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 ABSTRACT 

The United States Nuclear Regulatory Commission (NRC) is currently performing research on 
the development of probabilistic models for digital instrumentation and control systems for 
inclusion in nuclear plant probabilistic risk assessments.  The desired goal of this research is to 
develop regulatory guidance for the use of risk information in regulatory decisions for new and 
operating reactors.  This report documents the development of a reliability model of a digital 
feedwater control system using Markov methods supported by an automated failure modes and 
effects analysis (FMEA) tool.  In general, the approach developed in this study should be 
applicable to both control and protection systems.  Although the objective of the study is only to 
demonstrate the feasibility of the state of the art of traditional methods and data, the 
development of the automated FMEA tool can be considered an enhancement to the state of 
the art.  Due to limitations in the scope of the study and the state of the art, the current model is 
not suitable to support regulatory decision-making.  Additional research is needed to further 
enhance the state of the art, and potential areas of research are documented, for example, 
modeling of software failures.   
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FOREWORD 

Nuclear power plants have traditionally relied on analog systems for their instrumentation and 
control (I&C) functions.  With a shift in technology to digital systems as the result of analog 
obsolescence and digital functional advantages, existing plants have begun to replace some 
current analog I&C systems, while new plant designs fully incorporate digital systems. 

The current licensing process for digital systems is based on deterministic criteria.  In its 1995 
Probabilistic Risk Assessment (PRA) Policy Statement, the United States Nuclear Regulatory 
Commission (NRC) encouraged the use of PRA technology in all regulatory matters to the 
extent supported by the state of the art in PRA methods and data.  Though many activities are 
carried out in the life cycle of digital systems to ensure a high-quality product, there are no 
consensus methods at present for quantifying the reliability of digital systems.  This has been an 
impediment to developing a risk-informed analysis process for digital systems. 

To address this limitation, the NRC is currently performing research on the development of 
probabilistic models for digital I&C systems for inclusion in nuclear plant PRAs.  The desired 
goal of this research is to develop regulatory guidance for the use of risk information in 
regulatory decisions for new and operating reactors.  This research is consistent with the 
recommendations from the 1997 National Research Council report on digital I&C in nuclear 
power plants and with the Commission staff requirements memorandum (M061108), dated 
December 6, 2006, which directs the staff to address deployment of digital systems, including 
the area of risk-informed digital I&C. 

Brookhaven National Laboratory (BNL) is supporting the NRC in this research through a project to 
determine the existing capabilities and limitations of using traditional (i.e., static) reliability methods 
to develop and quantify digital system reliability models.  A previous report (NUREG/CR-6962, 
[Chu 2008a]) documents the initial BNL work in this area, including developing desirable 
characteristics for evaluating reliability models of digital systems and establishing the process for 
performing the reliability study of a digital feedwater control system (DFWCS) using two traditional 
reliability modeling methods (i.e., the event tree/fault tree method and the Markov modeling 
method).  The current report documents the application of these methods to the DFWCS.  
This report also compares the resultant models to the desirable characteristics identified in 
NUREG/CR-6962 [Chu 2008a] to identify areas where additional research could potentially improve 
the quality and usefulness of digital system reliability models. 

 

 ________________________________ 

 Christiana H. Lui, Director 
 Division of Risk Analysis 
 Office of Nuclear Regulatory Research 
 U.S. Nuclear Regulatory Commission 
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EXECUTIVE SUMMARY 

Background 
 
Nuclear power plants (NPPs) traditionally have relied upon analog systems for monitoring, 
control, and protection functions.  With a shift in technology from analog systems to digital 
systems with their functional advantages, existing plants have begun to replace current analog 
systems, while new plant designs fully incorporate digital systems.  Since digital instrumentation 
and control (I&C) systems are expected to play an increasingly important role in NPP safety, the 
United States (US) Nuclear Regulatory Commission (NRC) established a digital system 
research plan that defines a coherent set of research programs to support its regulatory needs. 
 
Deterministic criteria underlie the current licensing basis for digital systems.  In its 
1995 Probabilistic Risk Assessment (PRA) policy statement, the Commission encouraged using 
PRA technology in all regulatory matters to the extent supported by the state of the art in PRA 
methods and data.  At present, no methods for quantifying the reliability of digital systems are 
sufficiently mature to be acceptable to the NRC.  Although many activities have been completed 
in the area of risk-informed regulation, the risk-informed analysis process for digital systems has 
not yet been satisfactorily developed.  Therefore, one of the research programs included in the 
NRC’s digital system research plan addresses risk assessment methods and data for digital 
systems. 
 
The objective of the NRC program on risk assessment methods and data for digital systems is 
to identify and develop methods, analytical tools, and regulatory guidance to support: (1) using 
information on the risks of digital systems in NPP licensing decisions and (2) including models 
of digital systems into NPP PRAs.  Specifically, the NRC currently is assessing the reliability of 
digital I&C systems, using traditional and non-traditional (dynamic) methods in parallel.  For the 
purposes of this research, dynamic methods are defined as those explicitly attempting to model: 
(1) the interactions between an NPP digital I&C system and the NPP physical processes, 
i.e. the values of process variables and (2) the timing of these interactions, i.e., the timing of the 
progress of accident sequences.  Traditional methods are defined here as those that are well-
established but do not explicitly model either of these two aspects.  An example of this type of 
traditional method is the Event Tree/Fault Tree (ET/FT) approach. 
 
In the past few years, Brookhaven National Laboratory (BNL) has been working on NRC 
projects to investigate methods and tools for probabilistic modeling of digital systems.  The work 
included reviewing literature on digital system modeling, reviewing and analyzing operating 
experience of digital systems, developing estimates of failure rates using a Hierarchical 
Bayesian Method (HBM) analysis, and undertaking Failure Modes and Effects 
Analyses (FMEAs) of digital systems.  These reviews reveal that failures of digital systems have 
caused several events that resulted in either a reactor trip or equipment unavailability at 
US NPPs, at least one event at a foreign NPP that resulted in a small loss of coolant accident 
during refueling, and numerous significant events in other industries. Based on this experience, 
the potential for digital systems failures to be contributors to plant risk cannot be ruled out. The 
NRC tasked BNL to conduct research on using traditional reliability modeling methods for digital 
I&C systems, which is the subject of this report.  Information on the NRC research on the use of 
dynamic reliability modeling methods for digital I&C systems can be found in NUREG/CR-6901 
[Aldemir 2009], NUREG/CR-6942 [Aldemir 2009], and NUREG/CR-6985 [Aldemir 2009]. 
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The principal objective of BNL’s project is to determine the existing capabilities and limitations of 
using traditional reliability modeling methods to develop and quantify digital system reliability 
models.  The desired goal is supporting the development of regulatory guidance for assessing 
risk evaluations involving digital systems.  To accomplish this objective, the following tasks were 
performed: 
 
1. Develop desirable characteristics for reliability models of digital systems that could 

provide input to the technical basis for risk evaluations for current and new reactors. 
 
2. Select two traditional reliability methods and attempt to apply them to an example digital 

system to determine the capabilities and limitations of these methods. 
 
3. Compare the resulting digital system reliability models to the desirable characteristics to 

identify areas where additional research could potentially improve the quality and 
usefulness of digital system reliability models. 

 
In keeping with the principal objective stated above, this project generally did not involve 
advancements in the state of the art, such as detailed analysis and quantification of software 
reliability. 
 
NUREG/CR-6962 [Chu 2008a] documents the development of the desirable characteristics for 
reliability models of digital systems, selection of the traditional reliability methods to be applied, 
and establishment of the process for performing the reliability study of a digital feedwater control 
system (DFWCS).  As stated in NUREG/CR-6962 [Chu 2008a], the DFWCS was used since, 
during that phase of the project, detailed information was only available for that system.  The 
two traditional reliability modeling methods chosen for trial application are the traditional ET/FT 
method and the Markov method.  The former is commonly used by the US nuclear power 
industry and in other countries and industries.  The Markov method can be a powerful tool for 
analyzing digital systems because it can explicitly model system configurations arising from the 
ability of some digital systems to detect failures and change their configuration during operation. 
The Markov method also explicitly treats failure and repair times.  Further, the Markov method 
was used previously to model NPP systems and digital systems.  NUREG/CR-6962 
[Chu 2008a] also covers preliminary work on developing reliability models of the DFWCS, such 
as performing an FMEA of the system, analyzing data to estimate the failure parameters 
needed, and developing approaches for building Markov and ET/FT models of the system. 
 
The current report documents the application of the selected traditional reliability methods to the 
DFWCS (often referred to as the benchmark study) and a comparison of the models with the 
desirable characteristics of NUREG/CR-6962 [Chu 2008a].  As stated above, since this project 
was not intended to advance the state of the art in modeling digital systems using traditional 
reliability modeling methods, the outcome of this project does not include identification or 
development of a method and supporting engineering analyses that are capable of being used 
for regulatory applications at the present.  Rather the report identifies additional areas of 
research that need to be pursued in order to attain the ultimate objective of this research 
program.  Due to these modeling limitations, as well as the weakness of publicly available digital 
component failure data, the current model and results cannot be used to support decision-
making. 
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Summary of Approach 
 
This study develops an approach for modeling digital systems and applies it to a DFWCS to 
demonstrate the underlying concepts of the approach.  The top event selected for this proof-of-
concept study is the loss of automatic feedwater control.  A FMEA was performed at a relatively 
fine level of detail, e.g., at the level of multiplexers (MUXs) and analog/digital (A/D) converters.  
This level of detail is considered appropriate for supporting the proof-of-concept reliability 
analysis of the DFWCS.  A simulation tool was developed that reflects the execution of the 
DFWCS software.  The simulation tool is used to determine the system response to postulated 
hardware failure modes and combinations thereof.  The important role of the simulation tool in 
determining system success or failure reduces the ET/FT and Markov models solely to means 
for quantifying system reliability (i.e., the ET/FT and Markov models are not used to identify the 
system failure paths, they are only used to quantify them).  Since it was determined during the 
study that the order of component failures is important, ultimately only the Markov method was 
used for quantification.  The sequences of component failure modes that lead to a system 
failure, as determined by the simulation tool, were used in defining the sequences of transitions 
in a Markov model.  The Markov model was quantified to estimate the annual frequency with 
which a loss of automatic control of feedwater takes place, and to support sensitivity 
calculations that evaluate the benefits and importance of some of the features of the digital 
design.  The quantification of the system model makes use of publicly available component 
failure parameters and the results of a HBM analysis of the raw data in the Reliability Analysis 
Center PRISM database that accounts for the uncertainty associated with different data 
sources. 
 
The approach developed in this study, including the FMEA, simulation tool, and Markov model, 
should be generically applicable to digital systems.  Also, while it is recognized that non-safety-
related control systems and safety-related protection systems, such as a reactor protection 
system (RPS), have several significant design differences, it is believed that the insights and 
conclusions derived from this proof-of-concept study, which are mostly related to modeling 
methods, generally apply to both types of systems, unless otherwise noted. 
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Conclusions 
 
The following conclusions were derived from performance of this study.  
 
1. The traditional method used in the study, i.e., Markov method, must be supported by 

strong engineering knowledge and supporting analyses of the systems being studied.  
A simulation model of the system is a critical tool in facilitating reliability model 
development. 

 
At the level of detail considered, the study requires a deterministic model that simulates the 
execution of the system software to capture the system design features, particularly those of the 
software, and to determine which sequences of postulated component failure modes would 
cause the system to fail.  The simulation model is an enhancement to the state of the art(1) that 
allows the system behavior under failure conditions to be approximately accounted for in the 
reliability model, including not only the system control algorithms, but also the complex control 
logic based on the status of various signals of the controlled processes and that of the 
components of the system.  Without the simulation tool, it would be very difficult, or even 
impossible, to directly develop a Markov or fault tree model that captures all of the details of the 
system design.   
 
2. The level of detail of the DFWCS model is adequate for capturing many of the system 

design features, while not being too complicated to be developed and solved. 
 
The Markov model of the DFWCS demonstrated the feasibility of the proposed approach.  The 
level of detail of the model is consistent with that at which failure parameters are available 
(although the data has weaknesses, as discussed next).  Even though the simulation tool does 
not encompass a thermal-hydraulic model of the plant, the system failure modes and sequences 
can be identified from information on its design.  The state explosion problem of a detailed 
Markov model is resolved by truncating the higher order failure sequences when convergence is 
achieved.  The usefulness of such a model is demonstrated further by performing a few 
sensitivity calculations that evaluate the importance of some of the digital design features, such 
as watchdog timers (WDTs), feedback of demand signals, and deviation logic. 
 
3. Failure parameters of digital components are scarce, and additional data are needed. 
 
The PRISM database is one of the few publicly available sources of digital component failure 
parameters. NUREG/CR-6962 [Chu 2008a] performed a HBM analysis of raw data extracted 
from the PRISM database to account for the variability in the sources of the data.  The Bayesian 
analysis resulted in some failure parameters with very large error factors, demonstrating large 
variability in the data.  It may be challenging to calculate meaningful failure rates for hardware 
components because of this large variability. The failure parameters used in this study are only 
to demonstrate the reliability method and exercise the reliability model.  These data are not 
appropriate for quantifying models intended for use in supporting decision-making 
(e.g., regulatory decisions or design changes).   

                                                 
(1) While this project does not generally involve advancement in the state of the art, the development of a simulation model 

was deemed necessary to determine the feasibility of modeling digital I&C systems using traditional (non-dynamic) reliability 
methods. 
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Insights 
 
A number of insights were obtained through performance of the DFWCS benchmark study.  The 
key insights are summarized below. 
 
• This study found that, for the DFWCS, the order in which component failure modes 

occur can affect the impact the failures have on the system.  This is believed to be a 
generic feature of digital systems and should be captured in reliability models.  The 
Markov method can easily account for the order in which component failure modes occur 
by considering different orders in different sequences.  However, use of Markov 
quantification methods raises some issues, e.g., treatment of “non-minimal” sequences, 
with regard to integration with a PRA that is based on the ET/FT method. 

 
• The model developed for the DFWCS is significantly more detailed than that of many 

other studies of digital systems.  The experience of this study shows that it is difficult to 
capture the detailed interactions among the components and combinations of failures of 
the components using higher level modeling.  It may be possible to use the detailed 
model of this study to develop an equivalent or approximate module level model by 
grouping the component failure modes of a module based on their impacts, e.g., on the 
input and output signals of the modules.   

   
• Online repair is not considered to be possible for the DFWCS but may be possible for 

other digital systems, such as an RPS.  If components can be repaired, the Markov 
model would have to be modified by adding transitions that represent repairs, making it 
much more difficult to solve.  Using the simplified Markov method derived in this study, 
the governing equations with repair in the Laplace-transformed space can be solved 
analytically, and the inverse Laplace transform can be solved in the same way of solving 
the sequences without repair.  Alternatively, it may be possible to develop a higher level 
model based on the detailed model and numerically solve the higher level model even if 
it includes repair. 

 
• Performing the FMEA and running the simulation tool revealed two kinds of scenarios 

(one involving differences in signal delay times, and the other involving both central 
processing units [CPUs] operating in tracking mode) that represent potential 
weaknesses of the system design.  The discovery of these scenarios, which were not 
identified in the plant’s hazards analysis, suggests that the simulation tool potentially 
could serve to verify and validate the system software.  Development of the simulation 
tool offers a capability to undertake test runs of the software and support deterministic 
evaluations of digital systems. 

 
• This study did not specifically address Type I interactions (interactions with controlled 

processes external to the digital system), but considered Type II interactions 
(interactions among the components of the digital system) by studying the failure modes 
related to some events, such as communication between different components and 
multiplexing.  Including plant dynamics could help capture subtle timing aspects of the 
performance of the DFWCS, e.g., issues associated with timing of failure sequences and 
the impacts of a within-the-range drifting signal.  However, these issues are likely to be 
difficult to address even with a model of the plant included in the automated tool.  In 
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addition, it is not clear, at present, whether the increased accuracy of modeling obtained 
through incorporation of a plant dynamics model would justify the increased complexity. 

 
• The proposed approach of this study may also be capable of modeling safety related 

protection systems.  For protection systems, it is believed that the use of dynamic 
methods may not offer any considerable improvements, because once a protection 
system is actuated, the feedback from the plant has no effect on the actuation.     

 
• It is important that a reliability model realistically captures the fault-tolerance features of 

a digital system.  In this study, the major fault-tolerance features include deviation logic 
in the application software, redundant CPUs, and independent WDTs of the CPUs.  The 
first two features are well captured using the simulation tool.  In the case of the WDTs, 
for each failure mode associated with a CPU module, plant information and an 
understanding about how the system works were used to determine if the effect of each 
failure mode on the module can be detected by its WDT and/or the application software.  
Fault-tolerant features may also be characterized in terms of “coverages” that typically 
represent the fraction of failures that can be detected.  If fault coverage is accounted for 
in the failure data, then detailed models of the features do not have to be explicitly 
included in the reliability models.   

 
Areas of Potential Additional Research 
 
The experience of developing the probabilistic model of the DFWCS identified many areas of 
research to enhance the state of the art in modeling digital systems.  They are summarized 
below.  
 
• Improved approaches for defining and identifying failure modes of digital systems should 

be developed.  Both software and hardware failure modes need to be considered.  In 
this study, the hardware component failure modes may not be complete and 
placeholders were used for software failures.  Research on software failure modes that 
can be incorporated in reliability models of digital systems is needed.  A review of 
software failure experience in different industries would be beneficial. 

 
• Software reliability methods for quantifying the likelihood of failures of both application 

and support software need to be developed, as well as methods for modeling software 
CCFs across system boundaries.   

 
• Methods and parameter data for modeling self-diagnostics, reconfiguration, and 

surveillance, including using other components to detect failures, are needed.  Fault-
tolerance features are not limited to those modeled in this study.  Different hardware 
redundancy techniques and software fault-tolerance designs can be applied to digital 
system designs.  Incorporation of these different designs needs to be further pursued. 

 
• Better data for hardware failures (both independent and common cause) and a break 

down of the failure rates by failure modes of digital components need to be collected.  
The research should include collection and analysis of generic manufacturer data and 
specific operating data.  

 



xix 

• Use of Markov quantification methods raises some issues with regard to integration with 
a PRA that is based on the ET/FT method.  Integration of Markov models, such as the 
one developed in this study, with an ET/FT PRA should be demonstrated. 

 
• Methods for human reliability analysis (HRA) associated with digital systems need to be 

investigated.  In general, digital upgrades at current NPPs and the designs of new 
reactors introduce new human system interfaces that are significantly different from 
those of existing plants.  HRA research is needed to address these new interfaces in 
support of PRAs for both existing plants and new reactors. 

 
• This study identified that it may be beneficial to include controlled processes in modeling 

drifting signals of a control system, but not necessarily for a protection system.  It is also 
not clear whether the increased accuracy of modeling obtained through incorporation of 
a plant dynamics model would justify the increased complexity and effort required for 
intensive simulation.  Determining if and when a model of controlled processes is 
necessary in developing a reliability model of a digital system should be further 
researched.   



xx 
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1. INTRODUCTION 
 
1.1 Background 
 
Nuclear power plants (NPPs) traditionally have relied upon analog systems for monitoring, control, 
and protection functions.  With a shift in technology from analog systems to digital systems with 
their functional advantages, plants have begun such replacement, while new plant designs fully 
incorporate digital systems.  Since digital instrumentation and control (I&C) systems are expected to 
play an increasingly important role in nuclear power plant safety, the United States (US) 
Nuclear Regulatory Commission (NRC) established a digital system research plan [NRC 2006] that 
defines a coherent set of research programs to support its regulatory needs. 
 
Deterministic criteria underlie the current licensing basis for digital systems.  In its 1995 Probabilistic 
Risk Assessment (PRA) policy statement [NRC 1995], the Commission encouraged using PRA 
technology in all regulatory matters to the extent supported by the state of the art in PRA methods 
and data.  At present, no methods for quantifying the reliability of digital systems are sufficiently 
mature to be acceptable to the NRC.  Although many activities have been completed in the area of 
risk-informed regulation, the risk-informed analysis process for digital systems has not yet been 
satisfactorily developed.  Therefore, one of the research programs included in the NRC’s digital 
system research plan addresses risk assessment methods and data for digital systems. 
 
The objective of the NRC program on risk assessment methods and data for digital systems is to 
identify and develop methods, analytical tools, and regulatory guidance to support: 
(1) using information on the risks of digital systems in NPP licensing decisions and (2) including 
models of digital systems into NPP PRAs.  Specifically, the NRC currently is assessing the reliability 
of digital I&C systems, using traditional and non-traditional (dynamic) methods in parallel.  For the 
purposes of this research, dynamic methods are defined as those explicitly attempting to model: 
(1) the interactions between an NPP digital I&C system and the NPP physical processes, i.e., the 
values of process variables and (2) the timing of these interactions, i.e., the timing of the progress 
of accident sequences.  Traditional methods are defined here as those that are well-established but 
do not explicitly model either of these two aspects.  An example of this type of traditional method is 
the Event Tree/Fault Tree (ET/FT) approach. 
 
In the past few years, Brookhaven National Laboratory (BNL) has been working on NRC projects to 
investigate methods and tools for probabilistic modeling of digital systems.  The work included 
reviewing literature on digital system modeling [Chu 2004, Chu 2007, Chu 2008a], reviewing and 
analyzing operating experience of digital systems [Chu 2006], developing estimates of failure rates 
using a Hierarchical Bayesian Method (HBM) [Yue 2006], and undertaking Failure Modes and 
Effects Analyses (FMEAs) of digital systems.  These reviews reveal that failures of digital systems 
have caused several events that resulted in either a reactor trip or equipment unavailability at 
US NPPs, at least one event at a foreign NPP that resulted in a small loss of coolant accident 
during refueling [Nuclear Energy Agency 1998], and numerous significant events in other industries. 
Based on this experience, the potential for digital systems failures to be contributors to plant risk 
cannot be ruled out. The NRC tasked BNL to conduct research on using traditional reliability 
modeling methods for digital I&C systems, which is the subject of this report.  Information on the 
NRC research on the use of dynamic reliability modeling methods for digital I&C systems can be 
found in NUREG/CR-6901 [Aldemir 2006], NUREG/CR-6942 [Aldemir 2007], and NUREG/CR-6985 
[Aldemir 2009]. 
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The principal objective of BNL’s project is to determine the existing capabilities and limitations of 
using traditional reliability-modeling methods to develop and quantify digital system reliability 
models.  The desired goal is supporting the development of regulatory guidance for assessing risk 
evaluations involving digital systems.  To accomplish this objective, the following tasks were 
performed: 
 
1. Develop desirable characteristics for evaluating reliability models of digital systems that 

could provide input to the technical basis for risk evaluations for current and new reactors. 
 
2. Select two traditional reliability methods and attempt to apply them to an example digital 

system to determine the capabilities and limitations of these methods. 
 
3. Compare the resulting digital system reliability models to the desirable characteristics to 

identify areas where additional research could potentially improve the quality and 
usefulness of digital system reliability models. 

 
In keeping with the principal objective stated above, this project generally did not involve 
advancements in the state of the art, such as detailed analysis and quantification of software 
reliability.  Earlier BNL work on software reliability is summarized in [Chu 2007]. 
 
NUREG/CR-6962 [Chu 2008a] documents the development of the desirable characteristics for 
evaluating reliability models of digital systems, selection of the traditional reliability methods to be 
applied, and establishment of the process for performing the reliability study of a digital feedwater 
control system (DFWCS).  As stated in NUREG/CR-6962 [Chu 2008a], the DFWCS was used 
since, during that phase of the project, detailed information was only available for that system.  The 
two traditional reliability-modeling methods chosen for trial application are the traditional ET/FT 
method and the Markov method.  The former is commonly used by the US nuclear power industry 
and in other countries and industries.  The Markov method can be a powerful tool for analyzing 
digital systems because it can explicitly model system configurations arising from the ability of some 
digital systems to detect failures and change their configuration during operation. The Markov 
method also explicitly treats failure and repair times.  Further, the Markov method was used 
previously to model NPP systems and digital systems.  NUREG/CR-6962 [Chu 2008a] also covers 
preliminary work on developing reliability models of the DFWCS, such as performing an FMEA of 
the system, analyzing data to estimate the failure parameters needed, and developing approaches 
for building Markov and ET/FT models of the system. 
 
The current report documents the application of the selected traditional reliability methods to the 
DFWCS (often referred to as the benchmark study).  This report also includes a comparison of the 
models with the desirable characteristics of NUREG/CR-6962 [Chu 2008a]. 
 
1.2 Objectives and Scope of Benchmark Study 
 
The objectives of the benchmark study documented in this report are twofold:  (1) to apply two 
traditional methods, i.e., Markov and ET/FT methods, to a DFWCS, building on the work done in 
NUREG/CR-6962 [Chu 2008a] and (2) to compare the models against the NUREG/CR-6962 
[Chu 2008a] desirable characteristics to evaluate the state of the art and identify areas where 
additional research would enhance this knowledge.  As stated above, the DFWCS was selected as 
the initial benchmark system for the proof-of-concept study due to the availability of the necessary 
detailed system information.  While it is recognized that non-safety-related control systems and 
safety-related protection systems have several significant design differences, it is believed that the 
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insights and conclusions derived from this proof-of-concept study, which are mostly related to 
modeling methods, generally apply to both types of systems, unless otherwise noted.  
 
This proof-of-concept study models the DFWCS while the plant is operating at full power, and 
estimates the frequency that a loss of automatic control of the system takes place, including 
switchover to manual control and incorrect control output signals, caused by hardware failures of its 
components and support systems.  Modeling manual control is beyond the scope of the study.  In 
general, other top events associated with the DFWCS can be defined, and models of those top 
events can be developed accordingly.  External causes of failure, such as fires and seismic events, 
and other modes of system operation are beyond the scope of this study.  Due to the lack of 
consensus on software reliability methods, modeling software failures also is beyond the scope of 
this project, though placeholders for software failure rates are identified in the models.  An arbitrarily 
selected small failure rate is used in the model quantification, such that the contribution of software 
failure does not mask the contribution from other modeled failures.  The inclusion of placeholders 
for software failures is not intended to imply that it is appropriate to model hardware and software 
failures as separate entities, nor that software failures can be addressed probabilistically.  These 
placeholders merely serve to indicate that ultimately software reliability should be addressed in 
some manner, even though it is out of the scope of the current study.  Integration of the reliability 
model developed in this study with a nuclear plant PRA is also beyond the scope of this study. 
 
As stated previously, the objective of the NRC program on risk assessment methods and data for 
digital systems is to identify and develop methods, analytical tools, and regulatory guidance to 
support: (1) using information on the risks of digital systems in NPP licensing decisions and 
(2) including models of digital systems into NPP PRAs.  Since the principal objective of the current 
project was only to evaluate the existing state of the art in modeling digital systems using traditional 
reliability modeling methods, and not to advance the state of the art, the outcome of this project 
does not include identification or development of a method and supporting engineering analyses 
that are capable of being used for regulatory applications at the present.  Rather the report 
identifies (in Section 11.3) additional areas of research that need to be pursued in order to attain the 
ultimate objective of this research program.  Due to these modeling limitations, as well as the 
weakness of publicly available digital component failure data, the current model and results cannot 
be used to support decision-making. 
 
1.3 Overall Approach of Benchmark Study 
 
This study found that at the level of detail that is modeled, it is not possible to deductively develop 
ET/FT logic or identify the Markov states that represent system failure, as is usually done in 
traditional ET/FT and Markov analyses.  Instead, an automated FMEA tool was developed to 
identify the sequences of failures that lead to a system failure, and Markov and fault tree methods 
are only considered as a means to quantify the sequences.  Although an automated tool was used, 
the methods applied are still referred to as “traditional,” since they do not attempt to explicitly model 
the interactions between the DFWCS and the plant physical processes.   
 
In this study, the approaches described in NUREG/CR-6962 [Chu 2008a] for developing ET/FT and 
Markov models of the DFWCS were attempted and modified, as necessary, to develop reliability 
models of the system.  The modifications included the following: 
 



1-4 

1. The FMEA approach of the main central processing unit (CPU) module(1) developed in 
NUREG/CR-6962 [Chu 2008a] was applied to other modules in the system.  To correctly 
determine the effects of the postulated failure modes, following the suggestion of 
NUREG/CR-6962 [Chu 2008a], a simulation model of the system was developed that 
includes the actual software of the modules and needed interfaces to automate the process 
of determining the system’s responses.  The simulation tool also was used to assess the 
system’s response to combinations of failures. 

 
2. Because the simulation tool can handle combinations of failure modes as well as individual 

ones, there was no need to group these modes as proposed in NUREG/CR-6962 
[Chu 2008a].  This change is expected to enhance the model’s accuracy. 

 
3. Since the simulation tool generates combinations of failures that lead to system failure, the 

fault tree and Markov model approaches proposed in NUREG/CR-6962 [Chu 2008a] were 
not needed to identify combinations of failures.  The generated failure combinations were 
used directly in quantification.  In fact, at the level of detail considered in this study, it is not 
feasible to deductively develop a fault tree or Markov transition state model for the DFWCS.  

 
4. The simulation tool was used to investigate the effects of the order in which failure modes 

occur.  This investigation revealed that, in some cases, the order of failure does make a 
difference.  Therefore, it is necessary to explicitly account for the order in which failures 
occur, and more appropriate to refer to the combinations of failure modes as failure (or 
failure mode) sequences.  Since the order of the failures was found to be important, the 
failure sequences were quantified using a Markov model.  Both an exact solution and an 
approximate solution to the Markov model were derived and used in quantifying the top 
event. 

 
5. The sequences of the Markov model are similar to cutsets typically considered in a PRA, 

except for the way in which the sequences are quantified. Use of the Markov quantification 
method makes it more difficult to integrate the model with a PRA that is based on the ET/FT 
method.  The integration is beyond the scope of this study.  It can likely be done by 
converting the sequences into equivalent cutsets and using approximate methods of 
quantification. 

 
The approach demonstrated in this proof-of-concept study should be applicable to any digital 
system.  It is based on the use of failure modes of generic components of digital systems and 
publicly available component failure data.  The level of detail of the model allows important digital 
design features to be captured.  In particular, the use of an automated tool developed using the 
actual system software allows the software to be more realistically accounted for in the modeling.  
The use of a Markov model for quantifying the system-failure sequences takes into consideration 
the order in which failures occur in the sequences and the competition among failure modes of 
components.  However, due to limitations in the state of the art for modeling digital systems, several 
significant issues remain to be resolved, as identified in this report. 
 

                                                 
(1) In general, CPU represents a central processing unit, which is a generic component of digital systems.  Here, a CPU 

module includes a CPU and its associated components such as a multiplexer, analog/digital converter, etc.  In this study, a CPU of a 
CPU module is denoted as a microprocessor in order to avoid confusion with a CPU module, and CPU and CPU module are used 
interchangeably to represent a CPU module. 
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The following summarizes the approach used in this study with references to the chapters that 
provide more detailed documentation. 
 
Definition of Top Event 
 
This study is based on a DFWCS of a two-loop pressurized water reactor (PWR).  Each of the two 
reactor-coolant loops has a DFWCS.  The top event selected for the proof-of-concept study is 
failure of a DFWCS to automatically control feedwater to its associated steam generator while the 
plant is operating at full power during one year.  This can be considered a contributor to the loss of 
main feedwater initiating event for the PRA of the plant.  The defined top event does not take into 
consideration the possibility of manually controlling the system. For some system failure modes, 
manual control is still possible using the DFWCS. However, modeling manual control is beyond the 
scope of the study.  
 
The system also performs its functions during low-power mode and after a reactor trip; these 
functions are beyond the scope of the study.  Chapter 2 gives a summary description of the system 
and defines the system boundary of the modeling performed in this study; a more detailed 
description is provided in NUREG/CR-6962 [Chu 2008a]. 
 
Quantification of the Frequency of an Initiating Event 
 
It is a commonly accepted PRA practice to estimate initiating event frequencies using operating 
experience.  In case of loss of feedwater transients, a two-stage Bayesian analysis can be used.  
However, in order to perform such an analysis to consider the contribution of the DFWCS, it is 
required that the data across multiple plant and vendor designs with varying configurations be 
collected.  Such information is not available in the public domain.  As an alternative, in this study, an 
approach that models a digital system at the level of detail where generic component failure modes 
and failure data are available was developed.  This approach should be applicable to modeling both 
digital control and protection systems.   
 
An initiating event frequency, f , is the expected number of system failures per unit time.  It is 
related to the reliability of the system )(TR , i.e., the probability that the system is operating 
successfully in time period (0, T ), by  
 

 
T

TRf )](ln[
−=  (1-1) 

 
Equation (1-1) was derived in NUREG/CR-6962 [Chu 2008a] assuming the initiating event follows a 
Poisson process with a constant rate, and can be used to evaluate the initiating event frequency, 
using the )(TR assessed over a time period T, employing a Markov model of the DFWCS.  The 
frequency f is, therefore, the average frequency over the time period T.  Note that the actual failure 
rate of the Markov model changes with time and the use of the average frequency is an 
approximation.  The equation is applicable to any reliability model that calculates a system 
reliability, including those models that allow component level repair and replacement.  
 
FMEA and Simulation Model 
 
A team of analysts manually undertook the FMEA documented in NUREG/CR-6962 [Chu 2008a].  
In many situations, the response of the system to specific individual failures was difficult to 
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determine, mainly due to lack of documentation and the complex logic modeled in the software.  
However, even with more complete documentation, it is not feasible to manually determine the 
system response to multiple failures.  Hence, in this study, a simulation tool was developed to 
facilitate determining the effects of postulated failures.  The simulation tool incorporates the 
software of the CPUs and controllers, and implements rules for assessing whether a loss of 
automatic control occurs.  The tool allows the failures and failure combinations of the components 
to be postulated, and then represented in terms of their impact on the input and output signals of 
the CPUs and controllers and associated internal variables of the software.  The tool also 
determines whether a system failure takes place based on the internal states of the system.  For 
example, a detected loss of a steam-generator-level sensor causing a failover, followed by a 
spurious signal of the watchdog timer associated with the backup CPU, will cause the main 
feedwater valve (MFV) and feedwater pump (FWP) controllers to switch to the manual mode, which 
constitutes a system failure. The simulation tool was used to systematically perform the FMEA of all 
modules of the DFWCS, using the approach described in NUREG/CR-6962 [Chu 2008a] for the 
main CPU module.  It first was employed in identifying those individual failures that directly lead to a 
system failure, e.g., a failure of the microprocessor of the MFV controller.  Such failures are single 
failures of the system.  For those individual failures that do not fail the system, i.e., latent failures, 
combinations of two failures were considered to identify those sequences of double failures that 
lead to a system failure.  Continuing this process generates higher and higher order sequences.  
Chapters 3 and 4 discuss the details of the FMEA and simulation tool. 
 
The use of a simulation tool in performing the FMEA can be considered a supporting analysis which 
plays an important role in developing the reliability model of the DFWCS, just like thermal-hydraulic 
analyses are used to determine the success criteria and accident timing used in developing 
accident sequences of a PRA.  It is especially important to digital systems due to the complexity of 
these systems and their use of software.  The important role of the simulation tool in determining 
system success or failure reduces the Markov and ET/FT methods to potential methods solely for 
quantifying system reliability (i.e., the Markov and ET/FT methods are not used to identify the 
system failure paths, they are only used to quantify them).  Because use of the simulation tool 
revealed that the order of component failures can be important, the Markov method was selected 
for quantifying the system failure paths, since it can explicitly account for the order of the failures by 
defining different sequences of transitions/failures leading to different system states.  
 
Development and Quantification of a Markov Model of DFWCS 
 
A Markov model of a system typically can be represented in terms of a transition diagram showing 
all the system states and possible transitions among them.  It can also be expressed in terms of a 
set of linear differential equations modeling the transitions among system states, i.e.,  
 

 PM
dt
Pd
= , (1-2) 

 
where P represents the probabilities of the system states, and M is the transition matrix containing 
the constant transition rates among the system states.  The solution of Equation (1-2) gives 
probabilistic information about the system.  For example, the sum of the probabilities of success 
states is the reliability, from which the frequency of the initiating event can be calculated 
using Equation (1-1). 
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As often is the case for a Markov model, the DFWCS is assumed to initially be in an operable state 
(i.e., at time = 0).  Every time a component of the DFWCS fails, the system transits into another 
state.  An important feature of the Markov model of the system is that components can have 
different failure modes that entail different impacts on the system.  In formulating the DFWCS’s 
transition diagram, all possible transitions in any possible order should be considered.  State 
explosion, i.e., a very large number of possible system states that makes the model too complicated 
to develop and solve, is a common issue with detailed Markov models.  It is addressed in this study 
by truncating system failure sequences based on their order (i.e., the number of failures in the 
sequence) and demonstrating that convergence of system failure probability is achieved.  This is 
similar to the concept of cutset truncation (on order) typically done in ET/FT analyses. 
 
The results of the FMEA of the system specify if a system state is a failed state, in which case no 
additional transitions out of it need to be considered, since the system is already failed.  Such a 
state is called an absorbing state. 
 
For the DFWCS being modeled in this study, a failed component cannot be repaired while the 
system is operating; therefore, repair does not need to be included in the model.  This allows the 
exact solution of the Markov model to be derived analytically.  A simplified solution was developed 
to compare with the exact solution.  Chapter 5 describes the Markov model, and Appendix C 
contains the detailed derivation of the solution of the model, along with introductory material about 
Markov modeling solutions.  Chapter 7 provides the results of the quantification of the Markov 
model for the DFWCS. 
 
