
 

 
 
 
 

APPENDIX F 
 

THE DEVELOPMENT OF A J-ESTIMATION SCHEME FOR 
CIRCUMFERENTIAL AND AXIAL  

THROUGH-WALL CRACKED ELBOWS 
 



 

 F-1

F.1  INTRODUCTION 
 
Leak before break (LBB) considerations for pipe 
fittings such as tee joints and elbows have not 
been investigated in detail to date.  Reference 
F.1 presented the development of a surface crack 
estimation scheme for elbows.  These solutions 
were then used to investigate the possibility of 
using simple influence functions, based on 
ASME Section III stress indices, along with 
existing straight pipe solutions, to predict the 
fracture response of a surface-cracked elbow.  
The use of this small database of influence 
functions, combined with existing straight pipe 
J-estimation methods showed promise in 
predicting the fracture response of the surface-
cracked elbows.   
 
However, in order to perform LBB sensitivity 
studies on fittings, such as elbows, TWC 
solutions must be available.  With the TWC 
elbow solutions available, one can investigate 
the feasibility of using influence functions and 
straight pipe TWC solutions to predict the LBB 
behavior of fittings.  The main purpose of this 
effort is to provide a new J-estimation scheme 
for TWC elbows.  Both circumferential and 
axial cracks are considered.  In addition, crack-
opening displacements can be estimated so that 
LBB considerations can be assessed.   
 
F.2  BACKGROUND ON PIPING J-
ESTIMATION SCHEMES 
 
The nuclear industry has traditionally taken the 
lead in the development of J-estimation schemes 
to allow engineers to make estimates of the 
fracture behavior of nuclear piping components.  
These J-estimation schemes have permitted 
engineers to make simple fracture assessments 
of planar component geometries (Ref. F.2), 
through-wall-cracked (TWC) pipes (Ref. F.3), as 
well as surface-cracked (SC) pipe (Ref. F.4).  
This early work sometimes had inaccuracies 
implicit within the solutions, in part due to the 
fact that the finite element methods used at that 
time were not quite fully developed, nor as 
robust as today’s’ numerical tools.   
 
Corrections and improvements to pipe fracture 
J-estimation schemes were made subsequent to 

this original work.  References F.5 and F.6 
represent the development of alternative J-
estimation schemes for TWC pipe which are not 
based on the compilation of a series of 
numerical solutions; rather these solutions were 
developed from making certain geometric 
assumptions.  References F.7 and F.8 are similar 
non-finite element based J-estimation schemes 
for surface cracked pipe.  References F.9 and 
F.10 represent the improvements and corrections 
to the original numerical solutions using 
improved numerical finite element techniques 
(compared with the original solutions) and 
permitted pipes with “small” cracks to be more 
accurately modeled.  In addition, some of these 
methods were specifically developed to account 
for cracks in welds (Refs. F.8 and F.11).  
References F.8 to F.12, and many references 
cited therein, summarize many of these methods, 
both numerical and engineering based, and 
compare predictions to full-scale experimental 
test data. 
 
The J-estimation schemes discussed above were 
appropriate for cracked pipe.  Fracture estimates 
for more complicated geometries, such as pipe 
fittings, had to be performed on a case-by-case 
basis using finite element analysis.  These 
analyses are time consuming, often requiring 
significant resources, and the results are only 
appropriate for the specific geometry and 
material considered.  As such, the development 
of more general J-estimation schemes for pipe 
fittings, such as elbows and Tee joints, has 
begun.  A surface crack estimation scheme for 
axial and circumferential cracked elbows was 
developed in Reference F.1.   
 
The purpose of this effort is to develop a J-
estimation scheme for axial and circumferential 
through-wall cracks in elbows.  Solutions are 
compiled for the pure pressure, combined 
pressure and bending, and pure bending cases.  
However, before presenting these solutions, it is 
first instructive to discuss some unique features 
associated with fracture of elbows, which are not 
necessarily intuitive based on experience with 
straight pipe.  Many of these anomalies are 
associated with the way that elbows ovalize. 
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F.3  GENERAL OVERVIEW OF 
DEFORMATION AND FRACTURE 
RESPONSE OF ELBOWS 
 
F.3.1  Geometry  
 
The geometry of the cracked elbows considered 
here is illustrated in Figure F.1.  We are 
interested in estimating J and crack opening 
displacement (COD) for both circumferential 
and axial ‘flank’ cracks.  The ratio of Rel/Rm = 3 
here represents a long radius elbow.  The 
loading cases considered are pure pressure, pure 
bending, and combined pressure and bending.  
The pressure loading turns out to be very 
important consideration for elbows.  Note that 
the outer length of the elbow [i.e. (Rel + Rm/2) * 
ψ] is greater than the inner length of the elbow 
[i.e. (Rel - Rm/2) * ψ].  From the free body 
diagram alone, this means that the integrated 
pressure along the outer length of the elbow is 
greater than that along the inside of the elbow, 
i.e., there is a net outward force that must be 
equilibrated by the end cap pressure T (see 
Figure F.1).  This means that, due to pressure 
alone, the elbow wants to straighten out.  
Therefore, for the cases of pressure and 
combined pressure and bending, both the 
pressure and end cap tension must be applied.  
This is not the case for a straight pipe, where the 
pressure can be neglected when developing J-
estimation schemes for circumferential cracks.  
It turns out that the effect of pressure also has an 
important effect on the ovalization of the elbow, 
which in turn, affects the J- and COD- solutions. 
 
F.3.2  Solution Procedure  
 
Figure F.2 shows a typical finite element mesh 
that was used for the analyses.  Figure F.2(a) 
shows an example of a 90-degree 
circumferential crack in an elbow.  A quarter 
model, with symmetry about the plane of the 
crack and a symmetry plane about the half crack 
length, θ, was used to simplify the analyses.  As 
seen in Figure F.2, a long length of straight pipe, 
equal to L = 9 D (with D the diameter), was 
included in the model.  At the end of the length 
of pipe, a series of very stiff beams were 
attached to the pipe, which met at a point node at 
the center of the pipe.  The bending moment, M, 

was applied at this node.  The length, 9D, was 
determined by performing a series of mesh 
sensitivity studies.  This technique simplified the 
analysis procedure, the reduction of data, and 
assured that the elbow solutions were not 
distorted by end effects.  Figure F.2(b) shows a 
typical mesh for a 15-degree axial crack.  For 
the axial cracks, half symmetry models were 
used.  For both circumferential and axial cracks, 
pressure along the entire inside pipe and elbow 
surfaces were included along with end cap 
pressure at the end of the long length of straight 
pipe. 
 
The ABAQUS commercial finite element 
package was used for all analyses.  The 20-node 
isoparametric brick element was used for all 
solutions.  A deformation theory plasticity 
model was used, although, as will be seen later, 
flow theory was used for some of validation 
studies.  Because the ABAQUS deformation 
solution procedure includes the elastic strains, 
each solution was monitored and considered 
complete (i.e., fully plastic) when the plastic 
strain at each integration point became greater 
than ten times the elastic strain.  As an 
independent check on the adequacy of the fully 
plastic solution, the h-functions (see next 
section), were plotted as a function of load at 
each load step in the analysis.  Typically, h 
reached a constant, converged value long before 
the analysis was automatically completed using 
the criteria discussed above.  The compilations 
of h-functions were performed using one 
element through the thickness, as illustrated in 
Figure F.3.  However, as seen in Figure F.3(b) 
several solutions were performed using a mesh 
with four elements through the thickness.  The 
average J-integral, and COD, solutions for the 
four elements through the thickness mesh 
compared well with the results for the one 
element mesh.  It is noted that there is a 
variation of J through the thickness, especially 
for the axial flank cracks, but the use of one, 
average value for J, is adequate for engineering 
estimation purposes.  An extensive mesh 
sensitivity study was performed to ensure 
adequate solution convergence.  The procedure 
was also validated by comparing results for 
known straight pipe solutions.  Because of the 
use of parabolic elements, the values of J for the 
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one element through the thickness meshes 
(Figure F.3(a)) were calculated using: 
 

OMIAVG JJ4JJ          ++=   (F.1) 

where JI is the value of J at the inner surface 
node at the crack, JM is J at the mid side node, 
and JO  is J at the outside node. 
 

