simply “seed” is provided by the analyst and is the seed to start the
random number generator.  It is important to verify convergence of the simulation by demonstrating
that the results are not sensitive to the choice of seeds and increases in the number of samples.

Many computer codes have been written to perform Monte Carlo simulations.  For example, the
Reactor Safety Study [NRC, 1975a] used the code SAMPLE.  More recently, the Monte Carlo
method has been included in several codes, such as the Systems Analysis Programs for Hands-on
Integrated Reliability Evaluations (SAPHIRE) code (see, for example, NUREG/CR-6116, Vol. 1
[EG&G, 1993a]).  The online help for this code states that “...Any number of samples greater than
or equal to ten will be allowed [by the code], but a number of at least 1000 is probably a better value
for improving the reliability of the Monte Carlo results.”

The Monte Carlo method has the following advantages:

• The method offers complete flexibility in the selection of parameter distributions of the basic
event models. 

• Any specified precision of the risk metric attributes can be achieved, limited only by cost and
roundoff error. 

• The method is reasonably easy to implement. 

4.2.2 Latin Hypercube Sampling

LHS was developed to improve upon the accuracy and precision of Monte Carlo simulations in
estimating functions of multiple random variables [SNL, 1984a].  LHS is a stratified sampling
technique, where n different values are selected for each parameter of the basic event models.  The
values are selected by dividing each parameter’s probability distribution into n intervals, each of
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equal probability.  Within each interval, one value of each parameter’s probability is randomly
selected.  The probability of a basic event is evaluated using the corresponding n values of its
parameter.  The n values of this particular random variable (basic event) are then combined with
the n values of the other basic events.  The result is an n x k matrix (k is the number of sampled
basic events), where the ith row of the matrix contains specific values of each random variable to
be used in the ith run or calculation of the risk metric value.  The risk metric’s distribution and
quantiles are empirically estimated from the n runs.  

The LHS method also has been implemented in the SAPHIRE code.  The online help for this code
states that “...The LHS technique gives its best results if the number of samples is at least twice the
total number of unique (basic) events [in the PRA model].”

As mentioned in the discussion of the Monte Carlo method, the analyst should verify convergence
of the simulation by demonstrating that the result is not sensitive to the choice of seeds and
increases in the number of samples. 

LHS has the same advantages as associated with Monte Carlo methods, as well as the following
additional advantages:

• The accuracy in modeling the risk metric uncertainty is improved with respect to direct
Monte Carlo methods for the same number of samples.  In other words, LHS usually can
significantly reduce the time required for an evaluation, while obtaining similar accuracy,
because it requires less samples than Monte Carlo. 

• Use of LHS ensures that the tails of the parameter distributions are included in the
propagation of uncertainty. 

4.2.3 Interpretation of Uncertainty of Risk Metric 

This section discusses the representation and interpretation of the uncertainty measures obtained
with the above two methods.  As mentioned above, a Monte Carlo or LHS run is repeated a
predetermined number of times, n.  In this way, a sample of n random variables from the distribution
of the risk metric are obtained, that is, X1, X2, ..., Xn.  If n is large enough, the sampled values will
represent this distribution well enough to permit inference about the true distribution.  

Mathematical expectation and moments provide characteristics of distributions of random variables.
These ideas can also be used with observations from a random sample from a distribution to
provide estimates of the parameters that characterize that distribution.

A statistic is a function of one or more random variables that does not depend on any unknown
parameters.  A function of random variables that can be computed from the collected data sample
is thus a statistic.  A function of random variables is also a random variable that has its own
probability distribution and associated characteristics.

The sample mean and sample variance are calculated as follows, where X1, X2, ..., Xn denote a
random sample of size n from the distribution of the risk metric.  The sample mean is
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Equation 8

and the sample variance is 

Equation 9

Other frequently calculated statistics are the median and the 5th and 95th percentiles.  

One of the common uses of statistics is estimating the unknown parameters of the distribution from
which the sample was generated.  For example, the sample mean is used to estimate the mean of
the distribution of the risk metric.  Similarly, the sample variance, S2, is used to estimate the
variance of this distribution. 

The two most important characteristics of the distribution of the risk metric are central tendency and
dispersion.  The sample mean is a measure of central tendency of this distribution.  If this
probability distribution is interpreted as a mass distribution, the mean corresponds to the center of
gravity.  

The sample variance reflects the degree of dispersion or spread of the distribution of the risk metric,
since this variance will be zero if and only if each and every Xi has the same value.  The more the
random variables (X1, X2, ..., Xn) differ from each other and the sample mean, the larger the
variance will be.  

The 5th and 95th percentiles (0.05 and 0.95 quantiles) also provide an indication of the dispersion
or spread of the distribution of the risk metric.  These percentiles mean that there are 0.05 and 0.95
probabilities that the risk metric takes values less than or equal to x0.05 and x0.95, respectively.
Accordingly, these two percentiles may be interpreted as low and high values of the risk metric. 

Usually, a plot of the empirical uncertainty distribution of the risk metric also is obtained. 

4.2.4 State of Knowledge Correlation

In the evaluation of the PRA model to assess a risk metric or an intermediate value, such as the
frequency of an accident sequence, it is important to account for the correlation between the
estimates of the parameters of some of the basic events of the model.  Otherwise, the assessment
of the uncertainty of this metric potentially would be underestimated; in one case, ignoring this
correlation also would potentially result in an underestimation of the mean value of this metric.  This
potential underestimation is explained below.  The correlation occurs because for the same type
of basic events the state of knowledge about their probability is the same.  In other words, the
events are not independent but are related to each other.

As mentioned in Chapter 3, many of the acceptance criteria or guidelines used in regulatory
decision making, for example, the acceptance guidelines of RG 1.174, are defined such that the
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appropriate measure for comparison is the mean value of the uncertainty distribution of the
corresponding metric.  Since ignoring the SOKC may result in an underestimation of the mean
value of a risk metric, care should be exercised to account for it so that the resulting metric(s) can
be compared in a meaningful way with such criteria or guidelines. 

The SOKC stems from the fact that for nominally identical components in a given NPP, the state
of knowledge about their failure probabilities is the same, as explained below.  This correlation was
described by Apostolakis and Kaplan [Apost, 1981a], and this discussion is mainly based on their
paper. 

As described in Section 4.1, an analyst’s state of knowledge about the possible values of a
parameter θ is expressed in terms of a PDF, such as h(θ).  For a particular basic event i, its
associated PDF is denoted here by hi(θi).  This distribution represents the probability of a certain
failure mode of a class of nominally identical components (e.g., failure of motor-operated valves
(MOVs) to open).  Generic risk studies, like the Reactor Safety Study interpret hi(θi) as expressing
mainly the plant-to-plant variability of θi.  In other words, at a specific plant, θi has a specific
numerical value, which will be revealed after sufficient statistical evidence has been collected.  This
numerical value is, in general, different from one plant to another and hi(θi) quantifies the analyst’s
state of knowledge about this variability. 

Consistent with this interpretation of the generic distributions, it is natural and convenient to adopt
a model in which all components of the same type, at the same NPP, have the same PDF.
Therefore, in assessing the risk at a specific NPP, it is appropriate to group together the experience
of all the nominally identical components in that NPP.  Thus, all the failures of MOVs to open in that
NPP are aggregated into a single number.  Likewise, the total number of demands in that NPP are
aggregated.  As described in Section 4.1, this evidence (represented by x) can then be used in
Bayes’ Theorem to obtain the posterior distribution, g(θ/x), representing the updated state of
knowledge about a parameter.  

When evaluating the PRA model of an specific NPP, suppose that θ1 and θ2 represent the
parameters of two physically distinct but nominally identical MOVs.  Since this discussion assumes
that all such MOVs have the same parameter, it is necessary to set h1 = h2.  Furthermore, since the
analyst’s state of knowledge is the same for the two valves, it follows that 

h1(θ1) = h2(θ2) Equation 10

Thus, when the PRA model is evaluated to obtain attributes of a risk metric of a NPP, such as the
variance of the distribution of this metric, h1 and h2 must be regarded as being not only equal
distributions, but they also must be treated as completely dependent distributions. 

The SOKC not only applies to distributions of parameters, such as h(θ), but also to other kinds of
basic events, such as CCFs and human errors.  An example of human errors of the same type (i.e.,
that are correlated) is forgetting to return valves to their normal position after testing. 
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The mean of a minimal cut set (MCS)6 that contains basic events that are correlated is
underestimated because

E(Xn) > En(X) Equation 11

where X is a random variable corresponding to a basic event that is correlated with other basic
events in the MCS, E(Xn) is the expected value of the random variable X elevated to the nth power,
and En(X) is the nth power of the expected value of X.  

To illustrate this underestimation for n = 2, consider the simple case where two MOVs are in
parallel, represented by variables X1 and X2 that are correlated, and system failure occurs when
both fail to open.  The correct equation is

T = X2 Equation 12

where T represents system failure.  This equation expresses the fact that the failure probabilities
of the two MOVs are identical (i.e., the distributions of the failure probabilities express the same
state of knowledge).  

If X1 and X2 are incorrectly considered to be independent, the equation used for system failure
would be

T = X1 X2 Equation 13

This equation leads to an underestimation of the mean of T, as can be seen by taking the expected
value in Equations 12 and 13.  When using Equation 12,

E(T) = E(X2) = E2(X) + σ2
X Equation 14

where E2(X) is the second power of the expected value of X, and σ2
X is the variance of X. 

If Equation 13 is used,

E(T) = E(X1 X2) = E2(X) Equation 15

It can be seen by comparing Equations 14 and 15 that the mean value of the system failure (i.e.,
the expected value of this failure E(T)) is underestimated when the SOKC is ignored. 

The underestimation of the mean of an MCS that contains basic events that are correlated is
particularly significant when

E(Xn) >> En(X) Equation 16
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This condition occurs when an MCS contains more than two basic events that are correlated or
when the uncertainty (i.e., spread) of the distribution of the correlated basic events in an MCS is
large. 

This example of two MOVs in parallel also can be used to illustrate the potential underestimation
of the uncertainty as expressed by the variance of the distribution of system failure.  Considering
that the distributions of the failure probabilities of the two MOVs express the same state of
knowledge, the correct equation is

σ2
T = E(X4) - E2(X2) Equation 17

where σ2
T is the variance of T. 

If X1 and X2 are incorrectly considered to be independent, the equation used for the variance of the
distribution of system failure would be

σ2
T = E2(X2) - E4(X) Equation 18

In typical evaluations, Equation 17 yields a greater variance than Equation 18.  It is important to
note that the uncertainty of the distribution of system failure potentially will be underestimated even
if the correlated events are not in the same MCS.

Accordingly, failing to take into account the SOKC when evaluating a risk metric or an intermediate
value, such as the frequency of an accident sequence, has the following potential impacts:

• In evaluating the uncertainty of the risk metric, ignoring the SOKC will result in
underestimating the uncertainty. 

• For MCSs containing basic events that are correlated, ignoring the SOKC will underestimate
the mean of each MCS containing basic events that are correlated.  This point has
implications in generating the MCSs from the logic model of the PRA and in using the mean
values of the MCSs to estimate the mean of the intermediate results and final risk metrics,
as follows:

– Since the number of MCSs in a PRA model can be extremely large, it is common
to use a truncation value in solving the logic model of the PRA.  In this way, only
MCSs above this value are obtained, while the rest are neglected.  If the mean value
or other point estimate of an MCS is obtained without accounting for the SOKC, and
this value is used for comparison with the truncation value, some MCSs containing
basic events that are correlated may be incorrectly eliminated.

In addition, after the MCSs have been generated from the logic model of the PRA,
sometimes they are screened to identify some of them for detailed evaluation, thus
eliminating some from further consideration.  Consideration of the SOKC can be
important when screening of the MCSs is performed using their means because
some MCSs may be incorrectly eliminated. 
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– Since the means of the MCSs that are above the truncation value are combined to
estimate the mean of the risk metric, and several of these MCSs may contain basic
events that are correlated, the potential effect of underestimating the mean of these
MCSs may cause a potential cumulative underestimation of the mean of the risk
metric. 

The combined effect of incorrectly removing some MCSs (which are below the truncation value)
from the quantitative evaluation and underestimating the mean of MCSs (which are above the
truncation value) containing basic events that are correlated potentially will cause a cumulative
underestimation of the mean of the risk metric or other intermediate values. 

One approximate approach proposed in NUREG/CR-4836 [SNL, 1988a] can be used for
addressing the issues raised in the first point.  It is advisable that the practicality of this approach
be demonstrated for large scale PRAs.

In summary, failing to take into account the SOKC when evaluating a risk metric or an intermediate
value has the potential impacts of underestimating the mean and the uncertainty of the distribution
of this metric.  For the simple example above where two MOVs are in parallel, it is easy to see that
the underestimation of the mean can be significant, especially if the variance of the distribution is
large.  

It is important to determine in which cases such underestimations are significant for a large-scale
PRA.  EPRI has prepared some guidance for industry on when the analyst must account for the
SOKC.  The U.S. Nuclear Regulatory Commission (NRC) staff position on this guidance is
documented in Appendix A of this report.

4.3 Treatment of Parameter Uncertainties

Guidance is provided in this section for the treatment of parameter uncertainties in comparison of
PRA results with acceptance criteria.  After the parameter uncertainties are characterized by the
probability distributions obtained for the parameter(s) of the basic event models, and the
uncertainties are propagated to obtain the uncertainties for the intermediate and final results of the
analysis, these results, along with their uncertainties, are compared to the acceptance criteria.
Since most acceptance criteria currently are explicitly or implicitly couched in terms of the mean
values of the risk metrics, robust mean values are usually the key results from the risk analysis for
most cases. 

Several different approaches to the comparison of PRA results with acceptance guidelines have
been advocated in the past.  The comparison of these results with numerical acceptance guidelines
and alternative approaches for making the comparisons are discussed in SECY-97-221,
“Acceptance Guidelines and Consensus Standards for Use in Risk-Informed Regulation” [NRC,
1997a], and summarized in SECY-97-287, “Final Regulatory Guidance on Risk-Informed
Regulation:  Policy Issues” [NRC, 1997b].  The comparative approaches are not restricted to
parameter uncertainties but apply to any uncertainties that are characterized in terms of a
probability distribution on the value of a risk metric, where the probability associated with a
particular value represents a measure of the analyst’s degree of belief that the value is a bound on
the true value.  In SECY-97-221, three possible approaches were identified for comparison of such
distributions with acceptance guidelines.
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The first approach involves the use of the mean values of the metrics (and possibly their
increments) in the comparison with the acceptance guidelines.  The use of mean values is
conceptually simple and is consistent with classical decision making.  Furthermore, evaluation of
the mean value incorporates consideration of those uncertainties explicitly captured in the model.
However, as pointed out in SECY-97-287, the mean, as with any other single estimate derived from
a distribution, is a summary measure that does not fully take into account the information content
of the probability distribution.

The second approach involves the use of percentile measures.  Assuming the uncertainty is
characterized in terms of a probability distribution of the numerical PRA result, then an approach
would be to overlay the distribution on the value associated with the acceptance criteria (which
could be expressed as a single value or, in theory, could also be in terms of a probability
distribution) and determine at what level of confidence the criteria are met.  This would require a
policy decision concerning what level of confidence would be acceptable.  Historically, it is typical
to see assurance levels of 0.95 as being characteristic of acceptability. 

Such an approach is intuitively appealing, but as pointed out in SECY-97-221, there are several
concerns with this approach.  First, the forms of the distributions for characterizing the parameter
uncertainties are arbitrary.  In particular, the tails of the distributions are usually not the focus when
deciding on an appropriate distribution; it is the central 90 percent of the distribution that generally
receives attention.  Therefore, comparison to high percentile values involving the tails of the
distribution may be overly conservative or may give a false sense of assurance.  In addition, with
regard to the acceptable level of confidence, it is not just a question of how much of the distribution
lies above the acceptable value, but also how it is distributed.  Finally, since many of the existing
NRC guidelines, such as the Commission’s Safety Goals and their subsidiary objectives, were
meant to be compared with mean values, this option would require a reevaluation of the guidelines
themselves.

A third alternative is one where one criterion is defined for comparison to the mean value of the
distribution characterizing the uncertainty, and a companion criterion is defined for comparison with,
for example, the 95th percentile.  This approach treats the acceptance criteria not as a simple
go/no-go limit, but rather as a tolerance band.  This approach would require a change in policy to
determine the form of the acceptance criteria and in particular to establish the upper (percentile)
criteria.  Again, the mean and especially the higher percentiles are sensitive to fluctuations in the
tails of the distributions. 