Data Analysis 
 
NUREG/CR-6962 [Chu 2008a] reviewed publicly available databases for digital system components 
and performed a Bayesian analysis that attempted to account for the variability of different raw data 
sources.  In the review, potential weaknesses and limitations of the available databases were 
identified and discussed, and no attempt was made to validate or invalidate the available 
databases. The limitations in the publicly available failure parameters of digital components 
identified in NUREG/CR-6962 [Chu 2008a] indicate that additional research and development is 
needed in this area.  This study makes use of the data of NUREG/CR-6962 [Chu 2008a] in 
developing and quantifying a model of the DFWCS.  The data are not appropriate for quantifying 
models that are to be used in support of decision-making (e.g., regulatory decisions or design 
changes).  They are only used in this project to demonstrate the reliability methods and exercise the 
reliability models. 
 
The data for the quantification were derived from different sources.  One important source was the 
raw data of the PRISM reliability prediction method [RAC PRISM].  The failure rates of many 
component failure modes were estimated by the HBM [Yue 2006].  For those components whose 
failure rates were not analyzed in this way, the PRISM RACRate model was used to estimate them 
[RAC PRISM]. In some cases, the failure rates were taken from other sources, such as NRC-
sponsored studies, e.g., NUREG/CR-5500, Volume 10 [Wierman 2002]. 
 
In this study, different failure modes for a given component were considered.  The failure rates of 
the different component failure modes were estimated using the failure mode distributions given by 
Meeldijk [1996] and Aeroflex [2005].  These sources break down the failure rate of a component 
into its different failure modes. 
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The failure parameters used in this study have very large uncertainties, and the failure mode 
distributions are incomplete.  Chapter 6 discusses the data analysis and its weaknesses in more 
detail. 
 
Uncertainty Analysis and Sensitivity Calculations 
 
Parameter uncertainties were propagated in an uncertainty analysis of the top event, with treatment 
of state-of-knowledge-correlation [Apostolakis 1981].  Also, the effectiveness of several digital-
design features, i.e., the redundancy in CPU, use of watchdog timer, and use of demand signal 
feedback to check for deviations, was explored via sensitivity calculations.  Chapter 8 documents 
these uncertainty and sensitivity analyses.  It also discusses modeling assumptions and limitations. 
 
Results and Conclusions 
 
Chapter 9 is an evaluation of the model of the DFWCS against the desirable characteristics of a 
probabilistic model of a digital system proposed by NUREG/CR-6962 [Chu 2008a].  Chapter 10 
provides a high-level, qualitative comparison of the results of this study with those from the studies 
using dynamic methods [Aldemir 2009].  Chapter 11 discusses the conclusions and insights of the 
study and summarizes areas where additional research could potentially improve the quality and 
usefulness of digital system reliability models.  It should be pointed out that even though this study 
models a control system, the approach of this study may also be applicable to protections systems 
such as a reactor protection system.  The conclusions and insights of Chapter 11 are mostly related 
to modeling methods, and should be applicable to both control and protection systems unless 
otherwise noted, e.g., the comparison of quantitative results with operating experience of the 
DFWCS. 
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2.  SYSTEM DESCRIPTION AND SCOPE OF MODELING 
 
This study analyzed the digital feedwater control system (DFWCS) of a secondary loop of an 
operating pressurized water reactor (PWR).  The PWR has two secondary loops, each with a 
DFWCS.  Since the two DFWCSs are symmetrical and do not have many interactions between 
them, only one of them was analyzed.  Also, since complete system design and operation 
information was not available from the plant, a number of assumptions were made in this study 
such that the analyzed design should not be thought of as being representative of any particular 
plant or existing system and may, in fact, include some design features that do not currently 
exist in any actual DFWCS. 
 
The DFWCS analyzed in this study was described in detail in NUREG/CR-6962 [Chu 2008a].  
Here, a summary description of the system is provided, affording readers the information 
needed to understand the scope of the modeling and the method used in developing the 
probabilistic model.  The loss of automatic control of a DFWCS, given that the plant is in 
full-power operation during one year, is the top event selected for this proof-of-concept study. 
 
The DFWCS consists of sensors, transmitters, two central processing unit (CPU) modules 
(the main and backup CPUs), four controller modules (one each for the main feedwater 
valve (MFV), bypass feedwater valve (BFV), feedwater pump (FWP), and pressure differential 
indicating (PDI), and associated support systems, i.e., direct current (DC) power supplies and 
120v alternating current (AC) buses.  The DFWCS sends demand signals to the positioners of 
the main feedwater-regulating valve (MFRV) and the bypass feedwater-regulating valve 
(BFRV), and to the turbine controller of the main feedwater pump (MFP).  The positioners 
convert electrical signals into pneumatic pressure that is used to position valves.  The 
PDI controller that normally displays the differential pressure across the MFRV also can serve 
as a manual control station for the MFRV and BFRV.  The digital parts of the system are the 
CPU modules and controller modules.  Each module consists of a microprocessor and its 
associated components, e.g., analog/digital (A/D) converter, multiplexer (MUX), and 
digital/analog converter.  Figure 2-1, a simplified diagram of the system, shows the modules and 
components considered in the reliability model of the DFWCS and the main signals between 
them.  The solid boxes represent modules and components that are modeled in detail, while the 
dotted boxes represent those that are either modeled in a simplistic way or not modeled at all 
because they are beyond the scope of this study or found not to affect the operation of the 
system at full power.  More discussion of the modeling of the system is provided in the 
corresponding sections of this chapter. 
 
The system has two modes of operation, automatic and manual.  This study assumes that the 
system is initially operating in automatic mode.  The operators can interact with the system by 
using the controllers that are located in the main control room.  If a controller switches from 
automatic to manual control mode due to a detected failure condition, the operators then can 
take manual control.  This study assumed that a switch to manual mode is a system failure, 
since automatic control is lost. 
 
The DFWCS also operates in either high-power or low-power mode.  Since the plant is 
assumed to be operating at full power for this study, the system is considered to be initially 
operating in the high-power mode. During full power operation, the DFWCS normally operates 
under 3-element control in which the control is based on inputs from three different types of 
sensors, i.e., steam generator (S/G) level, feedwater flow, and steam flow.  These three types of 
signals are the most important sensor input signals to the DFWCS. 
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Figure 2-1 Modules of the DFWCS model 
 
The following sections give summary descriptions of the modules and components of the 
system. 
 
2.1 Main and Backup CPUs and Their External Watchdog Timers 
 
The main and backup CPUs are the brains of the DFWCS.  That is, they read the sensor inputs, 
implement the control algorithms of the DFWCS, and send demands to the MFRV, MFP, and 
BFRV through the device controllers, i.e., the MFV, FWP, and BFV controllers.  System 
redundancy is provided by the main and backup CPUs.  The main and backup CPUs exchange 
information, such as CPU status, deviations, and input signal validity.  Each CPU has an 
independent external watchdog timer (WDT) that periodically monitors whether the CPU has 
stopped functioning, i.e., stopped sending the heartbeat signals to the WDT that, in turn, sends 
the status of its associated CPU to the controllers.  Each controller uses the status information 
to determine which of the two demand inputs (from main or backup CPU) to send to the 
component associated with that controller.  In this study, the main CPU is assumed to be in 
control, with the backup CPU operating in tracking mode, i.e., taking the demand outputs from 
the controllers and using them as its own outputs.  The tracking mode provides for a smooth 
transition of control from the main CPU to the backup CPU when the former is determined to 
have failed, e.g., when the WDT associated with the main CPU detects that the main CPU has 
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failed.  In this study, the WDTs are modeled in a simplistic way.  That is, the functions of the 
WDTs are modeled (e.g., identification of the WDT-detectable failures), while the failure modes 
of the WDTs, which could be either a failure to indicate the failure status of the associated CPU 
when the CPU has failed or a spurious signal output indicating that the CPU has failed when it 
has not, are not modeled due to a lack of design information of the WDTs. 
 
Figure 2-2 is a high-level flow chart of the application software of the main CPU.  The main CPU 
application software includes deviation logic that monitors redundant input signals for possible 
failures and takes appropriate actions, including notifying the control room operator. The 
deviation logic for the input signals of S/G level, feedwater flow and steam flow is similar but not 
identical.  In general, the deviation logic consists primarily of sanity checks including out-of-
range (OOR) checks, high rate-of-change checks, and deviation checks on redundant input 
signals.  A CPU first determines the validity of certain input signals by checking if the signals are 
OOR or are changing at a high rate.  Depending on the outcome of the validity check, different 
actions are taken.  In the case of: 
 
1. One invalid signal: If the invalid signal is due to failure of a sensor or transmitter, the 

main CPU ignores the identified invalid signal and uses the remaining good signal in its 
control algorithm.  If the invalid signal is due to internal component failure of the main 
CPU module and the backup CPU is healthy, then the main CPU will fail itself and the 
backup CPU will take over control, i.e., a failover to the backup CPU will occur.  The 
determination of whether the invalid signal is due to failure of a sensor or transmitter or 
failure of an internal component of the main CPU module is based on signal status 
information exchanged between the main and backup CPUs. 

 
2. No invalid signal: If both signals of the same type are valid, the CPUs will compare them 

to determine if they differ/deviate significantly. In case of a large deviation of S/G level 
signals detected by the main CPU, a failover will take place if the backup CPU is 
healthy.  If there is a large deviation between the redundant signals for the feedwater 
flow or steam flow, the DFWCS automatically switches to 1-element control, i.e., using 
the signals on S/G level only.  This mode of operation is also considered a successful 
automatic control in this study. 

 
3. Two invalid signals: If both S/G level signals are invalid, a failover will take place 

provided the backup CPU is healthy.  If both signals for the feedwater flow or steam flow 
are found to be invalid, the DFWCS automatically switches to 1-element control.   

 
In a summary, actions to be taken by the main CPU are determined by (1) types of faulty 
signals, i.e., level or flow signals, (2) number of invalid signals, and (3) causes of the faulty 
signals (i.e., due to the sensor/transmitter failures or internal CPU failures).  Different actions of 
the main CPU may vary the system responses to signal failures. 
 
Taking the S/G levels as an example, if a drifting signal due to a level sensor (or transmitter) 
failure is OOR, the signal will be detected by the OOR check of the deviation logic and the 
automatic control of the system can be maintained by using the remaining good level signal.  
The drifting sensor (or transmitter) signal does not have to be OOR, i.e., the signal is still valid 
but will cause a deviation between redundant level signals.  A large deviation will be detected by 
the deviation check of the deviation logic and cause a failover to the backup CPU.  The system 
will lose the automatic control because the backup CPU detects the same large deviation 
between the two sensor signals and will also be failed.  Note, a small deviation can be coped 
with by the system. 
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If a drifting level signal is caused by failure of an internal component of the main CPU, a failover 
to the backup CPU will occur (the signal either drifts OOR or produces a large deviation 
between redundant signals) because the backup CPU does not see any problem with the level 
signals.  The automatic control of the system can be maintained. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2 High-level flow chart of application software of each CPU 

 
The deviation logic for both feedwater flow and steam flow signals are the same and feedwater 
flow signals is used as another example.  If a drifting feedwater flow signal due to a sensor (or 
transmitter) failure is OOR, the signal will be detected by the OOR check of the deviation logic 
and the automatic control of the system can be maintained by using the remaining good 
feedwater flow signal.  If drifting sensor (or transmitter) signal is still valid, it will cause a 
deviation between redundant feedwater flow signals.  A large deviation will be detected by the 
deviation check of the deviation logic.  Because the backup CPU detects the same deviation, 
the feedwater flow signals are no longer considered usable. However, the system will switch to 
a 1-element control by using the level signals only and the automatic control (1-element) of the 
system can still be maintained. 
 
Similar to the case of level signal, if a drifting feedwater flow signal is due to internal failures of 
the main CPU, a failover to the backup CPU will occur.  The automatic control (3-element) of the 
system can be maintained. 
 
Note, switching to the 1-element control may occur at the same time with an initiating event 
(e.g., a reactor trip) if the cause is a physical process that is out of control, e.g., too much steam 
flow.  Such an initiating event should be studied separately since it is not due to failure of the 
DFWCS system.  
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The CPU application software also has deviation logic on the feedback signals of controller 
demand outputs.  The CPU that is in control does not have OOR checks on the feedback 
signals, but compares the MFV and FWP demand signals it calculates against the demand 
signals sent out by the controllers to their associated components; it will fail itself should the 
feedback demand signal from a controller differ significantly from the calculated demand, i.e., if 
the main CPU has a large deviation, then a failover to the backup CPU will take place.  
 
2.2 MFV Controller 
 
The MFV controller acts as an interface between the main and backup CPUs, and the MFRV 
positioners.  It also is a manual control station for the MFRV, i.e., the operators may take 
manual control of the MFRV using it.  The CPUs provide valve-position demand signals to the 
MFV controller that, in turn, relays a demand signal to the MFRV positioners.  Normally, the 
main CPU is in control and the MFV controller sends the demand from this CPU to the two 
MFRV positioners, PDI controller, CPUs, and CPUs of the other S/G.  The MFV controller 
receives the status of the CPUs from both the CPUs themselves and their associated WDTs.  If 
the main CPU fails and the MFV controller detects it, the MFV controller then uses the demand 
from the backup CPU as its output.  It also sends its automatic/manual (A/M) status to the 
CPUs, i.e., whether the controller is operating in automatic or manual mode.  There is a 
pushbutton control on the MFV controller allowing the operator to change the S/G-level setpoint 
manually; this controller can also display the S/G level. 
 
The MFV controller cannot detect its own internal failures, so it cannot prevent the effects of the 
failures.  It has a built-in WDT that may detect certain failures, but will only generate a flashing 
display on the screen of the controller to alert the operators in the main control room; it does not 
activate any automatic actions to mitigate the failures.  If the MFRV demand output of the 
MFV controller falls to zero, it will be detected by the PDI controller which then functions as the 
controller of the MFRV in manual control mode.  When any controller switches from automatic to 
manual control, the system changes its mode of operation from automatic to manual.  
Therefore, the automatic control function of the DFWCS is lost. 
 
If a failure causes the S/G-level setpoint to deviate, the CPUs will detect the deviation and revert 
to a built-in setpoint, i.e., the failure is automatically corrected.  It was assumed that any failure 
affecting the display of the level will not affect the function of the MFV controller, and hence, 
does not have to be included in the model.  Figure 2-3 depicts a high-level flowchart of the 
application software logic of the MFV controller. 
 
The controller clamps the input analog signals within their ranges (e.g., forces an OOR high 
signal to the maximum value), compares the demand signals from the CPUs to find out if, over a 
specified duration, they differ by more than a predefined threshold, and generates a deviation 
alarm when such a deviation is detected.  It also transmits the status of the main and backup 
CPUs back to the CPUs.  If the backup CPU detects the failure of the main CPU, then it 
switches from the tracking mode to the control mode by sending as output its calculated valve 
demand rather than the demand it receives from the MFV controller output.  If both CPUs are 
found to be failed by any controller, the controller will switch from automatic to manual control, 
and the system changes its mode of operation from automatic to manual.  The MFV controller 
enters the manual mode by sending the last good demand signal as the output; thereafter, the 
operators can use the push buttons in the controller to manually control feedwater by increasing 
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or decreasing the output.  In this case, the DFWCS is considered failed because automatic 
control is lost. 
 
 
 

 

 

 

 

  

    

  

  

  

 

 

 

 

 

 

 
Figure 2-3 High-level flowchart of MFV controller software 

 
2.3 FWP Controller 
 
The FWP controller processes the FWP demand signal in the same way as the MFV controller 
processes the MFRV demand signal; it receives pump demands and CPU status information 
from the CPUs and sends FWP demand to the turbine speed controller.  Two important 
differences between the FWP and MFV controllers are that the FWP controller does not send 
CPU status information to the CPUs, and does not have the PDI controller as a manual backup.  
Also, the FWP controller has an analog input from the FWP speed-bias potential meter mounted 
on the main control board.  The bias is added to the feedwater pump demand by the CPUs.  
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This control typically is used to adjust the fraction of the feedwater flow through each of the two 
pumps, as when starting or securing the second MFP, or matching the CPU’s output with that of 
the manual FWP controller before switching the controller from manual to automatic.  The FWP 
controller monitors the rate of change of the bias signal.  If that rate should exceed a preset 
limit, the FWP controller switches to manual mode, and a bias failure signal is sent to the BFV 
controller via Microlink(2), a network connecting the controllers. 
 
2.4 BFV Controller 
 
The BFV controller processes the BFV demand signal in exactly the same way as the MFV 
controller processes the MFRV demand signal, i.e., it receives BFV demands and CPU status 
information from the CPUs and sends the BFRV demand to the BFRV controller.  Two important 
differences with the MFV controller are that the BFV controller does not send CPU status 
information back to the CPUs, and it does not have the PDI controller as an automatic manual 
backup.  However, the PDI controller can become a manual backup when the operators actuate 
a control switch.  Additionally, the BFV controller provides alarms to the plant’s annunciator 
system and the plant computer, based on failure information received from the MFV and FWP 
controllers through Microlink.  This information includes status of deviation alarms from the 
CPUs, and status of the “health” of each CPU, i.e., healthy or failed.  During full-power operation 
of the plant, as is assumed in this study, the BFRV is normally closed; even if it fails open, the 
DFWCS is assumed to accommodate the failure.  Therefore, it is not necessary to include the 
BFV controller in the reliability model except possibly to account for its failure modes that can 
logically affect the system operation, that is, the failure modes associated with its A/M status.  
As discussed in Section 3.3.5, an explicit BFV controller model is not necessary because the 
failure of the A/M status can be included in the FMEA for the main CPU. 
 
2.5 PDI Controller 
 
Although the PDI controller is connected to both the MFV and the BFV controllers, it normally is 
on standby and does not directly undertake any control function during DFWCS automatic 
control.  It normally displays the differential pressure across the MFRV, and has a buffer for 
holding the outputs of the MFV and BFV controllers until the PDI controller is automatically or 
manually switched into the control loop.   
 
The MFV demand output is also sent to the PDI controller. The sum of the MFV demand output 
and the PDI demand output is the demand that will be sent to the MFRV.  During normal 
operation, the MFV demand output is not zero and the PDI controller output is zero 
(implemented by the software of the PDI controller).  If the PDI controller detects that the MFV 
demand output fails to zero, then the PDI controller will raise its output to the pre-failure MFV 
demand value, which will be added to the actual MFV demand output to support manual control 
of the MFRV.   
Because the PDI supports manual control of the MFRV after the demand from the MFV 
controller falls to zero, failures of the PDI do not affect the likelihood of the initiating event, 
i.e., loss of automatic control.  An exception is the failure mode of the PDI wherein it incorrectly 
takes over control of the MFRV from the MFV controller, thus causing a loss of automatic 
control because control then becomes manual.  As discussed in Section 3.3.5, an explicit 

                                                 
(2) Section 4.5.1 of NUREG/CR-6962 [Chu 2008a] provides a detailed description of Microlink.  A loss of the Microlink 

communication network affects alarm and time synchronization only, and does not affect control since CPUs and device controllers 
are asynchronously running.  Therefore, it is excluded from this study. 
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PDI controller model is not necessary because the false takeover by this controller can be 
included in the FMEA for the MFV controller. 
 
If the BFV controller fails such that its analog demand output drops to zero, a manual hand 
switch can be actuated so that the PDI controller can be used to manually control the BFRV.  
 
2.6 Other Components 
 
Sensors – Sensors provide analog signals through the transmitters to the CPUs.  There are five 
different types of signals, viz., feedwater temperature, feedwater flow, steam flow, neutron flux, 
and S/G level.  Each type of signal has two sensors and transmitters.  A CPU module converts 
the analog signals into digital signals via a MUX and an A/D converter.  As discussed in 
Section 2.1, the CPU software checks the validity of the digitized input signals (OOR, bypass, 
and rate of change), and any deviation between two signals of the same type.  Different 
deviation and validity logic processes each different signal type.  Since feedwater temperature 
signals are not used during the high-power mode of operation, they are not modeled.  Similarly, 
loss of the neutron flux sensors during this mode does not need to be modeled because it only 
inhibits a transfer to low-power mode.  Chapter 3 discusses the sensor failure modes. 
 
MFRV Positioners – The positioners are microprocessor-based current-to-pneumatic (I/P) 
devices that convert the input current signal from the MFV controller to a pressure signal, which 
positions the valve.  In general, the generic FMEA model of a digital module discussed in 
Chapter 3 is applicable to the positioners.  In this proof-of-concept study, the positioners were 
not modeled because sufficient information on their design and operation was not available. 
 
BFRV Positioner – The positioner is a microprocessor-based I/P device that converts the input 
current signal from the BFV controller to a pressure signal, which positions the valve.  For the 
same reason that there is no need to model the BFV controller because its failure is expected to 
be accommodated by the DFWCS, the BFRV positioner also does not need to be modeled. 
 
Turbine Controller – The turbine controller is a digital controller, receiving demand signals from 
the FWP controller and controlling the FWP accordingly.  In this study, the turbine controller was 
not modeled because sufficient information on its design and operation was not available. 
 
DC Power Supplies – Each CPU has its own DC power supply with its own 120v AC bus.  The 
four controllers are assumed to share two DC supplies, each fed by a different 120v AC bus. 
 
120v AC Buses – It is assumed that four different 120v AC buses supply power to the DC power 
supplies of the CPUs and controllers, two for the CPUs and two for the controllers. 
 
Heating, Ventilation, and Air Conditioning (HVAC) – In general, digital systems may fail if 
exposed to elevated temperature.  However, the dependency on HVAC was not considered to 
be significant because the DFWCS is located in the control room, and the effect of a loss of 
HVAC would take hours to develop and can be easily recognized and mitigated, e.g., by 
opening a door.  
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3. IDENTIFICATION OF INDIVIDUAL FAILURE MODES AND THEIR 
EFFECTS FOR THE DFWCS 

 
This chapter documents the failure modes and effects analysis (FMEA) of the digital feedwater 
control system (DFWCS) components and associated support systems.  An FMEA approach is 
used that was conceptualized in NUREG/CR-6962 [Chu 2008a], wherein the level of detail is 
driven by availability of generic component failure data.  Reliability Prediction Methods (RPMs), 
such as those in Military Handbook 217F [Department of Defense 1995], PRISM [Reliability 
Analysis Center (RAC) manual], and Telcordia [2001], are the only publicly available databases 
for digital components identified for this study.  Their weaknesses are that the estimates of 
failure rate may be inaccurate due to use of conservative assumptions and lack of applicable 
data [Gu 2007, Pecht 1994], and uncertainties are not considered.  Further, they use parts 
count and part stress methods that are applicable only to systems without redundancy.  
NUREG/CR-6962 [Chu 2008a] provides more discussion of the RPMs.  The FMEA approach of 
this study is at the level of detail of the data in the PRISM database, but also considers the 
different failure modes of the components.  It can support the development of more realistic 
models of digital systems.   
 
A digital system is envisioned as consisting of modules, each  comprising common generic 
components, such as an analog/digital (A/D) converter, a multiplexer (MUX), a microprocessor 
and its associated components (e.g., random access memory (RAM) and buses), a 
demultiplexer (DEMUX), and a A/D converter.  By considering the generic components, the 
approach can be applied to any digital module of digital systems.  In the FMEA, generic failure 
modes of the components are postulated in terms of the output signals associated with the 
components, and then the effects of the presupposed failures are determined by examining how 
the rest of the system processes the signals.  Chapter 6 describes the usage of the raw data of 
the PRISM database, along with other sources of failure parameters.  The failure parameters 
used in this study are generic, estimated using available data.  In general, data that is specific to 
the component type, application, and operating environment is more appropriate, but often 
unavailable.  The parameters in this report are presented for illustrative purposes only, i.e., to 
illustrate the approach and methodology of this study.  The parameter values presented are not 
appropriate for quantifying models that are to be used in support of decision-making 
(e.g., regulatory decisions or design changes). 
 
This chapter details the FMEA approach using the main central processing unit (CPU) module 
and the feedwater pump (FWP) controller module as examples.  Appendix A gives complete 
FMEA tables of the system.  Initially, the FMEA was carried out manually by reading various 
documents about the system, i.e., the system description, requirement specifications, hazard 
analyses, pseudo software (i.e., high level description of software using the software 
programming structure, but with the program details not included), and piping and 
instrumentation diagrams.  Soon thereafter, a simulation tool was developed to automate the 
process due to difficulties in manually relating different pieces of information in determining the 
effects of individual postulated failures.  This tool, discussed in Chapter 4, was based on the 
actual source code for the system and was employed to verify the results of the manual FMEA 
for individual failures.  In turn, the manual FMEA provided a check for the simulation tool.  
More importantly, the simulation tool was the only practical way to assess the effects of 
combinations of postulated failures and their sequences.  The FMEA, including the simulation 
tool, is a supporting analysis which plays an important role in developing the reliability model of 
the DFWCS, just like thermal-hydraulic analyses are used to determine the success criteria and 



3-2 

accident timing used in developing accident sequences of a PRA.  The simulation tool is 
especially important to digital systems due to the complexity of these systems and their use of 
software. 
 
3.1 General Issues with Current FMEAs for Digital Systems 
 
FMEA is a method used to identify the failure modes of components of a system and their 
subsequent effects on the system.  FMEAs, which usually are conducted at different levels of 
detail, can be used to support development of system reliability models.  The highest level of 
detail is the entire system.  The system can then be decomposed and FMEAs conducted at 
lower levels, e.g., subsystem levels.  The FMEA at a particular level is used to start the next 
lower level FMEA since the failure modes of one level indicate the effects of failure at its 
immediate lower level.  The process of decomposition may continue until the available 
information cannot support a more detailed analysis, or the purpose of the FMEA does not 
require more detail. 
 
While these discussions are applicable to all system FMEAs, existing generic issues with digital-
system FMEAs are (1) there is no well-established definition of the failure modes and their 
effects for digital systems and (2) there is no specific guidance of how to undertake FMEAs for 
digital systems.  Despite these existing issues several reliability studies of digital systems have 
been completed, e.g., those discussed in Chapter 8 of NUREG/CR-6962 [Chu 2008a].  In 
general, those studies were not conducted with sufficient detail for the approach described here; 
i.e., the failure modes of a component either were not explicitly defined or often were implied as 
“failures to perform its dedicated function,” so that the only identified effect of failure on the 
system is that the system has failed. 
 
Current digital systems are highly complicated.  Theoretically, all the relevant interactions 
between the components of a digital system should be captured by its reliability model.  In 
practice, these interactions are hard to capture without using appropriate FMEAs at proper 
levels.  Lacking a quality FMEA, it is difficult to create high-fidelity reliability models. 
 
In nuclear power plants, digital systems mainly are employed to control specific equipment or a 
process, or perform safety-related functions, such as tripping the reactor or actuating an 
emergency safety feature.  Therefore, differences in desired functions and the uniqueness of 
individual industrial processes require specific digital system design features.  This implies that 
the data for a specific digital system of interest generally are very scarce.  The collecting of 
suitable data or system-specific data is exacerbated by the fact that digital systems are likely to 
be upgraded frequently.  

 
Although the designs of digital systems can be very different from each other, usually they all 
use generic digital components, e.g., microprocessors and A/D converters.  As long as the 
impacts of the failure modes of these generic components on the associated signals are clear, 
these component failure modes are suitable for developing a reliability model based on the 
system design/configuration information.  If specific data are unavailable, then generic failure 
data for these components will have to be used in the model. 
 
Although there is not a standard list of failure modes for digital components, in general, the 
failure modes of a generic component can be defined in terms of its function(s).  Therefore, a 
consistent set of failure modes can be applied to components of the same type, even if they are 
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of different makes or models. Defining failure modes in such a way allows them to be used in 
reliability analysis as long as the associated failure data are available. 
 
3.2. A Generic Approach to the FMEAs of Digital Systems 
 
As discussed previously, it is preferable to carry out an FMEA at the level of generic 
components where reliability failure parameters are available because then the reliability model 
developed using the FMEA can be quantified using these failure parameters.  Another 
advantage of performing FMEAs of digital systems at that level comes from the fact that 
software runs on a microprocessor.  The software and hardware interaction, the fault-tolerance 
characterized by specific software design, and the interactions between digital systems and 
monitored/controlled processes are reflected by signals transmitted between generic 
components of the digital system; therefore, they can be potentially captured by the FMEA at 
this level.  For example, a specific failure mode of a MUX may generate a signal failure that the 
fault-tolerance design will detect and correct without failing the entire system. 
 
Accordingly, a generic approach to undertaking FMEAs of digital systems is proposed here.  
The entire digital system is decomposed into different levels of detail until the level of the 
generic components is reached.  The number of intermediate levels depends on the complexity 
of, and information available about, the particular system.  Failure modes are postulated at the 
lowest levels (in this case, at the level of generic components), and their effects propagated to 
higher levels until the impacts on the entire system can be determined. 
 
Figure 3-1 illustrates the FMEA process adopted in this study and applied to the DFWCS.  The 
key points in performing FMEAs are that (1) the status of the system eventually is determined 
by module signals that reflect the interactions between the modules and between the digital 
system and the plant and (2) these signals are directly affected by the status of the generic 
components of the modules.  Figure 3-1 depicts a pathway showing how the failure modes of 
generic components in a specific DFWCS module affect its status and that of the whole system.  
That is, the failure modes of generic components are used to evaluate their impacts on the 
module input and output (I/O) signals, which in turn determine the status of the entire system, 
i.e., whether or not a system failure takes place .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-1 Steps in the generic FMEA approach applied to the DFWCS 
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The DFWCS consists of: (1) the main and backup CPUs that essentially execute identical 
software and use the same control algorithms to calculate control demands based on input from 
the plant and (2) four controllers that receive the corresponding demand signals from the CPUs 
and forward them to valve positioners or the pump speed controller.  The interactions of the two 
CPU modules and four controller modules are determined from system design information. 
Each DFWCS module can be considered as a complete digital system with its own A/D input, 
processing, and A/D output.  Therefore, the major components of all modules include A/D 
converters, A/D converters, and microprocessors and their associated peripheral devices 
(e.g., RAM, read-only memory (ROM), and buses), MUXs, DEMUXs, and some analog I/O 
devices (e.g., current loop devices).  The major components of the modules are identified based 
on general architecture of digital systems.   
 
Effectively, the DFWCS is broken down into three levels.  The highest level is the entire DFWCS 
system, and the lowest level corresponds to the generic digital components.  The single 
intermediate level (the module level) includes the six modules. 
 
The failure modes at the system level are the failure effects of the modules; similarly, the failure 
modes at the module level are the failure effects of the components within the module.  It should 
be noted that system failure modes usually are defined in terms of the system’s functionalities 
and thus, are system specific.  The FMEA’s scope encompasses the internal failures of the 
system, but excludes external events, such as fire or seismic events. 
 
System-Level FMEA: 
  

For the system-level (top-level) FMEA, the scope of analysis included the entire 
DFWCS.  As described in Chapter 2, system failure is defined as the loss of automatic 
control while the plant is operating at full power. 

 
Module-Level FMEA: 
 

The next level of the FMEA included the major modules of the DFWCS, i.e., the main 
CPU, backup CPU, MFV controller, BFV controller, FWP controller, pressure differential 
indicating (PDI) controller, and some related dependencies, such as power supply and 
sensors.  The failure modes of these major modules are represented by the failures of 
their individual I/O signals (see more discussion in Section 3.3.1); their impacts on the 
behavior of the modules were analyzed.  It is noted that the reliability model of this study 
does not include the BFV controller and the PDI controller.  The reason for excluding 
them is discussed in Sections 2.4 and 2.5, as well as in Section 3.3.5. 

 
Major-Component-of-Module-Level FMEA: 
 

The lowest level FMEA analyzed the components inside the modules of the DFWCS.  
The controllers are application-specific integrated circuit (ASIC)-based devices.  
Since the major components of both controllers and CPUs are similar, they are analyzed 
in the same way. 

 
FMEAs at different levels are performed either by a “bottom-up” or a “top-down” approach.  In 
fact, the former approach is preferred and was adopted for the DFWCS because of difficulties in 
deductively identifying all possible causes of a given failure, as discussed in Chapter 4. 
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3.3 FMEAs of the DFWCS Using the Generic Approach 
 
In this study, steady-state operation of the system is assumed as the initial condition, and loss 
of automatic control is the system failure condition being modeled. The following are important 
assumptions made in performing the FMEAs: 
 
• All components, including those playing a standby role, e.g., the backup CPU, are 

operating at all times and can fail at any time. 
 
• Typically, a component can have more than one failure mode with different effects that 

must be modeled differently.  A component is assumed to fail only once in a given failure 
sequence, i.e., after one failure mode of the component has occurred, other modes 
cannot occur for the same component.  This assumption is believed to hold for most of 
the digital components, because available information on digital component failures 
seems to suggest so, i.e., the hardware failure databases reviewed in NUREG/CR-6962 
[Chu 2008a] did not provide any indication that additional failures may occur subsequent 
to an initial failure.  It would be unrealistic to assume that a component can always fail 
more than once.  It may be possible that a certain component fails to an intermediate 
failure mode before it reaches one of the other failure modes.  If recognized, such a 
sequence of failures can still be analyzed and modeled using the approach of this study 
as discussed in Section 4.2.7. 

 
• Due to lack of detailed design information, failures of different components are assumed 

to be independent of each other (regardless of how they are physically wired together).  
It is recognized NUREG/CR-6962 [Chu 2008a] that determining the effects of 
component failure modes in a real digital system could be much more complex than 
what this study assumes.  For example, the detailed connection of a digital output to a 
few digital inputs determines if failure of one input would affect other inputs, which 
suggests that cascading component failures may occur.  On the other hand, built-in 
mechanisms that may detect and isolate the cascading faults can also be designed, and 
included in evaluation of FMEAs as needed.  The independence assumption is 
introduced because, otherwise, detailed analyses of the designs at the circuit level, 
which are unavailable in this study, must be performed for individual components to 
determine how a specific failure of a component affects the connected components. 

 
• It is assumed that a drifting signal will eventually drift to out-of-range (OOR) high or low. 

As a result, in the model a drifting signal is always detected by the OOR check, and the 
system may continue to successfully operate, e.g., using the redundant signal (i.e., the 
signal that does not drift OOR).  This treatment may be non-conservative because, in 
reality, a drifting signal may not drift OOR, and may cause an undetectable failure that 
could result in system failure.  However, as discussed in Section 2.1, if a drifting signal is 
not detected by the OOR check, it still may be detected by the built-in deviation check of 
the application software.  Section 8.4.4 provides more discussion on the significance of 
the assumption used in this study regarding signals drifting OOR.   

 
• Ideally, for a control system, a thermal-hydraulic model of the plant would capture a 

drifting signal.  On the other hand, recognizing that such a failure mode may cause 
system failure, the failure mode can be modeled accordingly.  The only difficulty may be 
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estimating its failure rate.  More discussion on how to better model drifting signals is 
provided in Section 4.4. 

 
• If the failure effects of a component failure mode are unknown due to a lack of 

knowledge about that failure mode, e.g., loss of a basic input/output system (BIOS), it is 
conservatively assumed that the associated module is failed. In addition, if the 
component failure mode causes the undetectable failure of the main CPU or any of the 
controllers, the entire DFWCS is assumed to fail.  Undetectable failure of the backup 
CPU does not directly lead to loss of automatic control of the system (i.e., DFWCS 
failure), but the automatic control will be lost, if there is a need for failover from the main 
CPU to the backup CPU. 

 
3.3.1 FMEA of the Main CPU Module 
 
This section provides detailed illustrations of how failure modes are defined, and how they are 
propagated to the system level.  Appendix A gives complete FMEA tables of the DFWCS.  It is 
anticipated that FMEAs can be carried out for other digital systems using a similar process to 
that used for the examples covered in this section. 
 
Figure 3-2 shows the “internal” components of the main CPU module of the DFWCS, i.e., the 
components connected to the main CPU, and considered in the reliability model as its internal 
parts.   
 

 
 

Figure 3-2 Major components of the main CPU module 
 
In the diagram, analog backplanes and digital backplanes are buses that interface with all I/O of 
the main CPU module (for simplicity, analog backplanes A and B are combined in the figure).  
An Industry Standard Architecture (ISA) bus is used for the microprocessor of the main 
CPU module to interact with components connected to the backplanes.  A current loop device 
produces a current output (usually 0-20 milliamperes (mA)).  Each analog output is assumed to 
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use one current loop.  The figure does not depict the current loops for analog input signals, but it 
also is assumed that each analog input uses a current loop.  Other components are all standard 
in digital systems.  The arrows represent signal flows between different components. 
 
The failure modes for individual components of the main CPU module are summarized below, 
and the sources of the failure modes are cited.  Chapter 6 discusses the breakdown of 
component failure rates into their constituent failure modes through the use of failure-mode 
distributions. 
 
1. Hardware Common-Cause Failure (CCF): The hardware of the main CPU and backup 

CPU is identical.  The occurrence of a hardware CCF may fail the entire system. 
 
2. Software: The main and backup CPUs run the same software and a software CCF may 

occur and fail the entire system.  Two failure modes are considered: (1) the software on 
the main CPU seems to be running normally but sends erroneous output and (2) the 
software halts and hence, the CPU stops updating output. In addition to the CCFs of 
software, the above failure modes are also considered for the individual software running 
on the CPU modules considering the fact that the main and the backup CPU are in 
different modes (controlling and tracking modes) and might be running different portions 
of the software at any given time.  More information on the completeness of software 
failure modes is provided in Section 8.3. 

 
3. Microprocessor of the Main CPU: Failure modes considered are (1) the microprocessor 

seems to be running normally but sends erroneous output and (2) the microprocessor 
stops updating output [RAC 1997b].  

 
4. Associated Components of a Microprocessor, such as the ISA bus, RAM, ROM, BIOS, 

flash disk, buffer, and serial port:  It is conservatively assumed that each component has 
only one failure mode, i.e., a loss of the component, which entails the loss of the 
functions performed by the component. 

 
5. Address Logic: This is a generic digital component, also called a decoder.  A 

microprocessor uses the address logic to access the information transmitted on the 
backplanes.  The failure mode is assumed as a loss of the address logic, so that the 
microprocessor cannot access the intended information upon loss of the address logic. 