Figure F.1  Crack geometries considered for elbows 
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Figure F.2  Typical finite element mesh and model geometry for (a) a 90-degree 
circumferential crack and (b) a 15-degree axial flank crack 
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Figure F.3  Typical mesh (circumferential crack, 45-degree crack) (a) one element through 
thickness and (b) four elements through thickness 

 
 
F.4  OVALIZATION EFFECTS ON ELBOW 
FRACTURE 
 
F.4.1  Circumferential Cracks 
 
The ovalizations induced in elbows that are 
subjected to bending loads turns out to have an 
important effect on the predicted J-integral, 
crack opening displacements, and fracture 
response.  Consider the simple example of 
Figure F.4.  In the upper plot (Figure F.4(a)), an 
illustration of a circumferentially cracked elbow 
subjected to a closing moment is shown.  
Intuitively, an elbow closing moment would be 
expected to open the crack, similar to what 
occurs in a straight length of pipe subjected to a 
crack opening moment.  The illustration to the 
right in Figure F.4(a) shows a deformed plot 
caused by the applied moment.  The shaded 
areas represent contour plots of the crack 
opening stress and the numbers represent 
normalized stress (normalized with yield stress).  
For this elastic case, the magnitude of the 
stresses is not important.  Notice that the stresses 

are negative ahead of the crack.  For the 
illustration in Figure F.4b, the moment was 
applied in the opposite direction, i.e., an elbow 
opening moment.  For this case, a low level of 
tension exists ahead of the crack tip despite the 
fact that the moment is attempting to close the 
crack faces.   
 
The reason for this somewhat surprising 
behavior lies in the way that the elbow ovalizes 
due to bending moment.  As seen, the closing 
moment ovalizes the elbow cross section into the 
shape of an oblate spheroid while the elbow 
opening moment causes a prolate spheroid 
deformed shape.  The case illustrated in Figure 
F.4 represents a radius to thickness ratio, R / t = 
20.  The same behavior occurs for R / t = 5, i.e. 
the stiffer case.  In fact, for the un-cracked case, 
an elbow closing moment results in compressive 
stresses that develop up to an angle of between 
20 and 25 degrees at the toe of the elbow, 
depending on the R / t ratio. 
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This response is further summarized in Figure 
F.5.  The top illustration summarizes the 
response to an elbow closing moment.  As 
illustrated, this results in an oblate spheroid type 
ovalization.  As illustrated, one can think of this 
ovalization as being caused by ‘pinching’ forces 
applied along a plane at the center of the crack.  
This type of ovalization will induce a 
compressive contribution to the stress state in 
this region.  Hence, there is a competition 
between the crack closing caused by ovalization, 
and the opening caused by the global bending 
load.  It turns out that this competition is won by 
the ovalization component for crack sizes less 
than 20 to 25 degrees, depending on R / t ratio.  

For an elbow opening (or straightening) 
moment, bottom illustration in Figure F.5, the 
opposite occurs.  The prolate type ovalization 
component causes crack opening while the 
global moment closes the crack.  This leads to a 
modest crack opening for smaller crack sizes.  
Because of this, circumferential cracks are not 
expected to develop at the knee of the elbow.  
Rather, they are expected to develop for crack 
size angles on the order of 45 to 90 degrees.  
The solutions tabulated below are complied for 
crack sizes of 45 and 90 degrees.  For these 
larger crack sizes, the cracks are open along the 
entire length. 
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Figure F.4  Illustration of ovalization effects on stresses near the crack tip 
(Numbers represent crack opening stresses normalized with yield strength) 
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Figure F.5  Summary of ovalization effects on crack opening response 
of circumferential cracks in elbows subjected to bending 

 
 
F.4.2 Axial Cracks 
 
For the axial flank cracks the ovalization effect 
on crack opening is even more important.  
Figure F.6 illustrates the response of an axial 
flank crack, with total crack size angle of 15-
degrees, subjected to bending.  An elbow 
straightening moment causes tensile opening 
stresses in the crack region (this is also an elastic 
case). 
 
The shaded contours on these plots represent the 
opening stress, σx, and all stress contours in the 
crack region are tensile.  This means that the 
crack should open.  However, it is also seen that 

the ‘oblate’ spheroid ovalization causes the 
crack faces to rotate, with the inner crack 
opening greater than the outer diameter opening.  
The example illustrated in Figure F.6 is for the 
large R / t ratio case of 20.  This same behavior 
occurs for the stiffer R / t = 5 case.  In fact, for 
the 15-degree crack, the outer diameter region of 
the crack actually closes.  Because of this crack 
face rotation, the crack opening functions were 
compiled for both the inner and outer surfaces.  
This ‘pinching’ of the crack opening along the 
outer surface should impede leaking, and hence 
LBB considerations.  Hence, for LBB 
predictions one should account for crack face 
rotation in the leak rate models. 
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Figure F.6  Illustration of ovalization effects for 15-degree axial flank crack 
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Figure F.7 illustrates this effect further.  Crack 
opening profile plots are illustrated for the outer 
diameter (OD), middle surface (MS), and along 
the inner diameter (ID) for an axial crack 
subjected to bending alone.  In Figure F.7(a), 
which is for a 15-degree (total) crack angle (i.e. 
2θ = 15-degrees – see Figure F.1), the OD 
predicts negative crack opening.  Of course, the 
negative crack openings are physically 
impossible, but it means that the crack faces will 
be closed and contacting each other at the OD.  
This will impede fluid leakage and affect leak 
rate calculations.  Figure F.7(b) shows similar 
results for a 30-degree total crack angle.  While 
the closure is not as severe as for the smaller 
crack, some crack face contact will occur along 
the OD.  The predicted values in Figure F.7 are 
made assuming an elliptic crack opening shape.  
It is seen that elliptic profile is still a good 
approximation for the opening even if the crack 
faces rotate. 
 
In an actual elbow, which is subjected to 
combined tension and pressure, the competition 
between the pressure, which causes opening 
COD’s at both the ID and OD, and the bending, 
which closes the crack at the OD, will ultimately 
determine the service opening profile.  However, 
the ovalization induced from elbow bending 
must be considered in the COD predictions 
which are then used in leak rate calculations for 
LBB considerations. 
 
F.5  ESTIMATION SCHEMES 
 
Elastic-plastic estimation schemes are based on 
the concept of proportional loading.  If a cracked 
body is loaded in a proportional manner, such 
that the constitutive response is adequately 
modeled via deformation theory plasticity, then 
Illyushin has shown that deformations, stresses, 
and energies (e.g. J-integral) are proportional to 
a load parameter, material parameters, and 
geometric quantities.  This concept has been 
overviewed extensively in the fracture 
mechanics literature (see for instance References 
F.1 through F.6).   
 
 
 

For a cracked structure that obeys an 
elastic/power law constitutive relation, the 
stress/strain response follows: 

In Equation F.2, eε and pε are the elastic and 
plastic strains, E is the elastic modulus, and k 
and n are fitted material constants.  This 
constitutive law leads to a violation of 
Illyushin’s theorem since an elastic term is 
present (only the second term in Equation F.2 
should be present).  However, it has been 
observed that developing elastic-plastic 
estimation schemes using the separate elastic 
and plastic components provides a reasonable 
estimate for engineering purposes.  It is common 
practice to write the constitutive relationship in 
the following form: 
 

 
where σ0 is a reference stress, ε0 =  σ0 / E, n is 
the fitted material parameter, and α is a material 
parameter related to k.  The approximate 
solutions are determined by adding the 
contributions from an elastic and plastic part, as 
discussed next.   
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Figure F.7  Crack opening plots for axially cracked elbows – bending 

 
 

F.5.1  Estimating J and Crack Opening 
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The estimation scheme for J is written as: 
 

In Equation F.4, J represents the total estimated 
value for J, and Je and Jp  are the elastic and 

plastic components of J, respectively.   
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The estimation scheme for crack opening 
displacement is written as: 
 

(F.5)                       pe
T δδδ +=  

 
In Equation F.5, δT is the total crack opening 
displacement at the mouth (i.e. displacement at 
the center of the crack), while δe and δp are the 
elastic and plastic contributions to the total 
COD, respectively. 
 
F.5.2  Elastic Component J-Integral 
 
The elastic component of J is estimated by 
superimposing the component contributions 
from the pressure (designated ‘T’ for ‘Tension’) 
and bending (designated ‘B’ for ‘Bending’).  
This can be written as: 
 

 
In Equation F.6, ‘a’ is crack size and FT and FB 
have been compiled in Tables F.1 to F.4 for the 
through-wall cracked elbow cases.  The FT 
functions were compiled by performing elastic 
solutions for the pure pressure case (with end 
cap tension present), and FB functions were 
compiled for pure bending.  σT and σΒ are 
calculated as nominal stresses using: 
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Here, p is the internal elbow pressure, Ri is inner 
radius, Ro is outer radius, Rm is mean radius, and 
M is the applied bending moment.  The 
denominator in the bending stress definition is 
the moment of inertia.  Notice that for the axial 
cracks, σT is defined as twice that for the 
circumferential crack, or a nominal σH since it is 
more like a ‘hoop’ stress that opens the axial 
cracks. 
 