As SECY -97-287 points out, from a theoretical standpoint, there is no clear advantage to choosing
any one of these approaches over the others.  They are all subject to the criticisms that the
complete distribution is not being fully used, that the form of the distributions for characterizing the
input uncertainties is to some extent arbitrary, and that both the mean and the higher percentiles
are sensitive to changes in the tails of the distributions.

The recommendation in SECY-97-287 is to address parametric uncertainty (and any explicit model
uncertainties) in the assessment using mean values to compare to acceptance criteria.  The SECY
further recommends using sensitivity studies to evaluate the impact of using alternate models for
the principal implicit model uncertainties.  To address incompleteness, the SECY advocates the use
of quantitative analyses or qualitative analyses, as necessary and as appropriate to the decision
and the acceptance guidelines.  The mean value (or other appropriate point estimate if it can be
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argued to be close enough to the mean value) is appropriate for comparing with the acceptance
guidelines. This approach has the major advantage that it is consistent with the state of the art,
since current acceptance criteria such as the Commission's Safety Goals and subsidiary objectives
were meant to be compared with mean values.   The SECY also points out that for the distributions
generated in typical PRAs, the mean values typically corresponded to the region of the 70th to 80th
percentiles, and coupled with a sensitivity analysis focused on the most important contributors to
uncertainty, can be used for effective decision making.

The form of the acceptance criteria will also play a role in determining the appropriate uncertainty
comparison.  For example, the acceptance criteria for PRA results in RG 1.174 require comparison
against the risk metrics of CDF and LERF as well as their increments.  In this example, the means
of the risk metrics and the means of their increments need to be established for comparison with
the figure of acceptable values.
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5. MODEL UNCERTAINTY

The purpose of this chapter is to provide guidance for identifying and characterizing model
uncertainties and related assumptions in a PRA and then assessing what might be their impact on
insights used to support risk-informed applications.  In particular, the chapter provides guidance on
the following:

• definition of the concepts of key model uncertainties and related key assumptions

• a process used to identify and characterize key model uncertainties and related
assumptions in PRA

 
This process comprises four major steps, as illustrated in Figure 5-1.

Figure 5-1 Process to Develop List of Key Sources of
Uncertainty and Related Assumptions

Step 1: Base PRA Sources of Model Uncertainties and Related Assumptions — Both
generic and plant-specific sources of model uncertainty and related assumptions for the
base PRA are identified and characterized.  These sources of uncertainty and related
assumptions are those that result from developing the PRA model.

Step 2: Relevant Sources of Model Uncertainties and Related Assumptions — The sources
of model uncertainty and related assumptions that are relevant to the application are
identified by performing a qualitative analysis.  This analysis is based on an
understanding of the type of application and the associated acceptance criteria.  In
addition, new sources of model uncertainty and related assumptions that may be
introduced by the application are also identified.

Step 3: Potentially Key Sources of Model Uncertainties and Related Assumptions — A
quantitative analysis of the importance of the sources of uncertainty and related
assumptions is performed.  This importance analysis identifies those sources of model
uncertainty and related assumptions that can be screened from further consideration.
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Step 4: Key Sources of Model Uncertainties and Related Assumptions — A sensitivity
analysis is performed on the retained sources of model uncertainty and related
assumptions to identify any realistic alternative modeling hypotheses.  These
hypotheses are used to identify which of the retained sources of model uncertainty and
related assumptions are key with regard to the application.

5.1 Definitions

In order to provide guidance on how to address the impact of model uncertainty and related
assumptions, it is necessary to understand what is meant by these terms.  The following definitions,
which are consistent with RG 1.200 [NRC, 2007a] and the American Society of Mechanical
Engineers (ASME) PRA standard [ASME, 2005a]7, are provided below in Table 5-1.

Table 5-1 Definitions For Model Uncertainty and
Related Assumption 

A source of model uncertainty is one that is related to an issue in which there
is no consensus approach or model and where the choice of approach or model
is known to have an effect on the PRA model (e.g., introduction of a new basic
event, changes to basic event probabilities, change in success criterion,
introduction of a new initiating event).  

A source of model uncertainty is labeled key when it could impact the PRA results
that are being used in a decision and, consequently, may influence the decision
being made.  Therefore, a key source of model uncertainty is identified in the
context of an application.  This impact would need to be significant enough that
it changes the degree to which the risk acceptance criteria are met and, therefore,
could potentially influence the decision.  For example, for an application for a
licensing basis change using the acceptance criteria in RG 1.174 [NRC, 2002a],
a source of model uncertainty or related assumption could be considered “key”
if it results in uncertainty regarding whether the result lies in Region II or Region
I, or if it results in uncertainty regarding whether the result becomes close to the
region boundary or not.
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An assumption is a decision or judgment that is made in the development of the
PRA model.  An assumption is either related to a source of model uncertainty or
is related to scope or level of detail.

An assumption related to a model uncertainty is made with the knowledge that
a different reasonable alternative assumption exists.  A reasonable alternative
assumption is one that has broad acceptance within the technical community
and for which the technical basis for consideration is at least as sound as that of
the assumption being made.

An assumption related to scope or level of detail is one that is made for
modeling convenience.

An assumption is labeled key when it may influence (i.e., have the potential to
change) the decision being made.  Therefore, a key assumption is identified in
the context of an application.

5.2 Base PRA Sources of Model Uncertainties and Related Assumptions
(Step 1)

The goal of this step is to identify and characterize those sources of uncertainty and related
assumptions in the base PRA model.  Identifying and characterizing a source of uncertainty and
related assumptions means determining how they have been addressed in developing the base
PRA model.  Once sources of uncertainty and related assumptions have been identified, they may
be evaluated against qualitative screening criteria to identify those issues that can be eliminated
from further consideration as sources of uncertainty based on the existence of some accepted
model approach, such as a consensus model for a particular issue.  

The process used to identify and characterize the sources of model uncertainty and related
assumptions is illustrated below in Figure 5-2.
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Figure 5-2 Process to Identify and Characterize the Sources
of Model Uncertainty and Related Assumptions

This process, discussed below, involves the following:

• Identification of sources of model uncertainty and related assumptions
• Characterization of sources of model uncertainty and related assumptions
• Qualitative screening of model uncertainty and related assumptions

5.2.1 Identification

The sources of model uncertainty and related assumptions that are a result of developing the PRA
model are identified.  This identification is performed by using the structure of the PRA, and more
explicitly by examining each step of the construction of the PRA to identify if it involved a model
uncertainty or related assumption as defined previously in Section 5.1.  This process provides a
systematic method of identifying the sources of model uncertainty and related assumptions.  This
process basically involves the following:

• Using the ASME PRA standard as the PRA structure, for each high-level requirement
(HLR), review each supporting requirement to determine if a model uncertainty or related
assumption is involved.  This identification is required in the ASME PRA standard.  For each
HLR, the standard requires that the sources of model uncertainty are documented.

• For completeness, a literature search review may be performed to identify potential sources
of model uncertainty or related assumptions not identified as a result of the above step.
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For this process, EPRI 1009652, “‘Guideline for the Treatment of Uncertainty in Risk-Informed
Applications’ Technical Basis Document” [EPRI, 2004a], may provide an example of an acceptable
approach as discussed in Appendix A.  Furthermore, EPRI 1009652 provides a generic list of
sources of model uncertainty and related assumptions as a result of implementing the process.
This list can serve as a starting point to identify the set of plant-specific sources of model
uncertainty and related assumptions.8

5.2.2 Characterization

The identified sources of model uncertainty and related assumptions are characterized.  This
characterization identifies the impact of the sources on the PRA model (e.g., introduction of a new
basic event, changes to basic event probabilities, change in success criteria, introduction of a new
initiating event).  Characterization of the source of model uncertainty or a related assumption is a
three step (and can be iterative), which involves identification of the following:

• part of the PRA model affected
• model used or assumption made
• impact on the PRA model

Part of the PRA Model Affected

The part of the model affected by the source of model uncertainty or a related assumption is
identified.  This identification is needed because not every application involves every aspect of the
PRA model.  Therefore, as discussed further in Step 2, if the application deals with an aspect of the
PRA model not affected by the source of model uncertainty, then the source is not relevant to the
application.

There are two ways in which the PRA model can be affected:

(1) at the basic event level
(2) in the logic structure

There are three types of basic events found in PRAs.  These events represent the following:

(1) occurrence of initiating events

(2) states of unavailability or failure of SSCs

(3) human failures that contribute to the failure of the systems designed to protect against the
undesirable consequences should an initiating event occur

Sources of model uncertainty and related assumptions may be identified with the definitions and
the methods of evaluation of each of these types of basic events.  
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There can be uncertainty associated with whether it is necessary to include specific initiating
events, whether it is necessary to include specific failure modes of SSCs, how to address the
consequences of SSC failure (e.g., digital instrumentation and control systems), the assessment
of success criteria, the need for support systems for specific missions of frontline systems, the
modeling of failures of complex pieces of equipment (e.g., RCP seals), and other issues.  As is
discussed below, the way in which these uncertainties are addressed can have an impact on
accident sequence definitions or system fault tree structures and thus affect the logic model
structure.

In addition, it needs to be noted that a source of model uncertainty or a related assumption could
have multiple impacts on the PRA model.  That is, it could impact both a basic event (or several
basic events) and the logic structure.  Furthermore, the impact on the logic structure could also
occur in either a single place or in multiple places.

Model Used or Assumption Made

At this point in the process, the model or related assumption selected for each source is identified.
Different models or different assumptions are available to address the identified source of
uncertainty.  As examples, different models have been proposed for modeling RCP seal failures
on loss of cooling, different thermohydraulic computer codes have been used to derive success
criteria, different human reliability analysis (HRA) models are used for deriving HEPs, and different
assumptions can be made with regard to equipment performance under adverse conditions.  For
all these examples, the analyst’s choice of  model or assumption will affect the PRA model.  This
effect may introduce, for example, new initiating events or accident sequences, or it could affect
the computational results.  Some examples are given below.  Each model that is available to the
analyst as a choice for any particular uncertainty issue or related assumption will uniquely impact
the PRA model.

Impact on the PRA Model

The PRA model is constructed based on the particular models used or assumptions made to
address the sources of uncertainty.  Therefore, in characterizing the impact of the source of model
uncertainty or a related assumption, it is necessary to identify how it is reflected in either the logic
structure or the basic events of the PRA model.  The existence of model uncertainty results in
uncertainty about the predictions of the PRA with respect to alternate models and assumptions, as
shown in the following examples:

• An alternate computational model may produce different initiating event frequencies, SSC
failure probabilities, or unavailabilities.

• An alternate HRA model may produce different HEPs, or introduce new human failure
events.

• An alternate assumption regarding phenomenological effects on SSC performance can
impact the credit taken for SSCs for some accident sequences.

• An alternate success criterion may lead to a redefinition of a system fault tree logic.
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• An alternate screening criteria may lead to adding or deleting initiating events, accident
sequences, or basic events.

• An alternate assumption that changes the credited frontline or support systems included in
the model may change the incremental significance of sequences.

• An alternate seal LOCA model can result in a different event tree structure, different LOCA
sizes, and different probabilities. 

For this process, EPRI 1009652 may provide an example of an acceptable approach as discussed
in Appendix A.  Furthermore, EPRI 1009652 provides a generic list of sources of model uncertainty
and related assumptions as a result of implementing the process.  This list can serve as a starting
point to identify the set of plant-specific sources of model uncertainty and related assumptions.9

5.2.3 Qualitative Screening

Once sources of model uncertainties and related assumptions have been identified and
characterized, they may be qualitatively screened to identify those that warrant and do not warrant
further consideration as potential key sources of uncertainty and related assumptions.  That is,
there may be sources or uncertainty or related assumptions that, for qualitative reasons, do not
need to be considered in the decision making process.

Qualitative criteria are developed that identify those sources of model uncertainty and related
assumptions that do not need to be pursued.  The following are two examples of qualitative
screening criteria:

(1) use of consensus models
(2) use of qualitative bounding assessments

Adopting a consensus model will remove an issue as a source of model uncertainty to be
addressed in the decision making.  With the use of a consensus model, an alternative hypothesis
need no longer be explored.  The definition of a consensus model (as defined in Section 3.3.3) is
as follows:

Consensus model:  in the most general sense, as a model that has a publicly
available published basis and has been peer reviewed and widely adopted by an
appropriate stakeholder group.  In addition, widely accepted PRA practices may be
regarded as consensus models.  Examples of the latter include the use of the
constant probability of failure on demand model for standby components and the
Poisson model for initiating events.10  For risk-informed regulatory decisions, the
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consensus model approach is one that the NRC has utilized or accepted for the
specific risk-informed application for which it is proposed.

Note that the definition given here ties the consensus model definition to a specific application.  This
is because models have limitations that may be acceptable for some uses and not for others.  
Examples of consensus models include the following:

• Poisson model for initiating events
• Bayesian analysis
• PWR RCP seal LOCA model for Westinghouse plants

There may be a de facto consensus of acceptance when certain conservative NRC licensing criteria
are used as the basis to model certain issues.  An example of such a conservative criterion is the
2–4-hour coping time for battery depletion during a loss of alternating current (ac) power event,
since it is expected that station batteries would be available for several more hours if loads were
to be successfully shed.  A model reflective of the licensee’s licensing basis is generally perceived
as incorporating the conservative attributes of the deterministic licensing criteria.  However, such
de facto models must be assessed for potential impact based on the application at hand.  For some
applications, the use of conservative criteria in one area can mask the significance of another part
of the risk picture, which might be the part that is needed for an application.

5.3 Relevant Sources of Model Uncertainties and Related Assumptions (Step 2)

The goal of this step is to identify those sources of model uncertainty and related assumptions that
are relevant to an application.  To establish which of the sources of uncertainty identified in Step 1
are relevant, it is essential to assess them in the context of the application for which the PRA results
are to be used.  That is, if the source of model uncertainty or a related assumption does not impact
the part of the PRA model relevant to the application, then it is also not relevant to the application.
Therefore, it is necessary to identify the purpose of the application and the acceptance criteria
against which the results of the risk-informed analysis will be evaluated.  This process identifies
which parts of the base PRA are relevant to the application, and therefore which of the sources of
uncertainty identified in Step 1 need to be addressed.  

For some applications, the base PRA may be modified to perform an assessment of the change
in risk given a plant change.  For these applications, the modifications themselves may introduce
new sources of model uncertainty or related assumptions.  These “new” sources of model
uncertainty and related assumptions need to be identified.

The result of Step 2 is an understanding of the type of application and its associated acceptance
criteria, and the finalized list of characterized sources of model uncertainty, including both those
identified from the base PRA in Step 1 and those sources of model uncertainty and related
assumptions that have been introduced as a consequence of modifications to or expansions of the
PRA model to account for the application.  All of these are inputs to the process for identifying those
sources of model uncertainty and related assumptions that are potentially key in terms of the
application (described in Section 5.4).  The process used to identify those sources of uncertainty
that are relevant to the application is illustrated below in Figure 5-3.
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Figure 5-3 Process to Identify Relevant Sources of Model
Uncertainty and Related Assumptions

This process, discussed below, involves the following:

• understanding the application
• performing qualitative analyses

5.3.1 Understanding the Application

To identify those sources of model uncertainty and related assumptions that are relevant to an
application, it is necessary to identify the application and its associated acceptance criteria.  Each
application has specific criteria or guidelines against which to assess PRA results to demonstrate
that the risk impact of the application is acceptable.  A source of model uncertainty or a related
assumption is relevant to the application if the acceptance criteria are challenged, and therefore
the decision may be influenced.  A source of model uncertainty or a related assumption that does
not challenge the acceptance criteria would then be considered not relevant and would not have
an influence on the decision under consideration by the application.

For example, for an application for a licensing basis change using the acceptance criteria in
RG 1.174, a source of model uncertainty or a related assumption would be considered relevant if
it results in uncertainty regarding whether the result lies in region II or region I, or if it results in
uncertainty regarding whether the result becomes close to the region boundary or not.  It is the
numerical acceptance criteria that provide the basis for identifying which sources of model
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uncertainty and related assumptions can potentially challenge the decision and, therefore, which
ones would then be identified as relevant.

The acceptance criteria for the application will include cumulative objectives, incremental
objectives, or both.  For example, an cumulative objective may be a maximum acceptable CDF, and
an incremental objective may be a maximum  change in CDF.  The specific objectives that are used
for the acceptance criteria for the application under consideration are identified.