 
6. Voltage Input Module: The voltage regulators are assumed to be the major component 

of the voltage input module of the main CPU.  The failure modes are fail-high and fail-
low of the associated voltage input signal [RAC 1997b]. 

 
7. MUX and DEMUX: Failure modes of MUXs and DEMUXs are defined in Aeroflex [2005] 

in terms of the analog signals they process, which include a loss of one or all signals.  
No other failure modes of MUXs or DEMUXs were mentioned in Aeroflex [2005], and, 
therefore, a loss of signal is modeled in this study as signal fails low. 

 
8. A/D and Digital/Analog (D/A) converters: Both A/D and D/A converters are linear 

integrated circuits (ICs), i.e., the I/Os are proportional to each other; all analog I/Os of 
the same module share them.  The failure modes of an A/D converter include all bits of 
the A/D stuck at zeros, all bits stuck at ones, and a random bit-failure of the 
A/D converter [Meeldijk 1996].  The failure modes of a D/A converter include output fails 
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(drifts) high or low [Meeldijk 1996].  It is assumed that if the D/A converter output starts 
drifting, it will eventually reach the high or low detection threshold. 

 
9. Current I/O Modules: The major components of the current I/O modules are current 

loops that essentially are linear transmitters/receivers.  They also are linear ICs and their 
failure modes are current signal fails (drifts) high or low [Meeldijk 1996].  It is assumed 
that if the current starts drifting, it will eventually reach the high or low detection 
threshold. 

 
10. Digital I/O Modules: Digital I/O is implemented via a solid-state switch [Eurotherm 2000].  

The status of a digital signal is controlled by opening or closing the switch.  The solid-
state switch may fail to operate (fail as is) and spuriously operate (fails to the opposite 
state), as stated in RAC [1997b]. 

 
In summary, failure modes of components that carry analog signals include “signal fails high” 
and “signal fails low” (a loss of signal is modeled as signal fails low, as indicated above).  
Failures of drifting analog signals, such as random signals, are assumed to either drift high or 
drift low, i.e., the same as fail high or fail low. This assumption about drifting signals will be 
further discussed in Section 4.4.  Failure modes of components that carry digital signals include 
normally closed, fails closed (NCFC), normally closed, fails open (NCFO), normally open, fails 
closed (NOFC), and normally open, fails open (NOFO). These failure modes will cause the 
corresponding digital I/O signals of a module to fail to operate (NCFC and NOFO) or fail to the 
opposite state (NCFO and NOFC).  Impacts of the failure modes of other components on the 
modules were discussed above and in Table 3-1. 
 
It is noted that the failure modes of components discussed in these references may not perfectly 
match the component failure modes of the main CPU module of the DFWCS; nevertheless, they 
were the best approximation found at present.  For example, “no output” and “short-circuit” 
failures modes of a linear IC, such as A/D and D/A converters, are interpreted as “fails low.”  
 
Table 3-1 lists the failure modes of representative generic component types and their potential 
impact on the main CPU module and the DFWCS.  The impacts on the main CPU module and 
the system were determined by the FMEA performed manually in NUREG/CR-6962 
[Chu 2008a] and validated with the automated FMEA tool discussed in Chapter 4.  Impacts of 
some of the failure modes were postulated based on understanding of the function and design 
of the components, e.g., a loss of BIOS is assumed to be an undetectable failure that will fail the 
system.  The table does not provide a complete FMEA of the main CPU module; instead, there 
is an explanation of the meaning of the failure modes of generic component types, and an 
illustration of the way these failure modes propagate to the entire system via the intermediate 
module level. 
 
It is important to consider fault-tolerance features in each CPU module.  If the main CPU 
module fails and is detected by these features, the backup CPU module will assume control of 
the system.  This process is named a “failover to the backup CPU,” or simply a “failover.”  Each 
CPU module (main and backup) has available two types of fault-tolerance features.  The first 
one is failure-mode detection by the application software running on the CPU, and the second 
one is monitoring by an external watchdog timer (WDT).  Each feature can initiate a failover 
from the “controlling” CPU module (normally the main) to the “tracking” CPU module (normally 
the backup). 
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This study defined a system failure as the loss of automatic control of the DFWCS.  Based on 
the physical meaning of the failure modes of a specific component, their impact on signals 
associated with this component can be determined.  Thus, the effects of component failure on 
the main CPU module can be established, i.e., the failure modes of the main CPU, based on the 
system design information.  The impact of the main CPU failure modes on the entire system can 
then also be evaluated based on the system design information. 
 
Column 1 in Table 3-1 presents the failure modes for individual components (including software) 
in the main CPU module.  Column 2 (heading “Failure Mode Detected by”) indicates whether 
the failure modes can be detected by the application software or the external WDT, which 
represent fault-tolerance features of the main CPU.  The impacts of the failure modes on the 
main CPU module are indicated in Column 3. Column 4 establishes whether a failure mode 
triggers system failure.  Note that failures of different signals carried by a particular type of 
component, e.g., current loop, may have different impacts on the main CPU or the DFWCS 
system, i.e., the impact is signal dependent.  The actual failure effects for each specific 
component are provided in the FMEA tables of Appendix A.  Finally, Column 5 provides 
comments on each failure mode. 
 
Considering the failure modes of the main CPU, an undetectable failure will result in failure of 
the DFWCS (i.e., loss of automatic control) because the main CPU is assumed to be the 
controlling CPU.  A failure mode detectable by the application software indicates that the main 
CPU can detect the failure, so that the application software initiates a failover to the backup 
CPU, if needed.  A WDT detectable failure signifies the detection of the failure mode by the 
external WDT of the main CPU, and the resulting failover to the backup CPU.  For a failure 
mode of a component that does not impact the main CPU, e.g., a loss of serial port, the main 
CPU will continue to carry out the DFWCS control function.  If a failure mode does not cause the 
main CPU module to fail, this module will continue to operate with a latent failure present, 
i.e., a failure that may subsequently lead to failure of the DFWCS if combined with other 
component failures. 
 
The failure rates of these major components are required to quantify the digital system reliability 
once the reliability model is created.  Another important parameter is the distribution of the 
component failure modes.  Usually, the failure rate of a digital component includes all its failure 
modes.  Because different failure modes may have different effects, that distribution, i.e., the 
distribution of the different failure modes of a component with respect to the “total” failure rate of 
the component, also is needed.  Accordingly, the “total” failure rate must be split into the 
individual failure rates of the component failure modes.  This study mainly adopted the failure 
mode distributions of different components described in Meeldijk [1996] and RAC [1997b].  
Chapter 6 discusses in detail the reliability data of digital systems and components.  
The approach described above for the main CPU module was also employed to analyze other 
modules of the DFWCS.  These analyses are summarized below. 
 
3.3.2 FMEA of the Backup CPU Module 
 
The hardware and the software of the backup CPU module are identical to those of the main 
CPU module.  During plant normal operation, the main CPU module is in the “controlling” mode, 
i.e., it is controlling the components associated with the DFWCS, such as the main feedwater- 
regulating valve (MFRV) and FWP, and the backup CPU module is in “tracking” mode.   
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

Software CCF - - - Yes 

Hardware CCF - - - Yes 

It is assumed that the CCFs 
of software or hardware will 
fail the entire system.  
Therefore, detection of the 
failure is not an issue. 
Section 6.3 describes how 
CCFs are modeled in this 
study. 

The software on 
the main CPU 
seems to be 
running normally 
but sends 
erroneous output 

No No Undetectable 
Failure 

Yes This is considered an 
undetectable failure of the 
main CPU and will fail the 
entire system. 

Software halt 
(CPU stops 
updating output) 

No Yes WDT Detectable 
Failure 

No When the WDT no longer 
receives a toggling signal, it 
will cause a failover of the 
main CPU to the backup 
CPU provided that the 
status of the WDT is 
normal. 

The 
microprocessor 
seems to be 
running normally 
but sends 
erroneous output 

No No Undetectable 
Failure 

Yes This is considered an 
undetectable failure of the 
main CPU and will fail the 
entire system. 

The 
microprocessor 
stops updating 
output 

No Yes WDT Detectable 
Failure 

No When the WDT no longer 
receives a toggling signal, it 
will cause a failover of the 
main CPU to the backup 
CPU provided that the 
status of the WDT is 
normal. 
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

Loss of ISA bus No Yes WDT Detectable 
Failure 

No The input and output of the 
CPU rely on the ISA bus, 
and both the application 
software and the WDT can 
potentially detect this loss 
of the ISA bus.  However, it 
is assumed that this CPU 
failure is detected by the 
WDT if its status is normal 
because the application 
software may be unable to 
send out any alarm or 
signal regarding failure of 
the main CPU due to the 
loss of both the input and 
output of the CPU. 

Loss of RAM No Yes WDT Detectable 
Failure 

No Application software has to 
be loaded into RAM to run 
it.  Thus, the application 
software cannot run upon a 
loss of RAM. It is assumed 
that the WDT can detect 
the loss of RAM because 
the software of the main 
CPU will no longer run and 
send out toggling signals. 

Loss of BIOS No No Undetectable 
Failure 

Yes The input and output 
operations of the CPU rely 
on BIOS routines. 
However, it is unknown 
whether a loss of BIOS will 
cause a complete loss (or a 
partial loss) of inputs to and 
outputs from the application 
software and CPU; hence, 
the failure is conservatively 
assumed to be 
undetectable. 

Loss of flash disk No No Undetectable 
Failure 

Yes The failure effects of a loss 
of the flash disk that stores 
software are unknown.  The 
failure is conservatively 
assumed to be 
undetectable. 
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

Loss of serial port Yes No Continued 
Operation 

No Communication between 
the main CPU and power 
distribution unit is via a 
serial port.  From plant 
information, the CPUs send 
data to the power 
distribution unit for display 
and the setpoint can be 
changed there; the change 
then is sent to the CPU via 
the serial port.  Apparently 
setpoints are changed 
offline.  Therefore, a loss of 
the serial port will not affect 
main CPU normal 
operation. 

Fail (drift) high or 
fail (drift) low of 
current loop 
device 

Signal 
dependent 

No Signal 
Dependent 

Signal 
dependent 

The current loop is a linear 
device that may fail high or 
low, resulting in the 
associated I/O signal failing 
high or low.  Fail low 
includes failures of fail to 
zero.  The failure modes of 
the current loop device 
cause the associated signal 
to fail high or low.  The 
main CPU processes 
different signals differently.  
For example, failure of level 
signals will cause the 
backup CPU to take over 
control from the main CPU 
based on the software 
logic.  Further analysis is 
needed for individual 
signals to determine their 
impacts on the main CPU 
module and/or the DFWCS. 
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

Fail (drift) high or 
fail (drift) low of 
voltage signal 

Signal 
dependent 

No Signal 
Dependent 

Signal 
dependent 

The voltage regulator is a 
major component for the 
voltage signal I/O.  It may 
fail high or low, and 
effectively, causes the 
voltage signals to fail high 
or low.  Again, further 
analysis of individual 
signals is needed to 
determine their impacts on 
the Main CPU module 
and/or the DFWCS. 

Loss of all signals 
from MUX 

Yes No Application 
Software 
Detectable 
Failure 

No Loss of a signal means that 
the signal fails low.  All 
analog inputs share the 
MUX.  This failure mode 
indicates that all analog 
signals related to this MUX 
fail low. 

Loss of one signal 
from MUX 

Signal 
Dependent 

No Signal 
Dependent 
(Application 
Software 
Detectable, 
Undetectable, or 
Continued 
Operation (with 
Latent Failure) 

Signal 
dependent 

The failure mode indicates 
a loss of a specific analog 
signal.  The responses to 
this failure depend on the 
specific signals. 

Loss of all signals 
from DEMUX 

Yes (but 
cannot be 
corrected by 
the CPUs) 

No Undetectable 
Failure 

Yes 1. The DEMUX is similar to 
the MUX. It is shared by all 
analog outputs.  Loss of a 
signal means that the 
signal fails low. 

2. Based on the system 
design information, this 
failure will cause a loss of 
automatic control, which 
this study defines as a 
system failure. 

Loss of one signal 
from DEMUX 

No No Signal 
Dependent 
(Undetectable 
Failure or 
Continued 
Operation) 

Signal 
Dependent 

1. The failure mode 
indicates a loss of a 
specific analog signal. 

2. Responses to this failure 
depend on the individual 
signals. 
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

All 16 bits of A/D 
converter stuck at 
zeros or ones  

Yes No Application 
Software 
Detectable 
Failure 

No 1. Both A/D and 
digital/analog converters 
are linear ICs.  The A/D 
converter is shared by all 
analog inputs, and its loss 
will entail the loss of all 
analog inputs. 

2. Stuck at zeros or ones 
indicates that all analog 
signals fail low or high.  The 
main CPU software can 
detect failures of some 
input signals, and then 
cause a failover. 

Random bit failure 
of A/D converter 

No No Undetectable 
Failure 

Yes Although the main CPU 
software can detect some 
random failures, they are 
conservatively assumed to 
be undetectable and will fail 
the whole system. 

Output of 
digital/analog 
converter fails 
(drifts) high 

Yes No Application 
Software 
Detectable 
Failure 

No 1. The digital/analog 
converter is shared by all 
outputs of the main CPU, 
and its loss will result in a 
loss of all outputs. 

2. This failure will cause a 
failover to the backup CPU 
by the main CPU 
application software. 

Output of 
digital/analog 
converter fails 
(drifts) low 

Yes (but 
cannot be 
corrected by 
the CPUs) 

No Undetectable 
Failure 

Yes This failure will cause a 
loss of automatic control of 
the DFWCS, defined in this 
study as a system failure.  

Loss of address 
logic 

No No Undetectable 
Failure 

Yes The address logic also is 
called a decoder.  Although 
some failures of address 
logic might be detected by 
the application software, it 
is conservatively assumed 
that a loss of the address 
logic will result in an 
undetectable failure of the 
main CPU and fail the 
system. 
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Table 3-1 Illustrative examples of performing FMEA at component level of the Main 
CPU module. 

Failure Mode Detected by Failure Mode 

Application 
Software 

WDT 

Failure Effects 
on Main CPU 

Fails the 
DFWCS? 

 

Comments 

Loss of output 
buffer 

No Yes WDT Detectable 
Failure 

No All digital I/Os rely on 
buffers. Loss of the output 
buffer will cause the main 
CPU to fail to send out a 
toggling signal to the WDT.  
A WDT-caused failover to 
the backup CPU will be 
initiated. 

Loss of input 
buffer 

No No Undetectable 
Failure 

Yes It is conservatively 
assumed that a loss of the 
input buffer causes an 
undetectable failure (i.e., a 
toggling signal is still sent 
to the WDT) and fails the 
system. 

Failure to operate 
or false operation 
of solid-state 
switch 

No Signal 
Dependent 

Signal 
Dependent 

Signal 
Dependent 

A solid-sate switch carries 
a digital I/O signal of the 
main CPU. Its failure to 
operate indicates that the 
digital signal fails as is.  
False operation indicates 
that the digital signal fails to 
the opposite state.  
Therefore, based on the 
normal positions of the 
solid-state switches defined 
for each digital signal, the 
impacts of these failure 
modes are evaluated using 
the software and system 
design information. 
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Tracking is accomplished in the backup CPU by setting its output to the output from the 
controllers.  Tracking facilitates a smooth transition of control when the backup CPU takes over 
control after the detection of a failure in the main CPU module. 
 
The description of the main CPU module in Section 3.3.1 applies to the backup CPU module, 
and they both have the same hardware architecture (Figure 3-2).  An FMEA of the backup CPU 
module was performed similarly to that for the main CPU module, illustrated in Table 3-1.  
Since the backup CPU module is in tracking mode, all of its failure modes are latent failures 
except for CCFs.  Appendix A presents the detailed FMEA of the backup CPU module. 
 
3.3.3 FMEA of the FWP Controller Module 
 
The FWP controller provides an interface between the main and backup CPUs and the FWP 
speed controller. It accepts FWP demand signals from both the main and backup CPUs.  The 
FWP controller forwards one of the FWP demand signals (analog signals) from the CPUs based 
on their status.  The operator can use the FWP controller as a manual control station.  Other 
functions of the FWP controller may include monitoring, which is unrelated to the control of the 
DFWCS. 
 
Figure 3-3 shows the major components of the FWP controller, and indicates that they are 
similar to those in Figure 3-2 for the main CPU module.  The major differences between 
Figures 3-3 and 3-2 is that the FWP controller is an ASIC-based device and does not have 
analog and digital backplane buses that might accommodate more I/O devices.  The FMEA for 
the FWP controller module is carried out similarly to that for the main CPU module. 

Figure 3-3    Components of the FWP controller module 

Since the FWP controller is ASIC-based, some specific ASIC-related failure modes were 
analyzed.  They were the failure modes identified in the hazard analysis of the nuclear power 
plant.  In addition to the component failure modes described in Section 3.3.1, the ASIC-related 
failure modes of the controller include the following: (1) Loss of power on (PWR_ON) signal that 
will halt the processor; (2) failure of the display (DISP)-controller, or the DISP-memory is visible 
in the display (this is only display-related and does not affect controller operation); (3) a fault in 
the 8051 interface to the display or the 1K dual-ported display memory, causing no writes to 
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display memory (again, this is only display-related and does not affect controller operation); 
(4) clock reference failure that will fail the controller; (5) a programmable array logic (PAL) error, 
which will fail some functions performed by software in the RAM; (6) a loss of RS-485 Jabber 
(RS-485 Jabber is not used to communicate control-function-related information and does not 
affect controller operation); and (7) a loss of power supply to the controller, which will cause its 
operation to fail. 
 
Many failure modes of the internal components lead to a failure of the FWP controller, and, 
therefore, a failure of the system due to a loss of automatic control of the DFWCS.  Some of the 
FWP controller failure modes related to the backup CPU are latent failures and do not directly 
affect the operation of the FWP controller.  For example, if the demand input from the backup 
CPU fails, the normal FWP controller function will remain unaffected unless the main CPU has a 
problem.  A few FWP failure modes lead to a failover from the main CPU to the backup CPU 
and more details can be found in Appendix A. 
 
Table 3-2 summarizes the FWP controller FMEA.  Again, the purpose of the table is to illustrate 
how to perform FMEAs using example failure modes.  The detailed version is given in 
Appendix A. 
 
3.3.4 FMEA of the MFV Controller Module 
 
The hardware of the MFV controller is identical to that of the FWP controller shown in 
Figure 3-3.  An FMEA of the MFV controller is performed similarly to that shown in Table 3-2; 
hence, it is not discussed here.  Appendix A details the FMEA of the MFV controller. 
 
Many failure modes of the internal components lead to failure of the MFV controller, and 
therefore, to loss of automatic control of the DFWCS.  Some MFV controller failure modes 
related to the backup CPU do not directly affect MFV controller operation, and a few MFV failure 
modes lead to a failover from the main CPU to the backup CPU.  For example, if the demand 
input from the backup CPU fails, the normal MFV controller function will remain unaffected 
unless the main CPU has a problem.  These failures are latent failures. 
 
In one situation, the FMEA revealed that the system response to a postulated failure mode 
differs significantly from that indicated by the plant’s hazard analysis.  When a failed-low MFV 
demand signal from the main CPU to the MFV controller occurs, the PDI controller should 
immediately sense the zero output from the MFV controller and take over control by becoming  
the manual control station for the MFRV.  This constitutes a loss of the system (i.e., loss of 
automatic control), contrary to the description in the plant’s hazard analysis which stated that 
this failure would lead to a failover from the main CPU to the backup CPU, i.e., not a system 
failure.  The hazard analysis does not seem to correctly consider the timing of the associated 
events.  When the failure first occurs, the MFV controller would pass along the failed signal.   
 
The failed signal will be sensed by the PDI controller and sent back to the main CPU by 
feedback.  The PDI controller senses the failed signal immediately, while the feedback to the 
main CPU leading to a failover has a one-second delay.  Therefore, the PDI controller should 
take over control before there is an opportunity for the failover to the backup CPU. 
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Table 3-2    Illustrative examples for performing FMEA at component level of the FWP 
controller module. 

Failure Mode 
Failure 
Mode 

Detected 
by WDT 

Failure 
Effects on 

FWP 
Fails the 
DFWCS? Comments 

Software CCF No Failed Yes 

Hardware CCF No Failed Yes 

It is assumed the CCFs of software or 
hardware will cause undetectable 
failure of the FWP controller and fail the 
entire system. 

The software on the FWP 
controller seems to be 
normally running but 
sends erroneous output 

No Failed Yes This is considered an undetectable 
failure of the FWP controller and will fail 
the entire system. 

Software halt (processor 
stops updating output) 

Yes 
(flashing 
display) 

Failed Yes When the WDT no longer receives 
toggling signal, a flashing display will 
result. 

The FWP microprocessor 
seems to be normally 
running but sends 
erroneous output (60% of 
total failure) 

No Failed Yes This is considered an undetectable 
failure of the FWP controller and will fail 
the entire system. 

The microprocessor 
stops updating output 
(40% of the total failure) 

Yes 
(flashing 
display) 

Failed Yes When the WDT no longer receives 
toggling signal, it will cause a flashing 
display. 

Loss of PWR_ON Signal Yes 
(flashing 
display) 

Failed  Yes The WDT is out due to the loss of the 
reset signal from PWR_ON.  The 
processor will halt.  The control task 
stops updating outputs, and the display 
task stops updating display memory.  
All the contact outputs will be at the 
“Open” state.  Analog outputs will go to 
zero mA. 

Failure of the display 
controller or the display 
memory is visible in the 
display 

Loss of 
display 

Continued 
Operation  

No This isolated failure has no effect on 
operation and probably should be 
excluded from modeling. 

A fault in the 8051 
interface to the display or 
the 1K dual-ported 
display memory which 
causes no writes to 
display memory  

Loss of 
display 

Continued 
Operation  

No This isolated failure has no effect on 
operation and probably should be 
excluded from modeling. 
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Table 3-2    Illustrative examples for performing FMEA at component level of the FWP 
controller module. 

Failure Mode 
Failure 
Mode 

Detected 
by WDT 

Failure 
Effects on 

FWP 
Fails the 
DFWCS? Comments 

Clock reference failure No Failed Yes All functions of the ASIC will stop. The 
core block (8051 processor) will fail to 
execute the software.  Both the WDT 
and display will freeze.  Analog outputs 
will drift because the WDT has not 
expired. 

Loss of internal bus  No Failed Yes The I/O of the controller relies on the 
internal bus.  Hence, its loss precludes 
any processing. 

Loss of RAM No Failed Yes Software must be loaded into RAM to 
run it.  Thus, the application software 
cannot run upon a loss of RAM. 

Loss of BIOS No Failed Yes The I/O operations of the FWP 
controller rely on BIOS routines.  A loss 
of BIOS is conservatively assumed to 
fail the controller and the entire system. 

PAL Error No Failed Yes The failure effects of a loss of the PAL 
may cause loss of some of the 
functions performed by the software 
stored in RAM.  This failure is 
conservatively assumed to fail the RAM 
and the controller. 

Loss of RS-485 Jabber A DFWCS 
trouble 
alarm will 
be 
actuated. 

Continued 
normal 
operation 

No 53MC5000 does not use the 
communication network to transmit 
control-related information.  The failure 
effects may include loss of warning 
messages or date and time. 

Current loop device fails 
(drifts) high or fails (drifts) 
low 

No Signal 
Dependent 

Signal 
Dependent 

1. Both I/O signals can be in the form of 
current.  Failures of different signals 
have different impacts on the FWP 
controller and the system. Further 
analysis is needed for individual signals 
to determine their impact on the FWP 
controller module and the DFWCS. 

2. Current signals also may drift.  It is 
assumed that they eventually will drift 
either high or low. 
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Table 3-2    Illustrative examples for performing FMEA at component level of the FWP 
controller module. 

Failure Mode 
Failure 
Mode 

Detected 
by WDT 

Failure 
Effects on 

FWP 
Fails the 
DFWCS? Comments 

Voltage signal fails (drifts) 
high or fails (drifts) low 

No Failed Yes The only voltage signal is the bias 
signal from the potentiometer.  The 
FWP controller monitors the rate of the 
bias change, and should a pre-set limit 
be exceeded, the FWP controller 
switches to manual, which is a loss of 
automatic control and a system failure 
according to the definition in this study. 

Loss of all signals from 
MUX 

No Failed Yes 1. The MUX is shared by all analog 
inputs.  Loss of a signal means that the 
input signal becomes zero.  

2. A loss of all signals indicates that the 
speed-demand signal ANI0 from the 
main CPU also will fall to zero.  The 
failed signal will be forwarded to the 
turbine controller.  The turbine controller 
will detect the failure and maintain 
pump speed at the pre-failure value. 
This is considered a system failure 
because of the loss of automatic 
control. 

Loss of one signal from 
MUX 

No Signal 
Dependent 

Signal 
Dependent 

1. This failure mode indicates a loss of 
a specific analog signal. 

2. Responses to this failure depend on 
individual signals. 

All 16 bits of A/D 
converter stuck at zeros 
or ones 

No Failed  Yes 1. Since all analog outputs share the 
A/D converter, its loss will entail the 
loss of all AI.  If all bits of the A/D 
converter are stuck at zeros (or ones), 
all analog inputs are assumed to fail low 
(or high). 

2. The failed speed-demand signal will 
be sent to the FWP speed controller 
that will detect the fail-to-low (or fail-to-
high) signal, and maintain the FWP 
speed at its pre-failure value.  This is 
considered a system failure because of 
the loss of automatic control. 

Random bit failure of A/D 
converter 

 

No Failed  Yes Although the processor might detect 
some random failures, they are 
conservatively assumed undetectable. 
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Table 3-2    Illustrative examples for performing FMEA at component level of the FWP 
controller module. 

Failure Mode 
Failure 
Mode 

Detected 
by WDT 

Failure 
Effects on 

FWP 
Fails the 
DFWCS? Comments 

Output of A/D converter 
fails high or low 

No Failed  Yes 1. Since all analog outputs share the 
A/D converter, its failure will generate a 
failure in all outputs. 

2. Failure of the A/D indicates a failure 
of the ANO0 demand signal.  The failed 
signal will be sent to the FWP speed 
controller that will detect the fail-to-low 
(or fail-to-high) signal, and maintain the 
FWP speed at its pre-failure value.  
This is considered a system failure 
because of the loss of automatic 
control. 

Drifting output of A/D 
converter  

No Failed  Yes It is assumed that the drifted input will 
eventually drift high or low, and the 
effects of failure are the same as fail 
high or fail low, as shown above. 

Loss of all output signals 
from DEMUX 

No Failed  Yes Loss of a signal means that the signal 
becomes zero.  The DEMUX is shared 
by all analog output signals. 

Loss of one output signal 
from DEMUX 

No Signal 
Dependent 

Signal 
Dependent 

1. This failure mode indicates a loss of 
a specific analog signal. 

2. Responses to this failure depend on 
the individual signals. 

Loss of address logic No Failed  Yes Loss of address logic is conservatively 
assumed to be undetectable. 

Loss of output buffer No Failed Yes All digital I/O requires the buffer. 

Loss of input buffer No Failed Yes It is conservatively assumed that a loss 
of the input buffer will cause a loss of all 
digital input, and the FWP controller will 
fail without being detected. 

Failure to operate or false 
operation of solid-state 
switch 

No Signal 
Dependent  

Signal 
Dependent 

A solid-state switch carries a digital I/O 
signal.  See the discussion of this 
failure mode for the main CPU module. 

Loss of power supply No Failed Yes 1. All analog outputs fail to zero. 

2. All digital outputs fail to open status.  
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3.3.5 Considerations on the BFV Controller and the PDI Controller in the 
Reliability Model 

 
As discussed in Section 3.2, the BFV controller and the PDI controller are not included in the 
reliability model of the DFWCS.  This section discusses the reasons for their omission. 
 
The BFV controller constitutes the interface between the main and backup CPUs and the 
bypass feedwater-regulating valve (BFRV).  Similar to the MFV controller or the FWP controller, 
the BFV controller receives the analog demand signals from the CPUs, and passes one of them 
to the positioner of the BFRV based on the status of the CPUs.  The BFV controller can be in 
automatic or manual mode, and status information from the BFV controller will be sent back to 
both CPUs.  The major signals from the CPUs to the BFV controller are the demand signal and 
the CPU status signals. 
 
The reliability study of the DFWCS focuses on its operation in the high-power mode.  In this 
mode of operation, the BFRV, controlled by the BFV module, is normally closed.  Due to the 
small capacity of the BFRV, even if the BFV controller fails in such a way that the BFRV is fully 
open, the DFWCS is expected to easily compensate for this additional feedwater flow.  Thus, 
the failure of analog demand signals from the BFV controller is not expected to significantly 
affect DFWCS operation. 
 
This study defined the loss of automatic control by the DFWCS as a system failure.  Therefore, 
the failure of Automatic/Manual (A/M) status output from the BFV should be evaluated.  
According to the control algorithm of the main and backup CPUs, when the BFV A/M status 
becomes manual(3), demand signals received by the CPUs from the MFV and BFV controllers 
will be sent back to these controllers, respectively.  This implies a loss of automatic control of 
the DFWCS.  Hence, the failure of the signal containing the BFV A/M status is relevant to the 
reliability model. The failure of this BFV A/M status can be accommodated easily in the failure 
analysis of the BFV A/M status input to the CPUs.  Therefore, an explicit BFV controller model is 
not necessary because the failure of the A/M status can be included in the FMEAs for the 
CPUs. 
 
The PDI controller normally displays the differential pressure across the MFRV.  Its more 
important function is to monitor the demand output from the MFV controller.  If this demand fails 
to zero, the PDI automatically takes over control from the MFV controller, and becomes a 
manual control station for the MFRV. 
 
One concern about the PDI controller is whether it can successfully take over the MFV controller 
when required to do so.  However, according to the definition of system failure used in this 
study, since the PDI controller must be manually controlled after taking over the MFV controller 
when the MFV demand fails to zero, the takeover of the PDI already denotes a system failure 
                                                      

(3) For the controlling (Main) CPU, there are two types of tracking in high-power mode: (1) In case of detection of deviation 
of some signals by the CPU (e.g., the MFV controller demand feedback to the controlling CPU) or indication of CPU failure by the 
MFV controller, the CPU will enter a tracking mode.  In this case, the digital outputs that indicate high-power mode, lower power 
mode, bypass mode, and override mode all will become false.  The CPU will send demand signals received from MFV, BFV, and 
FWP back to these controllers.  (2) If the A/M status of the MFV (or FWP) becomes manual, the CPU will send the MFV (or FWP) 
the demand signal received from the MFV (or FWP) back to the MFV (or FWP) controller.  If the BFV controller becomes manual, 
the demand signals received from the MFV and the BFV will be sent back to them, respectively.  In both tracking modes, the digital 
status signal of the CPU will not change, e.g., the MFV controller cannot detect that the Main CPU is failed when it is tracking. 
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due to a loss of automatic control.  Therefore, no matter whether the PDI can take over 
automatically or not, a system failure is considered to have occurred when the MFV demand 
output fails to zero.  Whether the PDI controller takes over or not is no longer relevant in this 
study. 
 
A second concern is a false takeover of the MFV controller by the PDI when the MFV is 
normally controlling.  This action by the PDI controller will very likely open the MFRV to the 
maximum, causing an overflow of feedwater and failing the system.  A false takeover may be 
either due to the PDI incorrectly detecting a loss of the MFV demand, or the demand output 
from the PDI (which will be summed with the MFV demand output) fails to high.  Therefore, the 
impacts of false takeover by the PDI controller are relevant.  This failure also can be 
incorporated into the failure analysis of the MFV controller’s demand output since the failure of 
this input produces the same results. 
 
Given the definition of system failure used by this study and that the DFWCS is considered to 
be in the automatic high-power mode, the BFV controller and the PDI controller do not 
necessarily need to be modeled to evaluate the reliability of the DFWCS, provided that the most 
important failure impacts of their failures, discussed above, are included in the FMEAs of other 
modules.  These FMEAs then can be used to construct the reliability model of the DFWCS.  
This issue is discussed further in Section 4.4. 
 
3.3.6 FMEAs of Other Components 
 
Sensors and Transmitters 
 
The software of a CPU determines whether sensor inputs are valid by checking for OOR or high 
rate of change conditions, and uses different logic to process signals accordingly, depending on 
the type of sensors and the validity status of the signals.  This represents the capability of the 
CPU to detect abnormal conditions of the sensor signals.  For example, if the two feedwater 
flow signals are valid, then they are compared to determine if they deviate significantly.  If there 
is no large deviation, then the average value of the two signals is used in control calculations.  If 
one signal is invalid, then the status of the other CPU is checked. If the status of the backup 
CPU remains good, the main CPU will fail itself and let the backup CPU take over because the 
automatic control can still be maintained if the invalidity of the signal is caused by certain 
failures in the main CPU, not by the sensor or the transmitter. 
 
In some cases, a signal failure may not be detected as being invalid by the CPUs, resulting in a 
large deviation between the two redundant signals.  Since the CPUs share the sensors and 
transmitters, both CPUs will register a large deviation, no failover will take place, and control will 
continue with incorrect sensor input.  Therefore, the system is likely to have failed.  In this study, 
failure of a sensor is assumed to be detectable by the CPU’s OOR detection capability, and the 
signal is considered invalid.  From this assumption, individual sensor or transmitter failures may 
cause a failover, but will not cause a system failure.  This will be further discussed in Chapter 4. 
 
Feedwater Flow Sensor and Transmitters 
 
Loss of one sensor or transmitter, i.e., signal fails high or low (note a loss of the signal would be 
treated as the signal fails low), will cause the main CPU to failover, and the backup CPU should 
use the signal from the remaining transmitter after taking control.  Loss of both of feedwater flow 
sensors or transmitters will switch the control from 3-element to 1-element control. 
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Feedwater Temperature Sensors and Transmitters 
 
Feedwater temperature signals are not used during high-power operation; therefore, their 
failures do not affect the system.  Accordingly, the reliability models do not cover failure of such 
sensors and transmitters.  
  
Steam Flow Sensors and Transmitters 
 
Loss of one sensor or transmitter will cause the main CPU to failover, and the backup CPU 
should take over control and use the remaining signal.  Loss of both sensors or transmitters will 
switch the control from 3-element to 1-element control. 
 
Neutron-Flux Sensors and Transmitters 
 
During full power, loss of either sensors or transmitters will be detected, the high-to-low power 
transfer will be inhibited, and otherwise, the system will continue its operation.  Loss of one 
sensor or transmitter has no effect on system operation. 
 
Steam Generator Level Sensors and Transmitters 
 
Loss of one sensor or transmitter will be detected by both CPUs, and control will continue with 
the remaining signal.  Therefore, loss of both signals is required to fail the system. 
 
DC Power Supplies and 120v AC Buses 
 
The main and backup CPUs each have a dedicated direct current (DC) power supply powered 
by a 120v alternating current (AC) bus, while the controllers share two redundant DC power 
supplies each powered by a 120v AC bus.  For the CPUs, loss of power supply is indicated by a 
CPU digital output.  Insufficient information is available to determine how this indication is 
implemented after a loss of power supply although the possible mechanism can be postulated.  
This digital output has two failure modes, i.e., failure to provide loss of power signal and false 
generation of loss of power signal.  In this study, in order to reduce the total number of failure 
modes that need to be analyzed, the failure of the CPU power supplies was modeled by adding 
its failure rate to the latter failure mode, since both of these will have the same effect on system 
operation.  Likewise, the CCF of the DC power supplies and AC buses for the CPUs are 
included in the CPU CCF event.  For the controllers, common-cause failures of the DC power 
supplies are assumed to be dominant and are explicitly included in the reliability model.  
 
MFV Positioners and Turbine Controller 
 
Both the MFV positioner and the turbine controller are digital devices.  For example, the MFV 
positioner is a microprocessor-based current-to-pneumatic device, and converts the input 
current signal from the MFV controller to a pressure signal that positions the MFRV.  Its failure 
would result in a system failure.  However, these devices were not modeled in this study due to 
insufficient available information on their design and operation. 
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3.4 Discussion and Limitations of the Generic Approach 
 
The summarized FMEAs of the DFWCS modules and other DFWCS components afford several 
observations: (1) many failure modes of components of modules will not fail the system; (2) the 
impacts of different failure modes for a specific component may be very different from each 
other; (3) the failure impacts of the same failure modes of the same components on different 
modules can be significantly different; and (4) fault-tolerance features implemented via 
specifically designed hardware (e.g., an external WDT) or hardware redundancy (e.g., the main 
CPU and the backup CPU), or application software, play a vital role in determining the effect of 
each component failure mode on its respective module and on the entire system.  Note, 
however, that fault-tolerance features may also have a negative impact on the reliability of 
digital systems if they are not designed properly or fail to operate properly. 
 
The proposed FMEA approach and its implementation make the following simplifying 
assumptions: (1) drifted analog signals are assumed to eventually drift high or low and can be 
merged with the failure modes of signal fails high or low, which will be further discussed in 
Chapter 4, and (2) only one failure mode is assumed for some components, such as the ISA 
bus, RAM, ROM, BIOS, flash disk, serial port, address logic, and buffer.  The only failure mode 
for these components is the loss of the component.  Furthermore, in most cases, their failure 
impact on the module was considered as an undetected failure due to difficulty in precisely 
evaluating the impacts.  For example, some of the lower level failure modes of memory may be 
detectable, while some other failure modes are not.  This is an issue that can be addressed 
using the concept of coverage.  More detailed modeling, such as through the use of fault 
injection analysis, as discussed in the next paragraph, is needed to determine if lower level 
faults can or cannot be detected.  While a more systematic treatment of the detectability of 
component failure modes is desirable, it should also be recognized that detectability of a failure 
mode is design specific and coverage values obtained for one system will often not be 
applicable to other systems. 
 