F.5.3  Elastic Component COD  
 
Likewise, the elastic component of COD is 
estimated by superimposing the pressure 
(tension) and bending components of COD. 
 

(F.10)          B
e

T
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where T
eδ is the elastic COD contribution from 

pressure alone and B
eδ is the elastic COD 

contribution from bending alone, and are written 
as: 
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The same definitions of the stress for the 
pressure loading apply, i.e., Equation F.7 is the 
tensile stress for circumferential cracks and 
Equation F.8 is the hoop stress used for axial 
cracks. 
 
The functions V1(T) and V1(B) are compiled in 
Tables F.1 and F.2 for the circumferential crack 
cases and Tables F.3 and F.4 for the axial 
cracks.  Notice from Tables F.3 and F.4 that 
V1(T) and V1(B) are tabulated for both the inside 
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and outside surfaces.  Hence, the user can 
estimate the COD angle that occurs through the 
elbow wall as discussed in Section F.4.  Figure 
F.8 illustrates this effect.  The rotation through 
the elbow wall remains nearly linear, even when 
five parabolic elements are used to model the 
wall thickness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure F.8  Crack opening profile 

for axial cracks 
 
F.5.4  Plastic Components of J  
 
The plastic component of J is estimated as: 
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Everything has been previously defined in 

Equation F.13 except '
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In Equation F.14, λ is the load ratio defined as: 
 

(F.15)               
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P in Equations F.13 and F.15 is defined as: 
 

)( 22
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It is emphasized that the h1 functions from  
Equation F.13 have a strong dependence on load 
ratio, λ.  Again as described above, σT is defined 
using Equation F.7 for circumferential cracks 
and using Equation F.8 for axial cracks.  The 
two as yet undefined parameters in Equation 
F.14, Mo and Po, are: 
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For Circumferential 
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For Axial Cracks 
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Notice that, for the axial cracks the value of Po 
(Equation F.18b) is one half that for 
circumferential cracks.  This is because hoop 
stresses dominate the failure for axial cracks, 
and hence Po should be smaller.  Equation F.18a 
represents the standard limit load estimate for a 
circumferential crack in a pipe subjected to 
pressure.  These definitions of Po lead to 
reasonable values for the h-functions that are 
easily interpolated to provide very accurate 
estimates between the values tabulated in Tables 
F.1 to F.4. 
 
The values of h1 are tabulated in Tables F.1 and 
F.2 for circumferential cracks and Tables F.3 
and F.4 for axial cracks.  They have been 
tabulated for values of λ  =  [0, 0.5, 1.0, 2.0, 4.0, 
8.0, and infinity].  The case λ = 0 corresponds to 
the pure pressure case without bending, while λ 
= infinity corresponds to the pure bending 
solution.   
 
For typical nuclear piping LBB applications, the 
pipe experiences uniform or constant pressure 
the entire time while the moment is applied.  As 
such, for a given crack size and material, the 
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only quantity that changes in the estimate for J 
in Equation F.13 is λ which continually 
increases as the moment increases, while P in 
Equation F.15 remains constant.  The values of 
λ for which h1 were tabulated are quite sufficient 
for practical nuclear applications.  In fact, for 
practical purposes, a λ value of 18 should be 
used for interpolation when λ is between 8 and 
infinity.  Most practical nuclear fracture 
assessments for pressurized elbows rarely find λ 
greater than about 6.   
 
The compilations in Tables F.1 to F.4 represent 
336 full nonlinear finite element solutions.  
These were compiled by proportionally applying 
the pressure and moment simultaneously.  
However, as will be seen in the validation 
section, solutions where pressure is applied first, 
followed by moment compare very well with the 
estimation scheme.   
 
It is recommended that the plastic zone 
correction applied to the elastic solution be 
neglected.  In general, as discussed in 
References F.1 to F.6, these type of J-estimation 
solutions have fundamental errors associated 
with them in the transition region between 
elastic and fully plastic solution ranges.  
However, we have found the plastic zone 
corrections to be unnecessary for most of the 
numerous validation cases that were performed 
(to be summarized later) here.  However, the 
user can assure conservative solutions by 
including the form of the plastic zone correction 
procedure summarized on page 2-4 in Reference 
F.4.   The user might want to use the plastic zone 
correction procedure for large ‘n’ values in cases 
where the elastic contribution to J is large (large 
crack size in high (R / t) elbow). 
 
F.5.5  Plastic Components of COD  
 
The plastic contribution to the crack opening 
displacement can be calculated using: 
 

np PPah )/( /
020αεδ =        (F.19) 

 
The h2-function is tabulated in Tables F.1 and 
F.2 for circumferential cracks and Tables F.3 
and F.4 for axial cracks.  The functions for the 

axial cracks are tabulated for both the ID and 
OD so the user can estimate the variation of 
COD through the elbow thickness.  As discussed 
above, the usual assumption of an elliptic crack 
opening shape works well for elbows even when 
the opening varies through the thickness.  P in 
Equation F.19 is defined in Equations F.7 and 
F.16 for circumferential cracked elbows, and 
Equations F.8 and F.16 for axial cracks.  Po is 
defined in Equation F.18a for circumferential 
cracks and Equation F.18b for axial cracks. 
 
F.6  ESTIMATION SCHEME FOR PURE 
BENDING OF ELBOWS (λ = INFINITY) 
 
For the λ = infinity case, a bending moment only 
was applied.  For this case, one can design the 
estimation scheme based on an alternative 
approach.  The total estimate for J still uses 
Equation F.4 and Equation F.6, for the elastic 
estimate remains the same.  Likewise, the total 
estimate for COD (Equation F.5) remains the 
same with Equations F.10 to F.12 providing the 
estimate for the elastic values.  However, the 
estimates for Jp (Equation F.13) and δp (Equation 
F.19) can be replaced by: 
 

1
0100 )/()/1( +−= nMp MMhaJ πθεασ  (F.20) 

 
)/( 020 MMahMp αεδ =         (F.21) 

The compilations for M
1h  and M

2h  are 
provided in Tables F.5 and F.6.  These can be 
compared directly with similar compilations for 
straight pipe to observe the differences. 
 
Alternatively, all of the h-functions could have 
been based on formulas (Equations F.20 and 
F.21).  It is instructive to investigate the choice 
made here to use Equations F.13 and F.19 rather 
than Equations F.20 and F.21.  It will be seen 
that, in theory, one will obtain the same 
prediction of the plastic components of J and 
COD using either normalizing parameters, the 
choice made here results in much more accurate 
interpolation within the tables for predictions 
made for cases not directly tabulated.   
 



  F-15

First of all, from Figure F.9 the nature of the 

convergence of the M
1h  functions can be 

observed.  The dashed horizontal line represents 

the converged solution of M
1h   = 1.3.  This is 

for R / t = 10.  The curve with the filled circles 
represents the convergence of the h-function 
versus load for a pure bending case (no internal 
pressure).  The analyses were all performed 
using ABAQUS and the constitutive law 
represented by Equation F.2.  Typically, the 
solution is monitored until the plastic strains 
become greater than ten times the elastic strains 
at every Gauss point in the body that is 
monitored.  It is seen that it converges to the 
correct value at an M/Mo value of about 5.  
Here, the monitoring procedure kept the analysis 
going until M/Mo = 15.  This was clearly 
adequate.  In fact, convergence was assured for 
every value listed in Tables F.1 to F.4 in this 
fashion.   
 
Also shown in Figure F.9 is a curve designated 
with solid diamonds.  This was a case where a 
pressure of 10 MPa (typical operating pressure) 
was applied first, and then the bending moment 
was applied until it converged to the pure 
bending solution.  With the definition of lamda 
(λ = M/(PR)), since PR remains constant for this 
case (constant pressure), it is clearly seen that 

M
1h  depends on λ.  As λ approaches infinity, 

the pure bending solution is obtained.  This 
convergence to the pure bending solution occurs 
at large values of M/Mo approaching 35.  The h-
functions published in Reference F.1 were 
developed in this way – pressure applied and 
held while the moment was applied.  As such, 
the h-functions really are those for the pure 
bending case.  Unfortunately, the h-functions 
obtained in this way are non-conservative and 
one will typically under predict the value of J – 
sometimes significantly, depending on λ.    
 