Examples of application and acceptance criteria are listed in Table 5-2

Table 5-2 Examples of Regulatory Applications and Risk-Informed
Acceptance Criteria

Application
Category

Application [NRC, 2007d] Acceptance Criteria

Operational Uses Maintenance rule (10 CFR 50.65) TO BE IDENTIFIED (see NOTE)

Oversight
(industrywide)

Accident Sequence Precursor program 

Events assessment

Generic issue resolution

Oversight
(licensee)

Significance Determination Process (Phase 2)

Significance Determination Process (Phase 3)

Event assessment (Management Directive 8.3)

Notice of Enforcement Discretion

Mitigating System Performance Index

Licensing Changes to the licensing basis (RG 1.174) • CDF and LERF
• ΔCDF and ΔLERF

Risk-informed inservice testing (RG 1.175) TO BE IDENTIFIED (see Note)

Risk-informed technical specifications
(RG 1.177)/Exigent technical specifications

Risk-informed inservice inspection (RG 1.178)

10 CFR 50.69 SSC categorization

Technical specification initiatives (especially 4b)

10 CFR 50.46 (future)

Guidance on response to emergent conditions

License renewal/severe accident mitigation
alternatives

Advanced reactor design (10 CFR Part 52)
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10 CFR 50.36(c)(2)(ii)(D) criterion 4 (SSCs found by
a PRA to be significant to public health and safety) 

Standard Review Plan Section 18.0/NUREG-1764,
regarding the review of changes to human actions

Rulemaking 10 CFR 50.69 TO BE IDENTIFIED (see Note)

10 CFR 50.44

10 CFR 50.46

Manual actions (Appendix R related)

NOTE:
This information to be completed in conjunction with staff position on EPRI document on Treatment of
Uncertainty.

5.3.2 Performing Qualitative Analyses

In addition to the above, only those sources of model uncertainty or related assumptions that impact
the part of the PRA model associated with the application are relevant.  That is, if the application
is only concerned with, for example, the LOCA accident sequences, then those sources of model
uncertainty and related assumptions impacting the other sequences would not be considered
relevant to the application.

To perform the identification, it is necessary to identify what results from the PRA are necessary
to support the application.  Therefore, the basis or process used for determining which part(s) of
the PRA model is impacted needs to be documented.  Furthermore, it is essential that the process
examine and take into consideration the dependencies of the PRA.

Having understood what PRA results are necessary to support the application, it is straightforward
to identify those parts of the base PRA needed to assess the risk implications.  For some
applications (e.g., a simple allowed outage time (AOT) extension), the complete PRA model may
not need to be exercised.  Only those sources of uncertainty that affect the parts of the base PRA
needed to support the application need to be retained for further evaluation.

For example, when the application addresses an AOT extension for a diesel generator, only those
parts of the PRA that involve the diesel generator need be exercised, namely those sequences that
involve a loss of offsite power (LOOP).  On the other hand, an application such as the
implementation of Title 10, Section 50.69, “Risk-Informed Categorization and Treatment of
Structures, Systems, and Components for Nuclear Power Reactors,” of the Code of Federal
Regulations (10 CFR 50.69) requires the categorization of SSCs into low and high safety
significance, and since these are relative measures, such an assessment would involve the
complete PRA.
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The application either involves cumulative or incremental acceptance criteria as described above.
If the application involves cumulative criteria, then the base PRA is being used without making any
changes to the PRA.  However, if the application involves incremental criteria, then the PRA model
is being revised or modified.  This modification may introduce additional sources of model
uncertainty or related assumptions.  For example, the effect of changing certain plant conditions
or operating practices on SSC availability or reliability may need to be modeled.  An example is the
modeling of the impact of reduced special treatment of SSC reliability.  This can introduce additional
uncertainty.

For those newly identified sources of model uncertainty and related assumptions associated with
the modification of the base PRA, a qualitative screening, as discussed in Step 1, should be
performed.

5.4 Potentially Key Sources of Model Uncertainty and Related Assumptions
(Step 3)

The goal of this step it to identify sources of model uncertainty and related assumptions potentially
key to the application.  The input to this step is a list of sources of model uncertainties that are
relevant to the application (i.e., can impact the PRA model either in toto or in parts).  These sources
of model uncertainties or related assumptions may now be quantitatively screened to identify those
that have the potential to impact the results of the PRA sufficient to impact a decision regarding the
application.  This determination is made by evaluating the importance of the source of model
uncertainty or a related assumption to the acceptance criteria.  Those determined to be important
are potentially key sources of model uncertainty or related assumptions. 

As discussed in Step 2, the application involves either (1) cumulative maximum acceptance criteria
or (2) maximum incremental acceptance criteria—that is, the application involves the entire base
PRA or only portions of the base PRA model without necessitating a change to the model, or the
application involves making changes to the base PRA model.  

The process to do this is illustrated in Figure 5.4.  The details for performing the analysis are
different depending on whether the acceptance criteria are in terms of cumulative or incremental
measures of risk, as discussed in Sections 5.4.1 and 5.4.2, respectively.
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Figure 5-4 Process to Identify Potentially Key Sources of
Model Uncertainty and Related Assumptions

In the following, the approach to screening is discussed with respect to these two types of
acceptance criteria for each of the following classes:

a. sources of model uncertainty or related assumptions linked to a single basic event

b. sources of model uncertainty or related assumptions linked to multiple basic events

c. sources of model uncertainty or related assumptions linked to the logic structure of PRA
models

d. sources of model uncertainty or related assumptions linked to logical combinations

In light of the associated acceptance criteria, or each type of application and for each class, the
sources of model uncertainty or related assumptions are examined to perform the initial screening.
This screening process is discussed below.
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5.4.1 Applications Involving Cumulative Acceptance Criteria

Guidance is provided for performing screening for each of the above four cases for applications
involving a cumulative maximum acceptance criterion.

Case 1a Sources of Model Uncertainty or Related Assumptions Linked to a Single
Basic Event 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant only to a single basic event.  For each identified source of
uncertainty, an importance analysis can be used for screening.

An approach to determining the importance of the source of model uncertainty or related
assumptions is to calculate a maximum acceptable risk achievement worth (RAW) (denoted as
RAWmax) associated with the metric of interest, such as maximum allowable CDF or LERF.  The
RAW for each relevant basic event can be compared to the RAWmax associated with the maximum
acceptable CDF.  For all basic events with a RAW less than RAWmax, the associated model
uncertainty or related assumption issue cannot be key since it is not mathematically possible for
the impact of that issue to cause the result of the PRA model to be greater than the maximum
acceptable metric.  “Acceptable” must be defined within the context of the application for which the
licensee intends to use the PRA, which is the purpose of Step 2, but it would most likely be defined
in terms of a maximum acceptable risk metric, such as CDF,  incremental CDF deficit, or
incremental core damage probability.  

For the jth basic event, the definition of RAW is

Equation 1RAW
CDF
CDFj base

j base

base
,

,
=

+

Where:

RAWj is the value of RAW for basic event j as calculated in the base PRA

CDFbase is the value of the CDF mean estimate in the base PRA

CDF+
j,base is the base PRA CDF mean estimate with the basic event j set to logical

TRUE.

Thus, given that the acceptance criterion defines the maximum acceptable CDF(denoted as CDF+),
Equation 1 can be solved directly for the “maximum acceptable” RAW, RAWmax, that any basic
event can have without constituting a potential key uncertainty.  CDF+, the metric of interest in this
case, is substituted into Equation 1 in place of CDF+

j,base and the equation is solved for RAWmax.

To illustrate the concept of a maximum acceptable RAW, suppose that for a particular base PRA
the CDF is 3.0x10-5/year (yr).  Suppose further that the maximum acceptable CDF for a particular
application of the base PRA is 5.0x10-5/yr.  Hence, from Equation 1
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, therefore, Equation 2RAW
CDF
CDFbase

max =
+

RAWmax

.

.
=

×
×

−

−

50 10
30 10

5

5

RAWmax .= 17

For this example, any source of model uncertainty or a related assumption linked to a basic event
from the base PRA that has a RAW greater than 1.7 would have the mathematical potential to be
a key source of model uncertainty or a related assumption.  All such sources of model uncertainty
or related assumptions must be assessed with a realistic sensitivity analysis to determine whether
or not they constitute a key source of model uncertainty or a related assumption.  Expressed more
generally, if

Equation 3RAW RAWj base, max≤

is a true expression for the jth basic event, then the source of model uncertainty or a related
assumption linked to the jth basic event is screened from further consideration, otherwise it is a
potential key uncertainty and must be assessed with a realistic sensitivity analysis (see
Section 5.5).  It has to be remembered that the criteria or guidelines are typically not “hard” criteria,
and there may be some flexibility in their application.  However, given that the RAW measure is an
extremely sensitive measure in that it takes the failure probability to one, this is an acceptable
screening approach and may indeed be somewhat conservative for many cases.

It must be emphasized that the result in Equation 3 is relevant only for those sources of model
uncertainty and related assumptions identified in Step 1 that are linked to a particular basic event.

Case 1b Sources of Model Uncertainty or Related Assumptions Linked to Multiple
Basic Events 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant only to multiple basic events.  For each identified source of
uncertainty, an importance analysis is performed.

The RAW importance measures for several basic events cannot be used collectively to assess the
combined impact of the sources of model uncertainties or related assumptions associated with the
group of basic events.  However, the concept of setting all relevant basic events to logical TRUE
simultaneously and then reevaluating the PRA model yields the same perspective for a group of
basic events as does the RAW importance measure analysis for an individual basic event.  Hence,
by setting all basic events relevant to a source of uncertainty to logical TRUE to calculate a CDF+

j
where j represents the set of basic events relevant to the jth source of model uncertainty or related
assumption, the following equation can be evaluated:

Equation 4CDF CDFj base,
+ +≤
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If the relationship in Equation 4 is true, then the source of uncertainty is not a key uncertainty as
there is no mathematical possibility that any quantification of the values of the basic events linked
to that source of uncertainty could achieve an unacceptably high CDF.  Otherwise, the source of
uncertainty is a potential key uncertainty and must be evaluated with a realistic sensitivity analysis
(see Section 5.6).

Case 1c Sources of Model Uncertainty or Related Assumptions Linked to the Logic
Structure of the PRA Model

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant only to the logic structure of the PRA model.

 
In general, there is no straightforward method to quantitatively screen sources of model uncertainty
or related assumptions that impact the logic structure of the PRA model.  Alternative methods or
assumptions that could possibly introduce new cut sets in existing sequences by changing fault tree
models, new sequences by changing the structure of event trees, or even entirely new classes of
accident sequences by introducing new initiating events must be assessed by manipulating or
altering the PRA model to reflect these alternatives.  A new CDF can be compared to the maximum
acceptable CDF in a manner similar to that shown in Equation 4.  If the new CDF is greater than
CDF+, then the issue is potentially key and must be evaluated with a realistic sensitivity analysis
(see Section 5.6).

The above approach can involve significant resources.  However, in some cases, it may be possible
to perform an approximate bounding evaluation (see Chapter 6) that can demonstrate that the
potential impact of the alternate assumption or model will not produce a result that challenges the
decision criteria.  As an example, this demonstration can be achieved if the effect of the model
uncertainty or related assumption is limited to the later branches of the lower frequency accident
sequences, and the frequency of the portion of the sequences up until the branch points is low
enough.

Case 1d Sources of Model Uncertainty or Related Assumptions Linked to Logical
Combinations 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant to combinations of basic events and logic structure.  For these
cases, the combination may impose a synergistic impact upon the uncertainty of the PRA results.
The resulting uncertainty from their total impact may be greater than the sum of their individual
impacts.  For example, several issues could relate to the same dominant cut sets, or certain
sequences, or a particular event and the success criteria for systems on that event tree, or to the
same plant damage state.  In other words, such issues overlap each other by impacting jointly on
the same parts of the risk profile modeled in the PRA.  Thus, to accurately assess the full potential
for the impact of uncertainty, such issues also must be grouped together. 

A simple example can be found in the relationship of two models — recovery of offsite power and
recovery of failed diesel generators — to the overall uncertainty of the model.  Both models
represent the failure to restore ac power to critical plant systems through different but redundant
power sources.  Hence, the potential total impact of uncertainty associated with the function of
supplying ac power to emergency electrical buses would involve a joint assessment of the
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uncertainty associated with both models.  Another example is with regard to the interaction between
uncertainties associated with the direct current (dc) battery depletion model and those associated
with the operator actions to restore power; specifically the interrelationship between operator
performance and the performance of key electrical equipment under harsh conditions (e.g., smoke,
loss of room cooling).  How long dc batteries can remain sufficiently charged and successfully
deliver dc power to critical components relies on the shedding of nonessential electrical loads,
which is achieved through the actions of reactor operators and equipment operators who operate
eletromechanical equipment such as motor control centers and circuit breakers, as well as through
procedures and the availability of required tools (e.g., lighting, procedures, communication devices).
Uncertainty associated with these operator actions and the potential harsh environmental impacts
on both operators and equipment should be jointly assessed for a perspective on the potential total
impact of uncertainty upon the dc battery depletion model.

Furthermore, the choice of HRA method can impact the uncertainty of PRA results in several areas.
An interface exists between the human actions necessary to restore diesel generator operation
after either failing to start or run and the time to dc battery depletion.  Many diesel generators
depend on dc power for field flashing in order for successful startup.  If equipment operators fail to
successfully restore diesel generator operation before the dc batteries become depleted, then the
diesel generators cannot be restored to operation.  Hence, the potential impact of uncertainties
associated with the HEPs in the model to recover failed diesel generators and uncertainties
associated with the dc battery depletion model should be assessed together. 

In the above examples, the uncertainty issues were linked by their relationship to a given function,
namely establishing power.  However, uncertainties related to different issues can also have a
synergistic effect.  As an example, consider the case of an uncertainty associated with the modeling
of high-pressure coolant injection (HPCI) in a PRA for a boiling-water reactor.  In core damage
sequences of transient event trees, failure of the HPCI is either coupled with failure of other high-
pressure injection systems (reactor core isolation cooling (RCIC), recovery of feedwater, control
rod drive (CRD)) and failure of depressurization, or failure of other high-pressure injection systems
and failure of low-pressure injection.  The importance of HPCI is affected by the credit taken for
additional injection systems (over and above RCIC).  For example, taking credit for fire water (as
an additional low-pressure system), CRD, or recovery of feedwater (as a high-pressure system) can
lessen the importance of HPCI. 

In the LOOP/station blackout (SBO) tree, a significant function of HPCI is to provide a delay to give
time to recover the offsite power.  Therefore, the modeling of recovery of offsite power in the short
term (given that HPCI has failed), the frequency of LOOP, and the CCF probability of the diesels
and the station batteries all have an impact on the importance of HPCI.
  
HPCI importance is therefore affected by the following:

• transient frequencies

• HEP for depressurization

• credit for motor-driven feedwater pumps

• credit for alternate injection systems (e.g., fire water, service water cross-tie, CRD)
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• LOOP frequency, CCF of diesels and batteries, and the factors associated with the short-
term recovery of ac power given a LOOP

In general, uncertainties associated with any of these issues could interact synergistically to impact
the overall model uncertainty associated with the modeling of the HPCI.

Detailed guidance on grouping issues into logical groupings can be found in EPRI 1009652.  The
analyst’s judgement and insight regarding the PRA should yield numerous logical groupings specific
to the PRA in question.  Certain issues may readily fall into more than one logical grouping
depending on the nature of the other issues.

Once the various combinations have been identified, the importance analyses can be performed.

The situation wherein a logical group of sources of uncertainty is relevant to and impacts a single
basic event is similar to Case 1a.  This case lends itself to an analysis in which a maximum
mathematically possible CDF is estimated using the RAW of the relevant basic event.  The method
for Case 1a can be employed directly.

The situation wherein a logical group of sources of uncertainty is relevant to and impacts more than
one basic event is similar to Case 1b with regard to quantitative screening.  The concept of setting
all relevant basic events to logical TRUE simultaneously and then reevaluating the PRA model
yields the same perspective for a logical grouping  of sources of uncertainties as for a single source
of uncertainty that impacts several basic events.  Hence, by setting all basic events relevant to a
logical grouping of sources of uncertainty to logical TRUE to calculate a CDF+

j where j represents
the set of basic events relevant to the jth logical grouping of sources of uncertainty, Equation 4 can
be evaluated to determine if the logical grouping is potentially a key uncertainty.  If Equation 4 is
true, then the logical grouping of sources of uncertainly does not present a potential key uncertainty
as there is no mathematical possibility that the values of the basic events linked to the particular
logical grouping could achieve an unacceptably high CDF.  Otherwise, the logical grouping of
sources of uncertainty is a potential key uncertainty and must be evaluated with a realistic
sensitivity analysis (see Section 5.5).