Other assumptions made in this study include: (1) a component can only fail to one of its failure 
modes and (2) failures of different components are independent of each other whether or not 
these components are physically wired together, i.e., individual failures are localized.  For 
example, a failure of component A can be propagated to component B to which component A is 
connected, but this does not introduce a new failure of component B.  The former assumption 
probably can be relaxed by reviewing failure experience and modeling the physics of failure of 
the components (i.e., considering root causes of failure, such as fatigue and fracture, to study 
the physical processes that bring about failures), an up-front approach adopted in many 
countries [Pecht 1994].  The latter assumption is due to lack of design details.  If the design 
details are available, then the assumption may not be necessary because whether or not a 
failure is localized can be determined manually or by performing supporting analyses using 
tools, such as fault injection methods.  Elks [2008] discussed use of fault-injection method to 
study the dependability of a digital system by modeling its internal logic in detail, and applied the 
method to estimate the coverage of the main CPU.  This method might be useful for refining the 
FMEAs of this study. Using the detailed model of a digital system/component considered in a 
fault injection method, the effects of non-localized failures can be accounted for.  The 
completeness of the failure modes also is an issue.  Clearly, the role that failure modes and the 
associated data play in studies such as this is vital.  There are very few public references that 
describe failure modes of generic digital components and the associated distributions of failure 
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modes (mainly [RAC 1997b] and [Meeldijk 1996]).  Refined definition of failure modes of digital 
components and associated data are desirable, and further efforts in this area are needed.  
 
Due to the flexibility, variety, and complexity of digital systems, the difficulties in performing 
FMEAs at the proposed levels also are obvious.  The previous description of the FMEA process 
requires a thorough knowledge of digital systems and their associated components, as well as 
specific design information on the particular digital system to be analyzed.  While it is not a 
straightforward task to gain a detailed understanding of underlying principles of digital 
systems/components, i.e., the principles of generic digital components and physical meanings 
of their failure modes and their potential effects, the more difficult part in the analysis is 
acquiring and using design information of the specific digital system.  The design information is 
system specific, and must be collected and reviewed extensively to undertake the FMEAs of the 
system.  The FMEAs summarized in Sections 3.3.1 through 3.3.6 were mainly accomplished 
manually and a significant effort was expended in doing so. The system designers certainly will 
have the necessary design information but may not perform the detailed analysis performed in 
this proof-of-concept study.  The automated FMEA tool provides an efficient way of making use 
of the design details to examine system responses to combinations of postulated failures. 
 
The FMEAs for the DFWCS identify the component failure modes that individually result in (or 
are assumed to result in) system failure (examples are provided in Tables 3-1 and 3-2).  
However, the sum of the failure probabilities for these failure modes only represents a part of 
the overall DFWCS failure probability.  There are several latent failures for each DFWCS 
module.  Although a single latent failure does not affect system operation, combinations of more 
than one may fail the entire DFWCS.  Therefore, these latent failures necessitate further 
analyses that may be prohibitive because the impacts on the system of combined latent failures 
must be assessed and the number of combinations is extremely large.  To resolve this problem, 
Chapter 4 proposes an automated tool that can support FMEAs, given the failure modes of the 
individual components of the modules.  This tool takes advantage of the availability of the 
source code of the CPUs and controllers. 
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4. AN AUTOMATED TOOL OF PERFORMING FMEA FOR DIGITAL 
SYSTEMS 

 
In Chapter 3, an approach was proposed for undertaking failure modes and effects analyses 
(FMEAs) of digital systems.  The approach was illustrated by analyzing the failure modes of 
individual components of the digital feedwater control system (DFWCS) modules.  This chapter 
describes a software tool that adapts this approach to the DFWCS and automates the process 
of determining the failure impacts on the system of individual failure modes and of different 
combinations of component failure modes.  The results of the software tool for the individual 
failure modes were compared with the results of the manually performed FMEA to resolve any 
differences.  The updated FMEA results (for individual failures only) are shown in Appendix A.  
The FMEA of all the double- and triple-failure sequences was performed using the automated 
tool, while some random verification was done manually.  A failure sequence is defined here as 
a failure mode of an individual component or a combination of such failure modes that take 
place in a particular order.  The order in which the failure modes occur can make a difference in 
the effect on the system.  The failure sequences that fail the system (which are analogous to 
“ordered” cutsets) were identified using the automated tool.  Although an automated tool is 
used, the method applied is still referred to as “traditional,” since it does not attempt to explicitly 
model the interactions between the DFWCS and the plant physical processes. 
The quantification of the failure sequences is discussed in Chapter 7, and is based on failure 
parameters given in Chapter 6. 
 
4.1 The Advantages of Using an Automated Tool for Evaluating 

Failure Effects 
 
In the DFWCS, only the central processing units (CPUs) have redundancy, i.e., the main and 
backup CPUs that use identical software and hardware are redundant to each other.  
The functions of the controllers primarily are to forward control demands received from the 
CPUs, and provide some status signals back to the CPUs.  Fortunately, the Microlink 
communication of the DFWCS does not affect the control function of the DFWCS and so does 
not have to be included in the DFWCS reliability mode; this greatly reduces the effort required to 
study the couplings and interactions between different modules.  Nevertheless, the remaining 
complexity of the DFWCS raises difficulties in implementing the generic FMEA approach 
described in Chapter 3.  The major difficulties in implementing the proposed FMEA approach 
are listed below. 
 
1. An in-depth understanding is required of both generic digital systems and the information 

on the specific software and hardware design of the digital system, as indicated in 
Chapter 3.  Considerable effort is required to gain this knowledge, especially about the 
specific design of a digital system. 

 
2.  Determining the impacts of a specific failure mode on the modules or system is not 

straightforward.  According to the proposed FMEA approach in Chapter 3, the effect of 
each failure mode on the signal(s) associated with the failed component should be 
assessed first.  Because the components of the entire system are connected by 
pathways that transfer the signal(s) throughout the system, the responses of the 
modules and the system to the failure-affected signal(s) must be determined based on 
detailed analysis of the software and hardware logic, which is a time-consuming process. 
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3.  The system response to a failure also depends on fault-tolerance features that are 
difficult to capture because they involve the timing of the failure and because signals 
may be coupled to each other. 

 
4.  Even if it were practical to determine the effects of failure of individual component failure 

modes, there is still the issue of multiple latent failures for each module, as discussed in 
Chapter 3 and shown in Appendix A.  Since a latent failure does not by itself cause 
system failure, the impact of combinations of failure modes on the system must be 
evaluated.  Considering the number of potential combinations and complexity of 
interactions between modules, manually implementing the proposed FMEA would be 
extremely difficult, if not impossible.  FMEAs of failure sequences may be more 
intractable because different orders of failures might entail different system responses. 

 
This study describes an automated tool to support the FMEAs of the DFWCS that offers a 
practical solution to these issues.  In addition, the conceptual development of the automated 
FMEA tool implementing the approach in Chapter 3 is offered as a general methodology for 
addressing the complexity of undertaking FMEAs of digital systems in future reliability 
assessments of such systems. 
 
4.2 An Automated Tool for Evaluating Failure Effects 
 
Essentially, the FMEA tool is a software platform developed from the original source code of the 
CPUs, and from re-creating the controller software that interfaces with input and output (I/O) 
variables that represent physical connection signals between the modules, the system, and the 
controlled process.  Inputs to the automated tool are sequences of component failure modes 
whose effects on the system are determined by the automated tool.  To evaluate the impacts of 
a given sequence, its effects upon associated signals are determined first, based on the FMEA 
of Chapter 3.  For example, component failure modes and their impacts on associated signals 
are listed in Section 3.3.1 for the main CPU module, and more detailed descriptions of the 
impacts are given in the comment column of Table 3-1.  Then, the software variables 
representing these signals are modified accordingly and used in simulating the sequence.  The 
simulation propagates the faulted signal(s) of the associated components by executing the 
software representing the interconnected modules.  The impacts of the postulated component 
failures on the modules and the system are represented by the values of the signals the 
modules and system process, and therefore, the interactions between the components modeled 
can be captured by the automated tool.  Although the simulation propagates the component 
failures through all the modules, the module level impacts of Figure 3-1 are not extracted 
because only system level impacts are of interest.  Rules are developed as part of the 
automated tool, based on the definition of system failure and the status of both CPUs and 
controllers, such that the system status, i.e., the system response, can be determined 
automatically.  The rules ensure the automatic resolution of whether or not the simulated 
sequence would result in a system failure. 
 
4.2.1 Scope of the Automated FMEA Tool 

 
The DFWCS consists of the following modules: the main CPU, the backup CPU, the main 
feedwater valve (MFV) controller, the bypass feedwater valve (BFV) controller, the feedwater 
pump (FWP) controller, and the pressure differential indicating (PDI) controller.  The main and 
the backup CPUs receive analog input signals from plant sensors and from the controllers. An 
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external watchdog timer (WDT) monitors each CPU.  The digital input signals to each CPU 
mainly are from the controllers and the other CPUs.  The CPUs send analog demand signals 
and some digital signals to the controllers that, in turn, forward those demand signals to the 
positioners and the turbine controller, which interpret the demand signals and directly control the 
main feedwater regulating valve (MFRV), the bypass feedwater regulating valve (BFRV), and 
the FWP.  Chapter 3 explained why it is unnecessary to model the BFV and the PDI controllers.  
Therefore, the automated FMEA tool consists of the software implementation of the modules for 
the main CPU, backup CPU, MFV controller, and FWP controller.  Also modeled are the 
functions of the external WDTs for the main and backup CPUs.  The scope of the development 
of the tool also covers the modeling of the failures of sensors and direct current (DC) and 
alternating current (AC) power supplies. 
 
The FMEA tool is fully automated and able to generate sequences of failure modes, evaluate 
the responses to them of the components/modules along the signal’s pathway, and, ultimately, 
determine whether system failure occurs.  Therefore, developing and applying the automated 
tool requires: (1) integrating different modules to reproduce all signal pathways, (2) determining 
the I/O signals of DFWCS modules, (3) establishing a base case using operational data, 
(4) considering timing issues, (5) defining failure modes using software variables, 
(6) determining failure effects on modules and the entire system based on system failure criteria 
consistent with the top event definition, and (7) generating failure sequences.  As discussed in 
Section 4.4, the model does not include the controlled process that interacts with the DFWCS. 

4.2.2 Integrating Modules into the Automated FMEA Tool 
 
The automated tool is written in the C language, the same language used for the CPUs, so that 
the CPU source code can be used directly.  The controller software is in a proprietary language 
that must be converted to C language.  Different modules of the DFWCS are integrated into a 
single software of the automated tool.  Although these modules are executed sequentially in the 
software platform, the order and timing of data exchange are followed as strictly as possible to 
more realistically simulate the independent execution of software on different processors.  
Each cycle of the controller software takes 50 milliseconds (ms), and its maximum overrun time 
does not exceed 110 ms.  The cycle time of the CPU software is 100 ms and must not exceed 
110 ms.  In the automated tool, the controller software are executed every 50 ms, and the 
control software of the main and the backup CPUs are executed every 100 ms.  Figure 4-1 is a 
flowchart of the automated tool.  As assumed in Chapter 3, a failure is permanent and only 
occurs during the system’s steady-state operation.  It is noted that the simulation will stop when 
all outputs (digital and analog) of modules are stabilized after applying the final failure mode. 
 
After starting the simulation, some time elapses before the system initializes all of its modules. 
Once the system reaches a stable operating point, i.e., a steady state, the simulation of a failure 
sequence begins.  It is noted that the main and the backup CPUs not only obtain input data from 
the plant and controllers, but they also exchange data.  In the real DFWCS system, all of the 
CPU and controller modules should be running in parallel using the specific data acquired for 
them. In the integrated automated tool, all of the CPU and controller modules have to be 
executed sequentially.  To mimic the parallel execution of two physical modules and avoid the 
premature exchange of data, in the simulation the main CPU does not update its outputs until 
the backup CPU module has been executed, as shown in Figure 4-1.  Both the main and the 
backup CPU application software are run every 100 ms in the automated FMEA tool, and after 
that, the controller modules are executed. 
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Figure 4-1 Flowchart of the automated FMEA tool 
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Some updated outputs of the main and the backup CPUs are inputs to the MFV and the FWP 
controllers, which run sequentially but do not have their outputs updated until after execution of 
both controller modules, is completed since they also run in parallel physically, as illustrated in 
Figure 4-1. 
 
After running all of the modules, the system outputs will be examined by comparing them to the 
corresponding outputs in previous time steps.  If the outputs (other than the toggling signals to 
the WDTs) change, then this indicates that the failure propagation should be continued by 
repeatedly executing the CPU and controller modules.  If the outputs (other than the toggling 
signals to the WDTs) stay the same for a certain number of consecutive runs of all the modules, 
a new post-failure steady state is considered to be reached.  Whether the system fails can be 
determined by using a set of defined failure criteria (discussed in Section 4.2.6) to evaluate the 
final outputs.  
 
4.2.3 I/O Signals of the DFWCS Modules 
 
Another important facet of the automated tool is to determine how component failure modes 
affect physical signals, and apply the failure modes by modifying software variables 
representing physical signals.  The interconnections between modules are characterized by 
analog and digital input and digital output signals.  The input signals are identified for the 
DFWCS modules in Tables 4-1 through 4-6, and the corresponding output signals are identified 
in Tables 4-7 through 4-12. 
 
Analog signals to the CPUs mainly include measurement inputs from the plant sensors and 
demand signal feedback from the controllers. The analog inputs and analog outputs of the main 
CPU are identical to those of the backup CPU.  The tool uses the same set of sensor input data 
that represent the plant operating conditions because it does not include a model of the 
controlled process.  The same inputs are used through the entire simulation unless the failure 
sequence includes a failure of input; then the failure is applied to the specific input. 
 
It is noted that the original software of the CPUs performing the control function does not 
validate outputs from range checking of output signals.  The basis for the output ranges of the 
main CPU (Table 4-7) is the input ranges for these signals that are fed back from the controller. 
 
If the demand signals to the controllers are out of range, their software simply clamps the values 
of the signals and continues to forward these demands. 
 
Usually, the digital signals of the original software are used to represent the status information 
of modules.  The only difference between digital signals of the main and the backup CPUs is the 
CPU identification that basically informs the CPU whether it is the main or the backup.  
Table 4-1 has detailed descriptions of analog inputs to the CPUs, along with the unit, range, and 
initial values of the corresponding signals. 
 
The automated tool includes all these signals and their associated pathways.  Thus, running the 
tool ensures that the system response to any failure sequence can be accurately obtained. 
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Table 4-1 Analog input signals to the main and backup CPUs. 

Input Description Units Range Initial Value Source of 
Initial Value 

FW Temp1 435.62 °F 8204mn.txt(4) 

FW Temp2 

Feedwater 
temperature 

Degrees F  

435.62 °F 8204mn.txt 

FW Pump Bias Bias for FWP 
demand 

Volts 0V to 5V −1.05% 
(converted to 
2.47V) 

8204mn.txt 

OSG Signal MFV demand from 
other steam 
generator (S/G) 

Percentage -25% to 100% 91.40% 8204mn.txt 

FWP Signal Feedback of FWP 
controller output 

Percentage 0% to 100% Feedback N/A 

LVDT1 87.63% 8204mn.txt 

LVDT2 

 Percentage 0% to 100% 

87.63% 8204mn.txt 

Feedwater 
Differential 
Pressure1 

116.67 lb 8204mn.txt 

Feedwater 
Differential 
Pressure2 

Pressure differential 
across MFRV 

Pounds 0 lb to 300 lb 

109.05 lb 8204mn.txt 

S/G Level1 0.74” (converted 
to 65.13%) 

S/G Level2 

S/G reservoir level Percentage 
(this value is 
converted from 
inches) 

0% to 100% (at 
input); during 
later processing, 
there is a range 
of –20” to 20” 
(53.6% to 75.8%) 

0.70” (converted 
to 65.11%) 

Level set-point 
is selected as 
level input. 

Feedwater 
Flow1 

99.25% 
(converted to 
17.43 
milliamperes 
(mA)) 

8204mn.txt 

Feedwater 
Flow2 

Feedwater flow rate Amps (A) (this 
value is 
converted from 
a percentage) 

0.004A to 0.02A 

99.15% 
(converted to 
17.40mA) 

8204mn.txt 

                                       
(4) This file contains information on set-points and input which is apparently from a dump of live system data from the 

plant whose DFWCS was the primary basis for the model developed in this study. 
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Table 4-1 Analog input signals to the main and backup CPUs. 

Input Description Units Range Initial Value Source of 
Initial Value 

Steam Flow1 99.92% 
(converted to 
17.61mA) 

8204mn.txt 

Steam Flow2 

Steam flow rate Amps (this 
value is 
converted from 
a percentage) 

0.004A to 0.02A 

98.55% 
(converted to 
17.24mA) 

8204mn.txt 

Reactor Flux1 99.92% 8204mn.txt 

Reactor Flux2 

Reactor neutron 
flux 

Percentage 0% to 125% 

99.70% 8204mn.txt 

Level Set-
Point 

S/G reservoir level 
set-point 

Volts (V) (this 
value is 
converted from 
inches to a 
percentage, 
and then from 
percentage to 
voltage) 

1V to 5V 0.72” (converted 
to 65.12% and 
then to 3.60V) 

8204mn.txt 

BFV Signal Feedback of BFV 
controller output 

Percentage 0% to 100% Feedback N/A 

MFV Signal Feedback of MFV 
controller output 

Percentage -25% to 100% Feedback N/A 

 
 

Table 4-2 Digital input signals to the main and backup CPUs. 

Input Description Meaning Initial Value 

BFV Automatic/Manual 
(A/M) 

BFV controller A/M status 
true = auto 
false = manual True 

MFV A/M MFV controller A/M status 
true = auto 
false = manual True 

FWP A/M FWP controller A/M status 
true = auto 
false = manual True 

ReactorTrip Reactor tripped status 
true = tripped 
false = not tripped False 

CPU Identification 
(CPU_ID)(5) 

Main or backup processor 
true = main 
false = backup True 

Turbine Trip Turbine tripped status 
true = tripped 
false = not tripped False 

                                       
(5) The digital inputs to the Backup CPU are identical to those to the main CPU, except that the CPU_ID signal is false. 
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Table 4-2 Digital input signals to the main and backup CPUs. 

Input Description Meaning Initial Value 

Main CPU Failed Main CPU failure status 
from MFV controller 

true = failed 
false = not failed False 

Backup CPU Failed Backup CPU failure status 
from MFV controller 

true = failed 
false = not failed False 

Time Sync Time synchronization 
false = do nothing 

False 

Bypass Flux1 Bypass Flux1 keyswitch 
(can be used to manually 
bypass Flux1 Analog Input 

true = bypass input 
false = do not bypass False 

Bypass Flux2 Bypass Flux2 keyswitch 
(can be used to manually 
bypass Flux2 Analog Input 

true = bypass input 
false = do not bypass False 

No Fail in Other Whether there is failures in 
the other CPU 

true = no failures 
false = failure True 

Deviation in Other Whether there is deviation 
in the other CPU 

not used in control 
software False 

Levels in Other Whether both S/G level 
signals in other CPU are 
valid 

true = one or both levels 
invalid 
false = both levels valid 

False 

Flows in Other Whether steam and 
feedwater flow rate signals 
in other CPU are valid 

not used in control 
software False 

 
 

Table 4-3 Analog input signals to the FWP controller. 

Input Description Units Range, 
revolutions per 
minute  

Main Pump Demand Pump demand signal 
from main CPU 

revolutions per minute 0 to 5400 

Bias Bias offset input (from 
manually controlled 
potentiometer) 

revolutions per minute -5400 to 5400 (set 
based on fixed 
ratio of Bias DC 
Voltage output in 
simulation, 
normally 0 ) 

Backup Pump Demand Pump demand signal 
from backup CPU 

revolutions per minute 0 to 5400  
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Table 4-4 Digital input signals to the FWP controller. 

Input Description Meaning Initial Value 

BackupPwrFail/Test Backup CPU status 
indicator 

true = No failure 

false = Failure 

True 

BackupCpuFail Backup CPU status 
indicator 

true = Failure 

false = No failure 

False 

MainPwrFail/Test Main CPU status 
indicator 

true = No failure 

false = Failure 

True 

MainCpuFail Main CPU status 
indicator 

true = Failure 

false = No failure 

False 

 
 

Table 4-5 Analog input signals to the MFV controller. 

Input Description Units Range. % 

MainDem MFV demand signal 
from main CPU 

Percentage -25 to 100 

BackupDem MFV demand signal 
from backup CPU 

Percentage -25 to 100 

 
 

Table 4-6 Digital input signals to the MFV controller. 

Input Description Meaning Initial Value 

BackupPwrFail/Test Backup CPU status 
indicator 

true = No failure 

false = Failure 

True 

BackupCpuFail Backup CPU status 
indicator 

true = Failure 

false = No failure 

False 

MainPwrFail/Test Main CPU status 
indicator 

true = No failure 

false = Failure 

True 

MainCpuFail Main CPU status 
indicator 

true = Failure 

false = No failure 

False 
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Table 4-7 Analog output signals of the main and backup CPUs. 

Output Description Units Range,% 

FWP Demand FWP demand Percentage 0 to 100 

MFV Demand MFV demand Percentage −25 to 100 

BFV Demand BFV demand Percentage 0 to 100 

TP1 test point 1 N/A N/A 

TP2 test point 2 N/A N/A 

 
 

Table 4-8 Digital output signals of the main and backup CPUs. 

Output Description Meaning 

WDT WDT control signal toggles to prevent watchdog 
failure 

CpuFail Whether the system failed True = not failed 

False = failed 

HiPwrMode Whether the system is in high- 
power mode 

True = in high power mode 

False = not in high power 
mode 

Xfering Whether there is a power transfer True = transferring 

False = not transferring 

LoPwrMode Whether the system is in low- 
power mode 

True = in low power mode 

False = not in low power 
mode 

BfvOr Whether the bypass feedwater 
valve is in override mode 

True = override mode 

False = not override mode 

DevToPc Whether there is a deviation to the 
plant computer 

True = deviation 

False = no deviation 

XferInhibit Whether the transfer is inhibited True = transfer inhibited 

False = transfer not inhibited
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Table 4-8 Digital output signals of the main and backup CPUs. 

Output Description Meaning 

NoFailures Whether the CPU has detected a 
failure 

True = no failures 

False = failure 

NoDevs Whether the CPU has detected a 
deviation 

True = deviation 

False = no deviations 

LvlsGood Whether both level inputs are valid True = one or both signals 
invalid 

False = both signals are 
valid 

FlowsGood Whether the steam and feedwater 
flow rate inputs are valid 

True = one or more signals 
invalid 

False = all signals are valid 

 
 

Table 4-9 Analog output signals of the FWP controller. 
 

Output Description Units Range 

PumpSig Pump demand signal Milliampere 4 – 20 mA 

BiasOut Voltage output level for 
bias setting 

Milliampere Fixed at 0.5 mA 

 
 

Table 4-10 Digital output signals of the FWP controller. 
 

Output Description Meaning 

AMStatMain A/M status indicator to main CPU True = Auto 

False = Manual 

AMStatBackup A/M status indicator to backup 
CPU 

True = Auto 

False = Manual 
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Table 4-11 Analog output signals of the MFV controller. 

 

Output Description Units Range,% 

MFVSig MFV demand signal Percentage -17 to 100 

SgSetpoint (not used) N/A N/A N/A 

 
Table 4-12 Digital output signals of the MFV controller. 

 

Output Description Meaning 

AMStatMain A/M status indicator to main CPU True = Auto 

False = Manual 

AMStatBkup A/M status indicator to backup 
CPU 

True = Auto 

False = Manual 

BkupCpuFailed Indicates whether MFV has 
detected a failure of the backup 
CPU

True = Failure 

False = No failure 

MainCpuFailed Indicates whether MFV has 
detected a failure of the main CPU 

True = Failure 

False = No failure 

 
 
4.2.4 Establishing a Base Case Using Operational Data 
 
A base case of the DFWCS must be developed that represents the normal operating 
parameters of the system during full power operation.  Although a plant model is unavailable for 
this study, the base case should normally be created using the operational data from the plant.  
The “Initial Value” column of Table 4-1 contains a set of data from the operation of the DFWCS 
in high-power mode (the units of the operating data are given in Table 4-1).  The tool must 
convert them into input signals, whose range is given in the “Range” column of that table, before 
the CPU software can recognize them.  There was no available information about how these 
conversions are accomplished.  By reading the source code of the CPUs, and seeing how the 
software reads and interprets the input signals, it was determined how plant data are converted 
to input signals to the software.  For example, in the CPU software, the input signals for flows 
apparently are given in terms of electrical current (between 4 and 20 mA).  The software 

converts flow signals into a percentage using
0011676.0

|004.0|
%

−
= Ix

x  , where Ix is the flow signal in 

Amperes, and %x  is given in the operating data.  Therefore, converting the input feedwater and 
steam flows (in percentages) to quantities read by the software is 
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( )2
%0.0011676 0.004Ix x= ⋅ +  

 
For inputs other than flows, where the units are Volts or Amps, the following formulae are used 
to convert from percentages to the units that the software of the CPUs expects to receive. 
 
FWP Bias: (linear conversion from −100% to 100% ( %x ) to 0V to 5V ( Vx )) 
 

( )
( ) ( )% %100 1000 5 0 5

100 100 200V

x xx
⎛ ⎞− − +

= + − =⎜ ⎟⎜ ⎟− −⎝ ⎠
 

 
S/G Level Setpoint: (linear conversion from 0 to 100% ( %x ) to 1V to 5V ( Vx )) 
 

( )% %01 5 1 4 1
100 0 100V
x xx −⎛ ⎞= + − = +⎜ ⎟−⎝ ⎠

 

 
In addition, the inputs on the S/G level to the CPUs are in percentages, but the operational data 
is given in inches, so that the conversion listed below is needed. 
 
S/G Level: (linear conversion from –116.5” to 63.5” ( inx ) to 0% to 100% ( %x )) 
 

( )
( ) ( )

8.1
5.116

0100
5.1165.63

5.116
%

+
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−
−−

= inin xx
x  

 
These conversions are programmed into the automated tool as an interface between 
operational data and the CPU software of the DFWCS.  The column “Initial Value” of Table 4-1 
lists the values of analog inputs to CPUs from the plant.  Table 4-2 shows the initial status of the 
CPU digital signals; the CPU outputs initialize the controllers. 
 
At the start of the simulation, this set of initial values is the input to the main and the backup 
CPUs.  After reaching the corresponding steady state of the system, the failure modes of a 
sequence are applied automatically by changing the corresponding variables in the software.  
The simulation will continue to run until the system achieves a steady state. 
 
4.2.5 Timing Issues Addressed in the Automated Tool 
 
This study expended considerable effort addressing problems in timing, including considering 
execution cycles and built-in delays of the CPU software and controller software, and the order 
in which failures are introduced.  More specifically, the following features also were incorporated 
in the tool: (1) built-in timers were put in the original source code for the CPUs, such as a 
1-second delay for the CPU failover and 10-second delay for CPU initialization; (2) the external 
WDT of each CPU was modified so it can cause the failover to a healthy CPU if it has not 
detected the toggling signal from its associated CPU for more than 500 ms; and (3) the flexibility 
of the tool was extended to permit the application of multiple failures in different orders to 
evaluate their impacts.  These features provide a realistic representation of the DFWCS 
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performance under failure conditions, given a fixed set of plant sensor input data (since the 
controlled process is not modeled).  Other features of digital systems, such as internal diversity 
and self-healing, in general, can also be captured when developing the FMEA tool. 
  
4.2.6 Criteria for Automatically Determining System Failure 
 
As discussed in Chapter 1, failure of the DFWCS is defined as a loss of automatic control; 
Chapter 3 defined the failure modes of DFWCS modules.  Accordingly, system failure can be 
defined in terms of the states of these modules.  In the DFWCS, the automatic control (demand 
calculation) is performed by the main or backup CPU.  During normal operation, one of the 
CPUs is controlling and the other is tracking. The system becomes “failed” if a controller 
switches to manual mode or the demand output from a controller is incorrect.  In some cases, 
based on the manually performed FMEA, an individual failure directly results in a system failure 
and does not need to be evaluated/simulated using the FMEA tool.  Based on the definition of 
system failure and an understanding of DFWCS operation, a set of rules was created for the 
tool to automatically determine whether a system failure occurs given each sequence of failures.  
 
The DFWCS is considered failed if any of the following conditions is encountered: 
 
1. Both the main and the backup CPUs are failed.  When both CPUs fail, the system will 

fail due to loss of automatic control.  The DFWCS may or may not automatically detect 
failures of the CPUs; in either case, the system must be manually operated. 

 
2. The main and the backup CPUs have been tracking for longer than one second.  When 

both CPUs are in tracking mode, the controllers switch to manual mode, resulting in a 
loss of automatic control. 

 
3. The MFV controller and/or the FWP controller switch to the manual mode, resulting in a 

loss of automatic control. 
 

4. The MFV controller and/or the FWP controller stop using the demand signal (based on 
the CPU status signals they receive) from the controlling CPU for at least one second(6).  
Thereafter, the controller uses demand signals from the tracking CPU, instead of the 
controlling CPU.  A CPU in tracking status simply forwards the demand signals received 
from the controllers back to them again, which means automatic control is lost. 

 
5. The demand output of the FWP controller fails either low or high.  This is a conservative 

rule based on assuming that the turbine controller will take over the FWP controller 
immediately after it detects the fail high or fail low of the FWP demand.  This is 
particularly relevant for the latter event because it will cause the pump to fail, and needs 
to be rectified immediately. 

 
6. The MFV controller output fails low, causing a takeover by the PDI controller.  The PDI 

controller becomes a manual control station after this automatic takeover, thereby 
resulting in a loss of automatic control. 

                                       
(6) The reason to have this rule is illustrated using the FWP controller as an example.  If one of the main CPU status signal 

inputs to the FWP controller changes to “failed,” the FWP controller will stop using the demand signal from the main CPU and take 
the demand signal from the backup CPU.  However, the main CPU is still in controlling mode because it does not know that the 
FWP considers it failed.  The backup CPU is in tracking mode and simply passes the FWP demand signal received from the FWP 
controller to this controller again.  This is a loss of automatic control and thus a system failure.   



4-15 

4.2.7 Generation of Failure Sequences 
 
As indicated in Chapter 2, the system is considered initially to be in a state where all 
components of modules are normal, i.e., not failed.  Each component failure mode of a failure 
sequence makes the system transit to a new system state.  The FMEA tool can automatically 
determine whether a system state fails the DFWCS or not using the rules described above. 
 
The order of failures is important because different orders may entail different impacts on the 
system, as discussed in Section 4.3; hence, the order should be followed strictly in generating 
failure sequences.  An individual failure that does not fail the system constitutes the first failure 
in a double-failure sequence.  The second failure can be any individual failure modes of a 
different component.  Similarly, triple sequences arise from adding one of the individual failure 
modes of a different component as the third failure of a double combination that does not fail the 
system. It is not necessary to consider additional component failure modes for double 
sequences that fail the system.  This same process can be followed for obtaining sequences 
containing higher number of failures.  Verification of the completeness of failure sequences 
generated in this way is straightforward.  
 
One concern with the above process is that the state space of the DFWCS is huge considering 
the possible number of combinations of the failure modes of all components of the modules.  It 
is impractical and unnecessary to generate and/or evaluate all possible failure sequences 
because expectedly the probability of a failure sequence will decline as the number of failures 
contained in the sequence increases.  Introducing a convergence criterion will determine 
whether the failure sequence generation process can be stopped after evaluating the 
sequences that contain a certain number of failures i.e., whether the probability of those 
sequences that do not fail the system is significantly smaller than the system failure probability 
calculated from the sequences containing fewer failures. 
 
The numbers of generated single, double, and triple sequences are 421, 128,779, and 
36,844,679, respectively.  Clearly, evaluation of the double and triple sequences is impossible 
without the automated FMEA tool. 
 
As stated previously in Section 3.3, it is assumed in this study that a component can only fail 
once in a given failure sequence, i.e., after one failure modes of the component has occurred, 
other modes cannot occur for the same component.  This assumption is believed to hold for 
most of the digital components because available information on digital component failures 
seems to suggest so, and is believed to be more realistic than assuming that components can 
always fail more than once.  It may be possible that a certain component fails to an intermediate 
failure modes before it reaches one of the other failure modes.  If recognized, such a sequence 
of failures would need to be considered when generating the failure sequences and can still be 
simulated using the FMEA tool.  Furthermore, the resulting failure sequence or sequences can 
also be quantified using the Markov method discussed in Chapter 5. 
 
4.2.8 Validation of the Automated FMEA Tool 
 
Before the automated tool was developed, an FMEA for individual failure modes was performed 
manually.  The results of the automated tool for individual failure modes were compared with the 
results of the manual FMEA to resolve any differences.  In some cases, based on the manual 
FMEA, an individual failure directly results in a system failure, e.g., a loss of Industry Standard 
Architecture (ISA) bus, and does not need to be evaluated/simulated using the FMEA tool.  
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There is no need to validate this type of failure sequence.  The correctness of the system failure 
criteria defined in Section 4.2.6 was checked by comparing the manual FMEA to that performed 
using the automated tool for all individual failures and for some double- and triple-failure 
sequences.  The updated FMEA results (for individual failures only) are shown in Chapter 3 and 
Appendix A.  If the tool is to be used for a regulatory application, it would need to be subjected 
to systematic verification and validation. 
 
4.2.9 A Summary of the Automated Tool Development and Illustrative FMEA Examples 
 
A summary of the procedure to develop and implement the automated tool is provided in 
Figure 4-2.  Note, Step 3 has to be performed manually and is critical in the tool development, 
because after it is finished and coded in the automated tool, the faulted signals will be 
propagated by the tool automatically based on the results of Step 3 for given sequences.  
Also note, for detailed models of complex systems, the number of failure sequences generated 
using the automated tool may become unmanageable.  In these cases, establishing a 
convergence criterion could be useful to limit the number of sequences generated.  This is 
discussed in more detail in Chapter 7. 
 
For the purpose of better understanding of the automated FMEA tool, two examples provided in 
this section are used to explain how the component failure(s) propagate through the 
connections and how the system failure can be determined automatically by the automated 
FMEA tool. 
 
The first example is a single failure that leads to system failure.  The failure mode “MfvDI-CCI2-
NCFO-” represents a normally-closed-fail-open failure of a DI CCI2 to the MFV controller from 
the main CPU.  The failure causes the MFV digital input “MainCpuFail” (see Table 4-6) to 
change to 0, which indicates the failure of the main CPU.  As a result, the MFV digital output 
“MainCpuFailed” (see Table 4-12), which is sent to both the main and the backup CPUs, 
changes to 1.  Thereafter, the main CPU enters the tracking mode and the backup CPU takes 
over the control.  These changes cannot take effect immediately due to the fixed execution 
cycle of software.  The MFV controller still temporarily passes demand from the tracking (main) 
CPU, but quickly takes demand from the backup CPU, and automatic control of the MFV 
controller resumes.  However, the main CPU digital output “CpuFail” (see Table 4-8), indicating 
the status of the main CPU, does not change to notify controllers of its failure, as designed. The 
FWP controller still passes the demand signal from the tracking (main) CPU.  Rule No. 4 in 
Section 4.2.6 becomes applicable and the automated FMEA tool records this component failure 
mode as a system failure. 
 
Another example is a double sequence that causes system failure.  The first failure is a latent 
failure “FwpDI-CCI2-NCFC-,” i.e., a normally-closed-fail-closed failure of the digital input CCI2 to 
the FWP controller.  CCI2 (“MainPwrFail/Test,” see Table 4-4) informs the FWP controller of the 
main CPU status.  The system continues its operation with this latent failure until the occurrence 
of the second failure “Mn-MuxFwFl1LOS—.” The second failure is a loss of the main CPU 
multiplexer signal representing the feedwater flow input #1 “FW Flow1” (see Table 4-1). This 
failure causes the following changes in the main CPU digital outputs: (1) “NoDevs” (see 
Table 4 - 8) changes to 1, indicating that a deviation between the two feedwater flow input 
signals has been detected; (2) “NoFailures” (see Table 4-8) changes to 0, indicating a failure in 
the main CPU; and (3) “FlowsGood” (see Table 4-8) changes to 1, indicating that not all flow 
input signals are valid.  Accordingly, these signals go to the backup CPU and the changes are 
reflected in the changes of the corresponding digital inputs (see Table 4-2) to the backup CPU, 
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i.e., (1) “Dev in Other” (changes to 0); (2) “No Fail in Other” (changes to 1); and (3) “Flows in 
Other” (changes to 1).  The main CPU digital output “CPUFail” (see Table 4-8) changes to 0, 
indicating that the main CPU fails and starts tracking.  The MFV controller passes demand 
temporarily from the tracking (main) CPU, but it will also pass the failure status of the main CPU 
to both main and backup CPUs via the digital output signal “MainCpuFailed.”  The backup CPU 
will take over the control upon receiving the signal.  The MFV controller starts passing demand 
from the controlling CPU, i.e., the backup CPU.  However, the FWP controller is still passing 
demand from the main CPU that is tracking because the first failure, “FwpDI-CCI2-NCFC-” 
indicates that the main CPU is still controlling.  Rule No. 4 is again applicable and the 
automated FMEA tool records this failure modes sequence as a system failure. 

 
Figure 4-2 A summary of the automated FMEA tool development and implementation. 
 