Figure F.10 compares the h-functions calculated 
using Equations F.13 and F.20.  The value of h 
based on Equation F.20 is very large for smaller 
values of λ (for instance, h1 = 3450 for λ = 0.5).  
It is seen that the h-values based on Equation 
F.13 have much more uniform values.  It should 

be clear that the interpolation between values in 
the tables will be much more stable using the 
normalization based on Equation F.13 versus 
Equation F.20.   
 
F.7  VALIDATION EXAMPLES 
 
This next Section illustrates independent 
validation of the estimation schemes developed 
here.  Before presenting the validation examples, 
it is useful to discuss the Ramberg-Osgood 
representation of material stress-strain data 
versus actual data.  Figure F.11 illustrates a 
typical relationship.  The bottom plot shows an 
example of idealized data that are to be fit with a 
Ramberg-Osgood equation.  The ‘flow-2’ curve 
has an elastic slope and a yield stress of 200 
MPa (29 ksi) in this case.  The Ramberg-Osgood 
curve (Equation F.3) permits plastic strains to 
occur throughout the deformation.  It is seen 
that, over the entire strain range, there is 
negligible difference between a Ramberg-
Osgood and ‘flow’ representation (upper curve, 
Figure F.11).  However, in the small strain 
regime, there are some small differences which 
manifest themselves as slight differences in 
predicted displacements, and J-Integral values.  
It will be seen that the representation in Figure 
F.11 results in a slightly conservative prediction 
of J-integral values in the following results.  It is 
useful for the user of the estimation schemes to 
keep this in mind when making engineering 
predictions of fracture.  How one fits a 
Ramberg-Osgood relation to actual test data can 
have an influence on predictions.  See 
References F.5 and F.6 for more details. 
 
In addition to the consistency checks on solution 
accuracy discussed above (see Figures F.9 and 
F.10), additional quality control was maintained 
by performing independent analyses.  For each 
crack type and size, an independent analysis was 
performed for at least one set of material 
parameters and often for several sets.  These 
validation analyses were performed as follows: 
pressure was applied first followed by bending.  
This violates the formal definition of a 
deformation theory solution.  However, it is an 
excellent independent check on the accuracy of 
the solution procedure since, in actual nuclear 
piping, pressure is typically present, at constant 
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value, and then bending is applied.  It will be 
seen that this results in slight differences 
between the flow theory solutions (which are 
strictly required for this set of loading 
conditions), and deformation theory solutions.  
For the examples which follow, the pressure 
applied was 5 MPa (0.75 ksi) for R/t = 20, 10 
MPa (1.5 ksi) for R/t = 10, and 20 MPa (2.9 ksi) 
for the R/t = 5 cases.  After the solution for 
pressure was complete, bending was applied.  
Solutions obtained in this manner are then 
directly compared to predictions using the 
estimation schemes developed here.  The plastic-
zone correction to the elastic solution are not 
included in the following. 
 
F.7.1  Axial Cracks  
 
Figures F.12 to F.14 illustrate the validation for 
some of the axial crack cases.  It is clearly seen 

that the estimation scheme is quite accurate, 
even for the flow theory cases.  Notice that the 
crack opening displacement (COD) begins at a 
non zero value which corresponds the pressure 
case before applying a moment.  Note also that 
the outer diameter (OD) COD’s are typically 
much smaller than the ID cases.  In fact, crack 
closure (Figure F.13) occurs for some cases. 
 
F.7.2  Circumferential Cracks  
 
Figures F.15 to F.17 illustrate the validation for 
some of the circumferential crack cases.  Again, 
the estimation scheme performs very well.  It is 
seen that there are some small differences 
between the deformation and flow theory 
solutions.  However, in general, the deformation 
theory solution is more conservative and the 
estimation scheme typically falls between the 
two solutions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure F.9  Convergence of h-functions versus applied load 
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Figure F.10  Convergence of h-functions versus lamba 

Figure F.11  Comparison between Ramberg-Osgood relationship 
 and typical flow theory representation 
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Figure F.12  Validation check (R/t = 20, axial crack 22 = 15 degrees, n = 5)
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Figure F.13  Validation check (R/t = 5, axial crack, 22 = 15 degrees, n = 5) 
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Figure F.14  Validation check (R/t = 5, axial crack, 22 = 30 degrees, n = 5) 
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Figure F.15  Validation check (R/t = 5 circumferential crack, 22 = 90degrees,  
n= 5)
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Figure F.16  Validation check (R/t = 20, circumferential crack, 22 = 90 degrees, n = 5)

Elbow - Circumferential Crack (Theta = 45, n=5, R/t=20)

0

2

4

6

8

10

12

14

16

18

20

0.00E+00 5.00E-01 1.00E+00 1.50E+00 2.00E+00

M/M0

C
O

D
 (m

m
) COD-est

COD-FEM-DEF
COD-FEM-Flow

Elbow - Circumferential Crack (Theta = 45, n=5, R/t=20)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

M/M0

J 
(M

J/
m

^2
)

J-est

J-FEM-DEF

J-FEM-Flow

 



 

  F-23

Figure F.17  Validation check (R/t = 20, circumferential crack, 2θ = 180 δεγρεεσ, ν = 5) 
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Table F.1 (a)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 5, θ = 45°) 
 
 

   n = 3 n = 5 n = 7 n = 10 
F-(T) F-(B) Lamda h1 h1 h1 h1 
1.69 1.22 0.0 6.23 10.67 17.47 34.68 

  0.5 6.39 8.04 9.75 12.42 
  1.0 5.92 6.55 6.92 7.34 
  2.0 5.23 5.10 4.78 4.25 
  4.0 4.46 4.05 3.47 2.58 
  8.0 3.91 3.43 2.79 2.01 
  inf (=18) 3.17 2.76 2.11 1.36 
       

V-1 (T)  V-1 (B) Lamda h2 h2 h2 h2 
2.04 1.19 0.0 8.59 14.87 24.65 49.31 

  0.5 6.56 7.99 9.56 12.05 
  1.0 5.70 6.17 6.45 6.78 
  2.0 5.09 4.92 4.61 4.08 
  4.0 4.59 4.17 3.57 2.67 
  8.0 4.24 3.71 3.04 2.20 
  inf (=18) 3.72 3.13 2.46 1.60 

 
 
Table F.1(b)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 10, θ = 45°) 
 
 

   n = 3 n = 5 n = 7 n = 10 
F-(T) F-(B) Lamda h1 h1 h1 h1 
2.16 0.87 0.0 10.55 17.79 28.26 53.93 

  0.5 8.75 11.96 14.42 18.32 
  1.0 8.46 11.86 13.60 16.54 
  2.0 7.91 10.47 12.80 15.27 
  4.0 6.83 9.06 10.76 12.08 
  8.0 5.85 7.82 8.99 10.76 
  inf (=18) 4.47 6.06 6.89 7.87 
       

V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 
3.39 0.67 0.0 15.04 27.26 45.21 90.60 

  0.5 9.17 12.29 14.89 19.01 
  1.0 7.92 10.28 12.24 14.88 
  2.0 7.45 9.61 11.60 13.82 
  4.0 6.83 8.93 10.48 11.75 
  8.0 6.18 8.21 9.37 11.09 
  inf (=18) 5.07 6.89 8.06 8.86 
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Table F.1(c)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 20, θ = 45°)

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
3.01 0.25 0.0 21.04 33.34 46.65 61.68 

  0.5 15.57 27.30 41.30 72.98 
  1.0 13.48 26.87 44.95 88.46 
  2.0 11.14 26.02 49.25 113.49 
  4.0 7.82 21.81 44.90 115.15 
  8.0 5.66 17.59 38.84 96.94 
  inf (=18) 3.22 11.07 25.92 66.57 
       

V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 
6.30 0.66 0.0 33.70 54.86 81.83 112.34 

  0.5 19.23 34.59 54.73 100.90 
  1.0 14.06 26.80 44.28 86.08 
  2.0 11.75 25.37 45.85 102.22 
  4.0 8.95 24.18 47.14 114.72 
  8.0 6.43 21.00 45.08 108.47 
  inf (=18) 2.99 14.08 33.69 86.77 
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Table F.2 (a)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 5, θ = 90°) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table F.2 (b)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 10, θ = 90°) 
 

 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
4.04 2.52 0.0 1.33 0.82 0.53 0.31 

  0.5 2.30 1.77 1.53 1.29 
  1.0 2.67 2.26 2.05 1.99 
  2.0 2.59 2.08 1.82 1.64 
  4.0 2.12 1.56 1.20 .90 
  8.0 1.75 1.14 0.79 0.50 
  inf (=18) 1.26 0.69 0.41 0.20 
       