5.4.2 Applications Involving Incremental Acceptance Criteria

In general, these types of applications (i.e., ones that involve a change to the PRA and acceptance
criteria involving maximum incremental metrics) are license amendment applications.  For example,
quantitative assessment of the risk impact in terms of changes to the CDF (or LERF)11 metric (i.e.,
ΔCDF) is used in comparison against the RG 1.174 acceptance guidelines (Figure 5-5) or
guidelines derived from those of RG 1.174.
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Figure 5-5 NRC RG 1.174 Acceptance Guidelines for CDF
and LERF

Because the criteria involve two metrics—an unacceptable range for CDF horizontally in the figures,
and an unacceptable range for ΔCDF vertically—it is necessary to assess the potential impact of
a model uncertainty issue not only with respect to CDF but to ΔCDF as well, since an acceptable
result along one axis could be offset by an unacceptable result along the other.  Hence, just as for
applications involving only the base PRA (see Section 5.5.1), one is interested in assessing the
potential impact of model uncertainty upon CDFbase, but it is also an issue that must be assessed
for its impact upon ΔCDF.  Therefore, the following metrics are of interest for applications involving
a change to the licensing basis:

CDFbase the value of the CDF mean estimate in the base PRA 

CDFafter the value of the CDF mean estimate in the modified base PRA to account
for changes proposed to the licensing basis 

CDF+
j,base the CDF mean estimate in the base PRA with the basic event j set to logical

TRUE 

CDF+
j,after the CDF mean estimate in the modified PRA with the basic event j set to

logical TRUE 

Using these four quantities, the terms ΔCDF and ΔCDF+
j are defined as follows:

Equation 5ΔCDF CDF CDFafter base= −

Equation 6ΔCDF CDF CDFj j after j base
+ + += −, ,

Equations 5 and 6 allow for the assessment of the potential vertical movement into unacceptable
regions of RG 1.174 acceptance criteria.
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Each of the following four cases, repeated from the beginning of Section 5.4, is discussed
separately below:

a. sources of model uncertainty or related assumptions linked to a single basic event

b. sources of model uncertainty or related assumptions linked to multiple basic events

c. sources of model uncertainty or related assumptions that impact the logic structure of PRA
models

d. sources of model uncertainty or related assumptions linked to logical combinations

Case 2a Sources of Model Uncertainty or Related Assumptions Linked to a Single
Basic Event 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine that which are relevant only to a single basic event.  For each identified source of
uncertainty, an importance analysis is performed.

The terms on the right-hand side of Equations 5 and 6 are readily calculable—in Equation 5 by
exercising the base PRA and the modified PRA, and in Equation 6 by recalculating the base and
modified PRAs with the value of the relevant basic event (or the jth basic event) set to logical TRUE
in both the base and modified PRAs.  Exercising the base and modified PRAs to calculate the right-
hand terms of Equations 5 and 6 and then solving Equations 5 and 6 for ΔCDF and ΔCDF+

j,
respectively, allows for the plotting of the four ordered pairs, shown in Table 5-3 against the
acceptance criteria from RG 1.174 in Figure 5-5.

Table 5-3 Ordered Pairs of CDF and ΔCDF and Comparison against
Acceptance Criteria

Ordered Pair Perspective of Comparison

(CDFbase, ΔCDF) Comparison of the mean CDF and mean ΔCDF against the acceptance
criteria.  Provides the analyst’s best judgement of the impact of the change in
risk.

(CDFbase, ΔCDF+
j) Comparison of the mean CDF and the largest shift possible in ΔCDF, as

defined with the jth basic event quantified as logical TRUE, against the
acceptance criteria.  Provides a perspective on the potential shift in the ΔCDF
value resulting from an alternate model or assumption.

(CDF+
j,base, ΔCDF) Comparison of the greatest possible shift in the base CDF, as defined with the

jjth basic event quantified as logical TRUE, and the mean ΔCDF against the
acceptance criteria.  Provides a perspective on the potential shift in the CDF
value resulting from an alternate model or assumption.
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(CDF+
j,base, ΔCDF+

j) Comparison of the greatest possible shift in the base CDF and the greatest
possible shift in the ΔCDF, as defined with the jth basic event quantified as
logical TRUE, against the acceptance criteria.  Provides a perspective on the
potential shift in both the ΔCDF and CDF value resulting from an alternate
model or assumption.

A source of uncertainty can influence a decision by moving the ordered pair into a different region
of Figure 5-5.  For those sources of uncertainty associated with the modeling of the impact of the
change associated with the application, this can only occur by changing ΔCDF.  However, sources
of uncertainty associated with the base PRA can impact both the CDF and the ΔCDF. 

If any of the four ordered pairs were to fall within (or very close to) region I, the maximum possible
impact of the model uncertainty associated with the jth basic event would be to either render the
application unacceptable or (if near the acceptance criteria) impose the need for greater regulatory
vigilance.  Similarly, if the impact of the alternate model or assumption is to move any of the
ordered pairs into region II from region III, this could also affect the decision, by, for example,
adopting a different performance monitoring strategy or adopting specific compensatory measures.
Hence, in either case, the issue is potentially key and must be assessed with a realistic uncertainty
analysis, discussed in Section 5.5. 

The significance of the ordered pairs (CDF+
j,base, ΔCDF) and (CDF+

j,base, ΔCDF+
j) is that they give

the decision maker a perspective of the combined impact of an issue on both the base PRA and
the modified PRA.  An issue that might be perceived as not influencing the decision on the basis
of where the ordered pairs (CDFbase, ΔCDF) and (CDFbase, ΔCDF+

j) lie on Figure 5-5 might be
perceived otherwise if the combined impact of the issue is factored into the decision.

Another method to assess the potential impact of a model uncertainty relevant to a single basic
event is the method of Reinert and Apostolakis [Reinert, 2006].  Reinert and Apostolakis employ
a method wherein they define the concept of a “threshold RAW” value (analogous to the use of
RAWmax in Case 1a) for basic events with regard to both CDF and ΔCDF.  Their definition of RAW
with regard to CDF is directly from standard PRA practice:

and Equation 7RAW
CDF
CDFj CDF base

j base

base
,

,
−

+

= RAW
CDF
CDFj CDF after

j after

j after
,

,

,
−

+

=

RAW with regard to ΔCDF is defined as

Equation 8RAW
CDF
CDFj CDF

j
,Δ

Δ

Δ
=

+

where ΔCDF and ΔCDF+
j are defined as in Equations 5 and 6.  Substituting Equations 5 and 6 into

Equation 8 yields:
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Equation 9RAW
CDF CDF
CDF CDFj CDF

j after j base

after base
,

, ,
Δ =

−

−

+ +

Solving the relationships in Equation 7 for the respective ΔCDF+
j and inserting the results into

Equation 9 yields

Equation 10( ) ( ) ( ) ( )
RAWj CDF

RAWj CDF after CDFafter RAWj CDF base CDFbase
CDFafter CDFbase,

, ,
Δ =

− × − − ×

−

All of the right-hand terms of Equation 10 are readily calculable, which allows the analyst to
calculate a RAW with regard to ΔCDF.  Reinert and Apotolakis use the relationships in Equations
8 and 10 to calculate threshold RAWs with regard to both CDF and  ΔCDF by selecting maximum
acceptable values for CDF and ΔCDF (which they refer to as CDFthreshold and ΔCDFthreshold,
respectively) and then substitute these threshold values for  CDF+

j,base and ΔCDF+
j in Equations 7

and 8 to yield

Equation 11RAW
CDF

CDFCDF threshold
threshold

base
, =

Δ

Equation 12RAW
CDF

CDFCDF threshold
threshold

base
, =

Δ

Equations 11 and 12 yield threshold values for the RAW with regard to the base PRA CDF defined
in Equation 7 and the RAW with regard to ΔCDF defined in Equation 10.  The base PRA model and
the modified PRA model are exercised, which yields RAWj,CDF-base values for all basic events in the
base PRA and which allows for the solving of Equation 10 to calculate RAWj,Δ CDF values.  The
resulting values for RAWj,cdf-base and RAWj,Δ CDF are compared to the threshold values calculated by
Equations 11 and 12 to determine if any model uncertainty associated with a single basic event
poses a potential key model uncertainty.

In employing the method of Reinart and Apostolakis, care should be given with regard to assessing
the potential combined impact of a model uncertainty on both CDF and ΔCDF.  This method does
not automatically investigate the potential that an acceptable impact upon CDF and an acceptable
impact upon ΔCDF could nonetheless result in an overall unacceptable result, which is the function
of the order pairs (CDF+

j,base, ΔCDF) and (CDF+
j,base, ΔCDF+

j) in the ordered pair approach discussed
above.  Reinart and Apostolakis do address this issue by selecting more than one threshold value
for CDF and ΔCDF based on the horizontal and vertical transitions between regions I and II and
between regions I and III.  

Reinert and Apostolakis provide a case study to illustrate this method.  
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Case 2b Sources of Model Uncertainty or Related Assumptions Linked to Multiple
Basic Events 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant to multiple basic events.  For each identified, an importance
analysis is performed.  An example would be the choice of model to quantify human errors and
recovery actions, or an assumption that affects the quantification of a particular failure mode of
several redundant components (e.g., stuck-open safety relief valve). 

The RAW importance measures for several basic events cannot be used collectively to assess the
combined impact of the uncertainties associated with the group of basic events.  However, the
concept of setting all relevant basic events to logical TRUE simultaneously and then reevaluating
the PRA model yields the same perspective for a group of basic events as does the RAW
importance measure for an individual basic event.  Hence, all basic events relevant to a particular
source of uncertainty are set to logical TRUE to calculate the ordered pairs in Table 5-2,  where j
would connote the set of basic events relevant to the jth source of uncertainty.  If any of the four
ordered pairs were to fall within or close to region I, the maximum possible impact of the source of
uncertainty would be to render the application unacceptable or require the implementation of
increased regulatory vigilance.  Similarly, if the impact of the alternate model or assumption is to
move any of the ordered pairs into region II from region III, this could also affect the decision, by,
for example, adopting a different performance monitoring strategy or adopting specific
compensatory measures.  Hence, in either case,  the source of uncertainty must be assessed with
a realistic uncertainty analysis. 

Case 2c Sources of Model Uncertainty or Related Assumptions Linked to the Logic
Structure of the PRA Model 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant to the logic structure of the PRA model.  For each identified, an
importance analysis is performed.

In general, there is no straightforward method to quantitatively screen sources of model uncertainty
or related assumptions that impact the logic structure of the PRA model.  Alternative methods or
assumptions that could possibly introduce new cut sets in existing sequences by changing fault tree
models, new sequences by changing the structure of event trees, or even entirely new classes of
accident sequences by introducing new initiating events must be assessed by manipulating or
altering the PRA model to reflect these alternatives.  New estimates for CDF+

j,base and CDF+
j,after can

be developed, where these terms are now defined as follows:

CDF+
j,base The base PRA CDF mean estimate where the base PRA has been modified to

address the jth source of model uncertainty or related assumption that is linked to the
logic structure of the PRA model.

CDF+
j,after The base  PRA CDF mean estimate where the PRA, as modified for the application,

has been further modified to address the jth source of model uncertainty or related
assumption that is linked to the logic structure of the PRA model.
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Using Equations 5 and 6, the analyst can calculate values for the terms of the ordered pairs in
Table 5-2 and compare the plots of those ordered pairs to the acceptance criteria shown in
Figure 5.5.  If any of the four ordered pairs were to fall within or close to region I, the maximum
possible impact of the source of uncertainty would be to render the application unacceptable or
require the implementation of increased regulatory vigilance.  Similarly, if the impact of the alternate
model or assumption is to move any of the ordered pairs into region II from region III, this could also
affect the decision, by, for example, adopting a different performance monitoring strategy or
adopting specific compensatory measures.  Hence, in either case, the source of uncertainty must
be assessed with a realistic uncertainty analysis. 

Case 2d Sources of Model Uncertainty or Related Assumptions Linked to Logical
Combinations 

The sources of model uncertainty and related assumptions identified in Step 2 are reviewed to
determine those that are relevant to combinations of basic events and logic structure.  One should
not, however, restrict oneself to a short list of generic logical groupings.  The analyst’s judgement
and insight regarding the PRA should yield numerous logical groupings specific to the PRA in
question.  Certain issues may readily fall into more than one logical grouping depending on the
nature of the other issues.  For these cases, the combination may impose a synergistic impact upon
the uncertainty of the PRA results.  Detailed guidance on grouping issues into logical groupings can
be found in EPRI 1009652.  (Refer to the discussion for Case 1d in Section 5.4.1.)

The situation wherein a logical group of sources of uncertainty is relevant to and impacts more than
one basic event is similar to Case 2b with regard to quantitative screening.  The concept of setting
all relevant basic events to logical TRUE simultaneously and then reevaluating the PRA model
yields the same perspective for a logical grouping  of sources of uncertainties as for a single source
of uncertainty that impacts several basic events.  Hence, all basic events relevant to a particular
model issue or to a logical group of issues are set to logical TRUE to calculate the ordered pairs
in Table 5-2, where j represents the set of basic events relevant to the jth logical group of model
issues.  If any of the four ordered pairs were to fall within region I, the maximum possible impact
of the uncertainty would be to render the application unacceptable.  Similarly, if the impact of the
alternate model or assumption is to move any of the ordered pairs into region II from region III, this
could also affect the decision, by, for example, adopting a different performance monitoring strategy
or adopting specific compensatory measures.  Hence, in either case, the source of model
uncertainty or a related assumption must be assessed with a realistic uncertainty analysis (see
Section 5.5). 

5.5 Key Sources of Model Uncertainty and Related Assumptions (Step 4)

The goal of this step it to identify sources of model uncertainty and related assumptions that are
key to the application.  The input to this step is a list of sources of model uncertainties that are
potentially key to the application.  These sources of model uncertainties or related assumptions
may now be further screened by performing realistic sensitivity analyses.  Those determined to
impact the results of the PRA sufficient to actually influence a decision regarding the application
are identified as key sources of model uncertainty or related assumptions.  The process to do this
screening is illustrated in Figure 5-6.
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Figure 5-6 Process to Identify Key Sources of Model
Uncertainty and Related Assumptions

This process, discussed below, involves the following:

• defining acceptable sensitivity analyses to perform realistic screening

• performing realistic screening to identify the key sources of model uncertainty and related
assumptions

5.5.1 Define and Justify Sensitivity Analysis

Defining acceptable sensitivity analyses involves developing reasonable alternatives or hypotheses
to those adopted for the base model.  However, the set of sensitivity analyses that are needed to
obtain a realistic understanding of the impact of the source of model uncertainty or related
assumption is dependent on the particular source of model uncertainty or related assumption.  To
develop the alternatives, an indepth understanding of the issues associated with the source of
model uncertainty or related assumption is needed.  What is known about the issue itself will
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essentially dictate possible alternatives to be explored.  However, previous experience from the
PRA community suggest several ideas for developing reasonable alternatives.12

One example of previous experience that would provide reasonable alternatives would be to identify
variations in the way a particular source of model uncertainty or related assumption has been
addressed in other PRA analyses, both for base PRA evaluations and for related sensitivity
analyses, and that has generally been accepted as reasonable in the literature.  One example of
a common issue that generally been accepted as reasonable in the literature is the reliability of
equipment operating after loss of room cooling for which no specific calculations exist.  An accepted
conservative model assumption is to assign a probability of failure of 1.0.  On the other hand, it may
be worthwhile to explore whether the issue of room cooling is relevant to the decision by performing
a sensitivity analysis under the assumption that room cooling is not needed. 

Another example is the use of alternate models regarding the validity of varying a parameter value
to address uncertainty that can be exercised to derive a range of reasonable values.  For example,
consider the issue of dc battery life.  If a conservative licencing-basis model has been used,
consider increasing battery life by 50 percent to represent the potential to extent battery life through
operator actions.  If a nonconservative life-extension model that credits load shedding has been
used, decrease battery life by 50 percent to reflect the possibility that equipment operators fail to
successfully perform all tasks under stressful conditions. 

It is common to use factors of, for example, 2, 5, or 10 on specific parameter values or groups of
parameter values as sensitivity analyses.  For these sensitivity analyses to be meaningful, it is
necessary to have a justification for the factors based on an understanding of the issue that results
in the uncertainty.  An alternative approach to justifying the factor is to implement a monitoring
program that would verify that the assumption of the factor is not invalidated. 