 

1. Define system boundary 
and top event 

2. Decompose system into modules 
and components (or to a level of 
detail where data are available) 

3. Identify component failure modes and perform 
FMEA manually to determine their impacts on 
signals carried by individual components and, 

thereafter, on signals of modules according to their 
generic structures (e.g., Figures 3-2 and 3-3) 

4. Develop the automated tool by coding 
the manual FMEA results and a set of 
pre-defined rules to determine whether 

the top event occurs 

5. Validate the automated 
tool, e.g., by comparing 
results to manual FMEA 

6. Read individual failure modes and 
propagate faulted signals through the system 

to determine whether the system fails

7. Consider additional failures for those 
sequences that do not fail the system until 

the convergence criterion is satisfied
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In addition, it is evident that many common-cause failures (CCFs) are single failures, such as 
CCFs of the CPUs and controllers, and power supplies for the CPUs and controllers. In this 
study, CCF of power supplies of the CPUs are included as part of the CCF of the CPUs, 
“CCFCCFCPU--Fail-.”  “CCFCTRPwr--Fail-” represents the CCF of controller power supplies 
only.  Due to a lack of redundancy of the MFV and FWP controllers, many failures related to 
them are also single failures.  These include losses of clock reference signals, ISA buses, 
buffers, RAMs of the MFV and FWP controllers (represented by “MfvClk-----Loss-,” “FwpClk-----
Loss-,” “MfvISABus--Loss-,” “FwpISABus--Loss-,” “MfvBufOut--Loss-,” “MfvBufIn---Loss-,” 
“FwpBufOut--Loss-,” and “FwpBufIn---Loss-,” respectively).  Some failures of the main CPUs 
are also single failures, such as losses of buffer and flash disk (represented by “Mn-BufIn---
Loss-” and “Mn-FlsDisk-Loss-,” respectively). 
 
4.3 Findings Using the Automated FMEA Tool 
 
The automated FMEA tool considers the timing and order of failures.  The importance of the 
latter was recognized using the tool.  In simulations, some failure sequences did not cause 
system failure, but the same set (or a sub-set) of component failures in a different order did 
result in system failure.  For example, the FMEA of the main CPU indicates that the main CPU 
digital input containing the MFV A/M status (which is normally closed) failing open is a single 
failure.  The failure causes the main CPU to receive a signal that the MFV is in manual status 
which causes the main CPU to enter the tracking mode, and represents a loss of automatic 
control, i.e., a system failure.  On the other hand, if a failure that causes a failover of the main 
CPU to the backup CPU occurs first, then the single failure of the main CPU digital input of the 
MFV A/M status does not affect the system because the main CPU no longer is the controlling 
CPU.  Hence, considering the number of individual failure modes that cause the main CPU to 
change from controlling to tracking mode, there should be many double (or triple) sequences 
that contain one of these single failures as the second (or the third) failure and that will not fail 
the system. 
 
As another example, consider a double sequence consisting of two failures, fail out-of-range 
high (OORH) of one feedwater flow analog input to the main CPU (“Mn-AI-Fwfl1OORH”), and 
all-bit stuck at 1 of the Analog/Digital (A/D) converter of the backup CPU (“Bk-AD-All—OORH”).  
Neither one of the two failures would cause the system to fail.  If “Bk-AD-All—OORH” occurs 
after “Mn-AI-Fwfl1OORH,” the system fails because an OORH failure of the feedwater flow input 
to the main CPU will entail a failover to the backup CPU, and this, in turn, will be failed by its 
A/D converter failure, eventually failing the system.  Reversing the order of this double 
sequence, the backup CPU will be failed first and the response of the main CPU to the failure 
“Mn AI Fwfl1OORH” is to use the other feedwater flow input; it will not attempt to failover to the 
backup CPU because the main CPU knows its failure status.  There are 510 double sequences 
of this type. 
 
A potential weakness of the DFWCS was identified using the automated tool.  That is, an 
incorrect main CPU status from the MFV controller to the CPUs causes a loss of automatic 
control.  It was anticipated that such a failure would only cause a failover from the main CPU to 
the backup CPU.  The failure is assumed to be a localized failure at the output circuit of the 
MFV controller, which causes an incorrect failed status of the main CPU be sent to the CPUs, 
while the MFV controller is still aware of the correct status.  The main CPU will enter tracking 
mode upon receipt of the signal without failing itself.  The backup CPU will think that it is in 
control and send its calculated demand signals to the controllers.  Since the MFV controller still 
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considers that the main CPU is in control, it continues sending the signal from the main CPU 
which is in tracking mode.  Effectively, the automatic control is lost. 
 
4.4 Discussion and Limitations of the Automated FMEA Tool 
 
There are obvious advantages in using the automated FMEA tool to support an FMEA.  
An automated process of generating sequences of failures, applying them to the system, and 
determining the system status affords a systematic, reliable, and fast way of supporting an 
FMEA.  The tool automatically addresses interactions between modules or components that are 
difficult to thoroughly evaluate manually.  The tool also can consider issues related to timing and 
ordering of failures, as discussed in Section 4.2.7.  In addition, although full power operation is 
assumed in this study, the automated FMEA tool should also be applicable to low power mode, 
if some changes in failure criteria are made. 
 
The automatic tool has limitations.  The first is that it is difficult to preserve all of the timing 
features of the system.  As indicated in Section 4.2.2, the execution cycles of the software are 
variable.  The software of controllers are started every 50 ms.  However, in reality, this 50 ms 
cycle is not fixed and should be adjusted by the actual time it takes to run the software, which is 
unknown. The maximum overrun time is limited to less than 110 ms.  This variable execution 
cycle of the controller software is difficult to reproduce in the automated tool; it probably can be 
considered a trivial issue based on assuming that the controller does not need to adjust the 
cycle unless something very unusual occurs.  
 
Another timing issue, which is perhaps more important, is associated with the time when an 
additional failure occurs given one or more failures have taken place and the system has not 
failed yet.  It is assumed that the system is in a steady state before any failure occurs.  
If the additional failure occurs after the control system and the controlled processes have again 
reached steady-state condition after the transient caused by preceding failure or failures, then 
the automated FMEA tool can correctly determine the system response.  If the additional failure 
occurs before the system reaches a steady state subsequent to the preceding failure(s), the 
impact of the additional failure on the system cannot be captured by the FMEA tool, because 
the FMEA tool does not have a model of the controlled process and is not able to determine the 
transient response.  However, it is expected that the duration of the transient subsequent to the 
postulated failure or failures is very short comparing with the duration of one year, and the 
occurrence of the additional failure during the transient is very unlikely, given the assumption 
that the failures are independent of each other.  Ignoring the transient period should not have a 
significant impact on the results.  
 
The second limitation concerns the usage of the developed automated tool to perform the 
system FMEA without including the dynamics of the controlled process.  The DFWCS interacts 
with the controlled feedwater process via analog signals only, i.e., measurements from the plant 
are sent to the DFWCS and the demand signals are sent to the regulating valves and pumps. 
Therefore, digital signals are not directly related to the controlled process, and digital 
interactions (mainly between different modules of the system) are well captured in the 
automated tool.  For analog signals, it is almost certain that the failure modes of fail high or fail 
low also can be captured due to the range and validity check of the analog signals in the 
software.  For example, if the demand output signal of MFV fails high or low, the MFRV’s 
responses eventually will cause overflow or underflow of feedwater and fail the system, no 
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matter how long it takes.  The impacts of the fail high or fail low of MFV demand output can 
certainly be captured.  The only concern here is the failure modes of signal drifting.   
 
Since this study considers that the components of the DFWCS are not repaired during power 
operation, a drifting signal will not be corrected, and so its long-term impacts are treated simply, 
i.e., it is assumed that a drifted signal eventually will move OORH or out-of-range low (OORL).  
However, this assumption may be conservative for some cases where the extent of the signal 
drift is small, since plant information indicates that the control system may be able to cope with 
a small amount of drift.  Nevertheless, in other cases, this assumption may be nonconservative.  
For example, the failure mode of OORH or OORL of the analog input of the S/G level signal to 
the main CPU will be detected and the remaining good signal will be used if the failure is that of 
a S/G level sensor or transmitter, allowing the normal operation of the system to continue.  
However, if this signal neither drifts to OORH or OORL, i.e., it drifts, but within the range, the 
system might fail due to the undetectable bad signal.  Therefore, the assumption that the signal 
will ultimately drift OORH or OORL is nonconservative in this case. 
 
This is a limitation of the modeling approach used in this study that can potentially be addressed 
in the future by refining the definition of drifting failure modes into two types, within and outside 
the range, and (1) including and accounting for the failure modes of drifting within the range in 
the automated tool or (2) including plant dynamics (i.e., incorporating a model of plant response) 
to simulate the impacts of such failure modes.  Including plant dynamics could help capture the 
subtle timing aspects of the performance of the DFWCS.  However, this issue is likely to be 
difficult to address even with a model of the plant included in the automated tool, because the 
failure impacts are affected not only by how the signal drifts, but also by the system operating 
point when the failure occurs.  A subtle deviation in the drifting signal may cause completely 
different responses. In addition, it is not clear, at present, whether the increased accuracy of 
modeling obtained through incorporation of a plant dynamics model would justify the increased 
complexity and effort required for intensive simulation. 
 
A third limitation is related to the translation of the controller software, that was written in a 
proprietary language, to the C language used in the simulation tool.  The translation may be 
subject to errors or loss of details.  Due to the simplicity of the controller software, this is not 
expected to be a significant issue for this study. 
 
The automated FMEA tool can be enhanced by defining more detailed failure modes for certain 
components, such as RAM.  The major challenge with RAM is not how to incorporate the failure 
modes in the tool but the limited understanding of their failure modes.  For example, some of the 
lower level failure modes of memory may be detectable, while some other failure modes are not.  
This is an issue that can be addressed using the concept of coverage, as discussed in 
Section 3.4.  Other potentially achievable improvements of the tool development are associated 
with the components or modules which are modeled in a less detailed manner or not modeled at 
all in this study.  These components and modules include the external WDTs of the main and 
backup CPUs, the BFV controller module, and the PDI controller module, which are discussed 
below. 
 
The WDT monitors the toggling signal from a digital output of the main or backup CPU and 
sends out the status signal (digital) of the main or backup CPU to the MFV, BFV, and FWP 
controllers.  In both the FMEAs and the automated FMEA tool development, the functions of the 
WDTs are considered (e.g., identification of the WDT-detectable failures), while the failure 
modes of the WDTs, which could be either a failure to indicate the failure status of the 
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associated CPU when the CPU has failed or a spurious signal output indicating that the CPU 
has failed when it has not, are not modeled due to a lack of design information of the WDTs, as 
stated in Chapter 2.  The failure modes of the WDT correspond to the failure modes of failure to 
operate and false operation of a solid-state switch.  Therefore, the effects of the WDT failure 
modes can be accounted for in the FMEA of the digital input of the main and backup CPU status 
signal sent from the WDT to the controllers.  The reliability model quantification needs data for 
the WDT failure modes, which can only be obtained from a detailed analysis to identify the WDT 
component failures that may cause the WDT failure modes. 
 
The failure modes of the BFV and the PDI controllers that are relevant to but not included in the 
reliability model of the DFWCS were identified in Chapter 3. The failure modes are associated 
with the BFV A/M status output to the CPUs and the PDI controller demand output, which is 
added to the MFV controller demand as the input to the positioners.  Similar to the consideration 
of the WDT failures, the impacts of the relevant failure modes can be simply accounted for in 
the CPU modules or the MFV controller FMEAs of the signals that are related to these failure 
modes, i.e., the digital input of the BFV A/M status to the CPUs and the demand output of the 
MFV controller.  For the purpose of this proof-of-concept study, the quantification of these two 
failure modes was limited to a single component failure each.  To be complete, however, a 
detailed analysis of the failures of the components contained in the BFV and the PDI controllers 
would be needed to determine if there are other component failures or combinations of 
component failures (in the BFV or PDI modules) that could also result in one of these two failure 
modes. 
 
4.5 General Discussion on Developing Automated FMEA Tools for 

Digital Systems 
 
The development of the automated FMEA tool represents a general methodology for addressing 
the complexity of undertaking FMEAs of digital systems in future reliability assessments of such 
systems.  However, while the process for developing and using the automated FMEA tool is 
generic, the tool itself is application specific, since it is based on the source code of the system 
being modeled. 
 
Use of the automated FMEA tool reduces the role of the analysts to just performing the 
component-level FMEAs manually and to verifying the results of the automated tool.  
The automated tool also facilitates identification of potential design weaknesses, as indicated in 
Section 4.3.  Another important advantage of using the source code to build the FMEA tool is to 
preserve the fidelity of the original software, making the resulting reliability model a more 
realistic representation of the system.  The concept of FMEA tool development can be applied 
to study the reliability of highly integrated digital systems.  
 
Some potential difficulties in applying the approach for developing automated FMEA tools are 
discussed below. 
 
• It is desirable to use the source code which should be available to the nuclear power 

plant but may not be available to the United States Nuclear Regulatory Commission or its 
contractors.  If the source code is not available, an FMEA tool can still be developed 
using design information, such as a functional description of the software, although the 
tool will not be as realistic and may not be suitable to be used to study a system in detail. 
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• In some cases, the source code may be written in a language that has to be translated 
into the one used in developing the automated tool.  Care has to be taken in such 
translation because of potential misinterpretation of the original software logic.  
The proposed approach for developing an automated FMEA tool does not call for 
modeling of the controlled processes.  This limitation does not appear to be too strict, as 
discussed in Section 4.4.  In particular, for protection systems, it may not be necessary to 
model the controlled processes, because once a protection function is actuated, the 
protection system has accomplished its function, i.e., feedback from the plant may not 
need to be considered.  However, for digital control systems, it is still uncertain as to 
whether it is necessary to include a model of the controlled processes. 
 

• The proposed FMEA approach may require that a very large number of sequences be 
evaluated using the automated tool.  The computational effort required may be 
tremendous, especially if one has to integrate multiple, interactive digital systems in the 
analysis.  However, it should be recognized that the proposed approach inherently is 
capable of parallel processing because determining failure effects of different sequences 
are not related to each other and can be processed independently. Therefore, a linear 
scalability of simulation can be achieved by distributing the sequences onto multiple 
computers, and the results can be collected and combined.  This offers a practical 
solution for the complexity and scale of digital systems.  Another option is to simplify the 
model by grouping failure modes together, as proposed in NUREG/CR-6962 
[Chu 2008a]. 
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5. MARKOV MODEL OF DIGITAL FEEDWATER CONTROL SYSTEM 
 
A Markov model of a system models the transitions among system states in terms of transition 
rates that typically represent the occurrences of failures and repairs.  The Markov model can be 
illustrated by a transition diagram consisting of system states and transitions among them that 
represent failures and repair rates.  It also can be expressed by a set of differential equations 
associated with the transition diagram, as taken from Equation (1-2) in Chapter 1. 
 

PM
dt
Pd
=           

 
where P represents the probabilities of the system states, and M  is the transition matrix 
containing the constant transition rates among the system states.  The solution of the differential 
equations, with the initial condition that the system is in a successful state, probabilistically 
denotes the temporal behavior of the system.  For example, the sum of the probabilities of 
success states is the system reliability, from which the frequency of system failure is calculated, 
as taken from Equation (1-1) in Chapter 1. 

 
TTRf /)](ln[−=    

 
where f is the frequency of system failure, T is the time period,  and R(T) is the reliability within T 
or one minus the probability of system failure by T.  As discussed in Section 1.3, the frequency 
is the average frequency over the period T. 
 
This chapter documents the development of a Markov model of the digital feedwater control 
system (DFWCS).  The top event is the loss of automatic control of the feedwater system.  The 
development builds upon the failure modes and effects analysis (FMEA) and simulation tool 
discussed in earlier chapters.  In particular, the FMEA identifies the failure modes of the 
components of the system, and the simulation tool identifies those individual failure modes and 
combinations (sequences) of failure modes that entail system failure.  Chapter 6 discusses the 
failure parameters used to quantify the Markov model. 
 
The following considerations significantly affect the development of the Markov model. 
 
• All components, including those playing a standby role, e.g., the backup central 

processing unit (CPU), are operating at all times and can fail at any time. 
 

• Typically, a component can have more than one failure modes with different effects that 
must be modeled differently.  A component is assumed to fail only once in a given failure 
sequence, i.e., after one failure mode of the component has occurred; other modes of 
the same component cannot take place.  More discussion is provided in Section 3.3. 

 
• In evaluating the effects of sequences of failure modes, the order in which failures take 

place is recognized to affect the impacts on the system.  Therefore, order must be 
accounted for in developing the model, i.e., in defining possible transitions out of a 
system state and their end states.  More discussion is provided in Section 4.2.7. 
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• Since the model was developed to assess the frequency of an initiating event, the plant 
is assumed to be in the mode of power operation.  In this mode of operation, it is 
expected that if some components of the system fail, they will not be repaired because 
this activity would likely cause or require a reactor trip.  Hence, the plant staff would wait 
until the reactor has been tripped for another reason to carry out any needed repair.  For 
this reason, it was considered that components of the system cannot be repaired or 
replaced while the system is operating.  

 
The sections of this chapter document the process of developing the Markov model.  
Appendix C contains more description of Markov modeling, along with the detailed analytical 
solution of the Markov model for the DFWCS. 
 
The Markov method can be used to identify the significant contributors to a digital system’s 
failure probability in two main steps: (1) quantifying the sequences that fail the system by 
applying this method, and (2) calculating the contribution of each failure mode in the sequences 
to the probability of failure of the system, similar to the calculation of standard probabilistic risk 
assessment (PRA) importance measures, such as Fussell-Vesely. 
 
5.1 Development of a Markov Transition Diagram 
 
Chapter 3 identifies the failure modes of the components of the system, including those of the 
support systems, i.e., the direct current (DC) power supplies and 120v alternating current (AC) 
buses.  The failure modes of each component define its possible states.  System states are 
defined as the combinations of component states, including the order in which the components 
fail.  Order is explicitly modeled in defining the possible transitions out of a system state. 
 
A transition diagram of the system is developed, starting from a system state in which every 
component is in perfect condition.  The possible transitions out of this state are all of the failure 
modes of the components of the system.  Each such failure modes would lead to a different 
system state that may or may not be a failed state.  If a state is a failed state of the system, then 
it becomes an absorbing state, i.e., a state with no transition out of it.  If a state does not 
correspond to system failure, then additional failure modes of components are considered as 
possible transitions out of the system state that engender additional system states.  The above 
process continues and the transition diagram grows to form a tree, until all the end states of the 
tree are absorbing states.  Graphically, the development of the transition diagram is described 
below. 
 
It is assumed that there are M components and each component, i , has ],1[, MiNi ∈  failure 
modes (states) that are represented as ],0[],,1[,),( iji NjMiC ∈∈ . It also is assumed that 

],1[,)0,( MiC i ∈ represents the component’s normal state, i.e., there is no failure of component i .  
As discussed in Section 3.4, the components are assumed to be independent of each other, i.e., 
their failures are independent, as illustrated in Figure 5-1. 
 
Thus, the system states can be represented by combinations of the states of individual 
components.  The Markov model we are interested in is one wherein the system starts from a 
state with no component failure, i.e., the initial system state is )0,()0,2()0,1( MCCC ⋅⋅⋅ ; the transitions 
to other states that contain component failures are characterized by the Markov model shown in 
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Figure 5-2.  Let ),( jiλ  be the failure rate of failure modes j of component i.  Each additional 
failure generates a new system state; the order of failures should be strictly followed when 
generating failure sequences in this model because differences in the order may produce 
different results. 
 
Figure 5-2 shows that there is no component failure in Layer 1, one in Layer 2, and M failures in 
Layer (M+1).  Generally, a fully expanded Markov model would consist of all possible 
combinations of component failures in all possible orders, as indicated in this figure.  The 
transition diagram expands very quickly with increasing number of components and component 
failure modes.  In practice, a system state that represents system failure can be made an 
absorbing state without further expansion.  This consideration drastically reduces the size of the 
transition diagram, such that the model becomes manageable. 
 
Understanding the notations of system states in Figure 5-2 is very important, wherein 
components with failures always appear before those without failures, and the failures that 
appear first are the ones that occur earlier, e.g., there are two failures in the system 
state )0,1()0,1()0,1()0,2(),1(),( 1 −+− ⋅⋅⋅⋅⋅⋅ MiiNji CCCCCC  with the j-th failure modes of component i 

occurring first, followed by the failure mode 1N  of component 1; no other components are failed 
in this system state. 
 
An illustration of a small portion of the Markov transition diagram for the DFWCS is shown in 
Figure 5-3.  A description of the event identifiers in the figure can be found in Appendix B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1 Markov models for M independent components 
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Figure 5-2 Markov model of a system with M components 
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Figure 5-3 A small portion of the Markov diagram for the DFWCS 
 
 
For the Markov model of the DFWCS system, the total number of the individual failures (i.e., the 
states in Layer 2) is 421, of which 112 (e.g., common-cause failure (CCF) of the CPU or 
controller modules or failure of the clock reference of the MFV controller) directly lead to a 
system failure and thus become absorbing states in Layer 2.  Each of the rest of the individual 
failures (i.e., those in Layer 2 that do not directly lead to system failure) are then individually 
paired up with every other individual failure to expand the Markov diagram to Layer 3.  The 
“paired” failures in Layer 3 that result in system failure become absorbing states.  Following the 
same procedure, the Markov diagram can be continuously expanded to Layers 4, 5, and so on, 
as needed, by adding individual failure modes to sequences that do not fail the system.  Note 
that sequences with the same failure modes, but in a different order, lead to different Markov 
states since they might have different impacts on the system.  As discussed in Section 4.3, for 

CCFCCFCPU--Fail

CCFCTRPwr--Fail-

Mn-DO-CpuFlNCFO-  

Mn-DO-CpuFlNCFO-  

Bk-DO-CpuFlNCFO-
Mn-DO-CpuFlNCFO-

Bk-DO-CpuFlNCFO-  

Mn-DO-CpuFlNCFO-

Bk-AD-All--OORH-

Bk-AD-All--OORH-

Mn-AI-Fwfl1OORH-

Mn-AI-Fwfl1OORH-,

Xmt---Lvl2-OORL-  
Bk-DO-CpuFlNCFO-  

Mn-DO-CpuFlNCFO- 

No Failure 

Xmt---Lvl2-OORL-

Xmt---Lvl2-OORL-

Bk-DO-CpuFlNCFO-  

MfvClk-----Loss-

Bk-DO-CpuFlNCFO-

Bk-AI-BfvTkOORH-

Mn-AI-Fwfl1OORH-

Bk-AD-All--OORH-

: Perfect state : System not failed : System failed, i.e., absorbing state



5-6 

two individual failures, namely, failure out-of-range high (OORH) of one feedwater flow analog 
input to the main CPU (“Mn-AI-Fwfl1OORH”) and all-bit stuck at 1 of the analog/digital (A/D) 
converter of the backup CPU (“Bk-AD-All—OORH”), neither of them would cause the system to 
fail by itself.  If “Bk-AD-All—OORH” occurs after “Mn--AI-Fwfl1OORH”, then the system fails, 
and in the opposite order, the system continues its operation with these latent failures. 
 
In this study, the CCF of the CPU (or controller) modules is treated as a failure of a “pseudo-
component” that contains all of the major components of a CPU (or controller) module.  The 
failure rate of the CCF was calculated by adding the failure rates of the failure modes of all 
components contained in the “pseudo-component” and multiplying the sum by a beta factor.  It 
is assumed that the CCF causes system failure, which is conservative because not all of the 
failure modes included in the pseudo-component cause system failure.  Other CCF events, e.g., 
some sensor CCFs, that do not fail the entire system, are further expanded in the Markov 
diagram.  More discussions on CCF modeling can be found in Section 6.3. 
 
5.2 Analytical Solution of the Markov Model 
 
The structure of the transition diagram in Figure 5-2 is in the form of a tree.  Therefore, the 
associated differential equation can be solved sequentially from left to right.  That is, the 
equation for the node with every component in good condition can be solved first, and the 
solution substituted into the equations for the states immediately to its right; thereby allowing the 
equations to be solved.  The process continues along each branch of the tree until an absorbing 
state is reached. 
 
Let P and P& represent the probability and its rate of change, respectively, of a state of the 
Markov model of Figure 5-2.  The following differential equations can be written for the first two 
states of the shaded branch of the transition diagram by inspecting Figure 5-2: 
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where the second term in the right side of Equation (5-2) represents transitions from the state 

)0,()0,2()0,1(),( Mji CCCC L to all of its associated states in Layer 3. 
 
In general, for a given system state consisting of a sequence of k component failures, i.e., 
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where PR is the state ),(),(),( 2211 MM jijiji CCC L with k failures, and PS is the state preceding PR. 
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As mentioned previously, the equations can be solved sequentially, i.e., solving Equation (5-1), 
substituting the solution into Equation (5-2), and then solving Equation (5-2), and so on. 
 
This process continues along each branch of the transition diagram until an absorbing state is 
reached.  For an absorbing state with k failures, the second term on the right-hand side of 
Equation (5-3) becomes zero.  It easily can be demonstrated that the solutions of absorbing 
states with one, two, and three failures are 
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Equivalently, the solution of the differential equations can be obtained using Laplace transforms.  
It is proven by induction in Appendix C that, in general, for a system state consisting of a 
sequence of k component failures, the solution of Equation (5-3) in the Laplace transformed 
space is  
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Undoubtedly, if 0≠Mj , i.e., all components of the system are failed in a certain way, 
Equation (5-7) becomes 
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Furthermore, if the expansion of the Markov model is stopped such that the number of failures 
contained in end states is k , the probability of system state )0,()0,(),(),(),( 12211 Mkkk iijijiji CCCCC LL
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for 0≠kj and 01 =+kj , which then becomes an end state, is given by 
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It should be noted that the poles of Equations (5-7) and (5-9) always are distinct under the 
assumption that a component only fails once.  Therefore, the corresponding time domain 
solution of the equations easily can be expressed in terms of poles of Equation (5-7).  
The probability of state ),(),(),( 2211 MM jijiji CCC L with 0≠kj and 01 ===+ Mk jj L  is given by 
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It can be shown readily that Equation (5-10) leads to Equations (5-4) to (5-6) if k is set to 1, 2, 
and 3, respectively.  The use of the solution in quantifying the top event, i.e., loss of automatic 
control of the DFWCS, is described in Chapter 7. 
 
Note, if the components can fail multiple times, some of the poles of Equations (5-7) to (5-9) 
might be the same.  In this situation, the time domain solution cannot be calculated using 
Equation (5-13) and the numerical inverse Laplace transform has to be used instead as 
presented in Section C.2.4 of Appendix C. 
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5.3 A Simplified Markov Model 
 
Assuming the component failures are rare, i.e., the probabilities of failures are small, the full 
Markov model described in the previous sections can be simplified by ignoring competition 
among the failure modes, i.e., for a sequence that causes system failure the probability that no 
other failures took place is assumed to be 1.  This can be called rare event approximation, 
i.e., the failures are rare and non-occurrence of other failures in a failure sequence definition 
can be assumed.  Figure 5-4, below, represents the Markov model of such a sequence. 
 
If the failure rates are numerically different, then the simplified Markov model can be easily 
solved from the solution of the full Markov model, i.e., by setting the poles in Equations (5-4) 
to (5-6) and (5-10) to the individual failure rates, e.g., p0 = ),( 11 jiλ .  If the failure rates are identical, 
as expected in some cases, then a numerical method can be used to solve the Markov model; 
Appendix C provides more details. 
 
 
 
 
                                 ),( 11 jiλ                     ),( 22 jiλ              ),( 33 jiλ      L     ),( kk jiλ  

Figure 5-4 Markov model of a system with k components and each component has  
 one failure mode 
 
This approximate method should produce a reasonable result if the top event is a rare event, as 
is expected to be the case for a reactor protection system.  For the DFWCS, whose failure is not 
very rare, the approximate method may not produce good enough results.  Note that this model 
is the same as the typical fault tree method for quantifying initiating event frequencies when 
modeling a system consisting of components in parallel, but accounting for the order of 
component failure occurrences. 
 
5.4 Discussion and Limitations of the Markov Model  
 
Due to the level of detail considered for the DFWCS (i.e., many low level components are 
considered, each with a few failure modes and possible component states), it is not practical to 
consider all possible system-level states that can be defined in terms of component-level states, 
i.e., the possible system-level states are too numerous.  This state explosion issue is addressed 
by deriving an analytical solution of the Markov model and then considering dominant 
contributors/sequences of the system, using a concept similar to that of cutset truncation that is 
typically done in a PRA.  That is, those system states with a larger number of component 
failures tend to have a lower probability of occurrence than those system states with fewer 
component failures.  In developing the Markov transition diagram of the system, system states 
are defined starting with the state in which every component is in perfect condition.  Additional 
system states are defined by assuming individual component failure modes take place, each 
bringing the system to a new state with one additional failure.  Successively, system states with 
one, two, three, and a higher number of failures can be defined.  In general, the process would 
generate all possible system states and is subject to the state explosion issue.  Quantification of 
the system states is done to calculate the system failure probability, during the expansion of the 

)0,()0,()0( 2,1 kiii CCC L  
)0,()0,()( 21,1 kiiji CCC L )0,()0,(),()( 3221,1 kiijiji CCCC L ),(),()( 221,1 kk jijiji CCC L  
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transition diagram, and the expansion of the transition diagram is terminated when convergence 
in the calculated system failure probability is achieved (as previously discussed in Section 4.2.7, 
and further discussed in Section 7.1). 
 
In this study, it is assumed that a component can only fail once and the analytical time domain 
solution of a Markov state can be obtained under this assumption.  For a CCF that does not fail 
the entire system, e.g., some sensor CCFs, the correct approach to avoid the violation of the 
assumption is to expand Markov state of the CCF by adding failures of only components that 
are not contained in the “pseudo-component” representing the CCF.  However, this was not 
done in the study and should be accounted for in future studies. 
 
An important assumption of the Markov model described in this chapter is that repair is not 
possible, which is the case for the DFWCS.  For other digital systems, such as a reactor 
protection system, on-line repair may be possible, and the analytical solutions of this chapter 
cannot be used.  If repair of components can be done with the system operating, the Markov 
model has to be modified by adding transitions that represent repairs, making it much more 
difficult to solve.  Using the simplified Markov model described in Section 5.3, the governing 
equations in the Laplace transformed space can be solved analytically, and the inverse Laplace 
transform can be solved in the same way described in Section 5.3.  The accuracy of the 
simplified Markov method needs to be further explored and if necessary better approximate 
methods can be developed.  Alternatively, since repair for digital systems may likely occur at a 
level higher than the components included in this study (e.g., at the circuit board level), it may 
be possible to model the system at this higher level.  At the higher level, due to its reduced 
complexity, it may be practical to solve the model (including repair) numerically. 
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6. ESTIMATION OF FAILURE PARAMETERS 
 
In this chapter, estimates are given of the parameters needed in developing and quantifying the 
reliability model of the digital feedwater control system (DFWCS).  They include the failure rates 
of the components of the system, the percentage breakdowns of each individual failure rate into 
its constituent failure modes (failure-mode distributions), and the parameters of common-cause 
failure (CCF).  The data used in this study are based on the analysis of NUREG/CR-6962 
[Chu 2008a] which reviewed publicly available databases and performed a Bayesian analysis 
that attempts to account for variability of different raw data sources.  In the review, potential 
weaknesses and limitations of the available databases were identified and discussed, and no 
attempt was made to validate or invalidate the available databases.  The limitations in the 
publicly available failure parameters of digital components identified in NUREG/CR-6962 
[Chu 2008a] indicate that additional research and development is needed in this area.  The data 
are used in this project to demonstrate the reliability methods and exercise the reliability models.  
They are not appropriate for quantifying models that are to be used in support of decision-
making (e.g., regulatory decisions or design changes). 
 
Chapters 3 and 4 describe the process used to identify the failure sequences that lead to 
DFWCS failure, using a failure mode and effects analysis (FMEA) and a simulation tool.  
To arrive at a system failure frequency, the failure modes and sequences must be quantified in 
terms of their failure rates using the data available.  An important reason underlying the generic 
FMEA approach proposed in Chapter 3 is the availability of failure data for generic digital 
components.  Reliability prediction methods (RPMs), such as those of the 
Military Handbook 217F [Department of Defense 1995], Telcordia SR-332 [2001], and PRISM 
[Reliability Analysis Center (RAC) PRISM] are the only public reliability databases that provide 
failure parameters and raw data for the components of digital systems.  They have weaknesses; 
the estimates may not be accurate enough due to use of conservative assumptions and lack of 
applicable data [Gu 2007, Pecht 1994] or applicable to the system being analyzed (e.g., the 
DFWCS in this study), and do not address uncertainties.  NUREG/CR-6962 [Chu 2008a] 
provides more discussion on RPMs.  Section 6.1 of this report describes how different sources 
of information, including the raw data of PRISM [RAC PRISM], were used in a Hierarchical 
Bayesian Method (HBM) analysis [Atwood 2003] estimating the failure rates needed for the 
DFWCS model.  Application of the HBM is complicated by lack of information about the raw 
data and obtained population variability curves with very large uncertainties.  The curves are 
used in this benchmark study to exercise the models and should not be used in quantifying 
models developed to support decision-making. 
 
The failure rate of a component usually includes contributions from all of its failure modes.  The 
detailed FMEA analyses in Appendix A reveal that different component failure modes may entail 
very distinct failure effects on the system.  Therefore, component failure rates must be split into 
the failure rates of the individual component failure modes, i.e., expressed in terms of the 
distributions of failure modes that break down failure rates into the contributions of the failure 
modes.  Section 6.2 describes how the failure modes distributions were estimated from 
available information. 
 
Section 6.3 discusses modeling of CCFs, including those of the central processing 
units (CPUs), sensors, transmitters, direct current (DC) power supplies, and alternating current 
(AC) buses. 
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Software failures are beyond the scope of this study.  In developing the reliability model of the 
DFWCS, placeholders for including software failures were identified, and they were assigned 
very low failure rates (arbitrarily chosen as 10-08 per hour) so that they would not impact the 
quantification results of the benchmark study. 
 
Table 6-1 lists all the failure parameters used in this study including the uncertainty parameters.  
It is re-emphasized that the data are used in this benchmark study to exercise the models and 
should not be used in quantifying models developed to support decision-making. 
 
6.1 Hierarchical Bayesian Analysis of PRISM Data and Failure Rates 

from Other Sources 
 
To properly estimate the component/system-specific failure parameters, it is desirable to have 
such data for the specific digital components and systems of interest.  In reality, the specific 
failure data often is unavailable, as is the case in this study, necessitating the use of failure data 
or parameters of similar components.  The HBM analysis offers a way of using generic data of 
similar components collected from different sources to estimate a distribution representing the 
variability among the different sources, i.e., a population variability curve.  This curve can 
represent a generic distribution for the parameter of interest, and be further used as the prior 
distribution in a simple Bayesian updating using component-specific data.  The method can be 
considered as a generalization of the common two-stage Bayesian analysis [Kaplan 1984] by 
imposing higher order in its hierarchical structure, i.e., having more than two stages.  Its 
application in this study is the same as that of the two-stage Bayesian analysis. 
 
Yue [2006] earlier employed the HBM, and documented it in NUREG/CR-6962 [Chu 2008a], to 
assess the generic failure rates of a spectrum of digital components using raw data taken from 
the PRISM database [RAC PRISM].  These raw data are expressed as the number of failures in 
a number of hours.  They were collected from different sources, i.e., from different 
manufacturers, designs, quality levels, and environments.  The sources of the PRISM database 
[RAC Manual] are not clearly specified, and only identified in terms such as “…warranty repair 
data from a manufacturer.”  PRISM [RAC PRISM] further categorizes the failure records of a 
specific type of component, e.g., memory, according to (1) sub-level component types, 
e.g., random access memory (RAM) or programmable read only memory (ROM); (2) quality, 
e.g., commercial grade or military grade; (3) environment, e.g., ground or airborne; 
(4) hermeticity, e.g., plastic or ceramic; and (5) time within which the data are collected.  Before 
applying the HBM, Yue [2006] grouped the failure records of different qualities, environments, 
hermeticities, and periods. 
 
In the HBM application, failure rates were assumed to be lognormally distributed while the 
hyper-priors were assumed to be uniformly distributed.  The upper and lower bounds of the 
hyper-priors were selected such that they covered the resulting posterior distributions of the 
hyper-parameters.  NUREG/CR-6962 [Chu 2008a] discusses issues related to using the HBM 
application to estimate failure parameters; they will not be further described here. 
 
Due to the large variability in the sources of the data, the resulting population variability curves 
have large uncertainties. 
 
Some components of the DFWCS modules do not have failure rate estimates from the HBM 
analysis performed for this study because either they are not digital components, or no PRISM 
data was found.  The failure rates of these components are obtained from either the RACRates 
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model of PRISM, i.e., an RPM method of PRISM [RAC PRISM], or from other sources of 
reliability data.  The components in the former group include analog/digital (A/D) and 
digital/analog (D/A) converters, current loops, and solid-state switches.  In these cases, there 
was no uncertainty information and so an error factor of 5 was arbitrarily assumed. 
 
Alternatively, failure rates of some components, including sensors of flux, flow, and level and 
their transmitters were taken from Savannah River Site (SRS) [Blanton 1993]. 
 
Failure data for some components are available in other sources as well as in the PRISM 
database [RAC PRISM].  For example, the failure rate of a Multiplexer (MUX) and Demultiplexer 
(DEMUX) is given in both PRISM and Aeroflex [2005].  The failure rates in the latter were 
adopted here because Aeroflex presents them as different failure modes, unlike PRISM which 
gives only an aggregated failure rate for MUXs/DEMUXs. 
 
Table 6-1 details the failure rates of different components of the DFWCS, together with their 
corresponding failure modes distributions and CCF factors which are described in Sections 6.2 
and 6.3, respectively.  The error factor is defined as the square root of the ratio of the 95th 
and 5th percentiles of the assumed lognormal distribution.  As can be seen in Table 6-1, the 
distributions are very broad for some of the component failure modes.  The effects of varying 
loads and operating environments may be factors that contribute to the large uncertainty in 
these failure rates.  
 