V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 
6.52 4.46 0.0 2.11 1.14 0.70 0.38 

  0.5 2.92 2.08 1.72 1.42 
  1.0 3.26 2.55 2.26 2.14 
  2.0 3.21 2.43 2.07 1.83 
  4.0 2.83 1.95 1.47 1.08 
  8.0 2.49 1.53 1.04 0.65 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
4.16 3.24 0.0 1.99 1.00 0.62 0.36 

  0.5 3.28 2.45 2.02 1.69 
  1.0 4.04 3.23 2.88 2.68 
  2.0 4.12 3.19 2.72 2.46 
  4.0 3.53 2.46 1.88 1.38 
  8.0 2.98 1.88 1.33 0.82 
  inf (=18) 2.24 1.22 0.71 0.35 
       

V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 
9.66 5.93 0.0 2.99 1.51 0.86 0.47 

  0.5 4.25 2.92 2.30 1.85 
  1.0 4.91 3.72 3.19 2.58 
  2.0 4.05 3.78 3.12 2.74 
  4.0 4.59 3.15 2.34 1.67 
  8.0 4.09 2.57 1.77 1.06 
  inf (=18) 3.35 1.84 1.06 0.50 
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Table F.2 (c)  Elbow with circumferential crack – combined pressure and bending compilation 
(R/t = 20, θ = 90°) 
 
 

   n = 3 n = 5 n = 7 n = 10 
F-(T) F-(B) Lamda h1 h1 h1 h1 
5.00 4.56 0.0 2.87 1.75 1.13 0.62 

  0.5 6.27 4.93 4.21 3.36 
  1.0 8.43 7.34 6.69 6.31 
  2.0 9.34 8.28 7.64 6.90 
  4.0 8.60 7.13 5.99 4.57 
  8.0 7.59 5.58 4.52 3.21 
  inf (=18) 5.95 3.96 2.69 1.55 
       

F- (T)  F- (B) Lamda h1 h1 j1 h1 
17.08 7.94 0.0 5.83 3.26 1.95 0.99 

  0.5 8.27 6.31 5.22 4.03 
  1.0 9.94 8.69 7.85 7.26 
  2.0 10.72 9.85 9.16 8.25 
  4.0 10.09 8.95 7.69 5.93 
  8.0 9.13 7.32 6.12 4.44 
  inf (=18) 7.57 5.57 3.96 2.35 
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Table F.3 (a)  Elbow with axial crack – combined pressure and bending compilation 
(R/t = 5, θ = 15°) 
 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
1.57 0.81 0.0 1.01 0.49 0.22 0.07 

  0.5 0.73 0.28 0.10 0.02 
  1.0 0.65 0.25 0.09 0.02 
  2.0 0.59 0.24 0.09 0.02 
  4.0 0.53 0.22 0.09 0.02 
  8.0 0.46 0.19 0.07 0.02 
  inf (=18) 0.33 0.12 0.04 0.01 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

1.45 1.20 0.0 1.42 0.70 0.32 0.10 
  0.5 1.49 0.59 0.21 0.04 
  1.0 1.61 0.62 0.22 0.04 
  2.0 1.76 0.73 0.27 0.06 
  4.0 1.81 0.78 0.31 0.07 
  8.0 1.68 0.72 0.29 0.07 
  inf (=18) 1.30 0.51 0.19 0.04 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

2.04 -0.45 0.0 2.40 1.22 0.58 0.18 
  0.5 1.42 0.60 0.23 0.05 
  1.0 0.96 0.41 0.16 0.03 
  2.0 0.48 0.22 0.09 0.02 
  4.0 0.09 0.06 0.03 0.01 
  8.0 -0.15 -0.03 -0.01 -0.01 
  inf (=18) -0.37 -0.11 -0.04 -0.01 
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Table F.3 (b)  Elbow with axial crack – combined pressure and bending compilation 
(R/t = 10, θ = 15°) 
 
 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
1.79 1.26 0.0 1.44 0.78 0.41 0.15 

  0.5 1.16 0.49 0.19 0.04 
  1.0 1.20 0.56 0.23 0.06 
  2.0 1.39 0.77 0.39 0.14 
  4.0 1.56 0.97 0.57 0.25 
  8.0 1.57 0.92 0.58 0.27 
  inf (=18) 1.25 0.73 0.39 0.17 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

1.83 1.73 0.0 2.08 1.18 0.63 0.24 
  0.5 2.28 0.99 0.39 0.08 
  1.0 2.73 1.30 0.55 0.14 
  2.0 3.53 2.06 1.08 0.40 
  4.0 4.10 2.77 1.68 0.79 
  8.0 4.15 2.76 1.81 0.89 
  inf (=18) 3.39 2.23 1.28 0.59 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

2.59 -0.77 0.0 3.50 2.05 1.13 0.43 
  0.5 2.28 1.12 0.48 0.11 
  1.0 1.73 0.96 0.45 0.13 
  2.0 0.98 0.70 0.41 0.17 
  4.0 0.11 0.22 0.18 0.10 
  8.0 -0.59 -0.21 -0.09 -0.03 
  inf (=18) -1.25 -0.64 -0.32 -0.13 
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Table F.3 (c)  Elbow with axial crack – combined pressure and bending compilation 
(R/t = 20, θ = 15°) 
 
 

 
 
 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
2.18 1.94 0.0 2.89 2.19 1.60 1.02 

  0.5 2.46 1.37 0.67 0.22 
  1.0 2.95 1.96 1.16 0.58 
  2.0 4.21 3.59 2.87 2.04 
  4.0 5.39 5.34 5.14 5.39 
  8.0 5.60 5.82 6.44 6.91 
  inf (=18) 4.71 4.81 4.54 4.59 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

2.68 2.64 0.0 4.47 3.65 2.78 1.90 
  0.5 4.70 2.75 1.40 0.48 
  1.0 4.72 4.25 2.61 1.31 
  2.0 8.76 8.16 6.85 5.04 
  4.0 11.00 12.27 12.62 13.66 
  8.0 11.10 13.35 15.64 17.76 
  inf (=18) 9.13 10.76 11.17 12.03 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

3.72 -1.04 0.0 7.08 3.91 4.65 3.15 
  0.5 4.98 3.35 1.85 0.69 
  1.0 4.33 3.57 2.40 1.30 
  2.0 3.18 3.62 3.37 2.71 
  4.0 1.11 3.00 2.58 3.10 
  8.0 -0.95 -0.14 0.26 0.78 
  inf (=18) -3.14 -2.88 -2.62 -2.46 
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Table F.4 (a)  Elbow with axial crack – combined pressure and bending compilation 
(R/t = 5, θ = 30°) 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
2.18 0.79 0.0 2.32 1.67 1.20 0.83 

  0.5 1.45 0.72 0.35 0.13 
  1.0 1.07 0.45 0.18 0.05 
  2.0 0.79 0.32 0.12 0.03 
  4.0 0.56 0.22 0.08 0.02 
  8.0 0.40 0.15 0.05 0.01 
  inf (=18) 0.22 0.07 0.02 0.00 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

2.67 1.24 0.0 3.78 2.93 2.23 1.58 
  0.5 2.80 1.49 0.76 0.29 
  1.0 2.34 1.05 0.44 0.12 
  2.0 2.34 1.05 0.44 0.12 
  4.0 2.01 0.85 0.33 0.08 
  8.0 1.68 0.69 0.26 0.06 
  inf (=18) 0.96 0.33 0.11 0.02 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

3.87 0.16 0.0 6.35 4.90 4.03 2.91 
  0.5 4.05 2.33 1.25 0.49 
  1.0 2.90 1.38 0.60 0.16 
  2.0 1.95 0.89 0.35 0.08 
  4.0 1.21 0.52 0.21 0.05 
  8.0 0.73 0.31 0.12 0.03 
  inf (=18) 0.25 0.10 0.04 0.01 
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Table F. 4 (b)  Elbow with axial crack – combined pressure and bending compilation 
(R/t = 10, θ = 30°) 
 

 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
2.58 1.22 0.0 4.26 4.35 4.70 5.88 

  0.5 2.64 1.73 1.22 0.80 
  1.0 2.18 13.16 0.62 0.24 
  2.0 1.95 1.11 0.59 0.22 
  4.0 1.67 0.99 0.57 0.24 
  8.0 1.37 0.80 0.19 0.20 
  inf (=18) 0.88 0.47 0.24 0.09 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