For this step of the process, EPRI 1009652 may provide examples of an acceptable approach, as
discussed in Appendix A.

5.5.2 Perform Quantitative Realistic Screening

As discussed in Step 2, the application involves either cumulative maximum acceptance criteria or
maximum incremental acceptance criteria; that is, the application involves the entire or parts of the
base PRA model without changing the model, or the application involves changes to the base PRA
model.  These acceptance criteria are applied to one of the following, repeated from the beginning
of Section 5.4:

a. sources of model uncertainty or related assumptions linked to a single basic event

b. sources of model uncertainty or related assumptions linked to multiple basic events

c. sources of model uncertainty or related assumptions that impact the logic structure of PRA
models
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d. sources of model uncertainty or related assumptions linked to logical combinations

The process by which sources of model uncertainty or related assumptions for each of the above
are quantitatively screened is discussed below.

5.5.2.1 Applications Involving Cumulative Acceptance Criteria

Guidance is provided for performing an importance analysis for each of the above four cases for
applications involving an cumulative maximum acceptance criterion.

Case 1a Sources of Model Uncertainty or Related Assumptions Linked to a Single
Basic Event 

Any basic event associated with a source of uncertainty identified in Step 3, for which the
relationship in Equation 3 (Case 1a in Step 3) is false, is a potential key uncertainty.  The issue
must be evaluated with a realistic sensitivity analysis on the basic event value.  The basic event
value that would achieve a false relationship in Equation 3 must be estimated.  If the value of the
basic event that results in a maximum acceptable CDF (CDF+) is realistic or reasonable, then the
issue is a key uncertainty because there exists at least one reasonable hypothesis regarding the
source of model uncertainty or a related assumption that could yield an unacceptably high CDF.
If the basic event value necessary to achieve a false relationship in Equation 3 is unrealistic, then
it is not reasonable to expect that the source of model uncertainty or a related assumption could
result in an undesirable risk profile, and hence it is not a key uncertainty.

Case 1b Sources of Model Uncertainty or Related Assumptions Linked to Multiple
Basic Events 

If the expression in Equation 4 (Case 1b in Step 3) is false, then the potential exists that the source
of uncertainty is a key uncertainty.  The analyst must select reasonable options for alternate models
for the particular issue.  Then for each reasonable alternate model, the base PRA must be
requantified and the relationship between the maximum acceptable CDF (CDF+) and the new CDF
estimate as expressed in Equation 4 (Case 1b in Step 3)  must be reevaluated.  The multiple results
create a range of potential base PRA results that must be compared to the acceptance criteria.  If
any of the results are unacceptable, then the issue must be considered as a key uncertainty
because at least one reasonable hypothesis exists that would result in an unacceptable result.

Case 1c Sources of Model Uncertainty or Related Assumptions  Linked to the Logic
Structure of the PRA Model

Some issues, depending on their nature as to how they impact the PRA model, may require in-
depth manipulation of the PRA models, such as restructuring of fault trees or event trees, or the
definition of new failure modes and events.  Once again, realistic uncertainty analyses for issues
should ultimately be conducted for each logic grouping in order to evaluate whether or not the
issues are key sources of uncertainty.  
 
The analyst must select reasonable options for alternate models for the particular issue.  Then for
each reasonable alternate model, the base PRA must be requantified and the relationship between
the maximum acceptable CDF (CDF+) and the new CDF estimate as expressed in Equation 4
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(Case 1b in Step 3) must be reevaluated.  The multiple results create a range of potential base PRA
results.  If any of the results are unacceptable, then the issue is a key uncertainty because at least
one reasonable model results in an unacceptable result.

Case 1d Sources of Model Uncertainty or Related Assumptions Linked to Logical
Groupings

If the expression in Equation 4 (Case 1b of Step 3) is false, then the potential exists that the logical
grouping of sources of uncertainty constitutes a key uncertainty.  The analyst must select
reasonable options for alternate models for the particular issues in the logical grouping.  Then for
each reasonable alternate model, the PRA must be requantified.  The multiple results create a
range of potential base PRA results.  If any of the results are unacceptable, then the logical
grouping must be considered as a key uncertainty because at least one reasonable model results
in an unacceptable result.

Recall the example logical grouping of issues relevant to SBO sequences (Section 5.2.1, Case 2d)
— recovery of LOOP, dc battery depletion time, HRA relevant to recovery of diesel generators, and
others.  These multiple issues impact multiple basic events.  This represents a multivariable
problem, considerably more complex than the case where a single issue impacts a single basic
event or group of basic events.

5.5.2.2 Applications Involving Incremental Acceptance Criteria

Guidance is provided for performing a sensitivity analysis for each of the four cases given in Section
5.5.2.1 for applications involving incremental maximum acceptance criteria.

Case 2a Sources of Model Uncertainty or Related Assumptions Linked to a Single
Basic Event 

Sources of uncertainty that could be related directly to a specific basic event were conservatively
evaluated in both the base PRA and the modified PRA in Case 2a of Step 3 by setting the value
of the relevant basic event to logical TRUE.  The issue must be evaluated with a realistic sensitivity
analysis on the basic event value.  The terms for the ordered pairs in Table 5-2 must be
reevaluated for any reasonable hypothesis developed for any source of model uncertainty or related
assumption linked to the jth basic event.  For any such reasonable hypothesis, if any of the ordered
pairs in Table 5-2 yields a result in or close to region I, then the source of model uncertainty or
related assumption is a key uncertainty. 

As discussed in Case 2a of Step 3, Reinert and Apostolakis provide an alternate method to test for
whether or not a source of model uncertainty or a related assumption linked to a single basic event
constitutes a potential key uncertainty.  The application of that method is continued here.  In order
to perform a realistic uncertainty analysis on model issues that can be related to specific basic
events, Reinert and Apostolakis continue to employ the concept of a threshold RAW.  The term
“threshold” RAW importance measure coined by Reinert and Apostolakis can also be thought of
as a “maximum acceptable” RAW importance measure in that it represents the largest possible
value for the RAW importance measure for which it would be mathematically impossible for the
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uncertainty associated with a particular basic event to cause an unacceptable PRA result.
Threshold values for the RAWcdf and the RAWªcdf are calculated as13

Equation 13RAW
CDF

CDFCDF threshold
threshold

base
, =

Equation 14RAW
CDF

CDFCDF threshold
threshold

Δ

Δ
Δ, =

where CDFthreshold is the value of CDF that corresponds to the vertical line between the applicable
regions in Figure 5-5, and  ΔCDF threshold is the value of  ΔCDF that corresponds to the horizontal line
between the applicable regions in Figure 5-5. 

Once the RAWcdf, threshold and the RAWªcdf, threshold have been calculated, each model issue can be
evaluated by investigating the model for the  basic events relevant to each issue.  For any particular
issue, the value for a particular relevant basic event j is adjusted and both the base PRA model and
the modified PRA are reevaluated until a result for the base PRA is found that yields one of the
following:

  Equation 15RAW RAWj CDF CDF threshold, ,≈

Equation 16RAW RAWj CDF CDF trheshold, ,Δ Δ≈

If the value of the jth basic event that corresponds to the approximation in either Equation 15 or 16
is based on a reasonable hypothesis for the basic event’s probability, then the source of uncertainty
linked to the jth basic event is a key uncertainty.  If this is the case, the sensitivity analysis should
continue so that a “reasonable” maximum  value for the jth basic event and its corresponding “high”
estimates for CDFj  and ΔCDF j  are calculated.  These values for CDFj  and ΔCDF j  will most likely
be less than the values of CDF+ j, base and ΔCDF+ j, respectively, that were calculated by setting the
value of the jth basic event to logical TRUE.  These “reasonable” high values for CDF j and ΔCDFj
will be necessary for the comparison of the risk-informed application to the RG 1.174 acceptance
criteria.  If the value of the jth basic event that yields the approximation in either Equation 15 or 16
is based on an unreasonable hypothesis, then the issue is not a key uncertainty since the
uncertainty associated with the issue could not reasonably cause a result in the PRA models that
would be within an unacceptable region in Figure 5-5.
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Case 2b Sources of Model Uncertainty or Related Assumptions Linked to Multiple
Basic Events 

If, in Case 2b of Step 3, the plot of any of the ordered pairs in Table 5-2 is not acceptable, then the
potential exists that the issue is a key uncertainty.  The analyst must select reasonable options for
alternate models or assumptions for the particular issue.  Then, for each reasonable alternate
model, the base and modified PRAs must be requantified.  The multiple results create a range of
potential base PRA and modified PRA results.  If any of the results yield values for the terms in the
ordered pairs of Table 5-2 such that the plotting of any of the ordered pairs against the acceptance
criteria of Figure 5-5 falls in or close to region I, then the issue is a key uncertainty because at lest
one reasonable model results in an unacceptable result.

Case 2c Sources of Model Uncertainty or Related Assumptions Linked to the Logic
Structure of the PRA Model

Some issues, depending on their nature as to how they impact the PRA model, may require in-
depth manipulation of the PRA models, such as restructuring of fault trees or event trees, or the
definition of new failure modes and events.  Once again, realistic uncertainty analyses for issues
should ultimately be conducted for each logic grouping in order to evaluate whether or not the
issues are key sources of uncertainty.  
 
The analyst must select reasonable options for alternate models for the particular issue.  Then, for
each reasonable alternate model, the base and modified PRAs must be requantified.  The multiple
results create a range of potential base PRA and modified PRA results.  If any of the results yield
values for the terms in the ordered pairs of Table 5-2 such that the plotting of any of the ordered
pairs against the acceptance criteria in Figure 5-5 falls in or close to region I, then the issue is a key
uncertainty because at least one reasonable model results in an unacceptable result.

Case 2d Sources of Model Uncertainty or Related Assumptions Linked to Logical
Groupings

If, in Case 2d of Step 3, the plot of any of the ordered pairs in Table 5-2 is not acceptable, then the
potential exists that the issue is a key uncertainty.  The analyst must select reasonable options for
alternate models for the particular issue.  Then, for each reasonable alternate model, the base and
modified PRAs must be requantified.  The multiple results create a range of potential base PRA and
modified PRA results.  If any of the results yield values for the terms in the ordered pairs of Table
5-2 such that the plotting of any of the ordered pairs against the acceptance criteria of Figure 5-5
falls in or close to region I, then the issue is a key uncertainty because at least one reasonable
model results in an unacceptable result.
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6. COMPLETENESS UNCERTAINTY

The purpose of this chapter is to provide guidance on addressing one aspect of completeness
uncertainty — incomplete PRA scope or incomplete PRA level of detail.  This chapter provides
guidance on the use of conservative or bounding analyses to address missing items.  The types
of bounding approaches  that can be utilized in these efforts are identified and guidance is provided
on their use.

As indicated in Chapter 2, a risk-informed decision making process integrates insights from
deterministic and risk analyses along with considerations of defense in depth and safety margins.
Generally, what is used as the risk input to decision making are the quantitative risk results from
PRAs (e.g., CDF).  Depending on the decision, the needed PRA scope and level of detail can vary.
Furthermore, an existing PRA may not always match the scope or contain the level of detail
required for a specific risk-informed decision.  For example, the PRA may not include analysis of
accidents during low-power and shutdown (LPSD) modes of operation, specific initiating events
such as seismic events, specific accident sequences such as those resulting from an anticipated
transient without scram, or some component failure modes (e.g., spurious component operation or
pipe ruptures).  For such a situation, a licensee will have the following four options:

(1) upgrade the PRA to address the required scope or level of detail

(2) use bounding analyses to address the scope and level of detail not included in the PRA
model

(3) use a bounding analysis to demonstrate that the missing scope items are not significant to
the decision 

(4) modify the application such that the missing scope or level of detail is not affecting the
decision

The approach in the second and third options, namely the use of bounding analyses, is the subject
of this chapter.  The guidance for use of bounding analyses, as described below, includes the
following:

• Determining the Required Scope of an Application — This section discusses the process
for assessing the application in terms of identifying the PRA scope and level of detail
required to support the risk-informed application.

• Defining the Types of Bounding Analyses — This section discusses the types of bounding
analyses that can be used to supplement the PRA when it does not contain the required
scope and level of detail needed to support the risk-informed application.

• Selecting and Using Bounding Approaches — This section provides guidance with
examples on how to use different types of bounding analyses in an application to address
missing PRA scope items.
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operability; and changes in decay heat load or plant conditions that allow new success criteria) are
examined to identify those relevant to defining POSs.  These characteristics are used to define the states,
and the fraction of time spent in each state is estimated using plant-specific information.
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6.1 Determining the Required Scope of an Application

Guidance is provided in this section for assessing the application in terms of identifying the PRA
scope and level of detail required to support the risk-informed application.  As discussed in
Chapter 3, the scope of the PRA is defined in terms of the following:

• the metrics used to evaluate risk

• the POSs for which the risk is to be evaluated

• the types of initiating events that can potentially challenge and disrupt the normal operation
of the plant and, if not prevented or mitigated, would eventually result in core damage, a
release, and/or health effects

The level of detail of a PRA is defined in terms of the degree to which the logic models are
discretized and plant representation is modeled.

Sections 3.2.3 and 3.2.4 provide detailed discussions on PRA scope and level of detail,
respectively.  The required PRA scope and required PRA level of detail is determined by the
application.  The application is reviewed to determine the needed scope and level of detail.  Once
this determination is established, the PRA model is then reviewed to determine if it has the needed
scope and level of detailed defined by the application.

PRA Scope

Three decisions are made by the analyst — what risk characterization, what POS, and what
initiating events need to be addressed by the PRA.

The risk metrics relevant to the application are defined by the acceptance criteria.  For example,
for a licensing-basis change, RG 1.174 [NRC, 2002a] defines the risk metrics as CDF, LERF,
ΔCDF, and ΔLERF.  Therefore, if the acceptance criteria use CDF, LERF, ΔCDF, and ΔLERF, then
the PRA scope must also address these.

The POSs to be considered are determined by the impact of the application.  The various operating
states include full power, low power, and shutdown.14  Not every application will necessarily impact
every operating state.  In deciding this aspect of the required scope, the SSCs affected by the
application are identified.  This step includes a determination of the cause-and-effect relationships
between the proposed plant application and its impact on the SSCs.  It is then determined if the
affected SSCs are required to prevent or mitigate accidents in the different POSs and if the impact
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of the proposed plant change would impact the prevention and mitigation capability of the SSC in
those POSs.  A plant change could affect the potential for an accident initiator in one or more POSs
or reduce the reliability of a component or system that is unique to a POS or required in multiple
POSs.  Once the cause-and effect-relationship on POSs is identified, the PRA model is reviewed
to determine if it has the scope needed to reflect the effect of the application on plant risk.

The types of initiating events to be considered are also determined by the impact of the application.
The types of initiating events include internal events, internal fire, and external events.15  In deciding
this aspect of the required scope, the process is similar to that described above for POSs.  The
SSCs affected by the application are determined, and the resulting cause-and-effect relationships
are identified.  It is then determined if the affected SSCs are required to prevent or mitigate both
internal and external events and if the proposed plant change would affect that capability.  The
impact of the proposed plant change on the SSCs could include the introduction of new accident
initiating events, affect the frequency of initiators, or affect the reliability of mitigating systems
required to respond to multiple initiators.  Once the cause-and-effect relationship on the accident-
initiating events is identified, the PRA model is reviewed to determine if it has the scope needed
to reflect the effect of the application on plant risk.

For example, consider an application that involves a licensing-basis change where a seismically
qualified component is being replaced with a nonqualified component.  If the new component’s
reliability for responding to nonseismic events is not changed, the nonseismic part of the PRA is
not impacted and only the seismic risk need be considered; that is, the other contributors to the risk
(e.g., fire) are not needed for this application.  If, on the other hand, the reliability of the new
component is different for responding to nonseismic events, the nonseismic part of the PRA may
be impacted and, therefore, must be included in the scope.

PRA Level of Detail

The minimum level of detail for a base PRA, independent of an application, is determined by the
requirements of the ASME standard [ASME, 2005a].  However, it is recognized that the detail
specified by the technical requirements may not be needed for a given application, while, in other
cases, the minimum level of detail may not be sufficient.  The level of detail needed is that detail
required to capture the effect of the application.  That is, the PRA model needs to be of sufficient
detail so that the impact of the application can be assessed.