It should be pointed out that the state of knowledge in understanding the failure modes and 
estimating the failure probabilities associated with digital instrumentation and control (I&C) is 
currently very limited. The ever-changing technology in manufacturing the digital I&C 
components could eliminate some failure modes, add other failure modes, and significantly 
improve the equipment reliability by making them more resilient against some stressors. 
Therefore, it is reasonable to assign larger uncertainties to the failure rates for digital I&C 
components. 
 
6.2 Failure Mode Distributions 
 
A failure modes distribution represents how a component failure rate should be broken down 
into the failure rates of individual failure modes.  For example, in this study, the failure rate of a 
level sensor has a failure modes distribution of 20% out-of-range high (OORH) and 80% out-of-
range low (OORL), based on the failure modes/mechanism distributions of the RAC [1997].  The 
sources of the failure modes distributions that could currently be found and were used in this 
study are summarized below.  They may not exactly match the components of the DFWCS 
modules but are the best approximation presently found; and their completeness and accuracy 
awaits validation.  For the purpose of addressing the uncertainty associated with the failure 
mode distributions, it was assumed they are uniformly distributed within the arbitrarily assumed 
upper and lower bounds specified in Table 6-1. 
 
Software failure rates are needed to quantify the reliability model but are beyond the scope of 
this study.  As noted previously, a failure rate of 10-08 per hour was selected as a placeholder for 
this application. Two software failure modes are defined for the application software on the 
CPUs and the controllers: software halt and erroneous output of software (each assumed to be 
50% of the total failure rate).  
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Failure Mode/Mechanism Distributions of the Reliability Analysis Center [RAC 1997]  
 
This document gives the failure modes of several components, including specific digital ones.  
Although the document contains failure modes distributions for almost all of the components of 
the DFWCS, only some of them are adopted in this study.  The main difficulties in using these 
distributions are that (1) many failure modes provided seem like failure causes rather than 
failure modes and (2) many failure modes are difficult to understand as they lack an 
explanation.  Therefore, it is often impossible to determine the failure effects on the components 
of the defined failure modes. 
 
Electronic Components Selection and Application Guidelines [Meeldijk 1996]  
 
This document is considered a supplementary reference to RAC [1997].  The failure modes 
provided in Meeldijk [1996] are more generic and less specific than those in RAC [1997], 
although easier to understand and use for failure effect analysis. 
 
The way failure modes distributions are modeled in this study is that distributions for a specific 
component in [RAC 1997] are used in the analyses if they are applicable, understandable, and 
complete (i.e., the probabilities sum to unity).  Otherwise, failure modes distributions from 
Meeldijk [1996] are used, if available.  The last source for failure mode distributions is 
Aeroflex [2005], which only presents failure data and failure modes for MUX/DEMUX.  As 
mentioned in the previous section, the failure rates from Aeroflex [2005] were used in this study 
because they are provided for different MUX/DEMUX failure modes. 
 
The failure modes distributions of the major components of DFWCS modules are summarized 
here. 
 
1. Microprocessor 

 
The failure modes “wrong data word” accounts for 60% of the total failures, and 
“processor stops updating output” accounts for the remainder [RAC 1997].  The failure 
modes distribution from RAC [1997] appears to be more specific than the other sources 
for processors. 
 

2. Associated components of microprocessors, such as the Industry Standard Architecture 
(ISA) bus, RAM, ROM, Basic Input/Output System (BIOS), flash disk, and buffer 

 
RAC [1997] failure modes for these components (e.g., the RAM failure modes such as 
electrical failure, shorted, and contamination) are typical examples of failure modes that 
are difficult to apply in the analysis (i.e., the failure impacts cannot be determined from 
them).  The same issue exists for the information in Meeldijk [1996].  Therefore, it was 
conservatively assumed that there is only one failure mode for each component, i.e., a 
loss of the component, which means the loss of all functions it performs.  Then, the 
impacts of these component failures on the associated CPU or controller were 
postulated based on a general understanding of digital systems. 
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

OORH (Out of Range Hi) 4 0-8 9.6X10-11 

OORL (Out of Range 
Low) 44 22-66 1.1X10-09 

A/D Converter 

Random Bit Failure 

2.4X10-09 5 

52 100- above 1.3X10-09 

All analog input 
signals 

1. Failure rate of 16-bit A/D 
converters in PRISM [RAC 
Manual] using RAC Rates 
model; 

2. Failure distribution of linear 
ICs in [Meeldijk 1996] 

Address Logic Loss 7.0X10-08 16 100 7.0X10-08 Address signals used 
to locate devices 

1. HBM updated failure rate of 
decoder 

OORH 50 25-75 1.9X10-09 Voltage 
Regulator 

OORL 3.7X10-09 5 
50 100- above 1.9X10-09 

All analog voltage 
signals 

1. Failure rate of voltage 
regulator in PRISM using RAC 
Rates model; 

2. Failure mode distribution is 
assumed to be 50% each for 
OORH and OORL. 

OORH 2 0-4 4.8X10-11 

OORL  44 22-66 1.1X10-09 

DftH (Drift High) 27 0.5*(100-above 
modes) 6.5X10-10 

Current Loop 

DftL (Drift Low) 

2.4X10-09 5 

27 Same as above 6.5X10-10 

All analog current I/O 
signals 

1. Failure rate of IC, linear 
transmitter/receiver, a major 
component of current loop, in 
PRISM using RAC Rates 
model; 

2. Failure distribution of linear 
ICs in [Meeldijk 1996] 

ROM Loss 4.0X10-08 14 100 4.0X10-08 BIOS 1. HBM updated failure rate of 
ROM  
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

Buffer Loss 3.9X10-07 88 100 3.9X10-07 Digital Input/Digital 
Output (I/O) 

1. HBM updated failure rate of 
buffer  

Clock Loss 

5.2X10-07 5 100 5.2X10-07 

ASIC will cease all 
functions upon the 
loss of clock 
reference. 

1. Failure rate of clock 
generator in PRISM using RAC 
Rates model 

OORH 2 0-4 4.8X10-11 

OORL 44 22-66 1.1X10-09 

DftH 27 0.5*(100-above 
modes) 6.5X10-10 

D/A Converter 

DftL 

2.4X10-09 5 

27 Same as above 6.5X10-10 

All analog output 
signals 

1. Failure rate of 16-bit D/A 
converters in PRISM using RAC 
Rates model; 

2. Failure distribution of linear 
ICs in [Meeldijk 1996] 

NCFC (Normally Closed, 
Fails Closed) 67 100-below 1.6X10-09 

NCFO (Normally Closed, 
Fails Open) 

2.43X10-09 5 

33 0-67 8.1X10-10 

NOFC (Normally Open, 
Fails Closed) 33 0-67 8.1X10-10 

Solid-State 
Switch 

NOFO (Normally Open, 
Fails Open) 

2.43X10-09 5 

67 100-above 1.6X10-09 

All digital I/O signals 1. Failure rate of solid-state 
switch in PRISM using RAC 
Rates model; 

2. Failure distribution of solid-
state switch in [RAC 1997] 
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

Loss of All Signals 8.8X10-09 5 100 8.8X10-09 DEMUX 

Loss of One Signal 
1.1X10-07 5 100 1.1X10-07 

Analog output signals 1. Failure rates for the failure 
modes of a DEMUX are given in 
[Aeroflex  2005].  Therefore, the 
failure modes distribution is not 
needed. 

Flash Disk Loss of Flash Disk 3.3X10-07 76 100 3.3X10-07 Storage of software 
and data 

1. Same as the RAM data.  
Flash disk is actually RAM. 

ISA Bus Loss of ISA Bus Sum of 
4.6X10-07 

and 
6.2X10-08 

55 

and 

10 

100 5.2X10-07 

I/O bus between 
microprocessor and 
peripheral devices 

1. HBM updated failure rate of 
line/bus driver and receiver 

Loss of All Signals 8.8X10-09 5 100 8.8X10-09 MUX 

Loss of One Signal 
1.1X10-07 5 100 1.1X10-07 

Analog input signals 1. Failure rates for the failure 
modes of a MUX are given in 
[Aeroflex 2005].  Therefore, the 
failure mode distribution is not 
needed. 

Programmable 
Array Logic 
(PAL) 

Loss of PAL 

1.6X10-09 5 100 1.6R-09 

Failure of PAL will 
cause some user-
written F-TRAN 
software to fail to run. 

1. Failure rate of PAL in PRISM 
using RAC Rates model 

RAM Loss of RAM 3.3X10-07 76 100 3.3X10-07 Loading software to 
be executed 

1. HBM updated failure rate of 
RAM 

Halt 50 5.0X10-09 Software 

Error 1X10-08 NA 
50 5.0X10-09 

Performing functions 
of the system 

1. Both failure rate and failure 
mode distribution are assumed. 
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

Error 
60 100-below 2.0X10-08 

Microprocessor 

Stop Updating 
3.3X10-08 16 

40 0-80 1.3X10-08 

Executing software 1. HBM updated failure rate of 
microprocessor 

OORH 40 0-80 2X10-06 Flux Sensor 

OORL 5.0X10-06 5 
60 100-above 3X10-06 

Flux measurements 1. [SRS 1993] (also, in Table 8-
12 of NUREG/6962) 

2. Failure modes distribution for 
“Sensor, Radiation” in [RAC 
1997]. 

OORH 42.8 0-85.6 2.1X10-07 Level Sensor 

OORL 5.0X10-07 3 
57.2 100-above 2.9X10-07 

Level measurements 1. [SRS 1993] (also, in Table 8-
12 of NUREG/6962 [Chu 
2008a]) 

2. Failure mode distribution for 
“Sensor, Level” in [RAC 1997]. 

OORH 
31.5 0-63 

9.0X10-07 

 

Flow Sensor 

OORL 

3.0X10-06 3 

68.5 100-above 2.1X10-06 

Flow measurements 1. [SRS 1993] (also, in Table 8-
12 of NUREG/6962) 

2. Failure mode distribution for 
“Sensor, Flow/Velocity” in [RAC 
1997]. 
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

OORH 50 25-75 1.5X10-06 Transmitter for 
Flux Sensor 

OORL 
3.0X10-06 10 

 
 

50 

 
 

100-above 

 
 

1.5X10-06 

All flux 
measurements 

1. Failure rate in [SRS 1993] 
(also, in Table 8-12 of 
NUREG/6962) 

2. Failure mode distribution is 
assumed to be 50% each for 
OORH and OORL 

OORH 20 0-40 6.0X10-07 Transmitter for 
Level Sensor 

OORL 3.0X10-06 10 
80 100-above 2.4X10-06 

All level 
measurements 

1. Failure rate in [SRS 1993] 
(also, in Table 8-12 of 
NUREG/6962 ) 

2. Failure mode distribution for 
“Sensor, Level, Transmitter” in 
[RAC 1997] 

OORH 45 0-90 1.4X10-06 Transmitter for 
Flow Sensor 

OORL 3.0X10-06 10 
55 100-above 1.7X10-06 

All flow 
measurements 

1. Failure rate  in [SRS 1993] 
(also in Table 8-12 of 
NUREG/6962 ) 

2. Failure distribution for 
“Sensor, Flow/Velocity, 
Transmitter” in [RAC 1997] 

DC Power 
Supply 

Loss 1.0X10-05 10 100 1.0X10-05 DC power to CPUs 
and controllers 

1. [Wierman 2002] 

AC Bus Loss 5.0X10-07 3.5 100 5.0X10-07 AC power supply 1. [SRS 1993] 

β -factor N/A 0.05 3 N/A N/A CCF parameter 1. ALWR Utility Requirements 
Document [EPRI 1993] 
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Table 6-1   Failure data used in quantifying the DFWCS reliability model. 

Overall Failure Rates  Filure Mode Distribution 
(%) 

Components Failure Modes 
Mean    

(per hour) 
Error 

Factor Mean  Uncertainty 
Bounds  

Failure Rates of 
Individual 

Failure Modes    
(per hour) 

Related Signals or 
Fuctions Data Sources 

The data are used in this project to demonstrate the reliability methods and exercise the reliability models.  They are not appropriate for quantifying models that are to be used in support 
of decision-making (e.g., regulatory decisions or design changes). 

CCF of CPUs CCF 1.5X10-05 
*β(0.05) N/A 100 1.5X10-05 

Main and backup 
CPUs 

1. By adding failure rates of all 
CPU components including 
power supplies 

CCF of 
Controllers 

CCF 
2.7X10-06 

*β(0.05) N/A 100 2.7X10-06 

MFV and FWP 
controllers 

1. By adding failure rates of all 
MFV controller components; 

2. CCF of controller power 
supplies is modeled separately 

CCF of Power 
Supplies of 
Controllers 

CCF 1.1X10-05 

*β(0.05) N/A  1.1X10-05 
MFV and FWP 
controllers 

1. By adding failure rates of DC 
and AC power supplies 
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3. Address logic 
 

This is a generic digital component, also called the decoder.  The failure modes 
distribution in RAC [1997] for this component again is difficult to apply.  Hence, the 
failure mode distribution of a typical digital component from Meeldijk [1996] was 
selected: stuck high (40%), stuck low (40%), and loss of logic (20%). 

 
4. Voltage input module 
 

The voltage regulator is assumed to be the major component of the voltage input 
module.  RAC [1997] gives the failure modes and the distribution (50% each for fail-high 
and fail-low). 

 
5. MUX and DEMUX 
 
 Aeroflex [2005] defines the failure modes.  Note that each input of a MUX corresponds 

to a sensor input, and each output of a DEMUX corresponds to an analog output.  Also, 
a loss of one signal and a loss of all signals are the only failure modes of a MUX or a 
DEMUX included in Aeroflex [2005]. 

 
6. A/D and D/A converters 
 
 Each module has only one A/D converter and one D/A converter; they are shared, 

respectively, by all analog inputs and analog outputs.  Both A/D and D/A converters are 
linear integrated circuits (IC), i.e., the inputs to and outputs from the component are 
proportional to each other.  The distributions of failure modes given in RAC [1997] for 
A/D or D/A converters again are difficult to use.  Thus, the failure modes distribution 
defined in Meeldijk [1996] for a linear IC component was used: drifted output (52%; 
degraded/improper output [50%] and drift [2%]), fail-low (44%; no output [41%] and short 
circuit [3%]), and fail-high (2%; open circuit).  For A/D converters, the failure mode 
distribution was obtained by assigning the D/A converter failure modes to A/D convert 
failure modes, i.e., fail-high and fail-low were assigned to all bits stuck at zeros and ones 
(48%)(1), and drifted output was assigned to random bit failure (52%). 

 
7.    Current input and output (I/O) modules (current loops) 

 
Linear transmitter/receivers are the major component of current input modules and 
current loops.  They also are linear IC devices; therefore, the failure mode distribution 
used was the same as for A/D and D/A converters above. 
 

8.    Voltage regulator 
 
  The failure modes distribution for voltage regulators was not found in available 

references.  Therefore, it was assumed to be 50% for both OORH and OORL. 
 

                                                      

(7) The failure modes distributions for linear IC circuits in Meeldijk [1996] do not sum to 100%.  For this study, the 
distribution of failure modes for A/D converters was modified by changing the percentage for the failure mode “all bits stuck at zeros 
or ones” from 46% to 48%.  Due to an oversight, a similar modification was not made to the failure mode percentages for D/A 
converters. 
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9.   Digital input and digital output modules 
 

Digital input and digital output are implemented using a solid-state switch 
[Eurotherm 2000].  The status of the output is controlled by opening or closing this 
switch.  Its failure modes distribution is fail to operate (fail as is) (66.7%) and false 
operation (fails to opposite state) (33.3%) [RAC 1997]. 

 
10.   Sensors 

 
RAC [1997] provides the failure mode distributions of different sensors.  Because the 
assumed failure mode for sensors in this study were OORH and OORL, some of the 
failure modes provided in RAC [1997] needed to be further split, e.g., the failure mode 
“degraded output” was assumed to ultimately progress to either OORH or OORL, with 
equal likelihood, as indicated in parentheses below. 

 
For flow sensors, the failure distribution of “Sensor, Flow/Velocity” from [RAC 1997] 
was used: degraded output (41.4%; OORH [assumed 50%] and OORL [assumed 
50%]), zero or maximum output (21.6%; OORH [assumed 50%] and OORL [assumed 
50%]), no output (OORL) (18.5%), function without signal (OORL) (14.8%), no operation 
(OORL) (2.5%), and cracked (OORL) (1.2%).  

 
For level sensors, the failure distribution of “Sensor, Level” from [RAC 1997] was used: 
degraded output (54.7%; OORH [assumed 50%] and OORL [assumed 50%]), no output 
(OORL) (20.8%), function without signal (OORL) (14.2%), and zero or maximum output 
(10.4%; OORH [assumed 50%] and OORL [assumed 50%]). 

 
For flux sensors, the failure distribution of “Sensor, Radiation” from [RAC 1997] was 
used: degraded output (53.3%; OORH [assumed 50%] and OORL [assumed 50%]), zero 
or maximum output (26.7%; OORH [assumed 50%] and OORL [assumed 50%]), and no 
output (OORL) (20%). 

 
11.  Transmitters 
 

Failure modes distributions of transmitters of different sensors also were obtained from 
RAC [1997].  Their assumed failure modes were OORH and OORL.  Therefore, some 
failure modes were further split, as described above for sensors.  For the transmitter of a 
flow sensor, the failure distribution of “Sensor, Flow/Velocity, Transmitter” from 
[RAC 1997] was used: degraded output (50%; OORH [assumed 50%] and OORL 
[assumed 50%]), zero or maximum output (40%; OORH [assumed 50%] and OORL 
[assumed 50%]), and no operation (OORL) (10%).  For the transmitter of a level sensor, 
the failure distribution of “Sensor, Level, Transmitter” from [RAC 1997] was used: 
degraded output (47.1%; OORH [assumed 50%] and OORL [assumed 50%]), zero or 
maximum output (35.3%; OORH [assumed 50%] and OORL [assumed 50%]), and no 
output (OORL) (17.6%).  There are no data on failure distribution for the transmitter of a 
flux sensor.  Thus, it was assumed that the OORH and OORL each are 50% of total 
failures. 

 



6-13 

6.3 Common-Cause Failures (CCFs) 
 
The DFWCS consists of two identical CPUs that run identical software.  In this study, the 
system failure of the DFWCS is defined as a loss of automatic control, implying that a CCF of 
either the CPU hardware or software will cause a system failure.  Controllers may also 
experience CCFs since they have identical hardware and similar software, as do the sensors 
and transmitters that have redundancy.  Therefore, CCF data on these modules and 
components are needed in the quantification. 
 
Due to the lack of digital-specific CCF parameters and because developing a database for CCF 
parameters of digital components is beyond the scope of this project, it was decided that the 
generic beta factor suggested in the Advanced Light Water Reactor (ALWR) Utility Requirement 
Document (URD) [Electric Power Research Institute (EPRI) 1993], i.e., 0.05, be used.  
The ALWR URD does not specifically address digital components and suggests using the 
generic CCF parameter for components whose specific parameters are unavailable. 
 
The use of the beta factor in developing CCF failure rates is summarized below. 
 
CPU Modules 
 
In this proof-of-concept study, the CCF of the CPU modules is treated as a failure of a "pseudo-
component" that contains all of the major components of a CPU module.  The failure rate of the 
CCF was calculated by adding the failure rates of the failure modes of all components contained 
in the "pseudo-component" and multiplying the sum by a beta factor.  It is assumed that the 
CCF causes system failure, which is conservative because not all of the failure modes included 
in the pseudo-component cause system failure.  In a more realistic application, the failure 
modes that fail and do not fail the system should be modeled separately. 

 
Controller Modules 
 
The CCF of the controllers is modeled in the same way as is the CCF of the CPU modules. 
 
Sensors and Transmitters 
 
The CCFs of each type of sensor and associated transmitter are quantified using the beta factor 
of 0.05.  Note that not every such CCF would lead to system failure, and the failure effects as 
determined by the FMEA are reflected in the reliability model.  For example, the CCF of steam 
flow sensors will switch the control from 3-element to 1-element control, and additional failures 
will have to take place to result in a system failure. 
 
120v AC Buses and DC Power Supplies 
 
The CCFs of the 120v AC buses and DC power supplies that support the controller modules are 
quantified using the beta factor of 0.05; each will cause the system to fail.  As discussed in 
Section 3.3.6, the CCFs of the 120v AC buses and DC power supplies that support the CPU 
modules are quantified similarly, and have the same effect on the system, but for simplicity are 
modeled by including their contribution in the CCF of the CPU modules, not as a separate 
failure mode. 
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The effect of adverse operating environment on digital components should be accounted for in 
the quantification of the CCF beta factors.  In particular, electromagnetic interference (EMI) is a 
unique phenomenon which may affect operation of digital systems by altering the signals 
processed by the systems.  In general, the digital system design should take into consideration 
its operating environment to protect against EMI.  Only unexpected EMI or failure of the 
protection mechanisms, e.g., shielding, should cause adverse EMI effects on the system.  One 
possible way of accounting for the adverse effect of EMI is assuming that it would cause a 
system failure and modeling it as a single failure like a CCF.  The failure rate of the single failure 
can be estimated by analyzing the potential causes, i.e., sources of unexpected EMI and failure 
of the protection mechanism.  This type of analysis is beyond the scope of this study. 
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7. QUANTIFICATION 

In this study, a Markov model of the digital feedwater control system (DFWCS) was developed 
and quantified.  In general, the possible system states are defined in terms of the states of its 
components; hence, the number of system states grows exponentially with the number of 
components and may become unmanageable for detailed models, such as the model 
developed in this study.  The issue of this explosion of states was addressed by truncating 
system failure sequences based on their order (i.e., the number of individual failures included in 
the sequence) and demonstrating that convergence of system failure probability is achieved.  
This is consistent with the understanding that the sequences with a larger number of failures 
needed to cause system failure tend to have lower probabilities.  The Markov model was solved 
considering only those sequences with three or fewer failures, while estimating an upper bound 
error of truncation to demonstrate convergence of the system failure probability.  
Section 7.1 presents the results of the quantification of the Markov model.  Section 7.2 
presents an approximate method for quantifying the sequences, i.e., a quantification method 
using the rare event approximation (i.e., the simplified Markov model presented in Section 5.3).  
Section 7.3 provides a comparison of the results with the operating experience of the system.  
It should be pointed out that the failure parameters used in the quantification are weak, and it 
was decided not to include a list of dominant sequences in this report. 
 
Uncertainty analysis and sensitivity analyses are discussed in Chapter 8. 
 
7.1 Quantification of Markov Model  
 
Chapter 5 discusses the Markov model of the DFWCS, including the analytical solution to the 
model.  Equations (5-4) to (5-6) are used to quantify the sequences of failure modes identified in 
Chapters 3 and 4 that cause system failure.  Table 7-1 summarizes this quantification.  
There are 112 single failures; 39,497 double-failure sequences; and 11,972,960 triple-failure 
sequences.  The table also lists the probabilities of those sequences that do not cause system 
failure.  They represent the maximum that may be missed in calculating the probability of 
system failure if the quantification is stopped at the respective numbers of failure modes 
(i.e., sequence order).  For example, if the quantification is stopped at sequences with only one 
failure, i.e., the Markov transition diagram does not expand beyond layer 2 in Figure 5-2, there 
are 309 individual failures that do not cause system failure and they have a total probability 
of 0.47. With the quantification stopped at sequences with 3 failures, the upper bound of the 
error due to truncation becomes 0.02, demonstrating the decreasing trend of the error.  This will 
be further illustrated below by using Figures 7-1 to 7-3.   
 
It is an advantage of the method that the error of truncation can be estimated analytically which 
can be used in determining if convergence has been achieved.  The last column shows the 
cumulative probabilities of system failure obtained by successively adding the contributions of 
the single failure modes, double sequences, and triple sequences. The contribution of single 
failures is the highest, followed by that of double failure sequences; the contribution from the 
triple failure sequences is only a small fraction of the total probability.  The cumulative 
probabilities shown in the last column of Table 7-1 indicate that the total system failure 
probability is converging and should be fairly close to the actual system failure probability. 
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Table 7-1 Quantification of system failure probability and frequency. 

 Number of 
sequences 
that cause 

system 
failure 

Number of 
sequences 
that do not 

cause 
system 
failure 

Probability 
of 

sequences 
with system 

failure 

Probability 
of 

sequences 
without 
system 
failure 

Total 
system 
failure 

probability 
(frequency 
per year) 

Individual 
failure modes 

112 309 0.051 0.47 0.051 
(0.052) 

Sequences of 
two failure 
modes 

39,497 89,282 0.023 0.12 0.074 
(0.077) 

Sequences of 
three failure 
modes 

11,972,960 24,871,719 0.0052 0.02 0.079 
(0.083) 

 
In general, higher order failure sequences could be generated and quantified to produce more 
accurate results.  However, in this proof-of-concept study, quantification was stopped at the 
triple-failure level, since this is considered adequate to demonstrate the trend of convergence. 
 
To better understand the results shown in Table 7-1 and the convergence criteria used for 
stopping expansion of the Markov transition diagram, numerical values that represent 
probabilities with and without system failure are labeled in Figures 7-1 to 7-3 if we stop 
expanding the Markov transition diagram at individual, double, and triple sequences, 
respectively.  Note, the probability of being in the perfect state is always the same. 
 
Using the total system failure probability (0.079, based on all failure paths with three or less 
component failures) in Equation (1-1), i.e., TTRf /)](ln[−= , the frequency of loss of automatic 
control of the DFWCS is calculated to be 0.083 per year(8) . 
 
Some digital instrumentation and control system models may require that a very large number 
of sequences be quantified using the Markov method.  The computational effort required may 
be tremendous, especially if one has to integrate multiple, interactive digital systems in the 
analysis.  However, it should be recognized that the proposed approach inherently is capable of 
parallel processing because quantification of the sequences are not related to each other and 
can be processed independently. Therefore, a linear scalability of the quantification can be 
achieved by distributing the sequences onto multiple computers, and the results can be 
collected and combined.  This offers a practical solution for the complexity and scale of digital 
systems.  
 
 
 

                                                 
(8) In this study, the time period T used in the quantification was one year.  It is more appropriate to use the refueling cycle 

length (18 months) as T, assuming that the system will be renewed every refueling. 
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Figure 7-1 Markov diagram for and quantification of individual failure modes 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-2 Markov diagram for and quantification of both individual and double 
sequences 

 
 
 
 
 
 

Probability of individual sequences with 
system failure: 0.051 

Probability of individual sequences without 
system failure: 0.47 

Probability of no component 
failure: 0.479 

Probability of individual 
sequences with system 
failure: 0.051 

Probability of double 
sequences with system 
failure: 0.023 

Probability of no component 
failure: 0.479 

Probability of double 
sequences without system 
failure: 0.12 

Remaining probability of individual 
sequences without system failure:  

0.327 (=0.47-0.023-0.12) 

Individual 
failure modes

Individual 
failure modes

Double 
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Figure 7-3  Markov diagram for and quantification of individual, double, and triple 

sequences 
 
 

7.2 Approximate Quantification of Markov Model 
 
The failure sequences of the DFWCS were also quantified using an approximate quantification 
method, the rare event approximation described in Section 5.3.  Since the frequency of failure 
for the DFWCS is dominated by single failures, the deviation from the exact result may not be 
as large as might be expected for a system that involves a greater degree of redundancy, e.g., a 
reactor protection system.  Table 7-2 summarizes the frequency of loss of automatic control 
calculated using the exact and simplified methods. 
 

Table 7-2 Frequency of loss of automatic control. 
 

 Exact Method Simplified Markov Model 

Frequency of Loss of Automatic 
Control (per year) 0.083 0.12 

 

Individual 
failure modes 

Double 
Sequences 

Triple 
Sequences 

Probability of triple 
sequences with system 
failure: 0.0052 

Probability of triple 
sequences without system 
failure: 0.02 

Probability of double 
sequences with system 
failure: 0.023

Remaining probability of 
double sequences without 

system failure: 0.0948 
(=0.12-0.052-0.02) 

Remaining probability of individual 
sequences without system failure:  0.327 

(=0.47-0.023-0.0948-0.0052-0.02) 

Probability of individual 
sequences with system 
failure: 0.051 

Probability of no 
component failure: 

0.479 
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Using the simplified Markov method, the probability of a component failing to one of the failure 
modes is calculated in a way that implies that the component has only one failure mode.  In 
doing so, the competition between different failure modes is ignored, i.e., the non-occurrence of 
all other failure modes is not accounted for.  The results of the table show that the frequency of 
loss of automatic control has a point estimate frequency of 0.083 per year, indicating that such 
an initiating event is not very rare.  Due to this fact, the rare event approximation method 
(i.e., the simplified Markov method) only provides a rough estimate of the frequency. 
 
7.3 Comparison with Operating Experience 
 
In the plant for which the DFWCS of this study was primarily based on, the DFWCS initially was 
installed and first used in the early 1990s.  Over the years, the system apparently has 
undergone significant modifications.  Two failure events have been reported related to the 
system.  In one, a maintenance-induced loss of 120v alternating current (AC) power to the main 
and backup CPUs, combined with the independent failure of the main feedwater-regulating 
valve positioner-selector solenoid valve, caused a low steam-generator level and automatic 
plant trip.  This study models loss of power supply, i.e., 120v AC, which is an important 
contributor to the top event.  The positioners are beyond the scope of this study.  In the second 
event, the main feedwater valve (MFV) controller generated a slowly increasing signal, leading 
to an increase in steam-generator level and the reactor was manually tripped.  The cause of the 
failure was most likely electromagnetic interference due to inadequately shielded cables.  The 
MFV controller generating a drifting demand signal is a failure mode of the system that the 
model used in this study does not explicitly consider; however, arguably, it is covered by one of 
the failure modes of the MFV controller, e.g., the MFV controller microprocessor.  One complete 
loss of feedwater control (from modeled failure modes) in 30 reactor-years of operating 
experience is not inconsistent with the estimated mean frequency for loss of automatic 
feedwater control of 0.08 per year for one DFWCS.  Note, there are a few reasons the results of 
this study may not be suitable to compare with operating experience: (1) the model does not 
take into consideration that manual control may be possible for some of the failure sequences, 
and (2) as stated in Chapter 6, the failure parameters used in this study have very large 
uncertainty. 
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8. UNCERTAINTY ANALYSIS AND SENSITIVITY CALCULATIONS 
 
In a probabilistic risk assessment (PRA), three types of uncertainties need to be considered: 
parameter, model, and completeness uncertainty.  Typically, parameter uncertainty is 
addressed by assessing the uncertainties associated with the parameters used in the model 
and propagating them through the PRA model.  Modeling uncertainty is addressed by identifying 
modeling assumptions and performing sensitivity calculations to evaluate the impacts of 
alternative assumptions and modeling methods on the results.  Incomplete PRA scope or 
incomplete PRA level of detail can be addressed by using screening or bounding analyses to 
demonstrate that the missing items are not risk significant. 
 
In this study, parameter uncertainty is addressed in the typical way, as documented in 
Section 8.1.  Modeling uncertainty analysis is addressed by documenting the assumptions 
made in developing the model and comparing with models developed using dynamic methods.  
Due to limitations in the state-of-the-art and lack of detailed design information, no sensitivity 
calculations were performed to evaluate the effects of alternative assumptions.  
Section 8.2 provides a summary of the assumptions and possible ways of addressing them.  
Chapter 10 is a high-level comparison of the model developed in this study with those of the 
dynamic methods [Aldemir 2009], and can be considered a way of addressing some aspects of 
modeling uncertainty.  Completeness uncertainty was dealt with in a limited way by identifying 
sources of incompleteness in the probabilistic model developed, and they are briefly discussed 
in Section 8.3. 
 
The simplifications and assumptions made in this study can be characterized as addressing 
either (1) scope and level of detail limitations or (2) state-of-the-art limitations.  Scope and level 
of detail limitations represent those that can be removed by expanding the scope of the study 
and increasing the level of detail of the model.  These limitations are not inherent limitations of 
the method developed in this study.  State-of-the-art limitations represent weaknesses in the 
state of the art and might be resolved by performing additional research.  Sensitivity calculations 
can be used to demonstrate the importance of the needed research.  The simplifications and 
assumptions associated with each group of limitations are identified in Sections 8.2 and 8.3. 
 
Regarding software reliability, this study accounts for the normal behavior of software by using a 
simulation tool that runs the actual software of the system to determine the system response to 
postulated hardware failures.  This study also includes placeholders for software failure events, 
assuming that the basis for modeling software failure in this way can be established.  It remains 
to be seen whether such a basis can be established and accepted by the PRA community.  In 
addition, methods for quantifying software failure rates and probabilities have to be developed 
(in this study, arbitrarily chosen failure rates are included for the placeholder software failure 
events).  Quantification of software reliability is a limitation in the current state of the art.   
 
The treatment of software reliability in this study contributes to all three types of uncertainty.  
There is parameter uncertainty because the values of the failure rates for these failures have 
wide variability, model uncertainty because there is currently no widely accepted model for 
quantifying and modeling these failures, and completeness uncertainty because it is not known 
whether the scope and level of detail of these failures is appropriate, and not all possible failures 
have been modeled. 
 
In order to demonstrate the usefulness of the reliability model developed in this study, 
Section 8.4 documents some calculations that were performed to evaluate the importance of 
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selected digital design features of the digital feedwater control system (DFWCS).  The digital 
features of interest include redundancy in the central processing unit (CPU), the external 
watchdog timers (WDTs), the controller demand feedback to CPUs, and out-of-range (OOR) 
checking of analog signals. 
 
8.1 Parameter Uncertainty 
 
The failure parameters needed to quantify the reliability model of the DFWCS include the failure 
rates of individual components, the distribution of failure modes of each component failure, and 
a beta factor that is used to model the common-cause failures (CCFs) of components or 
modules.  Table 6-1 lists these data, including their uncertainty parameters.  Chapter 6 provides 
additional information on the estimation of failure parameters, and NUREG/CR-6962 
[Chu 2008a] documents details of the data analyses.  Due to recognized weaknesses in the 
data, the data values are used in this project solely to demonstrate the reliability methods and 
exercise the reliability models.  They are not appropriate for quantifying models that are to be 
used in support of decision-making (e.g., regulatory decisions or design changes).  In this 
chapter, an uncertainty analysis is undertaken by propagating the parameter uncertainties 
shown in Table 6-1.  In this analysis, the state-of-knowledge-correlation (SOKC) has to be 
accounted for since it may significantly affect the final result as shown by Apostolakis [1981] and 
Chu [2008b].  
 
The parameter uncertainties can be propagated by sampling the distributions of the parameters 
and using them in quantifying the system failure probability.  The following distributions are 
assumed for failure parameters: 
 
1. The failure rate of a component is lognormally distributed; 
2. The probability of occurrence of a failure mode in a failure-mode distribution is uniform; 

and 
3. The beta factor is assumed to be lognormally distributed. 
 
Parameters that characterize the distributions, e.g., the mean value and error factor for a 
lognormal distribution, and the upper bound and lower bound for a uniform distribution of a 
failure-mode probability in a failure-mode distribution, are used to generate samples of the 
failure rate of individual failure modes.  Selection of the uncertainty bound for the failure-mode 
distributions in Table 6-1 guarantees that the sum of the samples of failure-mode probabilities of 
a failure-mode distribution is 1.0.  In each quantification step, the failure rate of each component 
failure mode is obtained by multiplying the sample of a component failure rate by a sample of 
the probability of the corresponding failure mode of the failure-mode distribution.  CCF rates are 
calculated as the products of samples of the beta factor and the component failure rates. 
 
To reduce the number of CCFs in the model, the CCFs of the CPU and controller modules each 
are represented by a single failure event whose rate is determined by multiplying the lumped 
failure rate of all components in a CPU or a controller module by a beta factor.  It is noted that 
CCF of the CPU power supplies is included as a part of the CPU module CCF, but the CCF of 
the controller power supplies are modeled separately because they are depended upon by all 
four controllers. 
 
As mentioned previously, in accounting for the propagation of the uncertainties in the 
parameters, an issue to consider is the SOKC.  Chu [2008b] demonstrated the impacts of the 
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SOKC on top events of a PRA showing that that the impacts of correlation are significant if the 
number of identical components and/or the error factor in the distribution of component failure 
rate is relatively large. 
 
The DFWCS employs several identical components in its modules, e.g., current loops are used 
for analog inputs and outputs (I/O), and solid-state switches are used for digital I/O as discussed 
in Chapter 3.  In this study, to take the SOKC into account, those components using the same 
failure parameters are considered correlated; thus, all current loops or solid-state switches of 
different modules are deemed to be correlated.  In addition, the same beta factor with a mean 
value of 0.05 is used to model all CCFs, thus, the beta factors used for different CCFs also are 
correlated. 
 
To account for the SOKC, a large number of sets of samples should be generated from the 
parameter distributions of Table 6-1, using each once in quantifying the probability of the top-
event (in this case, the system failure).  The resulting samples of system-failure probabilities 
then are used to estimate the statistical characteristics of the system-failure probability or 
frequency, such as the mean, median, and 5th and 95th percentiles.  For example, a single 
sample taken from the failure-rate distribution of a current loop is employed for all current loops 
of the DFWCS model for that particular sample calculation.  Similarly, a sample taken from a 
failure-mode distribution becomes the failure-mode distribution of all components that share the 
same such distribution.  In each step of the quantification, a failure rate for each component 
failure mode is obtained by multiplying a sample of the component failure rate by a sample of 
the corresponding failure-mode probability taken from the failure-mode distribution. In the same 
way, samples of beta factor of CCFs are generated and used, i.e., a sample of the CCF rate is 
obtained by multiplying a failure-rate sample of a single component or a lumped failure-rate 
sample of a module by a sample of the beta factor. 
 