4.13 2.01 0.0 8.48 9.81 11.35 14.96 
  0.5 5.99 4.48 3.41 2.40 
  1.0 5.21 3.12 1.78 0.67 
  2.0 4.93 3.03 1.68 0.62 
  4.0 4.61 2.91 1.75 0.76 
  8.0 4.05 2.54 1.52 0.69 
  inf (=18) 2.91 1.68 0.90 0.34 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

5.64 0.40 0.0 12.92 15.37 18.03 23.83 
  0.5 8.21 6.59 5.20 3.16 
  1.0 6.27 4.01 2.38 0.87 
  2.0 4.81 3.12 1.77 0.70 
  4.0 3.48 2.34 1.87 0.64 
  8.0 2.39 1.64 1.02 0.48 
  inf (=18) 1.00 0.67 0.38 0.15 
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Table F. 4 (c)   Elbow with axial crack – combined pressure and bending compilation 
(R/t = 20, θ = 30°) 
 

 
 
 

  n = 3 n = 5 n = 7 n = 10 

F-(T) F-(B) Lamda h1 h1 h1 h1 
3.13 1.91 0.0 9.38 15.32 27.79 79.02 

  0.5 5.87 5.53 6.71 9.57 
  1.0 5.51 4.46 3.55 2.68 
  2.0 5.96 5.13 4.35 3.43 
  4.0 5.96 6.14 6.07 2.95 
  8.0 5.33 5.61 5.89 5.68 
  inf (=18) 3.64 3.47 3.23 3.03 

Inner Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

6.78 3.64 0.5 22.16 41.11 79.18 233.37 
  1.0 15.12 17.82 22.37 16.14 
  2.0 14.03 13.13 11.61 9.62 
  4.0 14.72 14.20 12.74 10.53 
  8.0 14.96 16.90 17.65 17.73 
  inf (=18) 13.76 16.00 17.75 18.10 
  inf (=18) 9.95 10.57 10.48 10.29 

Outer Diameter      
V-1 (T) V-1 (B) Lamda h2 h2 h2 h2 

8.71 1.36 0.0 28.07 57.82 111.73 329.87 
  0.5 19.34 24.05 30.95 15.74 
  1.0 16.16 15.95 14.60 12.49 
  2.0 14.43 14.48 13.25 11.15 
  4.0 12.42 14.78 15.70 16.00 
  8.0 9.74 12.18 13.97 14.47 
  inf (=18) 5.20 6.03 6.20 6.29 
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Table F.5  Elbow with circumferential crack – pure bending compilation (θ = 45, 90°) for use with 
Equations E.19 and E.20 
(a)  R/t = 5, (b) R/t = 10, (c) R/t = 20 
 
(a) 
 

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 h1 

45.0 3.27 2.89 2.24 1.47 
90.0 1.31 0.73 0.44 0.22 

     
θ h2 h2 h2 h2 

45.0 3.81 3.25 2.60 1.72 
90.0 2.05 1.08 0.64 0.32 

 
 
(b) 
 
 

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 h1 

45.0 4.61 6.34 7.32 8.55 
90.0 2.32 1.29 0.77 0.38 

     
θ h2 h2 h2 h2 

45.0 5.18 7.16 8.49 9.55 
90.0 3.45 1.93 1.13 0.55 

 
 
 
(c) 
 

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 h1 

45.0 3.32 11.58 27.53 72.32 
90.0 6.18 4.20 2.91 1.72 

     
θ h2 h2 h2 h2 

45.0 3.06 14.62 35.51 93.56 
90.0 7.79 5.84 4.24 2.58 
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Table F.6  Elbow with axial crack – pure bending compilation (θ = 15, 30°) for use with Equations 
E.19 and E.20 
(a)  R/t = 5, (b) R/t = 10, (c) R/t = 20 
 
(a) 

 

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 H1 

15.0 5.8 9.1 13.6 22.8 
30.0 4.0 5.6 7.5 11.4 

Inner Diameter    
θ h2 h2 h2 h2 

15.0 11.2 18.5 28.4 49.4 
30.0 8.3 12.0 16.5 25.8 

Inner Diameter    
θ h2 h2 h2 h2 

15.0 -3.2 -4.1 -5.6 -8.7 
30.0 2.1 3.6 5.4 9.0 

 
(b) 
 

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 h1 

15.0 22.1 54.6 123.0 467.5 
30.0 15.5 35.4 76.5 240.1 

Inner Diameter    
θ h2 h2 h2 h2 

15.0 29.2 80.8 195.8 777.9 
30.0 25.1 61.3 138.6 457.0 

Inner Diameter    
θ H2 h2 h2 h2 

15.0 -10.8 -23.1 -49.5 -176.30 
30.0 8.7 24.5 58.8 205.6 

 
(c)   
  

 n = 3 n = 5 n = 7 n = 10 
θ h1 h1 h1 h1 

15.0 83.4 358.0 1422.8 12395.0 
30.0 64.6 259.4 1017.9 8254.8 

Inner Diameter    
θ h2 h2 h2 h2 

15.0 78.8 390.7 1705.8 15853.2 
30.0 86.1 385.3 1609.4 13664.0 

Inner Diameter    
θ H2 h2 h2 h2 

15.0 -27.1 -104.5 -400.8 -3240.7 
30.0 45.0 219.7 951.6 8350.6 
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F.8  SIMPLIFIED ANALYSIS FOR 
THROUGH-WALL CRACKS IN ELBOWS 
 
To establish a more complete Regulatory Guide 
for Leak-Before-Break, an evaluation procedure 
for through-wall cracks in elbows was desired.  
Finite element solutions for elbows with axial 
and circumferential cracks under combined 
pressure and bending have been developed as 
discussed above.  This effort was somewhat 
similar to the work done for surface cracks in 
NUREG/CR-6444, “Fracture Behavior of 
Circumferentially Surface-Cracked Elbows” that 
was done for the IPIRG-2 program, Ref. F.14.   
 
The recent through-wall-cracked elbow work 
developed a limited number of finite element 
solutions and a J-estimation scheme with h-
function fits through these solutions.  As with 
the case of the prior surface-cracked elbow 
work, it was desirable to see if a simplified 
solution could be developed from these results 
and be applicable over a wider range of through-
wall cracks in elbows. 
 
F.8.1  Finite Element Analyses 
 
As discussed above, numerous 3-D finite 
element analyses were developed for the intent 
of developing a J-estimation scheme analyses.  
In developing these analyses, there were a 
limited number of analyses that could be 
conducted.  The analyses conducted were for: 
 
• Axial (flank) cracks with two crack lengths, 
• Circumferential (extrados) cracks with two 

crack lengths, 
• Elbows with two different cross-sectional 

radius-to-thickness (R/t) ratios, 
• 90-degree, long-radius elbows, 
• Materials with several different strain-

hardening exponents, and  
• Combined internal pressure and bending. 
 
The initial finite element analyses were made 
with a constant pressure and varying the bending 
moment.  For the estimation scheme developed, 
additional analyses were conducted where the 
pressure was varied in proportion to the bending 
moment.  In the constant pressure cases, the 

pressure was fixed so that the hoop stress 
corresponded to the average design stress (Sm) of 
nuclear pipe materials.  From NUREG/CR-6445, 
this Sm value was estimated to be 122.5 MPa 
(17.7 ksi), Ref. F.1. 
 
For the purpose of evaluating an estimation 
procedure, the constant pressure elbow finite 
element results were used directly, rather than 
using the estimation procedure. 
 
The cases chosen to evaluate were: 
 
• The longest and shortest crack lengths,  
• Both axial and circumferential crack 

orientations, and  
• The largest and smallest cross-sectional R/t 

ratios.   
 
Since most nuclear pipe materials have strain-
hardening exponents of about 5, only that case 
was examined.  Thus, the extreme eight cracked 
elbow cases were examined. 
 
F.8.2  Simplified Procedures 
 
In NUREG/CR-6444, a simplified procedure 
was developed for surface cracks in elbows, Ref. 
F.14.  This involved comparing the elbow results 
to those for a circumferential surface crack in a 
pipe of the same dimensions and with the same 
material properties.   
 