This determination is generally accomplished by considering the cause-and-effect relationship
between the application and its impact on the plant risk.  A proposed application can impact one
or more PRA technical elements.  Examples of potential impacts include the following:

• introduces a new initiating event or requires modification of an initiating event group

• changes a system success criterion
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• requires the addition of new accident sequences

• requires additional failure modes of SSCs

• alters system reliability or changes system dependencies

• requires modification of parameter probabilities  

• introduces a new CCF mechanism

• eliminates, adds, or modifies a human action

• changes important results used in other applications, such as importance measures

• changes the potential for containment bypass or failure modes leading to a large early
release

• changes the SSCs required to mitigate external hazards such as seismic events

• changes the reliability of systems used during LPSD modes of operation

Once the potential impacts are identified, the PRA model is reviewed to determine if its level of
detail is sufficient to assess the impact.

Insufficient Scope or Level of Detail

The Commission has directed that, if a PRA standard for a specific scope item is available and has
been endorsed by the staff, then the PRA used to support a risk-informed application should be
performed against that standard. [NRC, 2003e]  That is, if the missing scope or missing level of
detail is addressed by a standard, the PRA should be upgraded according to the standard.
However, for a given application, if it can be demonstrated that the missing scope or missing of
level of detail does not impact the risk, the PRA does not need to be upgraded.  In this situation,
it is acceptable to use a bounding analysis to demonstrate that the missing scope or the missing
level of detail is not a contributor to risk.  If a standard does not exist to address the missing scope
or the standard does not address the missing level of detail, then a bounding analysis can be used
to bound the risk contribution instead of upgrading the PRA.

6.2 Defining the Types of Bounding Analyses

Guidance is provided in this section for defining the characteristics of the different types of bounding
analyses used for the missing scope and level of detail in the PRA model.  There are different
circumstances when use of a bounding analysis is acceptable:

• to screen the risk contribution from further consideration in the risk estimate
• to bound the risk contribution for consideration in the risk estimate
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In the first situation, a bounding analysis is used to demonstrate that the risk from the missing
scope (or level of detail) is not a contributor.  In the second situation, a bounding analysis is used
in lieu of a PRA to estimate the risk contribution from the missing scope (or the missing level of
detail).

In developing the guidance for a bounding analysis, the first question that needs to be addressed
is “what is a bounding analysis” and then “what makes the bounding analysis acceptable?”

A bounding analysis, in the context of a missing scope item, in general, is one that captures the
worst credible outcome of a set of outcomes that result from the event (or hazard) being assessed.
The event (or hazard) being assessed is the risk contributor missing from the PRA (e.g., the risk
from LPSD accidents, the risk from internal fire events).  The worst outcome is the one that is the
most challenging to the defined risk metric.  Furthermore, a bounding analysis should be bounding
both in terms of the potential outcome and the likelihood of that outcome.  Consequently, a
bounding analysis in general considers both frequency of the event and outcome of the event.

This definition is consistent with, but more inclusive than, that provided in the ASME/American
Nuclear Society (ANS) standard16, which defines a bounding analysis as “Analysis that uses
assumptions such that the assessed outcome will meet or exceed the maximum severity of all
credible outcomes.”  The same definition can, in principle, be applied to a missing level of detail
item.

How the above definition is applied is dependent on whether a bounding analysis is to bound the
risk or to screen the item as a potential contributor to risk.  If a bounding analysis is being used to
bound the risk (i.e., determine the magnitude of the risk of an event), then both its frequency and
outcome are considered.  However, if a bounding analysis is being used to screen the event
(i.e., demonstrate that the risk from the event does not contribute), then it can be screened on
frequency, outcome, or both, depending on the specific event.

Given the above discussion on what constitutes a bounding analysis, it needs to be determined
what makes the bounding analysis acceptable.  The criteria for acceptability of a bounding analysis
are related to the type of event being bound or screened.  The bounding assumptions made by the
analyst will be specific to the event under consideration.  Nonetheless, each bounding analysis
needs to address the following to be acceptable:  

• Completeness of Potential Impacts and Their Effects
• Frequency
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Completeness of Potential Impacts and Their Effects — 

The spectrum of potential impacts of the missing item and the effects on the evaluation of risk has
been addressed such that impacts or effects that could lead to a more severe credible outcome
have not been overlooked.

For potential events, the full spectrum should be addressed such that impacts are not overlooked
that could have a worse credible outcome.  That is, the potential impacts that could contribute have
been identified and considered.  Given this identification and consideration, there would be little
likelihood that an event with a more severe outcome was overlooked.

For example, suppose that the PRA did not initially address LOCAs.  If  a bounding analysis were
to be used to address LOCAs, the full spectrum of break sizes would need to be considered.  If the
spectrum only included break sizes from 8 inches to 24 inches, the bounding analysis would not
be bounding since the break sizes not considered (e.g., greater than 24 inches) could have a more
severe outcome.

For potential effects, the different effects (e.g., accident progression) resulting from the events have
been addressed such that a more severe credible outcome has not been overlooked.  That is, the
different accident progressions have been identified and understood to the extent that a different,
more severe credible outcome is unlikely.

Frequency — 

The frequency used in the bounding analysis should be greater than, or equal to, the maximum
credible collective frequency of the spectrum of impacts analyzed.

6.3 Selecting and Using Bounding Approaches

Although there are general characteristics of an acceptable bounding analysis, as provided above,
acceptability of a bounding analysis is also dependent on the type of event being bound or
screened.  That is, the bounding assumptions made by the analyst will be specific to the event
under consideration.  This dependency is illustrated in the examples of various applications of
bounding analyses discussed below.  First, examples of bounding analyses used to screen risk
contributions from further consideration are presented (Section 6.3.1), then some examples of
analyses used to bound the risk contribution to be included in the risk estimate are illustrated
(Section 6.3.2).

6.3.1 Examples of Screening of Risk Contributors

The general process for the screening of missing PRA scope items is a progressive process that
can involve different levels of qualitative and/or quantitative screening.  In general, qualitative
screening is performed prior to any quantitative screening analysis.  Qualitative screening generally
involves an argument that the missing scope cannot impact plant risk or is not important to the
change in risk (i.e., CDF or LERF) associated with the proposed plant modification.  An example
of the former is that the potential for specific external events can be eliminated for many plant sites.
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An example of the latter is that changing an at-power technical specification does not impact LPSD
risk.  Quantitative risk screening involves a conservative estimate of the risk or change in risk from
the proposed plant modification related to a missing scope item.  Examples of this include analyses
that show that a missing initiating event has a low frequency or analyses that indicate that a plant
change does not significantly change the unavailability of a system.

Both qualitative and quantitative approaches can utilize conservative deterministic analyses to
support the screening process.  An example of a deterministic analysis in qualitative screening is
the use of a conservative thermal-hydraulic evaluation that shows that the conditions for a
phenomenon such as pressurized thermal shock cannot occur for a given scenario, eliminating the
need to include vessel rupture in the risk evaluation.  The performance of a structural analysis that
indicates that a building cannot be damaged by an external hazard such as an explosion is another
example.

An example of a deterministic analysis supporting a quantitative screening process is  provided in
the quantitative fire compartment screening process documented in NUREG/CR-6850,
“EPRI/NRC-RES Fire PRA Methodology for Nuclear Power Facilities,” [EPRI, 2005b] where
conservative fire modeling analyses are used to identify fire sources that can potentially cause
damage to important equipment.  This analysis allows for eliminating fire sources that cannot cause
damage, thus reducing the fire frequency for compartments that is used in the quantitative
screening process.

Qualitative and quantitative arguments for screening missing scope items are based on the
application of appropriate screening criteria.  Recommended screening criteria for eliminating items
from the scope of a base PRA are provided in the available ASME PRA standard [ASME, 2005a]
and ANS external events  PRA standard [ANS, 2007a] and in the LPSD and fire PRA standards that
are currently in development.  These screening criteria are applicable for PRAs, subject to their
endorsement or clarification as provided in RG 1.200 [NRC, 2007a].  In addition, screening criteria
in NRC guidance documents can also be utilized.  An example of this is the screening criteria
specified in the joint EPRI/NRC fire PRA methodology. 

The screening process performed for a base PRA must be reviewed for a risk-informed application
to verify that the screening is still appropriate.  This can be accomplished by confirming that the
proposed plant modification or operational change does not change the reason for the screening
in the base PRA.  The cause-and-effect relationship that is used to establish the impact of the
proposed change on SSCs and the required scope of the required PRA will provide the information
necessary to accomplish this review.  The cause-and-effect determination can also be utilized for
qualitative screening of missing scope items.  In this case, if there is no identified effect on missing
scope items, then there will be no change in the risk parameters used to evaluate the plant change.
However, if there is an identified effect, then either a screening or a detailed quantitative analysis
must be performed to determine the impact on the required risk parameter.  
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6.3.1.1 Qualitative Screening

Qualitative screening is utilized in many facets of establishing a base PRA.  It involves the
application of approved screening criteria such as those specified in PRA standards and guidance
documents to eliminate potential risk contributors from the PRA.  Since the performance of a base
PRA is a potential application, these screening criteria are applicable to those applications.
Furthermore, as previously indicated, the screening process used in the base PRA must be
reviewed for applicability following a proposed plant change.  Some examples of these criteria are
provided below to illustrate the general nature of the qualitative screening criteria that can be
utilized.

The primary application of qualitative screening criteria is in the analysis of spatially related initiators
such as internal fire and flooding and external events.  For example, in internal fire and flood
analyses, compartments can be eliminated from analysis if they contain no equipment that can
cause a plant trip (manual or automatic) or require the need for an immediate plant shutdown and
no SSCs required to mitigate the event are located in the area.  Variations of these criteria exist and
in some cases require the performance of a deterministic analysis.  For example, the requirements
for internal flood areas provided in the ASME PRA standard also allow screening of flood areas if
no plant trip or shutdown will occur AND if the flood area has flood mitigation equipment such as
drains capable of preventing flood levels from causing damage to equipment.  A deterministic
analysis would be required in this case to show that the drains are sufficient in size to prevent the
water level from all flood sources from rising to a level that would result in equipment or structure
damage.

Qualitative screening can also be accomplished by considering whether there is a hazard source
in an area and if there is a potential for propagation.  For example, a flood area could also be
screened from consideration if there are no identified flood sources in the area and if floods from
other areas cannot propagate to the area.

External event risk analysis typically begins with a screening process to eliminate events that are
not possible at a plant or that can be combined with other events.  Although the list of possible
external events is large (see appendix ANS External Events PRA standard), most are typically
screened from analysis in PRAs.  External events included in most PRAs include both natural and
manmade events.  Natural external events typically include earthquakes, high winds and tornados,
and external flooding.  Manmade external events are evaluated less frequently, but the most typical
events analyzed include airplane crashes, explosions at nearby facilities, and impacts from nearby
transportation activities.

The ANS External Events PRA standard has endorsed the following set of five external event
screening criteria:

(1) The event would result in equal or lesser damage than the events for which the plant has
been designed.  This requires an evaluation of plant design bases in order to estimate the
resistance of plant structures and systems to a particular external event.
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(2) The event has a significantly lower mean frequency of occurrence than another event,
taking into account the uncertainties in the estimates of both frequencies, and the event
could not result in worse consequences than the other event.

(3) The event cannot occur close enough to the plant to affect it.  Application of this criterion
must take into account the range of magnitudes of the event for the recurrence frequencies
of  interest.

(4) The event is included in the definition of another event.

(5) The event is slow in developing, and it can be demonstrated that there is sufficient time to
eliminate the source of the threat or to provide an adequate response.

Most external events are screened from further consideration based on Criteria 1 and 4.  In general,
the following external events must be considered further in a risk assessment:

• aircraft impacts
• external flooding
• extreme winds and tornados (including generated missiles)
• external fires
• accidents from nearby facilities
• internal fires
• internal flooding
• pipeline accidents (e.g., natural gas)
• release of chemicals stored at the site
• seismic events
• transportation accidents
• turbine-generated missiles

The ASME/ANS PRA standard also indicates that a secondary external event screening step can
be performed, which allows that if the current as-built and as-operated plant conforms to the design-
basis requirements for an external event in the 1975 Standard Review Plan (SRP) [NRC, 1975b],
then that event can be screened from further analysis.  This criterion was accepted by the NRC for
use in the individual plant examination of external events based on the judgment that the
contribution to core damage from an external event that meets the criteria in the SRP would be less
than10-6/yr.  It is noted that the SRP requires analysis of certain design-basis events that have
frequencies between 10-7/yr and 10-6/yr.  However, this criterion should not be used for screening
seismic events, and seismic events were explicitly excluded in NUREG-1407 [NRC, 1991a] and
from the ANS External Events PRA standard from being screened in such a manner.  

Even for nonseismic events, the analyst should use caution in applying the above criterion.  One
of the pitfalls in using the SRP criterion is that emphasis is placed on comparisons of event lists with
the design bases of the safety-related systems and structures.  However, PRAs have shown that
there are important risk contributions from nonsafety-related systems, and their capacities are
generally not evaluated.  More importantly, there is also the possibility that the magnitude of an
external event may exceed the plant design basis.  In fact, if the exceedence frequency for the
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external event is relatively flat around the design-basis magnitude, then the contribution from larger
magnitude events could be important.  In addition, a significant risk contribution from lower
magnitude events is also possible if the susceptibility of the plant to damage (fragility) is also
relatively insensitive to the magnitude of the event.  In order to provide a convincing case that an
external event can be excluded based on the SRP screening criterion, it may be necessary to
perform some bounding estimates of the risk for both lower and higher magnitude events.

Qualitative screening criteria are also used in the evaluation of internal events but to a lesser
extent.  For example, a random initiator such as a loss of heating, ventilation, and air conditioning
can be screened if the event does not require the plant to go to shutdown conditions until sufficient
time has expired, during which the initiating event conditions can be detected and corrected before
normal plant operation is terminated (either automatically or administratively in response to a
limiting condition of operation).  Deterministic analyses would be required to utilize this criterion.

Qualitative screening is also performed in the evaluation of preaccident human errors to restore
equipment following test and maintenance.  In this case, factors such as automatic realignment of
equipment on demand, the performance of postmaintenance tests that would reveal misalignment,
position indicators in the control room, and frequent equipment status checks all can be used as
justification for screening out preaccident human errors.  However, there is an implied probabilistic
(quantitative) argument associated with such screening.

For a risk-informed application, the screening process performed for a base PRA must be reviewed
to verify that the screening is still appropriate.  As mentioned previously, this can be accomplished
by confirming that the proposed plant modification or operational change does not change the
reason for the screening in the base PRA.  In addition, missing scope items can also be
quantitatively screened.  The cause-and-effect relationship that is used to establish the impact of
the proposed change on SSCs and the required scope of the required PRA will provide the
information necessary to accomplish both reviews.  If there is no identified effect on missing scope
items, then there will be no change in the risk parameters used to evaluate the plant change.
However, if there is an identified effect, then either a screening or a detailed quantitative analysis
must be performed to determine the impact on the required risk parameter.

6.3.1.2 Quantitative Screening

Quantitative screening is utilized in most of the technical elements that comprise a base PRA.  It
involves the application of approved screening criteria such as those specified in PRA standards
and guidance documents to eliminate potential risk contributors from the base PRA.  The screening
criteria are developed and must be correctly utilized to ensure that the screening process does not
eliminate elements of a PRA model that can provide a significant contribution to the risk estimate.
These screening criteria are also applicable for use in risk-informed applications and can be used
for screening missing scope items.

Quantitative screening criteria can be either purely quantitative or incorporate both quantitative and
qualitative components.  They can include consideration of the individual contribution of a screened
item and the cumulative contribution of all screened items.  Special consideration is generally given
to those items that can result in containment bypass.  Some of the criteria also use comparative
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information as a basis for screening (e.g., an item whose contribution is significantly less than the
contribution from another item can be screened).  Some examples of these criteria are provided
below to illustrate the general nature of the quantitative screening criteria that can be utilized:

• Initiating events can be screened if their frequency is less than 10-7/yr as long as the event
does not include a high consequence event such as an interfacing system LOCA,
containment bypass, or reactor vessel rupture.  Alternatively, initiating events can be
screened if their frequency is less than 10-6/yr and core damage could not occur unless two
trains of mitigating systems are failed independent of the initiator. [ASME, 2005a]

• A component may be excluded from a system model if the total failure probability of all the
component failure modes resulting in the same effect on system operation is at least two
orders of magnitude lower than the highest failure probability of other components in the
same system resulting in the same effect on system operation.  A component failure mode
can be excluded from the system model if its contribution to the total failure probability is
less than 1 percent of the total failure probability for the component, when the effect on
system operation of the excluded failure mode does not differ from the effects of the
included failure modes.  However, if a component is shared among different systems (e.g.,
a common suction pipe feeding two separate systems), then these screening criteria do not
apply. [ASME, 2005a]

• An internal flood initiating event can be screened if it affects only components in a single
system and if it can be shown that the product of the flood frequency and the probability of
SSC failures given the flood is two orders of magnitude lower than the product of the
nonflooding frequency for the corresponding initiating events in the PRA and the random
(nonflood induced) failure probability of the same SSCs that are assumed failed by the
flood. [ASME, 2005a]

• A flood area can be screened if the product of the sum of the frequencies of the flood
scenarios for the area and the bounding conditional core damage probability is less than
10-9/yr.  [ASME, 2005a]

• A fire compartment can be screened if the CDF is less than 10-7/yr and LERF is less than
10-8/yr.  The cumulative risk from the screened fire compartments should be less than
10 percent of the total internal events risk. [EPRI, 2005b]

The ANS external events PRA standard provides guidance for probabilistic analyses of seismic,
high-wind, and external flooding events.  A set of screening criteria is provided for eliminating
external event initiators, component failures, and accident sequences.  For example, an initiating
event can be screened out if any of the following applies:

• The event meets the criteria in the NRC’s 1975 SRP (or a later revision).