Due to time constraints in this study, only 1000 samples were generated and used as input to 
the quantification.  The mean value of the calculated system-failure probabilities is 0.067, 
i.e., smaller than the point-estimate system-failure probability of the base case (0.079).  The 5th, 
50th, and 95th percentiles of these probabilities are 0.012, 0.032, and 0.23, respectively.  
More accurate results are expected with more samples. 
 
Table 8-1 summarizes the results of an uncertainty analysis of the frequency of loss of 
automatic control.  The mean frequency is 0.069 per year, with an error factor (square root of 
the ratio of the 95th and 5th percentiles) of 4.7.  Note that the frequency is related to the system 
failure probability, P(T), by the equation TTPfrequency /)](1ln[ −−= , where T is one year. 
 

Table 8-1   Results of uncertainty analysis for frequency of loss of automatic 
feedwater control (per year). 

5th Percentile Median 95th Percentile Mean Point Estimate 

0.012 0.033 0.26 0.069 0.079 
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8.2 Modeling Uncertainty 
 
As mentioned previously, modeling uncertainty is typically addressed by identifying modeling 
assumptions and performing sensitivity calculations to evaluate the impacts of alternative 
assumptions and modeling methods on the results.  In this study, the treatment of modeling 
uncertainty was limited to documenting the assumptions made in developing the model and 
comparing with models developed using dynamic methods.  Due to limitations in the 
state of the art and lack of detailed design information, no sensitivity calculations were 
performed to evaluate the effects of alternative assumptions. 
 
Many of the assumptions made in this study contribute primarily to completeness uncertainty 
and are addressed in Section 8.3.  A few modeling assumptions are listed below with references 
provided to earlier chapters where more discussion is available. 
 
• Typically, a component has more than one failure mode.  A component is assumed to 

fail only once in a given failure sequence, i.e., after one failure mode of the component 
has occurred, other modes cannot occur for the same component.  Section 3.3 provides 
more discussion of this assumption. 

 
• Due to lack of detailed design information, failures of different components are assumed 

to be independent of each other (regardless of how they are physically wired together).  
Section 3.3 provides more discussion of this assumption. 

 
• Components of the system cannot be repaired or replaced while the system is operating.  

Section 5.4 discusses how repair can be accounted for in a Markov model, e.g., using 
the simplified Markov model as a quantification method.  

 
• Due to state of the art, some assumptions are made regarding the failure modes, failure 

effects and failure detectability of components.  They are discussed in Chapter 3 and 
Appendix A. 

 
• Due to lack of detail design information, assumptions are made regarding the 

arrangements of alternating current and direct current power supplies to the system.  
Section 2.6 provides more information on these assumptions. 

 
8.3 Completeness Uncertainty 
 
Completeness uncertainty relates to contributions to risk that have been excluded from the PRA 
model.  Lack of completeness is not in itself an uncertainty, but recognition that some risk 
contributors may be missing from the PRA model.  The result is, however, an uncertainty about 
where the true risk lies.  In this study, completeness uncertainty was dealt with in a limited way 
by identifying sources of incompleteness in the probabilistic model developed, as follows: 
 
• Lack of a thermal-hydraulic plant model that interfaces with the DFWCS − by definition, 

this study uses “traditional” methods and does not explicitly model the plant physical 
processes.  As discussed in Sections 3.4 and 4.4, drifting signals are difficult to model 
with or without a plant model.  The contribution of this failure mode to system failure can 
be captured by conservatively assuming that system failure would result.  The sensitivity 
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calculation on OOR checking and deviation logic discussed in Section 8.4 provides a 
way of estimating the importance of drifting signals. 

• Lack of modeling of manual control of feedwater − This study assumes the plant is 
operating at full power, and models the loss of automatic control of feedwater, i.e., no 
consideration is given to the possibility of manual control.  In general, it is possible to 
examine the individual failure sequences to determine if feedwater could be manually 
controlled using the valve positioner and pump turbine speed controller. 

• Lack of consideration of the impact of adverse environments on the digital systems – 
This study assumes that the system is not subject to adverse environments, e.g., loss of 
heating, ventilating, and air conditioning (HVAC) and exposure to electromagnetic 
interference (EMI), because the system is inside the control room which has good room 
cooling and should be protected against EMI.  Impact of loss of HVAC is considered 
insignificant as discussed in Section 2.6.  Section 6.3 indicates that EMI impact can be 
modeled by evaluating sources of unexpected EMI and failure of the protection 
mechanisms. 

• Lack of a detailed model of connected digital systems − It is recognized that the main 
feedwater valve (MFV) positioners and turbine controllers are also digital systems.  
Due to lack of design information, they were considered beyond the scope of this study.  
In general, the method of this study can be applied to model these digital systems. 

• Modeling function of external watchdog timers (WDTs) only − The external WDTs 
monitor the toggling signal from a digital output of the main or backup CPU and send out 
the status signal (digital) of the main or backup CPU to the MFV, bypass feedwater 
valve (BFV), and feedwater pump (FWP) controllers.  In this study, the functions of the 
WDTs are considered (e.g., identification of the WDT-detectable failures) while the 
failure modes of the WDTs are not modeled due to a lack of design information of the 
WDTs.  The failure modes of WDTs, which could be either a failure to indicate the failure 
status of the associated CPU when the CPU is failed or a spurious signal output 
indicating that the CPU is failed when it is not, can be accounted for by including failure 
modes of the WDT components that may contribute to the two failure modes in the 
reliability model. 

• Simplified model for BFV and pressure differential indicating (PDI) controllers − As 
discussed in Section 3.3.5, the BFV controller automatic/manual status signal can cause 
a system failure and the PDI controller may inadvertently take over the control normally 
performed by the MFV controller.  Both failure failure modes are included in the DFWCS 
model, and no other failure modes of the BFV and PDI controllers are included.  In 
general, other failure modes of the controllers may contribute to the two failure modes 
that are included in the model, and the method of this study can be used to model them. 

• Identification of failure sequences with more than three failures − The approach 
developed in this study addresses the state explosion issue by limiting the number of 
independent failures assumed in the failure sequences while demonstrating that 
convergence has been reached.  This is a concept similar to that of cutset truncation 
typically done in a PRA.  It is likely that more efficient generic software algorithms and 
tools can be developed to facilitate generation and quantification of higher order 
sequences. 
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• Failure modes − This study uses publicly available generic hardware failure modes of 
the components of the DFWCS and includes high-level failure modes of the software.  It 
is recognized that some of the failure modes may not be complete and associated failure 
mode distributions may not be accurate.  Software failure modes that are appropriate for 
inclusion in a reliability model also need to be established.  Since software failures are 
beyond the scope of this study, the model only includes a couple of placeholder events 
for software failure (see Section 3.3.1). An example software failure mode that is not 
modeled is a failed output that is outside the acceptable range and detectable.  This 
raises the question as to whether or not failure modes should be defined in terms of 
individual output signals of the CPU.  It is clear that given the number of output signals 
associated with a CPU, this would result in a very large number of software failure 
modes, a number that would quickly become unmanageable when considering 
combinations of these output signals.  Also, as stated in Section 3.3.1, the failure modes 
of the microprocessors of CPU modules considered in this study are at the same level of 
detail as those assumed for software (i.e., they are also not defined in terms of specific 
output signals of the CPUs).  In the case of a failed output that is outside the acceptable 
range and detectable, the failure mode would likely be detected by the feedback signal 
from the MFV to the CPU.  The failure modes considered in this study represent higher 
level failure modes whose completeness should be further examined as suggested in 
Chapter 11.  The lack of completeness in identifying digital system component failure 
modes is a limitation in the current state of the art. 

• Failure parameter database − This study uses publicly available component failure data 
at the level of detail of the model, and for some components performed an Hierarchical 
Bayesian Method analysis to account for variability of data from diverse sources.  In the 
case of CCFs, practically no data is publicly available.  It is recognized that better 
parameter data are needed in order to have confidence in the quantitative results.  The 
lack of applicable failure parameter data is a limitation in the current state of the art. 

 
Some other sources of completeness uncertainty include the following items, all of which are out 
of the scope of this proof-of-concept study: human reliability analysis associated with digital 
systems and human system interfaces (including indication errors), modes of operation other 
than full power, and software reliability. 
 
8.4 Sensitivity Calculations 
 
A few sensitivity analyses were carried out in this study to assess the benefits of different design 
features on the DFWCS reliability.  The following design features were selected because of their 
potential impact on the DFWCS reliability: 
 
1. A backup CPU that becomes the controlling CPU during the occurrence of a main CPU 

failover; 
 
2. A WDT of the main/backup CPU that triggers a failover given the occurrence of certain 

failures; 
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3. Demand feedback signals from controllers to CPUs that are used to detect deviations 
between the CPU calculated demands and the controller demand outputs. A failover of 
the main CPU will occur when the deviations are large; and 

 
4. Deviation logic of the CPUs. 

 
To assess the benefits of each design feature, a sensitivity analysis was performed assuming 
the feature is unavailable, and the resulting system failure probability was compared to that of 
the base case. 
 
8.4.1 Benefit of Redundancy in CPU 
 
The DFWCS system benefits significantly from having redundant CPUs, as is evident from the 
number of failover occurrences initiated either by software or hardware that are identified in the 
failure modes and effects analyses (FMEAs) of Appendix A.  Many individual failures would 
become single failures were it not for the backup CPU.  The sensitivity analysis performed here 
compares the system-failure probabilities with and without the backup CPU. 
 
In the sensitivity calculation, all failures that initiate a failover were assumed to cause a system 
failure, and a new rule was created in the automated FMEA tool to capture such system failures.  
The new rule states that a system failure occurs whenever there is a failover request; this is a 
slightly conservative assumption because some failures that initiate failovers do not necessarily 
fail the system.  For example, according to the main CPU FMEA in Appendix A, a failed 
out-of-range high (OORH) or failed out-of-range low (OORL) of the analog input signal steam 
generator (S/G) 11 Level #1 of the main CPU will be detected, whereupon the other input 
S/G-11 Level #2 will be used for the control.  A failover to the backup CPU will occur after a 
delay if the backup CPU is available.  However, should the backup CPU be unavailable, the 
DFWCS will not fail if the other input S/G 11 Level #2 is valid. 
 
The findings from the automated FMEA tool show that when there is no backup CPU, the total 
number of individual failures decreases from 421 to 290, but the number of such failures that 
directly result in system failure increases significantly from 112 to 170.  Without the backup 
CPU, the failure probabilities of single, double, and triple sequences are 0.13, 0.024, 
and 0.0013, respectively.  The total failure probability is around 0.15, yielding a loss of 
feedwater initiating frequency of 0.16 per year, compared with only 0.083 per year for the base 
case. 
 
8.4.2 Effectiveness of Watchdog Timers 
 
A WDT primarily monitors a digital output signal reflecting the status of a microprocessor.  In the 
DFWCS, each of the main and backup CPUs has an external WDT.  The FMEAs for the main 
and backup CPUs in Appendix A indicate that some failures are detectable by the WDTs and 
result in failovers.  A sensitivity analysis was performed assuming that watchdog-detectable 
failures become single failures in the absence of the timer. 
 
Similar to the backup CPU sensitivity analysis, a new rule was created in the automated FMEA 
tool to capture system failure and evaluate its probability assuming the WDTs are not available.  
It states that any WDT-initiated failover becomes a single failure. 
 



8-8 

Without the WDTs, the total failure probability of the system increases only slightly to 0.088 
(corresponding to a frequency of 0.092 per year) from 0.079 in the base case.  This result 
reflects the limited number of WDT-detectable failures. 
 
8.4.3 Benefit of MFV Demand Feedback Signals 
 
A specific design feature of the DFWCS is that the controllers send demand outputs back to the 
CPUs, as well as to the regulating valves and the pump.  For example, the MFV controller 
sends demand output to the main feedwater-regulating valve as well as back to the CPUs.  The 
CPUs compare the demand feedback to the calculated MFV demands.  If the controlling CPU 
detects a large deviation between them, its application software will initiate a failover.  If the 
main CPU calculates the MFV demand incorrectly due to internal failures of the main CPU 
module, such as a multiplexer failure, the backup CPU will take over and automatic control 
continues, which is an obvious benefit afforded by the deviation logic.  However, if a large 
deviation is caused by certain failures of the MFV controller, the backup CPU also will be failed 
by the same deviation logic.  It should be noted that the deviation logic will not capture a fail low 
of the MFV controller demand.  Instead, it is considered to cause a system failure, captured by 
Rule 6 in Section 4.2.6, because the PDI controller that is not included in the reliability model 
will detect this failure first and take over (resulting in the need for manual system control). 
 
Taking the MFV controller feedback as an example, a sensitivity analysis was performed by 
disabling the failover logic in the case of a large discrepancy between the demand feedback and 
the CPU calculated demand.  It was assumed that the system fails when the MFV demand 
feedback deviates from the CPU calculated demand, e.g., a failed high of the demand feedback 
was assumed to cause a large deviation, initiating a failover. 
 
Without the MFV deviation logic, the total DFWCS failure probability increases slightly from 
0.079 to 0.080, corresponding to a loss of feedwater initiating frequency of 0.083 per year, 
essentially the same as that for the base case.  This also suggests that the MFV demand-
deviation logic is designed and effective only for a limited number of failures, i.e., MFV demand-
related failures, and does not significantly improve the DFWCS reliability. 
 
8.4.4 Benefit of Deviation Logic 
 
This sensitivity analysis evaluates the benefit of the deviation logic of the CPU modules 
described in Section 2.1, i.e., (1) OOR and high rate of change (validity checks) for input 
signals, such as S/G level, feedwater flow and steam flow signals; (2) deviation checks, if 
redundant signals of the same type are valid; and (3) deviation checks for the controller demand 
feedback signals (for both the MFV and FWP controllers).  Note that the latter is the same as 
the sensitivity analysis described in Section 8.4.3 except that both the MFV and FWP signals 
are considered.  This sensitivity analysis is also related to that of the backup CPU since many 
OOR failures of analog signals will initiate a failover to the backup CPU.   
 
For this sensitivity analysis, it was assumed that the deviation logic is disabled, i.e., there are no 
validity and deviation checks.  Therefore, if a sensor input is OOR, it will lead to the control 
algorithms using incorrect values and generating incorrect output values.  This was 
conservatively assumed to be a system failure.  A rule was created that specifies a system 
failure when any of the following analog inputs to the controlling CPU is out of range:  
Feedwater Flow # 1 and #2, S/G 11 Level #1 and #2, Steam Flow #1 and #2, FWP A Feedback, 
and S/G 11 MFV Feedback.  The rule was not applied to other analog input signals, such as 
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neutron flux signals, since their failures do not affect the system status, as denoted in the main 
CPU FMEA table of Appendix A. 
 
With all deviation logic disabled, the number of individual failures leading to system failure 
increases to 179 from 112 in the base case.  The total probability of system failure increases 
from 0.079 to 0.31 (corresponding to a frequency of 0.37 per year).  The reasons for the large 
increase in system failure probability are due to (1) high failure rates of sensors and transmitters 
comparing to those of other components, (2) both validity checking and deviation checking for 
sensor input signals are disabled, and (3) deviation logic for both MFV and FWP demand 
feedback signals are disabled.  If only the validity checking is disabled (i.e., the CPUs still 
compare redundant input signals), then the impact on system-failure probability may not be 
nearly as great, because some of the signal failures that were assumed to lead to system failure 
in this sensitivity study might instead result only in a failover to the backup CPU, as discussed in 
Section 2.1. 
 
In this study, it is assumed that a drifting input signal to a CPU module will eventually fail OOR 
and thus can be detected by validity checking.  The sensitivity calculation appears to suggest 
the effect of this assumption may be significant (and non-conservative).  In reality, the deviation 
logic is always active.  Therefore, even if the drifting signal does not drift OOR, the deviation 
checking should be able to prevent system failure (by initiating a failover to the backup CPU or 
switching from 3-element control to 1-element control) for all drifting signals except for those 
drifting level signals due to failures of level sensors or transmitters or drifting feedback demand 
signals due to failures of the MFV and FWP controllers (since, in these cases, both the main 
and backup CPUs would receive the faulty signal).  However, feedback demand signals that 
drift OOR due to MFV or FWP failures are currently modeled as leading to system failure.  
Therefore, only the drifting level signals due to sensor or transmitter failure are currently treated 
in a non-conservative manner.  As such, consistent with the last insight from the previous 
paragraph, the effect of this assumption is not as large as indicated by the sensitivity 
calculation. 
 
The assumption on drifting signals can potentially be addressed in the future by refining the 
definition of drifting failure modes into two types, within and outside the range, and (1) including 
and accounting for the failure modes of drifting within the range in the automated tool, or 
(2) including plant dynamics (i.e., incorporating a model of plant response) to simulate the 
impact of such failure modes.  Including plant dynamics could help capture the subtle timing 
aspects of the performance of the DFWCS.  However, the drifting signal issue is likely to be 
difficult to address even with a model of the plant included in the automated tool. 
 
8.4.5 Summary of Sensitivity Analyses 
 
Table 8-2 summarizes the sensitivity analyses.  It shows that the benefits of both the design of 
the MFV demand feedback and the external WDTs.  Deviation logic offers more benefits to the 
system reliability than does the backup CPU because the majority of analog input failures that 
are identified by the deviation logic can be corrected for without failing over to the backup CPU 
(i.e., they would not result in system failure even if no backup CPU were present).  It should be 
pointed that uncertainty and sensitivity analyses can be valuable for providing relative 
comparisons and insights when failure parameter data are of limited quality or quantity, as is the 
case for this proof-of-concept study.  For example, in Table 8-1, the mean value is close to the 
point estimate, indicating that the mean estimate is not sensitive to the large uncertainties of the 
component failure rates used. 
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Table 8-2 A summary of sensitivity analyses. 

 

Sensitivities 
System failure 
probability of 

singles 

System failure 
probability of 

doubles 

System failure 
probability of 

triples 

Total probability of all 
failures (initiating 

frequency per year) 

Base case 0.051 0.023 0.0052 0.079 (0.083) 

No backup CPU 0.13 0.024 0.002 0.15 (0.16) 

No external WDT 0.058 0.024 0.005 0.088 (0.092) 

No MFV feedback 0.051 0.023 0.0052 0.080 (0.083) 

No deviation logic 0.25 0.051 0.0045 0.31 (0.37) 
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9. COMPARISON WITH DESIRABLE CHARACTERISTICS 
 
Chapter 2 of NUREG/CR-6962 [Chu 2008a] presents a set of desirable characteristics for 
reliability models of digital systems.  This section details the way the proof-of-concept model 
described in this report incorporates or fails to incorporate those desirable characteristics.  The 
discussion of how the characteristics are addressed is organized in the following nine 
subsections corresponding to the nine categories of characteristics.  First, each desirable 
characteristic is stated, followed by a description of how well the model meets it.  The reader is 
encouraged to review the background information provided for each criterion in 
NUREG/CR-6962 [Chu 2008a], Chapter 2. 
 
Based on the comparison of the proof-of-concept model to the set of desirable characteristics 
below, a number of limitations in the state-of-the-art were identified.  These limitations represent 
areas of potential additional research as specified in Section 11.3. 
 
9.1 Level of Detail of the Probabilistic Model 
 
1.1 A reliability model of a digital system is developed to such a level of detail that captures 

the design features affecting the system’s reliability, provides the output needed for risk 
evaluations, and for which probabilistic data are available. 

 
As described in Chapter 3, the digital feedwater control system (DFWCS) was 
decomposed into three levels of detail: system, module, and component.  This study 
defined a module as a major component that contains a microprocessor and its directly 
associated components.  Examples of components of the modules are the analog/digital 
(A/D) and digital/analog (D/A) converters, microprocessors, random-access memory 
(RAM), read-only memory (ROM), multiplexers (MUX), demultiplexers (DEMUX), and 
some analog input and output devices, such as current loop devices.  The failure modes 
for these generic components are included in the model.  The level of detail of analysis 
in the model is characterized by the signals processed by these components, and the 
simulation tool that runs a slightly modified version of the software of the major modules 
of the DFWCS. 
 
The level of detail of this study, i.e., at the generic component level, captures most of the 
design features of the DFWCS, particularly the normal behavior of the software of the 
system, and allows the contributions of the components to system reliability to be 
included in the reliability model.  The model of the DFWCS allows for estimation of the 
frequency that loss of automatic control takes place, which is the top event and can be 
used in a probabilistic risk assessment (PRA), thereby satisfying the objective of 
demonstrating the underlying method.  It is possible to envision lower levels of detail, 
e.g., stuck-at-one or stuck-at-zero faults, that can capture lower level design details.  
However, developing reliability models for the whole system at the lower levels is not 
likely to be feasible due to the complexity of the model and the lack of lower level failure 
parameters and supporting analysis tools similar to the simulation tool developed in this 
study. 

 



9-2 

9.2 Identification of Failure Modes of the Components of a Digital System 
 
2.1 A method is applied for identifying failure modes of the basic components of the digital 

system and their impact on the system.  This method provides a systematic way of 
carrying out this identification such that there is confidence that the failure modes 
obtained are as complete as possible. 

 
Two main processes were used to identify the failure modes of the components of the 
DFWCS.  The first process consisted of reviewing in detail the failure modes described 
in the plant’s hazards analysis, i.e., basically the failure modes and effects 
analysis (FMEA) of the licensee using the system on which this case study is primarily 
based.  The second process involved reviewing the literature about failure modes of 
digital components.  As indicated in Section 8.3, due to limitations in the state-of-the-art, 
the completeness of failure modes is considered an area where more work is needed.  
Also, as discussed in Chapter 6, this need applies to the failure parameters needed to 
support reliability modeling at this level of detail.  In addition, the continual advances in 
digital instrumentation and control (I&C) technology may significantly impact the set of 
component failure modes (e.g., adding and/or eliminating some failure modes) and 
component reliability. 
 
The impact of each failure mode identified and of combinations of the identified failure 
modes was determined using the simulation tool described in Chapter 4.  This tool 
systematically establishes the impact on the DFWCS of a very large number of these 
combinations.  The combinations that are not studied, i.e., those having more than three 
failure modes, are considered to have a small or negligible contribution to the frequency 
of loss of automatic control of the DFWCS. 
 

2.2 Supporting analyses are carried out to determine how specific features of a design, such 
as communication, voting, and synchronization, could affect system operation.  These 
analyses determine whether the specific design features could introduce dependent 
failures to be modeled. 

 
Communication between the modules of the system and between the components of 
each module was studied carefully, and appropriately included in the FMEA and 
reliability model.  The use of Microlink as a means of communication has no effect on 
automatic control of feedwater.  The DFWCS does not vote, nor carry out any significant 
synchronization functions.  It is recognized that many digital systems, including some 
safety-related systems, rely on communication, voting, and synchronization to function 
properly, and these features have to be correctly included in their reliability models.  On 
the other hand, the DFWCS has some important features, such as the use of watchdog 
timers (WDTs), and their treatment is discussed below in Section 9.4, “Modeling of 
Dependencies.” 
 

2.3 Failure modes that have occurred in the operating experience are examined and their 
applicability to the digital system being studied is considered. 

 
A manual reactor trip occurred at the plant where the DFWCS was operating due to 
drifting demand signal from the main feedwater valve (MFV) controller.  While the drifting 
signal to the main feedwater regulating valve (MFRV) is not modeled explicitly, it can be 
argued that this failure mode is covered by other failure modes of the MFV controller, 
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i.e., out-of-range (OOR) demand signals.  In another incident at the plant, a 
maintenance-induced loss of 120v alternating current (AC) power to the main and 
backup central processing units (CPUs) together with an independent failure of the 
MFRV positioner-selector solenoid valve caused a low steam-generator level and 
automatic plant trip.  This study models loss of power to the CPUs as a cause of loss of 
automatic control, which is an important contributor to the top event. 
 

2.4 The probabilistic model of the digital system accounts for the possibility that the system 
may fail due to incorrect design requirements, or due to correct requirements that are not 
correctly implemented into the system. 

 
This characteristic was not addressed explicitly because these kinds of failures usually 
are not considered in a typical reliability model, i.e., a specific failure event representing 
incorrect design requirements was not included in the model, though such failures could 
be considered to fall under the software failure placeholder events (which are discussed 
in Section 9.3).  Further, there was insufficient information available to the study team to 
assess the adequacy of design requirements.  On the other hand, the use of the 
simulation tool allows some software design issues to be identified, e.g., two potential 
design weaknesses were identified and discussed in Chapters 3 and 4. 

 
9.3 Modeling of Software Failures 
 
3.1 Software failures are accounted for in the probabilistic model. 
 

Quantitative software reliability is beyond the scope of this study.  Nevertheless, the 
FMEA and reliability model consider some basic software failures, such as common-
cause failure (CCF) of the software of the main and backup CPUs.  Two types of 
software failure modes are considered: software continues running but generates 
erroneous results, and software stops running.  In addition, the simulation model 
accounts for the performance of software given the occurrence of one or more 
component failures. 
 
It should be pointed out that a commonly accepted basis for modeling software failures 
probabilistically has not been established yet and additional research is needed, 
although it seems to be supported by previous work in Chu [2006].  
 

3.2 Modeling of software failures is consistent with the basis of how they occur, that is, 
software failures happen when triggering events occur.  

 
Qualitatively, using high-level software failure rates in the model is consistent with this 
basis, but considering software reliability quantitatively is beyond the scope of this study. 
In order to quantify the contribution of software failures, quantification methods for 
software reliability need to be further developed.  Additional research in this area needs 
to be done. 

 
3.3 Modeling of software failures accounts for the context/boundary condition in which a 

software is used. 
 

This criterion was not addressed because quantifying software reliability is beyond the 
scope of this study. 
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3.4 The model of the software includes the “application software“ and the “support software.” 
 

The use of high-level software failure rates does not specifically differentiate between 
the two types of software failures.  However, in principle, the contributions from both 
types can be included in the failure rates. 

 
9.4 Modeling of Dependencies 
 
Dependencies Due to Communication 
 
4.1.1 Inter-system failure propagation is addressed, and modeled as applicable. 

 
The plant has a separate DFWCS for each of its two loops, but the scope of this proof-
of-concept study covers only one DFWCS.  The interfaces of the DFWCS with other 
systems through the system’s input and output are modeled by considering failure 
modes of the associated signals.  For example, the model covers the two DFWCSs’ 
exchange of MFV demand signals that are used in calculating feedwater pump (FWP) 
demand.  However, the model excludes the reactor trip and turbine trip signals received 
by the system; their failures are omitted because they would be addressed as separate 
initiating events in a plant PRA. 

 
4.1.2 Inter-channel failure propagation is addressed, and modeled as applicable. 
 

The DFWCS does not have “channels.”  However, it has two redundant CPU modules 
that can be interpreted as “channels.”  Hence, the interactions between the main and 
backup CPUs were studied in detail, and the potential propagation of failures between 
them was considered in the FMEA and reliability model.  The simulation tool accounts 
for propagation of failures within the DFWCS.  
 

4.1.3 Intra-channel failure propagation is addressed, and modeled as applicable. 
 

The DFWCS does not have redundancy within each of its modules; hence, this criterion 
is not applicable. 

 
Dependencies Due to Support Systems 
 
4.2.1 Loss of power to safety-related digital systems is modeled.  It is important to note that 

there may be cases where loss of power generates an actuation signal, i.e., the system 
or component fails safe.  If this is the case, loss of electric power is not modeled as a 
cause of failure on demand of the system or component.  Instead, it is modeled for the 
generation of a spurious signal. 

 
The dependencies of the modules of the system on electrical power were considered 
and included in the FMEA and reliability model. 
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4.2.2 If dependencies on heating, ventilation, and air conditioning (HVAC) are relevant, they 
are modeled. 

 
The dependencies on HVAC were not considered significant, as stated in Section 2.6.  

 
4.2.3 Other potential dependencies on support systems are considered, and modeled as 

applicable. 
 

No other relevant dependencies were identified. 
 
Dependencies Due to Sharing of Hardware 
 
4.3.1 The digital systems of a plant are examined to determine if there are dependencies due 

to sharing digital hardware.  Any relevant dependencies are modeled. 
 

Dependencies due to sharing hardware were identified and covered in the FMEA and 
reliability model.  An example of this type of dependency is that during normal operation, 
the MFV, the bypass feedwater valve (BFV), and the FWP controllers use the demand 
signals from the main CPU.  The failure of this CPU would affect these three controllers.  
If the failure of the main CPU is detected, a failover to the backup CPU would occur; 
then, these three controllers would depend on the signals from the backup CPU. 

 
4.3.2 The effect of sensor failures on the digital system and on other components or systems 

of the plant are evaluated and included in the probabilistic model. 
 

The main and backup CPUs receive signals from plant sensors that are common to both 
CPUs.  The FMEA and reliability model include this dependency on sensors. 

 
4.3.3 The failures of devices that process the output of redundant channels of a system are 

modeled. 
 

The DFWCS does not have “channels,” but has two redundant CPU modules that can 
be interpreted as “channels.”  The controllers of the DFWCS, such as the MFV and 
FWP, process the output of the two.  The FMEA and reliability model include failures 
associated with the controllers. 

 
4.3.4 Failure of a digital system may trigger an initiating event with possible additional failures 

of mitigation features.  This dependency also is included in the model, as applicable. 
 
The reliability model of the DFWCS is intended to evaluate the frequency of the initiating 
event, “loss of automatic control by the DFWCS.”  The scope of this proof-of-concept 
study did not include considering a degradation or loss of features that offer mitigating 
capabilities after an initiating event; hence, this criterion is not applicable. 
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Modeling of Fault-Tolerant Features 
 
4.4.1 The deterministic analysis of the digital system identifies those failure modes of a 

component that the fault-tolerant features can detect and the system is able to 
reconfigure itself to cope with the failure.  The probabilistic model only credits the ability 
of these features to automatically cope with these specific failure modes.  It considers 
that all the remaining failure modes cannot be automatically tolerated. 

 
Each failure mode of the components of the modules was explored fully to identify those 
failure modes that the fault-tolerant features of the DFWCS can detect, e.g., WDTs, 
OOR and rate of change checks of analog signals, feedback of the controller output 
signals, and exchange of status information among the modules.  The probabilistic 
model only credited the ability of these features to cope automatically with the 
appropriate specific failure modes.  In the model, the remaining failure modes cannot be 
automatically tolerated. 
 
Note, while the fault-tolerance features of the DFWCS are accounted for in this study, 
other such features (such as different hardware redundancy techniques and software 
fault-tolerance design) can be applied to digital system designs.  The ability to account 
for other fault-tolerant features remains to be demonstrated. 

 
4.4.2 When applying a value of “fault coverage“ to the probabilistic data of a component, the 

types of failures that were employed in the testing used to derive this value are known.  
No credit for fault coverage is given to those failure modes that were not included in the 
testing.  This also would apply when using a value of fault coverage from a generic 
database or the literature. 

 
As mentioned above, whether or not a component failure mode can be detected was 
assessed based on the available design information.  The probabilistic model did not use 
values of “fault coverage” and so this criterion is not applicable.  In this study, for each 
failure mode associated with a CPU module which has an independent WDT, plant 
information and an understanding about how the system works were used to determine 
if the effect of each failure mode on the module can be detected by its WDT and/or the 
application software.  Some failure modes are considered detectable and others are not.  
The probability that an individual failure mode or sequence is detected by the WDT was 
assumed to be either one or zero given that the WDT functions properly.  In this sense, 
the coverage is automatically accounted for in the probabilities of all failure sequences.  
However, due to limitations in the state of the art for FMEA, whether or not the failure 
modes of some components, such as a RAM, can be detected by the fault tolerance 
features was determined subjectively.  The concept of fault coverage can be used to 
improve this treatment.  In general, fault coverage can be used to adjust the component 
failure rates, as in Aldemir [2009].   
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4.4.3 Information from a generic database about a specific probabilistic datum of a 
component, such as a failure rate, is reviewed to assess whether it was adjusted for the 
contribution of fault coverage.  If so, this datum may be used in a probabilistic model, but 
no additional fault coverage is applied to this component, unless it can be shown that the 
two fault coverages are independent. 

 
As stated above, this criterion is not applicable, as the probabilistic model did not use 
“fault coverage.” 

 
4.4.4 A fault-tolerant feature of a digital system (or one of its components) is explicitly included 

either in the logic model or in the probabilistic data of the relevant components, but not in 
both. 

 
The system logic model covers fault-tolerant features of the DFWCS, i.e., these features 
are accounted for by the combinations of failure modes that fail the system identified via 
the process described in Chapters 3 and 4.  Because of the lack of information about the 
data of PRISM [Reliability Analysis Center (RAC) Manual], it cannot be determined if any 
of the modeled fault-tolerant features are built into the data. 
 

4.4.5 The probabilistic model accounts for the possibility that a fault-tolerant feature may fail to 
detect and/or fix a failure mode that it was designed to catch. 

 
The software of the main and backup CPUs implements some fault-tolerant features.  To 
some extent, using a simulation tool automatically captures software faults.  In addition, 
the model includes software failure rates as placeholders.  Since the scope of this study 
does not cover quantitative software reliability, software failures associated with fault-
tolerant features were not explicitly considered.  On the other hand, the fault-tolerant 
features implemented in hardware were studied, e.g., WDTs, and their failures were 
considered in the FMEA and reliability model. 

 
4.4.6 If the detection of a failure of a component depends on other components, e.g., a WDT, 

then the dependency is modeled. 
 

The detection of some failure modes of some components of the DFWCS depends on 
other components, such as a WDT.  This dependency was included in the FMEA and 
reliability model. 

 
4.4.7 The probabilistic model accounts for the possibility that after a fault-tolerant feature 

detects a failure, the system may fail to re-configure properly, or may be set up into a 
configuration that is less reliable than the original one. 

 
The FMEA and reliability model account for the possibility that after a fault-tolerant 
feature detects a failure, the configuration of the DFWCS changes into one that is less 
reliable than the original.  For example, if a failure mode of the main CPU is detected, a 
failover to the backup CPU will occur, and the DFWCS will lose the original redundancy 
afforded by the main and backup CPUs.  Judgment/understanding of the system was 
used to determine whether a WDT could detect a failure mode.  In many cases, the 
failure modes are defined such that their detectability is simple to determine, 
e.g., a failure mode for sensor, OOR high signal can be detected by an OOR check of 
the CPUs. 
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Dependencies Related to Type I and II Interactions 
 
4.5 The probabilistic model addresses Type I and Type II interactions.  
 

This study did not specifically address Type I interactions (interactions with controlled 
processes), but considered Type II interactions (interactions among the components of 
the digital system) by studying the failure modes related to some events, such as 
communication between different components and multiplexing.  The inability to model 
the Type I interactions was discussed in Sections 3.4 and 4.4 in detail, and relates 
primarily to modeling of drifting signals.  This limitation does not appear to have a 
significant impact on the results.  

 
Dependencies Related to CCFs 
 
4.6.1 Intra-system hardware CCF.  Hardware CCF between similar components within a 

system is modeled. 
 

Hardware CCF between similar components of the DFWCS was considered; for 
example, that between the main and backup CPUs.  Due to lack of digital-specific CCF 
data, a generic beta factor was used.  Collection of CCF data on digital components is 
an area where additional research is needed. 

 
4.6.2 Intra-system software CCF.  If the channels or subsystems of a digital system (and/or 

the redundancy within a channel or subsystem) use similar software, software CCF is 
modeled. 

 
As mentioned above, software failures, including software CCF, are beyond the scope of 
this study.  Nevertheless, the FMEA and the reliability model consider some software 
CCFs, such as the CCF of the software of the main and backup CPUs.  Many risk 
analysts believe that software CCFs are the most risk significant failures for digital I&C 
systems.  This is an area for additional research. 

 
4.6.3 Inter-system hardware CCF.  Hardware CCF between different systems using the same 

hardware is modeled. 
 

This proof-of-concept study is limited to a single DFWCS; hence, this criterion is not 
applicable. 
 

4.6.4 Inter-system hardware CCF.  If similar software is used in different digital systems, 
software CCF is modeled. 

 
This proof-of-concept study is limited to a single DFWCS; hence, this criterion is not 
applicable. 

 
Note, however, that inter-system software CCFs may occur for a digital system, e.g., the 
same support software (operating system, platform software, etc.) may be used across 
the system boundaries.  Modeling of inter-system software CCF is an area where 
additional research is needed. 
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9.5 Probabilistic Data 
 
Probabilistic Data for Hardware 
 
As discussed in Chapter 6, publicly available hardware failure databases of digital components 
are limited and have very large uncertainties.  Hardware failure data is an area where additional 
research is needed.  The following describes how this study addresses the desirable 
characteristics. 
 
If component-specific data are available, they should satisfy the following criteria: 
 
5.1.1 The data are obtained from the operating experience of the same component as that 

being evaluated, and preferably in the same or similar application and operating 
environment. 

 
Component-specific data were unavailable for this study; hence, this criterion is not 
applicable. 

 
5.1.2 The sources of raw data are provided. 
 

As stated above, component-specific data were unavailable; hence, this criterion is not 
applicable. 

 
5.1.3 The method used in estimating the parameters is documented, so that the results can be 

reproduced. 
 

As stated above, component-specific data were unavailable; hence, this criterion is not 
applicable. 

 
If component-specific data are not available, generic data, i.e., from a generic database, may be 
used as long as they satisfy the following criteria: 
 
5.1.4 The data of the same generic type of component are used and wide uncertainty bounds 

are expected. 
 

This study used the raw data of some digital components from the RACdata database of 
PRISM [RAC manual] in a Hierarchical Bayesian analysis to account for the variability of 
data sources; very large error factors were obtained for some of the failure parameters.  
Point estimates of the RACRate model of PRISM with large assumed error factors were 
used for other components.  However, the dearth of information on the definition of 
components in the raw data, and on its sources, raises issues about the applicability of 
the data to the components in this study.  Failure-mode distributions are another type of 
failure data that are needed in this study.  One problem associated with the failure-mode 
distributions used in this study is that they do not include all of the applicable failure 
modes for some components.  Given these limitations in the data, its use in this study 
was intended only to demonstrate the proposed approach and exercise the model.  