From that report, it was found that the ratio of 
the pipe to the elbow moments at the same J 
value was constant as the J value increased.  
This constant ratio between the elbow and pipe 
moment values for a particular case was found 
to be theoretically correct when comparing the 
general equations for fully plastic solutions for 
straight pipes and elbows as given below: 
 

1
0100 )/( += npipepipepipepipe MMbhJ εασ  (F.22a) 

 
1

01100 )/()]/([ += nelbowelbowelbow
m

elbow MMhtRbJ λεασ   (F.22b) 
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where, 
 
α,σo,εo,n = Ramberg-Osgood parameters 
h1

pipe, h1
elbow = FEM determined geometric 

parameters relating moment to J 
Mo

pipe, Mo
elbow = reference moments at a stress of 

σo 
b = t-a 
t = thickness 
λ1 = an elbow parameter = Relt/Rm

2 

Rel = bend radius of the elbow 
Rm = mean radius of pipe and elbow 
 
Considering the case where Jpipe = Jelbow, for the 
same material, pipe size, and crack size gives  
 
h1

pipe(Mpipe/Mo
pipe)n+1|J = h1

elbow 
[Rm/(λ1t)](Melbow/Mo

elbow)n+1|J               (F.23) 
 
Rearranging Equation F.23 gives 
 
(Mpipe/Melbow)|J = [(h1

elbow/h1
pipe)1/(n+1) 

[Rm/(λ1t)]1/(n+1)(Mo
pipe/Mo

elbow )]|J          (F.24) 
 
For a given material, pipe, and elbow geometry 
and similar crack size, the right-hand side of 
Equation F.24 is a constant and independent of 
the J value, and hence (Mpipe/Melbow)|J is a 
constant.  The plastic part of J dominates the 
moment ratio for Japplied values of generally 
greater than 100 kJ/m2 (570 in-lb/in2), which 
bounds the toughness range of typical nuclear 
piping materials, except perhaps some aged 
CF8M steels.  It was then found that the constant 
value for the particular crack-size/pipe radius-to-
thickness geometry/material case varied linearly 
with the elbow stress indices, B2.  This same 
simplified approach was examined for through-
wall cracks in elbows as part of this effort.  
 
F.8.2.1  Straight-Pipe Solutions - For the 
relative comparison of the moment versus J 
solutions of the straight pipe to the elbow cases, 
two different circumferential through-wall-
cracked straight-pipe solutions were used.  
These were the LBB.ENG2 and original 
GE/EPRI methods in Version 3.0 of NRCPIPE. 
 
The LBB.ENG2 method was used since it was 
the most accurate in predicting the maximum 
moment for through-wall-cracked straight-pipe 

experiments, Ref. F.9.  However, the 
LBB.ENG2 analysis requires an additional 
parameter that was not used in the FE solutions, 
that is, the ultimate strength of the material.  For 
this analysis procedure it was assumed that the 
yield to-ultimate strength ratio was 0.85. 
 
The GE/EPRI solution does not need the 
ultimate strength of the material, so it was also 
used.  However, it was experimentally found 
that the GE/EPRI analysis was the most 
conservative analysis in predicting the full-scale 
straight-pipe experiments, i.e., it overpredicted 
the crack-driving force, Ref. F.9. 
 
All analyses were for 410-mm (16.14-inch) 
outside diameter pipe.  Additionally, all analyses 
were conducted with non-growing cracks. 
 
F.8.2.2  Comparison of Circumferential 
Extrados Through-Wall-Cracked Elbow and 
Straight-Pipe Solutions - To make this 
comparison, the J versus moment curves from 
both the straight pipe and elbow solutions were 
first compared.  Figures F.18 and F.19 show the 
results for the circumferential crack case with an 
R/t of 20 and total crack lengths of 90 and 180 
degrees.  Note in Figure F.18 that there is also a 
curve for an elbow curve-fit equation.  This was 
done since the pipe and elbow solutions did not 
have values at exactly the same J values.  The 
elbow curve-fit equation (as shown in Figure 
F.18) was used to compare the moments of the 
elbow to the straight pipe at the same J values, 
i.e., for (Mpipe/Melbow)|J.   
 
Figure F.18 shows that the curve fit is a very 
close approximation of the FE data points.  Also, 
there is a difference in the two straight-pipe 
solutions, with the GE/EPRI solution giving 
higher J-values as was expected. 
 
In Figure F.19, it is interesting to note that the 
elbow and LBB.ENG2 straight-pipe analyses 
give similar results, whereas the GE/EPRI 
solution for the straight pipe gives much higher J 
values.  After these analyses were completed, it 
was recalled that the 180-degree crack R/t=20 
analysis in the GE/EPRI solution in NRCPIPE 
was found to be in error, so that in this case only 
the LBB.ENG2 analysis should be used. 
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The results for the R/t = 5 case are show in 
Figures F.20 and F.21. 

 
The next step was to compare the ratio of the 
moments at the same J value.  A graph of the J 

value versus the moment ratio is given for each 
case in Figures F.22 to F.25. 
 

 
Figure F.18  Comparison of J versus moment curves for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 20 and 2θ=90 degrees 

Figure F.19  Comparison of J versus moment curves for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 20 and 2θ=180 degrees 

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000

0 0.2 0.4 0.6 0.8 1
M, MN-m

J,
 k

J/
m

2

Elbow FE Straight-pipe LBB.ENG2
Straight-pipe GE/EPRI Elbow curve-fit equation

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 0.05 0.1 0.15 0.2

M, MN-m

J,
 k

J/
m

2

Elbow FE Straight-pipe LBB.ENG2 Straight-Pipe GE/EPRI



 

  F-39

Figure F.20  Comparison of J versus moment curves for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 5 and 2θ=90 degrees 

Figure F.21  Comparison of J versus moment curves for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 5 and 2θ=180 degrees 
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Figure F.22  Comparison of J versus moment ratios for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 20 and 2θ=90 degrees 

 

Figure F.23  Comparison of J versus moment ratios for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 20 and 2θ=180 degrees 
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Figure F.24  Comparison of J versus moment ratios for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 5 and 2θ=90 degrees 

 

Figure F.25  Comparison of J versus moment ratios for a circumferential through-wall crack in a 
straight pipe and centered on the extrados of an elbow with an R/t = 5 and 2θ=180 degrees 
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The final step was to compare the constant 
moment ratio values from Figures F.22 to F.25 
to the stress indices for the elbows.  Since the 
elbow was under bending, the ASME B2 index 
was used.  The B2 index is for primary bending 
stresses to avoid failure by collapse (using the 
design stress analysis definition of limit load).  It 
should be noted that the elbow stress indices 
essentially gives a stress multiplier for the 
location in the piping product where the stresses 
are the highest.  For the case of an elbow under 
bending, the stresses are the highest along the 
flank of the elbow normal to the axial direction.  
Equations F.25 and F.26 define the B2 stress 
index from Section III, Article NB-3683.7 of the 
ASME Boiler and Pressure Vessel Code. 
 

0.1,3.1 2
3/2

2 ≥= BhB           (F.25) 
  
Where, 
 

2/ mel RtRh =                   (F.26) 
 
 

These equations assume the elbows have a 
perfectly circular cross section, which was a 

condition in the development of the FE elbow 
results. 
 
The results of this comparison are shown in 
Figure F.26.  If there is essentially no effect of 
the elbow curvature on the fracture behavior, 
then the moment ratios should be close to 1.0 for 
all B2 values.  On the other hand, if there was a 
strong effect of the elbow curvature, then the 
moment ratios should be close to the 45-degree 
line in Figure F.26.  As can be seen in Figure 
F.26, the values are all close to 1.0 indicating 
that for a circumferential through-wall flaw in an 
elbow that the straight-pipe solution could be 
used.   
 
There was one data point that gave an 
Mpipe/Melbow value of about 0.5.  This was when 
the GE/EPRI solution was used for the case of a 
180-degree flaw in pipe with an R/t of 20.  
However, we know that the solution in this case 
is not correct in NRCPIPE so that this data point 
can be disregarded.  Consequently, the 
circumferential through-wall-flaw straight-pipe 
solution could be used in the new LBB 
Regulatory Guide for the fracture analyses of the 
case of a circumferential through-wall flaw in an 
elbow. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure F.26  Ratio of circumferentially through-wall-cracked pipe-to-elbow moments for constant 
applied J values versus the ASME B2 index for the elbow 
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F.8.2.3 Comparison of Axial Flank Through-
Wall-Cracked Elbow and Straight-Pipe 
Solutions - To make this comparison, the J 
versus moment curves from both the straight-
pipe and elbow solutions were compared in a 
similar manner as was done for the elbow 
circumferential crack case.  Figures F.27 and 
F.28 show the results for the axial flank crack 
case with an R/t of 20 and total crack lengths of 
15 and 30 degrees.  Figures F.29 and F.30 show 
the results for the axial flank crack case with an 
R/t of 5 and total crack lengths (22) of 15 and 30 
degrees.   
 