• It can be shown using a demonstrably conservative analysis (i.e., bounding analysis) that
the mean value of the frequency of the design-basis hazard used in the plant design is less
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than approximately 10-5/yr and that the conditional core damage probability is less than 0.1,
given the occurrence of the design-basis-hazard event.

• It can be shown using a demonstrably conservative (i.e., bounding) analysis that the CDF
is less than 10-6/yr.

As noted previously, since a proposed plant change can change the basis for screening, the
screening process used in the base PRA must be reviewed for applicability following a proposed
plant change.  In addition, the type of screening criteria identified above can be used in conjunction
with bounding risk evaluations to eliminate items missing from the scope of a PRA required to
support a risk-informed application.

One quantitative method consists of a progressive screening approach that is performed using the
PRA technical elements as a guide.  The screening process begins with screening out initiating
events with sufficiently low frequencies and proceeds to screening specific sequences if necessary.

Screening of LPSD conditions is done on a POS level.  A quantitative screening approach that can
be used to screen certain specified shutdown POSs from requiring further quantitative risk
assessment (in the context of a specified application) is based on demonstrating that the risk for
these POSs is lower than some predetermined limiting value.  The POSs that may be screened by
this approach involve only the POSs in which a plant is shut down; this approach does not address
POSs involving low-power operation or power transition (i.e., only POSs that span cold shutdown
or refueling as defined by a plant’s technical specifications).  This approach performs a qualitative
comparison of the plant systems and configurations being examined with reference plant systems
and configurations.  If sufficient similarity exists, then bounding numerical risk metric results (e.g.,
CDF) can be determined.  If sufficient similarity does not exist, the method cannot be used.  The
basis for the numerical results is expected to ensure that the actual numerical value for the plant
being examined is equal to (or less than) the bounding results.  If the bounding result is above a
specified screening value, the POS cannot be screened.

Quantitative screening can be used to either obtain an approximation of the appropriate risk metric
(e.g., CDF or LERF) for a POS or to eliminate initiating events within a POS.  There are two ways
by which an initiating event may be eliminated:

(1) elimination based on frequency times the fraction of time in a POS
(2) elimination based on the amount of time before core damage begins

An initiating event may be eliminated from further consideration if the product of its frequency times
the fraction of time a POS occurs (per year) is less than a specified screening value (e.g., 10-8/yr).
To be considered for elimination, the initiating event must not lead directly to a bypass of the
containment (e.g., steam generator tube rupture).

An initiating event may also be eliminated if the time to core damage is greater than a specified time
period (e.g., 24 hours) and the initiating event does not necessarily preclude or hamper potential
recovery actions (e.g., a large seismic event might be expected to hamper potential offsite recovery
actions).
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6.3.2 Examples of Bounding Risk Contributors

A bounding risk method can involve  a simplified risk assessment where the failure probabilities of
available SSCs are conservatively estimated and combined with the (conservative estimate of the)
initiating event frequency.  The bounding estimation of the SSC failure probability can be based on
bounding the known information (e.g., based on the failure probability of other similar SSCs or
generic information), based on a bounding detailed analysis (e.g., by generating a fault tree for a
system), or by a bounding deterministic analysis (structural evaluation of a structure).  It is critical
in this process that the simplified bounding analysis reflect the as-built and as-operated plant and
include all dependencies.  However, care must be taken to ensure that the bounding results do not
mask important risk contributors.

The evaluation of an external event can be bounded using a hazard analysis and some bounding
assessment of the plant damage and consequences.  The effects of the external event can be
evaluated conservatively using upper bound assumptions.  For example, the maximum magnitude
of a gas explosion could be used to determine the overpressure that would be applied to structures,
the potential for missile generation, and the magnitude of a fire.  The effects of the event on
accident initiators and mitigating systems can also be bounded.  For example, all systems in a
building could be assumed damaged by an aircraft impact that is conservatively assessed to result
in building damage.

Specific guidance for performing bounding assessments of external events is provided in
NUREG/CR-4832 [SNL, 1992a] and NUREG/CR-4839 [SNL, 1992b].  This guidance was utilized
in the risk methodology integration and evaluation program study and is valid for use in
risk-informed applications.  It addresses aircraft crashes, high winds and tornados, transportation
accidents, turbine-generated missiles, accidents at nearby facilities, and external flooding.  The
guidance can be used to establish the baseline risk from these external events and to determine
the risk from a proposed risk-informed change to the design or operation of the plant

PRAs typically combine similar initiating events into groups for evaluation.  For example, a small
LOCA could be conservatively modeled as a large LOCA if the system success criteria for the large
LOCA are more limiting than the small LOCA.  However, the following other factors must be
considered besides the system success criteria to ensure that the resulting risk estimate is
conservative:

• The impact of the initiating event on the SSCs must be included in the analysis. 

• The success criteria for systems must be more restrictive during all phases of an accident.

• Mitigating system requirements (i.e., support systems) and dependencies for the
unanalyzed event should be bounded by the event analyzed.

• The timing of the accident sequences and the impact on the operator actions must be
bounded.
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• Phenomenological conditions created by the missing accident must be included in the
analysis.

• The potential for a large, early release is bounded by the analysis.

It may be possible to estimate the risk associated with certain LPSD POSs with a bounding
analysis.  These POSs include those for which the technical specifications are unchanged from
power operation.  If the technical specifications for a POS are the same as those at power, the CDF
or LERF may be approximated by simply multiplying the fraction of time (per year) spent in the POS
by the appropriate risk metric determined by the at-power PRA.  This approach can be used as long
as there are no new initiating events for the POS in question nor any change to the frequency of
initiating events as defined in the at-power PRA.  If changes to initiating event frequencies are
possible, then the at-power PRA model must be either requantified (if the initiating frequency
decreases) or resolved (if the initiating frequency increases).  Once the new at-power risk metric
results have been obtained, the approach described in the previous paragraph can be used to
approximate the risk associated with the POS.  Note that if an initiating event’s frequency
decreases, one may approximate the risk by simply performing the calculation described in the
previous paragraph; the resulting risk metric will simply be more conservative and less “realistic.”
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7. RISK-INFORMED DECISION MAKING:  DEALING WITH
UNCERTAINTY

7.1 Introduction

The purpose of this chapter is to provide guidance on addressing the uncertainty in PRA results in
the context of risk-informed decision making.  Specifically, guidance is provided on the
interpretation of the results of the uncertainty analysis when comparing results derived from a PRA
with the acceptance criteria or guidelines established for a specific application. 

As discussed in Section 2.1, in a risk-informed environment, an evaluation of the risk implications
is one of several inputs to making a decision.  Figure 7-1, based on  RG 1.174 [NRC, 2002a],
illustrates the integrated nature of decision making. 

Figure 7-1 Integrated Decision Making Process

When providing input to the decision makers, it is the responsibility of the risk analyst to ensure that
the conclusions of the risk analysis are documented and communicated clearly.  An important part
of this documentation is a discussion of the robustness of, or the confidence in, the conclusions
drawn from that analysis.  To address robustness, the key sources of uncertainty and the key
assumptions need to be addressed.  This chapter focuses on the way in which the key uncertainties
and key assumptions are addressed in drawing conclusions related to the risk implications relevant
to the decision.  

As discussed in previous chapters of this report, uncertainties in the risk evaluation can be dealt
with in different ways.  Where possible, they are addressed explicitly in a quantitative manner.
However, in some cases, the characterization of the uncertainty in the PRA results in a quantitative
manner may be challenging.  This challenge can occur, for example, when there is no agreed-upon
theoretical or empirical basis for representing the impact on the plant of the issue being evaluated,
so that the effect on risk cannot be quantified without some degree of arbitrariness.
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An example is the modeling of the effect of a reduction in special treatment on the unreliability of
SSCs.  In this case, one solution is the adoption of a performance-monitoring strategy to ensure
that the degradation in SSC performance is no larger than that assumed in the demonstration that
the change in risk is small.  

In other cases, an analyst may decide not to address a potentially significant contributor to risk
using a PRA model for that contributor.  This decision may be made for one of a number of
reasons, including lack of expertise in the methods or resource limitations.  Chapter 6 discussed
the use of bounding approaches to demonstrate that a missing PRA scope contributor to risk does
not contribute significantly.  This approach is one way of quantitatively addressing the uncertainty
in the PRA results that arises from using an incomplete PRA model.  However, when the missing
contributors cannot be demonstrated to be insignificant contributors to the decision, an alternative
approach is needed.  One possibility, rather than attempting to quantify the risk impact, is to adopt
conditions on the implementation of the decision to compensate for the uncertainty, by essentially
arguing that the unquantified portion of risk is not affected by the implementation.  An
understanding of the uncertainties as they affect the risk insights in a more qualitative sense can
also provide input to defining performance measurement strategies or compensatory measures.

This chapter, in addressing the above issues, provides guidance on the following:

• presenting the results of PRA uncertainty analysis

• taking uncertainty into account in addressing the comparison of PRA results with
quantitative acceptance criteria and as a special case

• addressing uncertainty in SSC categorization

• using qualitative approaches to address uncertainty in integrated decision making

7.2 Presenting the Results of PRA Uncertainty Analyses

Guidance is provided regarding the presentation of the results of a PRA uncertainty analysis.  In
order to provide input to a decision, the results of a risk analysis have to be compared against some
acceptance criteria or guidelines that provide a means of measuring the significance of the risk
implications.  Consequently, it is important that the PRA results are presented in a manner that is
compatible with how the results are going to be used.  Typically, the ways in which the uncertainty
in PRA results is presented include the following:

• a continuous probability distribution on numerical results

• a discrete probability distribution representing the impact of different models or assumptions

• sensitivity studies that provide a discrete set of results that represent the results of making
different assumptions or using different models, or that represent the impact of varying key
parameters in the model that have significant uncertainty, without providing weights or
probabilities to the members of the set

• bounds or ranges of results that represent the results of the extreme assumptions
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The first methods, a continuous probability distribution on numerical results, is only feasible when
input uncertainties are represented as probability distributions and there is an analytical means of
propagating uncertainty.  As discussed in Chapter 4, this is the approach used to address
parameter uncertainties.  The second approach, a discrete probability distribution representing the
impact of different models or assumptions, is only practical when the analysts are willing to weigh
their beliefs in the different models or assumptions that may be used.  In practice, this is rarely
employed, but it has been used for the representation of seismic hazard (e.g., [Parry, 1986a]).
Such a distribution could be propagated through to provide a probability distribution on the final
results

In the most general case, a number of these means of characterizing uncertainty may be used in
any one analysis to address the different types of uncertainty.  Furthermore, different approaches
may be used for the different risk contributors, particularly when some contributors are addressed
by detailed PRA models whereas others are addressed by approximate methods based on
alternate approaches, such as margins studies, or bounding analyses.  

Regardless on how the results of the risk analysis are presented, the analyst has to understand and
be able to communicate what is driving the uncertainty.  Interpreting the significance of the results
of a PRA in light of the uncertainties is important if the PRA results are to be applied to making
meaningful decisions about changes in design or operating practices, or if they are to be used for
economic decisions.  While it is important to characterize the overall uncertainty, it is equally
important to understand which factors drive the uncertainty and also the implications of making
specific assumptions.  For example, it is important for a decision maker to know whether a
particular contributor is being evaluated in a very conservative manner, particularly if it is influencing
the decision significantly.  Even if the results of alternate models are probabilistically combined in
the final risk results, it is essential to be able to distinguish between the results of the alternate
models. 

Several methods are available for identifying the drivers of uncertainty.  The two principal tools are
importance analysis and sensitivity analysis:

• Importance Analysis — Several different importance measures are in common usage.
These include the Fussell-Vesely and Birnbaum importance measures, risk achievement
worth, and risk reduction worth [Cheok, 1998a].  When applied to the results of a risk
analysis, they measure the significance of a basic event to the overall result.  Once a basic
event is identified as significant, the uncertainty associated with the evaluation of that basic
event is also significant to the results.

• Sensitivity Analysis — Sensitivity analysis is a powerful tool for both investigating and
characterizing the impact of uncertainty on results.  However, to be meaningful, the
sensitivity analyses must be chosen carefully and must represent reasonable alternatives
to the model of choice.  Because uncertainties can have synergistic effects on the results,
as discussed in Chapter 5, it may be necessary to perform sensitivity analyses of more than
one of the uncertain issues simultaneously.
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7.3 Comparison of PRA Results with Acceptance Criteria 

Guidance is provided on approaches to assessing the impact of the uncertainties when comparing
PRA results with the acceptance criteria used in decision making  to delineate between acceptance
and rejection with regard to the application or decision under consideration.  The acceptance
criteria are defined in terms of a value, or values, of metrics (e.g., CDF).  This section addresses
the following:

• a brief review of the risk acceptance guidelines of RG 1.174 as an example of a widely used
set of quantitative acceptance guidelines.

• approaches for dealing with the three categories of uncertainty:
– parameter uncertainty
– model uncertainty
– completeness uncertainty

• interpretation of the results of the PRA

7.3.1 An Example of Risk Acceptance Guidelines Using RG 1.174

The acceptance guidelines of RG 1.174 are used to illustrate the issues associated with
comparison of PRA results to acceptance criteria or guidelines in a risk-informed environment.  The
use of the RG 1.174 guidelines to illustrate the issues is driven by the fact that they are among the
most widely used set of acceptance guidelines in the regulatory arena for nuclear reactors.
Furthermore, their formulation was informed by other acceptance criteria or guidelines in common
use, such as those in the Regulatory Analysis Guidelines [NRC, 2004a], and the subsidiary
objective to the Safety Goal Policy Statement [NRC, 1986a].

The acceptance guidelines used in RG 1.174 for one of the metrics, CDF, is shown in Figure 7.2.

Figure 7-2 Risk Acceptance Guidelines



7.   Risk-informed Decision Making:  Dealing with Uncertainty

Draft for Comment NUREG-18557-5

In the context of RG 1.174, the intent of comparing the PRA results with the acceptance guidelines
is to demonstrate with reasonable assurance that the principle that requires the risk change to be
small is indeed being met.  This decision must be based on a full understanding of the contributors
to the PRA results and the impacts of the uncertainties, both those that are explicitly accounted for
in the results and those that are not.  This is a somewhat subjective process, and the reasoning
behind the decisions must be well documented.

As discussed earlier in this report, when establishing a decision criterion, it is crucial to define how
uncertainty is to be addressed when comparing calculated results with the criterion.  This is
discussed in RG 1.174 in Section 2.2.5.5, where parameter uncertainty, model uncertainty, and
completeness are addressed in somewhat general terms.  This section provides more guidance
on this comparison.  

With respect to parametric uncertainty, when establishing the acceptance criteria for RG 1.174, the
following alternatives were discussed.  The measure to be used for comparison should be (1) the
mean value of the probability distribution representing the epistemic uncertainty or (2) a specified
percentile of the uncertainty distribution, corresponding to a specified confidence level.  The
guidelines were finally chosen such that the appropriate measure for comparison is the mean value
of the corresponding uncertainty distribution.  The reason for this was to some extent historical,
since the guidelines were based on prior guidelines for which mean values were to be used.
However, in addition, it was considered that there is a philosophical problem associated with
determining what would be the appropriate confidence level to choose if Option (2) above were
adopted.  More details of the reasoning behind the approach can be found in SECY-97-221 [NRC,
1997a].