 
5.1.5 It is verified that the generic data were collected from components that were designed for 

applications similar to those in nuclear power plants (NPPs). 
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As discussed in 5.1.4, the applicability of PRISM’s raw data and failure rate estimates is 
a concern.  

 
5.1.6 The sources of the generic database are given. 
 

PRISM is the source.  As discussed in 5.1.4, there is little information about the sources 
of raw data included in the RACdata database of PRISM. 

 
Both component-specific and generic data should meet the following criteria: 
 
5.1.7 If the system being modeled is subject to an adverse environment and the data are 

obtained from systems that are not subject to a similarly adverse environment, then the 
data is modified to account for the corresponding impact of the specific environment on 
the reliability of the system components. 

 
The components of the DFWCS are located in environments that are not normally 
adverse, i.e., the NPP control room and auxiliary building. 

 
5.1.8 Data for CCFs also address the above characteristics. 
 

There are no CCF parameters for the DFWCS components.  A generic beta factor was 
used from the Advanced Light Water Reactor Utility Requirement Document 
[EPRI 1993]. 
 

5.1.9 Data for “fault coverage” also address the above characteristics. 
 

As mentioned above, whether or not a component failure mode can be detected was 
assessed based on available design information.  The probabilistic model did not use 
values of “fault coverage” and so this criterion is not applicable.   
 
Note, due to limitations in the state of the art for FMEA, whether or not the failure modes 
of some components, such as a RAM, can be detected by the fault-tolerance features 
was determined subjectively.  The concept of fault coverage can be used to improve this 
treatment.   

 
5.1.10 Documentation of basic event calculations includes how the basic event probabilities are 

calculated in terms of failure rates, mission times, and test and maintenance 
frequencies. 

 
The component failure modes are represented by failure rates and used in calculating 
failure-sequence probabilities and frequencies.  The latter are obtained using the 
solution of the Markov model.  For a single-failure sequence, failure probability is 
calculated as the probability that the failure mode occurs (and no other failures occur) in 
one year.  For double-failure sequences, the failure probability is the probability that one 
failure occurs followed by the second failure during one year.  Triple-failure sequences 
are quantified similarly. 
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Probabilistic Data for Software 
 
5.2 A method for incorporating the contribution of software failures to digital system 

unreliability is used and documented. 
 

As mentioned above, this criterion is not applicable as quantification of software 
reliability is beyond the scope of this study (since it is not within the current 
state of the art).  Arbitrary failure rates were assumed for the placeholder software failure 
events included in the model. 

 
9.6 Uncertainty 
 
6.1 Uncertainties associated with the probabilistic data for hardware and software are 

estimated. 
 

Uncertainties associated with failure parameters of the model were estimated and used 
in an uncertainty analysis of the top event. 

 
6.2 Parameter uncertainty is propagated throughout the PRA model such that the 

uncertainty characteristics of the risk measures, such as core damage frequency, can be 
determined. 

 
Uncertainties associated with failure parameters of the model were propagated to obtain 
an estimate of the uncertainty of the top event. 

 
6.3 Key assumptions of the model are identified, and a discussion of the associated model 

uncertainty provided, including the effects of alternative assumptions. 
 

A few assumptions were identified with the associated modeling uncertainty discussed, 
along with alternative assumptions, e.g., plant dynamics and modeling drifting signals.  
They are documented in Section 8.2 and elsewhere throughout the report. 

 
9.7 Integration of the Digital System Model with a PRA Model 
 
7.1 For full effectiveness of the digital system reliability model, it is possible to integrate it 

into the plant PRA model; the process for integration is verifiable. 
 

Integrating the reliability model of the DFWCS with a PRA model is beyond the scope of 
this study; hence, this criterion is not applicable. 

 
7.2 If a model of a digital system has been integrated with a PRA model, all the 

dependencies related to the system are accounted for.  They are the dependencies of 
the digital system on other systems (such as its support systems), and of other systems 
on the digital system. 

 
As mentioned above, integrating the reliability model of the DFWCS with a PRA model is 
beyond the scope of this study; hence, this criterion is not applicable. 
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9.8 Human Errors 
 
8.1 Human errors during upgrade of hardware and software are included. 
 

The analysis of human errors associated with the DFWCS is beyond the scope of this 
study; hence, this criterion is not applicable. 

 
8.2 Human errors related to human system interface are included. 
 

The analysis of human errors associated with the DFWCS is beyond the scope of this 
study; hence, this criterion is not applicable. 
 
In this study, a loss of automatic control of the DFWCS is defined as a system failure.  It 
should be recognized that operator action may still be able to save the system from a 
loss of automatic control and maintain the feedwater level manually without causing an 
initiating event.  In addition, different failure modes may generate different alarms and/or 
annunciations, which are likely to affect performance of the operator in a different way. 
Additional research in this area will help create a more realistic reliability model.  

 
9.9 Documentation and Results 
 
9.1 Key assumptions made in developing the reliability model and probabilistic data are 

documented. 
 

The key assumptions made in developing the reliability model were documented 
throughout this report, particularly in Chapters 2 through 7. 
 

9.2 Assumptions made in developing the reliability model and probabilistic data are realistic, 
and the associated technical justifications are sound and documented. 

 
Most of the assumptions made in developing the reliability model are realistic, and the 
associated technical justifications are robust; both were documented throughout this 
report.  In a limited number of cases, arbitrary assumptions were made due to a lack of 
information or data; these assumptions are typically not expected to significantly affect 
the results of the analysis.  For example, in the case of assuming “isolated” failure of 
input and output signals, the issue is not judged of much concern due to a general lack 
of redundancy in the system.  It may be more important for other systems.  On the other 
hand, in the current study, both the BFV and pressure differential indicating (PDI) 
controllers are not modeled, which may affect the overall system failure probability.  As 
discussed in Section 4.4, if the CPU digital input that represents the BFV 
automatic/manual status indicates “manual,” this will cause a system failure and is 
accounted for in the study.  However, a number of component failures in the BFV 
controller that may cause the same impact as that failure are not included in this study.  
Similarly, a spurious takeover of the MFV controller by the PDI controller also causes a 
system failure.  Analyzing the BFV and PDI controllers to identify potential causes of the 
spurious failure of the BFV automatic/manual status and the spurious takeover by the 
PDI controller would be needed to better estimate the overall system failure probability. 
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9.3 The dominant failure modes of the reliability model are documented with a description of 
the sequence of events that need to take place and how the failures propagate to fail the 
system.  The sequence of events realistically represents the systems behavior at the 
level of detail of the model. 

 
The dominant sequences identified are consistent with the system behavior at the level 
of detail of the model.  However, understanding that the failure parameters used in the 
quantification are weak, data on dominant sequences are not included in this report. 
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10. COMPARISON OF RESULTS WITH THOSE FROM DYNAMIC 
METHODS 

 
This chapter documents a comparison of the results and insights obtained in this study using 
“traditional” methods for the failure of the digital feedwater control system (DFWCS) with the 
results from the application of two “dynamic” methods described in NUREG/CR-6985 
[Aldemir 2009].  As stated previously, dynamic methods are defined as those that attempt to 
explicitly model the interactions between a digital instrumentation and control (I&C) system and 
the plant physical processes.(9)  The comparison is performed at a high level and covers the 
scope and level of detail of the models and their qualitative results and insights.  Due to 
differences in top event definition and boundary conditions and, as stated in Chapter 7, 
weakness in failure parameters, no comparison is made between the quantitative results of the 
different studies.  The dynamic methods employed were the Markov/cell-to-cell-mapping 
technique (CCMT) and the dynamic flowgraph methodology (DFM).  Section 10.1 briefly 
describes the application of these dynamic methods in evaluating the DFWCS reliability.  
Section 10.2 is a short comparison of the DFWCS models incorporating dynamic methods and 
the traditional method of this study.  Finally, Section 10.3 explores the qualitative results 
obtained from the different models.   
 
10.1 Application Of Dynamic Methods to the DFWCS 
 
Chapter 1 of NUREG/CR-6985 [Aldemir 2009] summarizes the scenario for modeling the 
DFWCS as a plant transient, and its failure as “…either a low or high steam generator level 
event, normally followed in both cases by a turbine and reactor trip.”  Accordingly, the failure of 
the DFWCS is defined as having two possible undesirable outcomes (named “top events”):  low 
level in the steam generator (S/G) and high level in the S/G. The power transient is assumed to 
be initiated by an operator manually controlling reactor power using the control rods.  The plant 
transient is produced by a power maneuver consisting of: 
 
1. power ramp-up, starting from 70% of full power, 
2. steady-state at 78% of full power, and 
3. power ramp-down, back to 70% of full power. 
 
The maneuver constitutes good application ground because it exerts and challenges the main 
function of the DFWCS, i.e., maintaining the S/G water level between set limits under changing 
power demand.  A 24-hour period was chosen because it is the default reference-time period for 
standard probabilistic risk assessment (PRA) tools when modeling continuously operating 
systems.  This time period was equally divided among the three phases. 
 
Chapter 4 of NUREG/CR-6985 [Aldemir 2009] describes an attempt to consider the contribution 
of the failure of a DFWCS to the failure to mitigate an initiating event (IE), i.e., turbine trip.  In 
other words, an existing event tree for the IE turbine trip of a two-loop pressurized water 

                                                 
(9)As discussed in Chapters 3 and 4, in order to identify all of the DFWCS component-level failure mode sequences, it was 

necessary to augment the traditional methods through the use of a simulation tool.  Nonetheless, in this report, the methods applied 
are still referred to as “traditional,” since they do not attempt to explicitly model the interactions between the DFWCS and the plant 
physical processes. 
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reactor (PWR) was modified to cover the failure of main feedwater system (MFW) caused by 
failures of the DFWCS.  As mentioned above, the first eight hours of the plant transient consist 
of a linear power ramp-up from 70% to 78% of full power.  The results from the two dynamic 
methods during this ramp-up are used for comparing with the results obtained using the 
traditional method.(10)  
 
10.2 Comparison of Scope and Level of Detail 

 
This section offers a high-level comparison of the scope and level of detail of the two studies; it 
is not intended to be a thorough detailed comparison of their models. 

 
1. The most important difference between the two is that the dynamic methods, by 

definition, consider the interactions of the DFWCS with the plant processes by including 
simplified thermal hydraulic models of these processes.  In contrast, the traditional 
method only implicitly considers the plant condition, i.e., full power operation. In other 
words, the plant condition determines the sensor inputs to the simulation tool for the 
DFWCS.  The inability to model the Type I interactions was discussed in Sections 3.4 
and 4.4, and primarily relates to modeling of drifting signals.  This limitation does not 
appear to have a significant impact on the results. 

 
2. The dynamic methods define system failure in terms of level in the S/G, while this 

traditional method study defines system failure as loss of automatic control, which can 
be determined in terms of the internal properties of the DFWCS, e.g., the main 
feedwater valve (MFV) controller enters “manual” mode. 

 
3. Dynamic methods develop models of the software of the DFWCS that represent the 

normal behavior of the software, and try to capture potential software faults by 
developing different scenarios/boundary conditions that may challenge it.  The models of 
the software developed using dynamic methods approximately model the control law 
and the complex logic that is used in the software to process digital signals, such as 
status information.  The traditional method study uses the simulation tool that runs the 
actual software.  The simulation tool contains complex status logic, in addition to control 
laws, to account for the system response to many postulated hardware failures and their 
combinations.  The simulation runs also may capture potential software faults as 
exemplified in the two types of scenarios described in Chapters 3 and 4 (i.e., the 
scenario involving MFV controller output fails low and the scenario involving MFV 
controller sending an incorrect main central processing unit (CPU) status to the main 
CPU). 

 
4. The dynamic methods employ “coverages” estimated by a fault injection method based 

on an emulator of the main and backup CPUs.  These coverages are measures of fault-
tolerance features internal to the microprocessors of the CPUs, and are applied as 
reduction factors for the failure rates used in the dynamic reliability models.  The fault 
injection method captures a very low level of design detail and allows the development 
of a much higher-level reliability model.  Its limitation is that it only measures the 

                                                 
(10) The comparison of the dynamic methods’ results to the traditional method results was performed prior to the 

completion of NUREG/CR-6985 [Aldemir 2009].  Following this comparison, additional results were obtained from application of the 
dynamic methods that cover the ramp down period.  These additional results were not compared to the traditional method results. 
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microprocessors’ response to injected faults. It does not consider interactions between 
the CPUs and other system components, e.g., demand feedback from the controllers 
and subsequent failover.  The simulation tool used to augment the traditional method 
models the whole DFWCS, and can consider failure modes associated with any 
components that are part of the DFWCS, e.g., the sensors, analogs/digitals, multiplexers 
and watchdog timers (WDTs).  It also can account for, in an integrated way, failure 
modes at a lower level than those of the dynamic models, e.g., a spurious signal from 
the WDT indicating that the CPU has halted. 

 
5. The dynamic models include the failure modes of the “actuated devices,” e.g., the main 

feedwater-regulating valve (MFRV) “stuck” in its current position.  In contrast, the 
traditional methods study modeled the valve positioners and pump speed controllers that 
are digital components in a simplified way, i.e., as single components, since it was 
considered that the non-digital components of the system can be easily modeled as part 
of a conventional PRA. 

 
6. The dynamic models are more subject to the potential state explosion issue if too many 

components and processes are introduced into them.  The traditional approach Markov 
model is developed and quantified by treating individual sequences separately, i.e., each 
sequence is simulated and quantified separate from those of other sequences; in this 
way, linear scalability is achieved, i.e., the sequences can be simulated and quantified 
by running multiple computers in parallel, and combining the results later. 

 
10.3 Comparison of Results from Traditional and Dynamic Methods 
 
As described in detail in Chapter 3 of NUREG/CR-6962 [Chu 2008a], degradation or total loss 
of the MFW system has two contributions to plant risk: (1) It may cause IEs and (2) it may fail to 
fulfill its mitigative function after a reactor trip.  As discussed in NUREG/CR-6962 [Chu 2008a], 
the first contribution is analyzed in this study because it is considered more significant to plant 
risk.  Hence, the traditional method was used to develop a model for failures of a DFWCS that 
cause an IE. 
 
As described in Section 10.1, the dynamic methods modeled a DFWCS during a plant transient 
between 70% and 78% of full power, but proposed to use it to model the mitigation of an IE, 
i.e., with the plant shut down, and a DFWCS operating in low-power mode.  Nonetheless, the 
ramp-up (first eight hours of the plant transient described above) proposed by 
NUREG/CR-6985 [Aldemir 2009] is similar to the condition of the plant assumed by the 
traditional method, i.e., full power.  Accordingly, the qualitative results from the traditional 
method can be roughly compared with those from the dynamic methods, recognizing the 
differences in boundary conditions between the respective models.   
 
In this report, the failure of a DFWCS is defined as loss of automatic control of feedwater within 
one year (given that the plant is at full power), while the definition of failure of the DFWCS 
(during the 8-hour ramp-up) in the dynamic method models is expressed as two top events:  
“low level in S/G” and “high level in S/G.”  Since the occurrence of each top event constitutes a 
loss of automatic control, the results for each can be qualitatively compared to those of the 
traditional method.  The main qualitative results from the three methods (i.e., Markov/CCMT, 
DFM, and traditional) are the combinations of failure modes that cause loss of automatic control. 
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A one-to-one comparison of the combinations of failure modes that cause system failure 
obtained by each method is beyond the scope of this task.  Nevertheless, the following are the 
main insights gained from comparing the results of both dynamic methods with those of the 
traditional method: 
 
1. Due to the detailed, comprehensive approach used for implementing the traditional 

method, the resulting combinations of failure modes that cause system failure appear to 
include the combinations identified by the dynamic models.  However, NUREG/CR-6985 
[Aldemir 2009] only provides the most dominant (i.e., most likely) failure modes 
combinations.  Also, it is possible that a different application of the dynamic methods 
may produce some combinations of failure modes that the traditional method may not be 
capable of identifying.  
 

2. The scope of the dynamic models included the failure modes of “actuated devices,” 
e.g., the MFRV “stuck” in its current position, while the traditional model did not include 
them.  Accordingly, the former models encompassed some combinations (of failure 
modes causing system failure) involving the failure modes of these devices that the 
traditional model did not identify.  However, the traditional method can obtain these 
combinations by modeling the non-digital components of the system as part of a 
conventional PRA.  
 

3. The traditional method, as applied in this study, identified system failure resulting from  
combinations of failure modes of detailed components of the DFWCS; the dynamic 
models used failures modes at a coarser level, i.e., similar to the module level as defined 
in this study. 

 
4. The dynamic methods assumed that the two CPUs (main and backup) and the three 

controllers (MFV, bypass feedwater valve, and feedwater pump) share the same power 
source.  Accordingly, its loss is a major contributor to their results.  However, this 
assumption seems to be a conservative one.  In this study, a more realistic power supply 
arrangement was assumed by modeling separate power sources for the CPUs and 
controllers. 

 
5. Quantitatively, this study obtained a probability of approximately 0.1 for system failure in 

one year of operation that converts to approximately 1x10-04 for an 8-hour period.  This 
value is of the same order-of-magnitude as the results of the dynamic methods.  It is 
difficult to compare the detailed results, partly because the sequences obtained using 
the traditional method tend to be at a lower level of detail, and partly because different 
failure parameters seem to have been used. 
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11. CONCLUSIONS, INSIGHTS, AND AREAS OF POTENTIAL 
ADDITIONAL RESEARCH 

 
This study develops an approach for modeling digital systems using the Markov method and 
applies it to a digital feedwater control system (DFWCS) to demonstrate the underlying 
concepts of the approach.  The top event is the loss of automatic feedwater control.  
A failure modes and effects analysis (FMEA) was performed at a relatively fine level of detail, 
e.g., at the level of multiplexers (MUXs) and analog/digital (A/D) converters.  This level of detail 
is considered appropriate for supporting the proof-of-concept reliability analysis of the DFWCS.  
The FMEA approach used in this study should be applicable to other digital systems, though the 
level of detail of the FMEA will be a function of the particular study objectives.  The study uses 
publicly available data on the failure modes of the hardware components, thereby allowing 
important design features to be properly accounted for.  Model development includes 
development of a simulation tool that simulates the execution of the DFWCS software.  
The simulation tool is used to determine the system response to postulated hardware 
failure modes and combinations thereof.  The sequences of component failure modes that lead 
to a system failure are then used in defining the sequences of transitions in a Markov model.  
The Markov model is quantified to estimate the annual frequency with which a loss of automatic 
control of feedwater takes place, and to support sensitivity calculations that evaluate the 
benefits and importance of some of the features of the digital design, such as watchdog timers 
(WDTs), feedback of demand signals, and deviation logic.  The quantification of the system 
model makes use of publicly available component failure parameters and the results of a 
Hierarchical Bayesian Method (HBM) analysis [Yue 2006] of the raw data in the PRISM 
database [Reliability Analysis Center (RAC) Manual] that accounts for the uncertainty 
associated with different data sources.  
 
The following is an outline of the procedure of the demonstrated approach: 
 
1. Define system boundary and top event. 
 
2. Decompose system into modules and components to a level of detail where failure data 

are available. 
 
3. Perform component-level FMEA of individual failures manually to determine their effects 

on the system in terms of the output signals of the components.  
 
4. Develop and validate an automated FMEA tool by (1) simulating the impacts of individual 

failures and comparing to the manual FMEA results and (2) simulating higher order 
sequences and spot checking the results, if needed, as determined by Step 5. 

 
5. Quantify the sequences generated in Step 4, starting with individual failures, 

to determine if system failure probability has converged.  If not, continue Step 4 with 
higher order sequences. 

 
6. Proceed with subsequent steps, such as uncertainty and sensitivity analyses, as 

needed. 
 
It should be emphasized that since the objective of this study was only to identify the existing 
capabilities and limitations of using traditional probabilistic risk assessment (PRA) methods for 
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developing and quantifying reliability models of digital systems, the study did not generally 
involve advancements in the state of the art (with the possible exception of the use of the 
simulation tool).  Therefore, there are a number of key areas that need to be addressed 
(as identified in Section 11.3) before the methods described in this report can be used to 
support decision-making (e.g., regulatory decisions or design changes).  In particular, many risk 
analysts believe that software common-cause failures (CCFs) are the most risk significant 
failures for digital instrumentation and control (I&C) systems.  Due to limitations in the current 
state of the art, software CCFs are beyond the scope of this study. 
 
It should also be pointed out that even though this study models a control system, the approach 
of this study may be applicable to protections systems, such as a reactor protection 
system (RPS).  The conclusions and insights of this chapter are mostly related to modeling 
methods, and are applicable to both control and protection systems, unless otherwise specified.   
 
11.1 Conclusions 
 
The following conclusions are derived from performance of this study.  
 
1. The traditional method used in the study, i.e., Markov method, must be supported by 

strong engineering knowledge and supporting analyses of the systems being studied.  
A simulation model of the system is a critical tool in facilitating reliability model 
development. 

 
At the level of detail considered, the study requires a deterministic model that simulates the 
execution of the system software to capture the system design features, particularly those of the 
software, and to determine which sequences of postulated component failure modes would 
cause the system to fail.  The simulation model allows the system behavior under failure 
conditions to be approximately accounted for in the reliability model, including not only the 
system control algorithms, but also the complex control logic based on the status of various 
signals of the controlled processes and that of the components of the system. 
 
The important role of the simulation tool in determining system success or failure reduces the 
Markov methods to methods solely for quantifying system reliability (i.e., the Markov methods 
are not used to identify the system failure paths, they are only used to quantify them).  
Without the simulation tool, in practice, it would be very difficult, or even impossible, to directly 
develop a Markov model that captures all of the details of the system design.  Although an 
automated tool is used, the methods applied are still referred to as “traditional,” since they do 
not attempt to explicitly model the interactions between the DFWCS and the plant physical 
processes.  The Markov model formulated for this study (using the output of the simulation tool) 
does represent a good model of the system failure behavior, i.e., it explicitly models the order in 
which failures occur, and supports the derivation of simple analytical solutions. 
 
2. The level of detail of the DFWCS model is adequate for capturing many of the system 

design features, while not being too complicated to be developed and solved. 
 
The Markov model of the DFWCS demonstrated the feasibility of the proposed approach.   
Although the intent of this study is to use state of the art traditional methods to develop a 
reliability model of the system, the need to model realistically the DFWCS features necessitated 
developing a simulation tool, an enhancement to the state of the art.  As discussed previously, 
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using a simulation model supports the development of a more realistic reliability model.  
Also, the level of detail of the model is consistent with that at which failure parameters are 
available (although the data has weaknesses, as discussed next).  Even though the simulation 
tool does not encompass a thermal-hydraulic model of the plant, the system failure modes and 
sequences can be identified from information on its design.  The state explosion problem of a 
detailed Markov model is resolved by truncating the higher order failure sequences when 
convergence is achieved.  This process is similar to that used in a traditional PRA where the 
quantification process is truncated based on a cutset size limit and/or probability/frequency limit.  
The usefulness of the DFWCS model developed for this study is demonstrated further by 
performing a few sensitivity calculations that evaluate the importance of some of the digital 
design features, e.g., WDTs. 
 
3. Failure parameters of digital components are scarce, and additional data are needed. 
 
NUREG/CR-6962 [Chu 2008a] includes a review of publicly available failure data on digital 
systems and a Bayesian analysis of raw data extracted from the PRISM database to account for 
the variability in the sources of the data.  That review identified and discussed some 
weaknesses and limitations of the publicly available databases, though no attempt was made to 
validate or invalidate them.  The limitations of these failure parameters of digital components 
point to the need for additional research and development in this area.  The Bayesian analysis 
resulted in some failure parameters with very large error factors, demonstrating large variability 
in the data.  It may be challenging to calculate meaningful failure rate for hardware components 
because of this large variability. The information documented in Chapter 6 of this report is 
extracted from NUREG/CR-6962 [Chu 2008a], and is used only to demonstrate the reliability 
method and exercise the reliability model.  These data are not appropriate for quantifying 
models intended for use in supporting decision-making (e.g., regulatory decisions or design 
changes).  In general, data should be collected from the manufacturers of the components 
being modeled or from the same type of components in a similar application.  It should be 
noted, however, that the manufacturers of components often change throughout the lifecycle of 
the product and component failure data is often not available or difficult to obtain.  It is possible 
to address these limitations in the uncertainty treatment of the data analysis, though the 
resulting uncertainty may be very large. 
 
11.2  Insights 
 
A number of insights were obtained through performance of the DFWCS benchmark study.  
These are summarized below. 
 
• This study found that, for the DFWCS, the order in which component failure modes 

occur can affect the impact the failures have on the system.  For example, an individual 
failure that fails the system may not do so if it occurs subsequent to another failure.  This 
is believed to be a generic feature of digital systems, and should be captured in reliability 
models.  The Markov method can easily account for the order in which component 
failure modes occur by considering different orders in different sequences. 

 
 In addition, in the above example, if the sequence of two failures does cause the system 

to fail, then the double sequence needs to be included as a valid sequence even though 
a single failure would have caused system failure because the definition of the single 
failure precludes the double sequence.  In other words, the probability of the single 
failure is the probability that it occurs in one year and no other failures occur.  
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Accordingly, the concept that non-minimal cutsets do not need to be considered is not 
applicable to the sequences that cause a system failure.  For this and other reasons, use 
of Markov quantification methods raises some issues with regard to integration with a 
PRA that is based on the event tree/fault tree (ET/FT) method.  A number of studies 
have discussed how prime implicants and/or non-minimal sequences can be integrated 
into ET/FT models [Aldemir 2007, Aldemir 2009].  In addition, some PRA software is 
being modified to better address this issue.  An assessment of the challenges and 
potential solutions for integrating the DFWCS model with a PRA is beyond the scope of 
this study, but will need to be addressed in the future.  

 
• Performing the FMEA and running the simulation tool revealed two kinds of scenarios 

(one involving differences in signal delay times and the other involving both central 
processing units (CPUs) operating in tracking mode) that represent potential 
weaknesses of the system design.  These scenarios are described in Sections 3.3.4 
and 4.3.  The discovery of these scenarios, which were not identified in the plant’s 
hazards analysis, suggests that the simulation tool potentially could serve to verify and 
validate the system software.  Including a thermal-hydraulic model of the plant would 
make it a more complete tool.  Development of the simulation tool offers a capability to 
undertake test runs of the software and support deterministic evaluations of digital 
systems. 

 
• The model developed for the DFWCS is significantly more detailed than that of many 

other studies of digital systems, e.g., those models proposed by Rouvroye [1999].  The 
experience of this study shows that it is difficult to capture the detailed interactions 
among the components and combinations of failures of the components using higher 
level modeling.  It may be possible to use the detailed model of this study to develop an 
equivalent or approximate module level model by grouping the component failure modes 
of a module based on their impacts, e.g., on the input and output signals of the modules.  
Failure modes of the modules could then be defined in terms of the component failure 
mode groups, and used in developing a system level model in the form of high-level 
Markov models or fault trees. 

 
• In developing an automated FMEA tool, it is desirable to use the source code which 

should be available to the nuclear power plant but may not be available to the 
United States Nuclear Regulatory Commission or its contractors.  If the source code is 
not available, an FMEA tool can still be developed using design information, such as a 
functional description of the software, although the tool will not be as realistic as a tool 
developed using the source code and may not be suitable for use in studying a system 
in detail.  In either case, if the tool is to be used for a regulatory application, it would 
need to be subjected to systematic verification and validation. 

 
• The FMEA tool may have difficulty in accurately addressing the timing issue associated 

with the time when an additional failure occurs given one or more failures have taken 
place and the system has not failed yet.  The FMEA tool assumes that the system is in a 
steady state before any failure occurs.  If an additional failure occurs after the control 
system and the controlled processes have again reached a steady state condition after 
the transient caused by preceding failure or failures, then the automated FMEA tool can 
correctly determine the system response.  If the additional failure occurs before the 
system reaches a steady state subsequent to the preceding failure(s), the impact of the 
additional failure on the system cannot be captured by the FMEA tool, because the 
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FMEA tool does not have a model of the controlled process and is not able to determine 
the transient response.  It is expected that the duration of the transient subsequent to the 
postulated failure or failures is very short compared with the duration of one year, and 
the occurrence of the additional failure during the transient is very unlikely, given the 
assumption that the failures are independent of each other.  Therefore, ignoring the 
transient period should not have a significant impact on the results. 

 
• This study did not specifically address Type I interactions (interactions with controlled 

processes external to the digital system), but considered Type II interactions 
(interactions among the components of the digital system) by studying the failure modes 
related to some events, such as communication between different components and 
multiplexing.  The inability to model the Type I interactions was discussed in 
Sections 3.4 and 4.4 in detail, and relates primarily to timing issues and modeling of 
drifting signals.  This limitation does not appear to have a significant impact on the 
results. 

 
 In this study, the simulation tool cannot properly calculate analog signals due to the lack 

of a thermal-hydraulic model of the plant to provide feedback signals.  On the other 
hand, the application of two “dynamic” methods to the DFWCS system described in 
NUREG/CR-6985 [Aldemir 2009] explicitly models the controlled process to determine 
the dynamic behavior of the feedwater system.  Including plant dynamics could help 
capture subtle timing aspects of the performance of the DFWCS, e.g., issues associated 
with timing of failure sequences and the impacts of a within-the-range drifting signal.  
However, these issues are likely to be difficult to address even with a model of the plant 
included in the automated tool.  For example, in the case of a drifting signal, the failure 
impacts are affected not only by how the signal drifts, but also by the system operating 
point when the failure occurs.  A subtle deviation in the drifting signal may cause 
completely different responses.  In addition, it is not clear, at present, whether the 
increased accuracy of modeling obtained through incorporation of a plant dynamics 
model would justify the increased complexity.  Obtaining the needed failure rate data 
may also be difficult.   

 
 Unfortunately, due to differences in top event definition and boundary conditions, 

comparison of the results of the DFWCS studies using traditional and dynamic methods 
does not provide insight into the importance or benefit of incorporating a plant dynamics 
model in determining the DFWCS failure rate or probability. 

 
• The proposed approach of this study may also be capable of modeling safety related 

protection systems, such as a RPS.  For protection systems, it is believed that the use of 
dynamic methods may not offer any considerable improvements, because once a 
protection system is actuated, the feedback from the plant has no effect on the 
actuation.  An RPS has higher redundancy than the DFWCS, and probably requires at 
least three independent failures to cause a system failure.  It is expected that 
sequences/cutsets of orders higher than 3 will have to be considered, and a much larger 
number of sequences evaluated.  Therefore, failure modes may have to be grouped and 
repair be considered at a higher level of detail, as discussed previously. 

 
• It is important that a reliability model realistically captures the fault-tolerance features of 

a digital system.  This is often accounted for by adjusting component failure rates or 
probabilities with fault coverage values (i.e., the fraction of faults that would be 



11-6 

automatically detected and compensated for).  In this study, for each failure mode 
associated with a CPU module which has an independent WDT, plant information and 
an understanding about how the system works were used to determine if the effect of 
each failure mode on the module can be detected by its WDT and/or the application 
software.  The probability that an individual failure mode or sequence is detected by the 
WDT was assumed to be either one or zero given that the WDT functions properly.  
In this sense, the coverage is automatically accounted for in the probabilities of all failure 
sequences.  However, due to limitations in the state of the art for FMEA, whether or not 
the failure modes of some components, such as a random access memory (RAM), can 
be detected by the fault tolerance features was determined subjectively.  The concept of 
fault coverage can be used to improve this treatment.  In general, fault coverage can be 
used to adjust the component failure rates, as in Aldemir [2009], which estimated 
coverages using fault injection experiments.  If fault coverage is accounted for in the 
failure data, then detailed models of the fault-tolerance features do not have to be 
explicitly included in the reliability models.  Coverage of fault-tolerance features is an 
area for future research. 

 
• An important assumption of the Markov model described in Chapter 5 is that online 

repair is not possible, which is the case for the DFWCS.  For other digital systems, such 
as an RPS, on-line repair may be possible, and the analytical solutions of the Markov 
model developed in Chapter 5 cannot be used.  If components can be repaired with the 
system operating, the Markov model would have to be modified by adding transitions 
that represent repairs, making it much more difficult to solve.  Using the simplified 
Markov model described in Section 5.3, the governing equations in the 
Laplace-transformed space can be solved analytically, and the inverse Laplace 
transform can be solved in the same way described in Section 5.3.  The accuracy of the 
simplified Markov method needs to be further explored and, if necessary, better 
approximate methods can be developed.  Alternatively, as discussed in the previous 
insight, it may be possible to develop a higher level model based on the more detailed 
model and, as discussed in Section 5.4, numerically solve the higher level model even if 
it includes repair. 

 
• The proposed FMEA approach and its implementation assume only one failure mode for 

some components, such as the Industry Standard Architecture bus, RAM, 
Read-Only Memory, Basic Input/Output System, flash disk, serial port, address logic, 
and buffer.  The only failure mode for these components is the loss of the component.  In 
many, but not all, cases these were considered to be undetectable failures because of 
the difficulty in precisely evaluating their impacts.  The automated FMEA tool can be 
enhanced by defining more detailed failure modes for these components.  For example, 
some of the lower level failure modes of RAM may be detectable, while some other 
failure modes are not.  This is an issue that can be addressed using the concept of 
coverage, as discussed above and in Section 3.4.  While a more systematic treatment of 
the detectability of component failure modes is desirable, it should also be recognized 
that detectability of a failure mode is design specific and coverage values obtained for 
one system will often not be applicable to other systems. 

 
• The quantification method used in this study can estimate the upper bound of errors due 

to truncation based on the order of the failure sequences, and this upper bound can be 
used in determining if convergence has been achieved. 
  



11-7 

11.3 Areas of Potential Additional Research 
 
The experience of developing the probabilistic model of the DFWCS identified many areas of 
research to enhance the state of the art in modeling digital systems.  They have been discussed 
throughout the report and are summarized below.  
 
• Improved approaches for defining and identifying failure modes of digital systems should 

be developed.  Both software and hardware failure modes need to be considered.  In 
this study, generic component failure modes that are publicly available are used.  
As discussed in Chapter 3, the component failure modes may not be complete, and the 
breakdown of component failure rates into constituent failure modes may not be 
supported by adequate failure data.  Software failures are beyond the scope of this 
study, and placeholders for two generic software failure modes are used in the model of 
the DFWCS.  Research on software failure modes that can be incorporated in reliability 
models of digital systems is needed.  A review of software failure experience in different 
industries would be beneficial.  Also, there are unique features in a digital design, such 
as communication and synchronization, whose failure modes and effects are not well 
understood and may introduce dependencies between redundant equipment.  Therefore, 
more research is needed to evaluate the potential failure modes and effects associated 
with these features. 

 
• Software reliability methods for quantifying the likelihood of failures of both application 

and support software need to be developed.  Many risk analysts believe that software 
CCFs are the most risk significant failures for digital I&C systems.  However, it is difficult 
to determine how significant the impacts may be without quantifying them.  Also, 
methods for modeling software CCFs across system boundaries (e.g., due to common 
support software) need to be developed, as suggested in 4.6.4 of Section 9.4. 

 
• Methods and parameter data for modeling self-diagnostics, reconfiguration, and 

surveillance, including using other components to detect failures, are needed.  In this 
study, the automated FMEA tool captures the fault-tolerance features implemented in 
the application software and by the WDTs.  Fault-tolerance features are not limited to 
those modeled in this study.  Different hardware redundancy techniques and software 
fault-tolerance designs can be applied to digital system designs.  Incorporation of these 
different designs needs to be further pursued. 

 
• Chapter 6 discusses how publicly available hardware failure data are used in this study 

and points out that better data for hardware failures and a break down of the failure rates 
by failure modes of digital components need to be collected. The potential issue of 
double-crediting fault-tolerant features, such as self-diagnostics(11), discussed in 
NUREG/CR-6962 [Chu 2008a], needs to be addressed.  The research should include 

collection and analysis of generic manufacturer data and specific operating data.  
 
• Better data for the CCFs of digital components need to be collected. The reason for 

using 0.05 as the beta factor in this study is a lack of applicable data and should not be 
considered conservative.  It is acknowledged that CCF data for digital components are 
sparse and further investigation is needed in this area. 

                                                 
(11) Double-crediting fault-tolerant features also can be an issue for software failures. 
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• Use of Markov quantification methods raises some issues with regard to integration with 

a PRA that is based on the ET/FT method.  Integration of Markov models, such as the 
one developed in this study, with an ET/FT PRA should be demonstrated. 

 
• Methods for human reliability analysis (HRA) associated with digital systems need to be 

investigated.  In this study, a loss of automatic control of the DFWCS is defined as a 
system failure. It should be recognized that operator action may still be able to maintain 
the feedwater level manually without causing an initiating event.  In addition, different 
failure modes may generate different alarms and/or annunciations, which are likely to 
affect performance of the operator in different ways.  Additional research in this area 
would help create more realistic reliability models of digital systems.  In general, digital 
upgrades at current nuclear power plants and the designs of new reactors introduce new 
human system interfaces that are significantly different from those of existing plants.  
HRA research is needed to address these new interfaces in support of PRAs for both 
existing plants and new reactors. 

 
• This study identified that it may be beneficial to include controlled processes in modeling 

drifting signals of a control system, but not necessarily for a protection system.  It is also 
not clear whether the increased accuracy of modeling obtained through incorporation of 
a plant dynamics model would justify the increased complexity and effort required for 
intensive simulation.  Determining if and when a model of controlled processes is 
necessary in developing a reliability model of a digital system should be further 
researched.   
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