In Figures F.27 to F.30, it can be seen that the 
elbow solutions give higher J values than the 
straight pipe solutions for the same moment.  
The GE/EPRI solution always gives a higher 
crack-driving force than the LBB.ENG2 analysis 
for the two straight-pipe solutions.  This is 
consistent with past experience.  The crack 
lengths are much shorter in these analyses than 
what was used in the circumferential cracked 
elbow analysis, so that there was no problem 
with either straight-pipe solution in the 
NRCPIPE code.  

 
The next step was to compare the ratio of the 
moments at the same J value.  A graph of the 
moment ratio versus the J value is given for each 
case in Figures F.31 to F.34.  Again note how 
the moment ratio reaches a constant value as the 
plastic solution of J dominates. 

 
The final step was to compare the constant 
moment ratio values from Figures F.31 to F.34 
to the B2 stress indices for the elbows.   
 
The results of this comparison are shown in 
Figure F.35.  If there is essentially no effect of 
the elbow curvature on the fracture behavior, 
then the moment ratios should be close to 1.0 for 
all B2 values.  On the other hand, if there was a 
strong effect of the elbow curvature, then the 
moment ratios should be close to the 45-degree 
line in Figure F.35.   
 
As can be seen in Figure F.35, the moment ratio 
values show that there is an effect of the elbow 
curvature on the crack-driving force for an axial 
through-wall crack on the flank of an elbow.  A 
conservative option would be to divide the 
circumferential through-wall straight-pipe 
moment by the elbow B2 value for an axial 
through-wall flaw on the flank of the elbow.  
Alternatively, a linear correction such as 
suggested by the lines in Figure F.35 could be 
used.  Consequently, the moment from a 
circumferential through-wall-flaw straight-pipe 
solution (under pressure and bending) divided 
by the elbow B2 stress index could be used in the 
new LBB Regulatory Guide for the fracture 
analyses for the axial flank through-wall flaw 
case in an elbow.
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Figure F.27  Comparison of J versus moment curves for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 20 and 2θ=15 degrees 

Figure F.28  Comparison of J versus moment curves for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 20 and 2θ=30 degrees 
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Figure F.29  Comparison of J versus moment curves for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 5 and 2θ=15 degrees 

 

Figure F.30  Comparison of J versus moment curves for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 5 and 2θ=30 degrees 
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Figure F.31  Comparison of J versus moment ratios for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 20 and 2θ=15 degrees 

 

Figure F.32  Comparison of J versus moment ratios for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 20 and 2θ=30 degrees 
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Figure F.33  Comparison of J versus moment ratios for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 5 and 2θ=15 degrees 

 

Figure F.34  Comparison of J versus moment ratios for an axial through-wall crack in a straight 
pipe and an axial through-wall crack on the flank of an elbow with an R/t = 5 and 2θ=30 degrees 
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Figure F.35  Ratio of axially through-wall-cracked pipe-to-elbow moments 
for constant applied J values versus the ASME B2 index for the elbow 

 
 
F.8.2.4  Comments on Crack-Opening 
Displacement - The analyses conducted in 
Sections F.8.2.2 and F.8.2.3 for circumferential 
and axial through-wall cracks in elbows, 
respectively, were for determining the crack-
driving force when plasticity occurs.  This 
would be valid for the LBB fracture assessment 
under normal plus SSE loads.  The crack-
opening displacement, however, occurs under 
more elastic loading conditions.  It was beyond 
the scope of this effort to make those 
comparisons, and using the same B2 correction 
approach should be used with caution with the 
COD analysis. 
 
F.8.3  Summary and Conclusions 
 
The objective of this evaluation was to 
determine if a more simplified analysis could be 
established for axial and circumferential 
through-wall cracks in elbows under combined 
pressure and bending.  This was assessed by 
using the elbow finite element analyses 
developed as part of this effort with a hoop 
stress loading of 1.0 Sm for typical nuclear 
piping steels.  The approach undertaken was to 
compare the ratio of the moments for the same 
size crack in an elbow and straight-pipe at the 

same applied J values.  This was similar to 
efforts done for circumferential surface flaws in 
elbows in the IPIRG-2 program.  The following 
conclusions came from this analysis. 
 
• The results of the analysis showed that a 

circumferential crack centered on the 
extrados of an elbow had the same crack-
driving force under plastic conditions as a 
circumferential through-wall crack in a 
straight pipe.  Hence, for the new LBB Reg. 
Guide, the simple straight-pipe solutions 
could be used for the fracture analysis of a 
circumferential through-wall crack in an 
elbow. 

 
• The results of the analysis showed that an 

axial crack on the flank of an elbow had a 
higher crack-driving force under plastic 
conditions than a circumferential through-
wall crack in a straight pipe.  A conservative 
approach would be to use the straight-pipe 
solution, but divide the straight-pipe 
moment by the elbow B2 index.  This could 
readily be done in the new LBB Reg. Guide 
Level 1 or 2 analyses for the fracture 
analysis of an axial flank through-wall crack 
in an elbow. 
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• The COD evaluations were not conducted in 

this effort.  Caution should be used in 
applying this same approach for the COD 
values since the COD should be for elastic 
loading where the constant moment ratio 
that occurs under plastic conditions does not 
exist. 

 
F.9  References 
 
F.1  Mohan, R., Brust, F. W., Ghadiali, N. D., 
and Wilkowski, G. M., “Development of a J–
Estimation Scheme for Internal Circumferential 
and Axial Surface Cracks in Elbows”, 
NUREG/CR 6445, June, 1996. 
 
F.2  Kumar, V., German, M., and Shih, E., “An 
Engineering Approach for Elastic-Plastic 
Fracture Analysis ”, EPRI Report No. NP-1931, 
July 1981. 
 
F.3  Kumar, V., German, M., Wilkening, 
Andrews, W., deLorenzi, H., and Mowbray, D., 
“Advances in Elastic-P1astic Analysis ” EPRI 
Final Report NP-3607, August 1984. 
 
F.4  Kumar, V., and German, M. D., “Elastic-
Plastic Fracture Analysis of Through-Wall and 
Surface Flaws in Cylinders”, EPRI Final Report 
NP-5596, January, 1988. 
 
F.5  P. Gilles and F. W. Brust, "Approximate 
Fracture Methods for Pipes, Part I, Theory", 
Nuclear Engineering and Design, Vol. 127, pp. 
1-17, 1991. 
 
F.6  P. Gilles, K. S. Chao, and F. W. Brust, 
"Approximate Fracture Methods for Pipes, Part 
II, Applications,"  Nuclear Engineering and 
Design , Vol. 127, pp. 19-31, 1991. 
 
F.7  Scott, P. M., and Ahmad, J., “Experimental 
and Analytical Assessment of Bending 
Circumferentially Surface-Cracked Pipes Under 
Bending”, NUREG/CR-4872, April 1987. 
 
F.8  Rahman, S. and Brust, F. W., “Approximate 
Methods for Predicting J-integral of a 
Circumferentially Surface-Cracked Pipe Subject 

to Bending,” International Journal of Fracture, 
Vol. 85, No. 2, October 1997, pp. 111-130. 
 
F.9  Brust, F., Scott, P., Rahman, S., Ghadiali, 
N., Kilinski, T., Francini. R., Krishnaswamy, P., 
and Wilkowski, G., “Assessment of Short 
Through-Wall Cracks in Pipes - Experiments 
and Analyses,” Topical Report, NUREG/CR-
6235, U. S. Nuclear Regulatory Commission, 
Washington, DC, April 1995 
 
F.10  Krishnaswamy, P., Scott, P., Choi, Y., 
Mohan, R., Rahman, S., Brust, F., and 
Wilkowski, G., “Fracture Behavior of Short 
Circumferentially Surface-Cracked Pipe,” 
Topical Report, NUREG/CR-6298, U. S. 
Nuclear Regulatory Commission, Washington, 
DC, November 1995. 
 
F.11  Rahman, S., and Brust, F. W., "Elastic-
Plastic Fracture of Circumferential Through-
Wall Cracked Pipe Welds Subject to Bending", 
ASME Journal of Pressure Vessel Technology, 
Vol. 114, pp 410-416, November, 1992. 
 
F.12  Mohan, R., Krishna, A., Brust, F. W., and 
Wilkowski, G., “ J-estimation Scheme for 
Internal Circumferential and Axial Surface 
Cracks in Pipe Elbows,” ASME J. of Pressure 
Vessel Technology, Vol. 120, Nov. 1998. 
 
F.13  Kilinski, T., and others, “Fracture 
Behavior of Circumferentially Surface-Cracked 
Elbows,” NUREG/CR-6444, December 1996. 
 