The metrics chosen are such that, for a risk-informed decision, all contributors to risk should be
addressed, and each significant contributor to risk is taken into account.  In this context, a
significant contributor is one whose risk contribution can have an effect on the decision.  

The acceptance guidelines are not intended to be interpreted as overly prescriptive.  They are
intended to provide an indication, in numerical terms, of what is considered acceptable.  This is
largely in recognition that the state-of-knowledge, or epistemic, uncertainties associated with PRA
calculations, and, in particular, those that are not explicitly included in the uncertainty analysis used
to calculate the mean values, preclude a definitive decision with respect to in what region the
results used in the application belong, based purely on the numerical results.  Furthermore, it is
recognized that there may be unquantified contributions that could increase or decrease risk.  In
the case of RG 1.174, the term “acceptance guidelines” was used rather “acceptance criteria,”
primarily to recognize that not all of the analysis uncertainty was captured in the uncertainty
distribution.  The implications of this are discussed in Section 7.3.3.5.

7.3.2 Addressing Uncertainty

As discussed in Chapter 3, epistemic uncertainty is generally categorized into three types —
parameter, model, and completeness uncertainty.  Because they are characterized in different
ways, the approaches to addressing them are different as discussed below.
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7.3.2.1 Parameter Uncertainty

Methods for addressing parameter uncertainty in the calculation of PRA results are described in
Chapter 4.  Since the impact of parameter uncertainty can be addressed in terms of a probability
distribution on the numerical results of the PRA, it is straightforward to compare a point value, be
it the mean, the 95th percentile, or some other representative point value, with an acceptance
guideline or criterion.  As stated previously, the point value to be used should be that specified
when the acceptance criterion is established.  For example, the appropriate numerical measures
to use in the comparison of the PRA results with the acceptance guidelines of RG 1.174 are mean
values.  The mean values referred to are the arithmetic means of the probability distributions that
result from the propagation of the uncertainties on the input parameters.

While a formal propagation of the uncertainty is the best way to correctly account for state-of-
knowledge uncertainties that arise from the use of the same parameter values for several basic
event probability models, under certain circumstances, a formal propagation of uncertainty may not
be required if it can be demonstrated that the state-of-knowledge correlation is unimportant.  This
will involve, for example, a demonstration that the bulk of the contributing scenarios (cut sets or
accident sequences) do not involve multiple events that rely on the same parameter for their
quantification.  This is discussed in detail in Section 4.3.2.

It should be noted that, if model uncertainties have been explicitly represented in the PRA model
using a discrete probability distribution and propagated through the analysis, this would also be
represented in the mean value. 

7.3.2.2 Model Uncertainty

Methods for identifying and assessing the impact of key uncertainties are discussed in Chapter 5.
In the context of decision making, it is necessary to assess whether these uncertainties have the
possibility of changing the evaluation of risk significantly enough to alter a decision.  As discussed
in Chapter 5, this assessment can take the form of reasonable and well-formulated sensitivity
studies or qualitative arguments.

In this context, “reasonable” is interpreted as implying some precedent for the alternative
assumption or model represented by the sensitivity study(ies), such as previous use by other
analysts, and that there is a physically and theoretically reasonable and documented basis for the
alternative.  It is not necessary for the search for alternatives to be exhaustive and arbitrary.  The
sensitivity studies provide a discrete set of results  that demonstrate the impact of the alternative
models or assumptions on the mean values calculated as discussed above.  

7.3.2.3 Completeness Uncertainty

In this section, what is classified as a completeness issue is a concern about the limitation of the
scope of the model.  The issue of completeness of the scope of a PRA can be addressed
quantitatively for those scope items for which limited methods are in principle available, and
therefore some understanding of the contribution to risk exists.
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For example, the out-of-scope items can be addressed by supplementing the analysis with
additional analysis by alternative methods to a fully developed PRA.  Approaches to supplementing
the PRA model by using alternate models are discussed in Chapter 6.  These methods can either
be approximations or bounding analyses. 

However, neither an approximate method nor a bounding analysis can be used in the same way
as a full PRA model to fully understand the contributions to risk and thereby gain robust risk
insights.  Thus their use is somewhat limited.  The principal use of such methods is to demonstrate
that the risk contribution from that contributor, and any change to that risk contribution resulting
from a change to the plant, are small.  For this to be the case, the result of the analyses should be
demonstrably conservative.  When this is the case, there is no need to explicitly capture the
uncertainty in the risk analysis, since it has been demonstrated that the contribution(s) so
dispositioned is not significant to the decision.

The degree to which supplementary arguments can be used to support the claim that the
uncertainties do not impact the decision depends on the proximity to the guidelines.  When the
contributions from the modeled contributors are close to the guideline boundaries, the argument
that the contribution from the missing items is not significant must be more convincing than when
the results are further away from the boundaries and in some cases may require additional PRA
analyses.  When the margin is significant, a qualitative argument may be sufficient. 

7.3.3 Interpretation of the Results of the PRA

This section provides guidance on how to interpret the results derived from a PRA, taking into
account the results of the analysis of uncertainty.  While the focus in this report is the treatment of
parameter, model, and completeness uncertainty, it is also important to recognize the unquantified
uncertainty that is introduced by making modeling choices regarding the level of detail with which
the PRA model is constructed. 

7.3.3.1 Uncertainty Arising from Level of Detail

Even in the absence of model uncertainty or completeness uncertainty, differences can arise in
PRA models performed by two groups of analysts for the same plant.  Differences can arise
because one model may be developed to a lower level of detail than the other.  For example, when
developing a PRA model for a BWR, one analyst may choose to include the fire water system as
an additional low-pressure injection system, whereas another might not.  The latter may have
decided that the contribution to the frequency of core damage of the accident sequences resulting
from failure of the low-pressure injection function is low enough without taking into account systems
in addition to the low-pressure coolant injection and low-pressure core spray.

Regardless of the level of detail chose, iIf developed in accordance with the ASME standard, both
models would, however, be expected to have captured the risk-significant sequences, and the
differences between the two models should be in the less significant contributors.  Therefore, the
differences between the two model results that are a consequence of the level of detail would be
expected to be minor.
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Consequently, in reality, there is essentially no difference in quantitative results that differ by a very
small amount.  What the scale for this small amount should be is not defined.  However, using the
acceptance guidelines for RG 1.174 as the basis for generally defining “small,” a very small change
is defined as being less than 10-6 (ΔCDF).  This value was chosen recognizing that this was an
assessment of a change that could be negated by a (legitimate) refinement of the model, and thus
it represented a measure of the level of discrimination afforded by a PRA model.

Generally, the less detailed model would be expected to be slightly conservative with respect to the
more detailed model.  The level of conservatism that is incorporated in a PRA model must be
considered when using the results in a risk-informed application, as discussed later in this section.
This is a particular concern when results from PRAs for different contributors are combined as
discussed below.

7.3.3.2 Parametric Uncertainty

The comparison of the appropriate point value derived from the probability distribution on the
corresponding PRA result, be it the mean value or a percentile of the distribution, represents the
first level of uncertainty analysis.  In RG 1.174, the interpretation of the acceptance guidelines is
that they should not be regarded as overly prescriptive.  This interpretation is a reflection of the
realization that there are residual uncertainties not captured in the mean value.  For example, there
may be conservatism in the model or things that have been left out.  Therefore, acceptance or
rejection is not based on a strict interpretation whereby a result just inside one region would be
acceptable, whereas one just outside would not.

The analyst should qualify the result recognizing any conservatisms or nonconservatisms
associated with the level of detail of the PRA model.  When the point value is well away from the
criteria boundaries, any concerns about the impact of a potential bias caused by the choice of level
of detail tends to be a lesser concern.  However, when the result is close to the boundary, then the
level of detail could make the difference between being above or below the boundary.

This situation is a recurring issue with Phase 3 Significance Determination Process evaluations,
where often the discussion centers about whether the assessment of the risk significance of a
finding is above or below the boundary between, for example, a green and a white finding.  When
both the staff and the licensee values are relatively close, and the assumptions made to model the
significance of the issue are agreed upon, the difference between the values should not be an
issue.  This problem arises from treating the calculated values as absolute when comparing with
the criteria for determining the “color” of the inspection finding.  

7.3.3.3 Model Uncertainty

The second level of analysis addresses model uncertainty.  As discussed above, model uncertainty
is typically represented in terms of the results of sensitivity studies that determine the effect of
alternate hypotheses or models. 
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When the results of the sensitivity studies confirm that the guidelines are still met even under the
alternative assumptions (i.e., change generally remains in the appropriate region), the risk principle
can be determined to be met with confidence.  

However, when some alternative hypotheses lead to a significant change in the relationship of the
PRA result to the acceptance criteria, the analyst should provide the decision maker with the basis
for considering the credibility of the alternatives.  For example, if reasons can be given as to why
they are not appropriate for the particular application or for the particular plant, they need not be
taken into account.  If, however, the decision maker does not have sufficient confidence that the
alternative hypothesis that challenges the decision criteria can be discounted, the tendency will be
to err on the side of caution.  Alternatively, the analysis can be used to identify candidates for
compensatory actions or increased monitoring (see Section 7.5). 

When the risk estimate is derived from a number of PRA models providing estimates for the risk
from the different contributors, if the model uncertainty affects several of the constituent models,
the analysis of model uncertainty should be performed in an integral manner.  In other words, the
sensitivity analysis of a model uncertainty that is pertinent to the plant response model should be
demonstrated for the sum of all the affected risk contributors.

7.3.3.4 Completeness Uncertainty

When a particular risk contributor is not evaluated by a PRA model, then either the effect on the
application has to be bounded and shown not to be significant, or other measures have to be taken
to ensure that the assumption of no risk increase is supported (see Section 7.5). 

7.3.3.5 Combining PRA Results (Integrated Assessment)

PRA methods exist, in principle, for analyzing each of the potentially significant risk contributors
(i.e., internal events, internal fires, external events, and events during low power and shutdown
(LPSD) operation).  The methods employed to address internal fires, external events, and LPSD
events typically make use of the models developed for the analysis of internal events at full power
to address the plant response to the various challenges to the plant; therefore, they are subject to
the sources of uncertainty associated with those models.  However, in addition, each of the PRA
analyses for these other scope items has its own unique sources of uncertainty.  For example, in
a fire PRA, there are uncertainties associated with the modeling of fire growth and suppression as
well as other areas of the analysis, such as the potential for fire damage; in a seismic PRA, there
are uncertainties associated with the assessment of the seismic hazard and with the structural
response of the SSCs.   

Furthermore, the models for the different contributors are often developed to different levels of
detail.  In particular, the set of mitigating equipment that is credited with fulfilling the critical safety
functions may, for one reason or another, differ from one scope item to the next.  For example,
when analyzing internal fires, only those systems that are  known to be unaffected by fires may be
credited.  The demonstration that a particular system that is not part of the safe-shutdown train is
not affected by fire may involve cable tracing.  If the fire-initiated CDF is low enough without taking
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credit for that system, it may be decided not to perform cable tracing, and the system would not be
included in the fire PRA even if credit were taken for that system in the internal events PRA.  Thus,
the PRA models for the different scope items may reflect a different level of detail in modeling plant
response.    

In addition, when constructing a PRA model for the risk from a specific risk contributor, screening
approaches are typically employed to limit the number of scenarios that need to be modeled.  The
specific approach to screening varies between the PRA models used for the different risk
contributors.  This can result in some of the models yielding results of differing degrees of realism
or conservatism that can be particularly significant when assessing the impact of changes to the
plant.  In addition, it is claimed that, for some risk contributors, particularly fires and seismic events,
the methods used are intrinsically conservative and the uncertainties in the results are therefore
of a different nature and magnitude.  Thus, while for the purposes of comparison with acceptance
guidelines or criteria it is necessary to add the results from the various contributors to risk, the result
must be interpreted carefully to take into account the differing degrees of uncertainty associated
with each of the constituent PRA models.

Therefore, when results from different risk contributors are combined, because of the concern that
the representation of the risk from some contributors may be relatively more conservative than
others, it is important to determine the relative contributions from each of the contributors and to
identify whether there is significant conservatism associated with any of these contributors.  This
helps focus the decision maker on those aspects of the analysis that have the potential to influence
the outcome of the decision.  This becomes important for applications in which there is a need to
assess the total risk impact, particularly when the total risk metric value approaches the boundary
between regions of acceptability.  The differing level of detail in constituent analyses is particularly
important when considering risk ranking of SSCs, since the absence of SSCs from some of the
models will distort the overall results.

When analyzing the results, it is essential not only to focus on the numerical integrated result but
also to identify the main contributors.  If there are contributors that are considered to be particularly
conservative in such a way that they could lead to challenging meeting the risk acceptance criteria,
it is incumbent upon the analyst to provide a convincing demonstration of the extent of the
conservatism, if necessary, by refining the PRA model.  Finally, consideration has to be given to
the nonquantified uncertainty (e.g., the conservatism resulting from the modeling approach or the
improvement to safety from programs or design that are not captured in the PRA model).  In some
cases, this can be dealt with by proposing compensatory measures designed to negate any
potential negative impact on risk.

7.4 Addressing Uncertainty in SSC Categorization

Categorization of SSCs according to their risk significance is an integral part of many applications,
such as the implementation of 10 CFR§50.69.  Nuclear Energy Institute (NEI) 00-04[NEI, 2005b]
addresses uncertainty primarily by using the point estimates of the calculations to perform the initial
categorization, and then performing sensitivity studies that vary some of the key groups of
parameters (e.g., HEPs, CCF probabilities) and address some of the model uncertainties identified
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by the peer review as potentially being significant.  These sensitivity studies are used to identify
changes in the categorization, and the most conservative categorization is used.

The reasonableness of this approach is justified in two ways.  First, EPRI TR 1008905, “Parametric
Uncertainty Impacts on Option 2 Safety Significance Categorization” [EPRI, 2003a], demonstrates
that the impact of performing a full uncertainty analysis to categorize SSCs does not significantly
change the categorization resulting from using mean value point estimates in the importance
calculations.  Second, in regulatory applications, there is a requirement to demonstrate that the
impact of the change resulting from using the categorization to change plant practices is small
changes to risk, using the RG 1.174 acceptance guidelines discussed above.  

The differing level of detail in the models for the different risk scope items requires care in
interpreting the results of using those models to categorize the SSCs.

7.5 Using Qualitative Approaches in Integrated Decision Making

When the analysis of risk does not address all significant risk contributors, or when the impact of
a change on risk has not been estimated, it may be acceptable to adopt one of a number of
strategies to deal with the unknown impact.  These strategies, discussed below, include the
following:

• adopting performance monitoring requirements
• limiting the scope of application of plant changes
• establishing compensatory measures

7.5.1 Performance Monitoring Requirements

Monitoring can be used to demonstrate that, following a change to plant design or operational
practices, there is no degradation in specified aspects of plant performance.  This is an effective
strategy when there is no predictive model for plant performance in response to a change.  One
example of such an instance is the impact of the relaxation of special treatment requirements on
equipment reliability.  For monitoring to be effective, the plant performance must be measurable in
a quantitative way, and the criteria used to assess acceptability of performance must be realistically
achievable given the expected quantity of data.

7.5.2 Limiting Scope of Plant Modification

When a PRA model is incomplete in its coverage of significant risk contributors (e.g., it does not
address fire risk), the implementation of a risk-informed change can be restricted so that any SSCs
that would be expected to be used to mitigate the risk from fires would be unaffected, and therefore
that contribution to risk would remain unchanged.  This is the strategy adopted in NEI 00-04 for
categorizing SSCs according to their risk significance to determine for which SSCs the special
treatment requirements can be relaxed.
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7.5.3 Use of Compensatory Measures

The purpose of implementing compensatory measures is to neutralize the expected impact of a
change.  Examples include the establishment of a fire watch to compensate for a faulty fire barrier,
or the implementation of a manual action (suitably proceduralized and accounted for in training) to
replace an automatic actuation of a system (e.g., the initiation of depressurization of a BWR
following loss of high-pressure injection that is necessitated by the inhibition of the automatic
(automatic depressurization system) function).  In many cases, it is not possible to make a
completely convincing case that the compensation is numerically equivalent.
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APPENDIX A
STAFF POSITION ON ELECTRIC POWER RESEARCH INSTITUTE,

"GUIDELINE FOR THE TREATMENT OF UNCERTAINTY IN
RISK-INFORMED APPLICATIONS”

The Electric Power Research Institute (EPRI) has published draft versions of a "Guideline for the
Treatment of Uncertainty in Risk-Informed Applications” which includes a Technical Basis
Document and an Applications Guide.  The staff position on the final publication of these
documents will be provided in this appendix.
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